WorldWideScience

Sample records for ap-1 repressor protein

  1. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Holmberg, Christian Henrik; Dietrich, Nikolaj;

    2005-01-01

    JDP2 is a ubiquitously expressed nuclear protein that efficiently represses the activity of the transcription factor AP-1. Thus far, all studies of JDP2 function have relied on the ectopic expression of the protein. In this study, we use a different approach: depletion of JDP2 from cells. Specific...... depletion of JDP2 resulted in p53-independent cell death that resembles apoptosis and was evident at 72 h. The death mechanism was caspase dependent as the cells could be rescued by treatment with caspase inhibitor zVAD. Our studies suggest that JDP2 functions as a general survival protein, not only...

  2. ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site.

    Science.gov (United States)

    Almodóvar-García, Karinna; Kwon, Minjae; Samaras, Susan E; Davidson, Jeffrey M

    2014-04-01

    The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1(-/-) (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1(fl/fl) (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs. PMID:24515436

  3. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization

    OpenAIRE

    Xiangnan Zheng; Minzhang Cheng; Liang Xiang; Jian Liang; Liping Xie; Rongqing Zhang

    2015-01-01

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distrib...

  4. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    Directory of Open Access Journals (Sweden)

    Daniel Pérez-Núñez

    Full Text Available African swine fever virus (ASFV CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  5. AP1S3 is required for hepatitis C virus infection by stabilizing E2 protein.

    Science.gov (United States)

    Li, Xiang; Niu, Yuqiang; Cheng, Min; Chi, Xiaojing; Liu, Xiuying; Yang, Wei

    2016-07-01

    Hepatitis C virus (HCV) infects 130 million people worldwide and is a leading cause of liver cirrhosis, end-stage liver disease and hepatocellular carcinoma. The interactions between viral elements and host factors play critical role on HCV invade, replication and release. Here, we identified adaptor protein complex 1 sigma 3 subunit (AP1S3) as a dependency factor for the efficient HCV infection in hepatoma cells. AP1S3 silencing in cultivated Huh7.5.1 cells significantly reduced the production of HCV progeny particles. Immunoprecipitation analysis revealed that AP1S3 interacted with the HCV E2 protein. With this interaction, AP1S3 could protect HCV E2 from ubiquitin-mediated proteasomal degradation. Using in vivo ubiquitylation assay, we identified that E6-Associated Protein (E6AP) was associated with HCV E2. In addition, treatment with synthetic peptide that contains the AP1S3-recognized motif inhibited HCV infection in Huh7.5.1 cells. Our data reveal AP1 as a novel host network that is required by viruses during infection and provides a potential target for developing broad-spectrum anti-virus strategies. PMID:27079945

  6. Expression of activator protein-1 (AP-1) family members in breast cancer

    International Nuclear Information System (INIS)

    The activator protein-1 (AP-1) transcription factor is believed to be important in tumorigenesis and altered AP-1 activity was associated with cell transformation. We aimed to assess the potential role of AP-1 family members as novel biomarkers in breast cancer. We studied the expression of AP-1 members at the mRNA level in 72 primary breast tumors and 37 adjacent non-tumor tissues and evaluated its correlation with clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR) and HER2/neu status. Expression levels of Ubiquitin C (UBC) were used for normalization. Protein expression of AP-1 members was assessed using Western blot analysis in a subset of tumors. We used student’s t-test, one-way ANOVA, logistic regression and Pearson’s correlation coefficient for statistical analyses. We found significant differences in the expression of AP-1 family members between tumor and adjacent non-tumor tissues for all AP-1 family members except Fos B. Fra-1, Fra-2, Jun-B and Jun-D mRNA levels were significantly higher in tumors compared to adjacent non-tumor tissues (p < 0.001), whilst c-Fos and c-Jun mRNA levels were significantly lower in tumors compared with adjacent non-tumor tissues (p < 0.001). In addition, Jun-B overexpression had outstanding discrimination ability to differentiate tumor tissues from adjacent non-tumor tissues as determined by ROC curve analysis. Moreover, Fra-1 was significantly overexpressed in the tumors biochemically classified as ERα negative (p = 0.012) and PR negative (p = 0.037). Interestingly, Fra-1 expression was significantly higher in triple-negative tumors compared with luminal carcinomas (p = 0.01). Expression levels of Fra-1 and Jun-B might be possible biomarkers for prognosis of breast cancer

  7. Sip1, a Conserved AP-1 Accessory Protein, Is Important for Golgi/Endosome Trafficking in Fission Yeast

    OpenAIRE

    Yang Yu; Ayako Kita; Masako Udo; Yuta Katayama; Mami Shintani; Kwihwa Park; Kanako Hagihara; Nanae Umeda; Reiko Sugiura

    2012-01-01

    We had previously identified the mutant allele of apm1(+) that encodes a homolog of the mammalian μ 1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex and demonstrated that the AP-1 complex plays a role in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. Here, we isolated a mutant allele of its4(+)/sip1(+), which encodes a conserved AP-1 accessory protein. The its4-1/sip1-i4 mutants and apm1-deletion cells exhibited similar phenotypes, including ...

  8. In vivo characterization of protein-protein interactions in the AP1 system with fluorescence correlation spectroscopy (FCS).

    OpenAIRE

    Baudendistel, Nina; Knoch, Tobias; Müller, Gabriele; Wachsmuth, Malte; Weidemann, Thomas; Waldeck, Waldemar; Langowski, Jörg

    2002-01-01

    textabstractThe aim of these studies is the quantitative investigation of protein-protein interactions in the AP1 system in vivo. First results of FCS measurements show an exchange in the nucleus of the proteins Fos-CFP and Jun-YFP in the stably mono-transfected HeLa-Cells. This is also shown by fitting the bleaching curves measured in the nucleus with an appropriate model. We obtained dissociation times between 10 and 20 seconds in the nucleus. In the autocorrelation function a free and an o...

  9. Solitons and Collapse in the lambda-repressor protein

    OpenAIRE

    Krokhotin, Andrey; Lundgren, Martin; Niemi, Antti J.

    2012-01-01

    The enterobacteria lambda phage is a paradigm temperate bacteriophage. Its lysogenic and lytic life cycles echo competition between the DNA binding $\\lambda$-repressor (CI) and CRO proteins. Here we scrutinize the structure, stability and folding pathways of the $\\lambda$-repressor protein, that controls the transition from the lysogenic to the lytic state. We first investigate the super-secondary helix-loop-helix composition of its backbone. We use a discrete Frenet framing to resolve the ba...

  10. Solitons and Collapse in the lambda-repressor protein

    CERN Document Server

    Krokhotin, Andrey; Niemi, Antti J

    2012-01-01

    The enterobacteria lambda phage is a paradigm temperate bacteriophage. Its lysogenic and lytic life cycles echo competition between the DNA binding $\\lambda$-repressor (CI) and CRO proteins. Here we scrutinize the structure, stability and folding pathways of the $\\lambda$-repressor protein, that controls the transition from the lysogenic to the lytic state. We first investigate the super-secondary helix-loop-helix composition of its backbone. We use a discrete Frenet framing to resolve the backbone spectrum in terms of bond and torsion angles. Instead of four, there appears to be seven individual loops. We model the putative loops using an explicit soliton Ansatz. It is based on the standard soliton profile of the continuum nonlinear Schr\\"odinger equation. The accuracy of the Ansatz far exceeds the B-factor fluctuation distance accuracy of the experimentally determined protein configuration. We then investigate the folding pathways and dynamics of the $\\lambda$-repressor protein. We introduce a coarse-graine...

  11. The reconstruction of condition-specific transcriptional modules provides new insights in the evolution of yeast AP-1 proteins.

    Directory of Open Access Journals (Sweden)

    Christel Goudot

    Full Text Available AP-1 proteins are transcription factors (TFs that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element and are either seven (YRE-Overlap or eight (YRE-Adjacent base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps. We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5' position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe. Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another.

  12. Sip1, an AP-1 Accessory Protein in Fission Yeast, Is Required for Localization of Rho3 GTPase

    OpenAIRE

    Yang Yu; Cuifang Li; Ayako Kita; Yuta Katayama; Koji Kubouchi; Masako Udo; Yukako Imanaka; Shiho Ueda; Takashi Masuko; Reiko Sugiura

    2013-01-01

    Rho family GTPases act as molecular switches to regulate a range of physiological functions, including the regulation of the actin-based cytoskeleton, membrane trafficking, cell morphology, nuclear gene expression, and cell growth. Rho function is regulated by its ability to bind GTP and by its localization. We previously demonstrated functional and physical interactions between Rho3 and the clathrin-associated adaptor protein-1 (AP-1) complex, which revealed a role of Rho3 in regulating Golg...

  13. Sip1, an AP-1 accessory protein in fission yeast, is required for localization of Rho3 GTPase.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available Rho family GTPases act as molecular switches to regulate a range of physiological functions, including the regulation of the actin-based cytoskeleton, membrane trafficking, cell morphology, nuclear gene expression, and cell growth. Rho function is regulated by its ability to bind GTP and by its localization. We previously demonstrated functional and physical interactions between Rho3 and the clathrin-associated adaptor protein-1 (AP-1 complex, which revealed a role of Rho3 in regulating Golgi/endosomal trafficking in fission yeast. Sip1, a conserved AP-1 accessory protein, recruits the AP-1 complex to the Golgi/endosomes through physical interaction. In this study, we showed that Sip1 is required for Rho3 localization. First, overexpression of rho3⁺ suppressed defective membrane trafficking associated with sip1-i4 mutant cells, including defects in vacuolar fusion, Golgi/endosomal trafficking and secretion. Notably, Sip1 interacted with Rho3, and GFP-Rho3, similar to Apm1-GFP, did not properly localize to the Golgi/endosomes in sip1-i4 mutant cells at 27°C. Interestingly, the C-terminal region of Sip1 is required for its localization to the Golgi/endosomes, because Sip1-i4-GFP protein failed to properly localize to Golgi/endosomes, whereas the fluorescence of Sip1ΔN mutant protein co-localized with that of FM4-64. Consistently, in the sip1-i4 mutant cells, which lack the C-terminal region of Sip1, binding between Apm1 and Rho3 was greatly impaired, presumably due to mislocalization of these proteins in the sip1-i4 mutant cells. Furthermore, the interaction between Apm1 and Rho3 as well as Rho3 localization to the Golgi/endosomes were significantly rescued in sip1-i4 mutant cells by the expression of Sip1ΔN. Taken together, these results suggest that Sip1 recruits Rho3 to the Golgi/endosomes through physical interaction and enhances the formation of the Golgi/endosome AP-1/Rho3 complex, thereby promoting crosstalk between AP-1 and Rho3 in

  14. Sip1, an AP-1 accessory protein in fission yeast, is required for localization of Rho3 GTPase.

    Science.gov (United States)

    Yu, Yang; Li, Cuifang; Kita, Ayako; Katayama, Yuta; Kubouchi, Koji; Udo, Masako; Imanaka, Yukako; Ueda, Shiho; Masuko, Takashi; Sugiura, Reiko

    2013-01-01

    Rho family GTPases act as molecular switches to regulate a range of physiological functions, including the regulation of the actin-based cytoskeleton, membrane trafficking, cell morphology, nuclear gene expression, and cell growth. Rho function is regulated by its ability to bind GTP and by its localization. We previously demonstrated functional and physical interactions between Rho3 and the clathrin-associated adaptor protein-1 (AP-1) complex, which revealed a role of Rho3 in regulating Golgi/endosomal trafficking in fission yeast. Sip1, a conserved AP-1 accessory protein, recruits the AP-1 complex to the Golgi/endosomes through physical interaction. In this study, we showed that Sip1 is required for Rho3 localization. First, overexpression of rho3⁺ suppressed defective membrane trafficking associated with sip1-i4 mutant cells, including defects in vacuolar fusion, Golgi/endosomal trafficking and secretion. Notably, Sip1 interacted with Rho3, and GFP-Rho3, similar to Apm1-GFP, did not properly localize to the Golgi/endosomes in sip1-i4 mutant cells at 27°C. Interestingly, the C-terminal region of Sip1 is required for its localization to the Golgi/endosomes, because Sip1-i4-GFP protein failed to properly localize to Golgi/endosomes, whereas the fluorescence of Sip1ΔN mutant protein co-localized with that of FM4-64. Consistently, in the sip1-i4 mutant cells, which lack the C-terminal region of Sip1, binding between Apm1 and Rho3 was greatly impaired, presumably due to mislocalization of these proteins in the sip1-i4 mutant cells. Furthermore, the interaction between Apm1 and Rho3 as well as Rho3 localization to the Golgi/endosomes were significantly rescued in sip1-i4 mutant cells by the expression of Sip1ΔN. Taken together, these results suggest that Sip1 recruits Rho3 to the Golgi/endosomes through physical interaction and enhances the formation of the Golgi/endosome AP-1/Rho3 complex, thereby promoting crosstalk between AP-1 and Rho3 in the regulation of

  15. Protein Product Encoded by a Human Novel Gene E9730 Enhances AP-1 Activity through Interacting with Jab1

    Institute of Scientific and Technical Information of China (English)

    Zhao-Qing WANG; Han-Dong WEI; Fu-Chu HE

    2004-01-01

    A novel human gene, named E9730 (a clone number of fetal liver cDNA library), has been identified from more than 14,000 expressed sequence tags (ESTs) based on our large scale sequencing of human fetal liver cDNA libraries. Although sequencing of this novel human gene indicates that it is a leucine zipper protein, the function of E9730 and its homologous genes among species is unknown yet. To find out physiological functional clue of E9730, the yeast two-hybrid system was used to screen the E9730-interacting protein(s), and one clone containing a cDNA insert with almost the entire coding sequence (amino acids 39-335) of human Jab1 (Jun-activating domain binding protein 1) that interacted specifically with E9730 was identified. A specific association between Jab1 and E9730 was shown by co-immunoprecipitation and co-localization experiments. Furthermore, E9730 appeared to enhance Jab1-induced AP-1 activity in a concentration-dependent manner and Jab1 may be involved in the intracellular signaling transduction from E9730 to AP-1.

  16. Protein Product Encoded by a Human Novel Gene E9730 Enhances AP-1 Activity through Interacting with Jab1

    Institute of Scientific and Technical Information of China (English)

    Zhao-QingWANG; Han-DongWEI; Fu-ChuHE

    2004-01-01

    A novel human gene, named E9730 (a clone number of fetal liver cDNA library), has been identified from more than 14,000 expressed sequence tags (ESTs) based on our large scale sequencing of human fetal liver cDNA libraries. Although sequencing of this novel human gene indicates that it is a leucine zipper protein, the function of E9730 and its homologous genes among species is unknown yet. To find out physiological functional clue of E9730, the yeast two-hybrid system was used to screen the E9730-interacting protein(s), and one clone containing a cDNA insert with almost the entire coding sequence (amino acids 39-335) of human Jabl (Jun-activating domain binding protein 1) that interacted specifically with E9730 was identified. A specific association between Jab1 and E9730 was shown by co-immunoprecipitation and co-localization experiments. Furthermore, E9730 appeared to enhance Jabl-induced AP-1 activity in a concentration-dependent manner and Jabl may be involved in the intracellular signaling tra.nsduction from E9730 to AP-1.

  17. The retinoblastoma protein as a transcriptional repressor

    DEFF Research Database (Denmark)

    Helin, K; Ed, H

    1993-01-01

    The retinoblastoma protein (pRB) is one of the best-studied tumour suppressor gene products. Its loss during the genesis of many human tumours, its inactivation by several DNA tumour virus oncoproteins, and its ability to inhibit cell growth when introduced into dividing cells all suggest that p...

  18. CD2v interacts with Adaptor Protein AP-1 during African swine fever infection

    OpenAIRE

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez Bonet, Marta; Nogal París, María Luisa; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golg...

  19. Solitons and collapse in the λ-repressor protein

    Science.gov (United States)

    Krokhotin, Andrey; Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    The enterobacteria lambda phage is a paradigm temperate bacteriophage. Its lysogenic and lytic life cycles echo competition between the DNA binding λ-repressor (CI) and CRO proteins. Here we scrutinize the structure, stability, and folding pathways of the λ-repressor protein, which controls the transition from the lysogenic to the lytic state. We first investigate the supersecondary helix-loop helix composition of its backbone. We use a discrete Frenet framing to resolve the backbone spectrum in terms of bond and torsion angles. Instead of four, there appears to be seven individual loops. We model the putative loops using an explicit soliton Ansatz. It is based on the standard soliton profile of the continuum nonlinear Schrödinger equation. The accuracy of the Ansatz far exceeds the B-factor fluctuation distance accuracy of the experimentally determined protein configuration. We then investigate the folding pathways and dynamics of the λ-repressor protein. We introduce a coarse-grained energy function to model the backbone in terms of the Cα atoms and the side chains in terms of the relative orientation of the Cβ atoms. We describe the folding dynamics in terms of relaxation dynamics and find that the folded configuration can be reached from a very generic initial configuration. We conclude that folding is dominated by the temporal ordering of soliton formation. In particular, the third soliton should appear before the first and second. Otherwise, the DNA binding turn does not acquire its correct structure. We confirm the stability of the folded configuration by repeated heating and cooling simulations.

  20. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  1. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A)

    International Nuclear Information System (INIS)

    Research highlights: → Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. → Adaptor-related protein complex 1 μ1A (AP-1 mu1A) was firstly reported to interact with kAE1. → The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. → AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. → AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl-) and bicarbonate (HCO3-) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl-/HCO3- exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.

  2. Mutations in the Gene Encoding the Sigma 2 Subunit of the Adaptor Protein 1 Complex, AP1S2, Cause X-Linked Mental Retardation

    OpenAIRE

    Tarpey, Patrick S. ; Stevens, Claire ; Teague, Jon ; Edkins, Sarah ; O’Meara, Sarah ; Avis, Tim ; Barthorpe, Syd ; Buck, Gemma ; Butler, Adam ; Cole, Jennifer ; Dicks, Ed ; Gray, Kristian ; Halliday, Kelly ; Harrison, Rachel ; Hills, Katy 

    2006-01-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found ...

  3. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    Science.gov (United States)

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles. PMID:17186471

  4. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity

    International Nuclear Information System (INIS)

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process

  5. Bacteriophage 434 Hex Protein Prevents RecA-Mediated Repressor Autocleavage

    Directory of Open Access Journals (Sweden)

    Paul Shkilnyj

    2013-01-01

    Full Text Available In a λimm434 lysogen, two proteins are expressed from the integrated prophage. Both are encoded by the same mRNA whose transcription initiates at the PRM promoter. One protein is the 434 repressor, needed for the establishment and maintenance of lysogeny. The other is Hex which is translated from an open reading frame that apparently partially overlaps the 434 repressor coding region. In the wild type host, disruption of the gene encoding Hex destabilizes λimm434 lysogens. However, the hex mutation has no effect on lysogen stability in a recA− host. These observations suggest that Hex functions by modulating the ability of RecA to stimulate 434 repressor autocleavage. We tested this hypothesis by identifying and purifying Hex to determine if this protein inhibited RecA‑stimulated autocleavage of 434 repressor in vitro. Our results show that in vitro a fragment of Hex prevents RecA-stimulated autocleavage of 434 repressor, as well as the repressors of the closely related phage P22. Surprisingly, Hex does not prevent RecA‑stimulated autocleavage of phage lambda repressor, nor the E. coli LexA repressor.

  6. Tethering of the conserved piggyBac transposase fusion protein CSB-PGBD3 to chromosomal AP-1 proteins regulates expression of nearby genes in humans.

    Directory of Open Access Journals (Sweden)

    Lucas T Gray

    2012-09-01

    Full Text Available The CSB-PGBD3 fusion protein arose more than 43 million years ago when a 2.5-kb piggyBac 3 (PGBD3 transposon inserted into intron 5 of the Cockayne syndrome Group B (CSB gene in the common ancestor of all higher primates. As a result, full-length CSB is now coexpressed with an abundant CSB-PGBD3 fusion protein by alternative splicing of CSB exons 1-5 to the PGBD3 transposase. An internal deletion of the piggyBac transposase ORF also gave rise to 889 dispersed, 140-bp MER85 elements that were mobilized in trans by PGBD3 transposase. The CSB-PGBD3 fusion protein binds MER85s in vitro and induces a strong interferon-like innate antiviral immune response when expressed in CSB-null UVSS1KO cells. To explore the connection between DNA binding and gene expression changes induced by CSB-PGBD3, we investigated the genome-wide DNA binding profile of the fusion protein. CSB-PGBD3 binds to 363 MER85 elements in vivo, but these sites do not correlate with gene expression changes induced by the fusion protein. Instead, CSB-PGBD3 is enriched at AP-1, TEAD1, and CTCF motifs, presumably through protein-protein interactions with the cognate transcription factors; moreover, recruitment of CSB-PGBD3 to AP-1 and TEAD1 motifs correlates with nearby genes regulated by CSB-PGBD3 expression in UVSS1KO cells and downregulated by CSB rescue of mutant CS1AN cells. Consistent with these data, the N-terminal CSB domain of the CSB-PGBD3 fusion protein interacts with the AP-1 transcription factor c-Jun and with RNA polymerase II, and a chimeric CSB-LacI construct containing only the N-terminus of CSB upregulates many of the genes induced by CSB-PGBD3. We conclude that the CSB-PGBD3 fusion protein substantially reshapes the transcriptome in CS patient CS1AN and that continued expression of the CSB-PGBD3 fusion protein in the absence of functional CSB may affect the clinical presentation of CS patients by directly altering the transcriptional program.

  7. Latency of Epstein–Barr virus is disrupted by gain-of-function mutant cellular AP-1 proteins that preferentially bind methylated DNA

    OpenAIRE

    Yu, Kuan-Ping; Heston, Lee; Park, Richard; Ding, Zhaowei; Wang’ondu, Ruth; Delecluse, Henri-Jacques; Miller, George

    2013-01-01

    ZEBReplication Activator (ZEBRA), a viral basic zipper protein that initiates the Epstein–Barr viral lytic cycle, binds to DNA and activates transcription through heptamer ZEBRA response elements (ZREs) related to AP-1 sites. A component of the biologic action of ZEBRA is attributable to binding methylated CpGs in ZREs present in the promoters of viral lytic cycle genes. Residue S186 of ZEBRA, Z(S186), which is absolutely required for disruption of latency, participates in the recognition of ...

  8. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.

    Science.gov (United States)

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049

  9. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer

    OpenAIRE

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infe...

  10. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  11. The Clathrin Adaptor AP-1A Mediates Basolateral Polarity

    OpenAIRE

    Gravotta, Diego; Carvajal-Gonzalez, Jose Maria; Mattera, Rafael; Deborde, Sylvie; Banfelder, Jason R.; Bonifacino, Juan S.; Rodriguez-Boulan, Enrique

    2012-01-01

    Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B and mice knocked-out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knock-down of AP-1A causes missorting of basolateral proteins in MDCK cells but only after knock-down of AP-1B, sug...

  12. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains

    OpenAIRE

    Fölsch, Heike; Pypaert, Marc; Maday, Sandra; Pelletier, Laurence; Mellman, Ira

    2003-01-01

    Most epithelial cells contain two AP-1 clathrin adaptor complexes. AP-1A is ubiquitously expressed and involved in transport between the TGN and endosomes. AP-1B is expressed only in epithelia and mediates the polarized targeting of membrane proteins to the basolateral surface. Both AP-1 complexes are heterotetramers and differ only in their 50-kD μ1A or μ1B subunits. Here, we show that AP-1A and AP-1B, together with their respective cargoes, define physically and functionally distinct membra...

  13. Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties

    International Nuclear Information System (INIS)

    Chemical modification using 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride) has been used to explore the importance of lysine residues involved in the binding activities of the lactose repressor and to introduce a fluorescent probe into the protein. Dansyl chloride modification of lac repressor resulted in loss of operator DNA binding at low molar ratios of reagent/monomer. Loss of nonspecific DNA binding was observed only at higher molar ratios, while isopropyl beta-D-thiogalactoside binding was not affected at any of the reagent levels studied. Lysine residues were the only modified amino acids detected. Protection of lysines-33 and -37 from modification by the presence of nonspecific DNA correlated with maintenance of operator DNA binding activity, and reaction of lysine-37 paralleled operator binding activity loss. Energy transfer between dansyl incorporated in the core region of the repressor protein and tryptophan-201 was observed, with an approximate distance of 23 A calculated between these two moieties

  14. Adaptor protein complexes AP-1 and AP-3 are required by the HHV-7 Immunoevasin U21 for rerouting of class I MHC molecules to the lysosomal compartment.

    Directory of Open Access Journals (Sweden)

    Lisa A Kimpler

    Full Text Available The human herpesvirus-7 (HHV-7 U21 gene product binds to class I major histocompatibility complex (MHC molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the μ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining μ subunits in the cells are eventually able to reroute class I molecules to lysosomes.

  15. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    Full Text Available BACKGROUND: The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif. METHODS AND FINDINGS: Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction. CONCLUSIONS: These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  16. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  17. Cleavage of lambda repressor and synthesis of RecA protein induced by transferred UV-damaged F sex factor

    International Nuclear Information System (INIS)

    Transfer of a UV-damaged F sex factor to a recipient lambda lysogen induces prophage lambda development. Under these conditions RecA protein synthesis was induced and lambda repressor cleaved, as observed upon direct induction, that ist, wehen the recipient lambda lysogen was directly exposed to UV-light. The efficiency of induction of RecA protein synthesis in recipient bacteria which had received an irradiated F-lac factor was about 80% of that measured upon direct induction. We observed the simultaneous disappearance of lambda repressor and a slight production of cleavage fragments; quantitation by densitometric scanning of the autoradiogram after correction for the efficiency of transfer indicated that 55% of lambda repressor was cleaved. Transfer of UV-damaged Hfr DNA failed to induce RecA protein synthesis. A lambda phage vector carrying oriF, the cloned origin of F plasmid replication, after exposure to UV-light and infection of a recipient lysogen, induced RecA protein synthesis and a moderate but significant cleavage of lambda repressor. Indirect induction by UV-damaged F sex factor or phage lambdaoriF resulted in biochemical cellular reactions similar to those observed upon direct induction. LexA repressor that negatively controls RecA protein synthesis appeared more susceptible to cleavage than did lambda repressor. (orig.)

  18. The bovine papillomavirus type 1 E2 transactivator and repressor proteins use different nuclear localization signals.

    Science.gov (United States)

    Skiadopoulos, M H; McBride, A A

    1996-02-01

    The E2 gene of bovine papillomavirus type 1 encodes at least three nuclear phosphoproteins that regulate viral transcription and DNA replication. All three proteins have a common C-terminal domain that has DNA-binding and dimerization activities. A basic region in this domain forms an alpha helix which makes direct contact with the DNA target. In this study, it is shown that in addition to its role in DNA binding, this basic region functions as a nuclear localization signal both in the E2 DNA-binding domain and in a heterologous protein. Deletion of this signal sequence resulted in increased accumulation of the E2 transactivator and repressor proteins in the cytoplasm, but nuclear localization was not eliminated. In the full-length transactivator protein, another signal, present in the N-terminal transactivation domain, is used for transport to the nucleus, and the C-terminal nuclear localization signal(s) are masked. The use of different nuclear localization signals could potentially allow differential regulation of the subcellular localization of the E2 transactivator and repressor proteins at some stage in the viral life cycle. PMID:8551571

  19. Characterization of the CI Repressor Protein Encoded by the Temperate Lactococcal Phage TP901-1

    DEFF Research Database (Denmark)

    Pedersen, Margit; Ligowska, Malgorzata Anna; Hammer, Karin

    2010-01-01

    The gene regulatory mechanism determining the developmental pathway of the temperate bacteriophage TP901-1 is regulated by two phage-encoded proteins, CI and MOR. Functional domains of the CI repressor were investigated by introducing linkers of 15 bp at various positions in cI and by limited...... proteolysis of purified CI protein. We show that insertions of five amino acids at positions in the N-terminal half of CI resulted in mutant proteins that could no longer repress transcription from the lytic promoter, P-L. We confirmed that the N-terminal domain of CI contains the DNA binding site, and we...... showed that this part of the protein is tightly folded, whereas the central part and the C-terminal part of CI seem to contain more flexible structures. Furthermore, insertions at several different positions in the central part of the CI protein reduced the cooperative binding of CI to the operator sites...

