Sample records for ap-1 repressor protein

  1. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Holmberg, Christian Henrik; Dietrich, Nikolaj;


    depletion of JDP2 resulted in p53-independent cell death that resembles apoptosis and was evident at 72 h. The death mechanism was caspase dependent as the cells could be rescued by treatment with caspase inhibitor zVAD. Our studies suggest that JDP2 functions as a general survival protein, not only...

  2. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    Directory of Open Access Journals (Sweden)

    Daniel Pérez-Núñez

    Full Text Available African swine fever virus (ASFV CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  3. Fos/AP-1 proteins in bone and the immune system. (United States)

    Wagner, Erwin F; Eferl, Robert


    The skeleton and the immune system share a variety of different cytokines and transcription factors, thereby mutually influencing each other. These interactions are not confined to the bone marrow cavity where bone cells and hematopoietic cells exist in proximity but also occur at locations that are target sites for inflammatory bone diseases. The newly established research area termed 'osteoimmunology' attempts to unravel these skeletal/immunological relationships. Studies towards a molecular understanding of inflammatory bone diseases from an immunological as well as a bone-centered perspective have been very successful and led to the identification of several signaling pathways that are causally involved in inflammatory bone loss. Induction of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signals by activated T cells and subsequent activation of the key transcription factors Fos/activator protein-1 (AP-1), NF-kappaB, and NF for activation of T cells c1 (NFATc1) are in the center of the signaling networks leading to osteoclast-mediated bone loss. Conversely, nature has employed the interferon system to antagonize excessive osteoclast differentiation, although this counteracting activity appears to be overruled under pathological conditions. Here, we focus on Fos/AP-1 functions in osteoimmunology, because this osteoclastogenic transcription factor plays a central role in inflammatory bone loss by regulating genes like NFATc1 as well as the interferon system. We also attempt to put potential therapeutic strategies for inflammatory bone diseases in perspective.

  4. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. (United States)

    Jansen, Eric J R; Timal, Sharita; Ryan, Margret; Ashikov, Angel; van Scherpenzeel, Monique; Graham, Laurie A; Mandel, Hanna; Hoischen, Alexander; Iancu, Theodore C; Raymond, Kimiyo; Steenbergen, Gerry; Gilissen, Christian; Huijben, Karin; van Bakel, Nick H M; Maeda, Yusuke; Rodenburg, Richard J; Adamowicz, Maciej; Crushell, Ellen; Koenen, Hans; Adams, Darius; Vodopiutz, Julia; Greber-Platzer, Susanne; Müller, Thomas; Dueckers, Gregor; Morava, Eva; Sykut-Cegielska, Jolanta; Martens, Gerard J M; Wevers, Ron A; Niehues, Tim; Huynen, Martijn A; Veltman, Joris A; Stevens, Tom H; Lefeber, Dirk J


    The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.

  5. Solitons and Collapse in the lambda-repressor protein

    CERN Document Server

    Krokhotin, Andrey; Niemi, Antti J


    The enterobacteria lambda phage is a paradigm temperate bacteriophage. Its lysogenic and lytic life cycles echo competition between the DNA binding $\\lambda$-repressor (CI) and CRO proteins. Here we scrutinize the structure, stability and folding pathways of the $\\lambda$-repressor protein, that controls the transition from the lysogenic to the lytic state. We first investigate the super-secondary helix-loop-helix composition of its backbone. We use a discrete Frenet framing to resolve the backbone spectrum in terms of bond and torsion angles. Instead of four, there appears to be seven individual loops. We model the putative loops using an explicit soliton Ansatz. It is based on the standard soliton profile of the continuum nonlinear Schr\\"odinger equation. The accuracy of the Ansatz far exceeds the B-factor fluctuation distance accuracy of the experimentally determined protein configuration. We then investigate the folding pathways and dynamics of the $\\lambda$-repressor protein. We introduce a coarse-graine...

  6. First molluscan transcription factor activator protein-1 (Ap-1) member from disk abalone and its expression profiling against immune challenge and tissue injury. (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Lee, Youngdeuk; Lee, Sukkyoung; Oh, Chulhong; Whang, Ilson; Yeo, Sang-Yeop; Choi, Cheol Young; Lee, Jehee


    The regulation of transcriptional activation is an essential and critical point in gene expression. In this study, we describe a novel transcription factor activator protein-1 (Ap-1) gene from disk abalone Haliotis discus discus (AbAp-1) for the first time in mollusk. It was identified by homology screening of an abalone normalized cDNA library. The cloned AbAp-1 consists of a 945 bp coding region that encodes a putative protein containing 315 amino acids. The AbAp-1 gene is composed of a characteristic Jun transcription factor domain and a highly conserved basic leucine zipper (bZIP) signature similar to known Ap-1 genes. The AbAp-1 shares 46, 43 and, 40% amino acid identities with fish (Takifugu rubripes), human and insect (Ixodes scapularis) Ap-1, respectively. Quantitative real time RT-PCR analysis confirmed that AbAp-1 gene expression is constitutive in all selected tissues. AbAp-1 was upregulated in gills after bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) challenge; and, upregulated in hemocytes and gills by viral hemorrhagic septicemia virus (VHSV) challenge. Shell damage and tissue injury also increased the transcriptional level of Ap-1 in mantle together with other transcription factors (NF-kB, LITAF) and pro-inflammatory TNF-α. All results considered, identification and gene expression data demonstrate that abalone Ap-1 is an important regulator in innate immune response against bacteria and virus, as well as in the inflammatory response during tissue injury. In addition, stimulation of Ap-1 under different external stimuli could be useful to understand the Ap-1 biology and its downstream target genes, especially in abalone-like mollusks.

  7. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1. (United States)

    Cao, Zhen; Wu, Xue-Fei; Peng, Yan; Zhang, Rui; Li, Na; Yang, Jin-Yi; Zhang, Shu-Qin; Zhang, Wan-Qin; Zhao, Jie; Li, Shao


    Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine.

  8. Protein Product Encoded by a Human Novel Gene E9730 Enhances AP-1 Activity through Interacting with Jab1

    Institute of Scientific and Technical Information of China (English)

    Zhao-Qing WANG; Han-Dong WEI; Fu-Chu HE


    A novel human gene, named E9730 (a clone number of fetal liver cDNA library), has been identified from more than 14,000 expressed sequence tags (ESTs) based on our large scale sequencing of human fetal liver cDNA libraries. Although sequencing of this novel human gene indicates that it is a leucine zipper protein, the function of E9730 and its homologous genes among species is unknown yet. To find out physiological functional clue of E9730, the yeast two-hybrid system was used to screen the E9730-interacting protein(s), and one clone containing a cDNA insert with almost the entire coding sequence (amino acids 39-335) of human Jab1 (Jun-activating domain binding protein 1) that interacted specifically with E9730 was identified. A specific association between Jab1 and E9730 was shown by co-immunoprecipitation and co-localization experiments. Furthermore, E9730 appeared to enhance Jab1-induced AP-1 activity in a concentration-dependent manner and Jab1 may be involved in the intracellular signaling transduction from E9730 to AP-1.

  9. Protein Product Encoded by a Human Novel Gene E9730 Enhances AP-1 Activity through Interacting with Jab1

    Institute of Scientific and Technical Information of China (English)

    Zhao-QingWANG; Han-DongWEI; Fu-ChuHE


    A novel human gene, named E9730 (a clone number of fetal liver cDNA library), has been identified from more than 14,000 expressed sequence tags (ESTs) based on our large scale sequencing of human fetal liver cDNA libraries. Although sequencing of this novel human gene indicates that it is a leucine zipper protein, the function of E9730 and its homologous genes among species is unknown yet. To find out physiological functional clue of E9730, the yeast two-hybrid system was used to screen the E9730-interacting protein(s), and one clone containing a cDNA insert with almost the entire coding sequence (amino acids 39-335) of human Jabl (Jun-activating domain binding protein 1) that interacted specifically with E9730 was identified. A specific association between Jab1 and E9730 was shown by co-immunoprecipitation and co-localization experiments. Furthermore, E9730 appeared to enhance Jabl-induced AP-1 activity in a concentration-dependent manner and Jabl may be involved in the intracellular signaling tra.nsduction from E9730 to AP-1.

  10. The retinoblastoma protein as a transcriptional repressor

    DEFF Research Database (Denmark)

    Helin, K; Ed, H


    The retinoblastoma protein (pRB) is one of the best-studied tumour suppressor gene products. Its loss during the genesis of many human tumours, its inactivation by several DNA tumour virus oncoproteins, and its ability to inhibit cell growth when introduced into dividing cells all suggest that pRB...... negatively regulates some aspect of normal cell growth. The discovery that pRB associates with transcription factors such as E2F has provided the first model for pRB function. In this review, we discuss how pRB may regulate cell growth by repressing transcription of genes essential for cell proliferation....

  11. DND protein functions as a translation repressor during zebrafish embryogenesis. (United States)

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio


    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish.

  12. Solitons and collapse in the λ-repressor protein (United States)

    Krokhotin, Andrey; Lundgren, Martin; Niemi, Antti J.


    The enterobacteria lambda phage is a paradigm temperate bacteriophage. Its lysogenic and lytic life cycles echo competition between the DNA binding λ-repressor (CI) and CRO proteins. Here we scrutinize the structure, stability, and folding pathways of the λ-repressor protein, which controls the transition from the lysogenic to the lytic state. We first investigate the supersecondary helix-loop helix composition of its backbone. We use a discrete Frenet framing to resolve the backbone spectrum in terms of bond and torsion angles. Instead of four, there appears to be seven individual loops. We model the putative loops using an explicit soliton Ansatz. It is based on the standard soliton profile of the continuum nonlinear Schrödinger equation. The accuracy of the Ansatz far exceeds the B-factor fluctuation distance accuracy of the experimentally determined protein configuration. We then investigate the folding pathways and dynamics of the λ-repressor protein. We introduce a coarse-grained energy function to model the backbone in terms of the Cα atoms and the side chains in terms of the relative orientation of the Cβ atoms. We describe the folding dynamics in terms of relaxation dynamics and find that the folded configuration can be reached from a very generic initial configuration. We conclude that folding is dominated by the temporal ordering of soliton formation. In particular, the third soliton should appear before the first and second. Otherwise, the DNA binding turn does not acquire its correct structure. We confirm the stability of the folded configuration by repeated heating and cooling simulations.

  13. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish. (United States)

    Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D


    Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.

  14. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)


    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  15. Discs large 1 (Dlg1) scaffolding protein participates with clathrin and adaptator protein complex 1 (AP-1) in forming Weibel-Palade bodies of endothelial cells. (United States)

    Philippe, Monique; Léger, Thibaut; Desvaux, Raphaëlle; Walch, Laurence


    Weibel-Palade bodies (WPBs) are specific cigar-shaped granules that store von Willebrand factor (VWF) for its regulated secretion by endothelial cells. The first steps of the formation of these granules at the trans-Golgi network specifically require VWF aggregation and an external scaffolding complex that contains the adaptator protein complex 1 (AP-1) and clathrin. Discs large 1 (Dlg1) is generally considered to be a modular scaffolding protein implicated in the control of cell polarity in a large variety of cells by specific recruiting of receptors, channels, or signaling proteins to specialized zones of the plasma membrane. We propose here that in endothelial cells, Dlg1, in a complex with AP-1 and clathrin, participates in the biogenesis of WPBs. Supporting data show that Dlg1 colocalizes with microtubules, intermediate filaments, and Golgi markers. Tandem mass spectrometry experiments led to the identification of clathrin as an Dlg1-interacting partner. Interaction was confirmed by in situ proximity ligation assays. Furthermore, AP-1 and VWF immunoprecipitate and colocalize with Dlg1 in the juxtanuclear zone. Finally, Dlg1 depletion by siRNA duplexes disrupts trans-Golgi network morphology and WPB formation. Our results provide the first evidence for an unexpected role of Dlg1 in controlling the formation of specific secretory granules involved in VWF exocytosis in endothelial cells.

  16. Distinct and Redundant Functions of μ1 Medium Chains of the AP-1 Clathrin-Associated Protein Complex in the Nematode Caenorhabditis elegans (United States)

    Shim, Jaegal; Sternberg, Paul W.; Lee, Junho


    In the nematode Caenorhabditis elegans, there exist two μ1 medium chains of the AP-1 clathrin-associated protein complex. Mutations of unc-101, the gene that encodes one of the μ1 chains, cause pleiotropic effects (Lee et al., 1994). In this report, we identified and analyzed the second μ1 chain gene, apm-1. Unlike the mammalian homologs, the two medium chains are expressed ubiquitously throughout development. RNA interference (RNAi) experiments with apm-1 showed that apm-1 and unc-101 were redundant in embryogenesis and in vulval development. Consistent with this, a hybrid protein containing APM-1, when overexpressed, rescued the phenotype of an unc-101 mutant. However, single disruptions of apm-1 or unc-101 have distinct phenotypes, indicating that the two medium chains may have distinct functions. RNAi of any one of the small or large chains of AP-1 complex (ς1, β1, or γ) showed a phenotype identical to that caused by the simultaneous disruption of unc-101 and apm-1, but not that by single disruption of either gene. This suggests that the two medium chains may share large and small chains in the AP-1 complexes. Thus, apm-1 and unc-101 encode two highly related μ1 chains that share redundant and distinct functions within AP-1 clathrin-associated protein complexes of the same tissue. PMID:10930467

  17. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David


    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  18. The non-JAZ TIFY protein TIFY8 from Arabidopsis thaliana is a transcriptional repressor

    NARCIS (Netherlands)

    Cuéllar Pérez, Amparo; Nagels Durand, Astrid; Vanden Bossche, Robin; De Clercq, Rebecca; Persiau, Geert; van Wees, Saskia C M; Pieterse, Corné M J; Gevaert, Kris; De Jaeger, Geert; Goossens, Alain; Pauwels, Laurens


    Jasmonate (JA) signalling is mediated by the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins, which are degraded upon JA perception to release downstream responses. The ZIM protein domain is characteristic of the larger TIFY protein family. It is currently unknown if the atypical member TIFY8 is invol

  19. Oxidant exposure induces cysteine-rich protein 61 (CCN1 via c-Jun/AP-1 to reduce collagen expression in human dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    Full Text Available Human skin is a primary target of oxidative stress from reactive oxygen species (ROS generated from both extrinsic and intrinsic sources. Oxidative stress inhibits the production of collagen, the most abundant protein in skin, and thus contributes to connective tissue aging. Here we report that cysteine-rich protein 61 (CCN1, a negative regulator of collagen production, is markedly induced by ROS and mediates loss of type I collagen in human dermal fibroblasts. Conversely, antioxidant N-acetyl-L-cysteine significantly reduced CCN1 expression and prevented ROS-induced loss of type I collagen in both human dermal fibroblasts and human skin in vivo. ROS increased c-Jun, a critical member of transcription factor AP-1 complex, and increased c-Jun binding to the AP-1 site of the CCN1 promoter. Functional blocking of c-Jun significantly reduced CCN1 promoter and gene expression and thus prevented ROS-induced loss of type I collagen. Targeting the c-Jun/CCN1 axis may provide clinical benefit for connective tissue aging in human skin.

  20. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding. (United States)

    Streaker, Emily D; Gupta, Aditi; Beckett, Dorothy


    The Escherichia coli biotin repressor, an allosteric transcriptional regulator, is activated for binding to the biotin operator by the small molecule biotinyl-5'-AMP. Results of combined thermodynamic, kinetic, and structural studies of the protein have revealed that corepressor binding results in disorder to order transitions in the protein monomer that facilitate tighter dimerization. The enhanced stability of the dimer leads to stabilization of the resulting biotin repressor-biotin operator complex. It is not clear, however, that the allosteric response in the system is transmitted solely through the protein-protein interface. In this work, the allosteric mechanism has been quantitatively probed by measuring the biotin operator binding and dimerization properties of three biotin repressor species: the apo or unliganded form, the biotin-bound form, and the holo or bio-5'-AMP-bound form. Comparisons of the pairwise differences in the bioO binding and dimerization energetics for the apo and holo species reveal that the enhanced DNA binding energetics resulting from adenylate binding track closely with the enhanced assembly energetics. However, when the results for repressor pairs that include the biotin-bound species are compared, no such equivalence is observed.

  1. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    Full Text Available BACKGROUND: The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif. METHODS AND FINDINGS: Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction. CONCLUSIONS: These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  2. The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in Chinese lantern development in Physalis. (United States)

    Zhao, Jing; Tian, Ying; Zhang, Ji-Si; Zhao, Man; Gong, Pichang; Riss, Simone; Saedler, Rainer; He, Chaoying


    The Chinese lantern phenotype or inflated calyx syndrome (ICS) is a postfloral morphological novelty in Physalis. Its origin is associated with the heterotopic expression of the MADS box gene 2 from Physalis floridana (MPF2) in floral organs, yet the process underlying its identity remains elusive. Here, we show that MPF3, which is expressed specifically in floral tissues, encodes a core eudicot APETALA1-like (euAP1) MADS-domain protein. MPF3 was primarily localized to the nucleus, and it interacted with MPF2 and some floral MADS-domain proteins to selectively bind the CC-A-rich-GG (CArG) boxes in the MPF2 promoter. Downregulating MPF3 resulted in a dramatic elevation in MPF2 in the calyces and androecium, leading to enlarged and leaf-like floral calyces; however, the postfloral lantern was smaller and deformed. Starch accumulation in pollen was blocked. MPF3 MPF2 double knockdowns showed normal floral calyces and more mature pollen than those found in plants in which either MPF3 or MPF2 was downregulated. Therefore, MPF3 specifies calyx identity and regulates ICS formation and male fertility through interactions with MPF2/MPF2. Furthermore, both genes were found to activate Physalis floridana invertase gene 4 homolog, which encodes an invertase cleaving Suc, a putative key gene in sugar partitioning. The novel role of the MPF3-MPF2 regulatory circuit in male fertility is integral to the origin of ICS. Our results shed light on the evolution and development of ICS in Physalis and on the functional evolution of euAP1s in angiosperms.

  3. The designed protein M(II)-Gly-Lys-His-Fos(138-211) specifically cleaves the AP-1 binding site containing DNA. (United States)

    Harford, C; Narindrasorasak, S; Sarkar, B


    A new specific DNA cleavage protein, Gly-Lys-His-Fos(138-211), was designed, expressed, and characterized. The DNA-binding component of the design uses the basic and leucine zipper regions of the leucine zipper Fos, which are represented by Fos(138-211). The DNA cleavage moiety was provided by the design of the amino-terminal Cu(II)-, Ni(II)-binding site GKH at the amino terminus of Fos(138-211). Binding of Cu(II) or Ni(II) by the protein activates its cleavage ability. The GKH motif was predicted to form a specific amino-terminal Cu(II)-, Ni(II)-binding motif as previously defined [Predki, P. F., Harford, C., Brar, P., & Sarkar, B. (1992) Biochem. J. 287, 211 -215]. This prediction was verified as the tripeptide, GKH, and the expressed protein, GKH-Fos(138-211), were both shown to be capable of binding Cu(II) and Ni(II). The designed protein upon heterodimerization with Jun(248-334) was shown to bind to and cleave several forms of DNA which contained an AP-1 binding site. The cleavage was shown to be specific. This design demonstrates the versatility of the amino-terminal Cu(II)-, Ni(II)-binding motif and the variety of motifs which can be generated. The site of cleavage by GKH-Fos(138-211) on DNA provides further information regarding the bending of DNA upon binding to Fos-Jun heterodimers.

  4. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.


    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  5. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  6. Expression of tyrosine kinase Etk/Bmx and its relationship with AP-1- and NF-kappaB-associated proteins in hepatocellular carcinoma. (United States)

    Guo, Linlang; Guo, Ying; Xiao, Sha


    Etk/Bmx is a cytoplasmic tyrosine kinase, which was first identified in human bone marrow cells. It has been found to play an important role in the regulation of differentiation and tumorigenicity in some cancers. The aim of this study was to investigate the significance of Etk/Bmx expression in hepatocellular carcinoma (HCC) and the relationship between Etk/Bmx and activated protein-1 (AP-1)- and nuclear factor-kappaB (NF-kappaB)-associated proteins. We used immunohistochemisty to examine 40 cases of human HCC along with corresponding nontumor tissues to assess Etk/Bmx, Jun family (c-Jun, JunB, JunD), Fos family (c-Fos, FosB, Fra-1) and NF-kappaB p65 expression in these samples. Etk/Bmx expression was present in 12 of 40 (30%) HCC specimens, 4 of which among the 25 well-differentiated tumors and 8 among the 15 poorly differentiated tumors, respectively. In contrast, 6 of 40 (15%) cases expressed Etk/Bmx in adjacent nontumor tissues. Expression level and cellular localization of Etk/Bmx were different in cancer cells and nontumor cells. Etk/Bmx expression was correlated with histological differentiation, but not with clinicopathological features including tumor size, HBV infection, cirrhosis, and metastasis. There was a close relationship between Etk/Bmx and c-Fos expression in HCC. Etk/Bmx immunopositivity was independent of c-Jun, JunD, FosB, Fra-1 and NF-kappaB p65. Our results indicated that Etk/Bmx may have different biological roles in tumor and nontumor cells, and may be involved in regulating hepatocyte differentiation by c-Fos activation in HCC.

  7. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity. (United States)

    Karmakar, Sudipan; Jin, Yetao; Nagaich, Akhilesh K


    The role of glucocorticoids in the inhibition of estrogen (17-β-estradiol (E2))-regulated estrogen receptor (ER)-positive breast cancer cell proliferation is well established. We and others have seen that synthetic glucocorticoid dexamethasone (Dex) antagonizes E2-stimulated endogenous ERα target gene expression. However, how glucocorticoids negatively regulate the ERα signaling pathway is still poorly understood. ChIP studies using ERα- and glucocorticoid receptor (GR)-positive MCF-7 cells revealed that GR occupies several ERα-binding regions (EBRs) in cells treated with E2 and Dex simultaneously. Interestingly, there was little or no GR loading to these regions when cells were treated with E2 or Dex alone. The E2+Dex-dependent GR recruitment is associated with the displacement of ERα and steroid receptor coactivator-3 from the target EBRs leading to the repression of ERα-mediated transcriptional activation. The recruitment of GR to EBRs requires assistance from ERα and FOXA1 and is facilitated by AP1 binding within the EBRs. The GR binding to EBRs is mediated via direct protein-protein interaction between the GR DNA-binding domain and ERα. Limited mutational analyses indicate that arginine 488 located within the C-terminal zinc finger domain of the GR DNA-binding domain plays a critical role in stabilizing this interaction. Together, the results of this study unravel a novel mechanism involved in glucocorticoid inhibition of ERα transcriptional activity and E2-mediated cell proliferation and thus establish a foundation for future exploitation of the GR signaling pathway in the treatment of ER-positive breast cancer.

  8. The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells. (United States)

    Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F; Schett, Georg; Mielenz, Dirk; David, Jean-Pierre


    The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell-specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression.

  9. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells. (United States)

    Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung


    A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

  10. Myogenic repressor I-mfa interferes with the function of Zic family proteins. (United States)

    Mizugishi, Kiyomi; Hatayama, Minoru; Tohmonda, Takahide; Ogawa, Miyuki; Inoue, Takashi; Mikoshiba, Katsuhiko; Aruga, Jun


    Zinc finger proteins belonging to the Zic family control several developmental processes such as patterning of the axial skeleton. Here we mapped the transcriptional regulatory domains in Zic2 protein and identified a protein which specifically binds to one of them. In the mapping experiments, an amino-terminal region was identified as transcriptional regulatory domains. A search for proteins binding to the amino terminal domain of Zic2 revealed that inhibitor of MyoD family (I-mfa) protein, which has been identified as a repressor of myogenic helix-loop-helix class transcription factors, can physically interact with the amino terminal domain. When Zic1-3 and I-mfa proteins were co-expressed in cultured cells, nuclear import of the Zic proteins was inhibited. Consequently, I-mfa inhibited transcriptional activation by the Zic proteins in cultured cells. These results suggest that the physical and functional interaction between Zic and I-mfa proteins can play a role in the vertebrate development.

  11. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  12. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  13. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response. (United States)

    Li, Chang Xian; Lo, Chung Mau; Lian, Qizhou; Ng, Kevin Tak-Pan; Liu, Xiao Bing; Ma, Yuen Yuen; Qi, Xiang; Yeung, Oscar Wai Ho; Tergaonkar, Vinay; Yang, Xin Xiang; Liu, Hui; Liu, Jiang; Shao, Yan; Man, Kwan


    Repressor and activator protein (Rap1) directly regulates nuclear factor-κB (NF-κB) dependent signaling, which contributes to hepatic IRI. We here intended to investigate the effect of Rap1 in hepatic ischemia reperfusion injury (IRI) and to explore the underlying mechanisms. The association of Rap1 expression with hepatic inflammatory response were investigated in both human and rat liver transplantation. The effect of Rap1 in hepatic IRI was studied in Rap1 knockout mice IRI model in vivo and primary cells in vitro. Our results showed that over expression of Rap1 was associated with severe liver graft inflammatory response, especially in living donor liver transplantation. The results were also validated in rat liver transplantation model. In mice hepatic IRI model, the knockout of Rap1 reduced hepatic damage and hepatic inflammatory response. In primary cells, the knockout of Rap1 suppressed neutrophils migration activity and adhesion in response to liver sinusoidal endothelial cells through down-regulating neutrophils F-Actin expression and CXCL2/CXCR2 pathway. In addition, the knockout of Rap1 also decreased production of pro-inflammatory cytokines/chemokines in primary neutrophils and neutrophils-induced hepatocyte damage. In conclusion, Rap1 may induce hepatic IRI through promoting neutrophils inflammatory response. Rap1 may be the potential therapeutic target of attenuating hepatic IRI.

  14. Crn7 interacts with AP-1 and is required for the maintenance of Golgi morphology and protein export from the Golgi

    NARCIS (Netherlands)

    Rybakin, Vasily; Gounko, Natalia V.; Spaete, Kira; Hoening, Stefan; Majoul, Irina V.; Duden, Rainer; Noegel, Angelika A.


    Crn7 is a novel cytosolic mammalian WD-repeat protein of unknown function that associates with Golgi membranes. Here, we demonstrate that Crn7 knockdown by small interfering-RNA results in dramatic changes in the Golgi morphology and function. First, the Golgi ribbon is disorganized in Crn7 KD cells

  15. Distal Interleukin-1β (IL-1β) Response Element of Human Matrix Metalloproteinase-13 (MMP-13) Binds Activator Protein 1 (AP-1) Transcription Factors and Regulates Gene Expression* (United States)

    Schmucker, Adam C.; Wright, Jason B.; Cole, Michael D.; Brinckerhoff, Constance E.


    The collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro. IL-1β signaling converges upon the activator protein-1 transcription factors, which have been shown to be required for IL-1β-induced MMP-13 gene expression. Using chromatin immunoprecipitation (ChIP), we detected activator protein-1 binding within an evolutionarily conserved DNA sequence ∼20 kb 5′ relative to the MMP-13 transcription start site (TSS). Also using ChIP, we detected histone modifications and binding of RNA polymerase II within this conserved region, all of which are consistent with transcriptional activation. Chromosome conformation capture indicates that chromosome looping brings this region in close proximity with the MMP-13 TSS. Finally, a luciferase reporter construct driven by a component of the conserved region demonstrated an expression pattern similar to that of endogenous MMP-13. These data suggest that a conserved region at 20 kb upstream from the MMP-13 TSS includes a distal transcriptional response element of MMP-13, which contributes to MMP-13 gene expression. PMID:22102411

  16. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick


    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  17. RAD51AP1-deficiency in vertebrate cells impairs DNA replication. (United States)

    Parplys, Ann C; Kratz, Katja; Speed, Michael C; Leung, Stanley G; Schild, David; Wiese, Claudia


    RAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells. Targeted inactivation of both RAD51AP1 alleles has no effect on either viability or doubling-time in undamaged cells, but leads to increased levels of cytotoxicity after exposure to cisplatin or to ionizing radiation. Interestingly, ectopic expression of GgRAD51AP1, but not of HsRAD51AP1 is able to fully complement in cell survival assays. Notably, in RAD51AP1-deficient DT40 cells the resolution of DNA damage-induced RAD51 foci is greatly slowed down, while their formation is not impaired. We also identify, for the first time, an important role for RAD51AP1 in counteracting both spontaneous and DNA damage-induced replication stress. In human and in chicken cells, RAD51AP1 is required to maintain wild type speed of replication fork progression, and both RAD51AP1-depleted human cells and RAD51AP1-deficient DT40 cells respond to replication stress by a slow-down of replication fork elongation rates. However, increased firing of replication origins occurs in RAD51AP1-/- DT40 cells, likely to ensure the timely duplication of the entire genome. Taken together, our results may explain why RAD51AP1 commonly is overexpressed in tumor cells and tissues, and we speculate that the disruption of RAD51AP1 function could be a promising approach in targeted tumor therapy.

  18. Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif

    Institute of Scientific and Technical Information of China (English)

    Ye LUO; Yu HAO; Tai-ping SHI; Wei-wei DENG; Na LI


    Aim: To verify the suppressive effect of berberine on the proliferation of the human pulmonary giant cell carcinoma cell line PG and to demonstrate the mecha-nisms behind the antitumoral effects of berberine. Methods: The proliferative effects of PG cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetry. The cell cycle was examined by flow cytometry. The expression level of cyclin D1 was detected by RT-PCR. The activities of the activating protein-1 (AP-1) and NF-κB signaling pathways related to cyclin D1 were examined by luciferase assay. The cytoplasmic level of c-Jun was detected by Western blot analysis. An electrophoretic mobility shift assay was used to examiae the binding of transcription factors to the cyclin D1 gene (CCNDl) AP-1 motif. Results: The results showed that the proliferation of PG cells treated with different concentrations (10, 20, and 40 μg/mL) of berberine for 24 and 48 h was suppressed significantly compared to the control group. After treatment with berberine, the proportion of PG cells at the G0/G1 phase increased, while cells at the S and G2/M phases decreased. Berberine could inhibit the expression of cyclin D1 in PG cells. Berberine inhibited the activity of the AP-1 signaling pathway, but had no significant effect on the NF-κB signaling pathway. Berberine suppressed the expression of c-Jun and decreased the binding of tran-scription factors to the CCND1 AP-1 motif. Conclusion: Berberine suppresses the activity of the AP-1 signaling pathway and decreases the binding of transcrip-tion factors to the CCND1 AP-1 motif. This is one of the important mechanisms behind the antitumoral effects of berberine as a regulator of cyclin D1.

  19. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shucai [University of British Columbia, Vancouver; Chang, Ying [Northeast Agricultural University; Guo, Jianjun [Harvard University; Zeng, Qingning [University of British Columbia, Vancouver; Ellis, Brian [University of British Columbia, Vancouver; Chen, Jay [ORNL


    BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a

  20. Expression and properties of wild-type and mutant forms of the Drosophila sex comb on midleg (SCM) repressor protein. (United States)

    Bornemann, D; Miller, E; Simon, J


    The Sex comb on midleg (Scm) gene encodes a transcriptional repressor of the Polycomb group (PcG). Here we show that SCM protein is nuclear and that its expression is widespread during fly development. SCM protein contains a C-terminal domain, termed the SPM domain, which mediates protein-protein interactions. The biochemical function of another domain consisting of two 100-amino-acid-long repeats, termed "mbt" repeats, is unknown. We have determined the molecular lesions of nine Scm mutant alleles, which identify functional requirements for specific domains. The Scm alleles were tested for genetic interactions with mutations in other PcG genes. Intriguingly, three hypomorphic Scm mutations, which map within an mbt repeat, interact with PcG mutations more strongly than do Scm null alleles. The strongest interactions produce partial synthetic lethality that affects doubly heterozygous females more severely than males. We show that mbt repeat alleles produce stable SCM proteins that associate with normal sites in polytene chromosomes. We also analyzed progeny from Scm mutant germline clones to compare the effects of an mbt repeat mutation during embryonic vs. pupal development. We suggest that the mbt repeat alleles produce altered SCM proteins that incorporate into and impair function of PcG protein complexes.

  1. Ectopic expression of Jatropha curcas APETALA1 (JcAP1 caused early flowering in Arabidopsis, but not in Jatropha

    Directory of Open Access Journals (Sweden)

    Mingyong Tang


    Full Text Available Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1 is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1 was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.

  2. Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants (United States)

    Aarabi, Fayezeh; Kusajima, Miyuki; Tohge, Takayuki; Konishi, Tomokazu; Gigolashvili, Tamara; Takamune, Makiko; Sasazaki, Yoko; Watanabe, Mutsumi; Nakashita, Hideo; Fernie, Alisdair R.; Saito, Kazuki; Takahashi, Hideki; Hubberten, Hans-Michael; Hoefgen, Rainer; Maruyama-Nakashita, Akiko


    Glucosinolates (GSLs) in the plant order of the Brassicales are sulfur-rich secondary metabolites that harbor antipathogenic and antiherbivory plant-protective functions and have medicinal properties, such as carcinopreventive and antibiotic activities. Plants repress GSL biosynthesis upon sulfur deficiency (−S); hence, field performance and medicinal quality are impaired by inadequate sulfate supply. The molecular mechanism that links –S to GSL biosynthesis has remained understudied. We report here the identification of the –S marker genes sulfur deficiency induced 1 (SDI1) and SDI2 acting as major repressors controlling GSL biosynthesis in Arabidopsis under –S condition. SDI1 and SDI2 expression negatively correlated with GSL biosynthesis in both transcript and metabolite levels. Principal components analysis of transcriptome data indicated that SDI1 regulates aliphatic GSL biosynthesis as part of –S response. SDI1 was localized to the nucleus and interacted with MYB28, a major transcription factor that promotes aliphatic GSL biosynthesis, in both yeast and plant cells. SDI1 inhibited the transcription of aliphatic GSL biosynthetic genes by maintaining the DNA binding composition in the form of an SDI1-MYB28 complex, leading to down-regulation of GSL biosynthesis and prioritization of sulfate usage for primary metabolites under sulfur-deprived conditions.

  3. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster.

    Directory of Open Access Journals (Sweden)

    Nicholas P Tucker

    Full Text Available The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity.

  4. Members of the CREB/ATF and AP1 family of transcription factors are involved in the regulation of SOX18 gene expression

    Directory of Open Access Journals (Sweden)

    Petrović Isidora


    Full Text Available The SOX18 transcription factor plays an important role in endothelial cell specification, angiogenesis and atherogenesis. By profiling transcription factor interactions (TranSignal TM TF Protein Array we identified several transcription factors implicated in angiogenesis that have the ability to bind to the SOX18 optimal promoter region in vitro. In this report we focused our attention on distinct transcription factors identified by the array as belonging to AP-1 and CREB/ATF protein families. In particular, we analyzed the effects of CREB, JunB, c-Jun and ATF3 on SOX18 gene expression. Functional analysis revealed that CREB acts as a repressor, while JunB, c-Jun and ATF3 act as activators of SOX18 promoter activity. Our findings indicate that a transcriptional network that includes CREB, JunB, c-Jun and ATF3 could be involved in angiogenesis-related transcriptional regulation of the SOX18 gene.

  5. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli. (United States)

    Hufnagel, David A; Evans, Margery L; Greene, Sarah E; Pinkner, Jerome S; Hultgren, Scott J; Chapman, Matthew R


    The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, We determined that the c

  6. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma


    Nguyen, Cu; Teo, Jia-Ling; Matsuda, Akihisa; Eguchi, Masakatsu; Emil Y Chi; William R Henderson; Kahn, Michael


    Asthma is characterized by an oxidant/antioxidant imbalance in the lungs leading to activation of redox-sensitive transcription factors, nuclear factor κB (NF-κB), and activator protein-1 (AP-1). To develop therapeutic strategies for asthma, we used a chemogenomics approach to screen for small molecule inhibitor(s) of AP-1 transcription. We developed a β-strand mimetic template that acts as a reversible inhibitor (pseudosubstrate) of redox proteins. This template incorporates an enedione moie...

  7. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  8. Sliding and target location of DNA-binding proteins:an NMR view of the lac repressor system

    Energy Technology Data Exchange (ETDEWEB)

    Loth, Karine [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands); Gnida, Manuel; Romanuka, Julija [Paderborn University, Department of Chemistry (Germany); Kaptein, Robert; Boelens, Rolf, E-mail: [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)


    In non-specific lac headpiece-DNA complexes selective NMR line broadening is observed that strongly depends on length and composition of the DNA fragments. This broadening involves amide protons found in the non-specific lac-DNA structure to be interacting with the DNA phosphate backbone, and can be ascribed to DNA sliding of the protein along the DNA. This NMR exchange broadening has been used to estimate the 1D diffusion constant for sliding along non-specific DNA. The observed 1D diffusion constant of 4 Multiplication-Sign 10{sup -12} cm{sup 2}/s is two orders of magnitude smaller than derived from previous kinetic experiments, but falls in the range of values determined more recently using single molecule methods. This strongly supports the notion that sliding could play at most a minor role in the association kinetics of binding of lac repressor to lac operator and that other processes such as hopping and intersegment transfer contribute to facilitate the DNA recognition process.

  9. Sliding and target location of DNA-binding proteins: an NMR view of the lac repressor system. (United States)

    Loth, Karine; Gnida, Manuel; Romanuka, Julija; Kaptein, Robert; Boelens, Rolf


    In non-specific lac headpiece-DNA complexes selective NMR line broadening is observed that strongly depends on length and composition of the DNA fragments. This broadening involves amide protons found in the non-specific lac-DNA structure to be interacting with the DNA phosphate backbone, and can be ascribed to DNA sliding of the protein along the DNA. This NMR exchange broadening has been used to estimate the 1D diffusion constant for sliding along non-specific DNA. The observed 1D diffusion constant of 4×10(-12) cm(2)/s is two orders of magnitude smaller than derived from previous kinetic experiments, but falls in the range of values determined more recently using single molecule methods. This strongly supports the notion that sliding could play at most a minor role in the association kinetics of binding of lac repressor to lac operator and that other processes such as hopping and intersegment transfer contribute to facilitate the DNA recognition process.

  10. A repressor activator protein1 homologue from an oleaginous strain of Candida tropicalis increases storage lipid production in Saccharomyces cerevisiae. (United States)

    Chattopadhyay, Atrayee; Dey, Prabuddha; Barik, Amita; Bahadur, Ranjit P; Maiti, Mrinal K


    The repressor activator protein1 (Rap1) has been studied over the years as a multifunctional regulator in Saccharomyces cerevisiae. However, its role in storage lipid accumulation has not been investigated. This report documents the identification and isolation of a putative transcription factor CtRap1 gene from an oleaginous strain of Candida tropicalis, and establishes the direct effect of its expression on the storage lipid accumulation in S. cerevisiae, usually a non-oleaginous yeast. In silico analysis revealed that the CtRap1 polypeptide binds relatively more strongly to the promoter of fatty acid synthase1 (FAS1) gene of S. cerevisiae than ScRap1. The expression level of CtRap1 transcript in vivo was found to correlate directly with the amount of lipid produced in oleaginous native host C. tropicalis. Heterologous expression of the CtRap1 gene resulted in ∼ 4-fold enhancement of storage lipid content (57.3%) in S. cerevisiae. We also showed that the functionally active CtRap1 upregulates the endogenous ScFAS1 and ScDGAT genes of S. cerevisiae, and this, in turn, might be responsible for the increased lipid production in the transformed yeast. Our findings pave the way for the possible utility of the CtRap1 gene in suitable microorganisms to increase their storage lipid content through transcription factor engineering.


    Directory of Open Access Journals (Sweden)

    Marius Mihasan


    Full Text Available The pAO1 megaplasmid of A. nicotinovorans consists of 165 ORF's related mainly to nicotine degradation, uptake and utilization of carbohydrates, amino acids and sarcosine The putative sugar catabolic pathway consists of 11 ORFś organized as a single operon and coding for an ABC-type sugar-transport system and several putative oxidoreductases and dehydrogenases. The current work is focused on orf32, a putative PdhR related protein, most probably involved in the control of the whole operon. The approx. 700 kb orf32 gene was cloned in the pH6EX3 plasmid vector and the gene product purified to homogeneity as a 29 kDa His-tagged recombinant protein. As indicated by GPC, it consists of a monomeric protein with a native molecular weight of 32 kDa. The specific UV/Vis spectra showed only a single peak at 280 nm common for all proteins and did not indicated the presence of any colored cofactors. This is in good agreement with the fact that PdhR-family proteins contain a winged helix-turn-helix (wHTH domain responsible for DNA binding, and not a Zn-finger or any other metal containing domains

  12. The mouse nac1 gene, encoding a cocaine-regulated Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger protein, is regulated by AP1. (United States)

    Mackler, S A; Homan, Y X; Korutla, L; Conti, A C; Blendy, J A


    NAC1 cDNA was identified as a novel transcript induced in the nucleus accumbens from rats chronically treated with cocaine. NAC1 is a member of the Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger family of transcription factors and has been shown by overexpression studies to prevent the development of behavioral sensitization resulting from repeated cocaine treatment. This paper reports the cloning and characterization of the corresponding gene. The mouse Nac1 gene consist of six exons, with exon 2 containing an alternative splice donor, providing a molecular explanation of the splice variants observed in mouse and rat. Transcripts of Nac1 were ubiquitously detected in different mouse tissues with prominent expression in the brain. The mouse Nac1 gene was localized to chromosome 8, suggesting a highly plausible candidate gene to explain differences in cocaine-induced behaviors between C57BL6/J and DBA/2J mice that had previously been mapped to the area. In addition, a functional AP1 binding site has been identified in an intron 1 enhancer of the Nac1 gene that plays an essential role in the activation of the gene in differentiation of neuroblastoma cells. Co-transfection with c-jun and c-fos expression plasmids, which encode the two subunits of AP1, activated the wild type Nac1 intron 1 enhancer two-fold over basal, nearly at the level of NAC1 enhancer activity seen in differentiated N2A cells. Mutation of the AP1 site completely abrogated all activation of the NAC1 enhancer in differentiated N2A cells. Activation of immediate early genes such as c-fos and c-jun following chronic drug treatments has been well characterized. The present data describe one potential regulatory cascade involving these transcription factors and activation of NAC1. Identification of drug induced alterations in gene expression is key to understanding the types of molecular adaptations underlying addiction.

  13. Regulation of endothelial-specific transgene expression by the LacI repressor protein in vivo.

    Directory of Open Access Journals (Sweden)

    Susan K Morton

    Full Text Available Genetically modified mice have played an important part in elucidating gene function in vivo. However, conclusions from transgenic studies may be compromised by complications arising from the site of transgene integration into the genome and, in inducible systems, the non-innocuous nature of inducer molecules. The aim of the present study was to use the vascular system to validate a technique based on the bacterial lac operon system, in which transgene expression can be repressed and de-repressed by an innocuous lactose analogue, IPTG. We have modified an endothelium specific promoter (TIE2 with synthetic LacO sequences and made transgenic mouse lines with this modified promoter driving expression of mutant forms of connexin40 and an independently translated reporter, EGFP. We show that tissue specificity of this modified promoter is retained in the vasculature of transgenic mice in spite of the presence of LacO sequences, and that transgene expression is uniform throughout the endothelium of a range of adult systemic and cerebral arteries and arterioles. Moreover, transgene expression can be consistently down-regulated by crossing the transgenic mice with mice expressing an inhibitor protein LacI(R, and in one transgenic line, transgene expression could be de-repressed rapidly by the innocuous inducer, IPTG. We conclude that the modified bacterial lac operon system can be used successfully to validate transgenic phenotypes through a simple breeding schedule with mice homozygous for the LacI(R protein.

  14. Indirect readout of DNA sequence by p22 repressor: roles of DNA and protein functional groups in modulating DNA conformation. (United States)

    Harris, Lydia-Ann; Watkins, Derrick; Williams, Loren Dean; Koudelka, Gerald B


    The repressor of bacteriophage P22 (P22R) discriminates between its various DNA binding sites by sensing the identity of non-contacted base pairs at the center of its binding site. The "indirect readout" of these non-contacted bases is apparently based on DNA's sequence-dependent conformational preferences. The structures of P22R-DNA complexes indicate that the non-contacted base pairs at the center of the binding site are in the B' state. This finding suggests that indirect readout and therefore binding site discrimination depend on P22R's ability to either sense and/or impose the B' state on the non-contacted bases of its binding sites. We show here that the affinity of binding sites for P22R depends on the tendency of the central bases to assume the B'-DNA state. Furthermore, we identify functional groups in the minor groove of the non-contacted bases as the essential modulators of indirect readout by P22R. In P22R-DNA complexes, the negatively charged E44 and E48 residues are provocatively positioned near the negatively charged DNA phosphates of the non-contacted nucleotides. The close proximity of the negatively charged groups on protein and DNA suggests that electrostatics may play a key role in the indirect readout process. Changing either of two negatively charged residues to uncharged residues eliminates the ability of P22R to impose structural changes on DNA and to recognize non-contacted base sequence. These findings suggest that these negatively charged amino acids function to force the P22R-bound DNA into the B' state and therefore play a key role in indirect readout by P22R.

  15. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism. (United States)

    Klingel, U; Miller, C M; North, A K; Stockley, P G; Baumberg, S


    In Bacillus subtilis, the AhrC protein represses genes encoding enzymes of arginine biosynthesis and activates those mediating its catabolism. To determine how this repressor also functions as an activator, we attempted to clone catabolic genes by searching for insertions of the Tn917-lacZ transposon that express AhrC-dependent, arginine-inducible beta-galactosidase activity. One such isolate was obtained. The region upstream of lacZ was subcloned in Escherichia coli in such a way that it could be replaced in the B. subtilis chromosome after appropriate manipulation. Analysis of exonuclease III-derived deletions located an AhrC-dependent, arginine-inducible promoter to within a ca. 1.9 kb fragment. The sequence revealed: the 3' end of an ORF homologous to gdh genes encoding glutamate dehydrogenase, with highest homology to the homologue from Clostridium difficile; the 5' end of an ORF homologous to a Saccharomyces cerevisiae gene encoding delta 1-pyrroline 5-carboxylate dehydrogenase (P5CDH), an enzyme of arginine catabolism; and just upstream of the latter, a sequence with homology to known AhrC binding sites in the upstream part of the biosynthetic argCJBD-cpa-F cluster. The same region has also been sequenced by others as part of the B. subtilis genome sequencing project, revealing that the P5CDH gene is the first in a cluster termed rocABC. Restriction fragments containing the putative AhrC-binding sequence, but not those lacking it, showed retarded electrophoretic mobility in the presence of purified AhrC. A 277 bp AhrC-binding fragment also showed anomalous mobility in the absence of AhrC, consistent with its being intrinsically bent. DNAse I footprinting localized AhrC binding to bp -16/-22 to +1 (the transcription startpoint). Such a location for an activator binding site, i.e. overlapping the transcription start, is unusual.

  16. Three in-frame N-terminally different proteins are produced from the repressor locus of the Streptomyces bacteriophage phi C31. (United States)

    Smith, M C; Owen, C E


    The sequence of the repressor locus, c, of the Streptomyces temperate phage, phi C31, was shown previously to contain an open reading frame encoding a 74 kDa protein. Further analysis of the transcriptional and translational products of the c gene shows a more complex pattern of expression. A nest of three in-frame N-terminally different, C-terminally identical proteins of 74, 54 and 42 kDa were found to be expressed from a corresponding nest of transcripts. The repressor proteins were produced in Escherichia coli and the 42 kDa protein was purified, verified by N-terminal sequencing, and used to raise antibody. The antibody cross-reacted in Western blots with the 74, 54 and 42 kDa proteins expressed in E. coli and Streptomyces lividans and from Streptomyces coelicolor phi C31 lysogens. Analysis of transcription of the c gene by S1 mapping and primer extension showed that the nest of transcripts encoding the repressor protein were induced after heat treatment of the cts locus (Sinclair and Bibb, 1989; this paper). Correspondingly, all three of the repressor proteins were induced. In addition to a promoter, cp1, which lies upstream of the 74 kDa open reading frame, the c locus contained at least one internal promoter, cp2, which transcribes DNA encoding the 54 and 42 kDa proteins. Transcripts initiating from cp3 were observed in RNA preparations from S. lividans containing the c gene deleted for cp1 and cp2, but gene fusions using DNA which should contain any putative promoting activity from this region transcriptionally fused to the xylE gene showed very low levels of expression of catechol 2,3 dioxygenase in S. lividans. The 74 kDa protein was not necessary for super-infection immunity. Data described here and current knowledge of the nature of other 'dual start' genes suggest a model for the regulation of lysis versus lysogeny in phi C31.

  17. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    Directory of Open Access Journals (Sweden)

    Fubito Nakatsu


    Full Text Available The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis. Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.

  18. Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis. (United States)

    Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A


    Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain

  19. Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells

    Directory of Open Access Journals (Sweden)

    Rosseau Simone


    Full Text Available Abstract Background Although pneumococcal pneumonia is one of the most common causes of death due to infectious diseases, little is known about pneumococci-lung cell interaction. Herein we tested the hypothesis that pneumococci activated pulmonary epithelial cell cytokine release by c-Jun-NH2-terminal kinase (JNK Methods Human bronchial epithelial cells (BEAS-2B or epithelial HEK293 cells were infected with S. pneumoniae R6x and cytokine induction was measured by RT-PCR, ELISA and Bioplex assay. JNK-phosphorylation was detected by Western blot and nuclear signaling was assessed by electrophoretic mobility shift assay (EMSA and chromatin immunoprecipitation (ChIP. JNK was modulated by the small molecule inhibitor SP600125 and AP1 by transfection of a dominant negative mutant. Results S. pneumoniae induced the release of distinct CC and CXC, as well as Th1 and Th2 cytokines and growth factors by human lung epithelial cell line BEAS-2B. Furthermore, pneumococci infection resulted in JNK phosphorylation in BEAS-2B cells. Inhibition of JNK by small molecule inhibitor SP600125 reduced pneumococci-induced IL-8 mRNA expression and release of IL-8 and IL-6. One regulator of the il8 promoter is JNK-phosphorylated activator protein 1 (AP-1. We showed that S. pneumoniae time-dependently induced DNA binding of AP-1 and its phosphorylated subunit c-Jun with a maximum at 3 to 5 h after infection. Recruitment of Ser63/73-phosphorylated c-Jun and RNA polymerase II to the endogenous il8 promoter was found 2 h after S. pneumoniae infection by chromatin immunoprecipitation. AP-1 repressor A-Fos reduced IL-8 release by TLR2-overexpressing HEK293 cells induced by pneumococci but not by TNFα. Antisense-constructs targeting the AP-1 subunits Fra1 and Fra2 had no inhibitory effect on pneumococci-induced IL-8 release. Conclusion S. pneumoniae-induced IL-8 expression by human epithelial BEAS-2B cells depended on activation of JNK and recruitment of phosphorylated c

  20. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking

    NARCIS (Netherlands)

    Setta-Kaffetzi, N.; Simpson, M.A.; Navarini, A.A.; Patel, V.M.; Lu, H.C.; Allen, M.H.; Duckworth, M.; Bachelez, H.; Burden, A.D.; Choon, S.E.; Griffiths, C.E.; Kirby, B.; Kolios, A.; Seyger, M.M.B.; Prins, C.; Smahi, A.; Trembath, R.C.; Fraternali, F.; Smith, C.H.; Barker, J.N.; Capon, F.