  20. Transcriptional Inhibition of Matrix Metal loproteinase 9 (MMP-9 Activity by a c-fos/Estrogen Receptor Fusion Protein is Mediated by the Proximal AP-1 Site of the MMP-9 Promoter and Correlates with Reduced Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    1999-10-01

    Full Text Available Tumor cell invasion of basement membranes is one of the hallmarks of malignant transformation. Tumor cells secrete proteolytic enzymes known as matrix metalloproteinases (MMPs which degrade extracellular matrix molecules. Increased expression of MMP-9 has been associated with acquisition of invasive phenotype in many tumors. However, multiple mechanisms for regulation of MMP-9 gene expression by tumor cell lines have been proposed. A number of transcription factor binding sites have been characterized in the upstream regulatory region of the MMP-9 gene, including those for AP-1. To determine how a specific AP-1 family member, c-fos, regulates MMP-9 promoter activity through these sites, we used an expression vector containing the c-fos coding region fused to the estrogen receptor (ER ligand binding domain. This construct is activated upon binding estradiol. Stable expression of this construct in ER negative squamous cell carcinoma (SCC lines produced an estradiol dependent decrease in the number of cells that migrated through a reconstituted basement membrane. This decreased invasiveness was accompanied by estradiol dependent downregulation of MMP-9 activity as determined by gelatin zymography. Estradiol also produced transcriptional downregulation of an MMP-9 promoter construct in cells transiently transfected with the c-fosER expression vector. This downregulation was mediated by the AP-1 site at —79 by in the MMP-9 promoter. We concluded that the proximal AP-1 site mediated the transcriptional downregulation of the MMP-9 promoter by a conditionally activated c-fos fusion protein.

  1. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    International Nuclear Information System (INIS)

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor

  2. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  3. Novel strategies to overcome expression problems encountered with toxic proteins: application to the production of Lac repressor proteins for NMR studies.

    Science.gov (United States)

    Romanuka, Julija; van den Bulke, Heidi; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2009-10-01

    NMR studies of structural aspects of allosteric regulation by the Lac repressor requires overexpression and isotope labeling of the protein. The size of the repressor makes it a challenging target, putting constraints on both expression conditions and sample preparation methods to overcome problems associated with studies of larger proteins by NMR. We optimized protocols for the production of deuterated functionally active thermostable dimeric Lac repressor and its core domain mutants. The Lac repressor core domain has never been obtained as a recombinant protein, possibly due to the observed toxicity to the host cells. We overcame the core domain induced toxicity by co-expression of this domain with the full length Lac repressor, combined with a stringent control of culture conditions. Significant overexpression was only obtained if during all stages of pre-culturing the bacteria were kept in their exponential growth phase at low density. The sensitivity of NMR measurements is dramatically affected by buffer conditions; we therefore used a thermofluor buffer optimization screen to determine the optimal buffer conditions. The combined thermofluor and NMR screening method yielded thermostable fully functional Lac repressor domain samples suitable for high-resolution NMR studies. The optimized procedures to adapt Escherichia coli to growth in D2O, to overcome toxicity, and to optimize protein sample conditions provides a broad range of universally applicable techniques for production of larger proteins for NMR spectroscopy. PMID:19460439

  4. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    International Nuclear Information System (INIS)

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. (paper)

  5. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  6. Interactions between lac repressor protein and site-specific bromodeoxyuridine-substituted operator DNA. Ultraviolet footprinting and protein-DNA cross-link formation

    International Nuclear Information System (INIS)

    Specific contacts between the lac repressor and operator have been explored using 5-bromodeoxyuridine-substituted DNA. Substitution of BrdU for single thymidine positions in a synthetic 40-base pair operator provides substrate for ultraviolet irradiation; upon irradiation, strand scission occurs at the BrdU residues. When bound, lac repressor protein provides protection against UV-induced breakage depending on the nature of the sites and type of interaction. We have confirmed 13 unique sites of inducer-sensitive protection along the operator sequence using this method compared to complete substitution with BrdU; differences were observed at two positions for singly substituted versus completely substituted DNAs. The ability of these photosensitive DNAs to form short range cross-links to bound protein has been used to determine the efficiency with which cross-linked protein-DNA complexes are generated at each individual site of BrdU substitution. Five sites of high efficiency cross-linking to the repressor protein have been identified. At one site, cross-linking without protection from strand scission was observed; this result suggests an unusual mechanism of strand scission and/or cross-linking at this site. Comparison of the UV protection results and the cross-linking data show that these processes provide complementary tools for identifying and analyzing individual protein-DNA contacts

  7. Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif

    Institute of Scientific and Technical Information of China (English)

    Ye LUO; Yu HAO; Tai-ping SHI; Wei-wei DENG; Na LI

    2008-01-01

    Aim: To verify the suppressive effect of berberine on the proliferation of the human pulmonary giant cell carcinoma cell line PG and to demonstrate the mecha-nisms behind the antitumoral effects of berberine. Methods: The proliferative effects of PG cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetry. The cell cycle was examined by flow cytometry. The expression level of cyclin D1 was detected by RT-PCR. The activities of the activating protein-1 (AP-1) and NF-κB signaling pathways related to cyclin D1 were examined by luciferase assay. The cytoplasmic level of c-Jun was detected by Western blot analysis. An electrophoretic mobility shift assay was used to examiae the binding of transcription factors to the cyclin D1 gene (CCNDl) AP-1 motif. Results: The results showed that the proliferation of PG cells treated with different concentrations (10, 20, and 40 μg/mL) of berberine for 24 and 48 h was suppressed significantly compared to the control group. After treatment with berberine, the proportion of PG cells at the G0/G1 phase increased, while cells at the S and G2/M phases decreased. Berberine could inhibit the expression of cyclin D1 in PG cells. Berberine inhibited the activity of the AP-1 signaling pathway, but had no significant effect on the NF-κB signaling pathway. Berberine suppressed the expression of c-Jun and decreased the binding of tran-scription factors to the CCND1 AP-1 motif. Conclusion: Berberine suppresses the activity of the AP-1 signaling pathway and decreases the binding of transcrip-tion factors to the CCND1 AP-1 motif. This is one of the important mechanisms behind the antitumoral effects of berberine as a regulator of cyclin D1.

  8. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, Lotte; Martinussen, J; Møllegaard, N E; Douthwaite, S R; Valentin-Hansen, P

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt...

  9. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shucai [University of British Columbia, Vancouver; Chang, Ying [Northeast Agricultural University; Guo, Jianjun [Harvard University; Zeng, Qingning [University of British Columbia, Vancouver; Ellis, Brian [University of British Columbia, Vancouver; Chen, Jay [ORNL

    2011-01-01

    BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a

  10. Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development.

    Directory of Open Access Journals (Sweden)

    Shucai Wang

    Full Text Available BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs, a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7, and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the

  11. Modulation of Ultrafast Conformational Dynamics in Allosteric Interaction of Gal Repressor Protein with Different Operator DNA Sequences.

    Science.gov (United States)

    Choudhury, Susobhan; Naiya, Gitashri; Singh, Priya; Lemmens, Peter; Roy, Siddhartha; Pal, Samir Kumar

    2016-04-01

    Although all forms of dynamical behaviour of a protein under allosteric interaction with effectors are predicted, little evidence of ultrafast dynamics in the interaction has been reported. Here, we demonstrate the efficacy of a combined approach involving picosecond-resolved FRET and polarisation-gated fluorescence for the exploration of ultrafast dynamics in the allosteric interaction of the Gal repressor (GalR) protein dimer with DNA operator sequences OE and OI . FRET from the single tryptophan residue to a covalently attached probe IAEDANS at a cysteine residue in the C-terminal domain of GalR shows structural perturbation and conformational dynamics during allosteric interaction. Polarisation-gated fluorescence spectroscopy of IAEDANS and another probe (FITC) covalently attached to the operator directly revealed the essential dynamics for cooperativity in the protein-protein interaction. The ultrafast resonance energy transfer from IAEDANS in the protein to FITC also revealed different dynamic flexibility in the allosteric interaction. An attempt was made to correlate the dynamic changes in the protein dimers with OE and OI with the consequent protein-protein interaction (tetramerisation) to form a DNA loop encompassing the promoter segment. PMID:26914958

  12. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  13. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha.

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  14. 氧化低密度脂蛋白诱导Zucker肥胖大鼠肾小球系膜细胞AP-1活性的变化%Enhancement of Ox-LDL on activator protein-1 activation in glomerular mesangial cells from Zucker rats

    Institute of Scientific and Technical Information of China (English)

    甘卫华; 丁桂霞; 陈荣华

    2003-01-01

    目的:研究氧化低密度脂蛋白(oxidized low-density lipoprotein,Ox-LDL)对体外培养的Zucker大鼠肾小球系膜细胞(glomerular mesangial cell,GMC)中核转录因子激活蛋白1(activator protein-1,AP-1)活化的影响,以及观察Ox-LDL诱导的AP-1活性的变化与Zucker大鼠鼠龄以及基因型的相关性.方法:①采用Zucker肥胖大鼠(3月龄和10月龄)及Zucker瘦型大鼠(3月龄和10月龄)的4种GMC株(O3m,O10m,L3m,L10m)进行传代培养.②利用凝胶迁移率实验(EMSA)和超迁移率实验检测不同浓度及不同时相Ox-LDL对Zucker大鼠GMC AP-1活性的影响,以及AP-1二聚体中c-jun和c-fos成分的变化.结果:①经Ox-LDL诱导后,4个组GMC内AP-1活性均较对照组明显增强(F=177.84,P<0.01);②随着Ox-LDL刺激浓度增加和时间的延长,GMC内AP-1活性相应增强,50 mg/L的Ox-LDL刺激8h时,AP-1活性强度达最高峰;③Ox-LDL主要激活AP-1二聚体成分中的c-jun;④O10m组AP-1的活性显著高于O3m组(P<0.01),L10m组AP-1的活性显著高于L3m组(P<0.01),O10m组显著高于L10m组(P<0.01),O3m组显著高于L3m组(P<0.01).结论:Ox-LDL可诱导Zucker大鼠GMC内AP-1活化,其活化方式呈时间和剂量依赖;活化强度与大鼠的基因型及鼠龄密切相关;Ox-LDL对肥胖型、老龄大鼠GMC中AP-1的激活作用更为明显.

  15. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  16. Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer

    International Nuclear Information System (INIS)

    Signaling pathways that converge on two different transcription factor complexes, NFκB and AP-1, have been identified in estrogen receptor (ER)-positive breast cancers resistant to the antiestrogen, tamoxifen. Two cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFκB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFκB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA) or the proteasome inhibitor bortezomib (PS341), alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFκB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108), each having different patient age and adjuvant tamoxifen treatment characteristics. Doses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFκB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFκB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases (UCSF, Rotterdam, Amsterdam, Basel), high expression of

  17. Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer

    Directory of Open Access Journals (Sweden)

    Moore Dan H

    2007-04-01

    Full Text Available Abstract Background Signaling pathways that converge on two different transcription factor complexes, NFκB and AP-1, have been identified in estrogen receptor (ER-positive breast cancers resistant to the antiestrogen, tamoxifen. Methods Two cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFκB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFκB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA or the proteasome inhibitor bortezomib (PS341, alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFκB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108, each having different patient age and adjuvant tamoxifen treatment characteristics. Results Doses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFκB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFκB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases

  18. A repressor activator protein1 homologue from an oleaginous strain of Candida tropicalis increases storage lipid production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chattopadhyay, Atrayee; Dey, Prabuddha; Barik, Amita; Bahadur, Ranjit P; Maiti, Mrinal K

    2015-06-01

    The repressor activator protein1 (Rap1) has been studied over the years as a multifunctional regulator in Saccharomyces cerevisiae. However, its role in storage lipid accumulation has not been investigated. This report documents the identification and isolation of a putative transcription factor CtRap1 gene from an oleaginous strain of Candida tropicalis, and establishes the direct effect of its expression on the storage lipid accumulation in S. cerevisiae, usually a non-oleaginous yeast. In silico analysis revealed that the CtRap1 polypeptide binds relatively more strongly to the promoter of fatty acid synthase1 (FAS1) gene of S. cerevisiae than ScRap1. The expression level of CtRap1 transcript in vivo was found to correlate directly with the amount of lipid produced in oleaginous native host C. tropicalis. Heterologous expression of the CtRap1 gene resulted in ∼ 4-fold enhancement of storage lipid content (57.3%) in S. cerevisiae. We also showed that the functionally active CtRap1 upregulates the endogenous ScFAS1 and ScDGAT genes of S. cerevisiae, and this, in turn, might be responsible for the increased lipid production in the transformed yeast. Our findings pave the way for the possible utility of the CtRap1 gene in suitable microorganisms to increase their storage lipid content through transcription factor engineering. PMID:25805842

  19. Design and characterization of an enhanced repressor of human papillomavirus E2 protein

    OpenAIRE

    Bose, Kakoli; Meinke, Gretchen; Bohm, Andrew; Baleja, James D.

    2011-01-01

    Papillomaviruses are causative agents of cervical and anogenital cancers. The viral E2 protein mediates viral DNA replication and transactivation of viral oncogenes and thus represents a specific target for therapeutic intervention. Short forms of E2, E2R, contain only the C-terminal dimerization domain, and repress the normal function of E2 due to formation of an inactive heterodimer. Using structure-guided design, we replaced conserved residues at the dimer interface to design a heterodimer...

  20. Regulation of endothelial-specific transgene expression by the LacI repressor protein in vivo.

    Directory of Open Access Journals (Sweden)

    Susan K Morton

    Full Text Available Genetically modified mice have played an important part in elucidating gene function in vivo. However, conclusions from transgenic studies may be compromised by complications arising from the site of transgene integration into the genome and, in inducible systems, the non-innocuous nature of inducer molecules. The aim of the present study was to use the vascular system to validate a technique based on the bacterial lac operon system, in which transgene expression can be repressed and de-repressed by an innocuous lactose analogue, IPTG. We have modified an endothelium specific promoter (TIE2 with synthetic LacO sequences and made transgenic mouse lines with this modified promoter driving expression of mutant forms of connexin40 and an independently translated reporter, EGFP. We show that tissue specificity of this modified promoter is retained in the vasculature of transgenic mice in spite of the presence of LacO sequences, and that transgene expression is uniform throughout the endothelium of a range of adult systemic and cerebral arteries and arterioles. Moreover, transgene expression can be consistently down-regulated by crossing the transgenic mice with mice expressing an inhibitor protein LacI(R, and in one transgenic line, transgene expression could be de-repressed rapidly by the innocuous inducer, IPTG. We conclude that the modified bacterial lac operon system can be used successfully to validate transgenic phenotypes through a simple breeding schedule with mice homozygous for the LacI(R protein.

  1. Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection

    International Nuclear Information System (INIS)

    Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection. Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively. A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues. Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis

  2. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    Directory of Open Access Journals (Sweden)

    Fubito Nakatsu

    2014-11-01

    Full Text Available The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis. Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.

  3. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions.

    Science.gov (United States)

    Sakamoto, Hideki; Maruyama, Kyonoshin; Sakuma, Yoh; Meshi, Tetsuo; Iwabuchi, Masaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2004-09-01

    ZPT2-related proteins that have two canonical Cys-2/His-2-type zinc-finger motifs in their molecules are members of a family of plant transcription factors. To characterize the role of this type of protein, we analyzed the function of Arabidopsis L. Heynh. genes encoding four different ZPT2-related proteins (AZF1, AZF2, AZF3, and STZ). Gel-shift analysis showed that the AZFs and STZ bind to A(G/C)T repeats within an EP2 sequence, known as a target sequence of some petunia (Petunia hybrida) ZPT2 proteins. Transient expression analysis using synthetic green fluorescent protein fusion genes indicated that the AZFs and STZ are preferentially localized to the nucleus. These four ZPT2-related proteins were shown to act as transcriptional repressors that down-regulate the transactivation activity of other transcription factors. RNA gel-blot analysis showed that expression of AZF2 and STZ was strongly induced by dehydration, high-salt and cold stresses, and abscisic acid treatment. Histochemical analysis of beta-glucuronidase activities driven by the AZF2 or STZ promoters revealed that both genes are induced in leaves rather than roots of rosette plants by the stresses. Transgenic Arabidopsis overexpressing STZ showed growth retardation and tolerance to drought stress. These results suggest that AZF2 and STZ function as transcriptional repressors to increase stress tolerance following growth retardation. PMID:15333755

  4. Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells

    Directory of Open Access Journals (Sweden)

    Rosseau Simone

    2006-07-01

    Full Text Available Abstract Background Although pneumococcal pneumonia is one of the most common causes of death due to infectious diseases, little is known about pneumococci-lung cell interaction. Herein we tested the hypothesis that pneumococci activated pulmonary epithelial cell cytokine release by c-Jun-NH2-terminal kinase (JNK Methods Human bronchial epithelial cells (BEAS-2B or epithelial HEK293 cells were infected with S. pneumoniae R6x and cytokine induction was measured by RT-PCR, ELISA and Bioplex assay. JNK-phosphorylation was detected by Western blot and nuclear signaling was assessed by electrophoretic mobility shift assay (EMSA and chromatin immunoprecipitation (ChIP. JNK was modulated by the small molecule inhibitor SP600125 and AP1 by transfection of a dominant negative mutant. Results S. pneumoniae induced the release of distinct CC and CXC, as well as Th1 and Th2 cytokines and growth factors by human lung epithelial cell line BEAS-2B. Furthermore, pneumococci infection resulted in JNK phosphorylation in BEAS-2B cells. Inhibition of JNK by small molecule inhibitor SP600125 reduced pneumococci-induced IL-8 mRNA expression and release of IL-8 and IL-6. One regulator of the il8 promoter is JNK-phosphorylated activator protein 1 (AP-1. We showed that S. pneumoniae time-dependently induced DNA binding of AP-1 and its phosphorylated subunit c-Jun with a maximum at 3 to 5 h after infection. Recruitment of Ser63/73-phosphorylated c-Jun and RNA polymerase II to the endogenous il8 promoter was found 2 h after S. pneumoniae infection by chromatin immunoprecipitation. AP-1 repressor A-Fos reduced IL-8 release by TLR2-overexpressing HEK293 cells induced by pneumococci but not by TNFα. Antisense-constructs targeting the AP-1 subunits Fra1 and Fra2 had no inhibitory effect on pneumococci-induced IL-8 release. Conclusion S. pneumoniae-induced IL-8 expression by human epithelial BEAS-2B cells depended on activation of JNK and recruitment of phosphorylated c

  5. Synthesis of Glycopolymer Containing Cell-Penetrating Peptides as Inducers of Recombinant Protein Expression under the Control of Lactose Operator/Repressor Systems.

    Science.gov (United States)

    Katagiri, Kei; Takasu, Akinori; Higuchi, Masahiro

    2016-05-01

    We recently reported on newly synthesized S-galactosyl oligo(Arg) conjugates to overcome the serious problem of the passage through the E. coli cell membrane. Following in vivo expression of green fluorescent protein (GFP) induced by each of the S-galactosyl (Arg)n constructs (n = 5, 6, 8) at the T5 promoter in E. coli for 18 h, we visually observed that the cultures fluoresced green light when excited with UV light. The fluorescence intensities for these cultures were greater than that found for a control culture, indicating that the peptides had induced GFP expression. In order to accomplish higher expression efficiency, we investigated the cluster effect and structural fine-tuning of new poly(2-oxazoline) containing CysArgArg as the cell-penetrating peptide (CPP) and S-galactosides when acting as inducers of recombinant protein expression under the control of lac operator/repressor systems in this article. Quantitative fluorescence intensities (calculated per molecule) also supported the observations that the cell-penetrating glyco poly(2-oxazoline)s were better inducers of GFP expression than glyco poly(2-oxazoline) containing no CPP or isopropyl β-d-thiogalactoside. Because the level of GFP expression was directly related to the number of sugar residues in each glyco poly(2-oxazoline), we propose that a cluster effect of the S-galactosides attached to the cell-penetrating poly(2-oxazoline) is responsible for how well the galactosides inhibited the lac repressor to activate the protein expression under the control of the lac operator/repressor system. A similar tendency was observed when the T7 promoter was placed upstream of the gene for an artificial extracellular matrix protein and glyco poly(2-oxazoline)s-CPP conjugates were used as inducers. To assess how the glyco poly(2-oxazoline) penetrate the cell membrane, we labeled the glyco poly(2-oxazoline) using 1-amino pyrene and directly observed the penetration process. Furthermore, we could visualize protein

  6. The Developmental Regulator Protein Gon4l Associates with Protein YY1, Co-repressor Sin3a, and Histone Deacetylase 1 and Mediates Transcriptional Repression*

    Science.gov (United States)

    Lu, Ping; Hankel, Isaiah L.; Hostager, Bruce S.; Swartzendruber, Julie A.; Friedman, Ann D.; Brenton, Janet L.; Rothman, Paul B.; Colgan, John D.

    2011-01-01

    Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted and co-localized with the DNA-binding protein YY1 (Yin Yang 1). Density gradient sedimentation analysis of protein lysates from mouse M12 B cells showed that Gon4l and YY1 co-sediment with the transcriptional co-repressor Sin3a and its functional partner histone deacetylase (HDAC) 1. Consistent with these results, immunoprecipitation studies showed that Gon4l associates with Sin3a, HDAC1, and YY1 as a part of complexes that form in M12 cells. Sequential immunoprecipitation studies demonstrated that Gon4l, YY1, Sin3a, and HDAC1 could all associate as components of a single complex and that a conserved domain spanning the central portion of Gon4l was required for formation of this complex. When targeted to DNA, Gon4l repressed the activity of a nearby promoter, which correlated with the ability to interact with Sin3a and HDAC1. Our data suggest that Sin3a, HDAC1, and YY1 are co-factors for Gon4l and that Gon4l may function as a platform for the assembly of complexes that regulate gene expression. PMID:21454521

  7. The developmental regulator protein Gon4l associates with protein YY1, co-repressor Sin3a, and histone deacetylase 1 and mediates transcriptional repression.

    Science.gov (United States)

    Lu, Ping; Hankel, Isaiah L; Hostager, Bruce S; Swartzendruber, Julie A; Friedman, Ann D; Brenton, Janet L; Rothman, Paul B; Colgan, John D

    2011-05-20

    Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted and co-localized with the DNA-binding protein YY1 (Yin Yang 1). Density gradient sedimentation analysis of protein lysates from mouse M12 B cells showed that Gon4l and YY1 co-sediment with the transcriptional co-repressor Sin3a and its functional partner histone deacetylase (HDAC) 1. Consistent with these results, immunoprecipitation studies showed that Gon4l associates with Sin3a, HDAC1, and YY1 as a part of complexes that form in M12 cells. Sequential immunoprecipitation studies demonstrated that Gon4l, YY1, Sin3a, and HDAC1 could all associate as components of a single complex and that a conserved domain spanning the central portion of Gon4l was required for formation of this complex. When targeted to DNA, Gon4l repressed the activity of a nearby promoter, which correlated with the ability to interact with Sin3a and HDAC1. Our data suggest that Sin3a, HDAC1, and YY1 are co-factors for Gon4l and that Gon4l may function as a platform for the assembly of complexes that regulate gene expression. PMID:21454521

  8. Cloning and characterization of the c1 repressor of Pseudomonas aeruginosa bacteriophage D3: a functional analog of phage lambda cI protein

    International Nuclear Information System (INIS)

    We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown to specifically inhibit the plating of phage lambda and the induction of the lambda prophage by mitomycin C. The plating of lambda imm434 phage was not affected. Analysis in minicells indicated that these effects correspond to the presence of a plasmid-encoded protein of 36,000 molecular weight. These data suggest the possibility that coliphage lambda and the P. aeruginosa phage D3 evolved from a common ancestor. The conservation of the functional similarities of their repressors may have occurred because of the advantage to these temperate phages of capitalizing on the potential of the evolutionarily conserved RecA protein to monitor the level of damage to the host genome

  9. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    International Nuclear Information System (INIS)

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P212121, with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function

  10. The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) polypeptide.

    Science.gov (United States)

    Dong, Cui-Ling; Li, Shi-Yan; Wang, Yang; Dong, Ying; Tang, James Zhenggui; Chen, Jin-Chun; Chen, Guo-Qiang

    2012-03-01

    Microbial polyhydroxyalkanoates (PHAs) are a family of polyesters with biodegradability, biocompatibility and adjustable mechanical properties that are under intensive development for bioimplant applications. In this research, a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) oligopeptide (PhaR-KQAGDV) was utilized to enhance the PHA cytocompatability via a mechanism of PhaR hydrophobically binding to PHA coupled with KQAGDV oligopeptide, a specific ligand to the integrins on the cell surface, for promotion of cell adhesion. The PhaR-KQAGDV fusion protein successfully produced and purified from recombinant E. coli was used to coat the surfaces of several PHA including poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), respectively. The PhaR was observed to bind efficiently on all PHA surfaces measured by the fluorescence intensity of PhaR-EGFP as compared to the uncoated (PhaR negative) PHA films. The PHA surface hydrophilicity measured by water contact angles was significantly improved after PhaR-KQAGDV coating. Observations under confocal microscope and scanning electron microscopy, together with CCK-8 assays clearly demonstrated that adhesion and proliferation of human vascular smooth muscle cells (HvSMCs) inoculated on PHA films were much better on PhaR-KQAGDV coated surfaces than the non-coated control ones. The convenient physical coating approach for enhanced PHA cytocompatibility provides an advantage for PHA based tissue engineering. PMID:22206593

  11. Deletion mutants of AP-1 adaptin subunits display distinct phenotypes in fission yeast.

    Science.gov (United States)

    Ma, Yan; Takeuchi, Mai; Sugiura, Reiko; Sio, Susie O; Kuno, Takayoshi

    2009-08-01

    Adaptins are subunits of the heterotetrameric (beta/mu/gamma/sigma) adaptor protein (AP) complexes that are involved in clathrin-mediated membrane trafficking. Here, we show that in Schizosaccharomyces pombe the deletion strains of each individual subunit of the AP-1 complex [Apl2 (beta), Apl4 (gamma), Apm1 (mu) and Aps1 (sigma)] caused distinct phenotypes on growth sensitivity to temperature or drugs. We also show that the Deltaapm1 and Deltaapl2 mutants displayed similar but more severe phenotypes than those of Deltaaps1 or Deltaapl4 mutants. Furthermore, the Deltaapl2Deltaaps1 and Deltaapl2Deltaapl4 double mutants displayed synthetic growth defects, whereas the Deltaaps1Deltaapl4 and Deltaapl2Deltaapm1 double mutants did not. In pull-down assay, Apm1 binds Apl2 even in the absence of Aps1 and Apl4, and Apl4 binds Aps1 even in the absence of Apm1 and Apl2. Consistently, the deletion of any subunit generally caused the disassociation of the heterotetrameric complex from endosomes, although some subunits weakly localized to endosomes. In addition, the deletion of individual subunits caused similar endosomal accumulation of v-SNARE synaptobrevin Syb1. Altogether, results suggest that the four subunits are all essential for the heterotetrameric complex formation and for the AP-1 function in exit transport from endosomes. PMID:19624755

  12. Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells.

    Science.gov (United States)

    Peralta-Zaragoza, Oscar; Recillas-Targa, Félix; Madrid-Marina, Vicente

    2004-02-01

    Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3'-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA-protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1-TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors. PMID:15027905

  13. Temporal pattern of AP-1 DNA-binding activity in the rat hippocampus following a kindled seizure

    International Nuclear Information System (INIS)

    DNA binding by transcripton factor AP-1 was enhanced remarkably following kindling stimulation in rat amygdala. Maximum increase occurred 2 h after stimulation with return to baseline within 24 h. Supershift and western analyses revealed that 38,000 mol. wt Fos-related antigen and JunD were the main components of the evoked AP-1 complexes at the time their induction reached maximum. AP-1 induction 2 h after the last kindling stimulation was more prominent in samples from previously kindled rats than in those from non-kindled rats. This study sought to establish the role of AP-1 in plastic changes of the hippocampus associated with kindling. Male Sprague-Dawley rats were kindled from the left amygdala until they exhibited Racine [15] class 5 generalized seizures. Nuclear proteins were extracted from dorsal hippocampi obtained from 0 to 24 h after final stimulations. From these, we evaluated the temporal pattern of DNA binding by AP-1 using a gel mobility-shift assay with a 32P-labelled AP-1 probe. Supershift and western analyses were added to investigate components of the seizure-evoked AP-1 complexes. Our results suggest that the basal level of AP-1 complexes is not associated with the seizure susceptibility in kindling. However, development of kindling appears to facilitate stimulus-evoked AP-1 induction, probably via plastic changes in the central nervous system. AP-1 may mediate such changes by regulating expression of certain genes. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Overexpression of members of the AP-1 transcriptional factor family from an early stage of renal carcinogenesis and inhibition of cell growth by AP-1 gene antisense oligonucleotides in the Tsc2 gene mutant (Eker) rat model.

    Science.gov (United States)

    Urakami, S; Tsuchiya, H; Orimoto, K; Kobayashi, T; Igawa, M; Hino, O

    1997-12-01

    We previously isolated subtracted cDNA clones for genes having increased expression in Tsc2 gene mutant (Eker) rat renal carcinomas (RCs). Among them, fra-1 encoding a transcriptional factor activator protein 1 (AP-1) was identified. We have therefore investigated whether other members of the AP-1 transcription factor family might also be involved in renal carcinogenesis in the Eker rat model. In the present study, overexpression of fra-1, fra-2, c-jun, junB, and junD mRNAs was demonstrated in RCs by Northern blot analysis. Interestingly, AP-1 proteins were highly expressed even in the earliest preneoplastic lesions (e.g., phenotypically altered tubules) as suggested by immunohistochemistry. Moreover, 12-O-tetradecanoylphorbol-13-acetate-responsive element (TRE)-binding activity of AP-1 proteins was observed in RC cell extracts by electrophoretic mobility shift assay. As a next step, we transfected antisense oligonucleotides targeting AP-1 genes into RC cells and demonstrated that their growth was strongly inhibited. Thus, the data suggest that overexpression of AP-1 genes might play a crucial role in renal carcinogenesis in the Eker rat model. PMID:9405228

  15. Trim69 regulates zebrafish brain development by ap-1 pathway.

    Science.gov (United States)

    Han, Ruiqin; Wang, Renxian; Zhao, Qing; Han, Yongqing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-01-01

    Proteins belonging to the TRIM family have been implicated in a variety of cellular processes such as apoptosis, differentiation, neurogenesis, muscular physiology and innate immune responses. Trim69, previously identified as a novel gene cloned from a human testis cDNA library, has a homologous gene in zebrafish and this study focused on investigating the function of trim69 in zebrafish neurogenesis. Trim69 was found to be expressed in zebrafish embryo brain at the early stages. Knockdown of trim69 led to deformed brain development, obvious signs of apoptosis present in the head, and decreased expression of neuronal differentiation and stem cell markers. This phenotype was rescued upon co-injection of human mRNA together along with the trim69 knockdown. Results of this study also showed an interaction between TRIM69 and c-Jun in human cells, and upon TRIM69 knock down c-Jun expression subsequently increased, whereas the over-expression of TRIM69 led to the down-regulation of c-Jun. Additionally, knockdown both c-Jun and trim69 can rescue the deformed brain, evident cellular apoptosis in the head and decreased expression of neuronal differentiation and stem cell markers. Overall, our results support a role for trim69 in the development of the zebrafish brain through ap-1 pathway. PMID:27050765

  16. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.

    Science.gov (United States)

    Chen, Zhong; Ye, Meixia; Su, Xiaoxing; Liao, Weihua; Ma, Huandi; Gao, Kai; Lei, Bingqi; An, Xinmin

    2015-08-01

    APETALA1 plays a crucial role in the transition from vegetative to reproductive phase and in floral development. In this study, to determine the effect of AP1 expression on flowering time and floral organ development, transgenic Arabidopsis and poplar overexpressing of AtAP1M3 (Arabidopsis AP1 mutant by dominant negative mutation) were generated. Transgenic Arabidopsis with e35Spro::AtAP1M3 displayed phenotypes with delayed-flowering compared to wild-type and flowers with abnormal sepals, petals and stamens. In addition, transgenic Arabidopsis plants exhibited reduced growth vigor compared to the wild-type plants. Ectopic expression of AtAP1M3 in poplar resulted in up- or down-regulation of some endogenous key flowering-related genes, including floral meristems identity gene LFY, B-class floral organ identity genes AP3 and PI, flowering pathway integrator FT1 and flower repressors TFL1 and SVP. These results suggest that AtAP1M3 regulates flowering time and floral development in plants. PMID:25820621

  17. WD40 domain divergence is important for functional differences between the fission yeast Tup11 and Tup12 co-repressor proteins.

    Directory of Open Access Journals (Sweden)

    Monica E Ferreira

    Full Text Available We have previously demonstrated that subsets of Ssn6/Tup target genes have distinct requirements for the Schizosaccharomyces pombe homologs of the Tup1/Groucho/TLE co-repressor proteins, Tup11 and Tup12. The very high level of divergence in the histone interacting repression domains of the two proteins suggested that determinants distinguishing Tup11 and Tup12 might be located in this domain. Here we have combined phylogenetic and structural analysis as well as phenotypic characterization, under stress conditions that specifically require Tup12, to identify and characterize the domains involved in Tup12-specific action. The results indicate that divergence in the repression domain is not generally relevant for Tup12-specific function. Instead, we show that the more highly conserved C-terminal WD40 repeat domain of Tup12 is important for Tup12-specific function. Surface amino acid residues specific for the WD40 repeat domain of Tup12 proteins in different fission yeasts are clustered in blade 3 of the propeller-like structure that is characteristic of WD40 repeat domains. The Tup11 and Tup12 proteins in fission yeasts thus provide an excellent model system for studying the functional divergence of WD40 repeat domains.

  18. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  19. Dynamics of intracellular clathrin/AP1 and clathrin/AP3 containing carriers

    OpenAIRE

    2012-01-01

    Clathrin/AP1 and clathrin/AP3 coated vesicular carriers originate from endosomes and the TGN. We report here the real-time visualization of these structures in living cells reliably tracked by using rapid, three-dimensional imaging with a spinning-disk confocal microscope. We imaged relatively sparse, diffraction-limited, fluorescent objects containing chimeric fluorescent protein (clathrin light chain, σ adaptor subunits or dynamin2) with a spatial precision of up to ~ 30 nm and a temporal r...

  20. Mechanism of Iron-Dependent Repressor (IdeR) Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study.

    Science.gov (United States)

    Ghosh, Soma; Chandra, Nagasuma; Vishveshwara, Saraswathi

    2015-12-01

    Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR) is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed. PMID:26699663

  1. Mechanism of Iron-Dependent Repressor (IdeR Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study.

    Directory of Open Access Journals (Sweden)

    Soma Ghosh

    2015-12-01

    Full Text Available Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed.

  2. Loss of the transcriptional repressor PAG-3/Gfi-1 results in enhanced neurosecretion that is dependent on the dense-core vesicle membrane protein IDA-1/IA-2.

    Directory of Open Access Journals (Sweden)

    Tao Cai

    2009-04-01

    Full Text Available It is generally accepted that neuroendocrine cells regulate dense core vesicle (DCV biogenesis and cargo packaging in response to secretory demands, although the molecular mechanisms of this process are poorly understood. One factor that has previously been implicated in DCV regulation is IA-2, a catalytically inactive protein phosphatase present in DCV membranes. Our ability to directly visualize a functional, GFP-tagged version of an IA-2 homolog in live Caenorhabditis elegans animals has allowed us to capitalize on the genetics of the system to screen for mutations that disrupt DCV regulation. We found that loss of activity in the transcription factor PAG-3/Gfi-1, which functions as a repressor in many systems, results in a dramatic up-regulation of IDA-1/IA-2 and other DCV proteins. The up-regulation of DCV components was accompanied by an increase in presynaptic DCV numbers and resulted in phenotypes consistent with increased neuroendocrine secretion. Double mutant combinations revealed that these PAG-3 mutant phenotypes were dependent on wild type IDA-1 function. Our results support a model in which IDA-1/IA-2 is a critical element in DCV regulation and reveal a novel genetic link to PAG-3-mediated transcriptional regulation. To our knowledge, this is the first mutation identified that results in increased neurosecretion, a phenotype that has clinical implications for DCV-mediated secretory disorders.

  3. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  4. Acyl-Acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae.

    Science.gov (United States)

    Jerga, Agoston; Rock, Charles O

    2009-06-01

    Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids. PMID:19376778

  5. Acyl-Acyl Carrier Protein Regulates Transcription of Fatty Acid Biosynthetic Genes via the FabT Repressor in Streptococcus pneumoniae*

    Science.gov (United States)

    Jerga, Agoston; Rock, Charles O.

    2009-01-01

    Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids. PMID:19376778

  6. Knockout of REST/NRSF shows that the protein is a potent repressor of neuronally expressed genes in non-neural tissues.

    Science.gov (United States)

    Jones, F S; Meech, R

    1999-05-01

    The protein repressor element 1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF) is a negative regulator of neuronal genes that contain a particular DNA sequence, the neuron restrictive silencer element (NRSE). REST is expressed ubiquitously in non-neural tissues but is down-regulated in neural precursors and turned off in postmitotic neurons, suggesting that it can act both to prevent extraneural expression of certain genes and to delay the differentiation of neuronal subtypes. In a recent paper, Chen et al.(1) describe the production of a null mutant for REST in mice and the mosaic inactivation of REST function in chicken embryos. Knockout of REST led to malformations in several non-neural tissues, as well as apoptosis and embryonic lethality in mice. In addition, the expression of several REST target genes was derepressed in non-neural tissues and in neural progenitors in both mouse and chicken embryos. These studies clearly demonstrate that active repression of tissue-specific genes is required for proper tissue differentiation during embryonic development. PMID:10376008

  7. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis.

    Science.gov (United States)

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-02-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  8. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP.

    Science.gov (United States)

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria

    2016-07-01

    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type-dependent manner, with 4E-BP1 being a key player. PMID:27313212

  9. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation

    International Nuclear Information System (INIS)

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174ΔTM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.

  10. Densification and microstructure development during HIPing of AP1

    International Nuclear Information System (INIS)

    The densification and the microstructural development during hot isostatic pressing of AP1 superalloy powder were compared with the predictions made from calculated HIP diagrams. Power law creep was found to dominate the densification of the Ni-base superalloy during HIPing. The densification was in accordance with calculated HIP maps at low pressures and annealing times, but at elevated pressures and prolonged HIPing times much faster than calculated. During HIPing some percent of the particles undergo minor deformation. It was found in AP1 that these particles showed coarse grains, whereas the more heavily deformed particles displayed a fine microstructure. The different degrees of deformation may arise from size differences of the particles. (orig.)

  11. Interaction of NCOR/SMRT Repressor Complexes with Papillomavirus E8^E2C Proteins Inhibits Viral Replication.

    Science.gov (United States)

    Dreer, Marcel; Fertey, Jasmin; van de Poel, Saskia; Straub, Elke; Madlung, Johannes; Macek, Boris; Iftner, Thomas; Stubenrauch, Frank

    2016-04-01

    Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins

  12. JUNB/AP-1 controls IFN-γ during inflammatory liver disease

    Science.gov (United States)

    Thomsen, Martin K.; Bakiri, Latifa; Hasenfuss, Sebastian C.; Hamacher, Rainer; Martinez, Lola; Wagner, Erwin F.

    2013-01-01

    Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of Junb in immune cells and hepatocytes protected against hepatitis in experimental models that involved NK/NKT cells. The absence of JUNB in immune cells decreased IFN-γ expression and secretion from NK and NKT cells, leading to reduced STAT1 pathway activation. Systemic IFN-γ treatment or adenovirus-based IRF1 delivery to Junb-deficient mice restored hepatotoxicity, and we demonstrate that Ifng is a direct transcriptional target of JUNB. These findings demonstrate that JUNB/AP-1 promotes cell death during acute hepatitis by regulating IFN-γ production in NK and NKT cells and thus functionally antagonizes the hepatoprotective function of c-JUN/AP-1 in hepatocytes. PMID:24200694

  13. Differential cytokine regulation by NF-κB and AP-1 in Jurkat T-cells

    Directory of Open Access Journals (Sweden)

    Jass Jana

    2010-05-01

    Full Text Available Abstract Background Activator protein (AP-1 and nuclear factor (NF-κB largely control T-cell activation, following binding of foreign antigens to the T-cell receptor leading to cytokine secretion. Elevated levels of pro-inflammatory cytokines and chemokines such as TNF, IL-6 and CXCL8 are associated with several human diseases including cystic fibrosis, pulmonary fibrosis and AIDS. The aim of this study was to investigate the role of the transcription factors, AP-1 and NF-κB, in IL-6 and CXCL8 regulation in Jurkat T-cells. Results Phorbol myristate acetate (PMA exposure resulted in an up-regulation of AP-1 and down-regulation of NF-κB activity, however, exposure to heat killed (HK Escherichia. coli MG1655 resulted in a dose-dependent increase in NF-κB activity without affecting AP-1. The cytokine profile revealed an up-regulation of the chemokine CXCL8 and the pro-inflammatory cytokines TNF, IL-2 and IL-6 following treatment with both PMA and HK E. coli, while the levels of the anti-inflammatory cytokine IL-10 were not affected by PMA but were significantly down-regulated by HK E. coli. AP-1 activation was significantly increased 2 h after PMA exposure and continued to increase thereafter. In contrast, NF-κB responded to PMA exposure by a rapid up-regulation followed by a subsequent down-regulation. Increased intracellular Ca2+ concentrations countered the down-regulation of NF-κB by PMA, while similar treatment with calcium ionophore resulted in a reduced NF-κB activity following induction with HK E. coli. In order to further study NF-κB activation, we considered two up-stream signalling proteins, PKC and Bcl10. Phosphorylated-PKC levels increased in response to PMA and HK E. coli, while Bcl10 levels significantly decreased following PMA treatment. Using an NF-κB activation inhibitor, we observed complete inhibition of IL-6 expression while CXCL8 levels only decreased by 40% at the highest concentration. Treatment of Jurkat T

  14. Anti-cancer effect of snake venom toxin through down regulation of AP-1 mediated PRDX6 expression

    OpenAIRE

    Lee, Hye Lim; Park, Mi Hee; Son, Dong Ju; Song, Ho Sub; Kim, Jung Hyun; Ko, Seong Cheol; Song, Min Jong; Lee, Won Hyoung; Yoon, Joo Hee; Ham, Young Wan; Han, Sang Bae; Hong, Jin Tae

    2015-01-01

    Snake venom toxin (SVT) from Vipera lebetina turanica contains a mixture of different enzymes and proteins. Peroxiredoxin 6 (PRDX6) is known to be a stimulator of lung cancer cell growth. PRDX6 is a member of peroxidases, and has calcium-independent phospholipase A2 (iPLA2) activities. PRDX6 has an AP-1 binding site in its promoter region of the gene. Since AP-1 is implicated in tumor growth and PRDX6 expression, in the present study, we investigated whether SVT inhibits PRDX6, thereby preven...

  15. ERK和JNK/AP-1通路参与石英诱导的细胞周期改变%ERK,JNK/AP-1 pathway was involved in silica-induced cell cycle changes

    Institute of Scientific and Technical Information of China (English)

    贾效伟; 刘秉慈; 史香林; 高艾; 叶萌; 张凤梅; 刘海峰; 焦石

    2008-01-01

    目的 探讨在石英刺激的人胚肺成纤维细胞(human embryo lung fibroblasts,HELF)中转录因子活化蛋白-1(activator protein-1,AP-1)的活性改变,以及丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK),AP-1通路在石英诱导的细胞周期改变中的作用.方法 用200 μg/ml石英处理HELF细胞;用免疫荧光法检测细胞外调节蛋白激酶(extracellular signal-regdated protein kinase,ERK)和c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)蛋白磷酸化水平及细胞分布;运用AP-1荧光素酶报告基因技术检测AP-1荧光素酶活力;用MAPK显性失活突变体(dominant negative mutant,DN)(DN-ERK2、DN-JNKl和DN-p38)证明通路的上下游关系;用流式细胞术检测细胞周期变化.结果 用200μg/ml石英分别处理转染AP-1报告基因的细胞(HELF-AP-1)6、12、24h,结果显示,AP-1活性随着时间变化而发生变化,6 h活性增强,12 h活性达峰值,24 h活性略有降低;用200 μg/ml石英分别处理细胞1和2 h,结果显示,ERK和JNK在石英刺激1 h后,磷酸化水平升高,主要集中于胞浆,2 h后磷酸化水平进一步升高,并主要集中于胞核;200 μg/ml石英处理细胞24 h,G1期细胞所占比例从(63.80±9.57)%下降到(32.23±7.22)%,S期细胞所占比例从(35.17±10.33)%升高到(66.00±8.07)%;AP-1化学抑制剂姜黄素(20μmol/L)可明显减弱石英引起的G1期细胞比例减少和S期细胞比例增加;DN-ERK和DN-JNK的过表达均可明显降低石英诱导的AP-1活性增强,DN-p38的过表达对石英诱导的AP-1活性增强无明显影响.结论 200 μg/ml石英可诱导AP-1活性增强,并通过ERK、JNK/AP-1通路诱导细胞周期改变.

  16. Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1.

    Science.gov (United States)

    Bauknecht, T; Angel, P; Royer, H D; zur Hausen, H

    1992-01-01

    The human papillomavirus type 18 (HPV-18) promoter contains a TPA responsive element (TRE) which confers TPA responsiveness on a heterologous promoter. In the context of the HPV-18 promoter, however, this AP-1 site is inactive. We have identified a negative regulatory domain in the HPV-18 promoter which represses the constitutive and TPA-induced AP-1 activity. This negative regulatory sequence has been mapped to 44 nucleotides (OL13). We identified this element as a transcriptional silencer based on its ability to interfere with transcriptional initiation. This HPV-18 silencer domain was narrowed down further to 23 nucleotides, the OL13B element, which bears similarity to three other silencer sequences, present in the mouse N-ras gene upstream regulatory region, the mouse albumin gene enhancer and the adeno-associated virus P5 promoter. The transcriptional repressor protein YY1, which negatively regulates the P5 promoter, binds to the HPV-18 silencer with high affinity. Mutation of the YY1 binding site leads to an enhanced activity of the HPV-18 promoter, strongly suggesting that YY1 plays an important role in controlling HPV-18 early gene expression. Images PMID:1330541

  17. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    Energy Technology Data Exchange (ETDEWEB)

    Mohareer, Krishnaveni [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Sahdev, Sudhir [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Ranbaxy Pharmaceuticals, Gurgaon, New Delhi (India); Hasnain, Seyed E., E-mail: seh@bioschool.iitd.ac.in [Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016 (India); ILBS, Vasant Kunj, New Delhi (India); King Saud University, Riyadh, KSA (Saudi Arabia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  18. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    International Nuclear Information System (INIS)

    Highlights: ► Baculovirus p35 is regulated by both viral and host factors. ► Baculovirus p35 is negatively regulated by SfP53-like factor. ► Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at −1401 while P53 motif is at −1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  19. Human ZCCHC12 activates AP-1 and CREB signaling as a transcriptional co-activator

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Qian Liu; Xiang Hu; Du Feng; Shuanglin Xiang; Zhicheng He; Xingwang Hu; Jianlin Zhou; Xiaofeng Ding; Chang Zhou; Jian Zhang

    2009-01-01

    Mouse zinc finger CCHC domain containing 12 gene (ZCCHC12) has been identified as a transcriptional co-activator of bone morphogenetic protein (BMP) sig-naling,and human ZCCHC12 was reported to be related to non-syndromic X-linked mental retardation (NS-XLMR).However,the details of how human ZCCHCI2 involve in the NS-XLMR still remain unclear.In this study,we identified a novel nuclear localization signal (NLS) in the middle of human ZCCHC12 protein which is responsible for the nuclear localization.Multiple-tissue northern blot analysis indi-cated that ZCCHC12 is highly expressed in human brain.Furthermore,in situ hybridization showed that ZCCHC12 is specifically expressed in neuroepithelium of forebrain,midbrain,and diencephalon regions of mouse E10.5 embryos.Luciferase reporter assays demonstrated that ZCCHC12 enhanced the transcrip-tional activities of activator protein 1 (AP-1) and cAMP response element binding protein (CREB) as a co-activator.In conclusion,we identified a new NLS in ZCCHC12 and figured out that ZCCHC12 functions as a transcriptional co-activator of AP-1 and CREB.

  20. CLONING AND CHARACTERIZATION OF THE 'CL' REPRESSOR OF 'PSEUDOMONAS AERUGINOSA' BACTERIOPHAGE D3: A FUNCTIONAL ANALOG OF PHAGE LAMBDA 'C'I PROTEIN

    Science.gov (United States)

    The authors cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction ...

  1. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    International Nuclear Information System (INIS)

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1

  2. Intracellular CMTM2 negatively regulates human immunodeficiency virus type-1 transcription through targeting the transcription factors AP-1 and CREB

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-shuo; SHI Shuang; LU Xiao-zhi; GAO Feng; YAN Ling; WANG Ying; ZHUANG Hui

    2010-01-01

    Background The CKLF-like MARVEL transmembrane domain-containing family (CMTM) is a novel family of proteins linking chemokines and TM4SF. Different members exhibit diverse biological functions. In this study, the effect of intracellular CMTM2 on regulating human immunodeficiency virus type-1 (HIV-1) transcription was evaluated.Methods The effects of CMTM2 on regulating full-length HIV-1 provirus and the HIV-1 long terminal repeat (LTR)-directed transcription were assessed by luciferase assay. Transcription factor assays, using the luciferase reporter plasmids of AP-1, CRE, and NF-κB were conducted to explore the signaling pathway(s) that may be regulated by CMTM2. The potential relationship between CMTM2 and the transcription factor AP-1 was further analyzed by Western blotting analyses to investigate the effect of CMTM2 on PMA-induced ERK1/2 phosphorylation.Results The results from the current study revealed that CMTM2 acts as a negative regulator of HIV-1 transcription.CMTM2 exerted a suppressive action on both full-length HIV-1 provirus and HIV-1 LTR-directed transcription.Transcription factor assays showed that CMTM2 selectively inhibited basal AP-1 and CREB activity. Co-expression of HIV-1 Tat, a potent AP-1 and CREB activator, can not reverse CMTM2-mediated AP-1 and CREB inhibition, suggesting a potent and specific effect of CMTM2 on negatively regulating these two signaling pathways.Conclusion Intracellular CMTM2 can negatively regulate HIV-1 transcription, at least in part, by targeting the AP-1 and CREB pathways. Exploring the mechanisms further may lead to new ways to control HIV-1 replication.

  3. Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer

    Science.gov (United States)

    Lewis, Mitchell; Chang, Geoffrey; Horton, Nancy C.; Kercher, Michele A.; Pace, Helen C.; Schumacher, Maria A.; Brennan, Richard G.; Lu, Ponzy

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-β-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.

  4. Mechanism of Iron-Dependent Repressor (IdeR) Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study

    OpenAIRE

    Ghosh, Soma; Chandra, Nagasuma; Vishveshwara, Saraswathi

    2015-01-01

    Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as ‘switches’ in signal transductions. Iron dependent repressor (IdeR) is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate Ide...

  5. Mechanism of Iron-Dependent Repressor (IdeR) Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study.

    OpenAIRE

    Soma Ghosh; Nagasuma Chandra; Saraswathi Vishveshwara

    2015-01-01

    Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR) is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate Ide...

  6. The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation.

    Science.gov (United States)

    Simon, C; Simon, M; Vucelic, G; Hicks, M J; Plinkert, P K; Koitschev, A; Zenner, H P

    2001-12-10

    The invasive phenotype of cancers critically depends on the expression of proteases such as the M(R) 92,000 type IV collagenase (MMP-9). Several growth factors and oncogenes were found to increase promoter activity and as a consequence protease expression. This frequently requires the activation of the transcription factor AP-1 by signal transduction cascades such as the ERK and JNK pathways. We have previously demonstrated that the tumor promoter TPA can induce MMP-9 expression via a third signaling cascade, the p38 pathway. Considering that TPA is a potent activator of AP-1, we hypothesized that this transcription factor might also be required for p38 pathway-dependent MMP-9 regulation. While dominant negative p38 and MKK-6 mutants reduced MMP-9 promoter activity in CAT assays, a construct encoding an activating mutation in the MKK-6 protein potently stimulated it. This was mediated via 144 bp of the 5'flanking region of the wild-type promoter, which contains an AP-1 site at -79. Both point mutations in this motif and the expression of a c-jun protein lacking its transactivation domain and therefore acting as a dominant negative AP-1 mutant abrogated MKK-6-dependent promoter stimulation. Finally SB 203580, a specific p38 pathway inhibitor, reduced MMP-9 expression/secretion and in vitro invasion of cancer cells. Thus, our results provide evidence that also the third SAPK/MAPK signaling cascade, the p38 signal transduction pathway, stimulates MMP-9 expression in an AP-1-dependent fashion. PMID:11716547

  7. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution.

    Science.gov (United States)

    Sather, D Noah; Golenberg, Edward M

    2009-02-01

    The AP1/FUL clade of MADS box genes have undergone multiple duplication events among angiosperm species. While initially identified as having floral meristem identity and floral organ identity function in Arabidopsis, the role of AP1 homologs does not appear to be universally conserved even among eudicots. In comparison, the role of FRUITFULL has not been extensively explored in non-model species. We report on the isolation of three AP1/FUL genes from cultivated spinach, Spinacia oleracea L. Two genes, designated SpAPETALA1-1 (SpAP1-1) and SpAPETALA1-2 (SpAP1-2), cluster as paralogous genes within the Caryophyllales AP1 clade. They are highly differentiated in the 3', carboxyl-end encoding region of the gene following the third amphipathic alpha-helix region, while still retaining some elements of a signature AP1 carboxyl motifs. In situ hybridization studies also demonstrate that the two paralogs have evolved different temporal and spatial expression patterns, and that neither gene is expressed in the developing sepal whorl, suggesting that the AP1 floral organ identity function is not conserved in spinach. The spinach FRUITFULL homolog, SpFRUITFULL (SpFUL), has retained the conserved motif and groups with Caryophyllales FRUITFULL homologs. SpFUL is expressed in leaf as well as in floral tissue, and shows strong expression late in flower development, particularly in the tapetal layer in males, and in the endothecium layer and stigma, in the females. The combined evidence of high rates of non-synonymous substitutions and differential expression patterns supports a scenario in which the AP1 homologs in the spinach AP1/FUL gene family have experienced rapid evolution following duplication. PMID:19005675

  8. The Developmental Regulator Protein Gon4l Associates with Protein YY1, Co-repressor Sin3a, and Histone Deacetylase 1 and Mediates Transcriptional Repression*

    OpenAIRE

    Lu, Ping; Hankel, Isaiah L.; Hostager, Bruce S; Swartzendruber, Julie A.; Friedman, Ann D.; Brenton, Janet L.; Rothman, Paul B.; Colgan, John D.

    2011-01-01

    Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted a...

  9. Heparin (GAG-hed inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    Directory of Open Access Journals (Sweden)

    López-Bayghen Esther

    2006-08-01

    Full Text Available Abstract Background High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR, plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs, such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Methods Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. Results We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Conclusion Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell

  10. The N terminus of Myxococcus xanthus CarA repressor is an autonomously folding domain that mediates physical and functional interactions with both operator DNA and antirepressor protein

    OpenAIRE

    Pérez-Marín, Mari Cruz; López-Rubio, Jose Juan; Murillo, Francisco J.; Elías-Arnanz, Montserrat; Padmanabhan, Subramanian

    2004-01-01

    Expression of the Myxococcus xanthus carB operon, which encodes the majority of the enzymes involved in light-induced carotenogenesis, is down-regulated in the dark by the CarA repressor binding to its bipartite operator. CarS, produced on illumination, relieves repression of carB by physically interacting with CarA to dis-mantle CarA-DNA complexes. Here, we demonstrate that the N- and C-terminal portions of CarA are organized as distinct structural and functional domains. Specifically, we sh...

  11. Cloning and characterization of the c1 repressor of Pseudomonas aeruginosa bacteriophage D3: a functional analog of phage lambda cI protein.

    OpenAIRE

    Miller, R V; Kokjohn, T. A.

    1987-01-01

    We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown t...

  12. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation.

    Science.gov (United States)

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical "molecular switch" to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  13. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    International Nuclear Information System (INIS)

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.

  14. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression

    Science.gov (United States)

    González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.

    2016-01-01

    The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694

  15. Identification of Quaternary Structure and Functional Domains of the CI Repressor from Bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Pedersen, Margit; Lo Leggio, Leila; Grossmann, J. Günter;

    2008-01-01

    The bacteriophage-encoded repressor protein plays a key role in determining the life cycle of a temperate phage following infection of a sensitive host. The repressor protein Cl, which is encoded by the temperate lactococcal phage TP901-1, represses transcription from both the lytic promoter P...... the protein is involved in the interaction with host proteins. By using small-angle X-ray scattering, we show for the first time the overall solution structure of a full-length wild-type bacteriophage repressor at low resolution revealing that the TP901-1 repressor forms a flat oligomer, most probably...

  16. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    Science.gov (United States)

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  17. Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro.