    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has

  1. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia


    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  2. Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89. (United States)

    Wu, Yongzhong; Diab, Iman; Zhang, Xueping; Izmailova, Elena S; Zehner, Zendra E


    Vimentin exhibits a complex pattern of developmental- and tissue-specific expression and is aberrantly expressed in most metastatic tumors. The human vimentin promoter contains multiple DNA elements, some of which enhance gene expression and one that inhibits. A silencer element (at -319) binds the repressor ZBP-89. Further upstream (at -757) is an element, which acts positively in the presence of the silencer element and, thus, is referred to as an antisilencer (ASE). Previously, we showed that Stat1alpha binds to this element upon induction by IFN-gamma. However, substantial binding and reporter gene activity was still present in nontreated cells. Here, we have found that Stat3 binds to the ASE element in vitro. Transfection experiments in COS-1 cells with various vimentin promoter--reporter constructs show that gene activity is dependent upon the cotransfection and activation of Stat3. Moreover, activated Stat3 can overcome ZBP-89 repression. Coimmunoprecipitation studies demonstrate that Stat3 and ZBP-89 can interact and confocal microscopy detects these factors to be colocalized in the nucleus. Moreover, a correlation exists between the presence of activated Stat3 and vimentin expression in MDA-MB-231 cells, which is lacking in MCF7 cells where vimentin is not expressed. In the light of these results, we propose that the interaction of Stat3 and ZBP-89 may be crucial for overcoming the effects of the repressor ZBP-89, which suggests a novel mode for Stat3 gene activation.

  3. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, L; Martinussen, J; Møllegaard, N E;


    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt......R selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP...

  4. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, Lotte; Martinussen, J; Møllegaard, N E


    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt......R selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the c...... are required for efficient CytR repression of deoCp2. Models for the action of CytR are discussed in light of these findings....

  5. Evidence for involvement of the C-terminal domain in the dimerization of the CopY repressor protein from Enterococcus hirae

    Energy Technology Data Exchange (ETDEWEB)

    Pazehoski, Kristina O., E-mail: [Division of Natural Sciences, University of Pittsburgh at Greensburg, Greensburg, PA 15601 (United States); Cobine, Paul A., E-mail: [Department of Biological Sciences, 101 Rouse Life Science Building, Auburn University, AL 36849 (United States); Winzor, Donald J. [Department of Biochemistry, University of Queensland, Brisbane, Queensland 4072 (Australia); Dameron, Charles T., E-mail: [Department of Chemistry, Saint Francis University, Loretto, PA 15940 (United States)


    Research highlights: {yields} A metal-binding protein domain is directly involved in protein dimerization. {yields} Fusing the metal-binding domain to a monomeric protein induces dimerization. {yields} Frontal size-exclusion chromatography measures the strength of dimer interaction. {yields} Ultracentrifugation studies confirm the influence of metal binding on dimerization. -- Abstract: Metal binding to the C-terminal region of the copper-responsive repressor protein CopY is responsible for homodimerization and the regulation of the copper homeostasis pathway in Enterococcus hirae. Specific involvement of the 38 C-terminal residues of CopY in dimerization is indicated by zonal and frontal (large zone) size-exclusion chromatography studies. The studies demonstrate that the attachment of these CopY residues to the immunoglobulin-binding domain of streptococcal protein G (GB1) promotes dimerization of the monomeric protein. Although sensitivity of dimerization to removal of metal from the fusion protein is smaller than that found for CopY (as measured by ultracentrifugation studies), the demonstration that an unrelated protein (GB1) can be induced to dimerize by extending its sequence with the C-terminal portion of CopY confirms the involvement of this region in CopY homodimerization.

  6. Temporal pattern of AP-1 DNA-binding activity in the rat hippocampus following a kindled seizure

    Energy Technology Data Exchange (ETDEWEB)

    Shomori, T. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Hayabara, T. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Ishihara, T. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Okada, S. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Akiyama, K. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Sato, K. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Kashihara, K. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan)


    DNA binding by transcripton factor AP-1 was enhanced remarkably following kindling stimulation in rat amygdala. Maximum increase occurred 2 h after stimulation with return to baseline within 24 h. Supershift and western analyses revealed that 38,000 mol. wt Fos-related antigen and JunD were the main components of the evoked AP-1 complexes at the time their induction reached maximum. AP-1 induction 2 h after the last kindling stimulation was more prominent in samples from previously kindled rats than in those from non-kindled rats. This study sought to establish the role of AP-1 in plastic changes of the hippocampus associated with kindling. Male Sprague-Dawley rats were kindled from the left amygdala until they exhibited Racine [15] class 5 generalized seizures. Nuclear proteins were extracted from dorsal hippocampi obtained from 0 to 24 h after final stimulations. From these, we evaluated the temporal pattern of DNA binding by AP-1 using a gel mobility-shift assay with a {sup 32}P-labelled AP-1 probe. Supershift and western analyses were added to investigate components of the seizure-evoked AP-1 complexes. Our results suggest that the basal level of AP-1 complexes is not associated with the seizure susceptibility in kindling. However, development of kindling appears to facilitate stimulus-evoked AP-1 induction, probably via plastic changes in the central nervous system. AP-1 may mediate such changes by regulating expression of certain genes. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Chemical shift assignments of zinc finger domain of methionine aminopeptidase 1 (MetAP1) from Homo sapiens. (United States)

    Rachineni, Kavitha; Arya, Tarun; Singarapu, Kiran Kumar; Addlagatta, Anthony; Bharatam, Jagadeesh


    Methionine aminopeptidase Type I (MetAP1) cleaves the initiator methionine from about 70 % of all newly synthesized proteins in almost every living cell. Human MetAP1 is a two domain protein with a zinc finger on the N-terminus and a catalytic domain on the C-terminus. Here, we report the chemical shift assignments of the amino terminal zinc binding domain (ZBD) (1-83 residues) of the human MetAP1 derived by using advanced NMR spectroscopic methods. We were able to assign the chemical shifts of ZBD of MetAP1 nearly complete, which reveal two helical fragments involving residues P44-L49 (α1) and Q59-K82 (α2). The protein structure unfolds upon complex formation with the addition of 2 M excess EDTA, indicated by the appearance of amide resonances in the random coil chemical shift region of (15)NHSQC spectrum.

  8. Specific activation of human interleukin-5 depends on de novo synthesis of an AP-1 complex. (United States)

    Schwenger, Gretchen T F; Kok, Chee Choy; Arthaningtyas, Estri; Thomas, Marc A; Sanderson, Colin J; Mordvinov, Viatcheslav A


    It is clear from the biology of eosinophilia that a specific regulatory mechanism must exist. Because interleukin-5 (IL5) is the key regulatory cytokine, it follows that a gene-specific control of IL5 expression must exist that differs even from closely related cytokines such as IL4. Two features of IL5 induction make it unique compared with other cytokines; first, induction by cyclic adenosine monophosphate (cAMP), which inhibits other T-cell-derived cytokines, and second, sensitivity to protein synthesis inhibitors, which have no effect on other cytokines. This study has utilized the activation of different transcription factors by different stimuli in a human T-cell line to study the role of conserved lymphokine element 0 (CLE0) in the specific induction of IL5. In unstimulated cells the ubiquitous Oct-1 binds to CLE0. Stimulation induces de novo synthesis of the AP-1 members JunD and Fra-2, which bind to CLE0. The amount of IL5 produced correlates with the production of the AP-1 complex, suggesting a key role in IL5 expression. The formation of the AP-1 complex is essential, but the rate-limiting step is the synthesis of AP-1, especially Fra-2. This provides an explanation for the sensitivity of IL5 to protein synthesis inhibitors and a mechanism for the specific induction of IL5 compared with other cytokines.

  9. Arsenic may be involved in fluoride-induced bone toxicity through PTH/PKA/AP1 signaling pathway. (United States)

    Zeng, Qi-bing; Xu, Yu-yan; Yu, Xian; Yang, Jun; Hong, Feng; Zhang, Ai-hua


    Chronic exposure to combined fluoride and arsenic continues to be a major public health problem worldwide, affecting thousands of people. In recent years, more and more researchers began to focus on the interaction between the fluorine and the arsenic. In this study, the selected investigation site was located in China. The study group was selected from people living in fluoride-arsenic polluted areas due to burning coal. The total number of participants was 196; including the fluoride-arsenic anomaly group (130) and the fluoride-arsenic normal group (63). By observing the changes in gene and protein expression of PTH/PKA/AP1 signaling pathway, the results show that fluoride can increase the expression levels of PTH, PKA, and AP1, but arsenic can only affect the expression of AP1; fluoride and arsenic have an interaction on the expression of AP1. Further study found that fluoride and arsenic can affect the mRNA expression level of c-fos gene (AP1 family members), and have an interaction on the expression of c-fos, but not c-jun. The results indicate that PTH/PKA/AP1 signaling pathway may play an important role in bone toxicity of fluoride. Arsenic can affect the expression of c-fos, thereby affecting the expression of transcription factor AP1, indirectly involved in fluoride-induced bone toxicity.

  10. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma. (United States)

    Nguyen, Cu; Teo, Jia-Ling; Matsuda, Akihisa; Eguchi, Masakatsu; Chi, Emil Y; Henderson, William R; Kahn, Michael


    Asthma is characterized by an oxidantantioxidant imbalance in the lungs leading to activation of redox-sensitive transcription factors, nuclear factor kappaB (NF-kappaB), and activator protein-1 (AP-1). To develop therapeutic strategies for asthma, we used a chemogenomics approach to screen for small molecule inhibitor(s) of AP-1 transcription. We developed a beta-strand mimetic template that acts as a reversible inhibitor (pseudosubstrate) of redox proteins. This template incorporates an enedione moiety to trap reactive cysteine nucleophiles in the active sites of redox proteins. Specificity for individual redox factors was achieved through variations in X and Y functionality by using a combinatorial library approach. A limited array (2 x 6) was constructed where X was either NHCH(3) or NHCH(2) Ph and Y was methyl, phenyl, m-cyanophenyl, m-nitrophenyl, m-acetylaniline, or m-methylbenzoate. These analogs were evaluated for their ability to inhibit transcription in transiently transfected human lung epithelial A549 cells from either an AP-1 or NF-kappaB reporter. A small-molecule inhibitor, PNRI-299, was identified that selectively inhibited AP-1 transcription (IC(50) of 20 microM) without affecting NF-kappaB transcription (up to 200 microM) or thioredoxin (up to 200 microM). The molecular target of PNRI-299 was determined to be the oxidoreductase, redox effector factor-1 by an affinity chromatography approach. The selective redox effector factor-1 inhibitor, PNRI-299, significantly reduced airway eosinophil infiltration, mucus hypersecretion, edema, and IL-4 levels in a mouse asthma model. These data validate AP-1 as an important therapeutic target in allergic airway inflammation.

  11. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. (United States)

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David


    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  12. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus (United States)

    Jöhnk, Bastian; Bayram, Özgür; Heinekamp, Thorsten; Mattern, Derek J.; Brakhage, Axel A.; Jacobsen, Ilse D.; Valerius, Oliver; Braus, Gerhard H.


    F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus. PMID:27649508

  13. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP. (United States)

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria


    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type-dependent manner, with 4E-BP1 being a key player.

  14. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David


    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  15. Mechanism of Iron-Dependent Repressor (IdeR Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study.

    Directory of Open Access Journals (Sweden)

    Soma Ghosh


    Full Text Available Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed.

  16. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele


    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  17. Tobacco carcinogen mediated up-regulation of AP-1 dependent pro-angiogenic cytokines in head and neck carcinogenesis. (United States)

    Swenson, Wade G; Wuertz, Beverly R K; Ondrey, Frank G


    Tobacco is notably genotoxic and associated with head and neck carcinogenesis. Cigarette carcinogens have the capacity to alter early response gene expression in tobacco-related malignancies via genes such as nuclear factor kappa B (NFκB). A number of early response gene activation events are also facilitated by fos/jun activator protein 1 (AP-1) associated pathways. In the present study, we hypothesize that tobacco products may induce microenvironment alterations, promoting angiogenesis and providing a permissive environment for head and neck cancer progression. In an in vitro analysis, we employed immortalized oral keratinocyte (HOK-16B) and laryngeal squamous carcinoma (UM-SCC-11A) cells to investigate interleukin (IL)-8 and vascular endothelial growth factor (VEGF) induction by cigarette smoke condensate (CSC). IL-8 and VEGF expression is based on interactions between NFκB, AP-1, and NF-IL6. We identified at least 1.5-fold dose-dependent induction of AP-1, VEGF, and IL-8 promoter/reporter gene activity after 24 h exposure to CSC. Next, we stably transfected UM-SCC-11A cells with A-Fos, a dominant negative AP-1 protein. Treatment with CSC of the A-Fos cell lines compared to empty vector controls significantly down-regulated AP-1, VEGF, and IL-8 promoter/reporter gene expression. We also performed ELISAs and discovered significant up-regulation of IL-8 and VEGF secretion by UMSCC 11A after treatment with phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, and CSC, which was down-regulated by the A-Fos dominant negative protein. We conclude tobacco carcinogens up-regulate AP-1 activity and AP-1 dependent IL-8 and VEGF gene expression in head and neck cancer. This up-regulation may promote an angiogenic phenotype favoring invasion in both premalignant and squamous cancer cells of the head and neck.

  18. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. (United States)

    Tong, Xin; Muchnik, Marina; Chen, Zheng; Patel, Manish; Wu, Nan; Joshi, Shree; Rui, Liangyou; Lazar, Mitchell A; Yin, Lei


    Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding.

  19. Interaction of NCOR/SMRT Repressor Complexes with Papillomavirus E8^E2C Proteins Inhibits Viral Replication. (United States)

    Dreer, Marcel; Fertey, Jasmin; van de Poel, Saskia; Straub, Elke; Madlung, Johannes; Macek, Boris; Iftner, Thomas; Stubenrauch, Frank


    Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins.

  20. Positive Regulation of Staphylococcal Enterotoxin H by Rot (Repressor of Toxin) Protein and Its Importance in Clonal Complex 81 Subtype 1 Lineage-Related Food Poisoning. (United States)

    Sato'o, Yusuke; Hisatsune, Junzo; Nagasako, Yuria; Ono, Hisaya K; Omoe, Katsuhiko; Sugai, Motoyuki


    We previously demonstrated the clonal complex 81 (CC81) subtype 1 lineage is the major staphylococcal food poisoning (SFP)-associated lineage in Japan (Y. Sato'o et al., J Clin Microbiol 52:2637-2640, 2014, Strains of this lineage produce staphylococcal enterotoxin H (SEH) in addition to SEA. However, an evaluation of the risk for the recently reported SEH has not been sufficiently conducted. We first searched for staphylococcal enterotoxin (SE) genes and SE proteins in milk samples that caused a large SFP outbreak in Japan. Only SEA and SEH were detected, while there were several SE genes detected in the samples. We next designed an experimental model using a meat product to assess the productivity of SEs and found that only SEA and SEH were detectably produced in situ. Therefore, we investigated the regulation of SEH production using a CC81 subtype 1 isolate. Through mutant analysis of global regulators, we found the repressor of toxin (Rot) functioned oppositely as a stimulator of SEH production. SEA production was not affected by Rot. seh mRNA expression correlated with rot both in media and on the meat product, and the Rot protein was shown to directly bind to the seh promoter. The seh promoter sequence was predicted to form a loop structure and to hide the RNA polymerase binding sequences. We propose Rot binds to the promoter sequence of seh and unfolds the secondary structure that may lead the RNA polymerase to bind the promoter, and then seh mRNA transcription begins. This alternative Rot regulation for SEH may contribute to sufficient toxin production by the CC81 subtype 1 lineage in foods to induce SFP.

  1. JUNB/AP-1 controls IFN-γ during inflammatory liver disease (United States)

    Thomsen, Martin K.; Bakiri, Latifa; Hasenfuss, Sebastian C.; Hamacher, Rainer; Martinez, Lola; Wagner, Erwin F.


    Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of Junb in immune cells and hepatocytes protected against hepatitis in experimental models that involved NK/NKT cells. The absence of JUNB in immune cells decreased IFN-γ expression and secretion from NK and NKT cells, leading to reduced STAT1 pathway activation. Systemic IFN-γ treatment or adenovirus-based IRF1 delivery to Junb-deficient mice restored hepatotoxicity, and we demonstrate that Ifng is a direct transcriptional target of JUNB. These findings demonstrate that JUNB/AP-1 promotes cell death during acute hepatitis by regulating IFN-γ production in NK and NKT cells and thus functionally antagonizes the hepatoprotective function of c-JUN/AP-1 in hepatocytes. PMID:24200694

  2. AP-1 is a component of the transcriptional network regulated by GSK-3 in quiescent cells.

    Directory of Open Access Journals (Sweden)

    John W Tullai

    Full Text Available BACKGROUND: The protein kinase GSK-3 is constitutively active in quiescent cells in the absence of growth factor signaling. Previously, we identified a set of genes that required GSK-3 to maintain their repression during quiescence. Computational analysis of the upstream sequences of these genes predicted transcription factor binding sites for CREB, NFκB and AP-1. In our previous work, contributions of CREB and NFκB were examined. In the current study, the AP-1 component of the signaling network in quiescent cells was explored. METHODOLOGY/PRINCIPAL FINDINGS: Using chromatin immunoprecipitation analysis, two AP-1 family members, c-Jun and JunD, bound to predicted upstream regulatory sequences in 8 of the 12 GSK-3-regulated genes. c-Jun was phosphorylated on threonine 239 by GSK-3 in quiescent cells, consistent with previous studies demonstrating inhibition of c-Jun by GSK-3. Inhibition of GSK-3 attenuated this phosphorylation, resulting in the stabilization of c-Jun. The association of c-Jun with its target sequences was increased by growth factor stimulation as well as by direct GSK-3 inhibition. The physiological role for c-Jun was also confirmed by siRNA inhibition of gene induction. CONCLUSIONS/SIGNIFICANCE: These results indicate that inhibition of c-Jun by GSK-3 contributes to the repression of growth factor-inducible genes in quiescent cells. Together, AP-1, CREB and NFκB form an integrated transcriptional network that is largely responsible for maintaining repression of target genes downstream of GSK-3 signaling.

  3. Pro/antioxidant status and AP-1 transcription factor in murine skin following topical exposure to cumene hydroperoxide. (United States)

    Murray, A R; Kisin, E R; Kommineni, C; Vallyathan, V; Castranova, V; Shvedova, A A


    Organic peroxides, widely used in the chemical and pharmaceutical industries, can act as skin tumor promoters and cause epidermal hyperplasia. They are also known to trigger free radical generation. The present study evaluated the effect of cumene hydroperoxide (Cum-OOH) on the induction of activator protein-1 (AP-1), which is linked to the expression of genes regulating cell proliferation, growth and transformation. Previously, we reported that topical exposure to Cum-OOH caused formation of free radicals and oxidative stress in the skin of vitamin E-deficient mice. The present study used JB6 P+ mouse epidermal cells and AP-1-luciferase reporter transgenic mice to identify whether exposure to Cum-OOH caused activation of AP-1, oxidative stress, depletion of antioxidants and tumor formation during two-stage carcinogenesis. In vitro studies found that exposure to Cum-OOH reduced the level of glutathione (GSH) in mouse epidermal cells (JB6 P+) and caused the induction of AP-1. Mice primed with dimethyl-benz[a]anthracene (DMBA) were topically exposed to Cum-OOH (82.6 micromol) or the positive control, 12-O-tetradecanoylphorbol-13-acetate (TPA, 17 nmol), twice weekly for 29 weeks. Activation of AP-1 in skin was detected as early as 2 weeks following Cum-OOH or TPA exposure. No AP-1 expression was found 19 weeks after initiation. Papilloma formation was observed in both the DMBA-TPA- and DMBA-Cum-OOH-exposed animals, whereas skin carcinomas were found only in the DMBA-Cum-OOH-treated mice. A greater accumulation of peroxidative products (thiobarbituric acid-reactive substances), inflammation and decreased levels of GSH and total antioxidant reserves were also observed in the skin of DMBA-Cum-OOH-exposed mice. These results suggest that Cum-OOH-induced carcinogenesis is accompanied by increased AP-1 activation and changes in antioxidant status.

  4. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli. (United States)

    Grunden, A M; Self, W T; Villain, M; Blalock, J E; Shanmugam, K T


    Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant Mod

  5. Nuclear hormone receptor co-repressors: Structure and function



    Co-repressor proteins, such as SMRT and NCoR, mediate the repressive activity of unliganded nuclear receptors and other transcription factors. They appear to act as intrinsically disordered “hub proteins” that integrate the activities of a range of transcription factors with a number of histone modifying enzymes. Although these co-repressor proteins are challenging targets for structural studies due to their largely unstructured character, a number of structures have recently been determined ...

  6. Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins. (United States)

    Shi, Min; Zhou, Wei; Zhang, Jianlin; Huang, Shengxiong; Wang, Huizhong; Kai, Guoyin


    Jasmonic acid (JA) is an important plant hormone involved in regulation of many aspects of plant growth and development including secondary metabolism and JASMONATE ZIM-DOMAIN (JAZ) proteins are key components in JA signal processes. In this study, two new JAZ genes named SmJAZ3 and SmJAZ9 were cloned from S. miltiorrhiza hairy roots and characterized. Expression profiles under methyl jasmonate (MJ) treatment revealed that SmJAZ3 and SmJAZ9 were both MJ-responsive. Subcellular localization assay showed that SmJAZ3 was located in nucleus while SmJAZ9 was preferentially in nucleus. Expression of SmJAZ3 and SmJAZ9 in S. miltiorrhiza hairy roots differently affected the production of tanshinone. Over-expression of SmJAZ3 or SmJAZ9 in hairy roots produced lower level of tanshinone compared with the control, tanshinone production was as low as 0.077 mg/g DW in line SmJAZ3-3 and 0.266 mg/g DW in line SmJAZ9-22. Whereas, down-regulation of SmJAZs enhanced tanshione production, the content of tanshinone increased to 2.48 fold in anti-SmJAZ3-3 line, and 1.35-fold in anti-SmJAZ9-23 line. Our work indicated that SmJAZ3 and SmJAZ9 are involved in regulation of tanshinone biosynthesis and act as repressive transcriptional regulators in the JA signaling pathway, which paves the way to further dissect molecular mechanism in details in the future.

  7. Luteolin, a flavonoid, inhibits AP-1 activation by basophils. (United States)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio


    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.

  8. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    Energy Technology Data Exchange (ETDEWEB)

    Mohareer, Krishnaveni [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Sahdev, Sudhir [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Ranbaxy Pharmaceuticals, Gurgaon, New Delhi (India); Hasnain, Seyed E., E-mail: [Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016 (India); ILBS, Vasant Kunj, New Delhi (India); King Saud University, Riyadh, KSA (Saudi Arabia)


    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  9. Signalling in inflammatory skin disease by AP-1 (Fos/Jun). (United States)

    Uluçkan, Özge; Guinea-Viniegra, Juan; Jimenez, Maria; Wagner, Erwin F


    Skin inflammation is a physiological reaction to tissue injury, pathogen invasion and irritants. During this process, innate and/or adaptive immune cells are activated and recruited to the site of inflammation to either promote or suppress inflammation. The sequential recruitment and activation of immune cells is modulated by a combination of cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-κB, NFATs, and STATs. Here we review the present evidence and the underlying mechanisms of how Jun/AP-1 proteins control skin inflammation. Genetically engineered mouse models (GEMMs) in which AP-1 proteins are deleted in the epidermis have revealed that these proteins control cytokine expression at multiple levels. Constitutive epidermal deletion of JunB in mice leads to a multi-organ disease characterised by increased levels of pro-inflammatory cytokines. These JunB-deficient mutant mice display several phenotypes from skin inflammation to a G-CSF-dependent myeloproliferative disease, as well as kidney atrophy and bone loss, reminiscent of psoriasis and systemic lupus erythematosus. Importantly, epidermal deletion of both JunB and c-Jun in an inducible manner in adult mice leads to a psoriasis-like disease, in which the epidermal proteome expression profile is comparable to the one from psoriasis patient samples. In this GEMM and in psoriasis patient-derived material, S100A8/A9-dependent C3/CFB complement activation, as well as a miR-21-dependent TIMP-3/TACE pathway leading to TNF-α shedding, plays causal roles in disease development. The newly identified therapeutic targets from GEMMs together with investigations in human patient samples open up new avenues for therapeutic interventions for psoriasis and related inflammatory skin diseases.

  10. Neisseria prophage repressor implicated in gonococcal pathogenesis. (United States)

    Daou, Nadine; Yu, Chunxiao; McClure, Ryan; Gudino, Cynthia; Reed, George W; Genco, Caroline A


    Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea, can infect and colonize multiple mucosal sites in both men and women. The ability to cope with different environmental conditions requires tight regulation of gene expression. In this study, we identified and characterized a gonococcal transcriptional regulatory protein (Neisseria phage repressor [Npr]) that was previously annotated as a putative gonococcal phage repressor protein. Npr was found to repress transcription of NGNG_00460 to NGNG_00463 (NGNG_00460-00463), an operon present within the phage locus NgoΦ4. Npr binding sites within the NGNG_00460-00463 promoter region were found to overlap the -10 and -35 promoter motifs. A gonococcal npr mutant demonstrated increased adherence to and invasion of human endocervical epithelial cells compared to a wild-type gonococcal strain. Likewise, the gonococcal npr mutant exhibited enhanced colonization in a gonococcal mouse model of mucosal infection. Analysis of the gonococcal npr mutant using RNA sequence (RNA-seq) analysis demonstrated that the Npr regulon is limited to the operon present within the phage locus. Collectively, our studies have defined a new gonococcal phage repressor protein that controls the transcription of genes implicated in gonococcal pathogenesis.

  11. Involvement of AP-1 in p38MAPK signaling pathway in osteoblast apoptosis induced by high glucose. (United States)

    Feng, Z P; Deng, H C; Jiang, R; Du, J; Cheng, D Y


    We investigated the effect of p38MAPK/AP-1 (activator protein-1) signaling on the apoptosis of osteoblasts induced by high glucose. A lentivirus vector of small hairpin RNA (shRNA) targeting p38MAPK was constructed in vitro. Osteoblasts MC3T3-E1 cultured in vitro were treated with vehicle, high glucose, p38MAPK-shRNA transfection, p38MAPK inhibitor, and unrelated shRNA transfection. Apoptosis, protein levels of p38MAPK, and activities of AP-1 in MC3T3-E1 osteoblasts were measured using TUNEL and flow cytometry, Western blot analysis, and an electrophoretic mobility shift assay. Compared with the vehicle group, high glucose induced apoptosis of MC3T3-E1 osteoblasts and activated p38MAPK and AP-1. p38MAPK-shRNA transfection blocked the effect of high glucose stimulation, and the p38MAPK inhibitor showed similar effects as those observed in p38MAPK transfection. Unrelated shRNA had no effect on these changes in MC3T3-E1 osteoblasts induced by high glucose. Therefore, our results suggest that p38MAPK-shRNA reduce apoptosis of MC3T3-E1 osteoblasts induced by high glucose by inhibiting the p38MAPK-AP-1 signaling pathway.

  12. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression. (United States)

    Schanke, J T; Marcuzzi, A; Podzorski, R P; Van Ness, B


    Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells. Images PMID:7816634

  13. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo. (United States)

    Carvajal-Gonzalez, Jose Maria; Balmer, Sophie; Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek


    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo-distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo.

  14. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution. (United States)

    Sather, D Noah; Golenberg, Edward M


    The AP1/FUL clade of MADS box genes have undergone multiple duplication events among angiosperm species. While initially identified as having floral meristem identity and floral organ identity function in Arabidopsis, the role of AP1 homologs does not appear to be universally conserved even among eudicots. In comparison, the role of FRUITFULL has not been extensively explored in non-model species. We report on the isolation of three AP1/FUL genes from cultivated spinach, Spinacia oleracea L. Two genes, designated SpAPETALA1-1 (SpAP1-1) and SpAPETALA1-2 (SpAP1-2), cluster as paralogous genes within the Caryophyllales AP1 clade. They are highly differentiated in the 3', carboxyl-end encoding region of the gene following the third amphipathic alpha-helix region, while still retaining some elements of a signature AP1 carboxyl motifs. In situ hybridization studies also demonstrate that the two paralogs have evolved different temporal and spatial expression patterns, and that neither gene is expressed in the developing sepal whorl, suggesting that the AP1 floral organ identity function is not conserved in spinach. The spinach FRUITFULL homolog, SpFRUITFULL (SpFUL), has retained the conserved motif and groups with Caryophyllales FRUITFULL homologs. SpFUL is expressed in leaf as well as in floral tissue, and shows strong expression late in flower development, particularly in the tapetal layer in males, and in the endothecium layer and stigma, in the females. The combined evidence of high rates of non-synonymous substitutions and differential expression patterns supports a scenario in which the AP1 homologs in the spinach AP1/FUL gene family have experienced rapid evolution following duplication.

  15. HPV16E6-Dependent c-Fos Expression Contributes to AP-1 Complex Formation in SiHa Cells

    Directory of Open Access Journals (Sweden)

    Feixin Liang


    Full Text Available To date, the major role of HPV16E6 in cancer has been considered to be its ability to inhibit the p53 tumor-suppressor protein, thereby thwarting p53-mediated cytotoxic responses to cellular stress signals. Here, we show that HPV16E6-dependent c-fos oncogenic protein expression contributes to AP-1 complex formation under oxidative stress in SiHa cells (HPV16-positive squamous cell carcinoma of the cervix. In addition, we examined the role of HPV16E6 in TGF-α-induced c-fos expression and found that the c-fos protein expression induced by TGF-α is HPV16E6 dependent. Thus, our results provide the first evidence that HPV16E6 contributes to AP-1 complex formation after both ligand-dependent and independent EGFR activation, suggesting a new therapeutic approach to the treatment of HPV-associated tumors.

  16. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells. (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia


    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. The aim of this study was to investigate the regulatory effect of quercetin (50 microM) on two main transcription factors (NF-kappa B and AP-1) related to survival/proliferation pathways in a human hepatoma cell line (HepG2) over time. Quercetin induced a significant time-dependent inactivation of the NF-kappa B pathway consistent with a downregulation of the NF-kappa B binding activity (from 15 min onward). These features were in concert with a time-dependent activation (starting at 15 min and maintained up to 18 h) of the AP-1/JNK pathway, which played an important role in the control of the cell death induced by the flavonoid and contributed to the regulation of survival/proliferation (AKT, ERK) and death (caspase-3, p38, unbalance of Bcl-2 proapoptotic and antiapoptotic proteins) signals. These data suggest that NF-kappa B and AP-1 play a main role in the tight regulation of survival/proliferation pathways exerted by quercetin and that the sustained JNK/AP-1 activation and inhibition of NF-kappa B provoked by the flavonoid induced HepG2 death.

  17. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. (United States)

    Panozzo, C; Cornillot, E; Felenbok, B


    Carbon catabolite repression is mediated in Aspergillus nidulans by the negative acting protein CreA. The CreA repressor plays a major role in the control of the expression of the alc regulon, encoding proteins required for the ethanol utilization pathway. It represses directly, at the transcriptional level, the specific transacting gene alcR, the two structural genes alcA and aldA, and other alc genes in all physiological growth conditions. Among the seven putative CreA sites identified in the alcA promoter region, we have determined the CreA functional targets in AlcR constitutive and derepressed genetic backgrounds. Two different divergent CreA sites, of which one overlaps a functional AlcR inverted repeat site, are largely responsible for alcA repression. Totally derepressed alcA expression is achieved when these two CreA sites are disrupted in addition to another single site, which overlaps the functional palindromic induction target. The fact that derepression is always associated with alcA overexpression is consistent with a competition model between AlcR and CreA for their cognate targets in the same region of the alcA promoter. Our results also indicate that the CreA repressor is necessary and sufficient for the total repression of the alcA gene.

  18. Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1. (United States)

    Matsudaira, Tatsuyuki; Niki, Takahiro; Taguchi, Tomohiko; Arai, Hiroyuki


    The retrograde pathway is defined by the transport of proteins and lipids from the plasma membrane through endosomes to the Golgi complex, and is essential for a variety of cellular activities. Recycling endosomes are important sorting stations for some retrograde cargo. SMAP2, a GTPase-activating protein (GAP) for Arf1 with a putative clathrin-binding domain, has previously been shown to participate in the retrograde transport of the cholera toxin B-subunit (CTxB) from recycling endosomes. Here, we found that clathrin, a vesicle coat protein, and clathrin adaptor protein complex 1 (AP-1) were present at recycling endosomes and were needed for the retrograde transport of CTxB from recycling endosomes to the Golgi, but not from the plasma membrane to recycling endosomes. SMAP2 immunoprecipitated clathrin and AP-1 through a putative clathrin-binding domain and a CALM-binding domain, and SMAP2 mutants that did not interact with clathrin or AP-1 could not localize to recycling endosomes. Moreover, knockdown of Arf1 suppressed the retrograde transport of CTxB from recycling endosomes to the Golgi. These findings suggest that retrograde transport is mediated by clathrin-coated vesicles from recycling endosomes and that the role of the coat proteins is in the recruitment of Arf GAP to transport vesicles.

  19. The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. (United States)

    Hiratsu, Keiichiro; Ohta, Masaru; Matsui, Kyoko; Ohme-Takagi, Masaru


    SUPERMAN was identified as a putative regulator of transcription that acts in floral development, but its function remains to be clarified. We demonstrate here that SUPERMAN is an active repressor whose repression domain is located in the carboxy-terminal region. Ectopic expression of SUPERMAN that lacked the repression domain resulted in a phenotype similar to that of superman mutants, demonstrating that the repression activity of SUPERMAN is essential for the development of normal flowers. Constitutive expression of SUPERMAN resulted in a severe dwarfism but did not affect cell size, indicating that SUPERMAN might regulate genes that are involved in cell division.

  20. Enhanced Antimicrobial Activity of AamAP1-Lysine, a Novel Synthetic Peptide Analog Derived from the Scorpion Venom Peptide AamAP1

    Directory of Open Access Journals (Sweden)

    Ammar Almaaytah


    Full Text Available There is great interest in the development of antimicrobial peptides as a potentially novel class of antimicrobial agents. Several structural determinants are responsible for the antimicrobial and cytolytic activity of antimicrobial peptides. In our study, a new synthetic peptide analog, AamAP1-Lysine from the naturally occurring scorpion venom antimicrobial peptide AamAP1, was designed by modifying the parent peptide in order to increase the positive charge and optimize other physico-chemical parameters involved in antimicrobial activity. AamAP1-Lysine displayed potent antibacterial activity against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration was in the range of 5 to 15 µM with a 10 fold increase in potency over the parent peptide. The hemolytic and antiproliferative activity of AamAP1-Lysine against eukaryotic mammalian cells was minimal at the concentration range needed to inhibit bacterial growth. The antibacterial mechanism analysis indicated that AamAP1-Lysine is probably inducing bacterial cell death through membrane damage and permeabilization determined by the release of β-galactosidase enzyme from peptide treated E. coli cells. DNA binding studies revealed that AamAP1-Lysine caused complete retardation of DNA migration and could display intracellular activities in addition to the membrane permeabilization mode of action reported earlier. In conclusion, AamAP1-Lysine could prove to be a potential candidate for antimicrobial drug development in future studies.

  1. Heparin (GAG-hed inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    Directory of Open Access Journals (Sweden)

    López-Bayghen Esther


    Full Text Available Abstract Background High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR, plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs, such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Methods Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. Results We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Conclusion Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell

  2. 真菌中氧胁迫调控因子AP-1研究进展%Research progress on oxidative stress transcript factor AP-1 in fungi

    Institute of Scientific and Technical Information of China (English)

    王琦; 王龑; 戴小枫; 郭维; 刘阳


    氧化应激是细胞应激反应的一种,在所有生物中都是保守进化的。应激反应的调控包括转录、翻译和翻译后修饰,决定生物体是否适应、存活、或者死亡。酵母中b-ZIP型激活蛋白(Yap)家族包括8个成员, Yap1是酵母Yap家族中首先发现的成员,具有DNA结合结构域和转录激活活性,在细胞的氧化应激中发挥着必不可少的作用。在氧化压力下, Yap1的活性增加。本文对近年来AP-1转录因子在真菌中的主要研究进展进行了综述,重点介绍了 AP-1作为主要的氧化应激调节器参与的生物学应激反应、致病性及产生真菌毒素等,并介绍了AP-1在铁代谢、钴毒性、DNA损伤、耐药性中的功能。%ABSTRACT:Oxidative stress, which is one of cellular stress responses, is evolutionarily conserved in all living organisms. The regulation of stress response includes transcriptional, translational and post-translational mechanisms, deciding whether the organism adapts, survives, or dies. The yeast activator protein (Yap) family of b-ZIP proteins consists of 8 members. Yap1, the first member of the Yap family to be found, has a DNA binding domain and transcriptional activation and is essential for the normal response of cells to oxidative stress. When it is under oxidative stress conditions, the activity of Yap1 will increase. In this paper, the main research progress in recent years on the AP-1 transcription factor in fungi was reviewed, focusing on AP-1 involving in biological stress response as the main regulator of oxidative stress, pathogenicity, and mycotoxin biosynthesis, and the function of AP-1 in iron metabolism, cobalt toxicity, DNA damage, and drug resistance was also be introduced.

  3. Loss-of-Function Mutations in YY1AP1 Lead to Grange Syndrome and a Fibromuscular Dysplasia-Like Vascular Disease. (United States)

    Guo, Dong-Chuan; Duan, Xue-Yan; Regalado, Ellen S; Mellor-Crummey, Lauren; Kwartler, Callie S; Kim, Dong; Lieberman, Kenneth; de Vries, Bert B A; Pfundt, Rolph; Schinzel, Albert; Kotzot, Dieter; Shen, Xuetong; Yang, Min-Lee; Bamshad, Michael J; Nickerson, Deborah A; Gornik, Heather L; Ganesh, Santhi K; Braverman, Alan C; Grange, Dorothy K; Milewicz, Dianna M


    Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-β-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.

  4. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    Energy Technology Data Exchange (ETDEWEB)

    Goffinont, S. [Centre de Biophysique Moleculaire, CNRS, rue C. Sadron, 45071 Orleans (France); Davidkova, M. [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086, Prague 8 (Czech Republic); Spotheim-Maurizot, M., E-mail: [Centre de Biophysique Moleculaire, CNRS, rue C. Sadron, 45071 Orleans (France)


    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.

  5. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway. (United States)

    Sha, Xiaojin; Meng, Shu; Li, Xinyuan; Xi, Hang; Maddaloni, Massimo; Pascual, David W; Shan, Huimin; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-feng


    Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases.

  6. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. (United States)

    Turner, Suzanne D; Yeung, Debra; Hadfield, Kathryn; Cook, Simon J; Alexander, Denis R


    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

  7. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. (United States)

    Guyton, K Z; Xu, Q; Holbrook, N J


    GADD153 is a CCAAT/enhancer-binding-protein-related gene that may function to control cellular growth in response to stress signals. In this study, a variety of oxidant treatments were shown to stimulate endogenous GADD153 mRNA expression and to transcriptionally activate a GADD153 promoter-reporter gene construct in transfected HeLa cells. Both commonalities and distinctions in the induction of GADD153 by H2O2 and the thiol-reactive compound arsenite were demonstrated. GADD153 mRNA induction by both H2O2 and arsenite was potentiated by GSH depletion, and completely inhibited by N-acetyl-cysteine. o-Phenanthroline and mannitol blocked GADD153 induction by H2O2, indicating that iron-generated hydroxyl radical mediates this induction. Concordantly, GSH peroxidase overexpression in WI38 cells attenuated GADD153 mRNA induction by H2O2. However, GADD153 induction by arsenite was only modestly reduced in the same cells, suggesting a lesser contribution of peroxides to gene activation by arsenite. We also demonstrated that oxidative stress participates in the induction of GADD153 by UVC (254 nm) irradiation. Finally, both promoter-deletion analysis and point mutation of the AP-1 site in an otherwise intact promoter support a significant role for AP-1 in transcriptional activation of GADD153 by UVC or oxidant treatment. Indeed, exposure of cells to oxidants or UVC stimulated binding of Fos and Jun to the GADD153 AP-1 element. Together, these results demonstrate that both free-radical generation and thiol modification can transcriptionally activate GADD153, and that AP-1 is critical to oxidative regulation of this gene. This study further supports a role for the GADD153 gene product in the cellular response to oxidant injury. PMID:8670069

  8. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. (United States)

    Tempé, D; Vives, E; Brockly, F; Brooks, H; De Rossi, S; Piechaczyk, M; Bossis, G


    The inducible proto-oncogenic (c-Fos:c-Jun)/AP-1 transcription complex binds 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive elements (TRE) in its target genes. It is tightly controlled at multiple levels to avoid the deleterious effects of its inappropriate activation. In particular, SUMOylation represses its transactivation capacity in transient reporter assays using constitutively expressed proteins. This led to the presumption that (c-Fos:c-Jun)/AP-1 SUMOylation would be required to turn-off transcription of its target genes, as proposed for various transcription factors. Instead, thanks to the generation of an antibody specific for SUMO-modified c-Fos, we provide here direct evidence that SUMOylated c-Fos is present on a stably integrated reporter TPA-inducible promoter at the onset of transcriptional activation and colocalizes with RNA polymerase II within chromatin. Interestingly, (c-Fos:c-Jun)/AP-1 SUMOylation limits reporter gene induction, as well as the appearance of active transcription-specific histone marks on its promoter. Moreover, non-SUMOylatable mutant (c-Fos:c-Jun)/AP-1 dimers accumulate to higher levels on their target promoter, suggesting that SUMOylation might facilitate the release of (c-Fos:c-Jun)/AP-1 from promoters. Finally, activation of GADD153, an AP-1 target gene, is also associated with a rapid increase in SUMOylation at the level of its TRE and c-Fos SUMOylation dampens its induction by TPA. Taken together, our data suggest that SUMOylation could serve to buffer transcriptional activation of AP-1 target genes.

  9. Repressor-mediated tissue-specific gene expression in plants (United States)

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.


    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  10. Concomitant expression of far upstream element (FUSE) binding protein (FBP) interacting repressor (FIR) and its splice variants induce migration and invasion of non-small cell lung cancer (NSCLC) cells. (United States)

    Müller, Benedikt; Bovet, Michael; Yin, Yi; Stichel, Damian; Malz, Mona; González-Vallinas, Margarita; Middleton, Alistair; Ehemann, Volker; Schmitt, Jennifer; Muley, Thomas; Meister, Michael; Herpel, Esther; Singer, Stephan; Warth, Arne; Schirmacher, Peter; Drasdo, Dirk; Matthäus, Franziska; Breuhahn, Kai


    Transcription factors integrate a variety of oncogenic input information, facilitate tumour growth and cell dissemination, and therefore represent promising therapeutic target structures. Because over-expression of DNA-interacting far upstream element binding protein (FBP) supports non-small cell lung cancer (NSCLC) migration, we asked whether its repressor, FBP-interacting repressor (FIR) is functionally inactivated and how FIR might affect NSCLC cell biology. Different FIR splice variants were highly expressed in the majority of NSCLCs, with the highest levels in tumours carrying genomic gains of chromosome 8q24.3, which contained the FIR gene locus. Nuclear FIR expression was significantly enriched at the invasion front of primary NSCLCs, but this did not correlate with tumour cell proliferation. FIR accumulation was associated with worse patient survival and tumour recurrence; in addition, FIR over-expression significantly correlated with lymph node metastasis in squamous cell carcinomas (SCCs). In vitro, we applied newly developed methods and modelling approaches for the quantitative and time-resolved description of the pro-migratory and pro-invasive capacities of SCC cells. siRNA-mediated silencing of all FIR variants significantly reduced the speed and directional movement of tumour cells in all phases of migration. Furthermore, sprouting efficiency and single cell invasiveness were diminished following FIR inhibition. Interestingly, the silencing of FIR isoforms lacking exon 2 (FIR(Δexon2)) alone was sufficient to reduce lateral migration and invasion. In summary, by using scale-spanning data derived from primary human tissues, quantitative cellular analyses and mathematical modelling, we have demonstrated that concomitant over-expression of FIR and its splice variants drives NSCLC migration and dissemination.

  11. Structure and dynamics in Lac repressor-DNA interactions

    NARCIS (Netherlands)

    Kaptein, R.


    The E. coli lac operon is the classical model for gene regulation in bacteria. An overview will be given of our work on the lac repressor-operator system. An early result was the 3D structure of lac headpiece in 1985, one of the first protein structures determined by NMR. Our studies of the structur

  12. A novel bipartite UNC-101/AP-1 μ1 binding signal mediates KVS-4/Kv2.1 somatodendritic distribution in Caenorhabditis elegans. (United States)

    Zhou, Xin; Zeng, Jia; Ouyang, Chenxi; Luo, Qianyun; Yu, Miao; Yang, Zhenrong; Wang, Hui; Shen, Kang; Shi, Anbing


    Potassium channels such as Kv2.1 are targeted to specific subcellular compartments to fulfill various functions. However, the mechanisms for their localization are poorly understood. Here, we show that KVS-4/Kv2.1 somatodendritic localization in Caenorhabditis elegansDA9 neuron requires UNC-101(AP-1 μ subunit). We define a bipartite sorting signal within KVS-4 consisting of a C-terminal EQMIL and N-terminal WNIIE motifs. The bipartite signal is sufficient to target nonpolarized transmembrane protein MIG-13 into DA9 somatodendritic compartments. Furthermore, we found that AP-1 interacts with the bipartite signal through UNC-101/AP-1 μ N-terminal predicted Longin-like domain. Our results provide new insight into the mechanisms of Kv2.1 post-Golgi sorting and targeting.

  13. The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBPβ and AP-1 in Pigs

    Directory of Open Access Journals (Sweden)

    Xinyun Li


    Full Text Available S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS or porcine circovirus type 2 (PCV2. In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ and activator protein-1 (AP-1 genes were up-regulated in PK-15 (ATCC, CCL-33 cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  14. The inflammation-related gene S100A12 is positively regulated by C/EBPβ and AP-1 in pigs. (United States)

    Li, Xinyun; Tang, Juan; Xu, Jing; Zhu, Mengjin; Cao, Jianhua; Liu, Ying; Yu, Mei; Zhao, Shuhong


    S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS) or porcine circovirus type 2 (PCV2). In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ) and activator protein-1 (AP-1) genes were up-regulated in PK-15 (ATCC, CCL-33) cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA) to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  15. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression

    Directory of Open Access Journals (Sweden)

    Amy L. Silvers


    Full Text Available To further delineate ultraviolet A (UVA signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs in UVA-induced activator protein-1 (AP-1 transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor and SP600125 (JNK inhibitor, were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 MM and SP600125 (62-125 nM treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer.

  16. SCF/C-Kit/JNK/AP-1 Signaling Pathway Promotes Claudin-3 Expression in Colonic Epithelium and Colorectal Carcinoma. (United States)

    Wang, Yaxi; Sun, Tingyi; Sun, Haimei; Yang, Shu; Li, Dandan; Zhou, Deshan


    Claudin-3 is a major protein of tight junctions (TJs) in the intestinal epithelium and is critical for maintaining cell-cell adhesion, barrier function, and epithelium polarity. Recent studies have shown high claudin-3 levels in several solid tumors, but the regulation mechanism of claudin-3 expression remains poorly understood. In the present study, colorectal cancer (CRC) tissues, HT-29 and DLD-1 CRC cell lines, CRC murine model (C57BL/6 mice) and c-kit loss-of-function mutant mice were used. We demonstrated that elevated claudin-3 levels were positively correlated with highly expressed c-kit in CRC tissues based upon analysis of protein expression. In vitro, claudin-3 expression was clearly increased in CRC cells by overexpressed c-kit or stimulated by exogenous recombinant human stem cell factor (rhSCF), while significantly decreased by the treatment with c-kit or c-Jun N-terminal kinase (JNK) inhibitors. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay showed that SCF/c-kit signaling significantly promoted activator protein-1 (AP-1) binding with CLDN-3 promoter and enhanced its transcription activity. Furthermore, decreased expression of claudin-3 was obtained in the colonic epithelium from the c-Kit loss-of-function mutant mice. In conclusion, SCF/c-kit-JNK/AP-1 signaling pathway significantly promoted claudin-3 expression in colonic epithelium and CRC, which could contribute to epithelial barrier function maintenance and to CRC development.

  17. Pseudoephedrine inhibits T-cell activation by targeting NF-κB, NFAT and AP-1 signaling pathways. (United States)

    Fiebich, Bernd L; Collado, Juan A; Stratz, Cristian; Valina, Christian; Hochholzer, Willibald; Muñoz, Eduardo; Bellido, Luz M


    Pseudoephedrine (PSE) is a stereoisomer of ephedrine that is commonly used as a nasal decongestant in combination with other anti-inflammatory drugs for the symptomatic treatment of some common pathologies such as common cold. Herein, we describe for the first time the effects of PSE on T-cell activation events. We found that PSE inhibits interleukin-2 (IL-2) and tumor necrosis factor (TNF) alpha-gene transcription in stimulated Jurkat cells, a human T-cell leukemia cell line. To further characterize the inhibitory mechanisms of PSE at the transcriptional level, we examined the transcriptional activities of nuclear factor kappa B (NF-κB), nuclear factor of activated T cells (NFAT), and activator protein-1 (AP-1) transcription factors and found that PSE inhibited NF-κB-dependent transcriptional activity without affecting either the phosphorylation, the degradation of the cytoplasmic NF-κB inhibitory protein, IκBα or the DNA-binding activity. However, phosphorylation of the p65/RelA subunit was clearly inhibited by PSE in stimulated cells. In addition, PSE inhibited the transcriptional activity of NFAT without interfering with the calcium-induced NFAT dephosphorylation event, which represents the major signaling pathway for its activation. NFAT cooperates with c-Jun, a compound of the AP-1 complex, to activate target genes, and we also found that PSE inhibited both JNK activation and AP-1 transcriptional activity. These findings provide new mechanistic insights into the potential immunomodulatory activities of PSE and highlight their potential in designing novel therapeutic strategies to manage inflammatory diseases.

  18. Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients

    DEFF Research Database (Denmark)

    Wong, K K; Gascoyne, D M; Brown, P J


    We previously identified autoantibodies to the endocytic-associated protein Huntingtin-interacting protein 1-related (HIP1R) in diffuse large B-cell lymphoma (DLBCL) patients. HIP1R regulates internalization of cell surface receptors via endocytosis, a process relevant to many therapeutic strateg...

  19. Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting. (United States)

    Terauchi, Kaede; Asakura, Tomiko; Ueda, Haruko; Tamura, Tomoko; Tamura, Kentaro; Matsumoto, Ichiro; Misaka, Takumi; Hara-Nishimura, Ikuko; Abe, Keiko


    Most aspartic proteinases (APs) of plant origin are characterized by the presence of plant-specific insertion (PSI) in their primary structure. PSI has been reported to function as signals for both transport of AP molecules from the endoplasmic reticulum (ER) and for their targeting to the vacuole. To determine the functions of the PSIs in soyAP1 and soyAP2 identified in our previous study, we examined their subcellular localization by transient expression of a green fluorescent protein (GFP) fusion protein in the protoplasts of Arabidopsis suspension-cultured cells. Both soyAP1-GFP and soyAP2-GFP were targeted to the vacuole. To confirm the role of the PSI, we prepared PSI-deleted soyAP1 and soyAP2, and investigated their vacuolar targeting by the same method. While the former deletion mutant was always transported to the vacuole, the latter sometimes remained in the ER and was only sometimes transported to the vacuole. These observations indicated that, in the case of soyAP1, the PSI is not involved in vacuolar targeting, also suggesting that the function of the PSI differs depending on its origin.