    Science.gov (United States)

    Hammerl, Jens Andre; Jäckel, Claudia; Lanka, Erich; Roschanski, Nicole; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages. PMID:27527206

  18. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  19. The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBPβ and AP-1 in Pigs

    Directory of Open Access Journals (Sweden)

    Xinyun Li

    2014-08-01

    Full Text Available S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS or porcine circovirus type 2 (PCV2. In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ and activator protein-1 (AP-1 genes were up-regulated in PK-15 (ATCC, CCL-33 cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  20. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Ting Shen

    2013-01-01

    Full Text Available Andrographolide (AG is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2, as well as the mRNA abundance of inducible NO synthase (iNOS, tumor necrosis factor-alpha (TNF-α, cyclooxygenase (COX-2, and interferon-beta (IFN-β in a dose-dependent manner in both lipopolysaccharide- (LPS- activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1 extracellular signal-regulated kinase (ERK/activator protein (AP-1 and (2 IκB kinase ε (IKKε/interferon regulatory factor (IRF-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets.

  1. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata.

    Science.gov (United States)

    Shen, Ting; Yang, Woo Seok; Yi, Young-Su; Sung, Gi-Ho; Rhee, Man Hee; Poo, Haryoung; Kim, Mi-Yeon; Kim, Kyung-Woon; Kim, Jong Heon; Cho, Jae Youl

    2013-01-01

    Andrographolide (AG) is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as the mRNA abundance of inducible NO synthase (iNOS), tumor necrosis factor-alpha (TNF- α ), cyclooxygenase (COX)-2, and interferon-beta (IFN- β ) in a dose-dependent manner in both lipopolysaccharide- (LPS-) activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1) extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 and (2) I κ B kinase ε (IKK ε )/interferon regulatory factor (IRF)-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets. PMID:23840248

  2. The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters

    Science.gov (United States)

    Pompeani, Audra J; Irgon, Joseph J; Berger, Michael F; Bulyk, Martha L; Wingreen, Ned S; Bassler, Bonnie L

    2008-01-01

    Quorum sensing is the process of cell-to-cell communication by which bacteria communicate via secreted signal molecules called autoinducers. As cell population density increases, the accumulation of autoinducers leads to co-ordinated changes in gene expression across the bacterial community. The marine bacterium, Vibrio harveyi, uses three autoinducers to achieve intra-species, intra-genera and inter-species cell–cell communication. The detection of these autoinducers ultimately leads to the production of LuxR, the quorum-sensing master regulator that controls expression of the genes in the quorum-sensing regulon. LuxR is a member of the TetR protein superfamily; however, unlike other TetR repressors that typically repress their own gene expression and that of an adjacent operon, LuxR is capable of activating and repressing a large number of genes. Here, we used protein binding microarrays and a two-layered bioinformatics approach to show that LuxR binds a 21 bp consensus operator with dyad symmetry. In vitro and in vivo analyses of two promoters directly regulated by LuxR allowed us to identify those bases that are critical for LuxR binding. Together, the in silico and biochemical results enabled us to scan the genome and identify novel targets of LuxR in V. harveyi and thus expand the understanding of the quorum-sensing regulon. PMID:18681939

  3. The Forkhead Transcription Factor FOXK2 Promotes AP-1-Mediated Transcriptional Regulation

    OpenAIRE

    Ji, Zongling; Donaldson, Ian J.; Liu, Jingru; Hayes, Andrew; Zeef, Leo A. H.; Sharrocks, Andrew D.

    2014-01-01

    The transcriptional control circuitry in eukaryotic cells is complex and is orchestrated by combinatorially acting transcription factors. Forkhead transcription factors often function in concert with heterotypic transcription factors to specify distinct transcriptional programs. Here, we demonstrate that FOXK2 participates in combinatorial transcriptional control with the AP-1 transcription factor. FOXK2 binding regions are widespread throughout the genome and are often coassociated with AP-1...

  4. The AP-1 Transcription Factor c-Jun Prevents Stress-Imposed Maladaptive Remodeling of the Heart

    Science.gov (United States)

    Windak, Renata; Müller, Julius; Felley, Allison; Akhmedov, Alexander; Wagner, Erwin F.; Pedrazzini, Thierry; Sumara, Grzegorz; Ricci, Romeo

    2013-01-01

    Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload. PMID:24039904

  5. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway

    OpenAIRE

    Varghese, Binny V.; Koohestani, Faezeh; McWilliams, Michelle; Colvin, Arlene; Gunewardena, Sumedha; Kinsey, William H.; Romana A Nowak; Nothnick, Warren B.; Chennathukuzhi, Vargheese M.

    2013-01-01

    Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase–protein kinase B/...

  6. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor.

    Science.gov (United States)

    Hu, Yinghui; Lund, Ingrid V; Gravielle, Maria C; Farb, David H; Brooks-Kayal, Amy R; Russek, Shelley J

    2008-04-01

    The regulated expression of type A gamma-aminobutyric acid (GABA) receptor (GABA(A)R) subunit genes plays a critical role in neuronal maturation and synaptogenesis. It is also associated with a variety of neurological diseases. Changes in GABA(A) receptor alpha1 subunit gene (GABRA1) expression have been reported in animal models of epilepsy, alcohol abuse, withdrawal, and stress. Understanding the genetic mechanism behind such changes in alpha subunit expression will lead to a better understanding of the role that signal transduction plays in control over GABA(A)R function and brings with it the promise of providing new therapeutic tools for the prevention or cure of a variety of neurological disorders. Here we show that activation of protein kinase C increases alpha1 subunit levels via phosphorylation of CREB (pCREB) that is bound to the GABRA1 promoter (GABRA1p). In contrast, activation of protein kinase A decreases levels of alpha1 even in the presence of pCREB. Decrease of alpha1 is dependent upon the inducible cAMP early repressor (ICER) as directly demonstrated by ICER-induced down-regulation of endogenous alpha1-containing GABA(A)Rs at the cell surface of cortical neurons. Taken together with the fact that there are less alpha1gamma2-containing GABA(A)Rs in neurons after protein kinase A stimulation and that activation of endogenous dopamine receptors down-regulates alpha1 subunit mRNA levels subsequent to induction of ICER, our studies identify a transcriptional mechanism for regulating the cell surface expression of alpha1-containing GABA(A)Rs that is dependent upon the formation of CREB heterodimers. PMID:18180303

  7. Acetylation of Human TCF4 (TCF7L2) Proteins Attenuates Inhibition by the HBP1 Repressor and Induces a Conformational Change in the TCF4::DNA Complex

    OpenAIRE

    Elfert, Susanne; Weise, Andreas; Bruser, Katja; Biniossek, Martin L; Jägle, Sabine; Senghaas, Niklas; Hecht, Andreas

    2013-01-01

    The members of the TCF/LEF family of DNA-binding proteins are components of diverse gene regulatory networks. As nuclear effectors of Wnt/β-catenin signaling they act as assembly platforms for multimeric transcription complexes that either repress or activate gene expression. Previously, it was shown that several aspects of TCF/LEF protein function are regulated by post-translational modification. The association of TCF/LEF family members with acetyltransferases and deacetylases prompted us t...

  8. Regulation of the epithelial Mg2+ channel TRPM6 by estrogen and the associated repressor protein of estrogen receptor activity (REA).

    NARCIS (Netherlands)

    Cao, G.; Wijst, J.A.J. van der; Kemp, A. van der; Zeeland, F. van; Bindels, R.J.M.; Hoenderop, J.G.J.

    2009-01-01

    The maintenance of the Mg(2+) balance of the body is essential for neuromuscular excitability, protein synthesis, nucleic acid stability, and numerous enzymatic systems. The Transient Receptor Potential Melastatin 6 (TRPM6) functions as the gatekeeper of transepithelial Mg(2+) transport. However, th

  9. The mammalian Cut homeodomain protein functions as a cell-cycle-dependent transcriptional repressor which downmodulates p21WAF1/CIP1/SDI1 in S phase.

    OpenAIRE

    Coqueret, O; Bérubé, G; Nepveu, A

    1998-01-01

    Cut is a homeodomain transcription factor which has the unusual property of containing several DNA-binding domains: three regions called Cut repeats and the Cut homeodomain. Genetic studies in Drosophila melanogaster indicate that cut plays important roles in the determination and maintenance of cell-type specificity. In the present study, we show that mammalian Cut proteins may yet play another biological role, specifically in proliferating cells. We found that the binding of Cut to a consen...

  10. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway

    Science.gov (United States)

    Varghese, Binny V.; Koohestani, Faezeh; McWilliams, Michelle; Colvin, Arlene; Gunewardena, Sumedha; Kinsey, William H.; Nowak, Romana A.; Nothnick, Warren B.; Chennathukuzhi, Vargheese M.

    2013-01-01

    Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase–protein kinase B/AKT–mammalian target of rapamycin (PI3K/AKT–mTOR) pathway] is aberrantly expressed in uterine fibroids. The activation of GPR10 by its cognate ligand, prolactin releasing peptide, promotes PI3K–AKT–mTOR pathways and cell proliferation specifically in cultured primary leiomyoma cells. Additionally, we report that RE1 suppressing transcription factor/neuron-restrictive silencing factor (REST/NRSF), a known tumor suppressor, transcriptionally represses GPR10 in the normal myometrium, and that the loss of REST in fibroids permits GPR10 expression. Importantly, mice overexpressing human GPR10 in the myometrium develop myometrial hyperplasia with excessive extracellular matrix deposition, a hallmark of uterine fibroids. We demonstrate previously unrecognized roles for GPR10 and its upstream regulator REST in the pathogenesis of uterine fibroids. Importantly, we report a unique genetically modified mouse model for a gene that is misexpressed in uterine fibroids. PMID:23284171

  11. Regulation of human alcohol dehydrogenase gene ADH7: importance of an AP-1 site.

    Science.gov (United States)

    Kotagiri, S; Edenberg, H J

    1998-07-01

    The structure and function of the human alcohol dehydrogenase 7 (ADH7) promoter were analyzed. A promoter fragment extending to bp -232 functioned well in H4IIE-C3, CV-1, and HeLa cells, whereas the region extending further upstream to bp -799 had no significant effect on activity. We identified cis-acting elements in the proximal 232 bp and examined their effect on promoter activity. Mutation of site A, where c-Jun bound, caused a drastic decrease in the promoter activity in H4IIE-C3 and CV-1 cells, suggesting that AP-1 plays an important role in the regulation of ADH7. Mutation of site B also caused a large drop in promoter activity in both cell lines; C/EBPalpha can bind to this site, but because the site affects activity approximately equally in CV-1 cells that lack C/EBPalpha and in H4IIE-C3 cells that contain low levels, other proteins are likely to play the major roles in vivo. Mutation of site C, where C/EBP bound and c-Jun bound weakly, had different effects in the two cell lines: in H4IIE-C3 cells, the site C mutation did not significantly increase promoter activity, whereas in CV-1 cells, which lack C/EBPalpha, it led to a doubling of activity. Surprisingly, cotransfection of the wild-type promoter with C/EBPa or C/EBPbeta led to a decrease in promoter activity, which might in part explain the lack of activity of ADH7 in adult liver. PMID:9703017

  12. The histone-like protein H-NS acts as a transcriptional repressor for expression of the anaerobic and growth phase activator AppY of Escherichia coli

    DEFF Research Database (Denmark)

    Atlung, Tove; Sund, Susanne; Olesen, Kirsten;

    1996-01-01

    unusually AT-rich DNA. The nucleoid-associated protein H-NS has a DNA-binding specificity for intrinscally curved AT-rich DNA. Using a single-copy transcriptional appY-lacZ fusion, we have shown that appY gene expression is derepressed in hns mutants during aerobic exponential growth. In the hns mutant......, growth phase and growth rate regulation under aerobic conditions was maintained, while ArcA-dependent anaerobic induction was greatly diminished. Judged by two-dimensional gel electrophoresis, the appY promoter fragment exhibits the features characteristic of curved DNA. Gel retardation assays showed...

  13. CDK2-AP1基因过表达对乳腺癌MCF-7细胞增殖及周期的影响%Effect of CDK2-AP1 gene over-expression on proliferation and cell cycle regulation of breast cancer cell line MCF-7

    Institute of Scientific and Technical Information of China (English)

    关晓燕; 周卫兵; 黄隽; 王龙云; 廖遇平

    2012-01-01

    Objective: To over-express cyclin-dependent kinase 2-associated protein 1 (CDK2-AP1) gene, and investigate its effect on the proliferation and cell cycle regulation in breast cancer cell line MCF-7. Methods: CDK2-AP1 gene coding region was cloned into lentivirus vector. Lentivirus particles were infected into MCF-7 cells to upregulate the expression of CDK2-AP1 gene. The expression level of CDK2-AP1 was detected at both mRNA and protein levels by real-time PCR and Western blot. MTT assay, colony formatting assay, and flow cytometry were performed to detect the change of proliferation and cell cycle in MCF-7 cells. We examined the expression of cell cycle associated genes (CDK2, CDK4, P16Ink4A, and P2lCiP1/Wafl) followed by CDK2-AP1 over-expression by Western blot.Results: CDK2-AP1 gene was up-regulated significantly at both mRNA (6.94 folds) and protein level. MTT based growth curve, colony formatting assay and flow cytometry showed that CDK2- API over-expression lentivirus inhibited the proliferation of MCF-7 cells with statistical difference (P<0.05). In addition, with CDK2-AP1 over-expression, MCF-7 cells were arrested in G1 phase accompanied by apoptosis. Western blot showed that the expression level of P21Clpl/wafl and P16Int4A was upregulated, while the expression level of CDK2 and CDK4, members of the CDK family, was downregulated.Conclusion: CDK2-AP1 gene plays a cancer suppressor role in breast cancer. Its function includes inhibiting the proliferation of MCF-7 cells and arresting the cell cycle in G, phase.%目的:通过过表达手段上调细胞周期调节蛋白依赖性激酶2-关联蛋白1(CDK2-AP1)基因在乳腺癌细胞MCF-7中的表达,并观察其对MCF-7细胞生长和细胞周期调控的作用.方法:将CDK2-AP1基因的编码框构建于慢病毒表达载体,导入MCF-7细胞,应用实时定量PCR和Western印迹验证CDK2-AP1基因mRNA和蛋白的表达效率.利用MTT法绘制生长曲线、克隆形成实验观察CDK2-AP1

  14. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

    Science.gov (United States)

    Peng, Bo; Zhu, Hua; Ma, Liyang; Wang, Yan-Ling; Klausen, Christian; Leung, Peter C K

    2015-06-01

    GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion. PMID:25794160

  15. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  16. The Corynebacterium glutamicum aconitase repressor: scratching around for crystals

    International Nuclear Information System (INIS)

    Crystallization of AcnR, a repressor of the aconitase gene in Corynebacterium glutamicum, is reported. Intentional manual scratching of the crystallization plates was applied to induce heterogeneous nucleation. Imperfections on the surfaces of crystallization containers are known to influence crystal formation and are thought to do so by helping to overcome the nucleation barrier. The intentional creation of imperfections has been widely applied to induce crystallization of small molecules, but has not been reported for protein crystallization. Here, the crystallization and preliminary X-ray analysis of the TetR-type aconitase repressor are reported. This regulator was the first transcription factor to be identified in the regulation of the tricarboxylic acid cycle in Corynebacterium glutamicum, an organism that is of special industrial interest and is an emerging model organism for Corynebacterineae. Successful crystallization involved introducing manual scratches on the surface of standard commercial plates, which led to a substantial improvement in crystal nucleation and quality

  17. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells.

    LENUS (Irish Health Repository)

    Looby, Eileen

    2009-01-01

    BACKGROUND: The progression from Barrett\\'s metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. METHODS: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. RESULTS: DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1\\/2- and p38 MAPK while Erk1\\/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK\\/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. CONCLUSION: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  18. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Directory of Open Access Journals (Sweden)

    Long Aideen

    2009-06-01

    Full Text Available Abstract Background The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Methods Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. Results DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. Conclusion DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  19. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    International Nuclear Information System (INIS)

    The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate

  20. Overexpression of Two PsnAP1 Genes from Populus simonii × P. nigra Causes Early Flowering in Transgenic Tobacco and Arabidopsis

    OpenAIRE

    Zheng, Tangchun; Li, Shuang; Zang, Lina; Dai, Lijuan; Yang, Chuanping; Qu, Guan-Zheng

    2014-01-01

    In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 a...

  1. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  2. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts.

    Science.gov (United States)

    Wu, Jianmei; Ding, Yulin; Bi, Yannan; Wang, Yi; Zhi, Yu; Wang, Jinling; Wang, Fenglong

    2016-06-01

    Staphylococcus aureus is a common Gram-positive pathogen that causes bovine mastitis, a persistent infection of the bovine mammary gland. To better understand the importance of bovine mammary fibroblasts (BMFBs) and the roles of the TLR-NF-κB and TLR-AP-1 signaling pathways in the regulation of S. aureus-associated mastitis and mammary fibosis, BMFBs cultured in vitro were stimulated with different concentrations of heat-inactivated S. aureus to analyze the gene and protein expression of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) as well as the protein expression of nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) by means of quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Specific NF-κB and AP-1 inhibitors were also used to investigate their effects on the regulation of TGF-β1 and bFGF expression. The results indicated that, in addition to increasing mRNA and protein expression of TLR2 and TLR4, S. aureus could also upregulate TGF-β1 and bFGF mRNA expression and secretion through the activation of NF-κB and AP-1. The increase in TGF-β1 and bFGF expression was shown to be inhibited by AP-1- and NF-κB-specific inhibitors. Taken together, S. aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB in BMFBs. This information offers new potential targets for the treatment of bovine mammary fibrosis. PMID:26948281

  3. Proapoptotic RYBP interacts with FANK1 and induces tumor cell apoptosis through the AP-1 signaling pathway.

    Science.gov (United States)

    Ma, Wen; Zhang, Xuan; Li, Meng; Ma, Xiaoli; Huang, Bingren; Chen, Hong; Chen, Deng

    2016-08-01

    Ring1 and YY1 Binding Protein (RYBP) induces tumor-specific cell apoptosis, but the underlying molecular mechanism has not been fully understood. Here we conducted a yeast two hybrid screen and identified FANK1 (Fibronectin type III and ankyrin repeat domains 1) as a novel RYBP-interacting protein. This interaction was confirmed by coimmunoprecipitation, GST pulldown and immunofluorescence assays. We mapped that the FNIII domain at the N-terminal of FANK1 binds to the Serine/Threonine-rich region at the C-terminal of RYBP. Further studies showed that overexpression of RYBP stabilized, whereas knockdown of RYBP by its specific shRNAs reduced, the expression of FANK1. Mechanistic studies revealed that RYBP inhibited the proteasome degradation of polyubiquitinated FANK1, thus prolonging the half-life of FANK1 protein. Functional studies indicated that RYBP activates FANK1-mediated activator protein 1 (AP-1) signaling pathway which contributes to tumor cell apoptosis. Taken together, our current study uncovered a new mechanism which RYBP utilizes to exert its pro-apoptotic activity in human tumor cells. PMID:27060496

  4. Self-report of anger in repressors

    OpenAIRE

    HYNEK, Jan

    2015-01-01

    The thesis is focused on repressive coping style and self-reports of the anger. In the theoretical part are elaborated chapters concerning the definition of emotion, emotion regulation, coping and repressive coping style. The Repressors are characterized by unconscious denial of their own anxiety and self-image distortion within the low susceptibility to negative emotions. The research study focuses on the expression of anger by repressors and their comparison with other groups. Respondents (...

  5. Inhibiting AP-1 activity alters cocaine induced gene expression and potentiates sensitization

    OpenAIRE

    Paletzki, Ronald F.; Myakishev, Max V.; Polesskaya, Oksana; Orosz, Andras; Hyman, Steven E.; Vinson, Charles

    2008-01-01

    We have expressed A-FOS, an inhibitor of AP-1 DNA binding, in adult mouse striatal neurons. We observe normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. However, following repeated injections of cocaine, the A-FOS expressing mice showed increased locomotion relative to littermate controls, an increase that persisted following a week of withdrawal and sub...

  6. Proton NMR studies of lambda phage cro repressor

    International Nuclear Information System (INIS)

    The cro repressor of bacteriophage λ has been studied extensively in solution using two-dimensional nuclear magnetic resonance spectroscopy (2DNMR). Near-complete resonance assignments of the cro 1H NMR spectrum were obtained, using selectively optimized relayed coherence transfer spectroscopy (RELAY), and using the sequential resonance assignment method. The peptide backbone resonances for 65 of the 66 amino acids and most side chain resonances were assigned. The assignments helped identify over 300 NOEs occurring in the two-dimensional nuclear Overhauser effect spectroscopy (NOESY) spectrum, which were used to analyze the conformation of cro repressor in solution. The selectively optimized RELAY experiment was instrumental in identifying amino acid spin systems in the crowded cro 1H NMR spectrum. A mixing time of 26 msec yielded relatively strong C/sup α/H-C/sup α/H3 RELAY cross peaks for Valine, Isoleucine, and Threonine residues, while RELAY cross peaks for other spin systems were weak or not observed. This promoted rapid and unambiguous identification of one-third of the spin systems in cro. The selectively optimized RELAY experiment should make it possible to investigate and assign and NMR spectra of proteins twice the size of cro repressor. With these spin systems identified, the ambiguities in spectral overlaps were reduced, and the sequential assignments could be completed. The NOEs identified in the cro spectrum were used in conjunction with distance geometry methods to calculate the conformation of α2-α3 helices, which are involved in DNA recognition and binding

  7. Novel and recurrent mutations in the AIRE gene of autoimmune polyendocrinopathy syndrome type 1 (APS1) patients.

    Science.gov (United States)

    Faiyaz-Ul-Haque, M; Bin-Abbas, B; Al-Abdullatif, A; Abdullah Abalkhail, H; Toulimat, M; Al-Gazlan, S; Almutawa, A M; Al-Sagheir, A; Peltekova, I; Al-Dayel, F; Zaidi, S H E

    2009-11-01

    Autoimmune polyendocrinopathy syndrome type 1 (APS1) is characterized by the presence of at least two out of three clinical features, which include Addison's disease, hypoparathyroidism, and chronic mucocutaneous candidiasis. This disorder is caused by mutations in the AIRE (autoimmune regulator) gene. While several AIRE mutations have been described in APS1 patients of various ethnic origins, the genetic cause of APS1 in Arab patients requires further investigation. This study describes seven Arab families, in which 18 patients had APS1. In addition to the cardinal features of APS1, some patients exhibited alopecia, diabetes mellitus, nephrocalcinosis and other phenotypes associated with APS1. DNA sequencing of the AIRE gene of patients from this study identified four novel and one recurrent mutation. These mutations likely result in loss of AIRE function in the patients. In addition, it was noted that the non-pathogenic c.834C> G mutation (rs1800520, encoding for p.Ser278Arg) occurs with high incidence in the AIRE gene of Arab individuals. Furthermore, this investigation demonstrates inflammation of the hair follicles in APS1 patients with alopecia universalis. We conclude that Arab APS1 patients carry novel and recurrent mutations in the AIRE gene. PMID:19758376

  8. DNA conformation driven by AP-1 triggers cell-specific expression via a strong epithelial enhancer.

    Science.gov (United States)

    Virolle, T; Djabari, Z; Ortonne, J P; Aberdam, D

    2000-10-01

    We report here the characterization of the regulatory region of the human LAMA3 gene, coding for the alpha3A chain of laminin-5. A 202 bp fragment is sufficient to confer epithelial-specific expression to a thymidine kinase promoter through the cooperative effect of three AP-1 binding sites. Remarkably, removal of the sequences located between the AP-1 sites does not modify the promoter activity in keratinocytes but allows strong expression in fibroblasts. Replacement of the deleted sequences by non-homologous ones fully restores the restricted enhancement in keratinocytes. Functional analysis and mutagenesis experiments demonstrate that a minimal distance between the AP-1 sites is required for the enhancer DNA fragment to adopt a particular conformation driven by the binding of Jun-Fos heterodimers. In non-permissive cells, this conformation leads to the anchorage of non-DNA-binding fibroblastic cofactors to form an inhibitory ternary complex. Therefore, our results describe for the first time an unusual conformation-dependent epithelial-specific enhancer. PMID:11269498

  9. Diallyl disulfide and diallyl trisulfide up-regulate the expression of the pi class of glutathione S-transferase via an AP-1-dependent pathway.

    Science.gov (United States)

    Tsai, Chia-Wen; Chen, Haw-Wen; Yang, Jaw-Ji; Sheen, Lee-Yan; Lii, Chong-Kuei

    2007-02-01

    Garlic organosulfur compounds are recognized as potential chemopreventive compounds. This protection is related to the induction of phase II detoxification enzymes. We previously reported that diallyl disulfide (DADS) and diallyl trisulfide (DATS) up-regulate the gene expression of the pi class of glutathione S-transferase (GSTP) and that an enhancer element named GPE I is required for this induction. In the present study, we further investigated the signal pathway involved in DADS and DATS up-regulation of this detoxification enzyme in Clone 9 cells. Cells were cultured with 25-200 micromol/L of DADS or DATS for 24 h. Western and Northern blots showed that both garlic allyl sulfides concentration dependently induced GSTP protein and mRNA expression, respectively. Changes in GST activity toward ethacrynic acid were consistent with the increase in GSTP expression (P effectiveness of DADS and DATS on GSTP expression is likely related to the JNK-AP-1 and ERK-AP-1 signaling pathways and, thus, that DADS and DATS enhance the binding of AP-1 to GPE I. PMID:17263507

  10. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Kang, Ki Sung [College of Korean Medicine, Gachon University, Seongnam 461-701 (Korea, Republic of); Kim, Yong Kee, E-mail: yksnbk@sm.ac.kr [College of Pharmacy, Sookmyung Women’s University, Seoul 140-742 (Korea, Republic of); Kim, Su-Nam, E-mail: snkim@kist.re.kr [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  11. Baicalin induces NAD(P)H:quinone reductase through the transactivation of AP-1 and NF-kappaB in Hepa 1c1c7 cells.

    Science.gov (United States)

    Park, H J; Lee, Y W; Lee, S K

    2004-12-01

    Baicalin (5,6,7-trihydroxyflavone-7-O-D-glucuronic acid, BA) is a flavone isolated from Scutellariae radix. In our previous report BA was a major active principle of NAD(P)H:quinone reductase (QR) induction mediated by Scutellariae radix extract and the induction was related to the transcriptional activation of the QR gene in Hepa 1c1c7 cells. The primary aim of the present study was to determine the molecular mechanism of QR gene expression by baicalin. The antioxidant or electrophile response element (ARE/EpRE) found at the 5'-flanking region of phase II genes may play an important role in mediating their induction by xenobiotics, including chemopreventive agents. In accordance, to study the molecular mechanisms of QR gene expression by BA, electrophoretic mobility shift assay (EMSA), using nuclear extracts of treated and untreated cells against ARE, activator protein-1 (AP-1) or nuclear factor-kappaB (NF-kappaB) binding sites, showed that BA increased the binding levels of the parameters in a dose-dependent manner. Further, Hepa 1c1c7 cells were transiently transfected with a plasmid containing three copies of the AP-1- or NF-kappaB-binding site linked to a chloramphenicol acetyltransferase (CAT) reporter gene. Using the CAT reporter gene assay, a dose-dependent transactivation of AP-1- or NF-kappaB-mediated CAT expression was observed with the treatment of BA. These results clearly indicate that BA induces the QR gene expression and activity by transactivation of AP-1 and NF-kappaB, and thus BA may be considered as a potential cancer chemopreventive agent with the induction of phase II detoxification enzyme. PMID:15548947

  12. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    International Nuclear Information System (INIS)

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα

  13. A novel GDNF-inducible gene, BMZF3, encodes a transcriptional repressor associated with KAP-1

    International Nuclear Information System (INIS)

    The Krueppel-associated box (KRAB)-containing zinc finger proteins (ZFPs) comprise the largest family of zinc finger transcription factors that function as transcriptional repressors. In the study of glial cell line-derived neurotrophic factor (GDNF)-RET signaling, we have identified bone marrow zinc finger 3 (BMZF3), encoding a KRAB-ZFP, as a GDNF-inducible gene by differential display analysis. The expression of BMZF3 transcripts in the human neuroblastoma cell line TGW increased 1 h after GDNF stimulation, as determined by Northern blotting and quantitative reverse-transcriptase polymerase chain reaction. The BMZF3 possesses transcriptional repressor activity in the KRAB domain. BMZF3 interacts with a co-repressor protein, KRAB-associated protein 1 (KAP-1), through the KRAB domain and siRNA-mediated knockdown of KAP-1 abolished the transcriptional repressor activity of BMZF3, indicating that KAP-1 is necessary for BMZF3 function. Furthermore, siRNA-mediated silencing of BMZF3 inhibited cell proliferation. These findings suggest that BMZF3 is a transcriptional repressor induced by GDNF that plays a role in cell proliferation

  14. Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and epithelial-mesenchymal transition expressions.