  20. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells. (United States)

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda


    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  1. The Synonymous Ala87 Mutation of Estrogen Receptor Alpha Modifies Transcriptional Activation Through Both ERE and AP1 Sites. (United States)

    Fernández-Calero, Tamara; Flouriot, Gilles; Marín, Mónica


    Estrogen receptor α (ERα) exerts regulatory actions through genomic mechanisms. In the classical pathway, ligand-activated ERα binds directly to DNA through estrogen response elements (ERE) located in the promoter of target genes. ERα can also exert indirect regulation of transcription via protein-protein interaction with other transcription factors such as AP-1.S everal ERα synonymous polymorphisms have been identified and efforts to understand their implications have been made. Nevertheless effects of synonymous polymorphisms are still neglected. This chapter focuses on the experimental procedure employed in order to characterize the transcriptional activity of a synonymous polymorphism of the ERα (rs746432) called Alanine 87 (Ala87). Activity of both WT and Ala87 ERα isoforms on transcriptional pathways can be analyzed in transiently transfected cells using different reporter constructs. ERα efficiency on the classical genomic pathway can be analyzed by determining its transactivation activity on an ERE-driven thymidine kinase (TK) promoter controlling the expression of the luciferase reporter gene. Transcriptional activity through the indirect genomic pathway can be analyzed by employing an AP-1 DNA response element-driven promoter also controlling the expression of luciferase reporter gene.

  2. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta. (United States)

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki


    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  3. Crystallization and preliminary crystallographic analysis of an Enterococcus faecalis repressor protein, CylR2, involved in regulating cytolysin production through quorum-sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.; Kennedy, Michael A.


    CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.

  4. A genomic and expression study of AP-1 in primary cutaneous T-cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS. (United States)

    Mao, Xin; Orchard, Guy; Mitchell, Tracey J; Oyama, Noritaka; Russell-Jones, Robin; Vermeer, Maarten H; Willemze, Rein; van Doorn, Remko; Tensen, Cornelis P; Young, Bryan D; Whittaker, Sean J


    Activator protein 1 (AP-1) consists of a group of transcription factors including the JUN and FOS family proteins with diverse biological functions. This study assessed the genomic and expression status of the AP-1 transcription factors in primary cutaneous T-cell lymphoma (CTCL) by using immunohistochemistry (IHC), Affymetrix expression microarray, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescent in situ hybridization (FISH). IHC showed JUNB protein expression in tumor cells from 17 of 33 cases of Sezary syndrome (SS) and JUND protein expression in 16 of 23 mycosis fungoides cases. There was no correlation between JUNB and CD30 expression. However, 7 of 12 JUNB-positive SS cases expressed both phosphorylated and total extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinase (MAPK) proteins. Expression microarray showed over threefold increased expression of JUNB in three of six SS patients and similar findings were also noted after re-analysis of previously published data. Real-time RT-PCR confirmed the overexpression of JUNB in four SS cases and of JUND in three of four cases. FISH showed increased JUNB copy number in four of seven SS cases. These findings suggest that deregulation of AP-1 expression in CTCL is the result of aberrant expression of JUNB and possible JUND resulting from genomic amplification and constitutive activation of ERK1/2 MAPK in this type of lymphoma.

  5. Low concentrations of copper in drinking water increase AP-1 binding in the brain. (United States)

    Lung, Shyang; Li, Huihui; Bondy, Stephen C; Campbell, Arezoo


    Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson's, Menkes', Alzheimer's, and Parkinson's diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding.

  6. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa;


    ) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass....... This effect was phenocopied, at an even stronger level, by overexpressiong of a dominant-negative DNJunD, a pure AP1 antagonist. Taken together these results suggest that downregulation of AP1 activity in the hypothalamus profoundly increases energy expenditure and bone formation, leading to both a decrease...... in adipose mass and an increase in bone mass. These findings may have physiological implications since ¿FosB is expressed and regulated in the hypothalamus. © 2012 American Society for Bone and Mineral Research....

  7. Collagen XVI induces expression of MMP9 via modulation of AP-1 transcription factors and facilitates invasion of oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Konstanze B Bedal

    Full Text Available Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT. It is overexpressed during the progression of oral squamous cell carcinoma (OSCC. The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.

  8. Collagen XVI induces expression of MMP9 via modulation of AP-1 transcription factors and facilitates invasion of oral squamous cell carcinoma. (United States)

    Bedal, Konstanze B; Grässel, Susanne; Oefner, Peter J; Reinders, Joerg; Reichert, Torsten E; Bauer, Richard


    Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT). It is overexpressed during the progression of oral squamous cell carcinoma (OSCC). The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK) in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt) to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones) transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.

  9. AP-1 as a Regulator of MMP-13 in the Stromal Cell of Giant Cell Tumor of Bone

    Directory of Open Access Journals (Sweden)

    Isabella W. Y. Mak


    Full Text Available Matrix-metalloproteinase-13 (MMP-13 has been shown to be an important protease in inflammatory and neoplastic conditions of the skeletal system. In particular, the stromal cells of giant cell tumor of bone (GCT express very high levels of MMP-13 in response to the cytokine-rich environment of the tumor. We have previously shown that MMP-13 expression in these cells is regulated, at least in part, by the RUNX2 transcription factor. In the current study, we identify the expression of the c-Fos and c-Jun elements of the AP-1 transcription factor in these cells by protein screening assays and real-time PCR. We then used siRNA gene knockdown to determine that these elements, in particular c-Jun, are upstream regulators of MMP-13 expression and activity in GCT stromal cells. We conclude that there was no synergy found between RUNX2 and AP-1 in the regulation of the MMP13 expression and that these transcription factors may be independently regulated in these cells.

  10. The histone-like protein H-NS acts as a transcriptional repressor for expression of the anaerobic and growth phase activator AppY of Escherichia coli

    DEFF Research Database (Denmark)

    Atlung, Tove; Sund, Susanne; Olesen, Kirsten


    The transcriptional activator AppY is required for anaerobic and stationary phase induction of the cyx-appA and hya operons of Escherichia coli, and the expression of the appY gene itself is induced by these environmental conditions. The sequence of the appY gene and its promoter region...... is unusually AT-rich DNA. The nucleoid-associated protein H-NS has a DNA-binding specificity for intrinscally curved AT-rich DNA. Using a single-copy transcriptional appY-lacZ fusion, we have shown that appY gene expression is derepressed in hns mutants during aerobic exponential growth. In the hns mutant......, growth phase and growth rate regulation under aerobic conditions was maintained, while ArcA-dependent anaerobic induction was greatly diminished. Judged by two-dimensional gel electrophoresis, the appY promoter fragment exhibits the features characteristic of curved DNA. Gel retardation assays showed...

  11. JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells. (United States)

    Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André


    The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells.

  12. Loss of p12CDK2-AP1 Expression in Human Oral Squamous Cell Carcinoma with Disrupted Transforming Growth Factor-β-Smad Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hui Peng


    Full Text Available We examined correlations between TGF-β1, TβR-I and TβR-II, p12CDK2-AP1 p21WAF1 p27KIP1 Smad2, and p-Smad2 in 125 cases of human oral squamous cell carcinoma (OSCC to test the hypothesis that resistance to TGF-β1-induced growth suppression is due to the disruption of its signaling pathway as a consequence of reduced or lost p12CDK2-AP1. Immunoreactivity for TβR-II decreased in OSCC with increasing disease aggressiveness; however, no differences were observed for TβR-I and TGF-β1. The expression of TβR-II significantly correlated with p12CDK2-AP1 and p27KIP1 (P<.001 and P<.01, respectively. Furthermore, there was a significant relationship between TβR-II expression and p-Smad2 (P < .001. The in vivo correlation of the levels of TβR-II, p12CDK2-AP1 and p27 KIP1 was confirmed in normal and OSCC cell lines. Additionally, in vitro analysis of TGF-β-treated cells showed that TGF-β1 treatment of normal keratinocytes suppressed cell growth with upregulation of p-Smad2, p12CDK2-API and p21WAF1 expression, whereas there was no effect on OSCC cell lines. These results provide evidence of a link between a disrupted TGF-β-Smad signaling pathway and loss of induction of cell cycle-inhibitory proteins, especially p12CDK2-AP1 in OSCC, which may lead to the resistance of TGF-β1 growth-inhibitory effect on OSCC.

  13. Cells in G2/M phase increased in human nasopharyngeal carcinoma cell line by EBV-LMP1 through activation of NF-κB and AP-1

    Institute of Scientific and Technical Information of China (English)



    Although previous studies showed that the principal oncoprotein encoded by Epstein-Barr virus, latentmembrane protein 1(LMP1), could induce the nasopharyngeal carcinoma cells in G2/M phase increased, littleis known about the target molecules and mechanisms. The present study demonstrated that LMP1 couldinduce the accumulation of p53 protein and upregulate its transactivity in a dose dependent manner, whichresulted in the decrease of the kinase activity of cdc2/cyclin B complex and inducing arrest at G2/M phasethrough the activation of NF-κB and AP-1 signaling pathways, and the effect of NF-κB was more obviousthan that of AP-1. This study provided some significant evidence for further elucidating the molecularmechanisms that LMP1 had effects on the surveillance mechanism of cell cycle and promoting the survivalof transformed cells and tumorigenesis.

  14. Ultraviolet irradiation induces CYR61/CCN1, a mediator of collagen homeostasis, through activation of transcription factor AP-1 in human skin fibroblasts. (United States)

    Quan, Taihao; Qin, Zhaoping; Xu, Yiru; He, Tianyuan; Kang, Sewon; Voorhees, John J; Fisher, Gary J


    UV irradiation from the sun elevates the production of collagen-degrading matrix metalloproteinases (MMPs) and reduces the production of new collagen. This imbalance of collagen homeostasis impairs the structure and function of the dermal collagenous extracellular matrix (ECM), thereby promoting premature skin aging (photoaging). We report here that aberrant dermal collagen homeostasis in UV-irradiated human skin is mediated in part by a CCN-family member, cysteine-rich protein-61 (CYR61/CCN1). CYR61 is significantly elevated in acutely UV-irradiated human skin in vivo, and UV-irradiated human skin fibroblasts. Knockdown of CYR61 significantly attenuates UV irradiation-induced inhibition of type-I procollagen and upregulation of MMP-1. Determination of CYR61 mRNA and protein indicates that the primary mechanism of CYR61 induction by UV irradiation is transcriptional. Analysis of CYR61 proximal promoter showed that a sequence conforming to the consensus binding site for transcription factor activator protein-1 (AP-1) is required for promoter activity. UV irradiation increased the binding of AP-1-family members c-Jun and c-Fos to this AP-1 site. Furthermore, functional blockade of c-Jun or knockdown of c-Jun significantly reduced the UV irradiation-induced activation of CYR61 promoter and CYR61 gene expression. These data show that CYR61 is transcriptionally regulated by UV irradiation through transcription factor AP-1, and mediates altered collagen homeostasis that occurs in response to UV irradiation in human skin fibroblasts.

  15. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart


    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  16. Metalloregulatory properties of the ArsD repressor. (United States)

    Chen, Y; Rosen, B P


    The plasmid-encoded arsenical resistance (ars) operon of plasmid R773 produces resistance to trivalent and pentavalent salts of the metalloids arsenic and antimony in cells of Escherichia coli. The first two genes in the operon, arsR and arsD, were previously shown to encode trans-acting repressor proteins. ArsR controls the basal level of expression of the operon, while ArsD controls maximal expression. Thus, action of the two repressors form a homeostatic regulatory circuit that maintains the level of ars expression within a narrow range. In this study, we demonstrate that ArsD binds to the same site on the ars promoter element as ArsR but with 2 orders of magnitude lower affinity. The results of gel shift assays demonstrate that ArsD is released from the ars DNA promoter by phenylarsine oxide, sodium arsenite, and potassium antimonyl tartrate (in order of effectiveness), the same inducers to which ArsR responds. Using the quenching of intrinsic tryptophan fluorescence to measure the affinity of the repressor for inducers, apparent Kd values for Sb(III) and As(III) of 2 and 60 microM, respectively, were obtained. These results demonstrate that the arsR-arsD pair provide a sensitive mechanism for sensing a wide range of environmental heavy metals.

  17. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts. (United States)

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi


    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  18. A phosphorylation defective retinoic acid receptor mutant mimics the effects of retinoic acid on EGFR mediated AP-1 expression and cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Kim Randie


    Full Text Available Abstract Background The effects of the vitamin A metabolite retinoic acid (RA are mediated at the transcriptional level by retinoic acid receptors (RAR. These proteins are part of a superfamily of transcription factors which activate target gene expression when bound to their respective ligands. In addition to ligand binding, heterodimerization with transcriptional cofactors and posttranslational modification such as phosphorylation are also critical for transactivation function. Previous studies have shown that phosphorylation of a serine residue at amino acid 77 in the RARα amino terminus was required for basal activation function of the transcription factor. Results We have determined that RA inhibits cyclin H and cdk7 expression thereby decreasing levels of phosphorylated RARα in human cancer cell lines. To determine the effects of decreased RARα phosphorylation in human cancer cells, we stably transfected a phosphorylation defective mutant RARα expression construct into SCC25 cultures. Cells expressing the mutant RARα proliferated more slowly than control clones. This decreased proliferation was associated with increased cyclin dependent kinase inhibitor expression and decreased S phase entry. In the absence of ligand, the RARα mutant inhibited AP-1 activity to an extent similar to that of RA treated control clones. Levels of some AP-1 proteins were inhibited due to decreased EGFR expression upstream in the signaling pathway. Conclusions These results indicate that hypophosphorylated RARα can mimic the anti-AP-1 effects of RA in the absence of ligand.

  19. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells.

    LENUS (Irish Health Repository)

    Looby, Eileen


    BACKGROUND: The progression from Barrett\\'s metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. METHODS: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. RESULTS: DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1\\/2- and p38 MAPK while Erk1\\/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK\\/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. CONCLUSION: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  20. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Directory of Open Access Journals (Sweden)

    Long Aideen


    Full Text Available Abstract Background The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Methods Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. Results DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. Conclusion DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  1. IL-1β and IL-6 activate inflammatory responses of astrocytes against Naegleria fowleri infection via the modulation of MAPKs and AP-1. (United States)

    Kim, J-H; Song, A-R; Sohn, H-J; Lee, J; Yoo, J-K; Kwon, D; Shin, H-J


    Naegleria fowleri, a free-living amoeba, has been found in diverse habitats throughout the world. It causes primary amoebic meningoencephalitis in children and young adults. The amoeba attaches to nasal mucosa, migrates along olfactory nerves and enters the brain. Astrocytes are involved in the defence against infection and produce inflammatory responses. In this study, we focus on the mechanism of immune responses in astrocytes. We showed, using RNase protection assay, RT-PCR and ELISA in an in vitro culture system, that N. fowleri lysates induce interleukin-1beta (IL-1β) and IL-6 expression of astrocytes. In addition, cytokine levels of astrocytes gradually decreased due to extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 inhibitors. To determine the transcription factor, we used transcription inhibitor (AP-1 inhibitor), which downregulated IL-1β and IL-6 expression. These results show that AP-1 is related to IL-1β and IL-6 production. N. fowleri-mediated IL-1β and IL-6 expression requires ERK, JNK and p38 mitogen-activated protein kinases (MAPKs) activation in astrocytes. These findings show that N. fowleri-stimulated astrocytes in an in vitro culture system lead to AP-1 activation and the subsequent expressions of IL-1β and IL-6, which are dependent on ERK, JNK and p38 MAPKs activation. These results may imply that proinflammatory cytokines have important roles in inflammatory responses to N. fowleri infection.

  2. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Kang, Ki Sung [College of Korean Medicine, Gachon University, Seongnam 461-701 (Korea, Republic of); Kim, Yong Kee, E-mail: [College of Pharmacy, Sookmyung Women’s University, Seoul 140-742 (Korea, Republic of); Kim, Su-Nam, E-mail: [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of)


    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  3. Expression and significance of TLR7and AP-1 in basal cell carcinoma%TLR7和AP-1在基底细胞癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    邓妮; 高永良; 赵恒光


    Objective :To investigate the expression of TLR7 and AP - 1 in basal cell carcinoma , and to explore their possibilities of occurrence and development .Method The expression of TLR7 and AP -1 were detected in 30 cases of basal cell carcinoma and 26 cases of normal tissue .Specimens were detected by immunohistochemistry .Result Immunohistochemistry showed that TLR 7 and AP-1 were both highly expressed in tumor tissue (P 0 .05) .Conclusion TLR7 and AP -1 were highly expressed in basal cell carcinoma ,and their expression level was significant positive correlation .These results suggested the TLR7 and AP -1 gene may play important roles in basal cell carcinoma occurrence and development .%提目的:观察基底细胞癌中TLR7和AP-1蛋白的表达,探讨二者与基底细胞癌发生发展的关系。方法:收集基底细胞癌患者皮损30例及正常人皮肤组织26例,采用免疫组织化学法检测癌组织中TLR7和AP-1蛋白的表达水平;分析TLR7和AP-1在基底细胞癌中的表达水平以及二者之间的相互关系。结果:TLR7和AP-1在癌组织中表达均较正常皮肤组织高(P<0.05),表达水平与性别、年龄均无差异( P>0.05);TLR7和AP-1在基底细胞癌中的蛋白表达水平成明显正相关(r=0.78,p<0.01)。结论:TLR7和AP -1蛋白在基底细胞癌中高表达,且二者的表达水平呈明显正相关;TLR7和AP-1可能与基底细胞癌的发生发展有关。

  4. Co-expression Analysis Identifies CRC and AP1 the Regulator of Arabidopsis Fatty Acid Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Xinxin Han; Linlin Yin; Hongwei Xue


    Fatty acids (FAs) play crucial rules in signal transduction and plant development,however,the regulation of FA metabolism is still poorly understood.To study the relevant regulatory network,fifty-eight FA biosynthesis genes including de novo synthases,desaturases and elongases were selected as "guide genes" to construct the co-expression network.Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT)identifies 797 candidate FA-correlated genes.Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism,and function in many processes.Interestingly,63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched.Two TF genes,CRC and AP1,both correlating with 8 FA guide genes,were further characterized.Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds.The contents of palmitoleic acid,stearic acid,arachidic acid and eicosadienoic acid are decreased,whereas that of oleic acid is increased in ap1 and crc seeds,which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes.In addition,yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15,indicating that CRC may directly regulate FA biosynthesis.

  5. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Directory of Open Access Journals (Sweden)

    Lee Sung


    Full Text Available Abstract Background Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde, tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Methods Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Results Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Conclusion Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative

  6. Prevention of Breast Cell Transformation by Blockade of the AP-1 Transcription Factor. (United States)


    Bodadonna, G. Cancer of the Breast. In: J. Devita VT, H. S and R. SA (eds.), Cancer of the Breast, pp. 1264-1332. Philadelphia: J.B. Lippincott Co., 1993...Berkeley, California 94720 [M. R. S.]; and The University of Texas Health Science Center at San Antonio, Division of Medical Oncology /Department of...Division of Medical Oncology /Department of (c-erbB2 and c-Ha-ras) on the AP-1 transactivating activity in im- Medicine, 7703 Floyd Curl Drive, San Antonio

  7. Sharp weak type estimates for weights in the class $A_{p_1, p_2}$

    CERN Document Server

    Reznikov, Alexander


    We get sharp estimates for the distribution function of nonnegative weights, which satisfy so called $A_{p_1, p_2}$ condition. For particular choices of parameters $p_1$, $p_2$ this condition becomes an $A_p$-condition or Reverse H\\"{o}lder condition. We also get maximizers for these sharp estimates. We use the Bellman technique and try to carefully present and motivate our tactics. As an illustration of how these results can be used, we deduce the following result: if a weight $w$ is in $A_2$ then it self-improves to a weight, which satisfies a Reverse H\\"{o}lder condition.

  8. Spleen Tyrosine Kinase Regulates AP-1 Dependent Transcriptional Response to Minimally Oxidized LDL (United States)

    Choi, Soo-Ho; Wiesner, Philipp; Almazan, Felicidad; Kim, Jungsu; Miller, Yury I.


    Oxidative modification of low-density lipoprotein (LDL) turns it into an endogenous ligand recognized by pattern-recognition receptors. We have demonstrated that minimally oxidized LDL (mmLDL) binds to CD14 and mediates TLR4/MD-2-dependent responses in macrophages, many of which are MyD88-independent. We have also demonstrated that the mmLDL activation leads to recruitment of spleen tyrosine kinase (Syk) to TLR4 and TLR4 and Syk phosphorylation. In this study, we produced a macrophage-specific Syk knockout mouse and used primary Syk−/− macrophages in our studies. We demonstrated that Syk mediated phosphorylation of ERK1/2 and JNK, which in turn phosphorylated c-Fos and c-Jun, respectively, as assessed by an in vitro kinase assay. c-Jun phosphorylation was also mediated by IKKε. c-Jun and c-Fos bound to consensus DNA sites and thereby completed an AP-1 transcriptional complex and induced expression of CXCL2 and IL-6. These results suggest that Syk plays a key role in TLR4-mediated macrophage responses to host-generated ligands, like mmLDL, with subsequent activation of an AP-1 transcription program. PMID:22384232

  9. Chloroquine inhibits human CD4+ T-cell activation by AP-1 signaling modulation (United States)

    Schmidt, Ralf L. J.; Jutz, Sabrina; Goldhahn, Katrin; Witzeneder, Nadine; Gerner, Marlene C.; Trapin, Doris; Greiner, Georg; Hoermann, Gregor; Steiner, Guenter; Pickl, Winfried F.; Burgmann, Heinz; Steinberger, Peter; Ratzinger, Franz; Schmetterer, Klaus G.


    Chloroquine (CQ) is widely used as an anti-inflammatory therapeutic for rheumatic diseases. Although its modes of action on the innate immune system are well described, there is still insufficient knowledge about its direct effects on the adaptive immune system. Thus, we evaluated the influence of CQ on activation parameters of human CD4+ T-cells. CQ directly suppressed proliferation, metabolic activity and cytokine secretion of T-cells following anti-CD3/anti-CD28 activation. In contrast, CQ showed no effect on up-regulation of T-cell activation markers. CQ inhibited activation of all T helper cell subsets, although IL-4 and IL-13 secretion by Th2 cells were less influenced compared to other Th-specific cytokines. Up to 10 μM, CQ did not reduce cell viability, suggesting specific suppressive effects on T-cells. These properties of CQ were fully reversible in re-stimulation experiments. Analyses of intracellular signaling showed that CQ specifically inhibited autophagic flux and additionally activation of AP-1 by reducing phosphorylation of c-JUN. This effect was mediated by inhibition of JNK catalytic activity. In summary, we characterized selective and reversible immunomodulatory effects of CQ on human CD4+ T-cells. These findings provide new insights into the biological actions of JNK/AP-1 signaling in T-cells and may help to expand the therapeutic spectrum of CQ. PMID:28169350

  10. The transcriptional repressor domain of Gli3 is intrinsically disordered

    DEFF Research Database (Denmark)

    Tsanev, Robert; Vanatalu, Kalju; Jarvet, Jüri


    The transcription factor Gli3 is acting mainly as a transcriptional repressor in the Sonic hedgehog signal transduction pathway. Gli3 contains a repressor domain in its N-terminus from residue G106 to E236. In this study we have characterized the intracellular structure of the Gli3 repressor domain...

  11. Transcription factor co-repressors in cancer biology: roles and targeting. (United States)

    Battaglia, Sebastiano; Maguire, Orla; Campbell, Moray J


    Normal transcription displays a high degree of flexibility over the choice, timing and magnitude of mRNA expression levels that tend to oscillate and cycle. These processes allow for combinatorial actions, feedback control and fine-tuning. A central role has emerged for the transcriptional co-repressor proteins such as NCOR1, NCOR2/SMRT, CoREST and CTBPs, to control the actions of many transcriptional factors, in large part, by recruitment and activation of a range of chromatin remodeling enzymes. Thus, co-repressors and chromatin remodeling factors are recruited to transcription factors at specific promoter/enhancer regions and execute changes in the chromatin structure. The specificity of this recruitment is controlled in a spatial-temporal manner. By playing a central role in transcriptional control, as they move and target transcription factors, co-repressors act as a key driver in the epigenetic economy of the nucleus. Co-repressor functions are selectively distorted in malignancy, by both loss and gain of function and contribute to the generation of transcriptional rigidity. Features of transcriptional rigidity apparent in cancer cells include the distorted signaling of nuclear receptors and the WNTs/beta-catenin axis. Understanding and predicting the consequences of altered co-repressor expression patterns in cancer cells has diagnostic and prognostic significance, and also have the capacity to be targeted through selective epigenetic therapies.

  12. Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae. (United States)

    Cartwright, Gemma M; Scott, Barry


    One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA.

  13. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte.

    Directory of Open Access Journals (Sweden)

    Stéphane Chavanas

    Full Text Available Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs catalyse the conversion of protein-bound arginine into citrulline (deimination, a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6. Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE, an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.

  14. Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages (United States)

    Zheng, Bin; Wen, Zheng-Shun; Huang, Yun-Juan; Xia, Mei-Sheng; Xiang, Xing-Wei; Qu, You-Le


    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines. PMID:27657093

  15. C3 toxin activates the stress signaling pathways, JNK and p38, but antagonizes the activation of AP-1 in rat-1 cells. (United States)

    Beltman, J; Erickson, J R; Martin, G A; Lyons, J F; Cook, S J


    Lysophosphatidic acid (LPA) stimulates the c-Fos serum response element (SRE) by activating two distinct signal pathways regulated by the small GTPases, Ras and RhoA. Ras activates the ERK cascade leading to phosphorylation of the transcription factors Elk-1 and Sap1a at the Ets/TCF site. RhoA regulates an undefined pathway required for the activation of the SRF/CArG site. Here we have examined the role of the Ras and RhoA pathways in activation of the SRE and c-Fos expression in Rat-1 cells. Pertussis toxin and PD98059 strongly inhibited LPA-stimulated c-Fos expression and activation of a SRE:Luc reporter. C3 toxin completely inhibited RhoA function, partially inhibited SRE:Luc activity, but had no effect on LPA-stimulated c-Fos expression. Thus, in a physiological context the Ras-Raf-MEK-ERK pathway, but not RhoA, is required for LPA-stimulated c-Fos expression in Rat-1 cells. C3 toxin stimulated the stress-activated protein kinases JNK and p38 and potentiated c-Jun expression and phosphorylation; these properties were shared by another cellular stress agonist the protein kinase C inhibitor Ro-31-8220. However, C3 toxin alone or in combination with growth factors did not stimulate AP-1:Luc activity and actually antagonized the synergistic activation of AP-1:Luc observed in response to co-stimulation with growth factors and Ro-31-8220. These data indicate that C3 toxin is a cellular stress which antagonizes activation of AP-1 at a point downstream of stress-activated kinase activation or immediate-early gene induction.

  16. Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin (United States)

    Chaiprasongsuk, Anyamanee; Lohakul, Jinaphat; Soontrapa, Kitipong; Sampattavanich, Somponnat; Akarasereenont, Pravit


    UVA irradiation plays a role in premature aging of the skin through triggering oxidative stress-associated stimulation of matrix metalloproteinase-1 (MMP-1) responsible for collagen degradation, a hallmark of photoaged skin. Compounds that can activate nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant gene expression, should therefore serve as effective antiphotoaging agents. We investigated whether genetic silencing of Nrf2 could relieve UVA-mediated MMP-1 upregulation via activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling using human keratinocyte cell line (HaCaT). Antiphotoaging effects of hispidulin (HPD) and sulforaphane (SFN) were assessed on their abilities to activate Nrf2 in controlling MMP-1 and collagen expressions in association with phosphorylation of MAPKs (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38), c-Jun, and c-Fos, using the skin of BALB/c mice subjected to repetitive UVA irradiation. Our findings suggested that depletion of Nrf2 promoted both mRNA expression and activity of MMP-1 in the UVA-irradiated HaCaT cells. Treatment of Nrf2 knocked-down HaCaT cells with MAPK inhibitors significantly suppressed UVA-induced MMP-1 and AP-1 activities. Moreover, pretreatment of the mouse skin with HPD and SFN, which could activate Nrf2, provided protective effects against UVA-mediated MMP-1 induction and collagen depletion in correlation with the decreased levels of phosphorylated MAPKs, c-Jun, and c-Fos in the mouse skin. In conclusion, Nrf2 could influence UVA-mediated MMP-1 upregulation through the MAPK/AP-1 signaling cascades. HPD and SFN may therefore represent promising antiphotoaging candidates. PMID:28011874

  17. The function of AP-1 in the develotment of dentine and enamel%AP-1与牙本质、釉质发育相关研究进展

    Institute of Scientific and Technical Information of China (English)

    易思健(综述); 刘建国; 吴家媛(审校)


    AP-1是被国内外学者广泛研究的转录因子,是由原癌基因编码的蛋白质jun和fos组成的二聚体复合物。AP-1能与DNA结合,作为转录调控因子可通过激活或抑制目标基因的转录,参与多项细胞的活动,如细胞增殖、凋亡、生存,以及肿瘤的发生和组织形态等。近年来研究又发现,AP-1在牙发育过程中也有表达,主要表达于成熟的成釉细胞、成牙本质细胞等。本文就AP-1在牙本质、釉质发育过程中对相关因子的调节作用作一综述。%AP-1isatranscriptionfactor,adimercomplexofc-Junandc-Fosencodedbyproto-onco-gene.As a transcription regulatory factor,it binds to DNA.Through activating or inhibiting target gene transcription,it is involved in many cell activities,such as cell proliferation,apoptosis,cell survival and tumor development .AP-1 was recently found to be expressed in the process of tooth development,mainly in mature ameloblasts and odontoblasts. This review summarizes the regulatory role of AP-1 in dentine and enamel development.

  18. The transcriptional repressor domain of Gli3 is intrinsically disordered.

    Directory of Open Access Journals (Sweden)

    Robert Tsanev

    Full Text Available The transcription factor Gli3 is acting mainly as a transcriptional repressor in the Sonic hedgehog signal transduction pathway. Gli3 contains a repressor domain in its N-terminus from residue G106 to E236. In this study we have characterized the intracellular structure of the Gli3 repressor domain using a combined bioinformatics and experimental approach. According to our findings the Gli3 repressor domain while being intrinsically disordered contains predicted anchor sites for partner interactions. The obvious interaction partners to test were Ski and DNA; however, with both of these the structure of Gli3 repressor domain remained disordered. To locate residues important for the repressor function we mutated several residues within the Gli3 repressor domain. Two of these, H141A and H157N, targeting predicted helical regions, significantly decreased transcriptional repression and thus identify important functional parts of the domain.

  19. NF-kappa B和AP-1在非小细胞肺癌中的表达%Expression of NF-kappa B and AP-1 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    马建群; 张真发; 张林


    背景与目的核因子kappa B(NF-kappa B)和激活蛋白1(AP-1)在细胞凋亡和增生过程中所起的作用逐渐被人们所认知,在肿瘤的形成过程中也扮演着重要的角色.本研究分析了NF-kappa B、AP-1在非小细胞肺癌中的表达,以明确二者之间的相互关系,并进一步研究二者对周期蛋白cyclin D1和caspase 3在非小细胞肺癌中表达的影响.方法应用Western blot检测NF-kappa B、AP-1、cyclin D1和caspase 3在非小细胞肺癌中的蛋白表达,应用RT-PCR检测不同NF-kappa B和AP-1表达的肺癌组织中cyclin D1和caspase 3的mRNA表达.应用相关分析判断NF-kappa B和AP-1的相关性.结果在45例非小细胞肺癌患者中,NF-kappa B和AP-1在肺癌组织中的表达均高于癌旁肺组织中的表达(0.6047比0.2798,P<0.01).在NF-kappa B和AP-1较高表达的肺癌组织中,cyclin D1蛋白表达和mRNA表达均增加(P<0.01),而caspase 3的蛋白表达和mRNA表达减少(P<0.01).相关分析显示NF-kappa B和AP-1有明显的相关性(r=0.800,P<0.01).结论 NF-kappa B和AP-1作为转录因子可能在非小细胞肺癌的形成和发展中起重要作用.

  20. Two tobacco AP1-like gene promoters with highly specific, tightly regulated and uniquely expressed activity during floral transition, initiation and development (United States)

    Biotech engineering of agronomic traits requires an array of highly specific and tightly regulated promoters in flower or other tissues. In this study, we isolated and characterized two tobacco AP1-like promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using GUS reporter and tissue-speci...

  1. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus. (United States)

    Zhang, Ning; MohdZainudin, Nur A I; Scher, Keren; Condon, Bradford J; Horwitz, Benjamin A; Turgeon, B Gillian


    The gene SRE1, encoding the GATA transcription factor siderophore biosynthesis repressor (Sre1), was identified in the genome of the maize pathogen Cochliobolus heterostrophus and deleted. Mutants were altered in sensitivity to iron, oxidative stress, and virulence to the host. To gain insight into mechanisms of this combined regulation, genetic interactions among SRE1 (the nonribosomal peptide synthetase encoding gene NPS6, which is responsible for extracellular siderophore biosynthesis) and ChAP1 (encoding a transcription factor regulating redox homeostasis) were studied. To identify members of the Sre1 regulon, expression of candidate iron and oxidative stress-related genes was assessed in wild-type (WT) and sre1 mutants using quantitative reverse-transcription polymerase chain reaction. In sre1 mutants, NPS6 and NPS2 genes, responsible for siderophore biosynthesis, were derepressed under iron replete conditions, whereas the high-affinity reductive iron uptake pathway associated gene, FTR1, was not, in contrast to outcomes with other well-studied fungal models. C. heterostrophus L-ornithine-N(5)- monooxygenase (SIDA2), ATP-binding cassette (ABC6), catalase (CAT1), and superoxide dismutase (SOD1) genes were also derepressed under iron-replete conditions in sre1 mutants. Chap1nps6 double mutants were more sensitive to oxidative stress than either Chap1 or nps6 single mutants, while Chap1sre1 double mutants showed a modest increase in resistance compared with single Chap1 mutants but were much more sensitive than sre1 mutants. These findings suggest that the NPS6 siderophore indirectly contributes to redox homeostasis via iron sequestration, while Sre1 misregulation may render cells more sensitive to oxidative stress. The double-mutant phenotypes are consistent with a model in which iron sequestration by NPS6 defends the pathogen against oxidative stress. C. heterostrophus sre1, nps6, Chap1, Chap1nps6, and Chap1sre1 mutants are all reduced in virulence toward the

  2. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)


    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  3. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer. (United States)

    Zhao, Chunyan; Qiao, Yichun; Jonsson, Philip; Wang, Jian; Xu, Li; Rouhi, Pegah; Sinha, Indranil; Cao, Yihai; Williams, Cecilia; Dahlman-Wright, Karin


    Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1-regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell-cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties.

  4. Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana. (United States)

    Wang, Jing; Zhang, Xiaoming; Yan, Guohua; Zhou, Yu; Zhang, Kaichun


    A homologue of SQUAMOSA/APETALA1, designated PaAP1, was isolated from Prunus avium by reverse transcription-PCR (RT-PCR). The full length of PaAP1 cDNA is 753 bp, and it codes for a polypeptide of 250 amino acid residues. Sequence comparison revealed that PaAP1 belongs to the MADS-box gene family. Phylogenetic analysis indicated that PaAP1 shared the highest identity with SQUA/AP1 homologues from Prunus serrulata. Real-time fluorescence quantitative PCR analysis showed that PaAP1 was expressed at high levels in petal, sepal, style, and flower buds, which was slightly different from the expression pattern of AP1 of Arabidopsis thaliana. To characterize the functions of PaAP1, we assessed Arabidopsis transformed with 35S::PaAP1. A total of 8 transgenic T(1) lines with an early flowering phenotype were obtained, and a 3:1 segregation ratio of flowering time was observed in the T(2) generation of 4 lines. This study provides the first functional analysis of an SQUA/AP1 homolog from P. avium and suggests that PaAP1 is potentially useful for shortening the juvenile period in sweet cherry.

  5. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR. (United States)

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong


    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  6. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways. (United States)

    Khoi, Pham Ngoc; Xia, Yong; Lian, Sen; Kim, Ho Dong; Kim, Do Hyun; Joo, Young Eun; Chay, Kee-Oh; Kim, Kyung Keun; Jung, Young Do


    Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.

  7. The transcription factor Ets21C drives tumor growth by cooperating with AP-1 (United States)

    Toggweiler, Janine; Willecke, Maria; Basler, Konrad


    Tumorigenesis is driven by genetic alterations that perturb the signaling networks regulating proliferation or cell death. In order to block tumor growth, one has to precisely know how these signaling pathways function and interplay. Here, we identified the transcription factor Ets21C as a pivotal regulator of tumor growth and propose a new model of how Ets21C could affect this process. We demonstrate that a depletion of Ets21C strongly suppressed tumor growth while ectopic expression of Ets21C further increased tumor size. We confirm that Ets21C expression is regulated by the JNK pathway and show that Ets21C acts via a positive feed-forward mechanism to induce a specific set of target genes that is critical for tumor growth. These genes are known downstream targets of the JNK pathway and we demonstrate that their expression not only depends on the transcription factor AP-1, but also on Ets21C suggesting a cooperative transcriptional activation mechanism. Taken together we show that Ets21C is a crucial player in regulating the transcriptional program of the JNK pathway and enhances our understanding of the mechanisms that govern neoplastic growth. PMID:27713480

  8. Expression of cell cycle regulator cdk2ap1 suppresses tumor cell phenotype by non-cell autonomous mechanisms


    Zolochevska, Olga; Figueiredo, Marxa L


    We evaluated the effect of expressing the cell cycle regulator cdk2ap1 in epithelial or stromal cell compartments to reduce SCC growth in vitro and in vivo. Cell autonomous and/or non-cell autonomous expression of cdk2ap1 reduced tumor growth and invasion and altered cell cycle, adhesion, invasion, angiogenesis, and apoptotic gene expression, as assessed by several in vitro phenotype assays, quantitative real time PCR, and in vivo molecular imaging using a novel three-way xenograft animal mod...

  9. Cloning and Bioinformatics Analysis of AP1 Gene from the Leaves of in vitro Plantlets in Tagetes patula L.%孔雀草试管苗叶片AP1基因的克隆及其生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    刘敏; 赖钟雄


    In this experiment, the full-length cDNA of API gene was successfully cloned from the leaves of in vitro plantlets and the bioinformatics analysis for API gene was also conducted in Tagetes patula L. The full-length of API gene was 919 bp (The accession number was JX31O277 in GenBank), containing 92 bp 5'-UTR, 149 bp 3'-UTR, and 3'-end involved 25 bp poly (A) tails, the open reading frame had 678 bp, encoding 225 amino acids. AP1-1 protein was likely located in the cell nuclei, which was hydrophilic, without signal peptide and with 4 coil helix structures; The secondary structure was mainly constituted by the ot-helix and random coil, and there existed a leucine zipper structure and a MADS-box domain. This protein had likely 7 phosphorylation sites. The phylogenetic tree analysis indicated that this protein was highly genetic relationship with chrysanthemum lavandulifolium.%以孔雀草试管苗叶片为材料,成功克隆了孔雀草AP1基因的cDNA全长,并对其进行了生物信息学分析.AP1基因全长919 bp(GenBank登录号为JX310277),其中5'-UTR 92bp、3'-UTR 149bp、3'端poly (A)尾巴25 bp,开放阅读框为678 bp,编码225个氨基酸.AP1-1可能存在于细胞核中,为亲水蛋白,不含信号肽,共形成4个卷曲螺旋结构;二级结构主要有α螺旋和无规则卷曲构成,存在亮氨酸拉链结构和1个MADS-box 区.此蛋白可能发生磷酸化位点的位置有7个.从系统进化树分析表明,该蛋白与甘菊具有较高的亲缘关系.

  10. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Lei Wu


    Full Text Available For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA, was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae. MOA modulates cytokine expression in lipopolysaccharide (LPS-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2, thus blocking nuclear translocation of activation protein (AP-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs and one of their downstream transcription factors, activator protein-1 (AP-1. Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.

  11. Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E.


    Faux, S P; Howden, P. J.


    Asbestos fibers cause persistent induction of the oxidative stress sensitive transcription factors nuclear factor kappa-B (NF-kappa B) and activator protein-1 (AP-1) in mammalian cells. These transcription factors play an important role in the regulation of cellular activity. Lipid peroxidation, mediated by reactive oxygen species, is thought to be a possible mechanism in the pathogenicity of asbestos fibers. These studies were designed to determine if crocidolite asbestos-induced lipid perox...

  12. Transcriptomic analysis by RNA-seq reveals AP-1 pathway as key regulator that green tea may rely on to inhibit lung tumorigenesis. (United States)

    Pan, Jing; Zhang, Qi; Xiong, Donghai; Vedell, Peter; Yan, Ying; Jiang, Hui; Cui, Peng; Ding, Feng; Tichelaar, Jay W; Wang, Yian; Lubet, Ronald A; You, Ming


    Green tea is a promising chemopreventive agent for lung cancer. Multiple signaling events have been reported, however, the relative importance of these mechanisms in mediating the chemopreventive function of green tea is unclear. In the present study, to examine the involvement of AP-1 in green tea polyphenols induced tumor inhibition, human NSCLC cell line H1299 and mouse SPON 10 cells were identified as AP-1 dependent, as these two lines exhibit high constitutive AP-1 activity, and when TAM67 expression was induced with doxycycline, cell growth was inhibited and correlated with suppressed AP-1 activity. RNA-seq was used to determine the global transcriptional effects of AP-1 inhibition and also uncover the possible involvement of AP-1 in tea polyphenols induced chemoprevention. TAM67 mediated changes in gene expression were identified, and within down-regulated genes, AP-1 was identified as a key transcription regulator. RNA-seq analysis revealed that Polyphenon E-treated cells shared 293 commonly down-regulated genes within TAM67 expressing H1299 cells, and by analysis of limited Chip-seq data, over 10% of the down-regulated genes contain a direct AP-1 binding site, indicating that Polyphenon E elicits chemopreventive activity by regulating AP-1 target genes. Conditional TAM67 expressing transgenic mice and NSCLC cell lines were used to further confirm that the chemopreventive activity of green tea is AP-1 dependent. Polyphenon E lost its chempreventive function both in vitro and in vivo when AP-1 was inhibited, indicating that AP-1 inhibition is a major pathway through which green tea exhibits chemopreventive effects.

  13. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. (United States)

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Peng, Shu-Fen; Tsuzuki, Minoru; Amagaya, Sakae; Huang, Wen-Wen; Yang, Jai-Sing


    Kaempferol is a natural flavonoid that possesses anti-proliferative and apoptosis-inducing activities in several cancer cell lines. In the present study, we investigated the anti-metastatic activity of kaempferol and its molecular mechanism(s) of action in human osteosarcoma cells. Kaempferol displayed inhibitory effects on the invasion and adhesion of U-2 osteosarcoma (OS) cells in a concentration-dependent manner by Matrigel Transwell assay and cell adhesion assay. Kaempferol also inhibited the migration of U-2 OS cells in a concentration-dependent manner at different treatment time points by wound-healing assay. Additional experiments showed that kaempferol treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator (uPA) by gelatin and casein-plasminogen zymography assays and western blot analyses. Kaempferol also downregulated the mRNA levels of MMP-2 and MMP-9 by quantitative PCR analyses. Furthermore, kaempferol was able to reduce the protein phosphorylation of ERK, p38 and JNK by western blotting. By electrophoretic mobility-shift assay (EMSA), we demonstrated that kaempferol decreased the DNA binding activity of AP-1, an action likely to result in the reduced expression of MMP-2, MMP-9 and uPA. Collectively, our data showed that kaempferol attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the decreased DNA binding ability of AP-1, and hence, the downregulation in the expression and enzymatic activities of MMP-2, MMP-9 and uPA, contributing to the inhibition of metastasis of U-2 OS cells. Our results suggest a potential role of kaempferol in the therapy of tumor metastasis of OS.

  14. UVB-irradiated human keratinocytes and interleukin-1αindirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVA-irradiated dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yong; BI Zhi-gang


    Background Solar ultraviolet (UV) irradiation induces the production of matrix metalloproteinases (MMPs) by activating cellular signalling transduction pathways. MMPs are responsible for the degradation and/or inhibition of synthesis of collagenous extracellular matrix in connective tissues. We mimicked the action of environmental ultraviolet on skin and investigated the effects of UVB-irradiated human keratinocytes HaCaT and IL-1α on mitogen activated protein (MAP) kinase activation, c-Jun and c-Fos (AP-1 is composed of Jun and Fos proteins)mRNA expression and MMP-1 production in UVA-irradiated dermal fibroblasts.Methods Following UVA irradiation, the culture medium of fibroblasts was replaced by culture medium from UVB-irradiated HaCaT, or replaced by the complete culture medium with interleukin (IL)-1α. MAP kinase activity expression in fibroblasts was detected by Western blot. c-Jun and c-Fos mRNA expressions were determined by reverse transcriptional polymerase chain reaction (RT-PCR); MMP-1 production in culture medium was detected by enzyme-linked immunosorbent assay (ELISA).Results Culture medium from UVB-irradiated keratinocytes increased MAP kinase activity and c-Jun mRNA expression in UVA-irradiated fibroblasts. IL-1α increased MAP kinase activity and c-Jun mRNA expression,IL-1 α also increased c-Fos mRNA expression. Both culture media from UVB-irradiated human keratinocytes and externally applied IL-1 α increased MMP-1 production in UVA-irradiated fibroblasts.Conclusions UVB-irradiated keratinocytes and IL-1α indirectly promote MMP-1 production in UVA-irradiated fibroblasts by increasing MAP kinase/AP-1 activity. IL-1 may play an important role in the paracrine activation and dermal collagen excessive degradation leading to skin photoaging.

  15. HTLV-1 p30II: selective repressor of gene expression

    Directory of Open Access Journals (Sweden)

    Green Patrick L


    Full Text Available Abstract Human T-lymphotropic virus type-1 (HTLV-1 is a complex retrovirus that causes adult T-cell leukemia/lymphoma (ATL and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 pX ORF II encodes two proteins, p13II and p30II whose roles are beginning to be defined in the virus life cycle. Previous studies indicate the importance of these viral proteins in the ability of the virus to maintain viral loads and persist in an animal model of HTLV-1 infection. Intriguing new studies indicate that p30II is a multifunctional regulator that differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein (CBP/p300 and specifically binds and represses tax/rex mRNA nuclear export. A new study characterized the role of p30II in regulation of cellular gene expression using comprehensive human gene arrays. Interestingly, p30II is an overall repressor of cellular gene expression, while selectively favoring the expression of regulatory gene pathways important to T lymphocytes. These new findings suggest that HTLV-1, which is associated with lymphoproliferative diseases, uses p30II to selectively repress cellular and viral gene expression to favor the survival of cellular targets ultimately resulting in leukemogenesis.

  16. CRTR-1, a developmentally regulated transcriptional repressor related to the CP2 family of transcription factors. (United States)

    Rodda, S; Sharma, S; Scherer, M; Chapman, G; Rathjen, P


    CP2-related proteins comprise a family of DNA-binding transcription factors that are generally activators of transcription and expressed ubiquitously. We reported a differential display polymerase chain reaction fragment, Psc2, which was expressed in a regulated fashion in mouse pluripotent cells in vitro and in vivo. Here, we report further characterization of the Psc2 cDNA and function. The Psc2 cDNA contained an open reading frame homologous to CP2 family proteins. Regions implicated in DNA binding and oligomeric complex formation, but not transcription activation, were conserved. Psc2 expression in vivo during embryogenesis and in the adult mouse demonstrated tight spatial and temporal regulation, with the highest levels of expression in the epithelial lining of distal convoluted tubules in embryonic and adult kidneys. Functional analysis demonstrated that PSC2 repressed transcription 2.5-15-fold when bound to a heterologous promoter in ES, 293T, and COS-1 cells. The N-terminal 52 amino acids of PSC2 were shown to be necessary and sufficient for this activity and did not share obvious homology with reported repressor motifs. These results represent the first report of a CP2 family member that is expressed in a developmentally regulated fashion in vivo and that acts as a direct repressor of transcription. Accordingly, the protein has been named CP2-Related Transcriptional Repressor-1 (CRTR-1).

  17. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    Energy Technology Data Exchange (ETDEWEB)

    Safo, Martin K., E-mail: [Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Ko, Tzu-Ping [Institute of Biological Chemistry, Academia Sinica, Taipei 11529,Taiwan (China); Musayev, Faik N. [Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Zhao, Qixun [Department of Medicine and Department of Microbiology/Immunology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Wang, Andrew H.-J. [Institute of Biological Chemistry, Academia Sinica, Taipei 11529,Taiwan (China); Archer, Gordon L. [Department of Medicine and Department of Microbiology/Immunology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)


    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  18. A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. (United States)

    Shimizu, Takashi; Yamanaka, Yojiro; Nojima, Hideaki; Yabe, Taijiro; Hibi, Masahiko; Hirano, Toshio


    Dharma/Bozozok (Dha/Boz) is a homeodomain protein containing an Engrailed homology (Eh) 1 repressor motif. It is important in zebrafish dorsal organizer formation. Dha/Boz interacted with a co-repressor Groucho through the Eh1 motif. Expression of a Dha/Boz fused to the transcriptional activator VP16 repressed dorsal axis formation and the expression of organizer genes but led to the dorsal expansion of expression of the homeobox gene vox/vega1, indicating that Dha/Boz functions as a transcriptional repressor for dorsal axis formation. We also isolated a novel homeobox gene, ved, whose expression was negatively regulated by dha/boz. ved's sequence and expression profile were similar to those of vox/vega1 and vent/vega2. Like Vox/Vega1 and Vent/Vega2, Ved acted as a transcriptional repressor. The combined inhibition of ved, vox/vega1, and vent/vega2, by antisense morpholino injection, strongly dorsalized the embryos and elicited ventral expansion of organizer gene expression, compared with the effect of inhibiting each of these genes alone. These results suggest that ved is a target for the repressor Dha/Boz. Ved functions redundantly with vox/vega1 and vent/vega2 to restrict the organizer domain.

  19. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor. (United States)

    Hecht, M H; Sturtevant, J M; Sauer, R T


    The thermal stabilities of mutant phage lambda repressors that have single amino acid replacements in the NH2-terminal domain have been studied by means of circular dichroism and differential scanning calorimetry. The variations in stability determined by these physical methods correlate with the resistance to proteolysis at various temperatures and can be compared with the temperature-sensitive activity of the mutants in vivo. In general, mutant proteins bearing solvent-exposed substitutions have thermal stabilities identical to wild type, whereas buried substitutions reduce stability. In one case, a single amino acid replacement increases the thermal stability of the repressor.