    Science.gov (United States)

    Lee, Wai-Theng; Lee, Tzong-Huei; Cheng, Chia-Hsiung; Chen, Ku-Chung; Chen, Yen-Chou; Lin, Cheng-Wei

    2015-04-01

    Antroquinonol (ANQ) is an ubiquinon derivative isolated from the mycelium of Antrodia camphorata. However, the effect of ANQ on breast cancer treatment is unknown. We found that ANQ significantly suppressed the migration and invasion of breast cancer MDA-MB-231 cells, and inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasiveness by MCF7 cells. ANQ inhibiting MMP-9 gene expression and enzymatic activity occurred at transcriptional regulation. Mechanistically, activation of ERK and AKT is crucial for MMP-9 gene expression, and the addition of ANQ suppressed phosphorylation of ERK and AKT. The induction of the AP-1 and NF-κB pathway participated in MMP-9 gene expression. Suppression of ERK inhibited AP-1, whereas blocking AKT diminished NF-κB activity, and treatment with ANQ suppressed both AP-1 and NF-κB signaling. Moreover, ANQ suppressed EMT protein expression, and inhibited TPA-induced EMT through downregulating the ERK-AP-1 and AKT-NF-κB signaling cascades. Together, our data showed for the first time that ANQ inhibited breast cancer invasiveness by suppressing ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and EMT expressions. PMID:25656647

  15. Activating PER repressor through a DBT-directed phosphorylation switch.

    Directory of Open Access Journals (Sweden)

    Saul Kivimäe

    2008-07-01

    Full Text Available Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT, a Drosophila ortholog of human casein kinase I (CKIepsilon/delta. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER. DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The per(S mutation, which is associated with short-period (19-h circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function.

  16. Expression and significance of TLR7and AP-1 in basal cell carcinoma%TLR7和AP-1在基底细胞癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    邓妮; 高永良; 赵恒光

    2013-01-01

    Objective :To investigate the expression of TLR7 and AP - 1 in basal cell carcinoma , and to explore their possibilities of occurrence and development .Method The expression of TLR7 and AP -1 were detected in 30 cases of basal cell carcinoma and 26 cases of normal tissue .Specimens were detected by immunohistochemistry .Result Immunohistochemistry showed that TLR 7 and AP-1 were both highly expressed in tumor tissue (P 0 .05) .Conclusion TLR7 and AP -1 were highly expressed in basal cell carcinoma ,and their expression level was significant positive correlation .These results suggested the TLR7 and AP -1 gene may play important roles in basal cell carcinoma occurrence and development .%提目的:观察基底细胞癌中TLR7和AP-1蛋白的表达,探讨二者与基底细胞癌发生发展的关系。方法:收集基底细胞癌患者皮损30例及正常人皮肤组织26例,采用免疫组织化学法检测癌组织中TLR7和AP-1蛋白的表达水平;分析TLR7和AP-1在基底细胞癌中的表达水平以及二者之间的相互关系。结果:TLR7和AP-1在癌组织中表达均较正常皮肤组织高(P<0.05),表达水平与性别、年龄均无差异( P>0.05);TLR7和AP-1在基底细胞癌中的蛋白表达水平成明显正相关(r=0.78,p<0.01)。结论:TLR7和AP -1蛋白在基底细胞癌中高表达,且二者的表达水平呈明显正相关;TLR7和AP-1可能与基底细胞癌的发生发展有关。

  17. Doubly truncated FosB isoform (Delta2DeltaFosB) induces osteosclerosis in transgenic mice and modulates expression and phosphorylation of Smads in osteoblasts independent of intrinsic AP-1 activity

    DEFF Research Database (Denmark)

    Sabatakos, George; Rowe, Glenn C; Kveiborg, Marie;

    2008-01-01

    INTRODUCTION: Activator protein (AP)-1 family members play important roles in the development and maintenance of the adult skeleton. Transgenic mice that overexpress the naturally occurring DeltaFosB splice variant of FosB develop severe osteosclerosis. Translation of Deltafosb mRNA produces both...

  18. ERK-Associated Changes of AP-1 Proteins During Fear Extinction

    OpenAIRE

    Guedea, Anita L.; Schrick, Christina; Guzman, Yomayra F.; Leaderbrand, Katie; Jovasevic, Vladimir; Corcoran, Kevin A.; Tronson, Natalie C; Radulovic, Jelena

    2011-01-01

    Extensive research has unraveled the molecular basis of learning processes underlying contextual fear conditioning, but the mechanisms of fear extinction remain less known. Contextual fear extinction occurs when an aversive stimulus that initially caused fear is no longer present and depends on the activation of the extracellular signal-regulated kinase (ERK), among other molecules. Here we investigated how ERK signaling triggered by extinction affects its downstream targets belonging to the ...

  19. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Directory of Open Access Journals (Sweden)

    Lee Sung

    2010-07-01

    Full Text Available Abstract Background Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde, tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Methods Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Results Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Conclusion Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative

  20. Co-expression Analysis Identifies CRC and AP1 the Regulator of Arabidopsis Fatty Acid Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Xinxin Han; Linlin Yin; Hongwei Xue

    2012-01-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development,however,the regulation of FA metabolism is still poorly understood.To study the relevant regulatory network,fifty-eight FA biosynthesis genes including de novo synthases,desaturases and elongases were selected as "guide genes" to construct the co-expression network.Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT)identifies 797 candidate FA-correlated genes.Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism,and function in many processes.Interestingly,63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched.Two TF genes,CRC and AP1,both correlating with 8 FA guide genes,were further characterized.Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds.The contents of palmitoleic acid,stearic acid,arachidic acid and eicosadienoic acid are decreased,whereas that of oleic acid is increased in ap1 and crc seeds,which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes.In addition,yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15,indicating that CRC may directly regulate FA biosynthesis.

  1. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    International Nuclear Information System (INIS)

    Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers

  2. Sharp weak type estimates for weights in the class $A_{p_1, p_2}$

    CERN Document Server

    Reznikov, Alexander

    2011-01-01

    We get sharp estimates for the distribution function of nonnegative weights, which satisfy so called $A_{p_1, p_2}$ condition. For particular choices of parameters $p_1$, $p_2$ this condition becomes an $A_p$-condition or Reverse H\\"{o}lder condition. We also get maximizers for these sharp estimates. We use the Bellman technique and try to carefully present and motivate our tactics. As an illustration of how these results can be used, we deduce the following result: if a weight $w$ is in $A_2$ then it self-improves to a weight, which satisfies a Reverse H\\"{o}lder condition.

  3. CDK2-AP1通过调控细胞周期抑制乳腺癌生长

    Institute of Scientific and Technical Information of China (English)

    何向明; 黄润; 俞洋; 向华; 杨红健; 宗祥云

    2015-01-01

    目的:探讨CDK2-AP1在乳腺癌的作用及其机制。方法分别在正常乳腺组织及不同分期乳腺癌组织中检测CDK2-AP1的表达情况;进行CDK2-AP1的LOF & GOF细胞功能实验;接种CDK2-AP1干扰或过表达的乳腺癌细胞及对照细胞在裸鼠观察成瘤及相应指标。结果在乳腺癌存在CDK2-AP1表达降低/缺失而CDK2/CyclinD1表达升高的情况,且CDK2-AP1的表达在正常乳腺组织细胞、乳腺导管原位癌、侵袭性乳腺癌、复发转移性乳腺癌渐次降低(P<0.001),与CDK2/CyclinD1相反。体内、外实验均发现抑制CDK2-AP1表达后乳腺癌细胞周期后移、增殖加快;过表达CDK2-AP1的乳腺癌细胞周期阻滞在G0/G1和G2/M期,生长受抑制、裸鼠成瘤速度及大小均受抑制。结论 CDK2-AP1的表达降低以至缺失促进乳腺细胞进入恶性增殖形成肿瘤,缺乏细胞周期负性调控的乳腺癌细胞增殖能力增强。%Objective To observe the role of CDK2-AP1 in breast cancer.Methods Expressions of CDK2-AP1,CDK2 and CyclinD1 were examined in 209 cases of pathological specimens using IHC staining. Lost-of-function and Gain-of-function assays were performed in vivo and in vitro to assess the specific role of CDK2-AP1 in breast cancer. ResultsThe positive ratio of CDK2-AP1 expression was reduced successively in normal breast tissue,DCIS,invasive breast cancer and relapsed breast cancer,suggesting that CDK2-AP1 was correlated closely with the tumor’s genesis and progress and might work as a tumor suppressor. After down-regulating CDK2-AP1 in breast cancer cells,the cell cycle was accelerated and the cell proliferation was promoted. The cell cycle was arrested in G0/G1 phase and G2/M phase after up-regulating CDK2-AP1 in breast cancer cells,resulting in inhibited cell proliferation. The same results were obtained by animal assays.Conclusions CDK2-AP1 affects tumor genesis and tumor growth by cell cycle regulation,which has the potential to be

  4. Differential connectivity of splicing activators and repressors to the human spliceosome

    OpenAIRE

    Akerman, Martin; Fregoso, Oliver I.; Das, Shipra; Ruse, Cristian; Jensen, Mads A.; Pappin, Darryl J.; Zhang, Michael Q.; Krainer, Adrian R.

    2015-01-01

    Background During spliceosome assembly, protein-protein interactions (PPI) are sequentially formed and disrupted to accommodate the spatial requirements of pre-mRNA substrate recognition and catalysis. Splicing activators and repressors, such as SR proteins and hnRNPs, modulate spliceosome assembly and regulate alternative splicing. However, it remains unclear how they differentially interact with the core spliceosome to perform their functions. Results Here, we investigate the protein connec...

  5. Analysis of JUN/AP1 function in Hedgehog/GLI-associated cancer

    International Nuclear Information System (INIS)

    The Hedgehog (HH)/GLI signaling pathway is a developmental pathway involved in segment patterning of the Drosophila larval body or in A-P axis and pattern formation of the vertebrate embryo. In adult mammals, the Hedgehog pathway is essential for tissue homeostasis, while deregulation of this pathway is associated with the development and growth of cancers of the skin, brain, gastrointestinal tract, lung and prostate. A growing body of evidence suggests that control of oncogenic HH signaling involves interactions with other pathways frequently activated in human malignancies. In line with these findings, we have shown that Epidermal Growth Factor Receptor (EGFR) signaling synergizes with Hedgehog/GLI in oncogenic transformation of human keratinocytes in vitro. The integration of HH/GLI and EGFR signaling is thought to be mediated via an activation of the RAS/RAF/MEK/ERK cascade leading to the subsequent activation of the AP1 transcription factor JUN. Activated JUN can cooperate with GLI to activate the expression of selected EGFR-HH/GLI target genes thereby promoting transformation. Furthermore, it has been shown that the artificial GLI2 activator form (GLI2delN) can cooperate with active JUN in human keratinocytes, though these data were mainly based on overexpression and in vitro experiments. Given the crucial role of JUN in HH-EGFR-dependent cancer development and its putative cooperation with a dominant active GLI2delN form, the aim of my thesis was to address the in vivo role of cJun/Ap1 in Gli-driven basal cell carcinoma (BCC), a very common form of non-melanoma skin cancer. Using a combination of genetic tools including RNA interference and cre/loxP transgenic mouse technology for conditional inactivation of cJun/Ap1, I could show that inhibition of cJun/Ap1 in established Ptch deficient BCC cells decreases tumor growth in allograft experiments. By contrast, genetic deletion of cJun in GLI2delN expressing mice does not interfere with GLI2delN driven skin

  6. Butyrate Produced by Commensal Bacteria Potentiates Phorbol Esters Induced AP-1 Response in Human Intestinal Epithelial Cells

    OpenAIRE

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M.

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect...

  7. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    OpenAIRE

    Tang, Mingyong; Tao, Yan-Bin; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolo...

  8. 19F nuclear magnetic resonance spectroscopy as a probe of macromolecular interactions: Observations of the bacteriophage λ cro repressor with specific and nonspecific DNA

    International Nuclear Information System (INIS)

    The approach taken for these investigations involves the biosynthetic incorporation of the 19F nucleus on fluoroamino acid analogues into cro repressor. The effect of the fluoroanalogues on the overall structure of the protein was investigated using two dimensional proton nuclear magnetic resonance (NMR) spectroscopy. The effect of the fluoroanalogues on the activity of the protein was investigated using a steady state fluorescence assay. 19F NMR studies of the interaction of cro repressor with DNA include the assignment of the fluorotyrosyl residues implicated in the interaction with DNA, a comparison of the interaction of cro repressor with OR3 and nonspecific DNA fragments, and a comparison of the binding of cro repressor with OR3 fragments of various sizes. It has been demonstrated that the incorporation of 3-fluorotyrosin into cro repressor does not effect the overall structure of the protein as detected by nuclear Overhauser enhancement 1H NHR spectroscopy. The results of the fluorescence assay demonstrate that the 3-fluorotyrosyl cro repressor binds to DNA. The incorporation of 3-fluorotyrosine into cro repressor does not alter the binding of the cro repressor to OR3, as measured by the concentration of KCl needed to dissociate the complexes

  9. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte.

    Directory of Open Access Journals (Sweden)

    Stéphane Chavanas

    Full Text Available Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs catalyse the conversion of protein-bound arginine into citrulline (deimination, a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6. Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE, an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.

  10. Opposing Effects of Zac1 and Curcumin on AP-1-Regulated Expressions of S100A7

    Science.gov (United States)

    Chu, Yu-Wen; Liu, Shu-Ting; Cheng, Hsiao-Chun; Huang, Shih-Ming; Chang, Yung-Lung; Chiang, Chien-Ping; Liu, Ying-Chun; Wang, Wei-Ming

    2015-01-01

    ZAC, an encoding gene mapped at chromosome 6q24-q25 within PSORS1, was previously found over-expressed in the lower compartment of the hyperplastic epidermis in psoriatic lesions. Cytokines produced in the inflammatory dermatoses may drive AP-1 transcription factor to induce responsive gene expressions. We demonstrated that mZac1 can enhance AP-1-responsive S100A7 expression of which the encoding gene was located in PSORS4 with HaCaT keratinocytes. However, the mZac1-enhanced AP-1 transcriptional activity was suppressed by curcumin, indicating the anti-inflammatory property of this botanical agent and is exhibited by blocking the AP-1-mediated cross-talk between PSORS1 and PSORS4. Two putative AP-1-binding sites were found and demonstrated to be functionally important in the regulation of S100A7 promoter activity. Moreover, we found curcumin reduced the DNA-binding activity of AP-1 to the recognition element located in the S100A7 promoter. The S100A7 expression was found to be upregulated in the lesioned epidermis of atopic dermatitis and psoriasis, which is where this keratinocyte-derived chemoattractant engaged in the pro-inflammatory feedback loop. Understanding the regulatory mechanism of S100A7 expression will be helpful to develop therapeutic strategies for chronic inflammatory dermatoses via blocking the reciprocal stimuli between the inflammatory cells and keratinocytes. PMID:26633653

  11. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Nepelska

    Full Text Available The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells.

  12. Lysogenic induction in Lex Al Escherichia coli mutants: characterization of the induction and prophage repressor influence

    International Nuclear Information System (INIS)

    SOS functions require new synthesis of protein and have been described as dependent on both the rec A and lex A genes. The induction of prophage was studied in bacterial strains lysogenic for a series of phages which synthesize different levels of repressor (λ, λ imm434J and λ imm434T) and was compared to W-reactivation. Prophage induction was detected in lex Al mutants although at a slightly lower level and requiring two times longer when compared with wild-type. The optimum UV-dose for induction differed for each lysogenic strain and correlated with the level of repressor

  13. Radiation-induced tetramer-to-dimer transition of Esterichia coli lactose repressor

    Czech Academy of Sciences Publication Activity Database

    Goffinont, S.; Davídková, Marie; Spotheim-Maurizot, M.

    2009-01-01

    Roč. 386, č. 2 (2009), s. 300-304. ISSN 0006-291X R&D Projects: GA MŠk OC09012 Institutional research plan: CEZ:AV0Z10480505 Keywords : protein * DNA * radiation * oxidation * tetramer * dimer * lactose repressor Subject RIV: BO - Biophysics Impact factor: 2.548, year: 2009

  14. MCP-1 upregulates amylin expression in murine pancreatic β cells through ERK/JNK-AP1 and NF-κB related signaling pathways independent of CCR2.

    Directory of Open Access Journals (Sweden)

    Kun Cai

    Full Text Available BACKGROUND: Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2 is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets. METHODOLOGY/PRINCIPAL FINDINGS: We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059, JNK (SP600125 or AP1 (curcumin significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression. CONCLUSIONS/SIGNIFICANCE: MCP-1 induces amylin expression

  15. MCP-1 Upregulates Amylin Expression in Murine Pancreatic β Cells through ERK/JNK-AP1 and NF-κB Related Signaling Pathways Independent of CCR2

    Science.gov (United States)

    Cai, Kun; Qi, Dongfei; Hou, Xinwei; Wang, Oumei; Chen, Juan; Deng, Bo; Qian, Lihua; Liu, Xiaolong; Le, Yingying

    2011-01-01

    Background Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets. Methodology/Principal Findings We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC) 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s) mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059), JNK (SP600125) or AP1 (curcumin) significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression. Conclusions/Significance MCP-1 induces amylin expression through ERK1/2/JNK-AP

  16. Optimized expression and purification of biophysical quantities of Lac repressor and Lac repressor regulatory domain.

    Science.gov (United States)

    Stetz, Matthew A; Carter, Marie V; Wand, A Joshua

    2016-07-01

    The recombinant production of Lac repressor (LacI) in Escherichia coli is complicated by its ubiquitous use as a regulatory element in commercially-available expression vectors and host strains. While LacI-regulated expression systems are often used to produce recombinant LacI, the product can be heterogeneous and unsuitable for some studies. Alternative approaches include using unregulated vectors which typically suffer from low yield or vectors with promoters induced by metabolically active sugars which can dilute isotope labels necessary for certain biophysical studies. Here, an optimized expression system and isolation protocol for producing various constructs of LacI is introduced which eliminates these complications. The expression vector is an adaptation of the pASK backbone wherein expression of the lacI gene is regulated by an anhydrotetracyline inducible tetA promoter and the host strain lacks the lacI gene. Typical yields in highly deuterated minimal medium are nearly 2-fold greater than those previously reported. Notably, the new expression system is also able to produce the isolated regulatory domain of LacI without co-expression of the full-length protein and without any defects in cell viability, eliminating the inconvenient requirement for strict monitoring of cell densities during pre-culturing. Typical yields in highly deuterated minimal medium are significantly greater than those previously reported. Characterization by solution NMR shows that LacI constructs produced using this expression system are highly homogenous and functionally active. PMID:27064119

  17. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa; Saito, Hiroaki; Yin, Min; Green, Thomas A; Lotinun, Sutada; Kveiborg, Marie; Horne, William C; Nestler, Eric J; Baron, Roland

    2012-01-01

    The regulation of bone and fat homeostasis and its relationship to energy expenditure has recently been the focus of increased attention due to its potential relevance to osteoporosis, obesity and diabetes. Although central effectors within the hypothalamus have been shown to contribute to the......-antagonistic properties, have increased energy expenditure and bone mass. Since these mice express ¿FosB in bone, fat and hypothalamus, we sought to determine 1) whether overexpression of ¿FosB within the hypothalamus was sufficient to regulate energy expenditure and whether it would also regulate bone mass, and 2......) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass...

  18. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  19. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  20. The transcriptional repressor domain of Gli3 is intrinsically disordered.

    Directory of Open Access Journals (Sweden)

    Robert Tsanev

    Full Text Available The transcription factor Gli3 is acting mainly as a transcriptional repressor in the Sonic hedgehog signal transduction pathway. Gli3 contains a repressor domain in its N-terminus from residue G106 to E236. In this study we have characterized the intracellular structure of the Gli3 repressor domain using a combined bioinformatics and experimental approach. According to our findings the Gli3 repressor domain while being intrinsically disordered contains predicted anchor sites for partner interactions. The obvious interaction partners to test were Ski and DNA; however, with both of these the structure of Gli3 repressor domain remained disordered. To locate residues important for the repressor function we mutated several residues within the Gli3 repressor domain. Two of these, H141A and H157N, targeting predicted helical regions, significantly decreased transcriptional repression and thus identify important functional parts of the domain.

  1. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription.

    Science.gov (United States)

    Rösl, F; Das, B C; Lengert, M; Geletneky, K; zur Hausen, H

    1997-01-01

    Considering the involvement of a redox-regulatory pathway in the expression of human papillomaviruses (HPVs), HPV type 16 (HPV-16)-immortalized human keratinocytes were treated with the antioxidant pyrrolidine-dithiocarbamate (PDTC). PDTC induces elevated binding of the transcription factor AP-1 to its cognate recognition site within the viral regulatory region. Despite of increased AP-1 binding, normally indispensable for efficient HPV-16 transcription, viral gene expression was selectively suppressed at the level of initiation of transcription. Electrophoretic mobility supershift assays showed that the composition of the AP-1 complex, predominantly consisting of Jun homodimers in untreated cells, was altered. Irrespective of enhanced c-fos expression, c-jun was phosphorylated and became primarily heterodimerized with fra-1, which was also induced after PDTC incubation. Additionally, there was also an increased complex formation between c-jun and junB. Because both fra-1 and junB overexpression negatively interferes with c-jun/c-fos trans-activation of AP-1-responsive genes, our results suggest that the observed block in viral transcription is mainly the consequence of an antioxidant-induced reconstitution of the AP-1 transcription complex. Since expression of the c-jun/c-fos gene family is tightly regulated during cellular differentiation, defined reorganization of a central viral transcription factor may represent a novel mechanism controlling the transcription of pathogenic HPVs during keratinocyte differentiation and in the progression to cervical cancer. PMID:8985358

  2. Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Jing; Zhang, Xiaoming; Yan, Guohua; Zhou, Yu; Zhang, Kaichun

    2013-02-15

    A homologue of SQUAMOSA/APETALA1, designated PaAP1, was isolated from Prunus avium by reverse transcription-PCR (RT-PCR). The full length of PaAP1 cDNA is 753 bp, and it codes for a polypeptide of 250 amino acid residues. Sequence comparison revealed that PaAP1 belongs to the MADS-box gene family. Phylogenetic analysis indicated that PaAP1 shared the highest identity with SQUA/AP1 homologues from Prunus serrulata. Real-time fluorescence quantitative PCR analysis showed that PaAP1 was expressed at high levels in petal, sepal, style, and flower buds, which was slightly different from the expression pattern of AP1 of Arabidopsis thaliana. To characterize the functions of PaAP1, we assessed Arabidopsis transformed with 35S::PaAP1. A total of 8 transgenic T(1) lines with an early flowering phenotype were obtained, and a 3:1 segregation ratio of flowering time was observed in the T(2) generation of 4 lines. This study provides the first functional analysis of an SQUA/AP1 homolog from P. avium and suggests that PaAP1 is potentially useful for shortening the juvenile period in sweet cherry. PMID:23206932

  3. IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci

    DEFF Research Database (Denmark)

    Sørensen, Per Soelberg

    2010-01-01

    same direction of effect observed in the discovery phase. Three loci exceeded genome-wide significance in the joint analysis: RGS1 (P value=3.55 x 10(-9)), IL12A (P=3.08 x 10(-8)) and MPHOSPH9/CDK2AP1 (P=3.96 x 10(-8)). The RGS1 risk allele is shared with celiac disease (CD), and the IL12A risk allele...... seems to be protective for celiac disease. Within the MPHOSPH9/CDK2AP1 locus, the risk allele correlates with diminished RNA expression of the cell cycle regulator CDK2AP1; this effect is seen in both lymphoblastic cell lines (P=1.18 x 10(-5)) and in peripheral blood mononuclear cells from subjects with...

  4. A TATA sequence-dependent transcriptional repressor activity associated with mammalian transcription factor IIA.

    OpenAIRE

    Aso, T.; Serizawa, H; Conaway, R C; Conaway, J W

    1994-01-01

    In the process of characterizing cellular proteins that modulate basal transcription by RNA polymerase II, we identified a novel repressor activity specific for promoters containing consensus TATA boxes. This activity strongly represses TATA-binding protein (TBP)-dependent transcription initiation from core promoter elements containing a consensus TATA sequence, but activates TBP-dependent transcription from core promoter elements lacking a consensus TATA sequence. Purification of this activi...

  5. Exogenous avian leukosis virus-induced activation of the ERK/AP1 pathway is required for virus replication and correlates with virus-induced tumorigenesis.

    Science.gov (United States)

    Dai, Manman; Feng, Min; Ye, Yu; Wu, Xiaochan; Liu, Di; Liao, Ming; Cao, Weisheng

    2016-01-01

    A proteomics approach was used to reveal the up-regulated proteins involved in the targeted mitogen-activated protein kinase (MAPK) signal transduction pathway in DF-1 cells after ALV subgroup J (ALV-J) infection. Next, we found that ALV-J CHN06 strain infection of DF-1 cells correlated with extracellular signal-regulated kinase 2 (ERK2) activation, which was mainly induced within 15 min, a very early stage of infection, and at a late infection stage, from 108 h to 132 h post-infection. Infection with other ALV subgroup (A/B) strains also triggered ERK/MAPK activation. Moreover, when activating ERK2, ALV subgroups A, B and J simultaneously induced the phosphorylation of c-Jun, an AP1 family member and p38 activation but had no obvious effect on JNK activation at either 15 min or 120 h. Interestingly, only PD98059 inhibited the ALV-induced c-Jun phosphorylation while SP600125 or SB203580 had no influence on c-Jun activation. Furthermore, the viral gp85 and gag proteins were found to contribute to ERK2/AP1 activation. Additionally, the specific ERK inhibitor, PD980509, significantly suppressed ALV replication, as evidenced by extremely low levels of ALV promoter activity and ALV-J protein expression. In vivo analysis of ERK2 activation in tumor cells derived from ALV-J-infected chicken demonstrated a strong correlation between ERK/MAPK activation and virus-associated tumorigenesis. PMID:26754177

  6. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, M. Teresa; Gonçalo, Margarida; Figueiredo, Américo; Carvalho, Arsélio P.; Duarte, Carlos B.; Lopes, M. Celeste

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO4) and increases the ...

  7. The Corynebacterium glutamicum aconitase repressor: scratching around for crystals

    Science.gov (United States)

    García-Nafría, Javier; Baumgart, Meike; Bott, Michael; Wilkinson, Anthony J.; Wilson, Keith S.

    2010-01-01

    Imperfections on the surfaces of crystallization containers are known to influence crystal formation and are thought to do so by helping to overcome the nucleation barrier. The intentional creation of imperfections has been widely applied to induce crystallization of small molecules, but has not been reported for protein crystallization. Here, the crystallization and preliminary X-ray analysis of the TetR-type aconitase repressor are reported. This regulator was the first transcription factor to be identified in the regulation of the tricarboxylic acid cycle in Corynebacterium glutamicum, an organism that is of special industrial interest and is an emerging model organism for Corynebacterineae. Successful crystallization involved introducing manual scratches on the surface of standard commercial plates, which led to a substantial improvement in crystal nucleation and quality. PMID:20823530

  8. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2016-03-01

    Full Text Available For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA, was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae. MOA modulates cytokine expression in lipopolysaccharide (LPS-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2, thus blocking nuclear translocation of activation protein (AP-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs and one of their downstream transcription factors, activator protein-1 (AP-1. Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.