  20. Characterization of CRTAM gene promoter: AP-1 transcription factor control its expression in human T CD8 lymphocytes. (United States)

    Valle-Rios, Ricardo; Patiño-Lopez, Genaro; Medina-Contreras, Oscar; Canche-Pool, Elsy; Recillas-Targa, Felix; Lopez-Bayghen, Esther; Zlotnik, Albert; Ortiz-Navarrete, Vianney


    Class-I MHC-restricted T-cell associated molecule (CRTAM) is a member of the Nectin-like adhesion molecule family. It is rapidly induced in NK, NKT and CD8(+) T cells. Interaction with its ligand Nectin-like 2 results in increased secretion of IFN-gamma by activated CD8(+) T lymphocytes. Through sequential bioinformatic analyses of the upstream region of the human CRTAM gene, we detected cis-elements potentially important for CRTAM gene transcription. Analyzing 2kb upstream from the ATG translation codon by mutation analysis in conjunction with luciferase reporter assays, electrophoretic mobility shify assay (EMSA) and supershift assays, we identified an AP-1 binding site, located at 1.4kb from the ATG translation codon of CRTAM gene as an essential element for CRTAM expression in activated but not resting human CD8(+) T cells. CRTAM expression was reduced in activated CD8(+) T cells treated with the JNK inhibitor SP600125, indicating that CRTAM expression is driven by the JNK-AP-1 signaling pathway. This study represents the first CRTAM gene promoter analysis in human T cells and indicates that AP-1 is a positive transcriptional regulator of this gene, a likely important finding because CRTAM has recently been shown to play a role in IFN-gamma and IL-17 production and T cell proliferation.

  1. Structural Analysis of Iac Repressor Bound to Allosteric Effectors

    Energy Technology Data Exchange (ETDEWEB)

    Daber,R.; Stayrook, S.; Rosenberg, A.; Lewis, M.


    The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.

  2. Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Rasmussen, Kim Krighaar; Frandsen, Kristian E. H.; Erba, Elisabetta Boeri;


    The CI repressor from the temperate bacteriophage TP901-1 consists of two folded domains, an N-terminal helix-turn-helix DNA-binding domain (NTD) and a C-terminal oligomerization domain (CTD), which we here suggest to be further divided into CTD1 and CTD2. Full-length CI is a hexameric protein...

  3. Kukoamine A Prevents Radiation-Induced Neuroinflammation and Preserves Hippocampal Neurogenesis in Rats by Inhibiting Activation of NF-κB and AP-1. (United States)

    Zhang, Yaqiong; Gao, Lingyue; Cheng, Zhihua; Cai, Jiayi; Niu, Yixuan; Meng, Weihong; Zhao, Qingchun


    Impaired hippocampal neurogenesis and neuroinflammation are involved in the pathogenesis of radiation-induced brain injury. Kukoamine A (KuA) was demonstrated to have neuroprotective effects through inhibiting oxidative stress and apoptosis after whole-brain irradiation (WBI) in rats. The aim of this study was to investigate whether administration of KuA would prevent radiation-induced neuroinflammation and the detrimental effect on hippocampal neurogenesis. For this study, male Wistar rats received either sham irradiation or WBI (30 Gy single dose of X-rays) followed by the immediate injection of either KuA or vehicle intravenously. The dose of KuA was 5, 10, and 20 mg/kg, respectively. The levels of pro-inflammatory cytokines were assayed by ELISA kits. The newborn neurons were detected by 5-bromo-2-deoxyuridine (BrdU)/neuronal nuclei (NeuN) double immunofluorescence. Microglial activation was measured by Iba-1 immunofluorescence. The expression of Cox-2 and the activation of nuclear factor κB (NF-κB), activating protein 1(AP-1), and PPARδ were evaluated by western blot. WBI led to a significant increase in the level of TNF-α, IL-1β, and Cox-2, and it was alleviated by KuA administration. KuA attenuated microglial activation in rat hippocampus after WBI. Neurogenesis impairment induced by WBI was ameliorated by KuA. Additionally, KuA alleviated the increased translocation of NF-κB p65 subunit and phosphorylation of c-jun induced by WBI and elevated the expression of PPARδ. These data indicate that KuA could ameliorate the neuroinflammatory response and protect neurogenesis after WBI, partially through regulating the activation of NF-κB, AP-1, and PPARδ.

  4. SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways.

    Directory of Open Access Journals (Sweden)

    Anna Santoro

    Full Text Available Osteoarthritis (OA is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs in chondrocytes, contributing thus to the extracellular matrix (ECM degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2, under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored.SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis.Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1.Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA.

  5. Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E. (United States)

    Faux, S P; Howden, P J


    Asbestos fibers cause persistent induction of the oxidative stress sensitive transcription factors nuclear factor kappa-B (NF-kappa B) and activator protein-1 (AP-1) in mammalian cells. These transcription factors play an important role in the regulation of cellular activity. Lipid peroxidation, mediated by reactive oxygen species, is thought to be a possible mechanism in the pathogenicity of asbestos fibers. These studies were designed to determine if crocidolite asbestos-induced lipid peroxidation plays a role in the mechanism of formation of NF-kappa B and AP-1. Treatment of a rat lung fibroblast cell line (RFL-6) with crocidolite asbestos in the presence and absence of the membrane antioxidant vitamin E decreased the levels of crocidolite-induced AP-1 and NF-kappa B to background levels. Preincubation of RFL-6 cells with 5,8,11,14-eicosatetraynoic acid, an inhibitor of arachidonic acid metabolism, prior to exposure to crocidolite, abrogated crocidolite-induced NF-kappa B DNA-binding activity to background levels. Coincubation with indomethacin, a cyclooxygenase inhibitor, had no effect on NF-kappa B DNA-binding activity induced by crocidolite. However, nordihydroguaiaretic acid, a lipoxygenase inhibitor, decreased levels of NF-kappa B to background levels. This would suggest that lipoxygenase metabolites of arachidonic acid, produced following lipid peroxidation, are involved in the cellular signalling events to NF-kappa B transcription factor induction by asbestos.

  6. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    Directory of Open Access Journals (Sweden)

    Bin Fan

    Full Text Available Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO, TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1 and perilipin 2 (PLIN2. Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  7. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation. (United States)

    Fan, Bin; Dun, Sai-Hong; Gu, Jian-Qiu; Guo, Yang; Ikuyama, Shoichiro


    Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  8. Regulation of ectopic trypsin and proinflammatory cytokine expression by NF-κB and AP-1 in influenza A virus induced myocarditis%NF-κB 和 AP-1对 A 型流感病毒性心肌炎组织中异位胰蛋白酶及促炎细胞因子表达的调控

    Institute of Scientific and Technical Information of China (English)

    潘海燕; 薛陆静; 王逸平; 孙花梅; 潘闽


    目的:探讨核因子κB(NF-κB)及激活蛋白1(AP-1)对A型流感病毒(IAV)性心肌炎心肌组织中异位胰蛋白酶及促炎细胞因子表达的调控作用。方法:40只8周龄雄性BALB/c小鼠随机分为4组:正常对照组经鼻假感染15μL生理盐水;感染对照组经鼻感染40空斑形成单位( PFU) IAV;NF-κB抑制剂组经鼻感染40 PFU的IAV,腹腔注射吡咯烷二硫代氨基甲酸(PDTC)10 mg/kg,每天1次;AP-1抑制剂组经鼻感染40 PFU的IAV,腹腔注射去甲二氢愈创木酸(NDGA)2.5 mg/kg,每天1次。感染后第9天处死小鼠,切取心脏组织分别进行病理及生化检查。结果:IAV感染可诱导心肌组织中异位胰蛋白酶及促炎细胞因子白细胞介素( IL)-6、IL-1β及肿瘤坏死因子( TNF)-α表达显著上调,引发心肌急性炎症反应。 PDTC能显著抑制心肌中NF-κB激活以及异位胰蛋白酶和促炎细胞因子表达上调,有效抑制IAV复制,减轻心肌炎症反应( P<0.01)。 NDGA能有效抑制AP-1活性( P<0.01),轻度抑制促炎细胞因子表达上调(P<0.05),但对异位胰蛋白酶表达、IAV复制及心肌炎症程度无显著影响(P>0.05)。结论:IAV感染心肌组织后主要通过激活NF-κB诱导心肌中异位胰蛋白酶及促炎细胞因子表达上调,AP-1通路可能仅部分参与了促炎细胞因子的表达调控。%AIM: To investigate the regulatory effects of nuclear factor-κB ( NF-κB) and activator protein-1 (AP-1) on the expression of ectopic trypsin and proinflammatory cytokines in influenza A virus (IAV)-induced myocardi-tis.METHODS:Male BALB/c mice of 8 weeks old ( n=40) were randomly divided into 4 groups:normal control group ( NC) , infection control group ( IC) , NF-κB inhibitor group ( NI) and AP-1 inhibitor group ( AI) .The mice in NC group and IC group were instilled intranasally with 15μL saline and 40 plaque forming units ( PFU) IAV

  9. Clathrin and AP1B: Key roles in basolateral trafficking through trans-endosomal routes (United States)

    Gonzalez, Alfonso; Rodriguez-Boulan, Enrique


    Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered. PMID:19854182

  10. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. (United States)

    Budagian, Vadim; Bulanova, Elena; Brovko, Luba; Orinska, Zane; Fayad, Raja; Paus, Ralf; Bulfone-Paus, Silvia


    ATP-gated ion channel P2X receptors are expressed on the surface of most immune cells and can trigger multiple cellular responses, such as membrane permeabilization, cytokine production, and cell proliferation or apoptosis. Despite broad distribution and pleiotropic activities, signaling pathways downstream of these ionotropic receptors are still poorly understood. Here, we describe intracellular signaling events in Jurkat cells treated with millimolar concentrations of extracellular ATP. Within minutes, ATP treatment resulted in the phosphorylation and activation of p56(lck) kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase but not p38 kinase. These effects were wholly dependent upon the presence of extracellular Ca(2+) ions in the culture medium. Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK. Further, expression of c-Jun and c-Fos proteins and activator protein (AP-1) DNA binding activity were enhanced in a time-dependent manner. In contrast, DNA binding activity of NF-kappa B was reduced. ATP failed to stimulate the phosphorylation of ERK and c-Jun N-terminal kinase and activation of AP-1 in the p56(lck)-deficient isogenic T cell line JCaM1, suggesting a critical role for p56(lck) kinase in downstream signaling. Regarding the biological significance of the ATP-induced signaling events we show that although extracellular ATP was able to stimulate proliferation of both Jurkat and JCaM1 cells, an increase in interleukin-2 transcription was observed only in Jurkat cells. The nucleotide selectivity and pharmacological profile data supported the evidence that the ATP-induced effects in Jurkat cells were mediated through the P2X7 receptor. Taken together, these results demonstrate the ability of extracellular ATP to activate

  11. Breeding of Selectable Marker-Free Transgenic Rice Lines Containing AP1 Gene with Enhanced Disease Resistance

    Institute of Scientific and Technical Information of China (English)

    YU Heng-xiu; LIU Qiao-quan; WANG Ling; ZHAO Zhi-peng; XU Li; HUANG Ben-li; GONG Zhi-yun; TANG Shu-zhu; GU Ming-hong


    In order to obtain marker-free transgenic rice with improved disease resistance, the AP1 gene of Capsicum annuum and hygromycin-resistance gene (HPT) were cloned into the two separate T-DNA regions of the binary vector pSB 130,respectively, and introduced into the calli derived from the immature seeds of two elite japonica rice varieties, Guangling Xiangjing and Wuxiangjing 9, mediated by Agrobacterium-mediated transformation. Many cotransgenic rice lines containing both the AP1 gene and the marker gene were regenerated and the integration of both transgenes in the transgenic rice plants was confirmed by either PCR or Southern blotting technique. Several selectable marker-free transgenic rice plants were subsequently obtained from the progeny of the cotransformants, and confirmed by both PCR and Southern blotting analysis. These transgenic rice lines were tested in the field and their resistance to disease was c arefully investigated, the results showed that after inoculation the resistance to either bacterial blight or sheath blight of the selected transgenic lines was improved when compared with those of wild type.

  12. Increased DNA binding activity of NF-κB, STAT-3, SMAD3 and AP-1 in acutely damaged liver

    Institute of Scientific and Technical Information of China (English)

    Adriana Salazar-Montes; Luis Ruiz-Corro; Ana SandovaI-Rodriguez; Alberto Lopez-Reyes; Juan Armendariz-Borunda


    AIM: To investigate the role of genes and kinetics of specific transcription factors in liver regeneration, and to analyze the gene expression and the activity of some molecules crucially involved in hepatic regeneration.METHODS: USING gel-shift assay and RT-PCR,transcription factors, such as NF-κB, STAT-3, SMAD3and AP-1, and gene expression of inducible nitric oxide synthase (iNOS), hepatocyte growth factor (HGF) and c-met were analyzed in an animal model of chemically induced hepatectomy.RESULTS: Gene expression of HGF and its receptor c-met peaked at 3 h and 24 h after acute CCl4 intoxication. iNOS expression was only observed from 6 to 48 h.Transcriptional factor NF-κB had an early activation at 30min after acute liver damage. STAT-3 peaked 3 h postintoxication, while AP-1 displayed a peak of activation at 48 h. SMAD3 showed a high activity at all analyzed times.CONCLUSION: TNF-α and IL-6 play a central role in hepatic regeneration. These two molecules are responsible for triggering the cascade of events and switch-on of genes involved in cell proliferation, such as growth factors, kinases and cyclins which are direct participants of cell proliferation.

  13. Transcription factor AP1 binds the functional region of the promoter and regulates gene expression of human PPARdelta in LoVo cell. (United States)

    Jiang, Xiaogang; Yang, Xudong; Han, Yan; Lu, Shemin


    Peroxisome proliferator-activated receptor δ gene (PPARδ) is correlated with carcinogenesis of colorectal cancer, but the regulation of its gene transcription remains unclear. We herein report that AP1 binds the promoter and regulates PPARδ gene expression. With a luciferase reporter system, we identified a functional promoter region of 30 bp of PPARδ gene by deletion and electrophoretic mobility shift assays (EMSA). Using site-directed mutagenesis and decoy analyses, we demonstrated that AP1 bound the functional transcriptional factor binding site in a region extending from -176 to -73 of the PPARδ promoter, which was confirmed using EMSA and supershift assays. Consequently, inhibition of the AP1 binding site led to decreased PPARδ mRNA. Our study demonstrated that AP1 is the transcriptional factor that contributes to PPARδ expression in LoVo cells.

  14. Structure of the Mecl Repressor from Staphylococcus aureus in Complex with the Cognate DNA Operator of mec

    Energy Technology Data Exchange (ETDEWEB)

    Safo,M.; Ko, T.; Musayev, F.; Zhao, Q.; Wang, A.; Archer, G.


    The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  15. A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity. (United States)

    Ando, Kozue; Hirao, Satoshi; Kabe, Yasuaki; Ogura, Yuji; Sato, Iwao; Yamaguchi, Yuki; Wada, Tadashi; Handa, Hiroshi


    APE1/Ref-1 is thought to be a multifunctional protein involved in reduction-oxidation (redox) regulation and base excision DNA repair, and is required for early embryonic development in mice. APE1/Ref-1 has redox activity and AP endonuclease activity, and is able to enhance DNA-binding activity of several transcription factors, including NF-kappaB, AP-1 and p53, through reduction of their critical cysteine residues. However, it remains elusive exactly how APE1/Ref-1 carries out its essential functions in vivo. Here, we show that APE1/Ref-1 not only reduces target transcription factors directly but also facilitates their reduction by other reducing molecules such as glutathione or thioredoxin. The new activity of APE1/Ref-1, termed redox chaperone activity, is exerted at concentration significantly lower than that required for its redox activity and is neither dependent on its redox activity nor on its AP endonuclease activity. We also show evidence that redox chaperone activity of APE1/Ref-1 is critical to NF-kappaB-mediated gene expression in human cells and is mediated through its physical association with target transcription factors. Thus, APE1/Ref-1 may play multiple roles in an antioxidative stress response pathway through its different biochemical activities. These findings also provide new insight into the mechanism of intracellular redox regulation.

  16. Peroxide sensing and signaling in the Sporothrix schenckii complex: an in silico analysis to uncover putative mechanisms regulating the Hog1 and AP-1 like signaling pathways. (United States)

    Ortega, Ivy; Soares Felipe, Maria Sueli; Vasconcelos, Ana Tereza Ribeiro; Lopes Bezerra, Leila Maria; Da Silva Dantas, Alessandra


    In order to understand how fungal pathogens can survive inside the host, we must analyze how they evade the fungicidal mechanisms mounted by the host's immune system, such as generation of toxic reactive oxygen species. Studies have shown that infections caused by Sporothrix brasiliensis can be more aggressive than those due to Sporothrix schenckii. Therefore, we propose to analyze and compare the ability of these two pathogenic species to counteract oxidative stress, which, as noted, can be relevant in the host response to infection. We have shown that S. brasiliensis is more resistant to different oxidants, such as H2O2 and menadione, when compared with S. schenckii. Furthermore, our results suggest that the molecular mechanisms by which Sporothrix spp. AP-1 like transcription factors are regulated probably differs from the one seen in other fungal pathogens. Interestingly, comparison between sequences of SbHog1 and SsHog1 stress activated protein kinases suggest that S. brasiliensis Hog1 display mutations that could account for the differences seen in stress sensitivities of these two species. In summary, this is the first study to our knowledge to investigate oxidative stress responses of Sporothrix spp. and provided a model that can be employed in vivo to address how these fungal pathogens can surmount the oxidative stress generated by the host.

  17. Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program. (United States)

    Baresic, Mario; Salatino, Silvia; Kupr, Barbara; van Nimwegen, Erik; Handschin, Christoph


    Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here, we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1α and gene expression upon PGC-1α overexpression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto-underestimated number of transcription factor partners involved in mediating PGC-1α action. In particular, principal component analysis of TFBSs at PGC-1α binding regions predicts that, besides the well-known role of the estrogen-related receptor α (ERRα), the activator protein 1 complex (AP-1) plays a major role in regulating the PGC-1α-controlled gene program of the hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1α.

  18. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937. (United States)

    Riera, Humberto; Afonso, Valéry; Collin, Pascal; Lomri, Abderrahim


    Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.

  19. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937.

    Directory of Open Access Journals (Sweden)

    Humberto Riera

    Full Text Available Pyrrolidine dithiocarbamate (PDTC known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1 gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA show that PDTC increased binding of activating protein-1 (AP-1 in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125, p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.

  20. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models


    Osman, Erkan Y.; Miller, Madeline R.; Robbins, Kate L.; Lombardi, Abby M.; Atkinson, Arleigh K.; Brehm, Amanda J.; Lorson, Christian L.


    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of Survival Motor Neuron-1 (SMN1). In all SMA patients, a nearly identical copy gene called SMN2 is present, which produces low levels of functional protein owing to an alternative splicing event. To prevent exon-skipping, we have targeted an intronic repressor, Element1 (E1), located upstream of SMN2 exon 7 using Morpholino-based antisense oligonucleotides (E1MO-ASOs). A single intracerebroventricular injection i...

  1. Mapping DNA-Lac repressor interaction with ultra-fast optical tweezers (United States)

    Monico, Carina; Tempestini, Alessia; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco


    The lac operon is a well-known example of gene expression regulation, based on the specific interaction of Lac repressor protein (LacI) with its target DNA sequence (operator). We recently developed an ultrafast force-clamp laser trap technique capable of probing molecular interactions with sub-ms temporal resolution, under controlled pN-range forces. With this technique, we tested the interaction of LacI with different DNA constructs. Based on position along the DNA sequence, the observed interactions can be interpreted as specific binding to operator sequences and transient interactions with nonspecific sequences.

  2. Two tobacco AP1-like gene promoters drive highly specific, tightly regulated and unique expression patterns during floral transition, initiation and development. (United States)

    Zhang, Jinjin; Yan, Guohua; Wen, Zhifeng; An, Young-Qiang; Singer, Stacy D; Liu, Zongrang


    The genetic engineering of agronomic traits requires an array of highly specific and tightly regulated promoters that drive expression in floral tissues. In this study, we isolated and characterized two tobacco APETALA1-like (AP1-like) promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using the GUS reporter system, along with tissue-specific ablation analyses. Our results demonstrated that the two promoters are active in floral inflorescences but not in vegetative apical meristems or other vegetative tissues, as reflected by strong GUS staining and DT-A-mediated ablation of apical shoot tips during reproductive but not vegetative growth. We also showed that the NtAP1Lb1 promoter was more active than NtAP1La in inflorescences, as the former yielded higher frequencies and greater phenotypic evidence of tissue ablation compared to the latter. We further revealed that both promoters were uniformly expressed in the meristems of stage 1 and 2 floral buds, but were differentially expressed in floral organs later during development. While NtAP1La was found to be active in stage 4-5 carpels, later becoming confined to ovary tissue from stage 9 onwards, NtAP1Lb1 activity was apparent in all floral organs from stages 3 to 7, becoming completely absent in all floral organs from stage 11 onward. Therefore, it seems that the two tobacco promoters have acquired similar but distinct inflorescence-, floral meristem- and floral organ-specific and development-dependent regulatory features without any leaky activity in vegetative tissues. These features are novel and have rarely been observed in other flower-specific promoters characterized to date. The potential application of these promoters for engineering sterility, increasing biomass production and modifying flower architecture, as well as their putative use in flower-specific transgene excision, will be discussed.

  3. Parthenolide inhibits ERK and AP-1 which are dysregulated and contribute to excessive IL-8 expression and secretion in cystic fibrosis cells

    Directory of Open Access Journals (Sweden)

    Saadane Aicha


    Full Text Available Abstract Background Excessive secretion of IL-8 characterizes cystic fibrosis (CF. This has been attributed to excessive activation of epithelial cell I-κB Kinase and/or NFκB. Maximum IL-8 production requires 3 cooperative mechanisms: 1 release of the promoter from repression; 2 activation of transcription by NFκB and AP-1; 3 stabilization of mRNA by p38-MAPK. Little is known about regulation of IL-8 by MAPKs or AP-1 in CF. Methods We studied our hypothesis in vitro using 3-cellular models. Two of these models are transformed cell lines with defective versus normal cystic fibrosis transmembrane conductance regulator (CFTR expression: an antisense/sense transfected cell line and the patient derived IB3-1/S9. In the third series of studies, we studied primary necropsy human tracheal epithelial cells treated with an inhibitor of CFTR function. All cell lines were pretreated with parthenolide and then stimulated with TNFα and/or IL-1β. Results In response to stimulation with TNFα and/or IL-1β, IL-8 production and mRNA expression was greater in CF-type cells than in non-CF controls. This was associated with enhanced phosphorylation of p38, ERK1/2 and JNK and increased activation of AP-1. Since we previously showed that parthenolide inhibits excessive IL-8 production by CF cells, we evaluated its effects on MAPK and AP-1 activation and showed that parthenolide inhibited ERK and AP-1 activation. Using a luciferase promoter assay, our studies showed that parthenolide decreased activation of the IL-8 promoter in CF cells stimulated with TNFα/IL-1β. Conclusions In addition to NFκB MAPKs ERK, JNK and p38 and the transcription factor AP-1 are also dysregulated in CF epithelial cells. Parthenolide inhibited both NFκB and MAPK/AP-1 pathways contributing to the inhibition of IL-8 production.

  4. Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31. (United States)

    Wilson, S E; Smith, M C


    Three protein isoforms (74, 54 and 42 kDa) are expressed from repressor gene c in the Streptomyces temperate bacteriophage phiC31. Because expression of the two smaller isoforms, 54 and 42 kDa, is sufficient for superinfection immunity, the interaction between these isoforms was studied. The native 42 kDa repressor (Nat42) and an N-terminally 6x histidine-tagged 54 kDa isoform (His54) were shown by co-purification on a Ni-NTA column to interact in Streptomyces lividans . In vitro three repressor preparations, containing Nat42, His54 and the native 54 and 42 kDa isoforms expressed together (Nat54&42), were subjected to chemical crosslinking and gel filtration analysis. Homo- and hetero-tetramers were observed. Previous work showed that the smallest isoform bound to 17 bp operators containing aconservedinvertedrepeat (CIR) and that the CIRs were located at 16 loci throughout the phiC31 genome. One of the CIRs (CIR6) is believed to be critical for regulating the lytic pathway. The DNA binding activities of the three repressor preparations were studied using fragments containing CIRs (CIR3-CIR6) from the essential early region as templates for DNase I footprinting. Whereas Nat42 bound to CIR6, poorly to CIR5 but undetectably to CIR3 or CIR4, the Nat54&42 preparation could bind to all CIRs tested, albeit poorly to CIR3 and CIR4. The His54 isoform bound all CIRs tested. Isoforms expressed from the phiC31 repressor gene, like those which are expressed from many eukaryotic transcription factor genes, apparently have different binding specificities.

  5. Chikusetsusaponin IVa Methyl Ester Isolated from the Roots of Achyranthes japonica Suppresses LPS-Induced iNOS, TNF-α, IL-6, and IL-1β Expression by NF-κB and AP-1 Inactivation. (United States)

    Lee, Hae-Jun; Shin, Ji-Sun; Lee, Woo-Seok; Shim, Heon-Yong; Park, Ji-Min; Jang, Dae-Sik; Lee, Kyung-Tae


    We investigated the effect of chikusetsusaponin IVa (CS) and chikusetsusaponin IVa methyl ester (CS-ME) from the roots of Achyranthes japonica NAKAI on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW264.7 macrophages. CS-ME more potently inhibited LPS-induced NO and PGE2 production than CS. CS-ME concentration-dependently inhibited LPS-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 and IL-1β production in RAW264.7 macrophages and mouse peritoneal macrophages. Consistent with these findings, CS-ME suppressed LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 at protein level as well as iNOS, COX-2, TNF-α, IL-6, and IL-1β at mRNA level. In addition, CS-ME suppressed LPS-induced transcriptional activity of nuclear factor (NF)-κB and activator protein (AP)-1. The anti-inflammatory properties of CS-ME might result from suppression of iNOS, COX-2, TNF-α, IL-6, and IL-1β expression through downregulation of NF-κB and AP-1 in macrophages.

  6. Comparison of the molecular topologies of stress-activated transcription factors HSF1, AP-1, NRF2, and NF-κB in their induction kinetics of HMOX1. (United States)

    Pronk, Tessa E; van der Veen, Jochem W; Vandebriel, Rob J; van Loveren, Henk; de Vink, Erik P; Pennings, Jeroen L A


    For cells, reacting aptly to changes in their environment is of critical importance. The protein Heme oxygenase-1 (HMOX1) plays a critical role as a guard of cellular homeostasis and is considered as a reliable indicator of cellular oxidative stress. A better insight in the regulation of HMOX1 would assist in understanding the physiological role of HMOX1 as well as improving functional interpretation of the gene as a biomarker in toxicogenomics. Remarkably, as many as four transcription factors are known to regulate the HMOX1 gene: HSF1, AP-1, NRF2, and NF-κB. To investigate induction kinetics of these transcription factors, we constructed mathematical simulation models for each of them. We included the topology of the known interactions of molecules involved in the activation of the transcription factors, and the feedback loops resulting in their down-regulation. We evaluate how the molecular circuitries associated with the different transcription factors differ in their kinetics regarding HMOX1 induction, under different scenarios of acute and less acute stress. We also evaluate the combined effect of the four transcription factors on HMOX1 expression and the resulting alleviation of stress. Overall, the results support the assumption of different biological roles for the four transcription factors, with AP-1 being a fast acting general stress response protein at the expense of efficiency, and NRF2 being important for cellular homeostasis in maintaining low levels of oxidative stress.

  7. Excretory-secretory products of Giardia lamblia induce interleukin-8 production in human colonic cells via activation of p38, ERK1/2, NF-κB and AP-1. (United States)

    Lee, H-Y; Hyung, S; Lee, N Y; Yong, T-S; Han, S-H; Park, S-J


    Giardia lamblia, a pathogen causing diarrhoeal outbreaks, is interesting how it triggers immune response in the human epithelial cells. This study defined the crucial roles of signalling components involved in G. lamblia-induced cytokine production in human epithelial cells. Incubation of the gastrointestinal cell line HT-29 with G. lamblia GS trophozoites triggered production of interleukin (IL)-1β, IL-8 and tumour necrosis factor (TNF)-α. IL-8 production was not significantly decreased by physically separating the HT-29 cells and G. lamblia GS trophozoites. Indeed, treatment of HT-29 with G. lamblia excretory-secretory products (ESP) induced IL-8 production. Electrophoretic mobility gel shift and transfection assays using mutagenized IL-8 promoter reporter plasmids indicated that IL-8 production by G. lamblia ESP occurs through activation of two transcriptional factors, nuclear factor kappaB (NF-κB) and activator protein 1 (AP-1) in HT-29 cells. In addition, activation of two mitogen-activated protein kinases (MAPKs), p38 and ERK1/2, was also detected in the HT-29 cells stimulated with G. lamblia ESP. Selective inhibition of these MAPKs resulted in decreased production of ESP-induced IL-8. These results indicate that activation of p38, ERK1/2 MAPK, NF-κB and AP-1 comprises the signalling pathway responsible for IL-8 production by G. lamblia ESP.

  8. Energetic methods to study bifunctional biotin operon repressor. (United States)

    Beckett, D


    measurements. The results of quantitative studies of the biotin regulatory system can be interpreted in the context of the biological function of the system. The biotin holoenzyme ligases are a class of enzymes found across the evolutionary spectrum. Only a subset of these enzymes, including BirA, also function as transcriptional repressors. The tight binding of the allosteric effector may be understood in light of the bifunctional nature of the BirA-bio-5'-AMP complex. It is possible that the unusually high thermodynamic and kinetic stability of the complex ensures that the most probable state of the protein in vivo is the adenylate-bound form. This complex, not the unliganded protein, is active in both enzymatic transfer of biotin and site-specific DNA binding. This ensures that on depletion of the intracellular pool of apoBCCP, BirA-bio-5'-AMP accumulates and binds to bioO to repress transcription of the biotin biosynthesis operon. The intracellular demand for and synthesis of biotin are, consequently, tightly coupled in the system. The dimerization that accompanies adenylate binding to BirA appears to be significant for site-specific binding of the protein to bioO. Functionally, the simultaneous binding of the two monomers to the two operator half-sites, regardless of the kinetic mechanism by which it occurs, ensures coordinate regulation of transcription initiation from both biotin operon promoters. The multifaceted approach utilized in studies of the biotin regulatory system can serve as a model for studies of any complex transcriptional regulatory system. It is critical in elucidating the functional energetics of any of these systems that the assembly first be dissected into the constituent interactions and that each of these interactions be studied in isolation. This is not only critical for understanding the physicochemical properties of each individual contributing interaction, but is also a necessary precursor to studies of thermodynamic linkage in the system. (AB

  9. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor.



    The thermal stabilities of mutant phage lambda repressors that have single amino acid replacements in the NH2-terminal domain have been studied by means of circular dichroism and differential scanning calorimetry. The variations in stability determined by these physical methods correlate with the resistance to proteolysis at various temperatures and can be compared with the temperature-sensitive activity of the mutants in vivo. In general, mutant proteins bearing solvent-exposed substitutions...

  10. RBP-J kappa repression activity is mediated by a co-repressor and antagonized by the Epstein-Barr virus transcription factor EBNA2. (United States)

    Waltzer, L; Bourillot, P Y; Sergeant, A; Manet, E


    The Epstein-Barr virus (EBV) protein EBNA2 is a transcriptional activator that can be targeted to its DNA responsive elements by direct interaction with the cellular protein RBP-J kappa. RBP-J kappa is a ubiquitous factor, highly conserved between man, mouse and Drosophila, whose function in mammalian cells is largely unknown. Here we provide evidence that RBP-J kappa is a transcriptional repressor and, more importantly, that RBP-J kappa repression is mediated by a co-repressor. The function of the co-repressor could be counterbalanced by making a fusion protein (RBP-VP16) between RBP-J kappa and the VP16 activation domain. This RBP-VP16-mediated activation could be strongly increased by an EBNA2 protein deprived of its activation domain, but not by an EBNA2 protein incapable of making physical contact with RBP-J kappa. Our results suggest that EBNA2 activates transcription by both interfering with the function of a co-repressor recruited by RBP-J kappa and providing an activation domain. Images PMID:8559649

  11. TE-domestication and horizontal transfer in a putative Nef-AP1mu mimic of HLA-A cytoplasmic domain re-trafficking. (United States)

    Murray, Joseph S; Murray, Elaina H


    Genes of the major histocompatibility complex (MHC; also called HLA in human) are polymorphic elements in the genomes of sharks to humans. Class-I and class-II MHC loci appear responsible for much of the genetic linkage to myriad disease states via the capacity to bind short (~8-15 a.a.) peptides of a given pathogen's proteome, or in some cases, the altered proteomes of cancerous cells, and even (in autoimmunity) certain nominal 'self' peptides (Janeway, 2004).(1) Unfortunately, little is known about how the canonical structure of the MHC-I/-II peptide-presenting gene evolved, particularly since beyond ~500 Mya (sharks) no paralogs exist.(2,3) We previously reported that HLA-A isotype alleles with the α1-helix, R65 motif, are wide-spread in phylogeny, but that the α 2-helix, H151R motif, has apparently segregated out of most species. Surprisingly, an uncharacterized orf in T. syrichta (Loc-103275158) encoded R151, but within a truncated A-23 like gene containing 5'- and 3'- footprints of the transposon (TE), tigger-1; the extant tarsier A-23 allele is totally missing exon-3 and part-of exon-4; together, suggesting TE-mediated inactivation of an intact/ancestral A-23 allele (Murray, 2015a).(4) The unique Loc-103275158 orf encodes a putative 15-exon transcript with no apparent paralogs throughout phylogeny. However, an HLA-A11 like gene in M. leucophaeus with a shortened C-terminal domain, and an HLA-A like orf in C. atys with two linked α1/α2/α3 domains, both contain a second transmembrane segment, which is conserved in Loc-103275158. Thus, we could model the putative protein with its Nef-like tail domain docked to its MHC-I like α3 domain (i.e., on the same side of a membrane). This modeled tertiary structure is strikingly similar to the solved structure of the Nef:MHC-I CD:AP1mu transporter (Jia, 2012).(5) Nef:AP1mu binds the CD of MHC-I in trafficking MHC-I away from the trans-golgi and into the endocytic pathway in HIV-1 infected cells. The CD loop of the

  12. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1.

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    Full Text Available The myeloid translocation gene 16 (MTG16 co-repressor down regulates expression of multiple glycolytic genes, which are targets of the hypoxia-inducible factor 1 (HIF1 heterodimer transcription factor that is composed of oxygen-regulated labile HIF1α and stable HIF1β subunits. For this reason, we investigated whether MTG16 might regulate HIF1 negatively contributing to inhibition of glycolysis and stimulation of mitochondrial respiration. A doxycycline Tet-On system was used to control levels of MTG16 in B-lymphoblastic Raji cells. Results from co-association studies revealed MTG16 to interact with HIF1α. The co-association required intact N-terminal MTG16 residues including Nervy Homology Region 1 (NHR1. Furthermore, electrophoretic mobility shift assays demonstrated an association of MTG16 with hypoxia response elements (HREs in PFKFB3, PFKFB4 and PDK1 promoters in-vitro. Results from chromatin immunoprecipitation assays revealed co-occupancy of these and other glycolytic gene promoters by HIF1α, HIF1β and MTG16 in agreement with possible involvement of these proteins in regulation of glycolytic target genes. In addition, MTG16 interacted with prolyl hydroxylase D2 and promoted ubiquitination and proteasomal degradation of HIF1α. Our findings broaden the area of MTG co-repressor functions and reveal MTG16 to be part of a protein complex that controls the levels of HIF1α.

  13. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)


    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  14. Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-κB dependent AP-1-mediated ICAM-1 expression in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Kundu Gopal C


    Full Text Available Abstract Background Breast cancer is one of the most frequently diagnosed cancer and accounts for over 400,000 deaths each year worldwide. It causes premature death in women, despite progress in early detection, treatment, and advances in understanding the molecular basis of the disease. Therefore, it is important to understand the in depth mechanism of tumor progression and develop new strategies for the treatment of breast cancer. Thus, this study is aimed at gaining an insight into the molecular mechanism by which osteopontin (OPN, a member of SIBLING (Small Integrin Binding LIgand N-linked Glycoprotein family of protein regulates tumor progression through activation of various transcription factors and expression of their downstream effector gene(s in breast cancer. Results In this study, we report that purified native OPN induces ICAM-1 expression in breast cancer cells. The data revealed that OPN induces NF-κB activation and NF-κB dependent ICAM-1 expression. We also observed that OPN-induced NF-κB further controls AP-1 transactivation, suggesting that there is cross talk between NF-κB and AP-1 which is unidirectional towards AP-1 that in turn regulates ICAM-1 expression in these cells. We also delineated the role of mTOR and p70S6 kinase in OPN-induced ICAM-1 expression. The study suggests that inhibition of mTOR by rapamycin augments whereas overexpression of mTOR/p70S6 kinase inhibits OPN-induced ICAM-1 expression. Moreover, overexpression of mTOR inhibits OPN-induced NF-κB and AP-1-DNA binding and transcriptional activity. However, rapamycin further enhanced these OPN-induced effects. We also report that OPN induces p70S6 kinase phosphorylation at Thr-421/Ser-424, but not at Thr-389 or Ser-371 and mTOR phosphorylation at Ser-2448. Overexpression of mTOR has no effect in regulation of OPN-induced phosphorylation of p70S6 kinase at Thr-421/Ser-424. Inhibition of mTOR by rapamycin attenuates Ser-371 phosphorylation but does not have

  15. Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation. (United States)

    Hong, Ju-Mi; Kwon, Ok-Kyoung; Shin, In-Sik; Song, Hyuck-Hwan; Shin, Na-Rae; Jeon, Chan-Mi; Oh, Sei-Ryang; Han, Sang-Bae; Ahn, Kyung-Seop


    Physalis alkekengi has been traditionally used for the treatment of coughs, middle ear infections, and sore throats in Korea, Europe, and China. It exhibits a variety of pharmacological activities such as anti-inflammatory, anti-oxidant, and anti-cancer effects. The anti-inflammatory effects of the P. alkekengi methanol extract (PA) and its molecular mechanisms have not yet been fully investigated. In the present study, the chromatogram of PA was established by UPLC analysis. The anti-inflammatory effects of PA were also investigated using murine microphage cell lines, RAW 264.7 cells, and a murine model of OVA induced asthma. In LPS-stimulated RAW264.7 cells, PA reduced the MMP-9 expression with decreases in the production of nitric oxide, inteleukin-6, and tumor necrosis factor-α. Furthermore, PA suppressed the phosphorylation of MAPKs, which resulted in the inhibition of AP-1 activation. These effects of PA were consistent with the results of the in vivo experiment. PA-treated mice significantly inhibited inflammatory cell counts and cytokine production in bronchoalveolar lavage fluids and airway-hyperresponsiveness in OVA-induced asthmatic mice. PA treated mice also showed a marked inhibition of inducible nitric oxide synthase and MMP-9 expression. In conclusion, our results suggest that PA may be a valuable therapeutic material in treating various inflammatory diseases, including allergic asthma.

  16. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. (United States)

    Jahangiri, Leila; Sharpe, Michka; Novikov, Natasha; González-Rosa, Juan Manuel; Borikova, Asya; Nevis, Kathleen; Paffett-Lugassy, Noelle; Zhao, Long; Adams, Meghan; Guner-Ataman, Burcu; Burns, Caroline E; Burns, C Geoffrey


    The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage.

  17. FSL-1 Induces MMP-9 Production through TLR-2 and NF-κB /AP-1 Signaling Pathways in Monocytic THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Rasheed Ahmad


    Full Text Available Background: Matrix metalloproteinase-9 (MMP-9 is known to be implicated in the pathogenesis of many inflammatory disorders. FSL-1 (fibroblast-stimulating lipopeptide-1 induces cytokine production by monocytes/macrophages. However, it is unclear whether FSL-1 is also able to induce MMP-9 production. Herein, we determined whether FSL-1 could induce MMP-9 production, and if so, which signal transduction pathway(s were involved. Methods: MMP-9 expression was assessed with real-time qPCR and ELISA. Signaling pathways were studied by using THP1-XBlue™ cells, THP1-XBlue™-defMyD cells, anti-TLR2 mAb and pharmacological inhibitors. Phospho and total proteins were determined by Western blotting. Results: FSL-1 induces MMP-9 expression (PP-/- THP-1 cells did not express MMP-9 in response to FSL-1 treatment. By small interfering RNA-mediated knockdown, we also show that FSL-1-induced up-regulation of MMP-9 requires MyD88. Pre-treatment of THP-1 cells with inhibitors of JNK (SP600125, MEK/ERK (U0126; PD98056; XMD 8-92, p38 MAPK (SB203580 and NF-κB (BAY11-7085, Triptolide, Resveratrol significantly suppressed (PConclusion: These findings provide the first evidence that FSL-1 induces TLR-2-dependent MMP-9 gene expression which requires the recruitment of MyD88 and leads to activation of MEK1/2 /ERK 1/2, MEK5/ERK5, JNK, p38 MAPK and NF-κB/AP-1.

  18. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

    Directory of Open Access Journals (Sweden)

    Simon James


    Full Text Available Abstract Background Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (Pleurotus ostreatus in vitro and in vivo. Methods RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml in the absence or presence of lipopolysacharide (LPS or concanavalin A (ConA, respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS. Results OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE2 and nitric oxide (NO through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS in vivo. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ, IL-2, and IL-6 from concanavalin A (ConA-stimulated mouse splenocytes. Conclusions Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.

  19. Cafestol, a coffee-specific diterpene, is a novel extracellular signal-regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages. (United States)

    Shen, Ting; Lee, Jaehwi; Lee, Eunji; Kim, Seong Hwan; Kim, Tae Woong; Cho, Jae Youl


    Coffee is a popular beverage worldwide with various nutritional benefits. Diterpene cafestol, one of the major components of coffee, contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects. In this study, we examined the precise molecular mechanism of the antiinflammatory activity of cafestol in terms of prostaglandin E(2) (PGE(2)) production, a critical factor involved in inflammatory responses. Cafestol inhibited both PGE(2) production and the mRNA expression of cyclooxygenase (COX)-2 from lipopolysaccharide (LPS)-treated RAW264.7 cells. Interestingly, this compound strongly decreased the translocation of c-Jun into the nucleus and AP-1 mediated luciferase activity. In kinase assays using purified extracellular signal-regulated kinase 2 (ERK2) or immunoprecipitated ERK prepared from LPS-treated cells in the presence or absence of cafestol, it was found that this compound can act as an inhibitor of ERK2 but not of ERK1 and mitogen-activated protein kinase kinase 1 (MEK 1). Therefore our data suggest that cafestol may be a novel ERK inhibitor with AP-1-targeted inhibitory activity against PGE(2) production in LPS-activated RAW264.7 cells.

  20. Functional analysis of FoAP1 in Fusarium oxysporum f.sp.cubense infecting the host Musa paradisiaca%FoAP1基因在香蕉枯萎病菌致病过程中的功能分析

    Institute of Scientific and Technical Information of China (English)

    齐兴柱; 杨腊英; 郭立佳; 黄俊生


    为了探究AP1转录因子在尖孢镰刀菌古巴专化型4号生理小种(Foc4)中是否参与香蕉枯萎病的致病过程,借助尖孢镰刀菌Fo5176菌株(GenBank序列号:AFQF01001482.1)全基因组序列,通过PCR和RT-PCR技术克隆获得了Foc4中AP1转录因子的基因组DNA和cDNA编码序列.利用PEG介导的原生质体转化法获得AP1基因敲除转化子.利用qRT-PCR分析AP1可能调控的下游基因表达.利用灌根法(直接在根部浇菌)检测了AP1缺失突变体的致病能力.结果表明Foc4的AP1转录因子cDNA编码序列长1 770 bp,编码63.9 kDa(589 aa)蛋白,是一个典型的bZIP型转录因子,命名为FoAP1;FoAP1缺失突变体的气生菌丝大量减少,菌丝的入侵生长受到严重限制.对外源氧化胁迫不敏感,但致病能力减弱.

  1. Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. (United States)

    Inui, Ken; Zhao, Zongpei; Yuan, Juan; Jayaprakash, Sakthidasan; Le, Le T M; Drakulic, Srdja; Sander, Bjoern; Golas, Monika M


    In human cells, thousands of predominantly neuronal genes are regulated by the repressor element 1 (RE1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF). REST/NRSF represses transcription of these genes in stem cells and non-neuronal cells by tethering corepressor complexes. Aberrant REST/NRSF expression and intracellular localization are associated with cancer and neurodegeneration in humans. To date, detailed molecular analyses of REST/NRSF and its C-terminal repressor complex have been hampered largely by the lack of sufficient amounts of purified REST/NRSF and its complexes. Therefore, the aim of this study was to express and purify human REST/NRSF and its C-terminal interactors in a baculovirus multiprotein expression system as individual proteins and coexpressed complexes. All proteins were enriched in the nucleus, and REST/NRSF was isolated as a slower migrating form, characteristic of nuclear REST/NRSF in mammalian cells. Both REST/NRSF alone and its C-terminal repressor complex were functionally active in histone deacetylation and histone demethylation and bound to RE1/neuron-restrictive silencer element (NRSE) sites. Additionally, the mechanisms of inhibition of the small-molecule drugs 4SC-202 and SP2509 were analyzed. These drugs interfered with the viability of medulloblastoma cells, where REST/NRSF has been implicated in cancer pathogenesis. Thus, a resource for molecular REST/NRSF studies and drug development has been established.

  2. Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. (United States)

    Purssell, Andrew; Poole, Keith


    The mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa is regulated by the NfxB repressor. Two forms of NfxB have been reported [Shiba et al. (1995). J Bacteriol 177, 5872) although mutagenesis studies here confirm that the larger protein (199 amino acids, 22.4 kDa) is the functional repressor. NfxB binds upstream of the mexCD-oprJ transcription initiation site to a region containing two inverted repeats, both of which are required for binding. Two-hybrid assays confirmed that NfxB is a multimer, with the C-terminal two-thirds of the repressor required for multimerization. Random mutagenesis identified several mutations within the C-terminal region of NfxB required for multimerization, all of which mapped to a three-helix subdomain of the C-terminal region in a structural model of the repressor, which may thus represent the multimerization domain. These mutations compromised NfxB binding to its target DNA in electromobility shift assays, and their introduction into the chromosome of P. aeruginosa enhanced mexCD-oprJ expression and promoted multidrug resistance, consistent with the functional NfxB repressor being a multimer. Site-directed and spontaneous nfxB mutants showing increased mexCD-oprJ expression and multidrug resistance were also recovered, with mutations mapping to the three-helix subdomain again impacting multimerization and DNA binding. Mutations mapping to the N-terminal helix-turn-helix motif implicated in DNA binding did not impact multimerization although they did render the repressor insoluble and unsuitable for mobility shift assays. Size exclusion column chromatography demonstrated that wild-type NfxB forms tetramers in solution, although a mutant form of the repressor carrying a G192D substitution near the C terminus of the protein and compromised for DNA binding and repressor activity forms dimers. These results suggest that NfxB operates as a tetramer (dimer of dimers) and that the C terminus of the protein serves as a

  3. 转基因白桦杂种T1代的生长发育及AP1基因的遗传分析%Growth and developmental analysis of T1 generation from BpAP1 transgenic birch

    Institute of Scientific and Technical Information of China (English)

    王朔; 黄海娇; 杨光; 姜静; 刘桂丰


    Woody plants are characterized by long developing period and high heterozygosity. It is important to shorten the life cycle of trees in tree breeding. APETALA1 (AP1) is a member of MADS-box gene family involved in flower development in plants. Overexpression of AP1 genes induces early flowering in transgenic plants. In order to investigate the genetic stability and regularity of foreign BpAP1 gene in BpAP1 transgenic birch, we generated T1 generation seedlings using three 35S BpAP1 transgenic plants and one wild-type plant as male parents, and three wild-type birch, Betula platyphylla í Betula pendula, as female parents. The growth, development and flowering characteristics of the T1 generation seedlings were analyzed. The results indicated that the foreign BpAP1 slightly influenced the pollen vitality of transgenic plants. About 36% -58% of T1 generation inherited the foreign BpAP1 gene from their parents. Chi-square test of BpAP1 gene segregation ratios revealed that BpAP1 was inherited in accordance with Mendelian inheritance. T1 generation seedlings carrying BpAP1 gene inherited the characteristics of early flowering and dwarfism from their male parent. The average heights of 1-and 2-year-old T1 generation seedlings carrying BpAP1 gene were significantly shorter than the progeny from hybridization of wild-type birch with the percentages of 44. 19% and 18. 92%, respectively. The phenotypes of T1 generation birch carrying foreign BpAP1 gene were quite different from the ones that were lack of foreign BpAP1 gene. According to the different phenotypes, we can infer whether the T1 generation seedlings carry BpAP1 gene or not. Our study proved that the exogenous AP1 gene can be stably inherited by sexual reproduction, and the acquired transgenic birch lines exhibited accelerated flowering time and a shortened juvenile phase, indicating that it can be used as parent materials for genetic studies on birch traits.%本文以3株野生型白桦为母本、3株35S宜BpAP

  4. Amelioration of severe TNBS induced colitis by novel AP-1 and NF- κ B inhibitors in rats. (United States)

    El-Salhy, Magdy; Umezawa, Kazuo; Gilja, Odd Helge; Hatlebakk, Jan G; Gundersen, Doris; Hausken, Trygve


    AP-1 and NF-κ B inhibitors, namely, DTCM-G and DHMEQ, were investigated in male Wistar rats with severe colitis, induced by TNBS. The animals were randomized into 3 groups. The control group received 0.5 mL of 0.5% of the vehicle i.p., the DTCM-G group received 22.5 mg/kg body weight DTCM-G in 0.5% i.p., and the DHMEQ group received 15 mg/kg body weight DHMEQ i.p., all twice daily for 5 days. The body weight losses and mortality rates were significantly higher in the control group than those in DTCM-G-treated and DHMEQ-treated groups. The endoscopic inflammation scores in the control, DTCM-G-treated, and DHMEQ-treated groups were 6.3 ± 0.7, 1.0 ± 0.3, and 0.7 ± 0.3, respectively (P = 0.004 and 0.02, resp.). The inflammation scores as assessed by the macroscopic appearance were 4.3 ± 0.8, 0.7 ± 0.3, and 1.2 ± 0.4 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.01 and 0.009, resp.). The histopathological inflammation scores were 6.4 ± 0.7, 2.0 ± 1.0, and 2.2 ± 0.6 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.03 and 0.01, resp.). It was concluded that DTCM-G and DHMEQ exhibit strong anti-inflammatory and anticancer activities with no apparent toxicity, which make them excellent drug candidates for clinical use in inflammatory bowel diseases.

  5. Amelioration of Severe TNBS Induced Colitis by Novel AP-1 and NF-κB Inhibitors in Rats

    Directory of Open Access Journals (Sweden)

    Magdy El-Salhy


    Full Text Available AP-1 and NF-κB inhibitors, namely, DTCM-G and DHMEQ, were investigated in male Wistar rats with severe colitis, induced by TNBS. The animals were randomized into 3 groups. The control group received 0.5 mL of 0.5% of the vehicle i.p., the DTCM-G group received 22.5 mg/kg body weight DTCM-G in 0.5% i.p., and the DHMEQ group received 15 mg/kg body weight DHMEQ i.p., all twice daily for 5 days. The body weight losses and mortality rates were significantly higher in the control group than those in DTCM-G-treated and DHMEQ-treated groups. The endoscopic inflammation scores in the control, DTCM-G-treated, and DHMEQ-treated groups were 6.3 ± 0.7, 1.0 ± 0.3, and 0.7 ± 0.3, respectively (P = 0.004 and 0.02, resp.. The inflammation scores as assessed by the macroscopic appearance were 4.3 ± 0.8, 0.7 ± 0.3, and 1.2 ± 0.4 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.01 and 0.009, resp.. The histopathological inflammation scores were 6.4 ± 0.7, 2.0 ± 1.0, and 2.2 ± 0.6 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.03 and 0.01, resp.. It was concluded that DTCM-G and DHMEQ exhibit strong anti-inflammatory and anticancer activities with no apparent toxicity, which make them excellent drug candidates for clinical use in inflammatory bowel diseases.