  9. The protective role of NF-κB and AP-1 in arsenite-induced apoptosis in aortic endothelial cells

    International Nuclear Information System (INIS)

    Arsenite (NaAsO2) has been shown to produce vascular dysfunction in many studies. Arsenite-induced damage to vascular endothelial cells represents one of the possible mechanisms causing leakage of the vascular endothelial barrier. To explore arsenite-induced vascular endothelial damage, we used primary porcine aortic endothelial cells (PAECs) as an in vitro system to test the effects of arsenite on signal transduction pathways and apoptosis. Here we demonstrated that arsenite exposure induced apoptosis accompanied by the occurrence of apoptotic signals including degradation of poly(ADP-ribose) polymerase (PARP) and CPP32 (cleavage/activation) and DNA ladder formation. By using the luciferase reporter assay, we demonstrated that arsenite exposure differentially activated two redox-sensitive transcription factors, NF-κB and AP-1. Lower levels of arsenite exposure (25 μM NaAsO2, 24 h) induced co-activation of NF-κB and AP-1, accompanied by 9% total apoptosis. In contrast, higher levels of arsenite exposure (40 μM NaAsO2, 24 h) induced higher levels of AP-1 activation, accompanied by 45% total apoptosis. Blockade of NF-κB or JNK activity further enhanced arsenite-induced apoptosis. Upregulation of JNK activity showed no effect on arsenite-induced apoptosis. Based on these data, we propose that activation of redox-sensitive transcription factors, NF-κB and AP-1, plays a very important role in the protection of PAECs from arsenite-induced apoptosis

  10. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor

    Directory of Open Access Journals (Sweden)

    Bonaccorso Oliver

    2012-10-01

    Full Text Available Abstract Background The YABBY (YAB family of transcription factors participate in a diverse range of processes that include leaf and floral patterning, organ growth, and the control of shoot apical meristem organisation and activity. How these disparate functions are regulated is not clear, but based on interactions with the LEUNIG-class of co-repressors, it has been proposed that YABs act as transcriptional repressors. In the light of recent work showing that DNA-binding proteins associated with the yeast co-repressor TUP1 can also function as activators, we have examined the transcriptional activity of the YABs. Results Of the four Arabidopsis YABs tested in yeast, only FILAMENTOUS FLOWER (FIL activated reporter gene expression. Similar analysis with Antirrhinum YABs identified the FIL ortholog GRAMINIFOLIA as an activator. Plant-based transactivation assays not only confirmed the potential of FIL to activate transcription, but also extended this property to the FIL paralog YABBY3 (YAB3. Subsequent transcriptomic analysis of lines expressing a steroid-inducible FIL protein revealed groups of genes that responded either positively or negatively to YAB induction. Included in the positively regulated group of genes were the polarity regulators KANADI1 (KAN1, AUXIN RESPONSE FACTOR 4 (ARF4 and ASYMMETRIC LEAVES1 (AS1. We also show that modifying FIL to function as an obligate repressor causes strong yab loss-of-function phenotypes. Conclusions Collectively these data show that FIL functions as a transcriptional activator in plants and that this activity is involved in leaf patterning. Interestingly, our study also supports the idea that FIL can act as a repressor, as transcriptomic analysis identified negatively regulated FIL-response genes. To reconcile these observations, we propose that YABs are bifunctional transcription factors that participate in both positive and negative regulation. These findings fit a model of leaf development in which

  11. Dietary turmeric modulates DMBA-induced p21ras, MAP kinases and AP-1/NF-κB pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    International Nuclear Information System (INIS)

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric during HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-κB, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-κB DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-κB, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements

  12. Melittin has a chondroprotective effect by inhibiting MMP-1 and MMP-8 expressions via blocking NF-κB and AP-1 signaling pathway in chondrocytes.

    Science.gov (United States)

    Jeong, Yun-Jeong; Shin, Jae-Moon; Bae, Young-Seuk; Cho, Hyun-Ji; Park, Kwan-Kyu; Choe, Jung-Yoon; Han, Sang-Mi; Moon, Sung-Kwon; Kim, Wun-Jae; Choi, Yung Hyun; Kim, Cheorl-Ho; Chang, Hyeun-Wook; Chang, Young-Chae

    2015-04-01

    Bee venom is a natural ingredient produced by the honey bee (Apis mellifera), and has been widely used in China, Korea and Japan as a traditional medicine for various diseases such as arthritis, rheumatism, and skin diseases However, the regulation of the underlying molecular mechanisms of the anti-arthritis by bee venom and its major peptides is largely unknown. In this study, we investigated the potential molecular mechanisms underlying the anti-arthritis effect of bee venom and its major peptides, melittin and apamin, in tumor necrosis factor-α (TNF-α) responsive C57BL/6 mice chondrocyte cells. The bee venom and melittin significantly and selectively suppressed the TNF-α-mediated decrease of type II collagen expression, whereas the apamin had no effects on the type II collagen expression. We, furthermore, found that the bee venom and melittin inhibited the protein expression of matrix metalloproteinase (MMP)-1 and MMP-8, which suggests that the chondroprotective effect of bee venom may be caused by melittin. The inhibitory effects of melittin on the TNF-α-induced MMP-1 and MMP-8 protein expression were regulated by the inhibition of NF-kB and AP-1. In addition, melittin suppressed the TNF-α-induced phosphorylation of Akt, JNK and ERK1/2, but did not affect the phosphorylation of p38 kinase. These results suggest that melittin suppresses TNF-α-stimulated decrease of type II collagen expression by the inhibiting MMP-1 and MMP-8 through regulation of the NF-kB and AP-1 pathway and provision of a novel role for melittin in anti-arthritis action. PMID:25708656

  13. UVB-irradiated human keratinocytes and interleukin-1αindirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVA-irradiated dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yong; BI Zhi-gang

    2006-01-01

    Background Solar ultraviolet (UV) irradiation induces the production of matrix metalloproteinases (MMPs) by activating cellular signalling transduction pathways. MMPs are responsible for the degradation and/or inhibition of synthesis of collagenous extracellular matrix in connective tissues. We mimicked the action of environmental ultraviolet on skin and investigated the effects of UVB-irradiated human keratinocytes HaCaT and IL-1α on mitogen activated protein (MAP) kinase activation, c-Jun and c-Fos (AP-1 is composed of Jun and Fos proteins)mRNA expression and MMP-1 production in UVA-irradiated dermal fibroblasts.Methods Following UVA irradiation, the culture medium of fibroblasts was replaced by culture medium from UVB-irradiated HaCaT, or replaced by the complete culture medium with interleukin (IL)-1α. MAP kinase activity expression in fibroblasts was detected by Western blot. c-Jun and c-Fos mRNA expressions were determined by reverse transcriptional polymerase chain reaction (RT-PCR); MMP-1 production in culture medium was detected by enzyme-linked immunosorbent assay (ELISA).Results Culture medium from UVB-irradiated keratinocytes increased MAP kinase activity and c-Jun mRNA expression in UVA-irradiated fibroblasts. IL-1α increased MAP kinase activity and c-Jun mRNA expression,IL-1 α also increased c-Fos mRNA expression. Both culture media from UVB-irradiated human keratinocytes and externally applied IL-1 α increased MMP-1 production in UVA-irradiated fibroblasts.Conclusions UVB-irradiated keratinocytes and IL-1α indirectly promote MMP-1 production in UVA-irradiated fibroblasts by increasing MAP kinase/AP-1 activity. IL-1 may play an important role in the paracrine activation and dermal collagen excessive degradation leading to skin photoaging.

  14. SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways.

    Directory of Open Access Journals (Sweden)

    Anna Santoro

    Full Text Available Osteoarthritis (OA is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs in chondrocytes, contributing thus to the extracellular matrix (ECM degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2, under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored.SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis.Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1.Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA.

  15. The AP-1 Transcription Factor c-Jun Prevents Stress-Imposed Maladaptive Remodeling of the Heart

    OpenAIRE

    Windak, Renata; Müller, Julius; Felley, Allison; Akhmedov, Alexander; Wagner, Erwin F.; Pedrazzini, Thierry; Sumara, Grzegorz; Ricci, Romeo

    2013-01-01

    Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this...

  16. B:2a:p1.5 meningococcal strains likely arisen from capsular switching event still spreading in Spain.

    Science.gov (United States)

    Castilla, Jesús; Vázquez, Julio A; Salcedo, Celia; García Cenoz, Manuel; García Irure, José Javier; Torroba, Luis; Beristain, Xabier; Abad, Raquel; Barricarte, Aurelio

    2009-02-01

    Eighteen clustered cases of meningococcal disease associated with B:2a:P1.5 strains doubled the annual incidence up to 4.3 x 10(5) in Navarra, Spain, in 2007. Eleven percent of cases were fatalities, and 74% of cases were individuals 10 to 24 years old. This is the third cluster associated with this strain in northern Spain since 2001. PMID:19091814

  17. B:2a:P1.5 Meningococcal Strains Likely Arisen from Capsular Switching Event Still Spreading in Spain▿

    Science.gov (United States)

    Castilla, Jesús; Vázquez, Julio A.; Salcedo, Celia; García Cenoz, Manuel; García Irure, José Javier; Torroba, Luis; Beristain, Xabier; Abad, Raquel; Barricarte, Aurelio

    2009-01-01

    Eighteen clustered cases of meningococcal disease associated with B:2a:P1.5 strains doubled the annual incidence up to 4.3 × 105 in Navarra, Spain, in 2007. Eleven percent of cases were fatalities, and 74% of cases were individuals 10 to 24 years old. This is the third cluster associated with this strain in northern Spain since 2001. PMID:19091814

  18. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    Energy Technology Data Exchange (ETDEWEB)

    Safo, Martin K., E-mail: msafo@vcu.edu [Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Ko, Tzu-Ping [Institute of Biological Chemistry, Academia Sinica, Taipei 11529,Taiwan (China); Musayev, Faik N. [Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Zhao, Qixun [Department of Medicine and Department of Microbiology/Immunology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Wang, Andrew H.-J. [Institute of Biological Chemistry, Academia Sinica, Taipei 11529,Taiwan (China); Archer, Gordon L. [Department of Medicine and Department of Microbiology/Immunology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2006-04-01

    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  19. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    International Nuclear Information System (INIS)

    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor

  20. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    Directory of Open Access Journals (Sweden)

    Bin Fan

    Full Text Available Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO, TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1 and perilipin 2 (PLIN2. Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  1. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    Science.gov (United States)

    Fan, Bin; Dun, Sai-Hong; Gu, Jian-Qiu; Guo, Yang; Ikuyama, Shoichiro

    2015-01-01

    Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia. PMID:26367267

  2. Lac repressor: Crystallization of intact tetramer and its complexes with inducer and operator DNA

    International Nuclear Information System (INIS)

    The intact lac repressor tetramer, which regulates expression of the lac operon in Escherichia coli, has been crystallized in the native form, with an inducer, and in a ternary complex with operator DNA and an anti-inducer. The crystals without DNA diffract to better than 3.5 angstrom. They belong to the monoclinic space group C2 and have cell dimensions a = 164.7 angstrom, b = 75.6 angstrom, and c = 161.2 angstrom, with α = γ = 90 degree and β = 125.5 degree. Cocrystals have been obtained with a number of different lac operator-related DNA fragments. The complex with a blunt-ended 16-base-pair strand yielded tetragonal bipyramids that diffract to 6.5 angstrom. These protein-DNA cocrystals crack upon exposure to the gratuitous inducer isopropyl β-D-thiogalactoside, suggesting a conformational change in the repressor-operator complex

  3. Structural Analysis of Iac Repressor Bound to Allosteric Effectors

    Energy Technology Data Exchange (ETDEWEB)

    Daber,R.; Stayrook, S.; Rosenberg, A.; Lewis, M.

    2007-01-01

    The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.

  4. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    International Nuclear Information System (INIS)

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E2 (PGE2), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDT dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-κB site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT

  5. The Corynebacterium glutamicum aconitase repressor: scratching around for crystals

    OpenAIRE

    García-Nafría, Javier; Baumgart, Meike; Bott, Michael; Wilkinson, Anthony J; Wilson, Keith S.

    2010-01-01

    Crystallization of AcnR, a repressor of the aconitase gene in Corynebacterium glutamicum, is reported. Intentional manual scratching of the crystallization plates was applied to induce heterogeneous nucleation.

  6. Does the Repressor Coping Style Predict Lower Posttraumatic Stress Symptoms?

    OpenAIRE

    McNally, Richard J.; Hatch, John P.; Cedillos, Elizabeth M.; Luethcke, Cynthia A.; Baker, Monty T.; Peterson, Alan L.; Litz, Brett T.

    2011-01-01

    We tested whether a continuous measure of repressor coping style predicted lower posttraumatic stress disorder (PTSD) symptoms in 122 health care professionals serving in Operation Iraqi Freedom. Zero-order correlational analyses indicated that predeployment repressor coping scores negatively predicted postdeployment PTSD symptoms, \\(r_s = -0.29, p = 0.001\\), whereas predeployment Connor-Davidson Resilience Scale (CD-RISC) scores did not predict postdeployment PTSD symptoms, \\(r_s = -0.13, p ...

  7. The Drosophila melanogaster translational repressor pumilio regulates neuronal excitability.

    Science.gov (United States)

    Schweers, Brett A; Walters, Karina J; Stern, Michael

    2002-01-01

    Maintenance of proper neuronal excitability is vital to nervous system function and normal behavior. A subset of Drosophila mutants that exhibit altered behavior also exhibit defective motor neuron excitability, which can be monitored with electrophysiological methods. One such mutant is the P-element insertion mutant bemused (bem). The bem mutant exhibits female sterility, sluggishness, and increased motor neuron excitability. The bem P element is located in the large intron of the previously characterized translational repressor gene pumilio (pum). Here, by several criteria, we show that bem is a new allele of pum. First, ovary-specific expression of pum partially rescues bem female sterility. Second, pum null mutations fail to complement bem female sterility, behavioral defects, and neuronal hyperexcitability. Third, heads from bem mutant flies exhibit greatly reduced levels of Pum protein and the absence of two pum transcripts. Fourth, two previously identified pum mutants exhibit neuronal hyperexcitability. Fifth, overexpression of pum in the nervous system reduces neuronal excitability, which is the opposite phenotype to pum loss of function. Collectively, these findings describe a new role of pum in the regulation of neuronal excitability and may afford the opportunity to study the role of translational regulation in the maintenance of proper neuronal excitability. PMID:12136020

  8. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata

    OpenAIRE

    Ting Shen; Woo Seok Yang; Young-Su Yi; Gi-Ho Sung; Man Hee Rhee; Haryoung Poo; Mi-Yeon Kim; Kyung-Woon Kim; Jong Heon Kim; Jae Youl Cho

    2013-01-01

    Andrographolide (AG) is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO) an...

  9. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, MT; Gonçalo, Margarida; A. Figueiredo; Carvalho, AP; Duarte, CB

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO(4)) and increases the expression of the i...

  10. The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

    OpenAIRE

    Gullberg Urban; Dhanda Rakesh; Ajore Ram; Olsson Inge

    2010-01-01

    Abstract Background The Eight-Twenty-One (ETO) nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16) and myeloid translocation Gene-Related protein 1 (MTGR1). By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and...

  11. Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation.

    Science.gov (United States)

    Ahn, So-Hee; Park, Hyunju; Ahn, Young-Ho; Kim, Sewha; Cho, Min-Sun; Kang, Jihee Lee; Choi, Youn-Hee

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. Diffuse infiltration into normal brain parenchyma, rapid growth, and the presence of necrosis are remarkable hallmarks of GBM. However, the effect of necrotic cells on GBM growth and metastasis is poorly understood at present. In this study, we examined the biological significance of necrotic tissues by exploring the molecular mechanisms underlying the signaling network between necrotic tissues and GBM cells. The migration and invasion of the GBM cell line CRT-MG was significantly enhanced by treatment with necrotic cells, as shown by assays for scratch wound healing and spheroid invasion. Incubation with necrotic cells induced IL-8 secretion in CRT-MG cells in a dose-dependent manner. In human GBM tissues, IL-8 positive cells were mainly distributed in the perinecrotic region, as seen in immunohistochemistry and immunofluorescence analysis. Necrotic cells induced NF-κB and AP-1 activation and their binding to the IL-8 promoter, leading to enhanced IL-8 production and secretion in GBM cells. Our data demonstrate that when GBM cells are exposed to and stimulated by necrotic cells, the migration and invasion of GBM cells are enhanced and facilitated via NF-κB/AP-1 mediated IL-8 upregulation. PMID:27076368

  12. Increased DNA binding activity of NF-κB, STAT-3, SMAD3 and AP-1 in acutely damaged liver

    Institute of Scientific and Technical Information of China (English)

    Adriana Salazar-Montes; Luis Ruiz-Corro; Ana SandovaI-Rodriguez; Alberto Lopez-Reyes; Juan Armendariz-Borunda

    2006-01-01

    AIM: To investigate the role of genes and kinetics of specific transcription factors in liver regeneration, and to analyze the gene expression and the activity of some molecules crucially involved in hepatic regeneration.METHODS: USING gel-shift assay and RT-PCR,transcription factors, such as NF-κB, STAT-3, SMAD3and AP-1, and gene expression of inducible nitric oxide synthase (iNOS), hepatocyte growth factor (HGF) and c-met were analyzed in an animal model of chemically induced hepatectomy.RESULTS: Gene expression of HGF and its receptor c-met peaked at 3 h and 24 h after acute CCl4 intoxication. iNOS expression was only observed from 6 to 48 h.Transcriptional factor NF-κB had an early activation at 30min after acute liver damage. STAT-3 peaked 3 h postintoxication, while AP-1 displayed a peak of activation at 48 h. SMAD3 showed a high activity at all analyzed times.CONCLUSION: TNF-α and IL-6 play a central role in hepatic regeneration. These two molecules are responsible for triggering the cascade of events and switch-on of genes involved in cell proliferation, such as growth factors, kinases and cyclins which are direct participants of cell proliferation.

  13. Yeast Interacting Proteins Database: YLR170C, YPR029C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YLR170C APS1 Small subunit of the clathrin-associated adaptor complex AP-1, which is involved in ... protein sorting at the trans-Golgi network ; homolog of the sigma subunit of the mammalian cla ... is involved in protein sorting at the trans-Golgi network ; homolog of the sigma subunit of the mammalian cla ...

  14. The localization of Fos B, a member of transcription factor AP-1 family, in rat odontoblasts and pulpal undifferentiated ectomesenchymal cells.

    OpenAIRE

    Nurullah Keklikoglu

    2004-01-01

    It has been proposed that cellular proliferation and differentiation are accomplished by AP-1 components but different components can be responsible for different functions. The aim of this study was to compare the localization of Fos B, which is a component of AP-1, in postmitotic differentiated and undifferentiated cells via Fos B immunoreactivity. For this purpose, maxillary incisor teeth from 10 Wistar rats were obtained and Fos-B was investigated immunohistochemically in formalin-fixed, ...

  15. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937

    Science.gov (United States)

    Collin, Pascal; Lomri, Abderrahim

    2015-01-01

    Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation. PMID:25996379

  16. Structure of the Mecl Repressor from Staphylococcus aureus in Complex with the Cognate DNA Operator of mec

    Energy Technology Data Exchange (ETDEWEB)

    Safo,M.; Ko, T.; Musayev, F.; Zhao, Q.; Wang, A.; Archer, G.

    2006-01-01

    The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  17. E. coli trp repressor forms a domain-swapped array in aqueous alcohol

    OpenAIRE

    Lawson, Catherine L.; Benoff, Brian; Berger, Tatyana; Berman, Helen M.; Carey, Jannette

    2004-01-01

    The E. coli trp repressor (trpR) homodimer recognizes its palindromic DNA-binding site through a pair of flexible helix-turn-helix (HTH) motifs displayed on an intertwined helical core. Flexible N-terminal arms mediate association between dimers bound to tandem DNA sites. The 2.5 Å X-ray structure of trpR crystallized in 30% (v/v) isopropanol reveals a substantial conformational rearrangement of HTH motifs and N-terminal arms, with the protein appearing in the unusual form of an ordered 3D do...

  18. Mapping DNA-Lac repressor interaction with ultra-fast optical tweezers

    Science.gov (United States)

    Monico, Carina; Tempestini, Alessia; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco

    2015-03-01

    The lac operon is a well-known example of gene expression regulation, based on the specific interaction of Lac repressor protein (LacI) with its target DNA sequence (operator). We recently developed an ultrafast force-clamp laser trap technique capable of probing molecular interactions with sub-ms temporal resolution, under controlled pN-range forces. With this technique, we tested the interaction of LacI with different DNA constructs. Based on position along the DNA sequence, the observed interactions can be interpreted as specific binding to operator sequences and transient interactions with nonspecific sequences.

  19. Role of transcriptional repressors in transformation by bovine papillomavirus type 1.

    OpenAIRE

    Zemlo, T R; Lohrbach, B; Lambert, P F

    1994-01-01

    Transformation of rodent cells by bovine papillomavirus type 1 (BPV-1) has been shown to require the direct contribution of the viral oncogenes encoded by the E5, E6, and E7 translational open reading frames (ORFs). It is also known that the viral E1 and E2 ORFs contribute indirectly to cellular transformation through their transcriptional modulation of these viral oncogenes. A mutant BPV-1 disrupted in two of the proteins encoded by the E2 ORF, the E2 transcriptional repressors, has a comple...

  20. Parthenolide inhibits ERK and AP-1 which are dysregulated and contribute to excessive IL-8 expression and secretion in cystic fibrosis cells

    Directory of Open Access Journals (Sweden)

    Saadane Aicha

    2011-10-01

    Full Text Available Abstract Background Excessive secretion of IL-8 characterizes cystic fibrosis (CF. This has been attributed to excessive activation of epithelial cell I-κB Kinase and/or NFκB. Maximum IL-8 production requires 3 cooperative mechanisms: 1 release of the promoter from repression; 2 activation of transcription by NFκB and AP-1; 3 stabilization of mRNA by p38-MAPK. Little is known about regulation of IL-8 by MAPKs or AP-1 in CF. Methods We studied our hypothesis in vitro using 3-cellular models. Two of these models are transformed cell lines with defective versus normal cystic fibrosis transmembrane conductance regulator (CFTR expression: an antisense/sense transfected cell line and the patient derived IB3-1/S9. In the third series of studies, we studied primary necropsy human tracheal epithelial cells treated with an inhibitor of CFTR function. All cell lines were pretreated with parthenolide and then stimulated with TNFα and/or IL-1β. Results In response to stimulation with TNFα and/or IL-1β, IL-8 production and mRNA expression was greater in CF-type cells than in non-CF controls. This was associated with enhanced phosphorylation of p38, ERK1/2 and JNK and increased activation of AP-1. Since we previously showed that parthenolide inhibits excessive IL-8 production by CF cells, we evaluated its effects on MAPK and AP-1 activation and showed that parthenolide inhibited ERK and AP-1 activation. Using a luciferase promoter assay, our studies showed that parthenolide decreased activation of the IL-8 promoter in CF cells stimulated with TNFα/IL-1β. Conclusions In addition to NFκB MAPKs ERK, JNK and p38 and the transcription factor AP-1 are also dysregulated in CF epithelial cells. Parthenolide inhibited both NFκB and MAPK/AP-1 pathways contributing to the inhibition of IL-8 production.

  1. Protein (Cyanobacteria): 392180 [

    Lifescience Database Archive (English)

    Full Text Available ZP_07113914.1 1117:24513 1150:7038 1158:3915 272129:3709 Bifunctional protein birA (Includes: Biotin ... otin operon repressor; Biotin --(acetyl-CoA-carboxylase) synthetase (Biotin --prot ...

  2. BigR, a Transcriptional Repressor from Plant-Associated Bacteria, Regulates an Operon Implicated in Biofilm Growth▿

    OpenAIRE

    Barbosa, Rosicler L.; Benedetti, Celso E.

    2007-01-01

    Xylella fastidiosa is a plant pathogen that colonizes the xylem vessels, causing vascular occlusion due to bacterial biofilm growth. However, little is known about the molecular mechanisms driving biofilm formation in Xylella-plant interactions. Here we show that BigR (for “biofilm growth-associated repressor”) is a novel helix-turn-helix repressor that controls the transcription of an operon implicated in biofilm growth. This operon, which encodes BigR, membrane proteins, and an unusual beta...

  3. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47phox/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  4. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  5. Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-κB dependent AP-1-mediated ICAM-1 expression in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Kundu Gopal C

    2010-05-01

    Full Text Available Abstract Background Breast cancer is one of the most frequently diagnosed cancer and accounts for over 400,000 deaths each year worldwide. It causes premature death in women, despite progress in early detection, treatment, and advances in understanding the molecular basis of the disease. Therefore, it is important to understand the in depth mechanism of tumor progression and develop new strategies for the treatment of breast cancer. Thus, this study is aimed at gaining an insight into the molecular mechanism by which osteopontin (OPN, a member of SIBLING (Small Integrin Binding LIgand N-linked Glycoprotein family of protein regulates tumor progression through activation of various transcription factors and expression of their downstream effector gene(s in breast cancer. Results In this study, we report that purified native OPN induces ICAM-1 expression in breast cancer cells. The data revealed that OPN induces NF-κB activation and NF-κB dependent ICAM-1 expression. We also observed that OPN-induced NF-κB further controls AP-1 transactivation, suggesting that there is cross talk between NF-κB and AP-1 which is unidirectional towards AP-1 that in turn regulates ICAM-1 expression in these cells. We also delineated the role of mTOR and p70S6 kinase in OPN-induced ICAM-1 expression. The study suggests that inhibition of mTOR by rapamycin augments whereas overexpression of mTOR/p70S6 kinase inhibits OPN-induced ICAM-1 expression. Moreover, overexpression of mTOR inhibits OPN-induced NF-κB and AP-1-DNA binding and transcriptional activity. However, rapamycin further enhanced these OPN-induced effects. We also report that OPN induces p70S6 kinase phosphorylation at Thr-421/Ser-424, but not at Thr-389 or Ser-371 and mTOR phosphorylation at Ser-2448. Overexpression of mTOR has no effect in regulation of OPN-induced phosphorylation of p70S6 kinase at Thr-421/Ser-424. Inhibition of mTOR by rapamycin attenuates Ser-371 phosphorylation but does not have

  6. TE-domestication and horizontal transfer in a putative Nef-AP1mu mimic of HLA-A cytoplasmic domain re-trafficking.

    Science.gov (United States)

    Murray, Joseph S; Murray, Elaina H

    2016-01-01

    Genes of the major histocompatibility complex (MHC; also called HLA in human) are polymorphic elements in the genomes of sharks to humans. Class-I and class-II MHC loci appear responsible for much of the genetic linkage to myriad disease states via the capacity to bind short (~8-15 a.a.) peptides of a given pathogen's proteome, or in some cases, the altered proteomes of cancerous cells, and even (in autoimmunity) certain nominal 'self' peptides (Janeway, 2004).(1) Unfortunately, little is known about how the canonical structure of the MHC-I/-II peptide-presenting gene evolved, particularly since beyond ~500 Mya (sharks) no paralogs exist.(2,3) We previously reported that HLA-A isotype alleles with the α1-helix, R65 motif, are wide-spread in phylogeny, but that the α 2-helix, H151R motif, has apparently segregated out of most species. Surprisingly, an uncharacterized orf in T. syrichta (Loc-103275158) encoded R151, but within a truncated A-23 like gene containing 5'- and 3'- footprints of the transposon (TE), tigger-1; the extant tarsier A-23 allele is totally missing exon-3 and part-of exon-4; together, suggesting TE-mediated inactivation of an intact/ancestral A-23 allele (Murray, 2015a).(4) The unique Loc-103275158 orf encodes a putative 15-exon transcript with no apparent paralogs throughout phylogeny. However, an HLA-A11 like gene in M. leucophaeus with a shortened C-terminal domain, and an HLA-A like orf in C. atys with two linked α1/α2/α3 domains, both contain a second transmembrane segment, which is conserved in Loc-103275158. Thus, we could model the putative protein with its Nef-like tail domain docked to its MHC-I like α3 domain (i.e., on the same side of a membrane). This modeled tertiary structure is strikingly similar to the solved structure of the Nef:MHC-I CD:AP1mu transporter (Jia, 2012).(5) Nef:AP1mu binds the CD of MHC-I in trafficking MHC-I away from the trans-golgi and into the endocytic pathway in HIV-1 infected cells. The CD loop of the

  7. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu.

    Science.gov (United States)

    Hemavathy, Kirugaval; Hu, Xiaodi; Ashraf, Shovon I; Small, Stephen J; Ip, Y Tony

    2004-05-15

    Mesoderm formation in the Drosophila embryo depends on the maternal Toll signaling pathway. The Toll pathway establishes the Dorsal nuclear gradient, which regulates many zygotic genes to establish the mesodermal fate and promote the invagination of ventral cells. An important target gene of Dorsal is snail, which is required for proper mesoderm invagination. The Snail protein contains five zinc fingers and is a transcriptional repressor. However, it is not clear whether repressing target genes is a requirement for Snail to control ventral invagination. To examine such requirement, we conducted a series of genetic rescue experiments in snail mutant embryos. Snail, Worniu, and Escargot are closely related zinc-finger proteins and have equal functions during neuroblast development. However, among these three proteins, only Snail can rescue the mesoderm invagination phenotype. Moreover, the ability of various Snail mutant constructs to repress gene expression correlates with their ability to control invagination. This unique property of Snail in mesoderm formation can be attributed mostly to the CtBP co-repressor interaction motifs in the N-terminus, not to the C-terminal DNA-binding zinc fingers. Ectopic expression of Snail outside the ventral domain is not sufficient to induce cell movement even though repression of target genes still occurs. Together, the results show that the repressor function of Snail is essential for gastrulation. The repression of target genes by Snail may permit other factors in the ventral cells to positively promote mesoderm invagination. PMID:15110709

  8. The localization of Fos B, a member of transcription factor AP-1 family, in rat odontoblasts and pulpal undifferentiated ectomesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Nurullah Keklikoglu

    2004-10-01

    Full Text Available It has been proposed that cellular proliferation and differentiation are accomplished by AP-1 components but different components can be responsible for different functions. The aim of this study was to compare the localization of Fos B, which is a component of AP-1, in postmitotic differentiated and undifferentiated cells via Fos B immunoreactivity. For this purpose, maxillary incisor teeth from 10 Wistar rats were obtained and Fos-B was investigated immunohistochemically in formalin-fixed, paraffin-embedded tooth sections containing odontoblasts, which are postmitotic differentiated cells, and pulpal undifferentiated ectomesenchymal cells. No significant differences in percentage of Fos B-positive cells were observed between the two cell types (p>0.05. These findings suggest that Fos B, a component of AP-1 family, seems to have a negligible effect on differentiation and proliferation in odontoblasts and pulpal undifferentiated ectomesenchymal cells.