  6. Transcriptional repressor foxl1 regulates central nervous system development by suppressing shh expression in zebra fish. (United States)

    Nakada, Chisako; Satoh, Shinya; Tabata, Yoko; Arai, Ken-ichi; Watanabe, Sumiko


    We identified zebra fish forkhead transcription factor l1 (zfoxl1) as a gene strongly expressed in neural tissues such as midbrain, hindbrain, and the otic vesicle at the early embryonic stage. Loss of the function of zfoxl1 effected by morpholino antisense oligonucleotide resulted in defects in midbrain and eye development, and in that of formation of the pectoral fins. Interestingly, ectopic expression of shh in the midbrain and elevated pax2a expression in the optic stalk were observed in foxl1 MO-injected embryos. In contrast, expression of pax6a, which is negatively regulated by shh, was suppressed in the thalamus and pretectum regions, supporting the idea of augmentation of the shh signaling pathway by suppression of foxl1. Expression of zfoxl1-EnR (repressing) rather than zfoxl1-VP16 (activating) resulted in a phenotype similar to that induced by foxl1-mRNA, suggesting that foxl1 may act as a transcriptional repressor of shh in zebra fish embryos. Supporting this notion, foxl1 suppressed isolated 2.7-kb shh promoter activity in PC12 cells, and the minimal region of foxl1 required for its transcriptional repressor activity showed strong homology with the groucho binding motif, which is found in genes encoding various homeodomain proteins. In view of all of our data taken together, we propose zfoxl1 to be a novel regulator of neural development that acts by suppressing shh expression.

  7. Selection and design of high affinity DNA ligands for mutant single-chain derivatives of the bacteriophage 434 repressor

    Institute of Scientific and Technical Information of China (English)

    LIANG; Tiebing


    [1]Aggarwal, A. K., Rodgers, D. W., Drottar, M. et al., Recognition of a DNA operator by the repressor of phage 434: A view at high resolution, Science, 1988, 242: 899-907.[2]Anderson, J. E., Ptashne, M., Harrison, S. C., Structure of the repressor-operator complex of bacteriophage 434, Nature, 1987, 326: 846-852.[3]Bushman, F. D., The Bacteriophage 434 right operator roles of OR1, OR2 and OR3, J. Mol. Biol., 1993, 230: 28-40.[4]Bell, A. C., Koudelka, G. B., How 434 repressor discriminates between OR1 and OR3, J. Biological Chemistry, 1995, 270: 1205-1212.[5]Bell, A. C., Koudelka, G. B., Operator sequence context influences amino acid-base-pair interaction in 434 repressor-operator complexes, J. Mol. Biol., 1993, 234: 542-553.[6]Wharton, R. P., Ptashne, M., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact, Na-ture, 1987, 326: 888-891.[7]Wharton, R. P., Brown, E. L., Ptashne, M., Substituting an α-helix switches the sequence-specific DNA interaction of a repressor, Cell., 1984, 38: 361-369.[8]Hollis, M., Valenzuela, D., Pioli, D. et al., A repressor heterodimer binds to a chimeric operator, Proc. Natl. Acad. Sci. USA, 1988, 85: 5834-5838.[9]Huang, L. -X., Sera, T., Schultz, P. G., A permutational approach toward protein-DNA recognition, Proc. Natl. Acad. Sci. USA, 1994, 91: 3969-3973.[10]Percipalle, P., Simoncsits, A., Zakhariev, S. et al., Rationally designed helix-turn-helix proteins and their conformational changes upon DNA binding, EMBO J., 1995, 14: 3200-3205.[11]Simoncsits, A., Chen, J. -Q., Percipalle, P. et al., Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators, J. Mol. Biol., 1997, 267: 118-131.[12]Gates, C. M., Stemmer, W. P. C., Kaptein, R. et al., Affinity selective isolation of ligands from peptide libraries through display on a lac repressor "headpiece dimmer", J. Mol. Biol

  8. Identification of GATA2 and AP-1 activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene (United States)

    Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study ...

  9. TGF-{beta} signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Luciakova, Katarina, E-mail: [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Kollarovic, Gabriel; Kretova, Miroslava; Sabova, Ludmila [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Nelson, B. Dean [Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm (Sweden)


    Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G. Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.

  10. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model.

    Directory of Open Access Journals (Sweden)

    Chirine Toufaily

    Full Text Available Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1 and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.

  11. EsrC, an envelope stress-regulated repressor of the mexCD-oprJ multidrug efflux operon in Pseudomonas aeruginosa. (United States)

    Purssell, Andrew; Fruci, Michael; Mikalauskas, Alaya; Gilmour, Christie; Poole, Keith


    mexCD-oprJ is an envelope stress-inducible multidrug efflux operon of Pseudomonas aeruginosa. A gene encoding a homologue of the NfxB repressor of this operon, PA4596, occurs downstream of oprJ and was proposed as a second repressor of this efflux operon. Inactivation of this gene had no impact on mexCD-oprJ expression in cells not exposed to envelope stress although its loss under envelope stress conditions yielded a > 10-fold increase in mexCD-oprJ expression. Consistent with PA4596 functioning as a mexCD-oprJ repressor, the purified protein was able to bind to a DNA fragment carrying the mexCD-oprJ promoter region. Expression of PA4596 was induced under conditions of envelope stress dependent on the AlgU envelope stress sigma factor, consistent with PA4596 operating under envelope stress conditions where it possibly serves to moderate envelope stress-inducible mexCD-oprJ expression. nfxB mutants showed elevated PA4596 expression and purified NfxB bound to DNA encompassing the PA4596 upstream region, an indication that NfxB functions as a repressor of PA4596 expression. Elimination of PA4596 in P. aeruginosa lacking nfxB and hyperexpressing mexCD-oprJ had no additional impact on mexCD-oprJ expression, regardless of the presence of envelope stress, suggesting that PA4596 repressor activity may be dependent on NfxB. This envelope stress-regulated repressor of mexCD-oprJ has been renamed esrC.

  12. Dimerumic Acid Inhibits SW620 Cell Invasion by Attenuating H2O2-Mediated MMP-7 Expression via JNK/C-Jun and ERK/C-Fos Activation in an AP-1-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Bing-Ying Ho, Yao-Ming Wu, King-Jen Chang, Tzu-Ming Pan


    Full Text Available Reactive oxygen species (ROS such as hydrogen peroxide (H2O2 in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA for H2O2 isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H2O2 exposure was mediated by activation of mitogen-activated protein kinases (MAPKs such as Jun N-terminal kinase (JNK, extracellular-regulated kinase (ERK, and p38 kinase. DMA pretreatment suppressed activation of H2O2-mediated MAPK pathways and cell invasion. Moreover, H2O2-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1-dependent manner. Taken together, these results suggest that DMA suppresses H2O2-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes.

  13. Selection and design of high affinity DNA ligands for mutant single-chain derivatives of the bacteriophage 434 repressor

    Institute of Scientific and Technical Information of China (English)


    Single-chain repressor RRTRES is a derivative of bacteriophage 434 repressor, which contains covalently dimerized DNA-binding domains (amino acids 1-69) of the phage 434 repressor. In this single-chain molecule, the wild type domain R is connected to the mutant domain RTRES by a recombinant linker in a head-to-tail arrangement. The DNA-contacting amino acids of RTRES at the -1, 1, 2, and 5 positions of the a3 helix are T, R, E, S respectively. By using a randomized DNA pool containing the central sequence -CATACAAGAAAGNNNNNNTTT-, a cyclic, in vitro DNA-binding site selection was performed. The selected population was cloned and the individual members were characterized by determining their binding affinities to RRTRES. The results showed that the optimal operators contained the TTAC or TTCC sequences in the underlined positions as above, and that the Kd values were in the 1×10-12 mol/L-1×10-11mol/L concentration range. Since the affinity of the natural 434 repressor to its natural operator sites is in the 1×10-9 mol/L range, the observed binding affinity increase is remarkable. It was also found that binding affinity was strongly affected by the flanking bases of the optimal tetramer binding sites, especially by the base at the 5′ position. We constructed a new homodimeric single-chain repressor RTRESRTRES and its DNA-binding specificity was tested by using a series of new operators designed according to the recog-nition properties previously determined for the RTRES domain. These operators containing the con-sensus sequence GTAAGAAARNTTACN or GGAAGAAARNTTCCN (R is A or G) were recognized by RTRESRTRES specifically, and with high binding affinity. Thus, by using a combination of random selection and rational design principles, we have discovered novel, high affinity protein-DNA inter-actions with new specificity. This method can potentially be used to obtain new binding specificity for other DNA-binding proteins.

  14. Treatment with novel AP-1 and NF-κB inhibitors restores the colonic endocrine cells to normal levels in rats with DSS-induced colitis. (United States)

    El-Salhy, Magdy; Umezawa, Kazuo


    The aim of this study was to determine the effects of two anti-inflammatory agents on the abnormalities in colonic endocrine cells in dextran sodium sulfate (DSS)-induced colitis. Colitis was induced in male Wistar rats (n=45) using DSS; a further 15 rats without colitis were included in a healthy control group. The animals with DSS-induced colitis were randomly divided into 3 treatment groups as follows: i) DSS group, rats were treated with 0.5 ml of 0.5% carboxymethyl cellulose (CMC); ii) DSS‑G group, rats were treated with 3-[(dodecylthiocarbonyl)‑methyl]‑glutarimide (DTCM‑G), a novel activator protein 1 (AP-1) inhibitor, 20 mg/kg in CMC; and iii) DSS‑Q group, rats were treated with dehydroxymethylepoxyquinomicin, a nuclear factor κB (NF-κB) inhibitor, 15 mg/kg in CMC. The treatments were administered intraperitoneally, twice daily for 5 days, after which the animals were sacrificed and tissue samples from the colon were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), enteroglucagon, pancreatic polypeptide (PP), somatostatin, leukocytes, B/T lymphocytes, B lymphocytes, T lymphocytes, macrophages/monocytes and mast cells. The densities of these endocrine and immune cells were quantified by computer‑aided image analysis. The densities of CgA-, serotonin-, PYY- and enteroglucagon-producing cells were significantly higher, and those of PP- and somatostatin-producing cells were significantly lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all the immune cells were lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all endocrine cell types and immune cells in both the DSS groups treated with anti‑inflammatory agents were restored to control levels. In conclusion, our data demonstrate that there is an interaction between endocrine and immune cells during inflammation. This interaction with subsequent changes in endocrine cells is responsible for the

  15. Protonation patterns in tetracycline:tet repressor recognition: simulations and experiments. (United States)

    Aleksandrov, Alexey; Proft, Juliane; Hinrichs, Winfried; Simonson, Thomas


    Resistance to the antibiotic tetracycline (Tc) is regulated by its binding as a Tc:Mg2+ complex to the Tet Repressor protein (TetR). Tc:TetR recognition is a complex problem, with the protein and ligand each having several possible conformations and protonation states, which are difficult to elucidate by experiment alone. We used a combination of free-energy simulations and crystallographic analysis to investigate the electrostatic interactions between protein and ligand and the possible role of induced fit in Tc binding. Tc in solution was described quantum mechanically, while Tc:TetR interactions were described by a recent, high-quality molecular-mechanics model. The orientations of the amide and imidazole groups were determined experimentally by a careful analysis of Debye-Waller factors in alternate crystallographic models. The agreement with experiment for these orientations suggested that the simulations and their more detailed, thermodynamic predictions were reliable. We found that the ligand prefers an extended, zwitterionic state both in solution and in complexation with the protein. Tc is thus preorganized for binding, while the protein combines lock-and-key behavior for regions close to the ligand's amide, enolate, and ammonium groups, with an induced fit for regions close to the Mg2+ ion. These insights and the modeling techniques employed should be of interest for engineering improved TetR ligands and improved TetR proteins for gene regulation, as well as for drug design.

  16. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. (United States)

    Kemmeren, Patrick; Sameith, Katrin; van de Pasch, Loes A L; Benschop, Joris J; Lenstra, Tineke L; Margaritis, Thanasis; O'Duibhir, Eoghan; Apweiler, Eva; van Wageningen, Sake; Ko, Cheuk W; van Heesch, Sebastiaan; Kashani, Mehdi M; Ampatziadis-Michailidis, Giannis; Brok, Mariel O; Brabers, Nathalie A C H; Miles, Anthony J; Bouwmeester, Diane; van Hooff, Sander R; van Bakel, Harm; Sluiters, Erik; Bakker, Linda V; Snel, Berend; Lijnzaad, Philip; van Leenen, Dik; Groot Koerkamp, Marian J A; Holstege, Frank C P


    To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.

  17. 丝/苏氨酸蛋白激酶Plk1和转录阻遏子NAC1存在相互作用%Interaction of serine/threonine protein kinase Plk1 and transcriptional repressor NAC1

    Institute of Scientific and Technical Information of China (English)

    熊福银; 温叶飞; 林艳丽; 周艳荣; 施庚寿; 田利源; 曾强成; 韩正滨; 邓继先; 陈红星


    目的:研究与丝/苏氨酸蛋白激酶Plk1(polo-like kinase 1)相互作用的分子.方法:通过酵母双杂交技术初步确定可能与Plk1存在相互作用的靶分子,进一步通过蛋白分子的细胞亚定位、体内免疫共沉淀和GST-pulldown分析Plk1与候选蛋白之间的相互作用.结果:细胞亚定位表明,Plk1与转录阻遏子NAC1(transcriptional repressor nucleus accumbens-1, transcriptional repressor NAC1)在空间上存在相互作用的可能,酵母双杂交、体内免疫共沉淀、GST-pulldown分析均表明Plk1和NAC1存在相互作用.结论:Plk1和NAC1存在相互作用,二者的相互作用可能在细胞的发育分化、肿瘤及神经系统疾病的发生发展中起着重要作用.

  18. Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages. (United States)

    Park, Jun-Young; Chung, Tae-Wook; Jeong, Yun-Jeong; Kwak, Choong-Hwan; Ha, Sun-Hyung; Kwon, Kyung-Min; Abekura, Fukushi; Cho, Seung-Hak; Lee, Young-Choon; Ha, Ki-Tae; Magae, Junji; Chang, Young-Chae; Kim, Cheorl-Ho


    The natural fungal compound ascofuranone (5-chloro-3-[(2E,6E)-7-[(2S)-5,5-dimethyl-4-oxo-tetrahydrofuran-2-yl]-3-methyl-octa-2,6-dienyl]-2,4-dihydroxy-6-methyl-benzaldehyde, MW 420.93) (AF) isolated from Ascochyta viciae has been known to promote cell cycle arrest and inhibit invasion of tumor cells. We have previously studied a structurally similar compound ascochlorin (ASC; MW 404.93) with regard to its anti-inflammatory activity in LPS- stimulated RAW 264.7 macrophages. In order to examine the relationship between the anti-inflammatory activities and the molecular differences between AF and ASC, the activity of AF is herein studied, because ASC has a unique trimethyl oxocyclohexyl structure, while AF has a unique dimethyl-oxo-tetrahydrofuran structure. AF dose-dependently inhibited the production of NO and iNOS and the COX-2 mRNA and protein levels in RAW 264.7 cells. In addition, AF suppressed mRNA expression levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, as assessed by RT-PCR. AF (30-50 μg/ml) treatment clearly inhibited the nuclear translocation of NF-κB, AP-1 (p-c-Jun) from the cytosolic space. Phosphorylation of IκB, which functions to maintain the activity of NF-κB, was decreased by AF treatment. Moreover, AF suppressed the binding of NF-κB (p65). Inhibition of IkBa phosphorylation and degradation inhibits nuclear translocation of p65. Immunofluorescence confocal microscopy analysis also revealed that translocation of NF-κB and AP-1 (p-c-Jun) was decreased upon AF treatment. AF specifically decreased the expression level of p-ERK, but not the expression level of p-p38 or p-JNK. Given these results, we suggest that AF suppresses the inflammatory response by targeting p-ERK. This indicates that AF is a negative regulator of LPS-stimulated nuclear translocation of NF-κB and AP-1 (p-c-Jun) in RAW 264.7 macrophages, and specifically it targets p-ERK. Therefore, AF and ASC exert their effects in different ways, most probably because

  19. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Directory of Open Access Journals (Sweden)

    Panagiotis A. Konstantinopoulos


    Full Text Available Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN, p-Iκ:B-α (phosphorylated Iκ:B-α, EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production.

  20. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. (United States)

    Kobayashi, Kaoru; Yasuno, Naoko; Sato, Yutaka; Yoda, Masahiro; Yamazaki, Ryo; Kimizu, Mayumi; Yoshida, Hitoshi; Nagamura, Yoshiaki; Kyozuka, Junko


    In plants, the transition to reproductive growth is of particular importance for successful seed production. Transformation of the shoot apical meristem (SAM) to the inflorescence meristem (IM) is the crucial first step in this transition. Using laser microdissection and microarrays, we found that expression of PANICLE PHYTOMER2 (PAP2) and three APETALA1 (AP1)/FRUITFULL (FUL)-like genes (MADS14, MADS15, and MADS18) is induced in the SAM during meristem phase transition in rice (Oryza sativa). PAP2 is a MADS box gene belonging to a grass-specific subclade of the SEPALLATA subfamily. Suppression of these three AP1/FUL-like genes by RNA interference caused a slight delay in reproductive transition. Further depletion of PAP2 function from these triple knockdown plants inhibited the transition of the meristem to the IM. In the quadruple knockdown lines, the meristem continued to generate leaves, rather than becoming an IM. Consequently, multiple shoots were formed instead of an inflorescence. PAP2 physically interacts with MAD14 and MADS15 in vivo. Furthermore, the precocious flowering phenotype caused by the overexpression of Hd3a, a rice florigen gene, was weakened in pap2-1 mutants. Based on these results, we propose that PAP2 and the three AP1/FUL-like genes coordinately act in the meristem to specify the identity of the IM downstream of the florigen signal.

  1. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1. (United States)

    Yang, Xinyu; Li, Lin; Liu, Jin; Lv, Ben; Chen, Fangping


    Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1.

  2. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. (United States)

    Ostapenko, Denis; Solomon, Mark J


    The anaphase-promoting complex/cyclosome (APC/C) is an essential ubiquitin ligase that targets cell cycle proteins for proteasome-mediated degradation in mitosis and G1. The APC regulates a number of cell cycle processes, including spindle assembly, mitotic exit, and cytokinesis, but the full range of its functions is still unknown. To better understand cellular pathways controlled by the APC, we performed a proteomic screen to identify additional APC substrates. We analyzed cell cycle-regulated proteins whose expression peaked during the period when other APC substrates were expressed. Subsequent analysis identified several proteins, including the transcriptional repressors Nrm1 and Yhp1, as authentic APC substrates. We found that APC(Cdh1) targeted Nrm1 and Yhp1 for degradation in early G1 through Destruction-box motifs and that the degradation of these repressors coincided with transcriptional activation of MBF and Mcm1 target genes, respectively. In addition, Nrm1 was stabilized by phosphorylation, most likely by the budding yeast cyclin-dependent protein kinase, Cdc28. We found that expression of stabilized forms of Nrm1 and Yhp1 resulted in reduced cell fitness, due at least in part to incomplete activation of G1-specific genes. Therefore, in addition to its known functions, APC-mediated targeting of Nrm1 and Yhp1 coordinates transcription of multiple genes in G1 with other cell cycle events.

  3. AP- 1 regulates TGF- β1 -induced secrection of Type Ⅰ collagen in human lung fibroblasts%激活蛋白-1调控转化生长因子β1诱导的人肺成纤维细胞Ⅰ型胶原分泌

    Institute of Scientific and Technical Information of China (English)

    胡永斌; 曾庆富; 冯德云; 李翔; 彭劲武


    目的:探讨核转录因子激活蛋白-1(activator protein-1,AP-1)在转化生长因子β1(transforming growth factor-β1,TGF-β1)诱导人肺成纤维细胞Ⅰ型胶原分泌中的作用.方法:以人肺成纤维细胞HLF-02细胞系为研究对象,给予10 μg/L的TGF-β1刺激,于不同时间点收集细胞,采用RT-PCR和Wester blot检测细胞Ⅰ型胶原转录和分泌;阻断实验中选用AP-1抑制剂姜黄素为阻断剂,凝胶阻滞实验(electrophoretic mobility shift assay,EMSA)检测细胞内AP-1的DNA结合活性变化,同时Western印迹检测Ⅰ型胶原分泌变化.结果:TGF-β1能诱导HLF-02细胞Ⅰ型胶原mRNA的转录和分泌(P<0.05);TGF-β1能提高HLF-02细胞AP-1的DNA结合活力(P<0.05);姜黄素能明显抑制TGF-β1诱导的HLF-02细胞AP-1的DNA结合活力,抑制率分别为17.1%,17.6%,24.2%,31.3%(P<0.05);同时,姜黄素能明显抑制TGF-β1诱导的HLF-02细胞Ⅰ型胶原的分泌,抑制率分别为62.1%,58.8%,62.1%,59.6%(P<0.05).结论:核转录因子AP-1参与TGF-β1刺激的HLF-02细胞Ⅰ型胶原的分泌调控.

  4. Ectopic expression and knockdown of a zebrafish sox21 reveal its role as a transcriptional repressor in early development. (United States)

    Argenton, Francesco; Giudici, Simona; Deflorian, Gianluca; Cimbro, Simona; Cotelli, Franco; Beltrame, Monica


    Sox proteins are DNA-binding proteins belonging to the HMG box superfamily and they play key roles in animal embryonic development. Zebrafish Sox21a is part of group B Sox proteins and its chicken and mouse orthologs have been described as transcriptional repressor and activator, respectively, in two different target gene contexts. Zebrafish sox21a is present as a maternal transcript in the oocyte and is mainly expressed at the developing midbrain-hindbrain boundary from the onset of neurulation. In order to understand its role in vivo, we ectopically expressed sox21a by microinjection. Ectopic expression of full length sox21a leads to dorsalization of the embryos. A subset of the dorsalized embryos shows a partial axis splitting, and hence an ectopic neural tube, as an additional phenotype. At gastrulation, injected embryos show expansion of the expression domains of organizer-specific genes, such as chordin and goosecoid. Molecular markers used in somitogenesis highlight that sox21a-injected embryos have shortened AP axis, undulating axial structures, enlarged or even radialized paraxial territory. The developmental abnormalities caused by ectopic expression of sox21a are suggestive of defects in convergence-extension morphogenetic movements. Antisense morpholino oligonucleotides, designed to functionally knockdown sox21a, cause ventralization of the embryos. Moreover, gain-of-function experiments with chimeric constructs, where Sox21a DNA-binding domain is fused to a transcriptional activator (VP16) or repressor (EnR) domain, suggests that zebrafish Sox21a acts as a repressor in dorso-ventral patterning.

  5. Prednisone inhibits the IL-1β-induced expression of COX-2 in HEI-OC1 murine auditory cells through the inhibition of ERK-1/2, JNK-1 and AP-1 activity. (United States)

    Hong, Hua; Jang, Byeong-Churl


    Hearing loss can be induced by multiple causes, including cochlear inflammation. Prednisone (PDN) is a well-known steroid clinically used in the treatment of hearing loss. In the present study, we investigated the inhibitory effects and the mechanisms of action of PDN on the expression of cyclooxygenase (COX)-2, an inflammatory enzyme involved in the production of prostaglandins (PGs), in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells (a murine auditory cell line) treated with the inflammatory cytokine, interleukin (IL)-1β. The exposure of HEI-OC1 cells to IL-1β increased COX-2 protein and mRNA expression, COX-2 promoter-driven luciferase activity and COX-2 enzymatic activity [as indicated by the increased production of prostaglandin E2 (PGE2), a major COX-2 metabolite]. However, PDN markedly inhibited the IL-1β-induced COX-2 protein and mRNA expression, COX-2 promoter activity and PGE2 production in the HEI-OC1 cells without affecting COX-2 protein and mRNA stability. PDN further inhibited the IL-1β-induced activation of extracellular signal-regulated kinase (ERK)-1/2 and c-Jun N-terminal kinase (JNK)-1, but had no effect on the cytokine-induced activation of p38 MAPK and proteolysis of IκB-α, a nuclear factor-κB (NF-κB) inhibitory protein. PDN also partially suppressed the IL-1β‑induced activation of activator protein (AP)-1 (but not that of NF-κB) promoter-driven luciferase activity. Of note, the inhibitory effects of PDN on the IL-1β-induced expression of COX-2 and the activation of ERK-1/2 and JNK-1 in the HEI-OC1 cells were significantly diminished by RU486, a glucocorticoid receptor (GR) antagonist, suggesting that PDN exerts its inhibitory effects through GR. To the best of our knowledge, our study demonstrates for the first time that PDN inhibits the IL-1β-induced COX-2 expression and activity in HEI-OC1 cells by COX-2 transcriptional repression, which is partly associated with the inhibition of ERK-1/2, JNK-1 and AP-1 activation.

  6. Complex Binding of the FabR Repressor of Bacterial Unsaturated Fatty Acid Biosynthesis to its Cognate Promoters


    Feng, Youjun; Cronan, John E.


    Two transcriptional regulators, the FadR activator and the FabR repressor control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was bloc...

  7. Modular construction of mammalian gene circuits using TALE transcriptional repressors. (United States)

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen


    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation.

  8. Activators and repressors: A balancing act for X-inactivation. (United States)

    Goodrich, Leeanne; Panning, Barbara; Leung, Karen Nicole


    In early female embryos X-chromosome inactivation occurs concomitant with up regulation of the non-coding RNA, Xist, on the future inactive X-chromosome. Up regulation of Xist and coating of the future inactive X is sufficient to induce silencing. Therefore unlocking the mechanisms of X-chromosome inactivation requires thorough understanding of the transcriptional regulators, both activators and repressors, which control Xist. Mouse pluripotent embryonic stem cells, which have two active X chromosomes, provide a tractable ex vivo model system for studying X-chromosome inactivation, since this process is triggered by differentiation signals in these cultured cells. Yet there are significant discrepancies found between ex vivo analyses in mouse embryonic stem cells and in vivo studies of early embryos. In this review we elaborate on potential models of how Xist is up regulated on a single X chromosome in female cells and how ex vivo and in vivo analyses enlighten our understanding of the activators and repressors that control this non-coding RNA gene.

  9. The dysregulation of the monocyte/macrophage effector function induced by isopropanol is mediated by the defective activation of distinct members of the AP-1 family of transcription factors. (United States)

    Carignan, Damien; Désy, Olivier; de Campos-Lima, Pedro O


    Isopropanol is the second most common cause of short-chain alcohol acute intoxication. Nonethanolic short-chain alcohols mediate their immunomodulatory effect by interfering with nuclear factor of activated T cells (NFAT) activation with or without additional activator protein-1 (AP-1) involvement. In the present study, we examined the immunomodulation induced by isopropanol in conditions that are not reliant on NFAT: the inflammatory cytokine response of lipopolysaccharide (LPS)-stimulated monocytes. Our hypothesis was that isopropanol acute exposure would have an attenuated effect or no consequence in this setting. To our surprise, the impairment of AP-1 activation was sufficient to mediate a severe and dose-dependent phenotype in human monocytes in vitro at alcohol concentrations as low as 0.16% (or 26 mM). There were three outcomes: interleukin (IL)-1β/IL-8 were unaltered; IL-6 was upregulated; and tumor necrosis factor alpha (TNF-α)/CCL2 were downregulated. The effector function of human monocyte-derived macrophages was also compromised. Our results showed that Toll-like receptor 4 early signaling was preserved, as isopropanol did not change the kinase activity of the IL-1 receptor-associated kinase 1 in LPS-stimulated cells. The nuclear factor-κB signaling cascade and the p38/c-Jun N-terminal kinase modules of the mitogen-activated protein kinase pathway were alcohol insensitive. Conversely, the activation of extracellular signal-regulated protein kinase and, ultimately, of c-Fos and JunB were impaired. The alcohol-induced cytokine dysregulation was confirmed in a mouse model of isopropanol intoxication in which the production of TNF-α in response to LPS challenge was virtually abolished. The magnitude of this alcohol effect was sufficiently high to rescue animals from LPS-induced toxic shock. Our data contribute to the dismal body of information on the immunotoxicology of isopropanol, one of the most ubiquitous chemicals to which the general population

  10. Low doses of LPS and minimally oxidized LDL cooperatively activate macrophages via NF-kappaB and AP-1: Possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia (United States)

    Wiesner, Philipp; Choi, Soo-Ho; Almazan, Felicidad; Benner, Christopher; Huang, Wendy; Diehl, Cody J.; Gonen, Ayelet; Butler, Susan; Witztum, Joseph L.; Glass, Christopher K.; Miller, Yury I.


    Rationale Oxidized low-density lipoprotein (LDL) is an important determinant of inflammation in atherosclerotic lesions. It has also been documented that certain chronic infectious diseases, such as periodontitis and chlamydial infection, exacerbate clinical manifestations of atherosclerosis. In addition, low-level but persistent metabolic endotoxemia is often found in diabetic and obese subjects and is induced in mice fed a high-fat diet. Objective In this study, we examined cooperative macrophage activation by low levels of bacterial LPS and by minimally oxidized LDL (mmLDL), as a model for subclinical endotoxemia-complicated atherosclerosis. Methods and Results We found that both in vitro and in vivo, mmLDL and LPS (Kdo2-LipidA) cooperatively activated macrophages to express pro-inflammatory cytokines Cxcl2 (MIP-2), Ccl3 (MIP-1alpha), and Ccl4 (MIP-1beta). Importantly, the mmLDL and LPS cooperative effects were evident at a threshold LPS concentration (1 ng/ml) at which LPS alone induced only a limited macrophage response. Analyzing microarray data with a de novo motif discovery algorithm, we found that genes transcribed by promoters containing an AP-1 binding site were significantly upregulated by co-stimulation with mmLDL and LPS. In a nuclear factor-DNA binding assay, the cooperative effect of mmLDL and LPS co-stimulation on c-Jun and c-Fos DNA binding, but not on p65 or p50, was dependent on mmLDL-induced activation of ERK1/2. In addition, mmLDL induced JNK-dependent derepression of AP-1 by removing the corepressor NCoR from the chemokine promoters. Conclusions The cooperative engagement of AP-1 and NF-kappaB by mmLDL and LPS may constitute a mechanism of increased transcription of inflammatory cytokines within atherosclerotic lesions. PMID:20489162

  11. GDNF-independent ureteric budding: role of PI3K-independent activation of AKT and FOSB/JUN/AP-1 signaling

    Directory of Open Access Journals (Sweden)

    James B. Tee


    A significant fraction of mice deficient in either glial cell-derived neurotrophic factor (GDNF or its co-receptors (Gfrα1, Ret, undergoes ureteric bud (UB outgrowth leading to the formation of a rudimentary kidney. Previous studies using the isolated Wolffian duct (WD culture indicate that activation of fibroblast growth factor (FGF receptor signaling, together with suppression of BMP/Activin signaling, is critical for GDNF-independent WD budding (Maeshima et al., 2007. By expression analysis of embryonic kidney from Ret(−/− mice, we found the upregulation of several FGFs, including FGF7. To examine the intracellular pathways, we then analyzed GDNF-dependent and GDNF-independent budding in the isolated WD culture. In both conditions, Akt activation was found to be important; however, whereas this occurred through PI3-kinase in GDNF-dependent budding, in the case of GDNF-independent budding, Akt activation was apparently via a PI3-kinase independent mechanism. Jnk signaling and the AP-1 transcription factor complex were also implicated in GDNF-independent budding. FosB, a binding partner of c-Jun in the formation of AP-1, was the most highly upregulated gene in the ret knockout kidney (in which budding had still occurred, and we found that its siRNA-mediated knockdown in isolated WDs also blocked GDNF-independent budding. Taken together with the finding that inhibition of Jnk signaling does not block Akt activation/phosphorylation in GDNF-independent budding, the data support necessary roles for both FosB/Jun/AP-1 signaling and PI3-kinase-independent activation of Akt in GDNF-independent budding. A model is proposed for signaling events that involve Akt and JNK working to regulate GDNF-independent WD budding.

  12. The Transcriptional Repressor ZNF503/Zeppo2 Promotes Mammary Epithelial Cell Proliferation and Enhances Cell Invasion* (United States)

    Shahi, Payam; Slorach, Euan M.; Wang, Chih-Yang; Chou, Jonathan; Lu, Angela; Ruderisch, Aline; Werb, Zena


    The NET (nocA, Nlz, elB, TLP-1) subfamily of zinc finger proteins is an important mediator during developmental processes. The evolutionary conserved zinc finger protein ZNF503/Zeppo2 (zinc finger elbow-related proline domain protein 2, Zpo2) plays critical roles during embryogenesis. We found that Zpo2 is expressed in adult tissue and examined its function. We found that ZPO2 is a nuclearly targeted transcriptional repressor that is expressed in mammary epithelial cells. Elevated Zpo2 levels increase mammary epithelial cell proliferation. Zpo2 promotes cellular invasion through down-regulation of E-cadherin and regulates the invasive phenotype in a RAC1-dependent manner. We detect elevated Zpo2 expression during breast cancer progression in a MMTV-PyMT transgenic mouse model. Tumor transplant experiments indicated that overexpression of Zpo2 in MMTV-PyMT mammary tumor cell lines enhances lung metastasis. Our findings suggest that Zpo2 plays a significant role in mammary gland homeostasis and that deregulation of Zpo2 may promote breast cancer development. PMID:25538248

  13. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    KAUST Repository

    Hameed, Umar Farook Shahul


    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  14. A novel strategy to analyze L-tryptophan through allosteric Trp repressor based on rolling circle amplification. (United States)

    Zhao, Guojie; Hu, Tianyu; Li, Jun; Wei, Hua; Shang, Hong; Guan, Yifu


    Rolling circle amplification (RCA) has been considered as a powerful tool for nucleic acids detection. Here, a novel repressor-RCA-based method for L-tryptophan (L-Trp) detection was developed. This method utilizes the specific interaction between the RCA circular template and the Trp repressor protein (TrpR) involved in trp operon of Escherichia coli (E. coli). In the absence of L-Trp, the TrpR protein could not bind to the RCA template, and the RCA process can be continued. When L-Trp is present, the activated TrpR will bind to the operon sequence on the RCA template and inhibit the RCA reaction. Thus, the concentration of L-Trp is correlated directly with the fluorescent RCA signals. We succeeded in detecting L-Trp in a single step in simple homogeneous reaction system. The detection limit was estimated to be 0.77 μM (S/N=3) with good linearity. The method can unambiguously distinguish L-Trp from other 19 standard amino acids and L-Trp analogs. This strategy is also promising for detecting many small molecules such as other amino acids and carbohydrates.

  15. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis (United States)

    Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A.; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M.; Maitra, Sushmit; Thomas, Stephen G.; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F.; Olszewski, Neil E.; Sun, Tai-ping


    The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein–protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors—PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)—that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development. PMID:26773002

  16. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages. (United States)

    Youn, Gi Soo; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu


    Although histone deacetylase 6 (HDAC6) has been implicated in inflammatory diseases, direct involvement and its action mechanism of HDAC6 in the transcriptional regulation of pro-inflammatory genes have been unclear. In this study, we investigated the possible role of HDAC6 in the expression of pro-inflammatory mediators, indicator of macrophage activation, in RAW 264.7 cells and primary mouse macrophages. HDAC6 overexpression significantly enhanced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, with concomitant reduction in acetylated α-tubulin. HDAC6 overexpression significantly induced ROS generation via upregulation of NADPH oxidase expression and activity. Inhibition of ROS generation by N-acetyl cysteine, diphenyl iodonium and apocynin suppressed HDAC6-induced pro-inflammatory cytokines. An HDAC6 enzymatic inhibitor significantly inhibited ROS generation and expression of HDAC6-induced pro-inflammatory mediators, indicating the requirement of HDAC6 enzymatic activity for induction of pro-inflammatory cytokines. In addition, HDAC6 overexpression increased activation of MAPK species including ERK, JNK, and p38. Furthermore, HDAC6 overexpression resulted in activation of the NF-κB and AP-1 signaling pathways. Overall, our results provide the first evidence that HDAC6 is capable of inducing expression of pro-inflammatory genes by regulating the ROS-MAPK-NF-κB/AP-1 pathways and serves as a molecular target for inflammation.

  17. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses. (United States)

    Wu, Feng; Shi, Xiaowei; Lin, Xuelei; Liu, Yuan; Chong, Kang; Theißen, Günter; Meng, Zheng


    The well-known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B- and C-functions are highly conserved throughout flowering plants and even in gymnosperms, the A-function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL-like subfamily of MADS-box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass-specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)-function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL-like genes were independently recruited to fulfil the (A)-function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed.

  18. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  19. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Young-Rae Lee


    Full Text Available Sulforaphane [1-isothiocyanato-4-(methylsulfinyl-butane] is anisothiocyanate found in some cruciferous vegetables, especiallybroccoli. Sulforaphane has been shown to displayanti-cancer properties against various cancer cell lines. Matrixmetalloproteinase-9 (MMP-9, which degrades the extracellularmatrix (ECM, plays an important role in cancer cell invasion.In this study, we investigated the effect of sulforaphane on12-O-tetradecanoyl phorbol-13-acetate (TPA-induced MMP-9expression and cell invasion in MCF-7 cells. TPA-inducedMMP-9 expression and cell invasion were decreased bysulforaphane treatment. TPA substantially increased NF-κB andAP-1 DNA binding activity. Pre-treatment with sulforaphaneinhibited TPA-stimulated NF-κB binding activity, but not AP-1binding activity. In addition, we found that sulforaphanesuppressed NF-κB activation, by inhibiting phosphorylation ofIκB in TPA-treated MCF-7 cells. In this study, we demonstratedthat the inhibition of TPA-induced MMP-9 expression and cellinvasion by sulforaphane was mediated by the suppression ofthe NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4:201-206

  20. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. (United States)

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John


    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  1. Notch-1 Confers Chemoresistance in Lung Adenocarcinoma to Taxanes through AP-1/microRNA-451 Mediated Regulation of MDR-1. (United States)

    Huang, Jiayuan; Chen, Yitian; Li, Junyang; Zhang, Kai; Chen, Jing; Chen, Dongqin; Feng, Bing; Song, Haizhu; Feng, Jifeng; Wang, Rui; Chen, Longbang


    We previously demonstrated that expression of Notch-1 is associated with poor prognosis in lung adenocarcinoma (LAD) patients. The aim of this study is to reveal whether Notch-1 was associated with Taxanes-resistant LAD and, the underlying mechanisms. We collected 39 patients of advanced LAD treated with Taxanes and found that positive Notch-1 expression is closely related to LAD lymph node metastasis, recurrence and poorer prognosis, and Notch-1 acts as an independent poor prognostic factor in LAD by multivariate analysis with Cox regression model. Then, by using the Docetaxel (DTX)-resistant LAD cell lines that we established previously, we found that Notch-1 contributes to resistance of LAD cells to DTX in vitro, and inhibition of Notch-1 sensitizes LAD to DTX in vivo. We further demonstrated that Notch-1 mediates chemoresistance response and strengthens proliferation capacity in LAD cells partially through negative regulation of miR-451 by transcription factor AP-1. Moreover, we found that MDR-1 is a direct target of miR-451 and influences chemoresistance of LAD cells. Taken together, our data revealed a novel Notch-1/AP-1/miR-451/MDR-1 signaling axis, and suggested a new therapeutic strategy of combining DTX with Notch inhibitors to treat DTX-resistant LAD.

  2. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.; Borovilos, M.; Zhou, M; Horer, S; Clancy, S; Moy, S; Volkart, LL; Sassoon, J; Baumann, U; Joachimiak, A (Biosciences Division); (Univ. of Berne)


    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representing a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.

  3. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2. (United States)

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus


    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.

  4. Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections? (United States)

    Kaczmarek, Leszek; Lapinska-Dzwonek, Joanna; Szymczak, Sylwia


    Matrix metalloproteinases (MMPs), together with their endogenous inhibitors (TIMPs) form an enzymatic system that plays an important role in a variety of physiological and pathological conditions. These proteins are also expressed in the brain, especially under pathological conditions, in which glia as well as invading inflammatory cells provide the major source of the MMP activity. Surprisingly little is known about the MMP function(s) in adult neuronal physiology. This review describes available data on this topic, which is presented in a context of knowledge about the MMP/TIMP system in other organs as well as in brain disorders. An analysis of the MMP and TIMP expression patterns in the brain, along with a consideration of their regulatory mechanisms and substrates, leads to the proposal of possible roles of the MMP system in the brain. This analysis suggests that MMPs may play an important role in the neuronal physiology, especially in neuronal plasticity, including their direct participation in the remodeling of synaptic connections-a mechanism pivotal for learning and memory.

  5. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030 were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP. MicroRNA-4284 (miR-4284 was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK/stress-activated protein kinase (SAPK, resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an

  6. VIP gene transcription is regulated by far upstream enhancer and repressor elements. (United States)

    Liu, D; Krajniak, K; Chun, D; Sena, M; Casillas, R; Lelièvre, V; Nguyen, T; Bravo, D; Colburn, S; Waschek, J A


    SK-N-SH human neuroblastoma subclones differ widely in basal and second messenger induction of the gene encoding the neuropeptide vasoactive intestinal peptide (VIP). These differences were recapitulated by a chimeric gene which consisted of 5.2 kb of the human VIP gene 5' flanking sequence fused to a reporter. Subsequent gene deletion experiments revealed several regulatory regions on the gene, including a 645-bp sequence located approximately 4.0 upstream from the transcription start site. Here we examined this upstream region in detail. Inhibitory sequences were found to be present on each end of the 645-bp fragment. When removed, basal transcription increased more than 50-fold. Subsequent deletion/mutation analysis showed that the 213-bp fragment contained at least two enhancer elements. One of these was localized to an AT-rich 42-bp sequence shown by others to bind Oct proteins in neuroblastoma cells, while the other corresponded to a composite AP-1/ets element. In addition to these enhancers, a 28-bp sequence on the 213-bp fragment with no apparent homology to known silencers inhibited transcription. The studies provide molecular details of a complex regulatory region on the VIP gene that is likely to be used to finely tune the level of gene transcription in vivo.

  7. Harnessing the master transcriptional repressor REST to reciprocally regulate neurogenesis (United States)

    Nesti, Edmund


    Neurogenesis begins in embryonic development and continues at a reduced rate into adulthood in vertebrate species, yet the signaling cascades regulating this process remain poorly understood. Plasma membrane-initiated signaling cascades regulate neurogenesis via downstream pathways including components of the transcriptional machinery. A nuclear factor that temporally regulates neurogenesis by repressing neuronal differentiation is the repressor element 1 (RE1) silencing transcription (REST) factor. We have recently discovered a regulatory site on REST that serves as a molecular switch for neuronal differentiation. Specifically, C-terminal domain small phosphatase 1, CTDSP1, present in non-neuronal cells, maintains REST activity by dephosphorylating this site. Reciprocally, extracellular signal-regulated kinase, ERK, activated by growth factor signaling in neural progenitors, and peptidylprolyl cis/trans isomerase Pin1, decrease REST activity through phosphorylation-dependent degradation. Our findings further resolve the mechanism for temporal regulation of REST and terminal neuronal differentiation. They also provide new potential therapeutic targets to enhance neuronal regeneration after injury. PMID:27535341

  8. Novel INHAT repressor (NIR) is required for early lymphocyte development. (United States)

    Ma, Chi A; Pusso, Antonia; Wu, Liming; Zhao, Yongge; Hoffmann, Victoria; Notarangelo, Luigi D; Fowlkes, B J; Jain, Ashish


    Novel inhibitor of histone acetyltransferase repressor (NIR) is a transcriptional corepressor with inhibitor of histone acetyltransferase activity and is a potent suppressor of p53. Although NIR deficiency in mice leads to early embryonic lethality, lymphoid-restricted deletion resulted in the absence of double-positive CD4(+)CD8(+) thymocytes, whereas bone-marrow-derived B cells were arrested at the B220(+)CD19(-) pro-B-cell stage. V(D)J recombination was preserved in NIR-deficient DN3 double-negative thymocytes, suggesting that NIR does not affect p53 function in response to physiologic DNA breaks. Nevertheless, the combined deficiency of NIR and p53 provided rescue of DN3L double-negative thymocytes and their further differentiation to double- and single-positive thymocytes, whereas B cells in the marrow further developed to the B220(+)CD19(+) pro-B-cell stage. Our results show that NIR cooperate with p53 to impose checkpoint for the generation of mature B and T lymphocytes.

  9. NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

    Directory of Open Access Journals (Sweden)

    Van Thai Ha


    Full Text Available AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO/prostaglandin (PG E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS- treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS, cyclooxygenase- (COX- 2, and interleukin- (IL- 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation.

  10. Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites. (United States)

    Merulla, Davide; van der Meer, Jan Roelof


    Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.

  11. The BCG Moreau RD16 deletion inactivates a repressor reshaping transcription of an adjacent gene. (United States)

    Galvão, Teca Calcagno; Lima, Cristiane Rodrigues; Gomes, Leonardo Henrique Ferreira; Pagani, Talita Duarte; Ferreira, Marcelo Alves; Gonçalves, Antonio S; Correa, Paloma Rezende; Degrave, Wim Maurits; Mendonça-Lima, Leila


    The Brazilian anti-tuberculosis vaccine strain Mycobacterium bovis bacillus Calmette-Guérin (BCG) BCG Moreau is unique in having a deletion of 7608 bp (RD16) that results in the truncation of a putative TetR transcriptional regulator, the ortholog of Mycobacterium tuberculosis rv3405c, BCG_M3439c. We investigated the effect of this truncation on the expression of the rv3406 ortholog (BCG_M3440), lying 81 bp downstream in the opposite orientation. RT-PCR and western blot experiments show that rv3406 mRNA and Rv3406 accumulate in BCG Moreau but not in BCG Pasteur (strain that bears an intact rv3405c), suggesting this to be a result of rv3405c truncation. Recombinant Rv3405c forms a complex with the rv3405c-rv3406 intergenic region, which contains a characteristic transcription factor binding site, showing it to have DNA binding activity. Complementation of M. bovis BCG Moreau with an intact copy of rv3405c abolishes Rv3406 accumulation. These results show that Rv3405c is a DNA binding protein that acts as a transcriptional repressor of rv3406.

  12. Transcriptional repressor HipB regulates the multiple promoters in Escherichia coli. (United States)

    Lin, Chun-Yi; Awano, Naoki; Masuda, Hisako; Park, Jung-Ho; Inouye, Masayori


    HipB is a DNA-binding protein in Escherichia coli and negatively regulates its own promoter by binding to the palindromic sequences [TATCCN8GGATA (N represents any nucleotides)] on the hipBA promoter. For such sequences, bioinformatic analysis revealed that there are a total of 39 palindromic sequences (TATCCN(x)GGATA: N is any nucleotides and x is the number of nucleotides from 1 to 30) in the promoter regions of 33 genes on the E. coli genome. Notably, eutH and fadH have two and three TATCCN(x)GGATA palindromic sequences located in their promoters, respectively. Another significant finding was that a palindromic sequence was also identified in the promoter region of hipAB locus, known to be involved in the RelA-dependent persister cell formation in bacteria. Here, we demonstrated that HipB binds to the palindromic structures in the eutH, fadH, as well as the relA promoter regions and represses their expressions. We further demonstrated that HipA enhances the repression of the relA promoter activity by HipB. This effect was not observed with D291A HipA mutant which was previously shown to lack an ability to interact with HipB, indicating that HipA enhances the HipB's repressor activity through direct interaction with HipB.

  13. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells. (United States)

    Yoon, Hye Suk; Scharer, Christopher D; Majumder, Parimal; Davis, Carl W; Butler, Royce; Zinzow-Kramer, Wendy; Skountzou, Ioanna; Koutsonanos, Dimitrios G; Ahmed, Rafi; Boss, Jeremy M


    CIITA and MHC class II expression is silenced during the differentiation of B cells to plasma cells. When B cell differentiation is carried out ex vivo, CIITA silencing occurs rapidly, but the factors contributing to this event are not known. ZBTB32, also known as repressor of GATA3, was identified as an early repressor of CIITA in an ex vivo plasma cell differentiation model. ZBTB32 activity occurred at a time when B lymphocyte-induced maturation protein-1 (Blimp-1), the regulator of plasma cell fate and suppressor of CIITA, was minimally induced. Ectopic expression of ZBTB32 suppressed CIITA and I-A gene expression in B cells. Short hairpin RNA depletion of ZBTB32 in a plasma cell line resulted in re-expression of CIITA and I-A. Compared with conditional Blimp-1 knockout and wild-type B cells, B cells from ZBTB32/ROG-knockout mice displayed delayed kinetics in silencing CIITA during ex vivo plasma cell differentiation. ZBTB32 was found to bind to the CIITA gene, suggesting that ZBTB32 directly regulates CIITA. Lastly, ZBTB32 and Blimp-1 coimmunoprecipitated, suggesting that the two repressors may ultimately function together to silence CIITA expression. These results introduce ZBTB32 as a novel regulator of MHC-II gene expression and a potential regulatory partner of Blimp-1 in repressing gene expression.