  9. HIV-1 Nef Induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors

    Science.gov (United States)

    Liu, Xun; Shah, Ankit; Gangwani, Mohitkumar R.; Silverstein, Peter S.; Fu, Mingui; Kumar, Anil

    2014-03-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.

  10. Cif is negatively regulated by the TetR family repressor CifR.

    Science.gov (United States)

    MacEachran, Daniel P; Stanton, Bruce A; O'Toole, George A

    2008-07-01

    We previously reported that the novel Pseudomonas aeruginosa toxin Cif is capable of decreasing apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR). We further demonstrated that Cif is capable of degrading the synthetic epoxide hydrolase (EH) substrate S-NEPC [(2S,3S)-trans-3-phenyl-2-oxiranylmethyl 4-nitrophenol carbonate], suggesting that Cif may be reducing apical membrane expression of CFTR via its EH activity. Here we report that Cif is capable of degrading the xenobiotic epoxide epibromohydrin (EBH) to its vicinal diol 3-bromo-1,2-propanediol. We also demonstrate that this epoxide is a potent inducer of cif gene expression. We show that the predicted TetR family transcriptional repressor encoded by the PA2931 gene, which is immediately adjacent to and divergently transcribed from the cif-containing, three-gene operon, negatively regulates cif gene expression by binding to the promoter region immediately upstream of the cif-containing operon. Furthermore, this protein-DNA interaction is disrupted by the epoxide EBH in vitro, suggesting that the binding of EBH by the PA2931 protein product drives the disassociation from its DNA-binding site. Given its role as a repressor of cif gene expression, we have renamed PA2931 as CifR. Finally, we demonstrate that P. aeruginosa strains isolated from cystic fibrosis patient sputum with increased cif gene expression are impaired for the expression of the cifR gene. PMID:18458065

  11. Cell cycle-related transformation of the E2F4-p130 repressor complex

    International Nuclear Information System (INIS)

    During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions

  12. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1.

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    Full Text Available The myeloid translocation gene 16 (MTG16 co-repressor down regulates expression of multiple glycolytic genes, which are targets of the hypoxia-inducible factor 1 (HIF1 heterodimer transcription factor that is composed of oxygen-regulated labile HIF1α and stable HIF1β subunits. For this reason, we investigated whether MTG16 might regulate HIF1 negatively contributing to inhibition of glycolysis and stimulation of mitochondrial respiration. A doxycycline Tet-On system was used to control levels of MTG16 in B-lymphoblastic Raji cells. Results from co-association studies revealed MTG16 to interact with HIF1α. The co-association required intact N-terminal MTG16 residues including Nervy Homology Region 1 (NHR1. Furthermore, electrophoretic mobility shift assays demonstrated an association of MTG16 with hypoxia response elements (HREs in PFKFB3, PFKFB4 and PDK1 promoters in-vitro. Results from chromatin immunoprecipitation assays revealed co-occupancy of these and other glycolytic gene promoters by HIF1α, HIF1β and MTG16 in agreement with possible involvement of these proteins in regulation of glycolytic target genes. In addition, MTG16 interacted with prolyl hydroxylase D2 and promoted ubiquitination and proteasomal degradation of HIF1α. Our findings broaden the area of MTG co-repressor functions and reveal MTG16 to be part of a protein complex that controls the levels of HIF1α.

  13. Does the repressor coping style predict lower posttraumatic stress symptoms?

    Science.gov (United States)

    McNally, Richard J; Hatch, John P; Cedillos, Elizabeth M; Luethcke, Cynthia A; Baker, Monty T; Peterson, Alan L; Litz, Brett T

    2011-07-01

    We tested whether a continuous measure of repressor coping style predicted lower posttraumatic stress disorder (PTSD) symptoms in 122 health care professionals serving in Operation Iraqi Freedom. Zero-order correlational analyses indicated that predeployment repressor coping scores negatively predicted postdeployment PTSD symptoms, r(s) = -0.29, p = 0.001, whereas predeployment Connor-Davidson Resilience Scale (CD-RISC) scores did not predict postdeployment PTSD symptoms, r(s) = -0.13, p = 0.14. However, predeployment trait anxiety was chiefly responsible for the association between repressor coping and PTSD symptom severity, r(s) = 0.38, p = 0.001. Four percent of the subjects qualified for a probable PTSD diagnosis. Although service members with relatively higher PTSD scores had lower repressor coping scores than did the other subjects, their level of predeployment anxiety was chiefly responsible for this relationship. Knowing someone's predeployment level of trait anxiety permits better prediction of PTSD symptoms among trauma-exposed service members than does knowing his or her level of repressive coping. PMID:22128715

  14. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling.

    Science.gov (United States)

    Yang, Fan; Nam, Sangkil; Zhao, Robin; Tian, Yan; Liu, Lucy; Horne, David A; Jove, Richard

    2013-11-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents. There is a critical need to find more potent drugs for patients with metastatic or recurrent disease. Berbamine (BBM) is a natural compound derived from the Berberis amurensis plants. BBM and its derivatives have been shown to have antitumor effects in several cancers. Here, we report that a novel synthetic berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of G292, KHOS, and MG-63 human osteosarcoma cells. Induction of apoptosis in these tumor cells depends on activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP). Since pan-caspase inhibitor (Z-VAD-FMK) and caspase-9 inhibitor (Z-LEHD-FMK) could block the cleavage of PARP, the apoptosis induced by BBMD3 is through intrinsic signaling pathway. BBMD3 increased phosphorylation of c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK), resulting in increase of phosphorylated c-Jun and total c-Fos, the major components of transcriptional factor AP-1. JNK inhibitor could partially suppress antitumor effect of BBMD3 on osteosarcoma cells. BBMD3 increased the production of reactive oxygen species (ROS) and ROS scavenger, N-acetylcysteine (NAC), could block the phosphorylation of JNK and c-Jun induced by BBMD3. BBMD3 increased the expression of the pro-apototic gene Bad, associated with apoptosis induction. Finally, BBMD3 also decreased the expression of cyclin D1 and D2, the positive cell cycle regulators, which is correlated with growth inhibition in osteosarcoma cells. Collectively, these findings indicate that BBMD3 is a potentially promising drug for the treatment of human osteosarcoma. PMID:24025361

  15. Cigarette smoke extract regulates cytosolic phospholipase A2 expression via NADPH oxidase/MAPKs/AP-1 and p300 in human tracheal smooth muscle cells.

    Science.gov (United States)

    Cheng, Shin-Ei; Lin, Chih-Chung; Lee, I-Ta; Hsu, Chih-Kai; Kou, Yu Ru; Yang, Chuen-Mao

    2011-02-01

    Up-regulation of cytosolic phospholipase A(2) (cPLA(2)) by cigarette smoke extract (CSE) may play a critical role in airway inflammatory diseases. However, the mechanisms underlying CSE-induced cPLA(2) expression in human tracheal smooth muscle cells (HTSMCs) were not completely understood. Here, we demonstrated that CSE-induced cPLA(2) protein and mRNA expression was inhibited by pretreatment with the inhibitors of AP-1 (tanshinone IIA) and p300 (garcinol) or transfection with siRNAs of c-Jun, c-Fos, and p300. Moreover, CSE also induced c-Jun and c-Fos expression, which were inhibited by pretreatment with the inhibitors of NADPH oxidase (diphenyleneiodonium chloride and apocynin) and the ROS scavenger (N-acetyl-L-cysteine) or transfection with siRNAs of p47(phox) and NADPH oxidase (NOX)2. CSE-induced c-Fos expression was inhibited by pretreatment with the inhibitors of MEK1 (U0126) and p38 MAPK (SB202190) or transfection with siRNAs of p42 and p38. CSE-induced c-Jun expression and phosphorylation were inhibited by pretreatment with the inhibitor of JNK1/2 (SP600125) or transfection with JNK2 siRNA. CSE-stimulated p300 phosphorylation was inhibited by pretreatment with the inhibitors of NADPH oxidase and JNK1/2. Furthermore, CSE-induced p300 and c-Jun complex formation was inhibited by pretreatment with diphenyleneiodonium chloride, apocynin, N-acetyl-L-cysteine or SP600125. These results demonstrated that CSE-induced cPLA(2) expression was mediated through NOX2-dependent p42/p44 MAPK and p38 MAPK/c-Fos and JNK1/2/c-Jun/p300 pathways in HTSMCs. PMID:21268080

  16. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

    Directory of Open Access Journals (Sweden)

    Simon James

    2011-05-01

    Full Text Available Abstract Background Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (Pleurotus ostreatus in vitro and in vivo. Methods RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml in the absence or presence of lipopolysacharide (LPS or concanavalin A (ConA, respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS. Results OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE2 and nitric oxide (NO through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS in vivo. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ, IL-2, and IL-6 from concanavalin A (ConA-stimulated mouse splenocytes. Conclusions Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.

  17. Targeting the microRNA-21/AP1 axis by 5-fluorouracil and pirarubicin in human hepatocellular carcinoma

    Science.gov (United States)

    He, Xiaodong; Li, Jingjing; Guo, Weidong; Liu, Wei; Yu, Jia; Song, Wei; Dong, Lei; Wang, Fang; Yu, Shuangni; Zheng, Yi; Chen, Songsen; Kong, Yan; Liu, Changzheng

    2015-01-01

    MicroRNAs function as oncomiRs and tumor suppressors in diverse cancers. However, the utility of specific microRNAs in predicting the clinical benefit of chemotherapy has not been well-established. Here, we investigated the correlation between microRNA-21 expression and hepatic arterial infusion chemotherapy with 5-fluorouracil and pirarubicin (HAIC) for hepatocellular carcinoma (HCC). We found that HCC patients with low microRNA-21 levels in tumors tended to have a longer time to recurrence and disease-free survival. We demonstrated that microRNA-21 suppression in combination with 5-fluorouracil and pirarubicin treatment inhibited tumor growth in subcutaneous xenograft mice models. Mechanistically, the AP-1 and microRNA-21-mediated axis was verified to be a therapeutic target of cytotoxic drugs and deregulation of this axis led to an enhanced cell growth in HCC. Taken together, our findings demonstrate that microRNA-21 is a chemotherapy responsive microRNA and can serve as a prognostic biomarker for HCC patients undergoing HAIC. Targeting microRNA-21 enhances the effect of chemotherapeutic drugs, thereby suggesting that microRNA-21 suppression in combination with HAIC may be a novel approach for HCC treatment. PMID:25544773

  18. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification.

    Science.gov (United States)

    Amalraj, Amritha; Luang, Sukanya; Kumar, Manoj Yadav; Sornaraj, Pradeep; Eini, Omid; Kovalchuk, Nataliya; Bazanova, Natalia; Li, Yuan; Yang, Nannan; Eliby, Serik; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-02-01

    Plants respond to abiotic stresses by changes in gene regulation, including stress-inducible expression of transcriptional activators and repressors. One of the best characterized families of drought-related transcription factors are dehydration-responsive element binding (DREB) proteins, known as C-repeat binding factors (CBF). The wheat DREB/CBF gene TaRAP2.1L was isolated from drought-affected tissues using a dehydration-responsive element (DRE) as bait in a yeast one-hybrid screen. TaRAP2.1L is induced by elevated abscisic acid, drought and cold. A C-terminal ethylene responsive factor-associated amphiphilic repression (EAR) motif, known to be responsible for active repression of target genes, was identified in the TaRAP2.1L protein. It was found that TaRAP2.1L has a unique selectivity of DNA-binding, which differs from that of DREB activators. This binding selectivity remains unchanged in a TaRAP2.1L variant with an inactivated EAR motif (TaRAP2.1Lmut). To study the role of the TaRAP2.1L repressor activity associated with the EAR motif in planta, transgenic wheat overexpressing native or mutated TaRAP2.1L was generated. Overexpression of TaRAP2.1L under constitutive and stress-inducible promoters in transgenic wheat and barley led to dwarfism and decreased frost tolerance. By contrast, constitutive overexpression of the TaRAP2.1Lmut gene had little or no negative influence on wheat development or grain yield. Transgenic lines with the TaRAP2.1Lmut transgene had an enhanced ability to survive frost and drought. The improved stress tolerance is attributed to up-regulation of several stress-related genes known to be downstream genes of DREB/CBF activators. PMID:26150199

  19. Selection and design of high affinity DNA ligands for mutant single-chain derivatives of the bacteriophage 434 repressor

    Institute of Scientific and Technical Information of China (English)

    LIANG; Tiebing

    2001-01-01

    [1]Aggarwal, A. K., Rodgers, D. W., Drottar, M. et al., Recognition of a DNA operator by the repressor of phage 434: A view at high resolution, Science, 1988, 242: 899-907.[2]Anderson, J. E., Ptashne, M., Harrison, S. C., Structure of the repressor-operator complex of bacteriophage 434, Nature, 1987, 326: 846-852.[3]Bushman, F. D., The Bacteriophage 434 right operator roles of OR1, OR2 and OR3, J. Mol. Biol., 1993, 230: 28-40.[4]Bell, A. C., Koudelka, G. B., How 434 repressor discriminates between OR1 and OR3, J. Biological Chemistry, 1995, 270: 1205-1212.[5]Bell, A. C., Koudelka, G. B., Operator sequence context influences amino acid-base-pair interaction in 434 repressor-operator complexes, J. Mol. Biol., 1993, 234: 542-553.[6]Wharton, R. P., Ptashne, M., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact, Na-ture, 1987, 326: 888-891.[7]Wharton, R. P., Brown, E. L., Ptashne, M., Substituting an α-helix switches the sequence-specific DNA interaction of a repressor, Cell., 1984, 38: 361-369.[8]Hollis, M., Valenzuela, D., Pioli, D. et al., A repressor heterodimer binds to a chimeric operator, Proc. Natl. Acad. Sci. USA, 1988, 85: 5834-5838.[9]Huang, L. -X., Sera, T., Schultz, P. G., A permutational approach toward protein-DNA recognition, Proc. Natl. Acad. Sci. USA, 1994, 91: 3969-3973.[10]Percipalle, P., Simoncsits, A., Zakhariev, S. et al., Rationally designed helix-turn-helix proteins and their conformational changes upon DNA binding, EMBO J., 1995, 14: 3200-3205.[11]Simoncsits, A., Chen, J. -Q., Percipalle, P. et al., Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators, J. Mol. Biol., 1997, 267: 118-131.[12]Gates, C. M., Stemmer, W. P. C., Kaptein, R. et al., Affinity selective isolation of ligands from peptide libraries through display on a lac repressor "headpiece dimmer", J. Mol. Biol

  20. Photochemical modifications of lac repressor: effect of effectors binding on tryptophan photooxidation

    International Nuclear Information System (INIS)

    UV irradiation of lac repressor modifies the fluorescence of the protein and its binding to the inducer and to the operator. It has been previously shown that the total loss of fluorescence is due to photooxidation of, on average, one of the two tryptophyl residues of each protomer. This observation is explained by showing that N-formylkynurenine formed at one site is responsible for the quenching of fluorescence of the other tryptophan via an energy transfer process. Consequently, no photoreaction occurs for the second tryptophyl residue. Photodamage of the two tryptophyl residues (in position 201 and 220) of each protomer were assayed by spectrofluorometric titration in the pH range from 8.5 to 5. For repressor alone, both residues are equally photodamaged. In the presence of the inducer isopropyl-β-D-thio-galactoside (IPTG) residue 220 is completely protected, and tryptophan 201 is slightly more exposed to photooxidation. In the presence of antiinducer, residue 220 is only partially protected. The results are discussed in terms of conformational changes triggered by the two types of ligands. (author)

  1. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model.

    Directory of Open Access Journals (Sweden)

    Chirine Toufaily

    Full Text Available Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1 and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.

  2. TGF-{beta} signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Kollarovic, Gabriel; Kretova, Miroslava; Sabova, Ludmila [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Nelson, B. Dean [Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm (Sweden)

    2011-08-05

    Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G. Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.

  3. Low salt induces the expression of cyclooxygenase-2 in a mouse macula densa cells through the activation of ERK、AP-1 pathways%低盐通过激活ERK和AP-1通路诱导小鼠致密斑细胞系COX-2的表达

    Institute of Scientific and Technical Information of China (English)

    刘冬妍; 李学旺; 李航; 李雪梅

    2007-01-01

    目的 探讨低盐培养对小鼠致密斑(mouse macula densa derived cells,MMDD1)细胞环氧化酶-2(cyclooxygenase,COX-2)表达和p44/42 激酶(ERK)、 AP-1活性的影响.方法 经脂质体转染含AP-1的报告质粒,采用瞬时表达方法检测AP-1转录活性;RT-PCR检测MMDD1细胞COX-2的表达;免疫印迹方法检测细胞内p-p44/42、C-JUN、C-FOS和COX-2蛋白的表达.用ELISA法检测上清液PGE2的含量.结果 低盐(LS)培养促进MMDD1细胞COX-2 mRNA和蛋白表达.培养后ERK的磷酸化程度显著上调,180 min达到高峰;ERK抑制剂PD-98059降低LS诱导的COX-2表达和PGE2分泌;LS培养促进C-JUN、C-FOS蛋白表达,激活AP-1的转录活性.AP-1抑制剂curcumin (20 μmol/L)下调LS诱导的AP-1活性、COX-2 mRNA和蛋白表达.结论 LS促进MMDD1细胞COX-2的表达,其作用可能与促进ERK的磷酸化、增加AP-1的活性有关.

  4. Correlation of CDK2-AP1 gene over-expression with proliferation and cell cycle regulation of breast cancer cell line MCF-7%乳腺癌MCF-7细胞的增殖及周期与CDK2-AP1基因的表达的相关性研究

    Institute of Scientific and Technical Information of China (English)

    高双全; 高双荣; 肖高芳; 丁宇; 王林辉; 黄伟; 李静

    2013-01-01

    目的 探讨乳腺癌MCF-7细胞的增殖及周期与CDK2-AP1基因的表达的相关性研究,为临床乳腺癌的分子治疗提供基础.方法 取我院研究所保存的人乳腺癌细胞MCF-7进行培养,并构建CDK2-AP1基因编码的病毒表达载体,应用实时定量PCR验证CDK2-AP1基因mRNA和蛋白的表达率.利用流式细胞仪检测MCF-7细胞周期的改变.结果 过表达CDK2-AP1基因的慢病毒感染MCF-7细胞可上调其mRNA表达6.87倍.MCF-7细胞过表达CDK2-AP1基因后,增殖能力显著降低,差异具有统计学意义(P<0.05).流式细胞仪检测证实MCF-7细胞过表达CDK2-AP1能够使细胞周期出现G1期阻滞.结论 CDK2-AP1基因具有抑癌基因的功能,在乳腺癌MCF-7细胞过表达该基因能够抑制细胞的生长和克隆形成能力,并且使细胞阻滞于G1期.

  5. Thioredoxin inhibits human vascular endothelial cell adhesion molecules expression via Smad3/AP-1 pathway%硫氧还蛋白通过Smad3/AP-1通路抑制人血管内皮细胞黏附蛋白的表达

    Institute of Scientific and Technical Information of China (English)

    陈北冬; 王文东; 赵革新; 马丽娜; 刘雪青; 齐若梅

    2013-01-01

    目的 研究硫氧还蛋白(Trx)在动脉粥样硬化中对血管内皮细胞保护作用的分子机制. 方法 应用腺病毒感染的方法在原代人脐静脉内皮细胞(HUVECs)中建立过表达硫氧还蛋白及其对照的细胞模型.以致动脉粥样硬化重要危险因子氧化型低密度脂蛋白(oxLDL)为刺激剂.应用免疫印迹及间接免疫荧光法检测Trx,黏附分子(ICAM-1,VCAM-1)及其上游信号分子(Smad3,AP-1)的蛋白表达及细胞定位.应用胰岛素还原法检测Trx的活性,应用荧光探针DCFHDA进行细胞内活性氧检测. 结果 和对照组相比过表达Trx组Trx表达量明显提高,活性检测显示Ad-Trx的活性上调率为(26.2±3.3)%,细胞内活性氧(ROS)检测提示过表达Trx显著抑制细胞内ROS的产生.和对照组相比在基础及氧化型低密度脂蛋白(ox-LDL)刺激下过表达Trx组明显下调了内皮细胞黏附分子的表达(P<0.05),显著提高了内皮细胞中Smad3的磷酸化(P<0.05).而应用Smad3磷酸化特异性的抑制剂SIS3预处理细胞反转了Trx对黏附蛋白的抑制作用.SIS3预处理细胞进一步上调了oxLDL刺激下AP-1亚基c-Fos的核蛋白表达. 结论 Trx抑制内皮细胞黏附分子表达的作用可能是通过上调Smad3蛋白的磷酸化及抑制核转录因子AP-1亚基c-Fos的核表达来调节的.%Objective To investigate the molecular mechanisms of protective effects of thioredoxin (Trx) on human vascular endothelial cells in atherosclerosis.Methods The cell models of Trx-overexpressing cells (Ad Trx) and the control cells (Ad-con) were established by adenovirus vector gene transfer technology in human umbilical vein endothelial cells (HUVECs).The oxidized low density lipoprotein,a risk factor of atherosclerosis,was used as a stimulator.Western blot and indirect immunofluorescence were used to detect the protein expression levels and the cellular localization of Trx,adhesion molecules (ICAM-1,VCAM-1) and the upstream signal pathways

  6. STENOFOLIA acts as a repressor in regulating leaf blade outgrowth.

    Science.gov (United States)

    Lin, Hao; Niu, Lifang; Tadege, Million

    2013-06-01

    We recently reported that the Medicago WOX gene, STENOFOLIA (STF), acts as a transcriptional repressor in regulating leaf blade outgrowth. By using the Nicotiana sylvestris bladeless lam1 mutant as a genetic tool, we showed that the WUS-box, which is conserved among WUS clade WOX genes, is partly responsible for the repressive activity of STF. All members of the modern/WUS clade genes (WUS, WOX1-WOX7) in Arabidopsis that contain intact WUS-box can substitute for STF/LAM1 function while the intermediate and ancient clade members including WOX9,WOX11 and WOX13 cannot, due to lack of the intact WUS-box. Taken together, our results reveal a conserved repression mechanism playing a central role in cell proliferation conferred to the evolutionarily dynamic WOX gene family with acquisition of a repressor domain. PMID:23603965

  7. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages.

    Science.gov (United States)

    Yeh, J L; Hsu, J H; Hong, Y S; Wu, J R; Liang, J C; Wu, B N; Chen, I J; Liou, S F

    2011-01-01

    Eugenol and isoeugenol, two components of clover oil, have been reported to possess several biomedical properties, such as anti-inflammatory, antimicrobial and antioxidant effects. This study aims to examine the anti-inflammatory effects of eugenol, isoeugenol and four of their derivatives on expression of inducible nitric oxide synthase (iNOS) activated by lipopolysaccharide (LPS) in mouse macrophages (RAW 264.7), and to investigate molecular mechanisms underlying these effects. We found that two derivatives, eugenolol and glyceryl-isoeugenol, had potent inhibitory effects on LPS-induced upregulation of nitrite levels, iNOS protein and iNOS mRNA. In addition, they both suppressed the release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) induced by LPS. Moreover, they both attenuated the DNA binding of NF-kB and AP-1, phosphorylation of inhibitory kB-alpha (IkB-alpha), and nuclear translocation of p65 protein induced by LPS. Finally, we demonstrated that glyceryl-isoeugenol suppressed the phosphorylation of ERK1/2, JNK and p38 MAPK, whereas eugenolol suppressed the phosphorylation of ERK1/2 and p38 MAPK. Taken together, these results suggest that that eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kB and AP-1 through inhibition of MAPKs and Akt/IkB-alpha signaling pathways. Thus, this study implies that eugenolol and glyceryl-isoeugenol may provide therapeutic benefits for inflammatory diseases. PMID:21658309

  8. The Transcriptional Repressor DEC2 Regulates Sleep Length in Mammals

    OpenAIRE

    Ying HE; Christopher R. Jones; Fujiki, Nobuhiro; Xu, Ying; Guo, Bin; Holder, Jimmy L.; Rossner, Moritz J.; Nishino, Seiji; Fu, Ying-Hui

    2009-01-01

    Sleep deprivation can impair human health and performance. Habitual total sleep time and homeostatic sleep response to sleep deprivation are quantitative traits in humans. Genetic loci for these traits have been identified in model organisms, but none of these potential animal models have a corresponding human genotype and phenotype. We have identified a mutation in a transcriptional repressor (hDEC2-P385R) that is associated with a human short sleep phenotype. Activity profiles and sleep rec...

  9. Binding of the N-terminal domain of the lactococcal bacteriophage TP901-1 CI repressor to its target DNA: a crystallography, small angle scattering, and nuclear magnetic resonance study

    International Nuclear Information System (INIS)

    In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix-turn-helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator sites). Here the crystal structure of the NTD of the CI repressor from phage TP901-1 has been determined at 1.6 Angstroms resolution, and at 2.6 Angstroms resolution in complex with a 9 bp double-stranded DNA fragment that constitutes a half-site of the OL operator. This N-terminal construct, comprising residues 2-74 of the CI repressor, is monomeric in solution as shown by nuclear magnetic resonance (NMR), small angle X-ray scattering, and gel filtration and is monomeric in the crystal structures. The binding interface between the NTD and the half-site in the crystal is very similar to the interface that can be mapped by NMR in solution with a full palindromic site. The interactions seen in the complexes (in the crystal and in solution) explain the observed affinity for the OR site that is lower than that for the OL site and the specificity for the recognized DNA sequence in comparison to that for other repressors. Compared with many well-studied phage repressor systems, the NTD from TP901-1 CI has a longer extended scaffolding helix that, interestingly, is strongly conserved in putative repressors of Gram-positive pathogens. On the basis of sequence comparisons, we suggest that these bacteria also possess repressor/anti-repressor systems similar to that found in phage TP901-1. (authors)

  10. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells

    International Nuclear Information System (INIS)

    Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response

  11. Alpha-melanocyte-stimulating hormone modulates activation of NF-kappa B and AP-1 and secretion of interleukin-8 in human dermal fibroblasts.

    Science.gov (United States)

    Böhm, M; Schulte, U; Kalden, H; Luger, T A

    1999-10-20

    Alpha-melanocyte-stimulating hormone (alpha-MSH) has evolved as a mediator of diverse biological activities in an ever-growing number of non-melanocytic cell types. One mechanism by which alpha-MSH exerts its effects is modulation of AP-1 and NF-kappa B. These two transcription factors also play an important role in fibroblasts, in extracellular matrix composition, and in cytokine expression. By use of electric mobility shift assays, we demonstrate that alpha-MSH (10(-6) to 10(-14) M) activates AP-1 in human dermal fibroblasts, whereas coincubation with interleukin-1 beta (IL-1 beta) results in suppression of its activation. alpha-MSH also induces activation of NF-kappa B but does not modulate DNA binding on costimulation with IL-1 beta. Since AP-1 and NF-kappa B are key elements in controlling interleukin-8 (IL-8) transcription, human fibroblasts were treated with alpha-MSH and IL-1 beta for 24 hours, and cytokine levels in the supernatants were measured by ELISA. alpha-MSH alone had little effect, whereas coincubation with IL-1 beta led to marked downregulation of IL-8 secretion (at most 288 +/- 152 ng/mL) when compared to treatment with IL-1 beta alone (919 +/- 157 ng/mL). Our results indicate that alpha-MSH exerts modulatory effects on the activation of NF-kappa B and AP-1, and that it can regulate chemokine secretion in human dermal fibroblasts. These effects of alpha-MSH may have important regulatory functions in extracellular matrix composition, wound healing, or angiogenesis. PMID:10816661

  12. Identification and characterization of a novel repressor site in the human tumor necrosis factor alpha gene.

    OpenAIRE

    Fong, C L; Siddiqui, A H; Mark, D F

    1994-01-01

    In human monocytic cell lines, tumor necrosis factor alpha (TNF alpha) expression is induced by phorbol myristate acetate (PMA). We have identified positive and negative cis-acting elements in the TNF alpha promoter by deletion analysis. Here we present the initial characterization of the repressor element. The repressor element was shown to function in either orientation and at various distances upstream from the positive element of the TNF alpha promoter. The TNF alpha repressor site (TRS) ...