  14. 下调AP-1基因表达在冬凌草甲素抑制结直肠癌中的作用%Downregulation of AP-1 gene expression is an initial event in oridonin-mediated inhibition of colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    金黑鹰; 戴功建; 丁义江; 夏建国; 刘秀芳; 刘飞; 谈瑄忠; 耿建祥


    Objective Oridonin is the active ingredient isolated from the Chinese herb Rabdosia rubescens. We used both in vivo and in vitro approaches to elucidate the underlying mechanism of the oridonin-mediated inhibition of colorectal cancer. Methods Two colorectal cell lines, LoVo and SW480,were treated with oridonin in solution. The effect of this treatment on inhibition of cell proliferation rate was determined by the methyl thiazol tetrazolium (MTT) method. The changes in gene expression that occurred in both cell lines in response to treatment with oridonin were determined via illumine expression sensor.Additionally, a colorectal cancer colostomy implantation model was established. Animals were injected intraperitoneally with an oridonin solution. Results Treatment of LoVo and SW480 cells with oridonin inhibited cell proliferation in a dose-dependent manner. The inhibition rate was increased with prolonged treatment. The growth rate of the colorectal cancer colostomy implantation model was significantly lower than control cells when treated with oridonin ( P < 0. 01 ). However, oridonin treatment did not have a signiticant effect on tumor growth rate ( P > 0. 05 ). In the tumor model, AP-1 was the only gene found to be downregulated after oridonin treatment by the gene expression sensor. After 4 weeks of treatment, AP-1,nuclear factor-κB (NF-κB) and p38 were all found to be downregulated. Conclusion Our study has confirmed the inhibitory effects of oridonin on colovectal cancer. These results indicate that the downregulation of AP-1 might be an initial response to treatment by oridonin. This regulation could, in turn, affect the expression of the NF-κB and MAPK pathways, thereby inhibiting tumor growth.%目的 探讨冬凌草甲素对结自肠癌的抑制作用及其机制.方法 以冬凌草甲素水溶液处理LoVo和SW480结直肠癌细胞株,噻唑蓝(MTT)比色法检测细胞增殖抑制率,以Illumina表达芯片检测LoVo细胞和SW480细胞基因表

  15. Effect of curcumin on p-ERK1/2-AP-1 cascade and diabetic neuropathic pain in rats%p-ERK1/2-AP-1通路在姜黄素抗大鼠糖尿病神经病理性痛中的作用

    Institute of Scientific and Technical Information of China (English)

    黄葱葱; 陈果; 吴艳; 连庆泉; 李军; 曹红


    AIM: To evaluate the role of p - ERK1/2 - AP - 1 cascade in the process of curcumin against diabetic neuropathic pain ( DNP ) in rats.METHODS: Ninety - six male Sprague - Dawley rats were randomly divided into 4 groups ( n = 24 ): normal control group, DNP group, DNP with solvent group and DNP with curcumin ( 100 mg/kg ) group.The rat model of diabetes was induced by a single intraperitoneal injection of streptozotocin ( STZ, 75 mg/kg ).Mechanical allodynia and thermal hyperalgesia were tested by mechanical withdrawal threshold ( MWT ) and thermal withdrawal latency ( TWL ) 2 weeks after induction, respectively.The diabetic rats were treated with curcumin ( 100 mg·kg-1·d-1 , ip ) for 2 weeks.The conditions of hyperalgesia and allodynia were determined 2 d before STZ injection, 14 d after STZ injection, and 3 d, 7 d, 14 d after administered with curcumin.The change of p - ERK1/2 was measured by the methods of Western blotting and immunohistochemistry.The expression of AP - 1 in spinal cord dorsal horn and dorsal root ganglion ( DRG ) was detected by electromobility shift assay ( EMSA ).RESULTS: Compared with normal control group, the rats in DNP group developed hyperglycemia and a decrease in MWT and TWL associated with an increase in the activity of p - ERK1/ 2 and AP - 1 in dorsal horn and DRG( P <0.05 ).Compared with DNP group, 7 - day treatment with curcumin significantly attenuated mechanical allodynia and thermal hyperalgesia, and these effects were correlated with inhibiting the hyper -activation of p - ERK1/2 and AP - 1 14 days after treatment with curcumin ( P <0.05 ).CONCLUSION: Curcumin has beneficial effects on hyperalgesia in STZ - induced peripheral neuropathic pain.Activation of p - ERK1/2 and AP - 1 may be the key mechanism of DNP in spinal cord and DRG.%目的:观察p-ERK1/2-AP-1通路在姜黄素(Cur)抗大鼠糖尿病神经病理性痛(DNP)中的作用.方法:雄性SD大鼠96只,随机分为4组(n=24):正常对照组、DNP组

  16. Molecular analysis of the notch repressor-complex in Drosophila: characterization of potential hairless binding sites on suppressor of hairless.

    Directory of Open Access Journals (Sweden)

    Patricia Kurth

    Full Text Available The Notch signalling pathway mediates cell-cell communication in a wide variety of organisms. The major components, as well as the basic mechanisms of Notch signal transduction, are remarkably well conserved amongst vertebrates and invertebrates. Notch signalling results in transcriptional activation of Notch target genes, which is mediated by an activator complex composed of the DNA binding protein CSL, the intracellular domain of the Notch receptor, and the transcriptional coactivator Mastermind. In the absence of active signalling, CSL represses transcription from Notch target genes by the recruitment of corepressors. The Notch activator complex is extremely well conserved and has been studied in great detail. However, Notch repressor complexes are far less understood. In Drosophila melanogaster, the CSL protein is termed Suppressor of Hairless [Su(H]. Su(H functions as a transcriptional repressor by binding Hairless, the major antagonist of Notch signalling in Drosophila, which in turn recruits two general corepressors--Groucho and C-terminal binding protein CtBP. Recently, we determined that the C-terminal domain (CTD of Su(H binds Hairless and identified a single site in Hairless, which is essential for contacting Su(H. Here we present additional biochemical and in vivo studies aimed at mapping the residues in Su(H that contact Hairless. Focusing on surface exposed residues in the CTD, we identified two sites that affect Hairless binding in biochemical assays. Mutation of these sites neither affects binding to DNA nor to Notch. Subsequently, these Su(H mutants were found to function normally in cellular and in vivo assays using transgenic flies. However, these experiments rely on Su(H overexpression, which does not allow for detection of quantitative or subtle differences in activity. We discuss the implications of our results.

  17. Type II SOCS as a feedback repressor for GH-induced Igf1 expression in carp hepatocytes. (United States)

    Jiang, Xue; Xiao, Jia; He, Mulan; Ma, Ani; Wong, Anderson O L


    Type II suppressor of cytokine signaling (SOCS) serve as feedback repressors for cytokines and are known to inhibit growth hormone (GH) actions. However, direct evidence for SOCS modulation of GH-induced insulin-like growth factor 1 (Igf1) expression is lacking, and the post-receptor signaling for SOCS expression at the hepatic level is still unclear. To shed light on the comparative aspects of SOCS in GH functions, grass carp was used as a model to study the role of type II SOCS in GH-induced Igf1 expression. Structural identity of type II SOCS, Socs1-3 and cytokine-inducible SH2-containing protein (Cish), was established in grass carp by 5'/3'-RACE, and their expression at both transcript and protein levels were confirmed in the liver by RT-PCR and LC/MS/MS respectively. In carp hepatocytes, GH treatment induced rapid phosphorylation of JAK2, STATs, MAPK, PI3K, and protein kinase B (Akt) with parallel rises in socs1-3 and cish mRNA levels, and these stimulatory effects on type II SOCS were shown to occur before the gradual loss of igf1 gene expression caused by prolonged exposure of GH. Furthermore, GH-induced type II SOCS gene expression could be negated by inhibiting JAK2, STATs, MEK1/2, P38 (MAPK), PI3K, and/or Akt respectively. In CHO cells transfected with carp GH receptor, over-expression of these newly cloned type II SOCS not only suppressed JAK2/STAT5 signaling with GH treatment but also inhibited GH-induced grass carp Igf1 promoter activity. These results, taken together, suggest that type II SOCS could be induced by GH in the carp liver via JAK2/STATs, MAPK, and PI3K/Akt cascades and serve as feedback repressors for GH signaling and induction of igf1 gene expression.

  18. Fur is a repressor of biofilm formation in Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Fengjun Sun

    Full Text Available BACKGROUND: Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix, which is activated by the signaling molecule 3', 5'-cyclic diguanylic acid (c-di-GMP synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448. METHODOLOGY/PRINCIPAL FINDINGS: The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. CONCLUSIONS/SIGNIFICANCE: Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis.

  19. Characterization and purification of Adh distal promoter factor 2, Adf-2, a cell-specific and promoter-specific repressor in Drosophila. (United States)

    Benyajati, C; Ewel, A; McKeon, J; Chovav, M; Juan, E


    Chromatin footprinting in Drosophila tissue culture cells has detected the binding of a non-histone protein at +8 of the distal Adh RNA start site, on a 10-bp direct repeat motif abutting a nucleosome positioned over the inactive Adh distal promoter. Alternatively the active promoter is bound by a transcription initiation complex. We have characterized and purified a protein Adf-2 that binds specifically to this direct repeat motif 5'TCTCAGTGCA3', present at +8 and -202 of the distal RNA start site. DNase I footprinting, methylation interference, and UV-crosslinking analyses showed that both direct repeats interact in vitro with a nuclear protein of approximately 120 kilodaltons (kDa). We purified Adf-2 through multiple rounds of sequence-specific DNA affinity chromatography. Southwestern analysis showed that the purified 120 KDa polypeptide binds the Adf-2 motif efficiently as a monomer or homomultimer. In vivo titrations of Adf-2 activity with the Adf-2 motif by transient co-transfection competitions in different Drosophila cell lines suggested that Adf-2 is a cell-specific repressor. Adf-2 has been detected ubiquitously in vitro, but is functional in vivo as a sequence-specific DNA binding protein and repressor only in the cells that have the inactive distal promoter. We discuss the possibility that an activation process is required for Adf-2 protein to bind DNA and function in vivo. Images PMID:1408750

  20. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix


    León, Esther; Navarro-Avilés, Gloria; Santiveri, Clara M.; Flores-Flores, Cesar; Rico, Manuel; González, Carlos; Murillo, Francisco J; Elías-Arnanz, Montserrat; Jiménez, María Angeles; Padmanabhan, S.


    Direct targeting of critical DNA-binding elements of a repressor by its cognate antirepressor is an effective means to sequester the repressor and remove a transcription initiation block. Structural descriptions for this, though often proposed for bacterial and phage repressor–antirepressor systems, are unavailable. Here, we describe the structural and functional basis of how the Myxococcus xanthus CarS antirepressor recognizes and neutralizes its cognate repressors to turn on a photo-inducib...

  1. ZEB-1, a Repressor of the Semaphorin 3F Tumor Suppressor Gene in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Clarhaut


    Full Text Available SEMA3F is a secreted semaphorin with potent antitumor activity, which is frequently downregulated in lung cancer. In cancer cell lines, SEMA3F overexpression decreases hypoxia-induced factor 1α protein and vascular endothelial growth factor mRNA, and inhibits multiple signaling components. Therefore, understanding how SEMA3F expression is inhibited in cancer cells is important. We previously defined the promoter organization of SEMA3F and found that chromatin remodeling by a histone deacetylase inhibitor was sufficient to activate SEMA3F expression. In lung cancer, we have also shown that ZEB-1, an E-box transcription repressor, is predominantly responsible for loss of E-Cadherin associated with a poor prognosis and resistance to epidermal growth factor receptor inhibitors. In the present study, we demonstrated that ZEB-1 also inhibits SEMA3F in lung cancer cells. Levels of ZEB-1, but not ZEB-2, Snail or Slug, significantly correlate with SEMA3F inhibition, and overexpression or inhibition of ZEB-1 correspondingly affected SEMA3F expression. Four conserved E-box sites were identified in the SEMA3F gene. Direct ZEB-1 binding was confirmed by chromatin immunoprecipitation assays for two of these, and ZEB-1 binding was reduced when cells were treated with a histone deacetylase inhibitor. These results demonstrate that ZEB-1 directly inhibits SEMA3F expression in lung cancer cells. SEMA3F loss was associated with changes in cell signaling: increased phospho-AKT in normoxia and increase of hypoxia-induced factor 1α protein in hypoxia. Moreover, exogenous addition of SEMA3F could modulate ZEB-1-induced angiogenesis in a chorioallantoic membrane assay. Together, these data provide further support for the importance of SEMA3F and ZEB-1 in lung cancer progression.

  2. Investigation of Changes in Tetracycline Repressor Binding upon Mutations in the Tetracycline Operator. (United States)

    Bolintineanu, Dan S; Volzing, Katherine; Vivcharuk, Victor; Sayyed-Ahmad, Abdallah; Srivastava, Poonam; Kaznessis, Yiannis N


    The tetracycline operon is an important gene network component, commonly used in synthetic biology applications because of its switch-like character. At the heart of this system is the highly specific interaction of the tet repressor protein (TetR) with its cognate DNA sequence (tetO). TetR binding on tetO practically stops expression of genes downstream of tetO by excluding RNA polymerase from binding the promoter and initiating transcription. Mutating the tetO sequence alters the strength of TetR-tetO binding and thus provides a tool to synthetic biologists to manipulate gene expression levels. We employ molecular dynamics (MD) simulations coupled with the free energy perturbation method to investigate the binding affinity of TetR to different tetO mutants. We also carry out in vivo tests in Escherichia coli for a series of promoters based on these mutants. We obtain reasonable agreement between experimental green fluorescent protein (GFP) repression levels and binding free energy differences computed from molecular simulations. In all cases, the wild-type tetO sequence yields the strongest TetR binding, which is observed both experimentally, in terms of GFP levels, and in simulation, in terms of free energy changes. Two of the four tetO mutants we tested yield relatively strong binding, whereas the other two mutants tend to be significantly weaker. The clustering and relative ranking of this subset of tetO mutants is generally consistent between our own experimental data, previous experiments with different systems and the free energy changes computed from our simulations. Overall, this work offers insights into an important synthetic biological system and demonstrates the potential, as well as limitations of molecular simulations to quantitatively explain biologically relevant behavior.

  3. Thrombin mediates migration of rat brain astrocytes via PLC, Ca²⁺, CaMKII, PKCα, and AP-1-dependent matrix metalloproteinase-9 expression. (United States)

    Lin, Chih-Chung; Lee, I-Ta; Wu, Wen-Bin; Liu, Chiung-Ju; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chien-Chung; Yang, Chuen-Mao


    Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain unclear. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 and migration of RBA-1 cells, which were inhibited by pretreatment with the inhibitor of Gq-coupled receptor (GPAnt2A), Gi/o-coupled receptor (GPAnt2), PC-PLC (D609), PI-PLC (U73122), Ca(2+)-ATPase (thapsigargin, TG), calmodulin (CaMI), CaMKII (KN62), PKC (Gö6976 or GF109203X), MEK1/2 (PD98059), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) or the intracellular calcium chelator (BAPTA/AM) and transfection with siRNA of PKCα, Erk2, JNK1, p38 MAPK, c-Jun, or c-Fos. In addition, thrombin-induced elevation of intracellular Ca(2+) concentration was attenuated by PPACK (a thrombin inhibitor). Thrombin further induced CaMKII phosphorylation and PKCα translocation, which were inhibited by U73122, D609, KN62, TG, or BAPTA/AM. Thrombin also induced PKCα-dependent p42/p44 MAPK and JNK1/2, but not p38 MAPK activation. Finally, we showed that thrombin enhanced c-Fos expression and c-Jun phosphorylation. c-Fos mRNA levels induced by thrombin were reduced by PD98059, SP600125, and Gö6976, but not SB202190. Thrombin stimulated in vivo binding of c-Fos to the MMP-9 promoter, which was reduced by pretreatment with SP600125 or PD98059, but not SB202190. These results concluded that thrombin activated a PLC/Ca(2+)/CaMKII/PKCα/p42/p44 MAPK and JNK1/2 pathway, which in turn triggered AP-1 activation and ultimately induced MMP-9 expression in RBA-1 cells.

  4. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte

    KAUST Repository

    Guerreiro, Ana


    Background Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown. Results We identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5′ untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development. Conclusions Our study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.

  5. 三氯乙烯致敏豚鼠单核淋巴细胞中β-arrestin蛋白表达和核转录因子及激活蛋白-1活性的研究%β-arrestin and NF-κB, AP-1 activity in peripheral blood mononuclear cells of guinea pigs sensitized by trichloroethylene

    Institute of Scientific and Technical Information of China (English)

    汪立杰; 郭瑞娟; 沈彤; 朱启星


    Objective To explore the regulatory mechanism of immune response of guinea pigs sensitized by trichloroethylene (TCE), and the expression level of β-arrestin, and the activity of NF-κB and AP-1 in peripheral blood mononuclear cells (PBMC) of guinea pigs sensitized by TCE. Methods Guinea pigs were treated with TCE based on the guinea pig maximum response test (GPMT); Blank control group and DNCB positive control group were established. Scores of skin reaction were evaluated and used to determine whether or not allergy in guinea pig. Then TCE treated group was divided into sensitized group or un-sensitized group. The expression levels of β-arrestin protein, activity of NF-κB and AP-1 in PBMC were detected by Western Blotting and EMSA, respectively. TNF-α level in serum was detected by ELISA Kits. Results No erythema or edema was found in the control group; part of guinea pigs treated with TCE developed erythema and edema, while obvious erythema and edema could be found in DNCB group. The sensitization rates were 71.4% and 100% in TCE and DNCB group,respectively. Compared with TCE un-sensitized group, expression of β-arrestin and AP-1 activity were not significantly different in TCE sensitized group (P>0.05). While the NF-κB activity was elevated obviously(P0.05).与空白对照组和TCE未致敏组相比,TCE致敏组NF-κB活性明显升高,且差异有统计学意义(P0.05).TCE致敏组血清中TNF-α水平[(55.485+8.732)pg/ml]较空白对照组[(32.118±12.550)pg/ml]明显升高,差异有统计学意义(P<0.05).结论 以TCE致敏豚鼠β-arrestin和AP-1可能没被激活,而NF-κB被明显激活且在TCE致敏免疫反应中发挥着调节作用.

  6. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    Directory of Open Access Journals (Sweden)

    Juin-Hua Huang


    Full Text Available Collaboration between heterogeneous pattern recognition receptors (PRRs leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3 and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA, genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

  7. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge


    Full Text Available Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential.

  8. EGF stimulates Pit-1 independent transcription of the human prolactin pituitary promoter in human breast cancer SK-BR-3 cells through its proximal AP-1 response element. (United States)

    Manfroid, Isabelle; Van de Weerdt, Cécile; Baudhuin, Ariane; Martial, Joseph A; Muller, Marc


    Normal and neoplastic human mammary gland cells are targets for the proliferative action of prolactin. These cells also synthesize prolactin, thereby inducing an autocrine/paracrine proliferative loop. We present the first extensive analysis of the transcriptional regulation of the human prolactin gene (hPRL) in human mammary tumor cells, SK-BR-3. We show that the pituitary promoter is functional in these cells in the absence of the pituitary-specific factor Pit-1. Expression of exogenous Pit-1 or epidermal growth factor (EGF) treatment stimulates the transfected hPRL pituitary promoter and the endogenous hPRL expression. EGF stimulation is mediated by increased synthesis of c-fos and c-jun, resulting in AP-1 binding to the proximal hPRL pituitary promoter. This regulation involves the EGF receptor, possibly ErbB2 that is highly expressed in SK-BR-3 cells, and a PI3K/JNK pathway. The stimulation of hPRL gene transcription by EGF in mammary cells may include hPRL in a complex regulatory network controlling growth of human mammary cells.

  9. A versatile ΦC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture.

    Directory of Open Access Journals (Sweden)

    Nirmalya Chatterjee

    Full Text Available This paper describes the construction and characterization of a system of transcriptional reporter genes for monitoring the activity of signaling pathways and gene regulation mechanisms in intact Drosophila, dissected tissues or cultured cells. Transgenic integration of the reporters into the Drosophila germline was performed in a site-directed manner, using ΦC31 integrase. This strategy avoids variable position effects and assures low base level activity and high signal responsiveness. Defined integration sites furthermore enable the experimenter to compare the activity of different reporters in one organism. The reporter constructs have a modular design to facilitate the combination of promoter elements (synthetic transcription factor binding sites or natural regulatory sequences, reporter genes (eGFP, or DsRed.T4, and genomic integration sites. The system was used to analyze and compare the activity and signal response profiles of two stress inducible transcription factors, AP-1 and Nrf2. To complement the transgenic reporter fly lines, tissue culture assays were developed in which the same synthetic ARE and TRE elements control the expression of firefly luciferase.

  10. Interplay of protein and DNA structure revealed in simulations of the lac operon.

    Directory of Open Access Journals (Sweden)

    Luke Czapla

    Full Text Available The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.

  11. Thermodynamic analysis of small ligand binding to the Escherichia coli repressor of biotin biosynthesis. (United States)

    Xu, Y; Johnson, C R; Beckett, D


    BirA is the transcriptional repressor of biotin biosynthesis and a biotin holoenzyme synthetase. It catalyzes synthesis of biotinyl-5'-AMP from the substrates biotin and ATP. The adenylate is the activated intermediate in the biotin transfer reaction as well as the positive allosteric effector for site-specific DNA binding. The affinity of BirA for the adenylate is considerably greater than its affinity for biotin, and both binding reactions are coupled to changes in the conformation of the protein. The temperature dependencies of the two binding interactions have been determined using kinetic techniques. Van't Hoff analysis of the equilibrium dissociation constants derived from the kinetic data indicate that while the two binding processes are characterized by large negative enthalpies, the entropic contributions are small for both. Binding enthalpies have also been determined by isothermal titration calorimetry. Consistent with the results of the van't Hoff analyses, the calorimetric enthalpies are large and negative. The greater precision of the calorimetric measurements allowed more accurate estimation of the entropic contributions to the binding processes, which are of opposite sign for the two ligands. In addition, the heat capacity changes associated with the two binding reactions are small. The measured thermodynamic parameters for binding of biotin and bio-5'-AMP to BirA have been utilized to dissect out structural contributions to the binding energetics. Results of these calculations indicate equivalent contributions of burial of polar and apolar surface area to both binding processes. The total loss of solvent accessible surface area is, however, greater for biotin binding. The analysis indicates furthermore that although both binding reactions are coupled to losses in configurational entropy, the magnitude of the conformational change is significantly larger for biotin binding.

  12. A critical role for the co-repressor N-CoR in erythroid differentiation and heme synthesis

    Institute of Scientific and Technical Information of China (English)

    Dianzheng Zhang; Ellen Cho; Jiemin Wong


    Co-repressor N-CoR (nuclear receptor co-repressor) has important roles in different biological processes, including proliferation, differentiation and development. Mutant mice lacking N-CoR are embryonically lethal and appear to die from anemia owing to defects in definitive erythropoiesis. However, the underlying molecular mechanisms of N-CoR-mediated erythroid differentiation are largely unknown. Using the human erythroleukemic K562 cell line, which can be chemically induced to differentiate into either erythroid or megakaryocytic lineages depending on the inducers used, we have investigated the role of N-CoR in erythroid differentiation. We show that knockdown of N-CoR either transiently (siRNA) or permanently (shRNA) impairs the cytosine arabinoside (Ara-C)- but not hemin-induced erythroid differentiation of K562 cells. RT-PCR analysis reveals that N-CoR is required for induction by Ara-C of 5-aminolevulinate synthase (ALA-S2), a key enzyme involved in heme biosynthesis. Furthermore, the amount of N-CoR proteins increases significantly during Ara-C-induced K562 differentiation, apparently through a post-transcriptional mechanism. Consistent with the data from N-CoR-null mice, N-CoR is not required for the differentiation of K562 cells into megakaryocytic lineages, induced by phorbol 12-myristate 13-acetate. Thus, our in vitro study confirms a role for N-CoR in erythroid differentiation and reveals for the first time that N-CoR is required for the induction of a key enzyme involved in heme synthesis.

  13. Role of adaptor proteins in secretory granule biogenesis and maturation

    Directory of Open Access Journals (Sweden)

    Mathilde L Bonnemaison


    Full Text Available In the regulated secretory pathway, secretory granules (SGs store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network (TGN and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins, which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by PACS-1 (Phosphofurin Acidic Cluster Sorting protein 1, a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The GGA (Golgi-localized, -ear containing, ADP-ribosylation factor binding family of adaptor proteins serve a similar role. We review the functions of AP-1A, PACS-1 and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by adaptor proteins.

  14. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry. (United States)

    Su, Baofeng; Shang, Mei; Li, Chao; Perera, Dayan A; Pinkert, Carl A; Irwin, Michael H; Peatman, Eric; Grewe, Peter; Patil, Jawahar G; Dunham, Rex A


    Channel catfish (Ictalurus punctatus) embryos were electroporated with sterilization constructs targeting primordial germ cell proteins or with buffer. Some embryos then were treated with repressor compounds, cadmium chloride, copper sulfate, sodium chloride or doxycycline, to prevent expression of the transgene constructs. Promoters included channel catfish nanos and vasa, salmon transferrin (TF), modified yeast Saccharomyces cerevisiae copper transport protein (MCTR) and zebrafish racemase (RM). Knock-down systems were the Tet-off (nanos and vasa constructs), MCTR, RM and TF systems. Knock-down genes included shRNAi targeting 5' nanos (N1), 3' nanos (N2) or dead end (DND), or double-stranded nanos RNA (dsRNA) for overexpression of nanos mRNA. These constructs previously were demonstrated to knock down nanos, vasa and dead end, with the repressors having variable success. Exogenous DNA affected percentage hatch (% hatch), as all 14 constructs, except for the TF dsRNA, TF N1 (T), RM DND (C), vasa DND (C), vasa N1 (C) and vasa N2 (C), had lower % hatch than the control electroporated with buffer. The MCTR and RM DND (T) constructs resulted in delayed hatch, and the vasa and nanos constructs had minimal effects on time of hatch (P catfish fry, and need to be considered and accounted for in the hatchery phase of producing transgenically sterilized catfish fry and their fertile counterparts. This fry output should be considered to ensure that sufficient numbers of transgenic fish are produced for future applications and for defining repressor systems that are the most successful.

  15. Aryl Hydrocarbon Receptor Repressor and TiPARP (ARTD14 Use Similar, but also Distinct Mechanisms to Repress Aryl Hydrocarbon Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Laura MacPherson


    Full Text Available The aryl hydrocarbon receptor (AHR regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. The AHR repressor (AHRR is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose polymerase (TiPARP; ARTD14 also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1 in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.

  16. Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox and MAPKs/AP-1 pathways.

    Directory of Open Access Journals (Sweden)

    Feng-Lin Yen

    Full Text Available Upregulation of intercellular adhesion molecule-1 (ICAM-1 involves adhesions between both circulating and resident leukocytes and the human lung epithelial cells during lung inflammatory reactions. We have previously demonstrated that curcumin-loaded polyvinylpyrrolidone nanoparticles (CURN improve the anti-inflammatory and anti-oxidative properties of curcumin in hepatocytes. In this study, we focused on the effects of CURN on the expression of ICAM-1 in TNF-α-treated lung epithelial cells and compared these to the effects of curcumin water preparation (CURH. TNF-αinduced ICAM-1 expression, ROS production, and cell-cell adhesion were significantly attenuated by the pretreatment with antioxidants (DPI, APO, or NAC and CURN, but not by CURH, as revealed by western blot analysis, RT-PCR, promoter assay, and ROS detection and adhesion assay. In addition, treatment of TNF-α-treated cells with CURN and antioxidants also resulted in an inhibition of activation of p47 (phox and phosphorylation of MAPKs, as compared to that using CURH. Our findings also suggest that phosphorylation of MAPKs may eventually lead to the activation of transcription factors. We also observed that the effects of TNF-α treatment for 30 min, which includes a significant increase in the binding activity of AP-1 and phosphorylation of c-jun and c-fos genes, were reduced by CURN treatment. In vivo studies have revealed that CURN improved the anti-inflammation activities of CURH in the lung epithelial cells of TNF-α-treated mice. Our results indicate that curcumin-loaded polyvinylpyrrolidone nanoparticles may potentially serve as an anti-inflammatory drug for the treatment of respiratory diseases.

  17. Immunohistochemical analysis of the expression of cellular transcription NFκB (p65), AP-1 (c-Fos and c-Jun), and JAK/STAT in leprosy. (United States)

    Silva, Luciana Mota; Hirai, Kelly Emi; de Sousa, Jorge Rodrigues; de Souza, Juarez; Fuzii, Hellen Thais; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões


    Leprosy is a disease whose clinical spectrum depends on the cytokine patterns produced during the early stages of the immune response. The main objective of this study was to describe the activation pattern of cellular transcription factors and to correlate these factors with the clinical forms of leprosy. Skin samples were obtained from 16 patients with the tuberculoid (TT) form and 14 with the lepromatous (LL) form. The histologic sections were immunostained with anti-c-Fos and anti-c-Jun monoclonal antibodies for investigation of AP-1, anti-NFκB p65 for the study of NFκB, and anti-JAK2, STAT1, STAT3, and STAT4 for investigation of the JAK/STAT pathway. Cells expressing STAT1 were more frequent in the TT form than in LL lesions (P = .0096), in agreement with the protective immunity provided by IFN-γ. STAT4 was also more highly expressed in the TT form than in the LL form (P = .0098). This transcription factor is essential for the development of a Th1 response because it is associated with interleukin-12. NFκB (p65) and STAT4 expression in the TT form showed a strong and significant correlation (r = 0.7556 and P = .0007). A moderate and significant correlation was observed between JAK2 and STAT4 in the TT form (r = 0.6637 and P = .0051), with these factors responding to interleukin-12 in Th1 profiles. The results suggest that STAT1, JAK2, and NFκB, together with STAT4, contribute to the development of cell-mediated immunity, which is able to contain the proliferation of Mycobacterium leprae.

  18. Activation of the Nrf2 Pathway by Inorganic Arsenic in Human Hepatocytes and the Role of Transcriptional Repressor Bach1

    Directory of Open Access Journals (Sweden)

    Dan Liu


    Full Text Available Previous studies have proved that the environmental toxicant, inorganic arsenic, activates nuclear factor erythroid 2-related factor 2 (Nrf2 pathway in many different cell types. This study tried to explore the hepatic Nrf2 pathway upon arsenic treatment comprehensively, since liver is one of the major target organs of arsenical toxicity. Our results showed that inorganic arsenic significantly induced Nrf2 protein and mRNA expression in Chang human hepatocytes. We also observed a dose-dependent increase of antioxidant response element- (ARE- luciferase activity. Both the mRNA and protein levels of NAD(PH:quinone oxidoreductase 1 (NQO1 and heme oxygenase-1 (HO-1 were all upregulated dramatically. On the other hand, entry and accumulation of Nrf2 protein in the nucleus, while exportting the transcriptional repressor BTB and CNC homology 1 (Bach1 from nucleus to cytoplasm, were also confirmed by western blot and immunofluorescence assay. Our results therefore confirmed the arsenic-induced Nrf2 pathway activation in hepatocytes and also suggested that the translocation of Bach1 was associated with the regulation of Nrf2 pathway by arsenic. Hepatic Nrf2 pathway plays indispensable roles for cellular defenses against arsenic hepatotoxicity, and the interplay of Bach1 and Nrf2 may be helpful to understand the self-defensive responses and the diverse biological effects of arsenicals.

  19. Identification of a Transcriptional Repressor Involved in Benzoate Metabolism in Geobacter bemidjiensis ▿



    Subsurface environments contaminated with aromatic compounds can be remediated in situ by Geobacter species. A transcription factor that represses expression of bamA, a benzoate-inducible gene, in Geobacter bemidjiensis during growth with acetate was identified. It is likely that this repressor also regulates other genes involved in aromatic compound metabolism.

  20. In vitro transcription accurately predicts lac repressor phenotype in vivo in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Matthew Almond Sochor


    Full Text Available A multitude of studies have looked at the in vivo and in vitro behavior of the lac repressor binding to DNA and effector molecules in order to study transcriptional repression, however these studies are not always reconcilable. Here we use in vitro transcription to directly mimic the in vivo system in order to build a self consistent set of experiments to directly compare in vivo and in vitro genetic repression. A thermodynamic model of the lac repressor binding to operator DNA and effector is used to link DNA occupancy to either normalized in vitro mRNA product or normalized in vivo fluorescence of a regulated gene, YFP. An accurate measurement of repressor, DNA and effector concentrations were made both in vivo and in vitro allowing for direct modeling of the entire thermodynamic equilibrium. In vivo repression profiles are accurately predicted from the given in vitro parameters when molecular crowding is considered. Interestingly, our measured repressor–operator DNA affinity differs significantly from previous in vitro measurements. The literature values are unable to replicate in vivo binding data. We therefore conclude that the repressor-DNA affinity is much weaker than previously thought. This finding would suggest that in vitro techniques that are specifically designed to mimic the in vivo process may be necessary to replicate the native system.

  1. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.


    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  2. A single mutation in the core domain of the lac repressor reduces leakiness

    NARCIS (Netherlands)

    Gatti-Lafranconi, Pietro; Dijkman, Willem; Devenish, Sean RA; Hollfelder, Florian


    The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements

  3. Effects of Task Familiarity on Stress Responses of Repressors and Sensitizers (United States)

    Pagano, Don F.


    R.S. Lazarus's theory of coping was used to investigate appraisal and reappraisal of threat in repressors and sensitizers. Two indexes of stress, self-report ratings of affect and palmar skin conductance, were measured prior to performance on a reaction time task, after one-third of the task was completed and after two-thirds of the task was…

  4. Yet1p-Yet3p interacts with Scs2p-Opi1p to regulate ER localization of the Opi1p repressor. (United States)

    Wilson, Joshua D; Thompson, Sarah L; Barlowe, Charles


    Lipid sensing mechanisms at the endoplasmic reticulum (ER) coordinate an array of biosynthetic pathways. A major phospholipid regulatory circuit in yeast is controlled by Scs2p, an ER membrane protein that binds the transcriptional repressor protein Opi1p. Cells grown in the absence of inositol sequester Scs2p-Opi1p at the ER and derepress target genes including INO1. We recently reported that Yet1p and Yet3p, the yeast homologues of BAP29 and BAP31, are required for normal growth in the absence of inositol. Here we show that the Yet1p-Yet3p complex acts in derepression of INO1 through physical association with Scs2p-Opi1p. Yet complex binding to Scs2p-Opi1p was enhanced by inositol starvation, although the interaction between Scs2p and Opi1p was not influenced by YET1 or YET3 deletion. Interestingly, live-cell imaging analysis indicated that Opi1p does not efficiently relocalize to the ER during inositol starvation in yet3Δ cells. Together our data demonstrate that a physical association between the Yet complex and Scs2p-Opi1p is required for proper localization of the Opi1p repressor to ER membranes and subsequent INO1 derepression.


    Directory of Open Access Journals (Sweden)

    Hasni Rahmawati


    Full Text Available Hasil observasi awal menunjukkan bahwa rata-rata keaktifan siswa kelas X AP 1 tergolong rendah yaitu hanya sebesar 52 %. Siswa di kelas tersebut cenderung pasif hanya beberapa siswa yang bertanya dan mengemukakan pendapat pada saat pembelajaran berlangsung. Berdasarkan latar belakang diatas, maka rumusan masalah dalam penelitian ini adalah sebagai berikut. Subjek penelitian ini adalah siswa kelas X Administrasi Perkantoran 1 SMK Hidayah Semarang yang terdiri dari 18 siswa. Hasil penelitian pada siklus I menunjukkan rata-rata keaktifan siswa sebesar 62,4% dalam kategori cukup aktif, rata-rata hasil belajar siswa sebesar 74,20 dengan ketuntasan klasikal sebesar 67%. Untuk hasil penelitian siklus II menunjukkan rata-rata keaktifan siswa sebesar 72% dalam kategori tinggi, rata-rata hasil belajar sebesar 79,62 dengan ketuntasan klasikal sebesar 72%. Untuk hasil penelitian siklus III menunjukkan rata-rata keaktifan siswa sebesar 78,88% dalam kategori tinggi, rata-rata hasil belajar sebesar 84,375 dengan ketuntasan klasikal sebesar 78%. Based on the initial observation, the data showed that the average students’ activeness of 10th grade students of Office Administration1 was less active, it was only 52%. Students were passive on the learning process because only several students who gave question and delivered arguments during the teaching learning proccess. Based on the background above, the questions of research were; 1 Did the implementations of Probing Prompting learning model improve students’ activeness? 2 The subject of this research was10th grade students of Office Administration I in SMK Hidayah Semarang, they were 18 students.. The data were collected by observation, documentation, and examination. The data were analyzed by classroom action research analysis and linear regression analysis.The result of cycle I showed that the average of students’ activeness was 62.4% which categorized on active enough, the average scor eof study result

  6. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)


    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  7. Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor. (United States)

    Hoogewerf, Arlene J; Dyk, Lisa A Van; Buit, Tyler S; Roukema, David; Resseguie, Emily; Plaisier, Christina; Le, Nga; Heeringa, Lee; Griend, Douglas A Vander


    Sequencing of a cadmium resistance operon from a Staphylococcus aureus ATCC12600 plasmid revealed that it is identical to a cadCA operon found in MRSA strains. Compared to plasmid-cured and cadC-mutant strains, cadC-positive ATCC12600 cells had increased resistance to cadmium (1 mg ml(-1) cadmium sulfate) and zinc (4 mg ml(-1) zinc sulfate), but not to other metal ions. After growth in media containing 20 µg ml(-1) cadmium sulfate, cadC-mutant cells contained more intracellular cadmium than cadC-positive ATCC12600 cells, suggesting that cadC absence results in impaired cadmium efflux. Electrophoretic mobility shift assays were performed with CadC proteins encoded by the S. aureus ATCC12600 plasmid and by the cadC gene of pI258, which is known to act as a transcriptional repressor and shares only 47% protein sequence identity with ATCC12600 CadC. Mobility shifts occurred when pI258 CadC protein was incubated with the promoter DNA-regions from the pI258 and S. aureus ATCC12600 cadCA operons, but did not occur with S. aureus ATCC12600 CadC protein, indicating that the ATCC12600 CadC protein does not interact with promoter region DNA. This cadCA operon, found in MRSA strains and previously functionally uncharacterized, increases resistance to cadmium and zinc by an efflux mechanism, and CadC does not function as a transcriptional repressor.

  8. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xu-Dong [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Meng, Qing-Hui [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Xu, Jia-Ying; Jiao, Yang [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Ge, Chun-Min [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Jacob, Asha; Wang, Ping [North Shore University Hospital-Long Island Jewish Medical Center and The Feinstein Institute for Medical Research, Manhasset, NY 11030 (United States); Rosen, Eliot M [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Fan, Saijun, E-mail: [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China)


    Research highlights: {yields} BTG2 associates with AR, androgen causes an increase of the interaction. {yields} BTG2 as a co-repressor inhibits the AR-mediated transcription activity. {yields} BTG2 inhibits the transcription activity and expression of PSA. {yields} An intact {sup 92}LxxLL{sup 96} motif is essential and necessary for these activities of BTG2, while the {sup 20}LxxLL{sup 24} motif is not required. {yields} Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ({sup 20}LxxLL{sup 24} and {sup 92}LxxLL{sup 96}), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5{alpha}-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant {sup 20}LxxLL{sup 24} motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant {sup 92}LxxLL{sup 96} motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact {sup 92}LxxLL{sup 96} motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  9. Isolation and characterisation of P-EPTX-Ap1a and P-EPTX-Ar1a: pre-synaptic neurotoxins from the venom of the northern (Acanthophis praelongus) and Irian Jayan (Acanthophis rugosus) death adders. (United States)

    Chaisakul, Janeyuth; Konstantakopoulos, Nicki; Smith, A Ian; Hodgson, Wayne C


    The neurotoxicity observed following death adder envenoming has been thought to be solely due to the presence of potent post-synaptic neurotoxins. Clinically, these effects are often poorly reversed by death adder antivenom or anticholinesterase, particularly when patients present with established paralysis. This suggests that either the post-synaptic neurotoxins are irreversible/'pseudo' irreversible, or the venom contains pre-synaptic neurotoxins that do not respond to antivenom. To support the later hypothesis, a pre-synaptic neurotoxin (P-EPTX-Aa1a) has recently been isolated from the venom of Acanthophis antarcticus. We examined Acanthophis praelongus and Acanthophis rugosus venoms for the presence of pre-synaptic neurotoxins. P-EPTX-Ap1a (40,719Da) and P-EPTX-Ar1a (40,879Da) were isolated from A. praelongus and A. rugosus venoms, respectively. P-EPTX-Ap1a and P-EPTX-Ar1a are comprised of three different subunits, alpha, beta1 and beta2. The two toxins displayed similar levels of PLA(2) activity which was almost solely attributed to the alpha subunit in both toxins. P-EPTX-Ap1a (20-100nM) and P-EPTX-Ar1a (20-100nM) caused inhibition of indirect twitches of the skeletal muscle preparation without affecting contractile responses to nicotinic receptor agonists. Interestingly, only the alpha subunit of both toxins (300nM) displayed neurotoxic activity. Inhibition of PLA(2) activity markedly reduced the effect of the toxins on muscle twitch height. These results confirm that P-EPTX-Ap1a and P-EPTX-Ar1a are pre-synaptic neurotoxins and represent the second and third such toxins to be isolated from death adder venom. The presence of pre-synaptic neurotoxins in Acanthophis sp. venoms indicates that treatment strategies for envenoming by these snakes needs to be reassessed given the likelihood of irreversible neurotoxicity.

  10. Berberine attenuates high glucose-induced proliferation and extracellular matrix accumulation in mesangial cells: involvement of suppression of cell cycle progression and NF-κB/AP-1 pathways. (United States)

    Lan, Tian; Wu, Teng; Chen, Cheng; Chen, Xiaolan; Hao, Jie; Huang, Junying; Wang, Lijing; Huang, Heqing


    Berberine has been shown to have renoprotective effects on diabetes through attenuating TGF-β1 and fibronectin (FN) expression. However, how berberine regulates TGF-β1 and FN is not fully clear. Here we investigated whether berberine inhibited TGF-β1 and FN expression in high glucose-cultured mesangial cells. Berberine significantly inhibited mesangial cell proliferation and hypertrophy by increasing the cell population in G1-phase and reducing that in S-phase. In addition, berberine reversed high glucose-induced down-regulation of cyclin-dependent kinase inhibitor p21(Waf1)/(Cip1) and p27(Kip1). Berberine inhibited p65 translocation to the nucleus and c-jun phosphorylation induced by high glucose. Furthermore, berberine attenuated high glucose-induced expression of TGF-β1 and FN. Using a luciferase reporter assay, we found that high glucose-induced transcription activity of NF-κB and AP-1 was blocked by berberine. Electrophoretic mobility shift assay showed that high glucose increased that NF-κB and AP-1 DNA binding activity. These data indicate that berberine inhibited mesangial cell proliferation and hypertrophy by modulating cell cycle progress. In addition, berberine suppressed high glucose-induced TGF-β1 and FN expression by blocking NF-κB/AP-1 pathways.

  11. EPO gene expression promotes proliferation, migration and invasion via the p38MAPK/AP-1/MMP-9 pathway by p21WAF1 expression in vascular smooth muscle cells. (United States)

    Park, Sung Lyea; Won, Se Yeon; Song, Jun-Hui; Kambe, Taiho; Nagao, Masaya; Kim, Wun-Jae; Moon, Sung-Kwon


    The use of recombinant human erythropoietin (rHuEpo) can lead to hypertrophy and hyperplasia, and has induced the proliferation of vascular smooth muscle cells (VSMCs). The effect of the EPO gene in the migration and invasion of VSMCs remains unclear. In this study, overexpression of the EPO gene increased the DNA synthesis and phosphorylation of ERK1/2 and p38MAPK in VSMCs. In addition, EPO gene expression induced the migration and invasion of VSMCs via the expression of MMP-9 by the activation of NF-κB and AP-1 binding. A blockade of p38MAPK by specific p38MAPK inhibitor SB203580 led to a suppression of the increased DNA synthesis, migration, and invasion of VSMCs that was induced by the EPO gene. SB203580 treatment blocked the increased expression of MMP-9 through the binding activity of AP-1. Transfection of the EPO gene with VSMCs was associated with the up-regulation of cyclin D1/CDK4, cyclin E/CDK2, and p21WAF1, and with the down-regulation of p27KIP1. The specific suppression of p21WAF1 expression by siRNA rescued the enhancement of DNA synthesis via the phosphorylation of p38MAPK and the increase in migration and invasion through AP-1-mediated MMP-9 expression in EPO gene transfectants. These novel findings demonstrate that p21WAF1 regulates the proliferation, migration and invasion of VSMC induced by EPO gene.

  12. Spo0A positively regulates epr expression by negating the repressive effect of co-repressors, SinR and ScoC, in Bacillus subtilis

    Indian Academy of Sciences (India)

    Monica Gupta; Madhulika Dixit; K Krishnamurthy Rao


    Bacillus subtilis under nutritional deprivation exhibits several physiological responses such as synthesis of degradative enzymes, motility, competence, sporulation, etc. At the onset of post-exponential phase the global response regulator, Spo0A, directly or indirectly activates the expression of genes involved in the above processes. These genes are repressed during the exponential phase by a group of proteins called transition state regulators, e.g. AbrB, ScoC and SinR. One such post-exponentially expressed gene is epr, which encodes a minor extracellular serine protease and is involved in the swarming motility of B. subtilis. Deletion studies of the upstream region of epr promoter revealed that epr is co-repressed by transition state regulators, SinR and ScoC. Our study shows that Spo0A positively regulates epr expression by nullifying the repressive effect of co-repressors, SinR and ScoC. We demonstrate via in vitro mobility shift assays that Spo0A binds to the upstream region of epr promoter and in turn occludes the binding site of one of the co-repressor, SinR. This explains the mechanism behind the positive regulatory effect of Spo0A on epr expression.

  13. RflM functions as a transcriptional repressor in the autogenous control of the Salmonella Flagellar master operon flhDC. (United States)

    Singer, Hanna M; Erhardt, Marc; Hughes, Kelly T


    Motility of bacteria like Salmonella enterica is a highly regulated process that responds to a variety of internal and external stimuli. A hierarchy of three promoter classes characterizes the Salmonella flagellar system, and the onset of flagellar gene expression depends on the oligomeric regulatory complex and class 1 gene product FlhD(4)C(2). The flhDC promoter is a target for a broad range of transcriptional regulators that bind within the flhDC promoter region and either negatively or positively regulate flhDC operon transcription. In this work, we demonstrate that the RflM protein is a key component of flhDC regulation. Transposon mutagenesis was performed to investigate a previously described autoinhibitory effect of the flagellar master regulatory complex FlhD(4)C(2). RflM is a LuxR homolog that functions as a flagellar class 1 transcriptional repressor. RflM was found to be the negative regulator of flhDC expression that is responsible for the formerly described autoinhibitory effect of the FlhD(4)C(2) complex on flhDC operon transcription (K. Kutsukake, Mol. Gen. Genet. 254:440-448, 1997). We conclude that upon commencement of flagellar gene expression, the FlhD(4)C(2) complex initiates a regulatory feedback loop by activating rflM gene expression. rflM encodes a transcriptional repressor, RflM, which fine-tunes flhDC expression levels.

  14. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses.

    Directory of Open Access Journals (Sweden)

    Sandra Fonseca

    Full Text Available Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs. Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.

  15. Situational Discrimination in Repressor-type and Sensitizer-type Approval Seekers and the Birth Order by Subject Sex Interaction (United States)

    Becker, Gilbert


    Five experiments are reported. One conclusion in that repressor-type high need-for-approval subjects made the discrimination and permitted less favorable self-description, but sensitizer-type high need-for-approval subjects did not. (DB)

  16. 花发育中的转录共抑制子%Transcription Co-repressors in Flower Development

    Institute of Scientific and Technical Information of China (English)



    Transcription co-repressors are negative regulators of gene expression. Since they do not possess a DNA-binding motif, their ability to repress gene expression depends on their association with other DNA-binding transcription factors. One well characterized transcription co-repressor is the yeast Tup1. Although unable to bind DNA by itself, the Tup1 co-repressor is recruited by different DNA-binding transcription factors to repress pathway-specific gene expression. Recent isolations of two Arabidopsis genes, LEUNIG (LUG) and SEUSS (SEU), suggest that similar types of co-repressors are involved in the transcription repression of floral homeotic genes during flower development. This review will summarize these findings, speculate on mechanisms, and discuss future directions.

  17. FHL2 Interacts with and Acts as a Functional Repressor of Id2 in Human Neuroblastoma Cells

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Han; Zhi-qiang Wu; Ya-li Zhao; Yi-ling Si; Xiao-bing Fu


    Objective: Id2 is a natural inhibitor of the basic helix-loop-helix(bHLH) transcription factors. Although it is well known that active Id2 prevents differentiation and promotes cell cycle progression and tumorigenesis, the molecular events that regulate Id2 activity remain to be investigated.Methods: Yeast two-hybrid, mammalian two-hybrid, GST-pulldown and immunoprecipitation (CoIP) assays were used to screen and identify novel Id2 interactors. Luciferase assays were used to detect E47-mediated transcription activity. Colony formation and BrdU incorporation assays were used to determine cellular proliferation abilities. Northorn blot, western blot and quantitative PCR methods were used to measure gene expression levels. Electrophoretic mobility shift assays (EMSAs) were performed to investigate protein/DNA binding.Results: The LIM-only protein FHL2 (four-and-a-half-LIM-only protein 2) was identified to be a novel Id2 interactor. The HLH domain within Id2 is not required for its interaction with FHL2. FHL2 antagonizes the inhibitory effect of Id2 on the basic helix-loop-helix protein E47-mediated transcription. FHL2 prevents the formation of Id2-E47 heterdimer, thus releasing E47 to its target DNA and restoring its transcriptional activity. FHL2 expression was remarkably up-regulated during retinoic acid-induced differentiation of neuroblastoma cells, during which the expression of Id2 is opposite to that. Ectopic FHL2 expression in neuroblastoma cells markedly reduces the transcriptional and cell-cycle promoting functions of Id2.Conclusion: These results indicate that FHL2 is an important repressor of the oncogenic activity of Id2 in neuroblastoma cells.

  18. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Selena Gimenez-Ibanez


    Full Text Available Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR, which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile. Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.

  19. The response regulator YycF inhibits expression of the fatty acid biosynthesis repressor FabT in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Maria Luz Mohedano


    Full Text Available The YycFG (also known as WalRK, VicRK, MicAB or TCS02 two-component system (TCS is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.

  20. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae (United States)

    Mohedano, Maria L.; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M.; López, Paloma


    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation. PMID:27610104

  1. Focal adhesion kinase is a phospho-regulated repressor of Rac and proliferation in human endothelial cells

    Directory of Open Access Journals (Sweden)

    Patrick W. Bryant


    Focal adhesion kinase (FAK is critically positioned to integrate signals from the extracellular matrix and cellular adhesion. It is essential for normal vascular development and has been implicated in a wide range of cellular functions including the regulation of cell proliferation, migration, differentiation, and survival. It is currently being actively targeted therapeutically using different approaches. We have used human endothelial cells as a model system to compare the effects of inhibiting FAK through several different approaches including dominant negatives, kinase inhibitors and shRNA. We find that manipulations of FAK signaling that result in inhibition of FAK 397 phosphorylation inhibit proliferation and migration. However, abolition of FAK expression using stable (shRNA or transient (siRNA approaches does not interfere with these cellular functions. The ability to regulate cell proliferation by FAK manipulation is correlated with the activation status of Rac, an essential signal for the regulation of cyclin-dependent kinase inhibitors. The knockdown of FAK, while not affecting cellular proliferation or migration, dramatically interferes with vascular morphogenesis and survival, mirroring in vivo findings. We propose a novel model of FAK signaling whereby one of the multifunctional roles of FAK as a signaling protein includes FAK as a phospho-regulated repressor of Rac activation, with important implications on interpretation of research experiments and therapeutic development.

  2. High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    Directory of Open Access Journals (Sweden)

    Du Peige


    Full Text Available Abstract Background Estrogen receptor α (ERα is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2. Results From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131 as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE. In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene. Conclusion We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells.

  3. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)


    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  4. Binding of the N-Terminal Domain of the Lactococcal Bacteriophage TP901-1 CI Repressor to Its Target DNA: A Crystallography, Small Angle Scattering, and Nuclear Magnetic Resonance Study

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner; Rasmussen, Kim K.; Jensen, Malene Ringkjøbing


    In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix–turn–helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator...... sites). Here the crystal structure of the NTD of the CI repressor from phage TP901-1 has been determined at 1.6 Å resolution, and at 2.6 Å resolution in complex with a 9 bp double-stranded DNA fragment that constitutes a half-site of the OL operator. This N-terminal construct, comprising residues 2...... by NMR in solution with a full palindromic site. The interactions seen in the complexes (in the crystal and in solution) explain the observed affinity for the OR site that is lower than that for the OL site and the specificity for the recognized DNA sequence in comparison to that for other repressors...

  5. Transcription Factor Ets-2 Acts as a Preinduction Repressor of Interleukin-2 (IL-2) Transcription in Naive T Helper Lymphocytes. (United States)

    Panagoulias, Ioannis; Georgakopoulos, Tassos; Aggeletopoulou, Ioanna; Agelopoulos, Marios; Thanos, Dimitris; Mouzaki, Athanasia


    IL-2 is the first cytokine produced when naive T helper (Th) cells are activated and differentiate into dividing pre-Th0 proliferating precursors. IL-2 expression is blocked in naive, but not activated or memory, Th cells by the transcription factor Ets-2 that binds to the antigen receptor response element (ARRE)-2 of the proximal IL-2 promoter. Ets-2 acts as an independent preinduction repressor in naive Th cells and does not interact physically with the transcription factor NFAT (nuclear factor of activated T-cells) that binds to the ARRE-2 in activated Th cells. In naive Th cells, Ets-2 mRNA expression, Ets-2 protein levels, and Ets-2 binding to ARRE-2 decrease upon cell activation followed by the concomitant expression of IL-2. Cyclosporine A stabilizes Ets-2 mRNA and protein when the cells are activated. Ets-2 silences directly constitutive or induced IL-2 expression through the ARRE-2. Conversely, Ets-2 silencing allows for constitutive IL-2 expression in unstimulated cells. Ets-2 binding to ARRE-2 in chromatin is stronger in naive compared with activated or memory Th cells; in the latter, Ets-2 participates in a change of the IL-2 promoter architecture, possibly to facilitate a quick response when the cells re-encounter antigen. We propose that Ets-2 expression and protein binding to the ARRE-2 of the IL-2 promoter are part of a strictly regulated process that results in a physiological transition of naive Th cells to Th0 cells upon antigenic stimulation. Malfunction of such a repression mechanism at the molecular level could lead to a disturbance of later events in Th cell plasticity, leading to autoimmune diseases or other pathological conditions.

  6. The anti-repressor MecR2 promotes the proteolysis of the mecA repressor and enables optimal expression of β-lactam resistance in MRSA.

    Directory of Open Access Journals (Sweden)

    Pedro Arêde

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA is an important human pathogen, which is cross-resistant to virtually all β-lactam antibiotics. MRSA strains are defined by the presence of mecA gene. The transcription of mecA can be regulated by a sensor-inducer (MecR1 and a repressor (MecI, involving a unique series of proteolytic steps. The induction of mecA by MecR1 has been described as very inefficient and, as such, it is believed that optimal expression of β-lactam resistance by MRSA requires a non-functional MecR1-MecI system. However, in a recent study, no correlation was found between the presence of functional MecR1-MecI and the level of β-lactam resistance in a representative collection of epidemic MRSA strains. Here, we demonstrate that the mecA regulatory locus consists, in fact, of an unusual three-component arrangement containing, in addition to mecR1-mecI, the up to now unrecognized mecR2 gene coding for an anti-repressor. The MecR2 function is essential for the full induction of mecA expression, compensating for the inefficient induction of mecA by MecR1 and enabling optimal expression of β-lactam resistance in MRSA strains with functional mecR1-mecI regulatory genes. Our data shows that MecR2 interacts directly with MecI, destabilizing its binding to the mecA promoter, which results in the repressor inactivation by proteolytic cleavage, presumably mediated by native cytoplasmatic proteases. These observations point to a revision of the current model for the transcriptional control of mecA and open new avenues for the design of alternative therapeutic strategies for the treatment of MRSA infections. Moreover, these findings also provide important insights into the complex evolutionary pathways of antibiotic resistance and molecular mechanisms of transcriptional regulation in bacteria.

  7. Induction of Plasmid Conjugation in Bacillus subtilis Is Bistable and Driven by a Direct Interaction of a Rap/Phr Quorum-sensing System with a Master Repressor. (United States)

    Rösch, Thomas C; Graumann, Peter L


    Conjugation of plasmid pLS20 from Bacillus subtilis is limited to a time window between early and late exponential growth. Genetic evidence has suggested that pLS20-encoded protein RcoLS20 represses expression of a large conjugation operon, whereas Rap protein RapLS20 relieves repression. We show that RapLS20 is a true antirepressor protein that forms dimers in vivo and in vitro and that it directly binds to the repressor protein RcoLS20 in a 1:1 stoichiometry. We provide evidence that RapLS20 binds to the helix-turn-helix-containing domain of RcoLS20 in vivo, probably obstructing DNA binding of RcoLS20, as seen in competitive DNA binding experiments. The activity of RapLS20 in turn is counteracted by the addition of the cognate PhrLS20 peptide, which directly binds to the Rap protein and presumably induces a conformational change of the antirepressor. Thus, a Rap protein acts directly as an antirepressor protein during regulation of plasmid conjugation, turning on conjugation, and is counteracted by the PhrLS20 peptide, which, by analogy to known Rap/Phr systems, is secreted and taken back up into the cells, mediating cell density-driven regulation. Finally, we show that this switchlike process establishes a population heterogeneity, where up to 30% of the cells induce transcription of the conjugation operon.

  8. Induction of Plasmid Conjugation in Bacillus subtilis Is Bistable and Driven by a Direct Interaction of a Rap/Phr Quorum-sensing System with a Master Repressor* (United States)

    Rösch, Thomas C.; Graumann, Peter L.


    Conjugation of plasmid pLS20 from Bacillus subtilis is limited to a time window between early and late exponential growth. Genetic evidence has suggested that pLS20-encoded protein RcoLS20 represses expression of a large conjugation operon, whereas Rap protein RapLS20 relieves repression. We show that RapLS20 is a true antirepressor protein that forms dimers in vivo and in vitro and that it directly binds to the repressor protein RcoLS20 in a 1:1 stoichiometry. We provide evidence that RapLS20 binds to the helix-turn-helix-containing domain of RcoLS20 in vivo, probably obstructing DNA binding of RcoLS20, as seen in competitive DNA binding experiments. The activity of RapLS20 in turn is counteracted by the addition of the cognate PhrLS20 peptide, which directly binds to the Rap protein and presumably induces a conformational change of the antirepressor. Thus, a Rap protein acts directly as an antirepressor protein during regulation of plasmid conjugation, turning on conjugation, and is counteracted by the PhrLS20 peptide, which, by analogy to known Rap/Phr systems, is secreted and taken back up into the cells, mediating cell density-driven regulation. Finally, we show that this switchlike process establishes a population heterogeneity, where up to 30% of the cells induce transcription of the conjugation operon. PMID:26112413

  9. Mechanism of Action of Bacteriophage T4 Translational Repressor regA protein (United States)


    was examined by measuring the dependence of logIC. on [Na÷] (19), which indicated that there is a maximum of one ionic interaction involved in CN6...sensitivity studies, which indicated that binding involves no more than one ionic interaction , it seems unlikely that the binding of peptide CN6 is driven

  10. Repressor mutant forms of the Azospirillum brasilense NtrC protein. (United States)

    Huergo, Luciano F; Assumpção, Marcelo C; Souza, Emanuel M; Steffens, M Berenice R; Yates, M Geoffrey; Chubatsu, Leda S; Pedrosa, Fábio O


    The Azospirillum brasilense mutant strains FP8 and FP9, after treatment with nitrosoguanidine, showed a null Nif phenotype and were unable to use nitrate as their sole nitrogen source. Sequencing of the ntrC genes revealed single nucleotide mutations in the NtrC nucleotide-binding site. The phenotypes of these strains are discussed in relation to their genotypes.

  11. Protein (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  12. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian


    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work...

  13. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hartmann Michelle


    Full Text Available Abstract Background The major uptake system responsible for the transport of fructose, glucose, and sucrose in Corynebacterium glutamicum ATCC 13032 is the phosphoenolpyruvate:sugar phosphotransferase system (PTS. The genes encoding PTS components, namely ptsI, ptsH, and ptsF belong to the fructose-PTS gene cluster, whereas ptsG and ptsS are located in two separate regions of the C. glutamicum genome. Due to the localization within and adjacent to the fructose-PTS gene cluster, two genes coding for DeoR-type transcriptional regulators, cg2118 and sugR, are putative candidates involved in the transcriptional regulation of the fructose-PTS cluster genes. Results Four transcripts of the extended fructose-PTS gene cluster that comprise the genes sugR-cg2116, ptsI, cg2118-fruK-ptsF, and ptsH, respectively, were characterized. In addition, it was shown that transcription of the fructose-PTS gene cluster is enhanced during growth on glucose or fructose when compared to acetate. Subsequently, the two genes sugR and cg2118 encoding for DeoR-type regulators were mutated and PTS gene transcription was found to be strongly enhanced in the presence of acetate only in the sugR deletion mutant. The SugR regulon was further characterized by microarray hybridizations using the sugR mutant and its parental strain, revealing that also the PTS genes ptsG and ptsS belong to this regulon. Binding of purified SugR repressor protein to a 21 bp sequence identified the SugR binding site as an AC-rich motif. The two experimentally identified SugR binding sites in the fructose-PTS gene cluster are located within or downstream of the mapped promoters, typical for transcriptional repressors. Effector studies using electrophoretic mobility shift assays (EMSA revealed the fructose PTS-specific metabolite fructose-1-phosphate (F-1-P as a highly efficient, negative effector of the SugR repressor, acting in the micromolar range. Beside F-1-P, other sugar-phosphates like fructose

  14. The Expression of Fos, Jun and AP-1 DNA Binding Activity in Rat Supraoptic Nucleus Neurons Following Acute Versus Repeated Osmotic Stimulation (United States)


    stimulation. This pattern has been observed previously in the hippocampus after treatment with the seizure-inducing drug , metrazole (Sonnenberg et al... fosB , and fra-1 and -2. fra refers to ~OS­ ~elated ~ntigen. Western blot experiments and employment of less stringent nucleic acid hybridization...fos, fra-l and fosB , only form heterodimeric complexes with Jun-related proteins (Nakabeppu et al., 1988; Rauscher et al., 1988b) The AP-l site of many

  15. The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

    Directory of Open Access Journals (Sweden)

    Gullberg Urban


    Full Text Available Abstract Background The Eight-Twenty-One (ETO nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16 and myeloid translocation Gene-Related protein 1 (MTGR1. By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function. Results A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells. Conclusions We demonstrate that the GATA-1 transcription factor binds and

  16. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2 (United States)

    Saito, Takeshi; Hirai, Reiko; Loo, Yueh-Ming; Owen, David; Johnson, Cynthia L.; Sinha, Sangita C.; Akira, Shizuo; Fujita, Takashi; Gale, Michael


    RIG-I is an RNA helicase containing caspase activation and recruitment domains (CARDs). RNA binding and signaling by RIG-I are implicated in pathogen recognition and triggering of IFN-α/β immune defenses that impact cell permissiveness for hepatitis C virus (HCV). Here we evaluated the processes that control RIG-I signaling. RNA binding studies and analysis of cells lacking RIG-I, or the related MDA5 protein, demonstrated that RIG-I, but not MDA5, efficiently binds to secondary structured HCV RNA to confer induction of IFN-β expression. We also found that LGP2, a helicase related to RIG-I and MDA5 but lacking CARDs and functioning as a negative regulator of host defense, binds HCV RNA. In resting cells, RIG-I is maintained as a monomer in an autoinhibited state, but during virus infection and RNA binding it undergoes a conformation shift that promotes self-association and CARD interactions with the IPS-1 adaptor protein to signal IFN regulatory factor 3- and NF-κB-responsive genes. This reaction is governed by an internal repressor domain (RD) that controls RIG-I multimerization and IPS-1 interaction. Deletion of the RIG-I RD resulted in constitutive signaling to the IFN-β promoter, whereas RD expression alone prevented signaling and increased cellular permissiveness to HCV. We identified an analogous RD within LGP2 that interacts in trans with RIG-I to ablate self-association and signaling. Thus, RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses. Modulation of RIG-I/LGP2 interaction dynamics may have therapeutic implications for immune regulation. PMID:17190814

  17. The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor. (United States)

    Gasmi, Najla; Jacques, Pierre-Etienne; Klimova, Natalia; Guo, Xiao; Ricciardi, Alessandra; Robert, François; Turcotte, Bernard


    In the yeast Saccharomyces cerevisiae, fermentation is the major pathway for energy production, even under aerobic conditions. However, when glucose becomes scarce, ethanol produced during fermentation is used as a carbon source, requiring a shift to respiration. This adaptation results in massive reprogramming of gene expression. Increased expression of genes for gluconeogenesis and the glyoxylate cycle is observed upon a shift to ethanol and, conversely, expression of some fermentation genes is reduced. The zinc cluster proteins Cat8, Sip4, and Rds2, as well as Adr1, have been shown to mediate this reprogramming of gene expression. In this study, we have characterized the gene YBR239C encoding a putative zinc cluster protein and it was named ERT1 (ethanol regulated transcription factor 1). ChIP-chip analysis showed that Ert1 binds to a limited number of targets in the presence of glucose. The strongest enrichment was observed at the promoter of PCK1 encoding an important gluconeogenic enzyme. With ethanol as the carbon source, enrichment was observed with many additional genes involved in gluconeogenesis and mitochondrial function. Use of lacZ reporters and quantitative RT-PCR analyses demonstrated that Ert1 regulates expression of its target genes in a manner that is highly redundant with other regulators of gluconeogenesis. Interestingly, in the presence of ethanol, Ert1 is a repressor of PDC1 encoding an important enzyme for fermentation. We also show that Ert1 binds directly to the PCK1 and PDC1 promoters. In summary, Ert1 is a novel factor involved in the regulation of gluconeogenesis as well as a key fermentation gene.

  18. A Novel Repressor of the ica Locus Discovered in Clinically Isolated Super-Biofilm-Elaborating Staphylococcus aureus (United States)

    Yu, Liansheng; Hisatsune, Junzo; Hayashi, Ikue; Tatsukawa, Nobuyuki; Sato’o, Yusuke; Mizumachi, Emiri; Kato, Fuminori; Hirakawa, Hideki; Pier, Gerald B.


    ABSTRACT Staphylococcus aureus TF2758 is a clinical isolate from an atheroma and a super-biofilm-elaborating/polysaccharide intercellular adhesin (PIA)/poly-N-acetylglucosamine (PNAG)-overproducing strain (L. Shrestha et al., Microbiol Immunol 60:148–159, 2016, A microarray analysis and DNA genome sequencing were performed to identify the mechanism underlying biofilm overproduction by TF2758. We found high transcriptional expression levels of a 7-gene cluster (satf2580 to satf2586) and the ica operon in TF2758. Within the 7-gene cluster, a putative transcriptional regulator gene designated rob had a nonsense mutation that caused the truncation of the protein. The complementation of TF2758 with rob from FK300, an rsbU-repaired derivative of S. aureus strain NCTC8325-4, significantly decreased biofilm elaboration, suggesting a role for rob in this process. The deletion of rob in non-biofilm-producing FK300 significantly increased biofilm elaboration and PIA/PNAG production. In the search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob, we identified open reading frame (ORF) SAOUHSC_2898 (satf2584). Our results suggest that ORF SAOUHSC_2898 (satf2584) and icaADBC are required for enhanced biofilm elaboration and PIA/PNAG production in the rob deletion mutant. Rob bound to a palindromic sequence within its own promoter region. Furthermore, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is an important regulator of biofilm elaboration through its control of SAOUHSC_2898 (SATF2584) and Ica protein expression in S. aureus. PMID:28143981

  19. Overexpression of the novel MATE fluoroquinolone efflux pump FepA in Listeria monocytogenes is driven by inactivation of its local repressor FepR.

    Directory of Open Access Journals (Sweden)

    François Guérin

    Full Text Available Whereas fluoroquinolone resistance mainly results from target modifications in gram-positive bacteria, it is primarily due to active efflux in Listeria monocytogenes. The aim of this study was to dissect a novel molecular mechanism of fluoroquinolone resistance in this important human pathogen. Isogenic L. monocytogenes clinical isolates BM4715 and BM4716, respectively susceptible and resistant to fluoroquinolones, were studied. MICs of norfloxacin and ciprofloxacin were determined in the presence or in the absence of reserpine (10 mg/L. Strain BM4715 was susceptible to norfloxacin (MIC, 4 mg/L and ciprofloxacin (MIC, 0.5 mg/L whereas BM4716 was highly resistant to both drugs (MICs 128 and 32 mg/L, respectively. Reserpine was responsible for a 16-fold decrease in both norfloxacin and ciprofloxacin MICs against BM4716 suggesting efflux associated resistance. Whole-genome sequencing of the strains followed by comparative genomic analysis revealed a single point mutation in the gene for a transcriptional regulator, designated fepR (for fluoroquinolone efflux protein regulator belonging to the TetR family. The frame-shift mutation was responsible for the introduction of a premature stop codon resulting in an inactive truncated protein. Just downstream from fepR, the structural gene for an efflux pump of the MATE family (named FepA was identified. Gene expression was quantified by qRT-PCR and demonstrated that fepA expression was more than 64-fold higher in BM4716 than in BM4715. The clean deletion of the fepR gene from BM4715 was responsible for an overexpression of fepA with resistance to norfloxacin and ciprofloxacin, confirming the role of FepR as a local repressor of fepA. In conclusion, we demonstrated that overexpression of the new MATE efflux pump FepA is responsible for fluoroquinolone resistance in L. monocytogenes and secondary to inactivation of the FepR repressor.

  20. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells. (United States)

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J; Gespach, Christian; Liaudet-Coopman, Emmanuelle


    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner.

  1. Repressor element-1 silencing transcription factor/neuronal restrictive silencer factor (REST/NRSF can regulate HSV-1 immediate-early transcription via histone modification

    Directory of Open Access Journals (Sweden)

    Hill James M


    Full Text Available Abstract Background During primary infection of its human host, Herpes Simplex Virus Type-1 (HSV-1 establishes latency in neurons where the viral genome is maintained in a circular form associated with nucleosomes in a chromatin configration. During latency, most viral genes are silenced, although the molecular mechanisms responsible for this are unclear. We hypothesized that neuronal factors repress HSV-1 gene expression during latency. A search of the HSV-1 DNA sequence for potential regulatory elements identified a Repressor Element-1/Neuronal Restrictive Silencer Element (RE-1/NRSE located between HSV-1 genes ICP22 and ICP4. We predicted that the Repressor Element Silencing Transcription Factor/Neuronal Restrictive Silencer Factor (REST/NRSF regulates expression of ICP22 and ICP4. Results Transient cotransfection indicated that REST/NRSF inhibited the activity of both promoters. In contrast, cotransfection of a mutant form of REST/NRSF encoding only the DNA-binding domain of the protein resulted in less inhibition. Stably transformed cell lines containing episomal reporter plasmids with a chromatin structure showed that REST/NRSF specifically inhibited the ICP4 promoter, but not the ICP22 promoter. REST/NRSF inhibition of the ICP4 promoter was reversed by histone deacetylase (HDAC inhibitor Trichostatin A (TSA. Additionally, chromatin immuno-precipitation (ChIP assays indicated that the corepressor CoREST was recruited to the proximity of ICP4 promoter and that acetylation of histone H4 was reduced in the presence of REST/NRSF. Conclusion Since the ICP4 protein is a key transactivator of HSV-1 lytic cycle genes, these results suggest that REST/NRSF may have an important role in the establishment and/or maintenance of HSV-1 gene silencing during latency by targeting ICP4 expression.

  2. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Dongsheng eZhou


    Full Text Available Vibrio parahaemolyticus, a leading cause of seafood-associated diarrhea and gastroenteritis, harbors three major virulence gene loci T3SS1, Vp-PAI (T3SS1+tdh2 and T6SS2. As showing is this study, the nucleoid-associated DNA-binding regulator H-NS binds to multiple promoter-proximal regions in each of the above three loci to repress their transcription, and moreover H-NS inhibits the cytotoxicitiy, enterotoxicity, hemolytic activity, and mouse lethality of V. parahaemolyticus. H-NS appears to act as a major repressor of the virulence of this pathogen.

  3. The nuclear factor YY1 suppresses the human gamma interferon promoter through two mechanisms: inhibition of AP1 binding and activation of a silencer element.



    Our group has previously reported that the nuclear factor Yin-Yang 1 (YY1), a ubiquitous DNA-binding protein, is able to interact with a silencer element (BE) in the gamma interferon (IFN-gamma) promoter region. In this study, we demonstrated that YY1 can directly inhibit the activity of the IFN-gamma promoter by interacting with multiple sites in the promoter. In cotransfection assays, a YY1 expression vector significantly inhibited IFN-gamma promoter activity. Mutation of the YY1 binding si...

  4. Helicobacter pylori promotes invasion and metastasis of gastric cancer cells through activation of AP-1 and up-regulation of CACUL1. (United States)

    Kong, Ying; Ma, Li-qing; Bai, Pei-song; Da, Rong; Sun, Hong; Qi, Xiao-gai; Ma, Jie-qun; Zhao, Ru-ming; Chen, Nan-zheng; Nan, Ke-jun


    Infection with Helicobacter pylori is important in the development and progression of gastric cancer. However, the mechanisms that regulate this activation in gastric tumors remain elusive. CACUL1 has been cloned and identified as a novel gene that is expressed in many types of cancer and is involved in cell cycle regulation and tumor growth. The current study aimed to examine the expression of CACUL1 in gastric cancer samples and analyze its correlation with H. pylori infection. We found that CACUL1 was highly expressed in gastric cancer tissues and negatively correlated with gastric cancer differentiation and TNM stage. In addition, CACUL1 expression was high in H. pylori-infected tissues compared with H. pylori non-infected tissue. We found that H. pylori could up-regulate CACUL1 expression through activating protein 1. The up-regulation of CACUL1 expression could promote matrix metalloproteinase 9 and Slug expression to increase invasion and metastasis of tumor cells. These results suggested that H. pylori-triggered CACUL1 production occurred in an activating protein 1-dependent manner and regulated matrix metalloproteinase 9 and Slug expression to affect the invasion and metastasis of tumor cells. Therefore, CACUL1 is a potential therapeutic target for the treatment of aggressive gastric cancer.

  5. TGF-β2 induces Grb2 to recruit PI3-K to TGF-RII that activates JNK/AP-1-signaling and augments invasiveness of Theileria-transformed macrophages. (United States)

    Haidar, Malak; Whitworth, Jessie; Noé, Gaelle; Liu, Wang Qing; Vidal, Michel; Langsley, Gordon


    Theileria-infected macrophages display many features of cancer cells such as heightened invasive capacity; however, the tumor-like phenotype is reversible by killing the parasite. Moreover, virulent macrophages can be attenuated by multiple in vitro passages and so provide a powerful model to elucidate mechanisms related to transformed macrophage virulence. Here, we demonstrate that in two independent Theileria-transformed macrophage cell lines Grb2 expression is down-regulated concomitant with loss of tumor virulence. Using peptidimer-c to ablate SH2 and SH3 interactions of Grb2 we identify TGF-receptor II and the p85 subunit of PI3-K, as Grb2 partners in virulent macrophages. Ablation of Grb2 interactions reduces PI3-K recruitment to TGF-RII and decreases PIP3 production, and dampens JNK phosphorylation and AP-1-driven transcriptional activity down to levels characteristic of attenuated macrophages. Loss of TGF-R>PI3-K>JNK>AP-1 signaling negatively impacts on virulence traits such as reduced JAM-L/ITG4A and Fos-B/MMP9 expression that contribute to virulent macrophage adhesion and invasiveness.

  6. Luteolin 8-C-β-fucopyranoside inhibits invasion and suppresses TPA-induced MMP-9 and IL-8 via ERK/AP-1 and ERK/NF-κB signaling in MCF-7 breast cancer cells. (United States)

    Park, Su-Ho; Kim, Jung-Hee; Lee, Dong-Hun; Kang, Jeong-Woo; Song, Hyuk-Hwan; Oh, Sei-Ryang; Yoon, Do-Young


    Matrix metalloproteinase 9 (MMP-9) and interleukin-8 (IL-8) play major roles in tumor progression and invasion of breast cancer cells. The present study was undertaken to investigate the inhibitory mechanism of cell invasion by luteolin 8-C-β-fucopyranoside (named as LU8C-FP), a C-glycosylflavone, in human breast cancer cells. We investigated whether LU8C-FP would inhibit MMP-9 activation and IL-8 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 breast cancer cells. LU8C-FP suppressed TPA-induced MMP-9 and IL-8 secretion and mRNA expression via inhibition of the MAPK signaling pathway and down-regulation of nuclear AP-1 and NF-κB. TPA-induced phosphorylation of ERK 1/2 was suppressed by LU8C-FP, whereas JNK and p38 MAPK phosphorylation were unaffected. In addition, LU8C-FP blocked the ERK 1/2 pathways following expression of MMP-9 and IL-8. These results suggest LU8C-FP may function to suppress invasion of breast cancer cells through the ERK/AP-1 and ERK/NF-κB signaling cascades.

  7. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics. (United States)

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H


    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  8. DAX1 suppresses FXR transactivity as a novel co-repressor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin; Lu, Yan; Liu, Ruya; Xiong, Xuelian; Zhang, Zhijian; Zhang, Xianfeng [Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025 (China); Ning, Guang, E-mail: [Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025 (China); The Key Laboratory of Endocrine Tumors and The Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai 200025 (China); Li, Xiaoying, E-mail: [Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025 (China); The Key Laboratory of Endocrine Tumors and The Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai 200025 (China)


    Highlights: {yields} DAX1 is co-localized with FXR and interacts with FXR. {yields} DAX1 acts as a negative regulator of FXR. {yields} Three LXXLL motifs in the N-terminus of DAX1 were required. {yields} DAX1 suppresses FXR transactivation by competing with co-activators. -- Abstract: Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1{alpha}. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.

  9. Epigenetic repressor-like genes are differentially regulated during grapevine (Vitis vinifera L.) development. (United States)

    Almada, Rubén; Cabrera, Nuri; Casaretto, José A; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González Villanueva, Enrique


    Grapevine sexual reproduction involves a seasonal separation between inflorescence primordia (flowering induction) and flower development. We hypothesized that a repression mechanism implicating epigenetic changes could play a role in the seasonal separation of these two developmental processes in grapevine. Therefore, the expression of five grapevine genes with homology to the Arabidopsis epigenetic repressor genes FERTILIZATION INDEPENDENT ENDOSPERM (FIE), EMBRYONIC FLOWER 2 (EMF2), CURLY LEAF (CLF), MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) and SWINGER (SWN) was analyzed during the development of buds and vegetative and reproductive organs. During bud development, the putative grapevine epigenetic repressor genes VvCLF, VvEMF2, VvMSI1, VvSWN and VvFIE are mainly expressed in latent buds at the flowering induction period, but also detected during bud burst and inflorescence/flower development. The overlapping expression patterns of grapevine PcG-like genes in buds suggest that chromatin remodeling mechanisms could be operating during grapevine bud development for controlling processes such as seasonal flowering, dormancy and bud burst. Furthermore, the expression of grapevine PcG-like genes was also detected in fruits and vegetative organs, suggesting that epigenetic changes could be at the basis of the regulation of various proliferation-differentiation cell transitions that occur during grapevine development.

  10. Prediction of DtxR regulon: Identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae

    Directory of Open Access Journals (Sweden)

    Hasnain Seyed


    Full Text Available Abstract Background The diphtheria toxin repressor, DtxR, of Corynebacterium diphtheriae has been shown to be an iron-activated transcription regulator that controls not only the expression of diphtheria toxin but also of iron uptake genes. This study aims to identify putative binding sites and operons controlled by DtxR to understand the role of DtxR in patho-physiology of Corynebacterium diphtheriae. Result Positional Shannon relative entropy method was used to build the DtxR-binding site recognition profile and the later was used to identify putative regulatory sites of DtxR within C. diphtheriae genome. In addition, DtxR-regulated operons were also identified taking into account the predicted DtxR regulatory sites and genome annotation. Few of the predicted motifs were experimentally validated by electrophoretic mobility shift assay. The analysis identifies motifs upstream to the novel iron-regulated genes that code for Formamidopyrimidine-DNA glycosylase (FpG, an enzyme involved in DNA-repair and starvation inducible DNA-binding protein (Dps which is involved in iron storage and oxidative stress defense. In addition, we have found the DtxR motifs upstream to the genes that code for sortase which catalyzes anchoring of host-interacting proteins to the cell wall of pathogenic bacteria and the proteins of secretory system which could be involved in translocation of various iron-regulated virulence factors including diphtheria toxin. Conclusions We have used an in silico approach to identify the putative binding sites and genes controlled by DtxR in Corynebacterium diphtheriae. Our analysis shows that DtxR could provide a molecular link between Fe+2-induced Fenton's reaction and protection of DNA from oxidative damage. DtxR-regulated Dps prevents lethal combination of Fe+2 and H2O2 and also protects DNA by nonspecific DNA-binding. In addition DtxR could play an important role in host interaction and virulence by regulating the levels of sortase

  11. Tristetraprolin induces cell cycle arrest in breast tumor cells through targeting AP-1/c-Jun and NF-κB pathway. (United States)

    Xu, Li; Ning, Huan; Gu, Ling; Wang, Qinghong; Lu, Wenbao; Peng, Hui; Cui, Weiguang; Ying, Baoling; Ross, Christina R; Wilson, Gerald M; Wei, Lin; Wold, William S M; Liu, Jianguo


    The main characteristic of cancers, including breast cancer, is the ability of cancer cells to proliferate uncontrollably. However, the underlying mechanisms of cancer cell proliferation, especially those regulated by the RNA binding protein tristetraprolin (TTP), are not completely understood. In this study, we found that TTP inhibits cell proliferation in vitro and suppresses tumor growth in vivo through inducing cell cycle arrest at the S phase. Our studies demonstrate that TTP inhibits c-Jun expression through the C-terminal Zn finger and therefore increases Wee1 expression, a regulatory molecule which controls cell cycle transition from the S to the G2 phase. In contrast to the well-known function of TTP in regulating mRNA stability, TTP inhibits c-Jun expression at the level of transcription by selectively blocking NF-κB p65 nuclear translocation. Reconstitution of NF-κB p65 completely abolishes the inhibition of c-Jun transcription by TTP. Moreover, reconstitution of c-Jun in TTP-expressing breast tumor cells diminishes Wee1 overexpression and promotes cell proliferation. Our results indicate that TTP suppresses c-Jun expression that results in Wee1 induction which causes cell cycle arrest at the S phase and inhibition of cell proliferation. Our study provides a new pathway for TTP function as a tumor suppressor which could be targeted in tumor treatment.

  12. Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression

    Energy Technology Data Exchange (ETDEWEB)

    Pozas, E. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain); Planas, A.M. [Departament de Farmacologia i Toxicologia, IIBB, CSIC Barcelona (Spain); Ferrer, I. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain)


    Ionizing radiation produces apoptosis in the developing rat brain. Strong c-Jun immunoreactivity, as revealed with the antibody c-Jun/AP-1 (N) which is raised against the amino acids 91-105 mapping with the amino terminal domain of mouse c-Jun p39, is simultaneously observed in the nucleus and cytoplasm of apoptotic cells. Western blotting of total brain homogenates, using the same antibody, shows a p39 band in control rats which is accompanied by a strong, phosphorylated p62 double-band in irradiated animals. In addition, increased c-Jun N-terminal kinase 1 expression, as found on western blots, is found in irradiated rats when compared with controls. Intraperitoneal injection of kainic acid at convulsant doses to the adult rat produces cell death with morphological features of necrosis, together with the appearance of cells with fine granular chromatin degeneration and small numbers of apoptotic-like cells, in the entorhinal and piriform cortices, basal amygdala, certain thalamic nuclei, and CA1 region of the hippocampus. c-Jun expression in kainic acid-treated rats, as revealed with the c-Jun/AP-1 (N) antibody, is found in the nuclei of a minority of cells in the same areas. The vast majority of c-Jun-immunoreactive cells have normal nuclear morphology, whereas necrotic cells are negative and only a few cells with fine granular chromatin condensation and apoptotic cells following kainic acid injection are stained with c-Jun antibodies. Western blotting, using the same antibody, shows a p39 band in control rats, which is accompanied by a band at about p26 from 6 h onwards following kainic acid injection. Decreased c-Jun N-terminal kinase 1 expression, as revealed on western blots, is observed in kainic acid-treated rats.These results show that the antibody c-Jun/AP-1 (N) recognizes three different forms of c-Jun-related immunoreactivity in normal and pathological states, which are associated with the different outcome of cells. These results stress the necessity

  13. Repressor of GATA-3 can negatively regulate the expression of T cell cytokines through modulation on inducible costimulator

    Institute of Scientific and Technical Information of China (English)

    ZANG Yuan-sheng; FANG Zheng; LIU Yong-an; LI Bing; XIU Qing-yu


    Background The transcription factor,repressor of GATA-3 (ROG),can simultaneously suppress the expression of T helper cells (Th1 and Th2) cytokines.Since the suppression of Th2 cytokines by GATA-3 is well understood,it is postulated that there are other molecular targets of ROG that can suppress the expression of the Th1 cytokines.We hypothesized that ROG might suppress the stimulators of T lymphocyte cytokines such as CD3,CD28,and inducible costimulator (ICOS),or indirectly enhance the expression of cytokine suppressors such as T lymphocyte-associated antigen-4 (CTLA-4) and CD45.The objective of this study was to clarify the molecular targets of ROG involved in suppressing Th1 or Th2 cytokines.Methods Real-time quantitative PCR (RT-PCR) and Westem blotting were performed to evaluate the mRNA and protein levels of CD3,CD28,ICOS,CTLA-4,and CD45 in Th1 and Th2 cells during vadous levels of ROG expression.Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of interferon-y (IFN-y) and intedeukin (IL)-4 in culture media of Th1 and Th2 cells.Results The results showed that the mRNA and protein levels of ROG were relatively low in Th1 and Th2 cells (P<0.01).After ROG-pcDNA3.1 transfection,the mRNA and protein level of ROG was significantly elevated,while the expression of ICOS,IFN-y,and IL-4 was markedly down-regulated (P <0.01 ).Conversely,transfection of ROG-siRNA led to inhibition of ROG expression and up-regulation of ICOS,IFN-y and IL-4 (P <0.01).However,the expression levels of CD3,CD28,CTLA-4 and CD45 did not change in either ROG-pcDNA3.1 or ROG-siRNA-transfected Th1 and Th2 cells (P>0.05).Conclusion It is concluded that ROG can inhibit the expression of Th1 and Th2 cytokines by down-regulating the expression of ICOS,which might be a potential molecular target for asthma treatment.

  14. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. (United States)

    Zenz, Rainer; Eferl, Robert; Scheinecker, Clemens; Redlich, Kurt; Smolen, Josef; Schonthaler, Helia B; Kenner, Lukas; Tschachler, Erwin; Wagner, Erwin F


    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications.

  15. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. (United States)

    Presser, Lance D; McRae, Steven; Waris, Gulam


    Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1) in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP) assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs) activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA) and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection.

  16. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion.

    Directory of Open Access Journals (Sweden)

    Lance D Presser

    Full Text Available Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1 in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection.

  17. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. (United States)

    Kulmburg, P; Mathieu, M; Dowzer, C; Kelly, J; Felenbok, B


    The CREA repressor responsible for carbon catabolite repression in Aspergillus nidulans represses the transcription of the ethanol regulon. The N-terminal part of the CREA protein encompassing the two zinc fingers (C2H2 class family) and an alanine-rich region was expressed in Escherichia coli as a fusion protein with glutathione-S-transferase. Our results show that CREA is a DNA-binding protein able to bind to the promoters of both the specific trans-acting gene, alcR, and of the structural gene, alcA, encoding the alcohol dehydrogenase I. DNase I protection footprinting experiments revealed several specific binding sites in the alcR and in the alcA promoters having the consensus sequence 5'-G/CPyGGGG-3'. The disruption of one of these CREA-binding sites in the alcR promoter overlapping the induction target for the trans-activator ALCR results in a partially derepressed alc phenotype and derepressed alcR transcription, showing that this binding site is functional in vivo. Our data suggest that CREA represses the ethanol regulon by a double lock mechanism repressing both the trans-acting gene, alcR, and the structural gene, alcA.

  18. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction

    DEFF Research Database (Denmark)

    Carvalho, Luciani R; Woods, Kathryn S; Mendonca, Berenice B


    repressor domain (eh1) of HESX1, the first, to our knowledge, to be described in humans, in a girl with evolving combined pituitary hormone deficiency born to consanguineous parents. Neuroimaging revealed a thin pituitary stalk with anterior pituitary hypoplasia and an ectopic posterior pituitary...

  19. Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target

    DEFF Research Database (Denmark)

    Inui, Ken; Zhao, Zongpei; Yuan, Juan


    In human cells, thousands of predominantly neuronal genes are regulated by the repressor element 1 (RE1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF). REST/NRSF represses transcription of these genes in stem cells and non-neuronal cells by tethering corepressor co...

  20. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches. (United States)

    Hadeler, Karl Peter


    The Michaelis-Menten (MM) function is a fractional linear function depending on two positive parameters. These can be estimated by nonlinear or linear least squares methods. The non-linear methods, based directly on the defect of the MM function, can fail and not produce any minimizer. The linear methods always produce a unique minimizer which, however, may not be positive. Here we give sufficient conditions on the data such that the nonlinear problem has at least one positive minimizer and also conditions for the minimizer of the linear problem to be positive. We discuss in detail the models and equilibrium relations of a classical operator-repressor system, and we extend our approach to the MM problem with leakage and to reversible MM kinetics. The arrangement of the sufficient conditions exhibits the important role of data that have a concavity property (chemically feasible data).

  1. Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. (United States)

    Aigle, Bertrand; Corre, Christophe


    Streptomycete bacteria are renowned as a prolific source of natural products with diverse biological activities. Production of these metabolites is often subject to transcriptional regulation: the biosynthetic genes remain silent until the required environmental and/or physiological signals occur. Consequently, in the laboratory environment, many gene clusters that direct the biosynthesis of natural products with clinical potential are not expressed or at very low level preventing the production/detection of the associated metabolite. Genetic engineering of streptomycetes can unleash the production of many new natural products. This chapter describes the overexpression of pathway-specific activators, the genetic disruption of pathway-specific repressors, and the main strategy used to identify and characterize new natural products from these engineered Streptomyces strains.

  2. Role of Activator Protein-1 in the Transcription of Interleukin-5 Gene Regulated by Protein Kinase C Signal in Asthmatic Human T Lymphocytes

    Institute of Scientific and Technical Information of China (English)


    In order to explore the role of activator protein-1 (AP-1) in the transcription of interleukin-5 (IL-5) gene regulated by protein kinase C (PKC) signal in peripheral blood T lymphocytes from asthmatic patient, T lymphocytes were isolated and purified from peripheral blood of each asthmatic patient. The T lymphocytes were randomly divided int9 4 groups: group A (blank control), group B (treated with PKC agonist phorbol 12-myristate 13-acetate (PMA)), Group C (treated with PMA and AP-1 cis-element decoy oligodeoxynucleotides (decoy ODNs)), and group D (treated with PMA and AP-1 mutant decoy ODNs). The ODNs were transfected into the T cells of group C and D by cation liposome respectively. Reverse transcription-polymerase chain reaction (RT-PCR) was employed to assess IL-5 mRNA expression, and electrophoretic mobility shift assays (EMSA) for the activation of AP-1. The results showed that the activation of AP-1 (88 003.58±1 626.57) and the expression of IL5 mRNA (0. 8300±0. 0294) in T lymphocytes stimulated with PMA were significantly higher than these in blank control (20 888.47±1103.56 and 0. 3050±0. 0208, respectively, P< 0.01), while the indexes (23 219.83±1 024.86 and 0. 3425±0. 0171 respectively) of T lymphocytes stimulated with PMA and AP-1 decoy ODNs were significantly inhibited, as compared with group B (P<0.01). The indexes (87 107. 41±1 342.92 and 0. 8225±0. 0222, respectively) in T lymphocytes stimulated with PMA and AP-1 mutant decoy ODNs did not exhibit significant changes, as compared with group B (P>0.05). The significant positive correlation was found between the activation of AP-1 and the expression of IL-5 mRNA (P< 0.01). It was concluded that AP-1 might participate in the signal transduction of PKC-triggered transcription of IL-5 gene in asthmatic T lymphocytes. This suggests the activation of PKC/AP-1 signal transduction cascade of T lymphocytes may play an important role in the pathogenesis of asthma.

  3. HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s alternative to the pPGI-pPGM-AGP pathway.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a involves plastidic phosphoglucomutase (pPGM, ADPglucose (ADPG pyrophosphorylase (AGP and starch synthase (SS, and (b is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI. This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b pPGM and AGP are not major determinants of intracellular ADPG content, and (c the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.

  4. Hes-1, a known transcriptional repressor, acts as a transcriptional activator for the human acid alpha-glucosidase gene in human fibroblast cells. (United States)

    Yan, Bo; Raben, Nina; Plotz, Paul H


    Hes-1, the mammalian homologue 1 of Drosophila hairy and Enhancer of split proteins, belongs to a family of basic helix-loop-helix proteins that are essential to neurogenesis, myogenesis, hematopoiesis, and sex determination. Hes-1 is a transcriptional repressor for a number of known genes including the human acid alpha-glucosidase (GAA) gene as we have previously shown in Hep G2 cells. The human GAA gene encodes the enzyme for glycogen breakdown in lysosomes, deficiency of which results in Glycogen Storage Disease type II (Pompe syndrome). Using constructs containing the DNA element that demonstrates repressive activity in Hep G2 cells and conditions in which the same transcription factors, Hes-1 and YY1, bind, we have shown that this element functions as an enhancer in human fibroblasts. Site-directed mutagenesis and overexpression of Hes-1 showed that Hes-1 functions as a transcriptional activator. The dual function of Hes-1 we have found is likely to contribute to the subtle tissue-specific control of this housekeeping gene.

  5. Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. (United States)

    Nakano, H; Takehara, E; Nihira, T; Yamada, Y


    Virginiae butanolides (VBs), which are among the butyrolactone autoregulators of Streptomyces species, act as a primary signal in Streptomyces virginiae to trigger virginiamycin biosynthesis and possess a specific binding protein, BarA. To clarify the in vivo function of BarA in the VB-mediated signal pathway that leads to virginiamycin biosynthesis, two barA mutant strains (strains NH1 and NH2) were created by homologous recombination. In strain NH1, an internal 99-bp EcoT14I fragment of barA was deleted, resulting in an in-frame deletion of 33 amino acid residues, including the second helix of the probable helix-turn-helix DNA-binding motif. With the same growth rate as wild-type S. virginiae on both solid and liquid media, strain NH1 showed no apparent changes in its morphological behavior, indicating that the VB-BarA pathway does not participate in morphological control in S. virginiae. In contrast, virginiamycin production started 6 h earlier in strain NH1 than in the wild-type strain, demonstrating for the first time that BarA is actively engaged in the control of virginiamycin production and implying that BarA acts as a repressor in virginiamycin biosynthesis. In strain NH2, an internal EcoNI-SmaI fragment of barA was replaced with a divergently oriented neomycin resistance gene cassette, resulting in the C-terminally truncated BarA retaining the intact helix-turn-helix motif. In strain NH2 and in a plasmid-integrated strain containing both intact and mutated barA genes, virginiamycin production was abolished irrespective of the presence of VB, suggesting that the mutated BarA retaining the intact DNA-binding motif was dominant over the wild-type BarA. These results further support the hypothesis that BarA works as a repressor in virginiamycin production and suggests that the helix-turn-helix motif is essential to its function. In strain NH1, VB production was also abolished, thus indicating that BarA is a pleiotropic regulatory protein controlling not only

  6. Listeria monocytogenes 10403S Arginine Repressor ArgR Finely Tunes Arginine Metabolism Regulation under Acidic Conditions (United States)

    Cheng, Changyong; Dong, Zhimei; Han, Xiao; Sun, Jing; Wang, Hang; Jiang, Li; Yang, Yongchun; Ma, Tiantian; Chen, Zhongwei; Yu, Jing; Fang, Weihuan; Song, Houhui


    Listeria monocytogenes is able to colonize human and animal intestinal tracts and to subsequently cross the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive the low pH environment of the stomach. L. monocytogenes encodes a functional ArgR, a transcriptional regulator belonging to the ArgR/AhrC arginine repressor family. We aimed at clarifying the specific functions of ArgR in arginine metabolism regulation, and more importantly, in acid tolerance of L. monocytogenes. We showed that ArgR in the presence of 10 mM arginine represses transcription and expression of the argGH and argCJBDF operons, indicating that L. monocytogenes ArgR plays the classical role of ArgR/AhrC family proteins in feedback inhibition of the arginine biosynthetic pathway. Notably, transcription and expression of arcA (encoding arginine deiminase) and sigB (encoding an alternative sigma factor B) were also markedly repressed by ArgR when bacteria were exposed to pH 5.5 in the absence of arginine. However, addition of arginine enabled ArgR to derepress the transcription and expression of these two genes. Electrophoretic mobility shift assays showed that ArgR binds to the putative ARG boxes in the promoter regions of argC, argG, arcA, and sigB. Reporter gene analysis with gfp under control of the argG promoter demonstrated that ArgR was able to activate the argG promoter. Unexpectedly, deletion of argR significantly increased bacterial survival in BHI medium adjusted to pH 3.5 with lactic acid. We conclude that this phenomenon is due to activation of arcA and sigB. Collectively, our results show that L. monocytogenes ArgR finely tunes arginine metabolism through negative transcriptional regulation of the arginine biosynthetic operons and of the catabolic arcA gene in an arginine-independent manner during lactic acid-induced acid stress. ArgR also appears to activate catabolism as well as sigB transcription by anti

  7. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP. (United States)

    Li, Chenlong; Chen, Chen; Gao, Lei; Yang, Songguang; Nguyen, Vi; Shi, Xuejiang; Siminovitch, Katherine; Kohalmi, Susanne E; Huang, Shangzhi; Wu, Keqiang; Chen, Xuemei; Cui, Yuhai


    The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  8. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP.

    Directory of Open Access Journals (Sweden)

    Chenlong Li


    Full Text Available The chromatin remodeler BRAHMA (BRM is a Trithorax Group (TrxG protein that antagonizes the functions of Polycomb Group (PcG proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3 in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq. Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF or SWINGER (SWN. ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  9. A Comprehensive Catalog of Human KRAB-associated Zinc Finger Genes: Insights into the Evolutionary History of a Large Family of Transcriptional Repressors

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, S; Baggott, D M; Hamilton, A T; Tran-Gyamfi, M; Yang, S; Kim, J; Gordon, L; Branscomb, E; Stubbs, L


    Krueppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotic species. In mammals, most ZNF proteins comprise a single class of transcriptional repressors in which a chromatin interaction domain, called the Krueppel-associated box (KRAB) is attached to a tandem array of DNA-binding zinc-finger motifs. KRAB-ZNF loci are specific to tetrapod vertebrates, but have expanded dramatically in numbers through repeated rounds of segmental duplication to create a gene family with hundreds of members in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the human genome for key motifs and used them to construct and manually curate gene models. The resulting KRAB-ZNF gene catalog includes 326 known genes, 243 of which were structurally corrected by manual annotation, and 97 novel KRAB-ZNF genes; this single family therefore comprises 20% of all predicted human transcription factor genes. Many of the genes are alternatively spliced, yielding a total of 743 distinct predicted proteins. Although many human KRAB-ZNF genes are conserved in mammals, at least 136 and potentially more than 200 genes of this type are primate-specific including many recent segmental duplicates. KRAB-ZNF genes are active in a wide variety of human tissues suggesting roles in many key biological processes, but most member genes remain completely uncharacterized. Because of their sheer numbers, wide-ranging tissue-specific expression patterns, and remarkable evolutionary divergence we predict that KRAB-ZNF transcription factors have played critical roles in crafting many aspects of human biology, including both deeply conserved and primate-specific traits.

  10. Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30·mSin3·HDAC transcriptional repressor complex. (United States)

    Suryadinata, Randy; Sadowski, Martin; Steel, Rohan; Sarcevic, Boris


    Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G(1)-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G(1)-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G(1) into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.

  11. New diphtheria toxin repressor types depicted in a Romanian collection of Corynebacterium diphtheriae isolates. (United States)

    Dinu, Sorin; Damian, Maria; Badell, Edgar; Dragomirescu, Cristiana Cerasella; Guiso, Nicole


    Corynebacterium diphtheriae is the etiological agent of diphtheria, a potential fatal disease caused by a corynephage toxin. The expression of this diphtheria toxin is controlled via an iron-dependent repressor with various functions (DtxR). Some mutations in the dtxR gene are associated with diminished activity or even with total loss of DtxR function. We conducted a molecular study to characterize the dtxR alleles harbored by 34 isolates of C. diphtheriae recovered from Romanian patients between 1961 and 2007. Three of the seven alleles identified in this study have not previously been described. Two new DtxR types were identified, one of which has an unusual polypeptide length. All the new DtxR types were found in toxigenic isolates, suggesting that they effectively regulate the expression of diphtheria toxin. Furthermore, one of the new DtxR identified was also found in a non-toxigenic isolate, making it a potential source of toxigenic isolates after lysogenic conversion.

  12. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)


    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  13. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. (United States)

    Thakore, Pratiksha I; D'Ippolito, Anthony M; Song, Lingyun; Safi, Alexias; Shivakumar, Nishkala K; Kabadi, Ami M; Reddy, Timothy E; Crawford, Gregory E; Gersbach, Charles A


    Epigenome editing with the CRISPR (clustered, regularly interspaced, short palindromic repeats)-Cas9 platform is a promising technology for modulating gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms of gene regulation. Fusions of nuclease-inactive dCas9 to the Krüppel-associated box (KRAB) repressor (dCas9-KRAB) can silence target gene expression, but the genome-wide specificity and the extent of heterochromatin formation catalyzed by dCas9-KRAB are not known. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that orchestrates the expression of multiple globin genes, and observed highly specific induction of H3K9 trimethylation (H3K9me3) at the enhancer and decreased chromatin accessibility of both the enhancer and its promoter targets. Targeted epigenetic modification of HS2 silenced the expression of multiple globin genes, with minimal off-target changes in global gene expression. These results demonstrate that repression mediated by dCas9-KRAB is sufficiently specific to disrupt the activity of individual enhancers via local modification of the epigenome.

  14. PRMT4 Blocks Myeloid Differentiation by Assembling a Methyl-RUNX1-Dependent Repressor Complex

    Directory of Open Access Journals (Sweden)

    Ly P. Vu


    Full Text Available Defining the role of epigenetic regulators in hematopoiesis has become critically important, because recurrent mutations or aberrant expression of these genes has been identified in both myeloid and lymphoid hematological malignancies. We found that PRMT4, a type I arginine methyltransferase whose function in normal and malignant hematopoiesis is unknown, is overexpressed in acute myelogenous leukemia patient samples. Overexpression of PRMT4 blocks the myeloid differentiation of human stem/progenitor cells (HSPCs, whereas its knockdown is sufficient to induce myeloid differentiation of HSPCs. We demonstrated that PRMT4 represses the expression of miR-223 in HSPCs via the methylation of RUNX1, which triggers the assembly of a multiprotein repressor complex that includes DPF2. As part of the feedback loop, PRMT4 expression is repressed posttranscriptionally by miR-223. Depletion of PRMT4 results in differentiation of myeloid leukemia cells in vitro and their decreased proliferation in vivo. Thus, targeting PRMT4 holds potential as a novel therapy for acute myelogenous leukemia.

  15. Fur-type transcriptional repressors and metal homeostasis in the cyanobacterium Synechococcus sp. PCC 7002

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig


    Full Text Available Metal homeostasis is a crucial cellular function for nearly all organisms. Some heavy metals (e.g. Fe, Zn, Co, Mo are essential because they serve as cofactors for enzymes or metalloproteins, and chlorophototrophs such as cyanobacteria have an especially high demand for iron. At excessive levels, however, metals become toxic to cyanobacteria. Therefore, a tight control mechanism is essential for metal homeostasis. Metal homeostasis in microorganisms comprises two elements: metal acquisition from the environment and detoxification or excretion of excess metal ions. Different families of metal-sensing regulators exist in cyanobacteria and each addresses a more or less specific set of target genes. In this study the regulons of three Fur-type and two ArsR-SmtB-type regulators were investigated in a comparative approach in the cyanobacterium Synechococcus sp. PCC 7002. One Fur-type regulator controls genes for iron acquisition (Fur; one controls genes for zinc acquisition (Zur; and the third controls two genes involved in oxidative stress (Per. Compared to other well-investigated cyanobacterial strains, however, the set of target genes for each regulator is relatively small. Target genes for the two ArsR-SmtB transcriptional repressors (SmtB (SYNPCC7002_A2564 and SYNPCC7002_A0590; ArsR are involved in zinc homeostasis in addition to Zur. Their target genes, however, are less specific for zinc and point to roles in a broader heavy metal detoxification response.

  16. Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus. (United States)

    Lee, Sung-Jae; Surma, Melanie; Seitz, Sabine; Hausner, Winfried; Thomm, Michael; Boos, Winfried


    TrmB is a transcriptional repressor of the hyperthermophilic archaeon Pyrococcus furiosus serving at least two operons. TrmB represses genes encoding an ABC transporter for trehalose and maltose (the TM system) with trehalose and maltose as inducers. TrmB also represses genes encoding another ABC transporter for maltodextrins (the MD system) with maltotriose and sucrose as inducers. Here we report that glucose which was also bound by TrmB acted as a corepressor (causing stronger repression) for both the TM and the MD system. Binding of glucose by TrmB was increased in the presence of TM promoter DNA. Maltose which acted as inducer for the TM system acted as a corepressor for the MD system intensifying repression. We propose that the differential conformational changes of TrmB in response to binding the different sugars governs the ability of TrmB to interact with the promoter region and represents a simple mechanism for selecting the usage of one carbon source over the other, reminiscent of catabolite repression in bacteria.

  17. Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. (United States)

    Doyle, Alexander J; Doyle, Jefferson J; Bessling, Seneca L; Maragh, Samantha; Lindsay, Mark E; Schepers, Dorien; Gillis, Elisabeth; Mortier, Geert; Homfray, Tessa; Sauls, Kimberly; Norris, Russell A; Huso, Nicholas D; Leahy, Dan; Mohr, David W; Caulfield, Mark J; Scott, Alan F; Destrée, Anne; Hennekam, Raoul C; Arn, Pamela H; Curry, Cynthia J; Van Laer, Lut; McCallion, Andrew S; Loeys, Bart L; Dietz, Harry C


    Elevated transforming growth factor (TGF)-β signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-β signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-β in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-β activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-β signaling cascades and higher expression of TGF-β-responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-β signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.

  18. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2. (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi


    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  19. Characterization of novel DeoR-family member from the Streptomyces ahygroscopicus strain CK-15 that acts as a repressor of morphological development. (United States)

    Ge, Beibei; Liu, Yan; Liu, Binghua; Zhao, Wenjun; Zhang, Kecheng


    Wuyiencin is produced by Streptomyces ahygroscopicus var. wuyiensis, which has been widely used in China as an industrially produced biopesticide to control various fungal diseases. Although its mechanism of action, breeding, and fermentation had been extensively characterized, less is known about the regulatory functions that affect its biosynthesis or morphological development. The wysR3 gene of S. ahygroscopicus strain CK-15, a novel member of the DeoR family of regulatory genes, was assessed to determine its function by gene knockdown. Herein, we demonstrate for the first time that DeoR family proteins derived from the same source are likely to be a single branch in a phylogenetic tree and show that wysR3 acts as a repressor for its morphological development without effecting wuyiencin production. We found that the ΔwysR3 strain can grow quickly to reach a plateau stage of maximum biomass at 60 h, which is ∼12 h faster than the wild-type strain. In the industrial fermentation production process, the ΔwysR3 strain can reduce consumption and save both time and money.

  20. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yoko Matsumura


    Full Text Available Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1 and AS2 (AS1-AS2 is critical to repress abaxial (ventral genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1 synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

  1. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis (United States)

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko


    ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  2. Comparative analysis of chromatin binding by Sex Comb on Midleg (SCM) and other polycomb group repressors at a Drosophila Hox gene. (United States)

    Wang, Liangjun; Jahren, Neal; Miller, Ellen L; Ketel, Carrie S; Mallin, Daniel R; Simon, Jeffrey A


    Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets.

  3. Regulation of MntH by a dual Mn(II- and Fe(II-dependent transcriptional repressor (DR2539 in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Hongxing Sun

    Full Text Available The high intracellular Mn/Fe ratio observed within the bacteria Deinococcus radiodurans may contribute to its remarkable resistance to environmental stresses. We isolated DR2539, a novel regulator of intracellular Mn/Fe homeostasis in D. radiodurans. Electrophoretic gel mobility shift assays (EMSAs revealed that DR2539 binds specifically to the promoter of the manganese acquisition transporter (MntH gene, and that DR0865, the only Fur homologue in D. radiodurans, cannot bind to the promoter of mntH, but it can bind to the promoter of another manganese acquisition transporter, MntABC. β-galactosidase expression analysis indicated that DR2539 acts as a manganese- and iron-dependent transcriptional repressor. Further sequence alignment analysis revealed that DR2539 has evolved some special characteristics. Site-directed mutagenesis suggested that His98 plays an important role in the activities of DR2539, and further protein-DNA binding activity assays showed that the activity of H98Y mutants decreased dramatically relative to wild type DR2539. Our study suggests that D. radiodurans has evolved a very efficient manganese regulation mechanism that involves its high intracellular Mn/Fe ratio and permits resistance to extreme conditions.

  4. p53 Is a Direct Transcriptional Repressor of Keratin 17: Lessons from a Rat Model of Radiation Dermatitis. (United States)

    Liao, Chunyan; Xie, Guojiang; Zhu, Liyan; Chen, Xi; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Ramot, Yuval; Paus, Ralf; Yue, Zhicao


    The intermediate filament protein keratin 17 (Krt17) shows highly dynamic and inducible expression in skin physiology and pathology. Because Krt17 exerts physiologically important functions beyond providing structural stability to keratinocytes whereas abnormal Krt17 expression is a key feature of dermatoses such as psoriasis and pachyonychia congenita, the currently unclear regulation of Krt17 expression needs to be better understood. Using a rat model of radiation dermatitis, we report here that Krt17 expression initially is down-regulated but later is strongly up-regulated by ionizing radiation. The early down-regulation correlates with the activation of p53 signaling. Deletion of p53 abolishes the initial down-regulation but not its subsequent up-regulation, suggesting that p53 represses Krt17 transcription. Because previous work reported up-regulation of Krt17 by ultraviolet irradiation, which also activates p53 signaling, the effect of ultraviolet radiation was reexamined. This revealed that the initial down-regulation of Krt17 is conserved, but the up-regulation comes much faster. Chromatin immunoprecipitation analysis in vivo and electromobility shift assay in vitro identified two p53-binding sites in the promoter region of Krt17. Thus, p53 operates as a direct Krt17 repressor, which invites therapeutic targeting in dermatoses characterized by excessive Krt17 expression.

  5. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N


    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  6. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Oshiumi

    Full Text Available The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein.

  7. Polycomb group proteins: navigators of lineage pathways led astray in cancer

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Helin, Kristian


    The Polycomb group (PcG) proteins are transcriptional repressors that regulate lineage choices during development and differentiation. Recent studies have advanced our understanding of how the PcG proteins regulate cell fate decisions and how their deregulation potentially contributes to cancer. ...

  8. UVB exposure enhanced benzanthrone-induced inflammatory responses in SKH-1 mouse skin by activating the expression of COX-2 and iNOS through MAP kinases/NF-κB/AP-1 signalling pathways. (United States)

    Abbas, Sabiya; Alam, Shamshad; Pal, Anu; Kumar, Mahadeo; Singh, Dhirendra; Ansari, Kausar Mahmood


    This study was conducted to explore the role of UVB on benzanthrone (BA)-induced skin inflammation and its mechanism/s. SKH-1 hairless mice were topically exposed with BA (25 and 50 mg/kg b.wt) either alone or along with UVB (50 mJ/cm(2)) for 24 h and estimation of ROS, histopathological analysis, myeloperoxidase (MPO) activity, mast cell staining, immunohistochemistry for COX-2 and iNOS as well as western blotting for MAPKs, p-NF-κB, c-jun, c-fos COX-2 and iNOS were carried out. Enhanced ROS generation, increased epidermal thickness, mast cell number, MPO activity, enhanced expression of COX-2 and iNOS, MAPKs, c-jun, c-fos, NF-κB were found in BA either alone or when followed by UVB treatment, compared to the control groups. Expression of COX-2, iNOS and phosphorylation of ERK1/2 were found to be more enhanced in BA and UVB- exposed group compared to BA and UVB only group, while phosphorylation of JNK1/2, p38, NF-κB and expression of c-jun and c-fos were comparable with BA and UVB only groups. In summary, we suggest that UVB exposure enhanced BA-induced SKH-1 skin inflammation possibly via oxidative stress-mediated activation of MAPKs-NF-κB/AP-1 signalling, which subsequently increased the expression of COX-2 and iNOS and led to inflammation in SKH-1 mouse skin.

  9. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways. (United States)

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas


    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  10. The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti. (United States)

    Kohler, Petra R A; Choong, Ee-Leng; Rossbach, Silvia


    Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and D-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5'-GGAA-N6-TTCC-3') in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-D-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA.

  11. p21 as a transcriptional co-repressor of S-phase and mitotic control genes.

    Directory of Open Access Journals (Sweden)

    Nuria Ferrándiz

    Full Text Available It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562 with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene. Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.

  12. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

    Directory of Open Access Journals (Sweden)

    Kamini Kunasegaran

    Full Text Available The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production. Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

  13. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background.

    Directory of Open Access Journals (Sweden)

    Belén Méndez-Vigo

    Full Text Available The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F(2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1. We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP. Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time.

  14. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression. (United States)

    Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C


    Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of

  15. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-kappaB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents. (United States)

    Giri, Rajan S; Thaker, Hardik M; Giordano, Tony; Williams, Jill; Rogers, Donna; Vasu, Kamala K; Sudarsanam, Vasudevan


    In an attempt to discover novel inhibitors of NF-kappaB and AP-1 mediated transcriptional activation utilizing the concept of chemical lead based medicinal chemistry and bioisosterism a series of 2-(2,3-disubstituted-thiophen-5-yl)-3H-quinazolin-4-one analogs was designed. A facile and simple route for the synthesis of the designed molecules was developed. Synthesized molecules were evaluated for their activity as inhibitors towards NF-kappaB and AP-1 mediated transcriptional activation in a cell line report-based assay. This series provides us with a substantial number of compounds inhibiting the activity of NF-kappaB and/or AP-1 mediated transcriptional activation. These compounds also exhibit anti-inflammatory and anti-cancer activity in in vivo models of inflammation and cancer. The 4-pyridyl group is found to be the most important pharmacophore on the third position of thiophene ring for inhibiting NF-kappaB and AP-1 mediated transcriptional activation. The relationships between the activities shown by these compounds in the in vivo and in vitro models have been established by using FVB transgenic mice model. These results suggest the suitability of the designed molecular framework as a potential scaffold for the design of molecules with inhibitory activity towards NF-kappaB and AP-1 mediated transcriptional activation, which may also exhibit anti-inflammatory and anti-cancer activity. This series of molecules warrants further study to explore their potential as therapies for use in chronic inflammatory conditions and cancer. Development of the synthetic protocol for the synthesis of this series of molecules, biological activities and a structure-activity relationship (SAR) have been discussed herein.

  16. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  17. Functional analysis of three amino acid residues of purR re-pressor, Trp147, Gln-218 and Gln-292 in Salmonella typhi-murium

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hesheng


    [1]Zalkin, H., Nygaard, P., Escherichia coli and Salmmella typhimurium Cellular and Molecular Biology, Washington D.C: American Society for Microbiology, 1996, 561-579.[2]Maria, A. S., Choi, K. Y., Lu, F. et al., Mechanism of co-repressor mediated specific DNA binding by the purine repressor, Cell, 1995, 83: 147.[3]Choi, K. Y., Fu, L., Zalkin, H., Mutagenesis of amino acid residues required for binding of co-repressors to the purine repressor, J. Biol. Chem., 1993, 269: 24066.[4]Lu, F., Brennan, R. G., Zalkin, H., Escherichia coli purine repressor: key residues for the allsteic transition between active and inactive conformation and for inter domain signaling, Biochemistry, 1998, 37: 15680.[5]Tang Hua, Qin Junchuan, Wang Aoquan, Regulation of purine biosynthetic genes expression in Salmonella typhimurium (VI)-- Isolation and characterization of superrepressor mutants, Chinese Journal of Genetics (in Chinese), 1998, 25(2): 181.[6]Zhang Hesheng, Wang Aoquan, Regulation of purine biosynthetic genes expression in Salmonella typhimurium (X)--Isola-tion of purR(am) mutant and preliminary study of amino acid substitution, Chinese Journal of Genetics (in Chinese), 2000, 27(2): 170.[7]Davis, R. W., Roth, J. R., Advanced Bacteria Genetics, NY: Cold Spring Harbor Laboratory Press, 1984.[8]Miller, J. H., Experiments in Molecular Genetics, NY: Cold Spring Harbor Laboratory Press, 1972.[9]Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning, A Laboratory Manual, NY: Cold Spring Harbor laboratory Press, 1989.[10] Katzif, S. D., Lu, C. D., Abdelal, A.T., Salmonela typhimurium purine nucleotide synthesis repressor (purR), GenBank, Ac-cession AF040636, 1998.[11] Weicket,M.J.,Adhya,S., A family of bacteria regulators homologous to Gal and Lac repressors,J.Biol.Chem.,1992,267:15869.

  18. New Orthogonal Transcriptional Switches Derived from Tet Repressor Homologues for Saccharomyces cerevisiae Regulated by 2,4-Diacetylphloroglucinol and Other Ligands. (United States)

    Ikushima, Shigehito; Boeke, Jef D


    Here we describe the development of tightly regulated expression switches in yeast, by engineering distant homologues of Escherichia coli TetR, including the transcriptional regulator PhlF from Pseudomonas and others. Previous studies demonstrated that the PhlF protein bound its operator sequence (phlO) in the absence of 2,4-diacetylphloroglucinol (DAPG) but dissociated from phlO in the presence of DAPG. Thus, we developed a DAPG-Off system in which expression of a gene preceded by the phlO-embedded promoter was activated by a fusion of PhlF to a multimerized viral activator protein (VP16) domain in a DAPG-free environment but repressed when DAPG was added to growth medium. In addition, we constructed a DAPG-On system with the opposite behavior of the DAPG-Off system; i.e., DAPG triggers the expression of a reporter gene. Exposure of DAPG to yeast cells did not cause any serious deleterious effect on yeast physiology in terms of growth. Efforts to engineer additional Tet repressor homologues were partially successful and a known mammalian switch, the p-cumate switch based on CymR from Pseudomonas, was found to function in yeast. Orthogonality between the TetR (doxycycline), CamR (d-camphor), PhlF (DAPG), and CymR (p-cumate)-based Off switches was demonstrated by evaluating all 4 ligands against suitably engineered yeast strains. This study expands the toolbox of "On" and "Off" switches for yeast biotechnology.

  19. Patterns of nucleosomal organization in the alc regulon of Aspergillus nidulans: roles of the AlcR transcriptional activator and the CreA global repressor. (United States)

    Mathieu, Martine; Nikolaev, Igor; Scazzocchio, Claudio; Felenbok, Béatrice


    We have studied the chromatin organization of three promoters of the alc regulon of Aspergillus nidulans. No positioned nucleosomes are seen in the aldA (aldehyde dehydrogenase) promoter under any physiological condition tested by us. In the alcA (alcohol dehydrogenase I) and alcR (coding for the pathway-specific transcription factor) promoters, a pattern of positioned nucleosomes is seen under non-induced and non-induced repressed conditions. While each of these promoters shows a specific pattern of chromatin restructuring, in both cases induction results in loss of nucleosome positioning. Glucose repression in the presence of inducer results in a specific pattern of partial positioning in the alcA and alcR promoters. Loss of nucleosome positioning depends absolutely on the AlcR protein and it is very unlikely to be a passive result of the induction of transcription. In an alcR loss-of-function background and in strains carrying mutations of the respective AlcR binding sites of the alcA and alcR promoters, nucleosomes are fully positioned under all growth conditions. Analysis of mutant AlcR proteins establishes that all domains needed for transcriptional activation and chromatin restructuring are included within the first 241 residues. The results suggest a two-step process, one step resulting in chromatin restructuring, a second one in transcriptional activation. Partial positioning upon glucose repression shows a specific pattern that depends on the CreA global repressor. An alcR loss-of-function mutation is epistatic to a creA loss-of-function mutation, showing that AlcR does not act by negating a nucleosome positioning activity of CreA.

  20. Changes underlying arrhythmia in the transgenic heart overexpressing Refsum disease gene-associated protein. (United States)

    Koh, Jeong Tae; Jeong, Byung Chul; Kim, Jae Ha; Ahn, Young Keun; Lee, Hyang Sim; Baik, Yung Hong; Kim, Kyung Keun


    Previously, we identified a novel neuron-specific protein (PAHX-AP1) that binds to Refsum disease gene product (PAHX), and we developed transgenic (TG) mice that overexpress heart-targeted PAHX-AP1. These mice have atrial tachycardia and increased susceptibility to aconitine-induced arrhythmia. This study was undertaken to elucidate the possible changes in ion channels underlying the susceptibility to arrhythmia in these mice. RT-PCR analyses revealed that the cardiac expression of adrenergic beta(1)-receptor (ADRB1) was markedly lower, whereas voltage-gated potassium channel expression (Kv2.1) was higher in PAHX-AP1 TG mice compared with non-TG mice. However, the expression of voltage-sensitive sodium and calcium channels, and muscarinic receptor was not significantly different. Propranolol pretreatment, a non-specific beta-adrenoceptor antagonist, blocked aconitine-induced arrhythmia in non-TG mice, but not in PAHX-AP1 TG mice. Our results indicate that, in the PAHX-AP1 TG heart, the modulation of voltage-gated potassium channel and ADRB1 expression seem to be important in the electrophysiological changes associated with altered ion channel functions, but ADRB1 is not involved in the greater susceptibility to aconitine-induced arrhythmia.

  1. Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells. (United States)

    Bradbury, C M; Locke, J E; Wei, S J; Rene, L M; Karimpour, S; Hunt, C; Spitz, D R; Gius, D


    It has been established that tumor cells develop resistance to a variety of therapeutic agents after multiple exposures to these agents/drugs. Many of these therapeutic agents also appear to increase the activity of transcription factors, such as activator protein 1 (AP-1), believed to be involved in cellular responses to oxidative stress. Therefore, we hypothesized that cellular resistance to cancer therapeutic agents may involve the increased activity of transcription factors that govern resistance to oxidative stress, such as AP-1. To investigate this hypothesis, a previously characterized cisplatin, hyperthermia, and oxidative stress-resistant Chinese hamster fibroblast cell line, OC-14, was compared to the parental HA-1 cell line. Electrophoretic mobility shift and Western blot assays performed on extracts isolated from OC-14 cells demonstrated a 10-fold increase in constitutive AP-1 DNA-binding activity as well as increased constitutive c-Fos and c-Jun immunoreactive protein relative to HA-1 cells. Treatment of OC-14 cells with indomethacin inhibited constitutive increases in AP-1 DNA-binding activity and c-Fos/c-Jun-immunoreactive protein levels. Clonogenic survival assays demonstrated that pretreatment with indomethacin, at concentrations that inhibited AP-1 activity, significantly reduced the resistance of OC-14 cells to heat-induced radiosensitization, hydrogen peroxide, and cisplatin. These results demonstrate a relationship between increases in AP-1 DNA-binding activity and increased cellular resistance to cancer therapeutic agents and oxidative stress that is inhibited by indomethacin. These results support the hypothesis that inhibition of AP-1 activity with nonsteroidal anti-inflammatory drugs, such as indomethacin, may represent a useful adjuvant to cancer therapy.

  2. Extensive alternative splicing of the repressor element silencing transcription factor linked to cancer.

    Directory of Open Access Journals (Sweden)

    Guo-Lin Chen

    Full Text Available The repressor element silencing transcription factor (REST is a coordinate transcriptional and epigenetic regulator which functions as a tumor suppressor or an oncogene depending on cellular context, and a truncated splice variant REST4 has been linked to various types of cancer. We performed a comprehensive analysis of alternative splicing (AS of REST by rapid amplification of cDNA ends and PCR amplification of cDNAs from various tissues and cell lines with specific primers. We identified 8 novel alternative exons including an alternate last exon which doubles the REST gene boundary, along with numerous 5'/3' splice sites and ends in the constitutive exons. With the combination of various splicing patterns (e.g. exon skipping and alternative usage of the first and last exons that are predictive of altered REST activity, at least 45 alternatively spliced variants of coding and non-coding mRNA were expressed in a species- and cell-type/tissue-specific manner with individual differences. By examining the repertoire of REST pre-mRNA splicing in 27 patients with kidney, liver and lung cancer, we found that all patients without exception showed differential expression of various REST splice variants between paired tumor and adjacent normal tissues, with striking cell-type/tissue and individual differences. Moreover, we revealed that exon 3 skipping, which causes no frame shift but loss of a domain essential for nuclear translocation, was affected by pioglitazone, a highly selective activator of the peroxisome proliferator-activated receptor gamma (PPARγ which contributes to cell differentiation and tumorigenesis besides its metabolic actions. Accordingly, this study demonstrates an extensive AS of REST pre-mRNA which redefines REST gene boundary and structure, along with a general but differential link between REST pre-mRNA splicing and various types of cancer. These findings advance our understanding of the complex, context-dependent regulation of

  3. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression. (United States)

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M; Albert, Paul R


    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal

  4. Acetylation regulates Jun protein turnover in Drosophila. (United States)

    Zhang, Daoyong; Suganuma, Tamaki; Workman, Jerry L


    C-Jun is a major transcription factor belonging to the activating protein 1 (AP-1) family. Phosphorylation has been shown to be critical for c-Jun activation and stability. Here, we report that Jra, the Drosophila Jun protein, is acetylated in vivo. We demonstrate that the acetylation of Jra leads to its rapid degradation in response to osmotic stress. Intriguingly, we also found that Jra phosphorylation antagonized its acetylation, indicating the opposite roles of acetylation and phosphorylation in Jra degradation process under osmotic stress. Our results provide new insights into how c-Jun proteins are precisely regulated by the interplay of different posttranslational modifications.

  5. Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis. (United States)

    Savatin, Daniel V; Ferrari, Simone; Sicilia, Francesca; De Lorenzo, Giulia


    α-1-4-Linked oligogalacturonides (OGs) derived from plant cell walls are a class of damage-associated molecular patterns and well-known elicitors of the plant immune response. Early transcript changes induced by OGs largely overlap those induced by flg22, a peptide derived from bacterial flagellin, a well-characterized microbe-associated molecular pattern, although responses diverge over time. OGs also regulate growth and development of plant cells and organs, due to an auxin-antagonistic activity. The molecular basis of this antagonism is still unknown. Here we show that, in Arabidopsis (Arabidopsis thaliana), OGs inhibit adventitious root formation induced by auxin in leaf explants as well as the expression of several auxin-responsive genes. Genetic, biochemical, and pharmacological experiments indicate that inhibition of auxin responses by OGs does not require ethylene, jasmonic acid, and salicylic acid signaling and is independent of RESPIRATORY BURST OXIDASE HOMOLOGUE D-mediated reactive oxygen species production. Free indole-3-acetic acid levels are not noticeably altered by OGs. Notably, OG- as well as flg22-auxin antagonism does not involve any of the following mechanisms: (1) stabilization of auxin-response repressors; (2) decreased levels of auxin receptor transcripts through the action of microRNAs. Our results suggest that OGs and flg22 antagonize auxin responses independently of Aux/Indole-3-Acetic Acid repressor stabilization and of posttranscriptional gene silencing.

  6. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots. (United States)

    Rizvi, Noreen F; Weaver, Jessica D; Cram, Erin J; Lee-Parsons, Carolyn W T


    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  7. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus. (United States)

    Luebke, Justin L; Shen, Jiangchuan; Bruce, Kevin E; Kehl-Fie, Thomas E; Peng, Hui; Skaar, Eric P; Giedroc, David P


    How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR.

  8. Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells

    NARCIS (Netherlands)

    Kooistra, Susanne M.; Thummer, Rajkumar P.; Eggen, Bart J. L.


    In mice, during early embryonic development UTF1 (undifferentiated embryonic cell transcription factor 1) is expressed in the inner cell mass of blastocysts and in adult animals expression is restricted to the gonads. (Embryonic) Cells expressing UTF1 are generally considered pluripotent, meaning th

  9. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor. (United States)

    Valencia-Sama, Ivette; Zhao, Yulei; Lai, Dulcie; Janse van Rensburg, Helena J; Hao, Yawei; Yang, Xiaolong


    Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes.

  10. Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein Barr virus encoded latent membrane protein 1

    Institute of Scientific and Technical Information of China (English)

    SONG Xin; TAO Yongguang; TAN Yunnian; Leo M. Lee; DENG Xiyun; WU Qiao; CAO Ya


    Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) may trigger the transcription factor AP-1 including c-Jun and c-fos. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by the Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser 63, ser 73) and Jun B is involved in the process of the new heterodimeric formation. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer formation of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.

  11. Identification of a brain specific protein that associates with a refsum disease gene product, phytanoyl-CoA alpha-hydroxylase. (United States)

    Lee, Z H; Kim, H; Ahn, K Y; Seo, K H; Kim, J K; Bae, C S; Kim, K K


    Refsum disease is an autosomal recessive neurologic disorder of the lipid metabolism. Major diagnostic clinical findings include retinitis pigmentosa, peripheral polyneuropathy, cerebellar ataxia, increased cerebrospinal fluid protein without pleocytosis, nerve deafness, and cardiac involvement. We have identified a novel protein (PAHX-AP #1) associated with phytanoyl-CoA alpha-hydroxylase (PAHX), a Refsum disease gene product, using the yeast-based two-hybrid assay. The middle portion (amino acids 83-264) of PAHX was used as a bait and a mouse brain cDNA library was searched. The ability of PAHX-AP #1 to interact with PAHX was confirmed using immunoprecipitation and Western blot studies in NIH3T3 cells which stably expressed both PAHX and PAHX-AP #1. Northern and Western blot analyses demonstrated a unique pattern of developmental PAHX-AP #1 expression which was targeted to the adult brain, but ubiquitous expressions of PAHX were observed in all examined tissues. In situ hybridization analyses of the brain showed specific localization of PAHX-AP #1 to the supragranular layer in the cerebral cortex, dentate gyrus, hippocampus, Purkinje cell layer, deep cerebellar nucleus, trigeminal nucleus, abducent nucleus, facial nucleus, cochlear and vestibular nucleus, ganglion cell and nuclear layer of the retina. These data indicate that localization of PAHX-AP #1 in the brain is correlated with central neurologic symptoms of Refsum disease such as retinitis pigmentosa, cerebellar ataxia, nerve deafness and suggest that PAHX-AP #1 may be involved in the development of the central neurologic deficits of Refsum disease.

  12. Postnatal expression and distribution of Refsum disease gene associated protein in the rat retina and visual cortex: effect of binocular visual deprivation. (United States)

    Ahn, Kyu Youn; Nam, Kwang Il; Kim, Baik Yoon; Cho, Chul Woong; Jeong, Sang Ki; Yang, Kun Jin; Kim, Kyung Keun


    Previously, phytanoyl-CoA alpha-hydroxylase-associated protein 1 (PAHX-AP1) was isolated as a novel neuron-specific protein to interact with Refsum disease (RfD) gene PAHX. Its expression in the brain increased after eyelid opening, and the elevated level was maintained through adulthood. In this report, to verify the hypothesis that light could trigger this increase, we have examined the developmental distribution pattern of PAHX-AP1 in rat retina and visual cortex, and changes of its expression by binocular deprivation. Northern blot analyses demonstrated PAHX-AP1 expression reached its highest level in the visual cortex and eyeball at 4 weeks after birth, and these levels were maintained through adult life. Two weeks after visual deprivation, its expression in the eyeball and visual cortex decreased compared with the control. In situ hybridization analyses of the retina showed that PAHX-AP1 expression was limited to the ganglionic cell layer at 10 days after birth, but expressed in the inner nuclear cell layer and extended to the outer nuclear cell layer at 2 and 3 weeks after birth, respectively. Two weeks after visual deprivation, however, it decreased in the ganglionic and inner nuclear cell layer, and disappeared in the rod and cone cell layers. In the visual cortex, strong signals of PAHX-AP1 were detected in layers IV and VI, and II-VI at 10 days and 2 weeks after birth, respectively. Its expression decreased after 2 weeks of visual deprivation. These results indicate that visual stimulation is essential for the maintenance of PAHX-AP1 expressions in the retina, especially in the rod and cone cell layers, and visual cortex, and suggest that PAHX-AP1 may be involved in the developmental regulation of the photoreceptor's function.

  13. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Naotoshi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Hisahara, Shin; Hayashi, Takashi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University, Sapporo 060-8556 (Japan); Horio, Yoshiyuki, E-mail: [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan)


    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  14. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation.

    Directory of Open Access Journals (Sweden)

    Jennifer R Stevens

    Full Text Available Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of 'cryptic' promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4-Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4-Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the

  15. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway. (United States)

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D


    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  16. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J


    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  17. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity

    NARCIS (Netherlands)

    Witteveen, Josefine S.; Willemsen, Marjolein H.; Dombroski, Thais C. D.; van Bakel, Nick H. M.; Nillesen, Willy M.; van Hulten, Josephus A.; Jansen, Eric J. R.; Verkaik, Dave; Veenstra-Knol, Hermine E.; van Ravenswaaij-Arts, Conny M. A.; Wassink-Ruiter, Jolien S. Klein; Vincent, Marie; David, Albert; Le Caignec, Cedric; Schieving, Jolanda; Gilissen, Christian; Foulds, Nicola; Rump, Patrick; Strom, Tim; Cremer, Kirsten; Zink, Alexander M.; Engels, Hartmut; de Munnik, Sonja A.; Visser, Jasper E.; Brunner, Han G.; Martens, Gerard J. M.; Pfundt, Rolph; Kleefstra, Tjitske; Kolk, Sharon M.


    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder ( ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor swit

  18. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity

    NARCIS (Netherlands)

    Witteveen, Josefine S; Willemsen, Marjolein H; Dombroski, Thaís C D; van Bakel, Nick H M; Nillesen, Willy M; van Hulten, Josephus A; Jansen, Eric J R; Verkaik, Dave; Veenstra-Knol, Hermine E.; Ravenswaaij-Arts, van Conny; Klein Wassink-Ruiter, Jolien S.; Vincent, Marie; David, Albert; Le Caignec, Cedric; Schieving, Jolanda; Gilissen, Christian; Foulds, Nicola; Rump, Patrick; Strom, Tim; Cremer, Kirsten; Zink, Alexander M; Engels, Hartmut; de Munnik, Sonja A; Visser, Jasper E; Brunner, Han G; Martens, Gerard J M; Pfundt, Rolph; Kleefstra, Tjitske; Kolk, Sharon M


    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switc

  19. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos


    Full Text Available A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.

  20. Plum Fruit Development Occurs via Gibberellin–Sensitive and –Insensitive DELLA Repressors (United States)

    El-Sharkawy, Islam; Sherif, Sherif; Abdulla, Mahboob


    Fruit growth depends on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by triggering degradation of the growth-repressing DELLA proteins; however, the extent to which such proteins contribute to GA-mediated fruit development remains to be clarified. Three new plum genes encoding DELLA proteins, PslGAI, PslRGL and PslRGA were isolated and functionally characterized. Analysis of expression profile during fruit development suggested that PslDELLA are transcriptionally regulated during flower and fruit ontogeny with potential positive regulation by GA and ethylene, depending on organ and developmental stage. PslGAI and PslRGL deduced proteins contain all domains present in typical DELLA proteins. However, PslRGA exhibited a degenerated DELLA domain and subsequently lacks in GID1–DELLA interaction property. PslDELLA–overexpression in WT Arabidopsis caused dramatic disruption in overall growth including root length, stem elongation, plant architecture, flower structure, fertility, and considerable retardation in development due to dramatic distortion in GA-metabolic pathway. GA treatment enhanced PslGAI/PslRGL interaction with PslGID1 receptors, causing protein destabilization and relief of growth-restraining effect. By contrast, PslRGA protein was not degraded by GA due to its inability to interact with PslGID1. Relative to other PslDELLA–mutants, PslRGA–plants displayed stronger constitutive repressive growth that was irreversible by GA application. The present results describe additional complexities in GA-signalling during plum fruit development, which may be particularly important to optimize successful reproductive growth. PMID:28076366

  1. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carmen Ruger-Herreros

    Full Text Available The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC, a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a reduction in transcription after long exposures to light. The N. crassa RCO-1/RCM-1 repressor complex is the homolog of the Tup1-Ssn6 repressor complex in yeast, and its absence modifies photoadaptation. We show that the absence of the RCO-1/RCM-1 repressor complex leads to several alterations in transcription that are gene-specific: an increase in the accumulation of mRNAs in the dark, a repression of transcription, and a derepression of transcription after long exposures to light. The absence of the RCO-1/RCM-1 repressor complex leads to lower VVD levels that are available for the regulation of the activity of the WCC. The reduction in the amount of VVD results in increased WCC binding to the promoters of light-regulated genes in the dark and after long exposures to light, leading to the modification of photoadaptation that has been observed in rco-1 and rcm-1 mutants. Our results show that the photoadaptation phenotype of mutants in the RCO-1/RCM-1 repressor complex is, at least in part, an indirect consequence of the reduction of vvd transcription, and the resulting modification in the regulation of transcription by the WCC.

  2. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng-Fei [Xijing Hospital, Fourth Military Medical University, Xi' an (China); Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China); Han, Ya-Ling, E-mail: [Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China); Jie-Deng,; Yan, Cheng-Hui; Jian-Kang,; Bo-Luan,; Jie-Li [Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China)


    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study

  3. Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA. (United States)

    Feng, Youjun; Cronan, John E


    Escherichia coli fadH encodes a 2,4-dienoyl reductase that plays an auxiliary role in beta-oxidation of certain unsaturated fatty acids. In the 2 decades since its discovery, FadH biochemistry has been studied extensively. However, the genetic regulation of FadH has been explored only partially. Here we report mapping of the fadH promoter and document its complex regulation by three independent regulators, the fatty acid degradation FadR repressor, the oxygen-responsive ArcA-ArcB two-component system, and the cyclic AMP receptor protein-cyclic AMP (CRP-cAMP) complex. Electrophoretic mobility shift assays demonstrated that FadR binds to the fadH promoter region and that this binding can be specifically reversed by long-chain acyl-coenzyme A (CoA) thioesters. In vivo data combining transcriptional lacZ fusion and real-time quantitative PCR (qPCR) analyses indicated that fadH is strongly repressed by FadR, in agreement with induction of fadH by long-chain fatty acids. Inactivation of arcA increased fadH transcription by >3-fold under anaerobic conditions. Moreover, fadH expression was increased 8- to 10-fold under anaerobic conditions upon deletion of both the fadR and the arcA gene, indicating that anaerobic expression is additively repressed by FadR and ArcA-ArcB. Unlike fadM, a newly reported member of the E. coli fad regulon that encodes another auxiliary beta-oxidation enzyme, fadH was activated by the CRP-cAMP complex in a manner similar to those of the prototypical fad genes. In the absence of the CRP-cAMP complex, repression of fadH expression by both FadR and ArcA-ArcB was very weak, suggesting a possible interplay with other DNA binding proteins.

  4. Porins from Salmonella enterica Serovar Typhimurium Activate the Transcription Factors Activating Protein 1 and NF-κB through the Raf-1-Mitogen-Activated Protein Kinase Cascade (United States)

    Galdiero, Massimiliano; Vitiello, Mariateresa; Sanzari, Emma; D’Isanto, Marina; Tortora, Annalisa; Longanella, Anna; Galdiero, Stefania


    In this study we examined the ability of Salmonella enterica serovar Typhimurium porins to activate activating protein 1 (AP-1) and nuclear factor κB (NF-κB) through the mitogen-activated protein kinase (MAPK) cascade, and we identified the AP-1-induced protein subunits. Our results demonstrate that these enzymes may participate in cell signaling pathways leading to AP-1 and NF-κB activation following porin stimulation of cells. Raf-1 was phosphorylated in response to the treatment of U937 cells with porins; moreover, the porin-mediated increase in Raf-1 phosphorylation is accompanied by the phosphorylation of MAPK kinase 1/2 (MEK1/2), p38, extracellular-signal-regulated kinase 1/2, and c-Jun N-terminal kinase. We used three different inhibitors of phosphorylation pathways: 2′-amino-3′-methoxyflavone (PD-098059), a selective inhibitor of MEK1 activator and the MAPK cascade; 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of the p38 pathway; and 7β-acetoxy-1α,6β,9α-trihydroxy-8,13-epoxy-labd-14-en-11-one (forskolin), an inhibitor at the level of Raf-1 kinase. PD-098059 pretreatment of cells decreases AP-1 and NF-κB activation by lipopolysaccharide (LPS) but not by porins, and SB203580 pretreatment of cells decreases mainly AP-1 and NF-κB activation by porins; in contrast, forskolin pretreatment of cells does not affect AP-1 and NF-κB activation following either porin or LPS stimulation. Our data suggest that the p38 signaling pathway mainly regulates AP-1 and NF-κB activation in cells treated with S. enterica serovar Typhimurium porins. Antibody electrophoretic mobility shift assays showed that JunD and c-Fos binding is found in cells treated with porins, in cells treated with LPS, and in unstimulated cells. However, by 30 to 60 min of stimulation, a different complex including c-Jun appears in cells treated with porins or LPS, while the Fra-2 subunit is present only after porin stimulation

  5. CDK5RAP3 is a novel repressor of p14ARF in hepatocellular carcinoma cells


    Grace Wing-Yan Mak; Wai-Lung Lai; Yuan Zhou; Mingtao Li; Irene Oi-Lin Ng; Yick-Pang Ching


    CDK5 regulatory subunit associated protein 3 (CDK5RAP3) is a novel activator of PAK4 and processes important pro-metastatic function in hepatocarcinogenesis. However, it remains unclear if there are other mechanisms by which CDK5RAP3 promotes HCC metastasis. Here, we showed that in CDK5RAP3 stable knockdown SMMC-7721 HCC cells, p14(ARF) tumor suppressor was upregulated at protein and mRNA levels, and ectopic expression of CDK5RAP3 was found to repress the transcription of p14(ARF). Using chro...

  6. Repression of Seed Maturation Genes by a Trihelix Transcriptional Repressor in Arabidopsis Seedlings[W (United States)

    Gao, Ming-Jun; Lydiate, Derek J.; Li, Xiang; Lui, Helen; Gjetvaj, Branimir; Hegedus, Dwayne D.; Rozwadowski, Kevin


    The seed maturation program is repressed during germination and seedling development so that embryonic genes are not expressed in vegetative organs. Here, we describe a regulator that represses the expression of embryonic seed maturation genes in vegetative tissues. ASIL1 (for Arabidopsis 6b-interacting protein 1-like 1) was isolated by its interaction with the Arabidopsis thaliana 2S3 promoter. ASIL1 possesses domains conserved in the plant-specific trihelix family of DNA binding proteins and belongs to a subfamily of 6b-interacting protein 1-like factors. The seedlings of asil1 mutants exhibited a global shift in gene expression to a profile resembling late embryogenesis. LEAFY COTYLEDON1 and 2 were markedly derepressed during early germination, as was a large subset of seed maturation genes, such as those encoding seed storage proteins and oleosins, in seedlings of asil1 mutants. Consistent with this, asil1 seedlings accumulated 2S albumin and oil with a fatty acid composition similar to that of seed-derived lipid. Moreover, ASIL1 specifically recognized a GT element that overlaps the G-box and is in close proximity to the RY repeats of the 2S promoters. We suggest that ASIL1 targets GT-box–containing embryonic genes by competing with the binding of transcriptional activators to this promoter region. PMID:19155348

  7. Effects of IL-10 and IL-4 on LPS-induced transcription factors (AP-1, NF-IL6 and NF-kappa B) which are involved in IL-6 regulation

    NARCIS (Netherlands)

    Dokter, Willem; Koopmans, S.B.; Vellenga, E


    Interleukin-10 (IL-10), like IL-4, is known to inhibit cytokine expression in activated human monocytes. We showed that both IL-10 and IL-4 inhibit LPS-induced IL-6 mRNA and protein expression by inhibiting the transcription rate of the IL-6 gene. The strong inhibition of the IL-6 transcription rate

  8. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission


    Nardini, Marco; Spanò, Stefania; Cericola, Claudia; Pesce, Alessandra; Massaro, Anna; Millo, Enrico; Luini, Alberto; Corda, Daniela; Bolognesi, Martino


    C-terminal-binding protein/brefeldin A-ADP ribosylated substrate (CtBP/BARS) plays key roles in development and oncogenesis as a transcription co-repressor, and in intracellular traffic as a promoter of Golgi membrane fission. Co-repressor activity is regulated by NAD(H) binding to CtBP/BARS, while membrane fission is associated with its acyl-CoA-dependent acyltransferase activity. Here, we report the crystal structures of rat CtBP/BARS in a binary complex with NAD(H), and in a ternary comple...

  9. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.

    Directory of Open Access Journals (Sweden)

    Andrew Chen

    Full Text Available Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1. Extended exposures to low temperatures during the winter (vernalization induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1, which is mainly expressed in the apical meristem, VRN1 is also expressed at high levels in the leaves, but its function in this tissue is not well understood. Using tetraploid wheat lines with truncation mutations in the two homoeologous copies of VRN1 (henceforth vrn1-null mutants, we demonstrate that a central role of VRN1 in the leaves is to maintain low transcript levels of the VRN2 flowering repressor after vernalization. Transcript levels of VRN2 were gradually down-regulated during vernalization in both mutant and wild-type genotypes, but were up-regulated after vernalization only in the vrn1-null mutants. The up-regulation of VRN2 delayed flowering by repressing the transcription of FT, a flowering-integrator gene that encodes a mobile protein that is transported from the leaves to the apical meristem to induce flowering. The role of VRN2 in the delayed flowering of the vrn1-null mutant was confirmed using double vrn1-vrn2-null mutants, which flowered two months earlier than the vrn1-null mutants. Both mutants produced normal flowers and seeds demonstrating that VRN1 is not essential for wheat flowering, which contradicts current flowering models. This result does not diminish the importance of VRN1 in the seasonal regulation of wheat flowering. The up-regulation of VRN1 during winter is required to maintain low transcript levels of VRN2, accelerate the induction of FT in the leaves, and regulate a timely flowering in the spring. Our results also demonstrate the existence of redundant wheat flowering genes that may provide new targets for engineering wheat

  10. Research Progress on Epigenetic Regulation of Flowering Repressor FLC%抽薹开花抑制因子FLC表观遗传调控研究进展

    Institute of Scientific and Technical Information of China (English)

    肖旭峰; 范淑英


    FLOWERING LOCUS C(FLC)是植物抽薹开花调控网络中关键的开花决定因子。随着表观遗传学的发展,人们发现组蛋白修饰等表观调控FLC的表达在植物抽薹开花时间调控中起着非常重要的作用。FLC的抑制因子或促进因子通过改变组蛋白氨基酸的共价修饰(如乙酰化、甲基化等),影响FLC基因所在区域的染色质重塑,调控FLC转录表达水平,从而调节植物抽薹开花。本文就近年来国内外对植物抽薹开花关键调控基因FLC及表观遗传调控其表达研究现状进行了综述,并针对目前研究中存在的问题提出了今后的研究方向和重点。%FLOWERING LOCUS C(FLC)is a key deciding factor in regulating plant bolting and flowering network.Along with the development of epigenetics,scientists found that histone modi-fication and other epigenetic regulation of FLC expression played very important role in regulating plant bolting and flowering.Chromatin covalent modification included acetylation and methylation of lysine and arginine.The recent characterization of FLC repressors and activators has shown that some of these regulatory proteins are involved in the covalent modification of FLC chromatin and controlling the flow-ering time.This paper reviewed the present internal and external status on studying the regulating gene FLC for plant bolting and flowering,and epigenetic regulation and its expression.The paper also pro-vided direction and focus for future studies according the problems existing in present research.

  11. The transcriptional co-repressor myeloid translocation gene 16 inhibits glycolysis and stimulates mitochondrial respiration.

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    Full Text Available The myeloid translocation gene 16 product MTG16 is found in multiple transcription factor-containing complexes as a regulator of gene expression implicated in development and tumorigenesis. A stable Tet-On system for doxycycline-dependent expression of MTG16 was established in B-lymphoblastoid Raji cells to unravel its molecular functions in transformed cells. A noticeable finding was that expression of certain genes involved in tumor cell metabolism including 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4 (PFKFB3 and PFKFB4, and pyruvate dehydrogenase kinase isoenzyme 1 (PDK1 was rapidly diminished when MTG16 was expressed. Furthermore, hypoxia-stimulated production of PFKFB3, PFKFB4 and PDK1 was inhibited by MTG16 expression. The genes in question encode key regulators of glycolysis and its coupling to mitochondrial metabolism and are commonly found to be overexpressed in transformed cells. The MTG16 Nervy Homology Region 2 (NHR2 oligomerization domain and the NHR3 protein-protein interaction domain were required intact for inhibition of PFKFB3, PFKFB4 and PDK1 expression to occur. Expression of MTG16 reduced glycolytic metabolism while mitochondrial respiration and formation of reactive oxygen species increased. The metabolic changes were paralleled by increased phosphorylation of mitogen-activated protein kinases, reduced levels of amino acids and inhibition of proliferation with a decreased fraction of cells in S-phase. Overall, our findings show that MTG16 can serve as a brake on glycolysis, a stimulator of mitochondrial respiration and an inhibitor of cell proliferation. Hence, elevation of MTG16 might have anti-tumor effect.

  12. Elk3 from hamster-a ternary complex factor with strong transcriptional repressor activity

    DEFF Research Database (Denmark)

    Hjortoe, G.M.; Weilguny, D.; Willumsen, Berthe Marie


    the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c......-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3...

  13. Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors. (United States)

    Thakore, Pratiksha I; Gersbach, Charles A


    Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.

  14. CDK5RAP3 is a novel repressor of p14ARF in hepatocellular carcinoma cells. (United States)

    Mak, Grace Wing-Yan; Lai, Wai-Lung; Zhou, Yuan; Li, Mingtao; Ng, Irene Oi-Lin; Ching, Yick-Pang


    CDK5 regulatory subunit associated protein 3 (CDK5RAP3) is a novel activator of PAK4 and processes important pro-metastatic function in hepatocarcinogenesis. However, it remains unclear if there are other mechanisms by which CDK5RAP3 promotes HCC metastasis. Here, we showed that in CDK5RAP3 stable knockdown SMMC-7721 HCC cells, p14(ARF) tumor suppressor was upregulated at protein and mRNA levels, and ectopic expression of CDK5RAP3 was found to repress the transcription of p14(ARF). Using chromatin immunoprecipitation assay, we demonstrated that CDK5RAP3 bound to p14(ARF) promoter in vivo. Furthermore, knockdown of p14(ARF) in CDK5RAP3 stable knockdown HCC cells reversed the suppression of HCC cell invasiveness mediated by knockdown of CDK5RAP3. Taken together, our findings provide the new evidence that overexpression of CDK5RAP3 promotes HCC metastasis via downregulation of p14(ARF).

  15. CDK5RAP3 is a novel repressor of p14ARF in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Grace Wing-Yan Mak

    Full Text Available CDK5 regulatory subunit associated protein 3 (CDK5RAP3 is a novel activator of PAK4 and processes important pro-metastatic function in hepatocarcinogenesis. However, it remains unclear if there are other mechanisms by which CDK5RAP3 promotes HCC metastasis. Here, we showed that in CDK5RAP3 stable knockdown SMMC-7721 HCC cells, p14(ARF tumor suppressor was upregulated at protein and mRNA levels, and ectopic expression of CDK5RAP3 was found to repress the transcription of p14(ARF. Using chromatin immunoprecipitation assay, we demonstrated that CDK5RAP3 bound to p14(ARF promoter in vivo. Furthermore, knockdown of p14(ARF in CDK5RAP3 stable knockdown HCC cells reversed the suppression of HCC cell invasiveness mediated by knockdown of CDK5RAP3. Taken together, our findings provide the new evidence that overexpression of CDK5RAP3 promotes HCC metastasis via downregulation of p14(ARF.

  16. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski. (United States)

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J


    Ski is a transcriptional regulator that has been considered an oncoprotein given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski-/- mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei (MN) formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, spindle assembly checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of MN-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein.

  17. Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts. (United States)

    Zill, Oliver A; Rine, Jasper


    The mating-type determination circuit in Saccharomyces yeast serves as a classic paradigm for the genetic control of cell type in all eukaryotes. Using comparative genetics, we discovered a central and conserved, yet previously undetected, component of this genetic circuit: active repression of alpha-specific genes in a cells. Upon inactivation of the SUM1 gene in Saccharomyces bayanus, a close relative of Saccharomyces cerevisiae, a cells acquired mating characteristics of alpha cells and displayed autocrine activation of their mating response pathway. Sum1 protein bound to the promoters of alpha-specific genes, repressing their transcription. In contrast to the standard model, alpha1 was important but not required for alpha-specific gene activation and mating of alpha cells in the absence of Sum1. Neither Sum1 protein expression, nor its association with target promoters was mating-type-regulated. Thus, the alpha1/Mcm1 coactivators did not overcome repression by occluding Sum1 binding to DNA. Surprisingly, the mating-type regulatory function of Sum1 was conserved in S. cerevisiae. We suggest that a comprehensive understanding of some genetic pathways may be best attained through the expanded phenotypic space provided by study of those pathways in multiple related organisms.

  18. The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. (United States)

    Ryu, Jae Yong; Park, Chung-Mo; Seo, Pil Joon


    Floral transition is coordinately regulated by both endogenous and exogenous cues to ensure reproductive success under fluctuating environmental conditions. Abiotic stress conditions, including drought and high salinity, also have considerable influence on this developmental process. However, the signaling components and molecular mechanisms underlying the regulation of floral transition by environmental factors have not yet been defined. In this work, we show that the Arabidopsis BROTHER OF FT AND TFL1 (BFT) gene, which encodes a member of the FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family, regulates floral transition under conditions of high salinity. The BFT gene was transcriptionally induced by high salinity in an abscisic acid (ABA)-dependent manner. Transgenic plants overexpressing the BFT gene (35S:BFT) and BFT-deficient mutant (bft-2) plants were phenotypically indistinguishable from Col-0 plants in seed germination and seedling growth under high salinity. In contrast, although the floral transition was delayed significantly in Col-0 plants under high salinity, that of the bft-2 mutant was not affected by high salinity. We also observed that expression of the APETALA1 (AP1) gene was suppressed to a lesser degree in the bft-2 mutant than in Col-0 plants. Taken together, our observations suggest that BFT mediates salt stress-responsive flowering, providing an adaptive strategy that ensures reproductive success under unfavorable stress conditions.

  19. Cardiac Characteristics of Transgenic Mice Overexpressing Refsum