  13. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  14. Bovine papillomavirus type 1 encodes two forms of a transcriptional repressor: structural and functional analysis of new viral cDNAs.

    Science.gov (United States)

    Choe, J; Vaillancourt, P; Stenlund, A; Botchan, M

    1989-04-01

    Genetic and biochemical evidence has established that the E2 open reading frame (ORF) of bovine papillomavirus type 1 encodes at least two different site-specific DNA-binding proteins, one which activates and the other which represses expression from a viral promoter (P. F. Lambert, B. A. Spalholz, and P. M. Howley, Cell 50:69-78, 1987). We have obtained data which show that a second form of the repressor gene is expressed in transformed cells harboring stable viral plasmids. The structural details of this gene have been discerned by cDNA cloning, by RNase protection, and by primer extension analysis of in vivo RNA. Moreover, data from in vitro transcription experiments support the notion that this form of the E2 repressor is expressed from a novel viral promoter and that a small exon from another ORF is linked to an active repressor domain in E2. Thus, two different forms of the repressor are expressed from different promoters and might be independently regulated either in the cell cycle or in different tissue types. We show by functional in vivo assays utilizing a cDNA vector encoding this gene that the trans-acting factor has in vivo activities similar to those of the known repressor. Our screen of a cDNA library for cDNA clones representing bovine papillomavirus transcripts has also revealed a number of other novel structures defining new donor and acceptor RNA-processing sites. Notably, clones which conceptually can be translated to yield an E7 protein, the viral M gene, and the entire E2 ORF have been characterized. Finally, truncated versions of putative E8 cDNAs were also obtained. PMID:2538655

  15. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning.

    Science.gov (United States)

    Ikeda, Miho; Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-11-01

    Most transcription factors act either as activators or repressors, and no such factors with dual function have been unequivocally identified and characterized in plants. We demonstrate here that the Arabidopsis thaliana protein WUSCHEL (WUS), which regulates the maintenance of stem cell populations in shoot meristems, is a bifunctional transcription factor that acts mainly as a repressor but becomes an activator when involved in the regulation of the AGAMOUS (AG) gene. We show that the WUS box, which is conserved among WOX genes, is the domain that is essential for all the activities of WUS, namely, for regulation of stem cell identity and size of floral meristem. All the known activities of WUS were eliminated by mutation of the WUS box, including the ability of WUS to induce the expression of AG. The mutation of the WUS box was complemented by fusion of an exogenous repression domain, with resultant induction of somatic embryogenesis in roots and expansion of floral meristems as observed upon ectopic expression of WUS. By contrast, fusion of an exogenous activation domain did not result in expanded floral meristems but induced flowers similar to those induced by the ectopic expression of AG. Our results demonstrate that WUS acts mainly as a repressor and that its function changes from that of a repressor to that of an activator in the case of regulation of the expression of AG. PMID:19897670

  16. STENOFOLIA acts as a repressor in regulating leaf blade outgrowth

    OpenAIRE

    Lin, Hao; Niu, Lifang; Tadege, Million

    2013-01-01

    We recently reported that the Medicago WOX gene, STENOFOLIA (STF), acts as a transcriptional repressor in regulating leaf blade outgrowth. By using the Nicotiana sylvestris bladeless lam1 mutant as a genetic tool, we showed that the WUS-box, which is conserved among WUS clade WOX genes, is partly responsible for the repressive activity of STF. All members of the modern/WUS clade genes (WUS, WOX1-WOX7) in Arabidopsis that contain intact WUS-box can substitute for STF/LAM1 function while the in...

  17. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance

    OpenAIRE

    Yokotani, Naoki; Sato, Yuko; Tanabe, Shigeru; Chujo, Tetsuya; Shimizu, Takafumi; Okada, Kazunori; Yamane, Hisakazu; Shimono, Masaki; Sugano, Shoji; Takatsuji, Hiroshi; Kaku, Hisatoshi; Minami, Eiichi; Nishizawa, Yoko

    2013-01-01

    OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice ce...

  18. Regulation of gene expression in mammalian cells using the lac repressor

    International Nuclear Information System (INIS)

    The study describes the construction of a one step inducible lac repressor/operator mammalian expression system within the context of DNA mediated vaccination (naked DNA). It is novel in that it contains, on a single vector (pSO1), all the cis and trans controlling elements necessary to manipulate (switch on/off) and control the expression of a reporter gene in a mammalian cell. The enhanced green fluorescent protein (EGFP) gene was cloned downstream of the cytomegalovirus immediate-early enhancer promoter (PCMV IE) and a lac operator (LacO), which was in turn regulated by the expression of the lac repressor under the control of a second PCMV IE. The number of cells fluorescing were greatly increased following isopropyl B-D thiogalactoside (IPTG) induction. In the repressed state, fewer pSO1 transfected cells expressed the EGFP, and the fluorescence intensity was also lower than that observed for the induced pSO1 transfected cells. Observation by microscopy was quantified by FACScan analysis on the different populations of cells. There was always a significant difference between the induced and repressed pSO1 transfected cells in terms of the percentage of the population of cells fluorescing and the intensity of the fluorescence. Of the repressed pSO1 transfected HeLa cells, only about 10% showed fluorescence at 507 nm wavelength. However, of the induced pSO1 transfected HeLa cells, 68% showed fluorescence at 24 h, 51% at 48 h and 46% at 72 h post-transfection. To demonstrate this system's ability to be manipulated, two experiments were conducted in parallel. Almost 40% of the pSO1 transfected HeLa cells (24 h repressed, followed by 24 h induced) responded to the induction and expressed EGFP. A similar result was obtained for pSO1 transfected HeLa cells (48 h repressed, followed by 24 h induced); 36% of the cells responded and expressed EGFP. Alternatively, there was a decrease in the number of EGFP expressing cells when pSO1 transfected HeLa cells were induced for

  19. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells.

    Science.gov (United States)

    Gong, Xuezhong; Ivanov, Vladimir N; Hei, Tom K

    2016-09-01

    Our recent study demonstrated that sodium arsenite at a clinically relevant dose induced nephrotoxicity in human renal proximal tubular epithelial cell line HK-2, which could be inhibited by natural product 2,3,5,6-tetramethylpyrazine (TMP) with antioxidant activity. The present study demonstrated that arsenic exposure resulted in protein and enzymatic induction of heme oxygenase-1 (HO-1) in dose- and time-dependent manners in HK-2 cells. Blocking HO-1 enzymatic activity by zinc protoporphyrin (ZnPP) augmented arsenic-induced apoptosis, ROS production and mitochondrial dysfunction, suggesting a critical role for HO-1 as a renal protectant in this procession. On the other hand, TMP, upstream of HO-1, inhibited arsenic-induced ROS production and ROS-dependent HO-1 expression. TMP also prevented mitochondria dysfunction and suppressed activation of the intrinsic apoptotic pathway in HK-2 cells. Our results revealed that the regulation of arsenic-induced HO-1 expression was performed through multiple ROS-dependent signal pathways and the corresponding transcription factors, including p38 MAPK and JNK (but not ERK), AP-1, Nrf2 and NF-κB. TMP inhibited arsenic-induced activations of JNK, p38 MAPK, ERK, AP-1 and Nrf2 and block HO-1 protein expression. The present study, furthermore, demonstrated arsenic-induced expression of arsenic response protein 2 (ARS2) that was regulated by p38 MAPK, ERK and NF-κB. To our knowledge, this is the first report showing that ARS2 involved in arsenic-induced nephrotoxicity, while TMP pretreatment prevented such an up-regulation of ARS2 in HK-2 cells. Given ARS2 and HO-1 sharing the similar regulation mechanism, we speculated that ARS2 might also mediate cell survival in this procession. In summary, our study highlighted a role of HO-1 in the protection against arsenic-induced cytotoxicity downstream from the primary targets of TMP and further indicated that TMP may be used as a potential therapeutic agent in the treatment of arsenic

  20. Calcium-dependent Nr4a1 expression in mouse Leydig cells requires distinct AP1/CRE and MEF2 elements.

    Science.gov (United States)

    Abdou, Houssein S; Robert, Nicholas M; Tremblay, Jacques J

    2016-04-01

    The nuclear receptor NR4A1 is expressed in steroidogenic Leydig cells where it plays pivotal roles by regulating the expression of several genes involved in steroidogenesis and male sex differentiation including Star, HSD3B2, and Insl3 Activation of the cAMP and Ca(2+) signaling pathways in response to LH stimulation leads to a rapid and robust activation of Nr4a1 gene expression that requires the Ca(2+)/CAMKI pathway. However, the downstream transcription factor(s) have yet to be characterized. To identify potential Ca(2+)/CaM effectors responsible for hormone-induced Nr4a1 expression, MA-10 Leydig cells were treated with forskolin to increase endogenous cAMP levels, dantrolene to inhibit endoplasmic reticulum Ca(2+) release, and W7 to inhibit CaM activity. We identified Ca(2+)-responsive elements located in the discrete regions of the Nr4a1 promoter, which contain binding sites for several transcription factors such as AP1, CREB, and MEF2. We found that one of the three AP1/CRE sites located at -255 bp is the most responsive to the Ca(2+) signaling pathway as are the two MEF2 binding sites at -315 and -285 bp. Furthermore, we found that the hormone-induced recruitment of phospho-CREB and of the co-activator p300 to the Nr4a1 promoter requires the Ca(2+) pathway. Lastly, siRNA-mediated knockdown of CREB impaired NR4A1 expression and steroidogenesis. Together, our data indicate that the Ca(2+) signaling pathway increases Nr4a1 expression in MA-10 Leydig cells, at least in part, by enhancing the recruitment of coactivator most likely through the MEF2, AP1, and CREB transcription factors thus demonstrating an important interplay between the Ca(2+) and cAMP pathways in regulating Nr4a1 expression. PMID:26647388

  1. Dioscorea nipponica Makino inhibits migration and invasion of human oral cancer HSC-3 cells by transcriptional inhibition of matrix metalloproteinase-2 through modulation of CREB and AP-1 activity.

    Science.gov (United States)

    Chien, Ming-Hsien; Ying, Tsung-Ho; Hsieh, Yih-Shou; Chang, Yu-Chao; Yeh, Chia-Ming; Ko, Jiunn-Liang; Lee, Wen-Sen; Chang, Jer-Hua; Yang, Shun-Fa

    2012-03-01

    Oral cancer mortality has increased during the last decade due to the difficulties in treating related metastasis. Dioscorea nipponica Makino, a popular folk medicine, exerts anti-obesity and anti-inflammation properties. However, the effect of this folk medicine on metastasis of oral cancer has yet to be fully elucidated. The present study demonstrates that D. nipponica extracts (DNE), at a range of concentrations (0-50 μg/mL), concentration-dependently inhibited migration/invasion capacities of human oral cancer cells, HSC-3, without cytotoxic effects. The anti-migration effect of DNE was also observed in two other OSCC cell lines, Ca9-22 and Cal-27. Zymography, real time PCR, and Western blotting analyses revealed that DNE inhibited matrix metalloproteinase-2 (MMP-2) enzyme activity, and RNA and protein expression. The inhibitory effects of DNE on MMP-2 proceeded by up-regulating tissue inhibitor of metalloproteinase-2 (TIMP-2), as well as suppressing nuclear translocation and DNA binding activity of cAMP response element-binding (CREB) and activating protein-1 (AP-1) on the MMP-2 promoter in HSC-3 cells. In conclusion, DNE inhibited the invasion of oral cancer cells and may have potential use as a chemopreventive agent against oral cancer metastasis. PMID:22210353

  2. Inducing a Site Specific Replication Blockage in E. coli Using a Fluorescent Repressor Operator System.

    Science.gov (United States)

    Mettrick, Karla A; Lawrence, Nikki; Mason, Claire; Weaver, Georgia M; Corocher, Tayla-Ann; Grainge, Ian

    2016-01-01

    Obstacles present on DNA, including tightly-bound proteins and various lesions, can severely inhibit the progression of the cell's replication machinery. The stalling of a replisome can lead to its dissociation from the chromosome, either in part or its entirety, leading to the collapse of the replication fork. The recovery from this collapse is a necessity for the cell to accurately complete chromosomal duplication and subsequently divide. Therefore, when the collapse occurs, the cell has evolved diverse mechanisms that take place to restore the DNA fork and allow replication to be completed with high fidelity. Previously, these replication repair pathways in bacteria have been studied using UV damage, which has the disadvantage of not being localized to a known site. This manuscript describes a system utilizing a Fluorescence Repressor Operator System (FROS) to create a site-specific protein block that can induce the stalling and collapse of replication forks in Escherichia coli. Protocols detail how the status of replication can be visualized in single living cells using fluorescence microscopy and DNA replication intermediates can be analyzed by 2-dimensional agarose gel electrophoresis. Temperature sensitive mutants of replisome components (e.g. DnaBts) can be incorporated into the system to induce a synchronous collapse of the replication forks. Furthermore, the roles of the recombination proteins and helicases that are involved in these processes can be studied using genetic knockouts within this system. PMID:27583408

  3. Sequence of galR gene indicates a common evolutionary origin of lac and gal repressor in Escherichia coli.

    OpenAIRE

    von Wilcken-Bergmann, B; Müller-Hill, B

    1982-01-01

    The nucleotide sequence of the galR gene of Escherichia coli, which codes for galactose repressor, has been determined. The subunits of gal repressor are predicted to consist of 343 residues, including the NH2-terminal methionine. Twenty-six of the predicted NH2-terminal 55 residues of gal repressor are identical to the NH2-terminal residues of lac repressor. Additional homologies appear between residues 165 and 200, between residues 235 and 255, and around residue 325.

  4. A novel strategy to analyze L-tryptophan through allosteric Trp repressor based on rolling circle amplification.

    Science.gov (United States)

    Zhao, Guojie; Hu, Tianyu; Li, Jun; Wei, Hua; Shang, Hong; Guan, Yifu

    2015-09-15

    Rolling circle amplification (RCA) has been considered as a powerful tool for nucleic acids detection. Here, a novel repressor-RCA-based method for L-tryptophan (L-Trp) detection was developed. This method utilizes the specific interaction between the RCA circular template and the Trp repressor protein (TrpR) involved in trp operon of Escherichia coli (E. coli). In the absence of L-Trp, the TrpR protein could not bind to the RCA template, and the RCA process can be continued. When L-Trp is present, the activated TrpR will bind to the operon sequence on the RCA template and inhibit the RCA reaction. Thus, the concentration of L-Trp is correlated directly with the fluorescent RCA signals. We succeeded in detecting L-Trp in a single step in simple homogeneous reaction system. The detection limit was estimated to be 0.77 μM (S/N=3) with good linearity. The method can unambiguously distinguish L-Trp from other 19 standard amino acids and L-Trp analogs. This strategy is also promising for detecting many small molecules such as other amino acids and carbohydrates. PMID:25889351

  5. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    KAUST Repository

    Hameed, Umar Farook Shahul

    2014-05-09

    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  6. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine.

    OpenAIRE

    Hope, B.; Kosofsky, B.; Hyman, S E; Nestler, E J

    1992-01-01

    Chronic treatment of rats with cocaine leads to long-term biochemical changes in the nucleus accumbens (NAc), a brain region implicated in mediating the reinforcing effects of cocaine and other drugs of abuse. Immediate early genes (IEGs) and their protein products appear to play an important role in transducing extracellular stimuli into altered patterns of cellular gene expression and, therefore, into long-term changes in cellular functioning. We therefore examined changes in the mRNA level...

  7. Evolutionary divergence of the APETALA1 and CAULIFLOWER proteins

    Institute of Scientific and Technical Information of China (English)

    Bin WANG; Ning ZHANG; Chun-Ce GUO; Gui-Xia XU; Hong-Zhi KONG; Hong-Yan SHAN

    2012-01-01

    APETALA1 (AP1) and CAULIFLOWER (CAL) are apair of paralogous genes that were generated through the pre-Brassicaceae whole-genome duplication event.AP1 and CAL have both partially redundant and unique functions.Previous studies have shown that the K and C regions of their proteins are essential for the functional divergence.However,which differences in these regions are the major contributors and how the differences were accumulated remain unknown.In the present study,we compared the sequences of the two proteins and identified five gaps and 55 amino acid replacements between them.Investigation of genomic sequences further indicated that the differences in the proteins were caused by non-synonymous substitutions and changes in exon-intron structures.Reconstruction of three-dimensional structures revealed that the sequence divergence of AP1 and CAL has resulted in differences between the two in terms of the number,length,position and orientation of α-helices,especially in the K and C regions.Comparisons of sequences and three-dimensional structures of ancestral proteins with AP1 and CAL suggest that the ancestral AP1 protein experienced fewer changes,whereas the ancestral CAL protein accumulated more changes shortly after gene duplication,relative to their common ancestor.Thereafter,AP1-like proteins experienced few mutations,whereas CAL-like proteins were not conserved until the diversification of the Brassicaceae lineage Ⅰ.This indicates that AP1- and CAL-like proteins evolved asymmetrically after gene duplication.These findings provide new insights into the functional divergence of AP1 and CAL genes.

  8. Binding of the N-Terminal Domain of the Lactococcal Bacteriophage TP901-1 CI Repressor to Its Target DNA: A Crystallography, Small Angle Scattering, and Nuclear Magnetic Resonance Study

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner; Rasmussen, Kim K.; Jensen, Malene Ringkjøbing;

    2013-01-01

    In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix–turn–helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator...

  9. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Young-Rae Lee

    2013-04-01

    Full Text Available Sulforaphane [1-isothiocyanato-4-(methylsulfinyl-butane] is anisothiocyanate found in some cruciferous vegetables, especiallybroccoli. Sulforaphane has been shown to displayanti-cancer properties against various cancer cell lines. Matrixmetalloproteinase-9 (MMP-9, which degrades the extracellularmatrix (ECM, plays an important role in cancer cell invasion.In this study, we investigated the effect of sulforaphane on12-O-tetradecanoyl phorbol-13-acetate (TPA-induced MMP-9expression and cell invasion in MCF-7 cells. TPA-inducedMMP-9 expression and cell invasion were decreased bysulforaphane treatment. TPA substantially increased NF-κB andAP-1 DNA binding activity. Pre-treatment with sulforaphaneinhibited TPA-stimulated NF-κB binding activity, but not AP-1binding activity. In addition, we found that sulforaphanesuppressed NF-κB activation, by inhibiting phosphorylation ofIκB in TPA-treated MCF-7 cells. In this study, we demonstratedthat the inhibition of TPA-induced MMP-9 expression and cellinvasion by sulforaphane was mediated by the suppression ofthe NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4:201-206

  10. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  11. Methylation status and AP1 elements are involved in EBV-mediated miR-155 expression in EBV positive lymphoma cells.

    Science.gov (United States)

    Yin, Qinyan; Wang, Xia; Roberts, Claire; Flemington, Erik K; Lasky, Joseph A

    2016-07-01

    The relationship between Epstein Barr Virus (EBV) and miR-155 is well established. EBV infection induces miR-155 expression, which is expressed at higher levels in EBV latency type III cells compared to EBV latency type I cells. However, the mechanism by which EBV latency genes activate miR-155 expression is still unclear. Here we present data showing that DNA methylation regulates miR-155 expression. We also provide evidence that the AP1 signaling pathway is involved in EBV-mediated miR-155 activation, and that Bay11 influences signaling of the miR-155 promoter AP1 element. Lastly, we show that LMP2A, LMP1 and EBNAs cannot activate miR-155 expression alone, indicating that the regulation of miR-155 by EBV is dependent on more than one EBV gene or cell signaling pathway. We conclude that the regulation of miR-155 in EBV-positive cells occurs through multiple cell signaling processes involving EBV-mediated chromatin remodeling, cell signaling regulation and transcription factor activation. PMID:27110708

  12. Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways.

    Science.gov (United States)

    Park, Bongkyun; Yim, Joung-Han; Lee, Hong-Kum; Kim, Byung-Oh; Pyo, Suhkneung

    2015-01-01

    Cell adhesion molecules play a critical role in inflammatory processes and atherosclerosis. In this study, we investigated the effect of ramalin, a chemical compound from the Antarctic lichen Ramalina terebrata, on vascular cell adhesion molecule-1 (VCAM-1) expression induced by TNF-α in vascular smooth muscular cells (VSMCs). Pretreatment of VSMCs with ramalin (0.1-10 μg/mL) concentration-dependently inhibited TNF-α-induced VCAM-1 expression. Additionally, ramalin inhibited THP-1 (human acute monocytic leukemia cell line) cell adhesion to TNF-α-stimulated VSMCs. Ramalin suppressed TNF-α-induced production of reactive oxygen species (ROS), PADI4 expression, and phosphorylation of p38, ERK, and JNK. Moreover, ramalin inhibited TNF-α-induced translocation of NF-κB and AP-1. Inhibition of PADI4 expression by small interfering RNA or the PADI4-specific inhibitor markedly attenuated TNF-α-induced activation of NF-κB and AP-1 and VCAM-1 expression in VSMCs. Our study provides insight into the mechanisms underlying ramalin activity and suggests that ramalin may be a potential therapeutic agent to modulate inflammation within atherosclerosis. PMID:25494680

  13. Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways.

    Science.gov (United States)

    Limtrakul, Pornngarm; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2015-01-01

    Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro- inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-α and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer. PMID:26028086

  14. Radical Scavenging Activity-Based and AP-1-Targeted Anti-Inflammatory Effects of Lutein in Macrophage-Like and Skin Keratinocytic Cells

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2013-01-01

    Full Text Available Lutein is a naturally occurring carotenoid with antioxidative, antitumorigenic, antiangiogenic, photoprotective, hepatoprotective, and neuroprotective properties. Although the anti-inflammatory effects of lutein have previously been described, the mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, in the present study, we aimed to investigate the regulatory activity of lutein in the inflammatory responses of skin-derived keratinocytes or macrophages and to elucidate the mechanism of its inhibitory action. Lutein significantly reduced several skin inflammatory responses, including increased expression of interleukin-(IL- 6 from LPS-treated macrophages, upregulation of cyclooxygenase-(COX- 2 from interferon-γ/tumor necrosis-factor-(TNF- α-treated HaCaT cells, and the enhancement of matrix-metallopeptidase-(MMP- 9 level in UV-irradiated keratinocytes. By evaluating the intracellular signaling pathway and the nuclear transcription factor levels, we determined that lutein inhibited the activation of redox-sensitive AP-1 pathway by suppressing the activation of p38 and c-Jun-N-terminal kinase (JNK. Evaluation of the radical and ROS scavenging activities further revealed that lutein was able to act as a strong anti-oxidant. Taken together, our findings strongly suggest that lutein-mediated AP-1 suppression and anti-inflammatory activity are the result of its strong antioxidative and p38/JNK inhibitory activities. These findings can be applied for the preparation of anti-inflammatory and cosmetic remedies for inflammatory diseases of the skin.

  15. Apoptosis repressor with a CARD domain (ARC restrains Bax-mediated pathogenesis in dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jennifer Davis

    Full Text Available Myofiber wasting in muscular dystrophy has largely been ascribed to necrotic cell death, despite reports identifying apoptotic markers in dystrophic muscle. Here we set out to identify the contribution of canonical apoptotic pathways to skeletal muscle degeneration in muscular dystrophy by genetically deleting a known inhibitor of apoptosis, apoptosis repressor with a card domain (Arc, in dystrophic mouse models. Nol3 (Arc protein genetic deletion in the dystrophic Sgcd or Lama2 null backgrounds showed exacerbated skeletal muscle pathology with decreased muscle performance compared with single null dystrophic littermate controls. The enhanced severity of the dystrophic phenotype associated with Nol3 deletion was caspase independent but dependent on the mitochondria permeability transition pore (MPTP, as the inhibitor Debio-025 partially rescued skeletal muscle pathology in Nol3 (-/- Sgcd (-/- double targeted mice. Mechanistically, Nol3 (-/- Sgcd (-/- mice showed elevated total and mitochondrial Bax protein levels, as well as greater mitochondrial swelling, suggesting that Arc normally restrains the cell death effects of Bax in skeletal muscle. Indeed, knockdown of Arc in mouse embryonic fibroblasts caused an increased sensitivity to cell death that was fully blocked in Bax Bak1 (genes encoding Bax and Bak double null fibroblasts. Thus Arc deficiency in dystrophic muscle exacerbates disease pathogenesis due to a Bax-mediated sensitization of mitochondria-dependent death mechanisms.

  16. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.; Borovilos, M.; Zhou, M; Horer, S; Clancy, S; Moy, S; Volkart, LL; Sassoon, J; Baumann, U; Joachimiak, A (Biosciences Division); (Univ. of Berne)

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representing a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.

  17. Course 1: Physics of Protein-DNA Interaction

    Science.gov (United States)

    Bruinsma, R. F.

    1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction

  18. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site.

    Science.gov (United States)

    Hammerl, Jens Andre; Roschanski, Nicole; Lurz, Rudi; Johne, Reimar; Lanka, Erich; Hertwig, Stefan

    2015-06-01

    Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ɸKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ɸKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (O\\(_{\\rm{R}}\\)3) in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (O\\(_{\\rm{R}}\\)3) upstream of the prophage repressor gene. The O\\(_{\\rm{R}}\\)3 operator sequences of PY54 and ɸKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages. PMID:26043380

  19. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site

    Directory of Open Access Journals (Sweden)

    Jens Andre Hammerl

    2015-06-01

    Full Text Available Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ɸKO2 harbor a primary immunity region (immB comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ɸKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (O\\(_{\\rm{R}}\\3 in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (O\\(_{\\rm{R}}\\3 upstream of the prophage repressor gene. The O\\(_{\\rm{R}}\\3 operator sequences of PY54 and ɸKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages.

  20. Mutant lambda phage repressor with a specific defect in its positive control function.

    OpenAIRE

    Guarente, L; Nye, J. S.; Hochschild, A; Ptashne, M

    1982-01-01

    The lambda phage repressor is both a positive and a negative regulator of gene transcription. We describe a mutant lambda phage repressor that has specifically lost its activator function. The mutant binds to the lambda phage operator sites and represses the lambda phage promoters PR and PL. However, it fails to stimulate transcription from the promoter PRM. The mutation lies in that portion of repressor--namely, the amino-terminal domain--that has been shown [Sauer, R. T., Pabo, C. O., Meyer...

  1. HIV-1 Tat-mediated induction of CCL5 in astrocytes involves NF-κB, AP-1, C/EBPα and C/EBPγ transcription factors and JAK, PI3K/Akt and p38 MAPK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Anantha R Nookala

    Full Text Available The incidence of HIV-associated neurological disorders (HAND has increased during recent years even though the highly active antiretroviral therapy (HAART has significantly curtailed the virus replication and increased the life expectancy among HIV-1 infected individuals. These neurological deficits have been attributed to HIV proteins including HIV-1 Tat. HIV-1 Tat is known to up-regulate CCL5 expression in mouse astrocytes, but the mechanism of up-regulation is not known. The present study was undertaken with the objective of determining the mechanism(s underlying HIV-1 Tat-mediated expression of CCL5 in astrocytes. SVGA astrocytes were transiently transfected with a plasmid encoding Tat, and expression of CCL5 was studied at the mRNA and protein levels using real time RT-PCR and multiplex cytokine bead array, respectively. HIV-1 Tat showed a time-dependent increase in the CCL5 expression with peak mRNA and protein levels, observed at 1 h and 48 h post-transfection, respectively. In order to explore the mechanism(s, pharmacological inhibitors and siRNA against different pathway(s were used. Pre-treatment with SC514 (NF-κB inhibitor, LY294002 (PI3K inhibitor, AG490 (JAK2 inhibitor and Janex-1 (JAK3 inhibitor showed partial reduction of the Tat-mediated induction of CCL5 suggesting involvement of JAK, PI3K/Akt and NF-κB in CCL5 expression. These results were further confirmed by knockdown of the respective genes using siRNA. Furthermore, p38 MAPK was found to be involved since the knockdown of p38δ but not other isoforms showed partial reduction in CCL5 induction. This was further confirmed at transcriptional level that AP-1, C/EBPα and C/EBPγ were involved in CCL5 up-regulation.

  2. Recombinant methionine aminopeptidase protein of Babesia microti: immunobiochemical characterization as a vaccine candidate against human babesiosis.

    Science.gov (United States)

    Munkhjargal, Tserendorj; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-09-01

    Human babesiosis is the most important zoonotic protozoan infection in the world. This is the first report of the cloning, expression, purification, and immunobiochemical characterization of a methionine aminopeptidase 1 (MetAP1) protein from Babesia microti (B. microti). The gene encodes a MetAP1 protein of B. microti (BmMetAP1) of approximately 66.8 kDa that includes glutathione S-transferase (GST) tag and shows MetAP activity. BmMetAP1 was detected in a lysate of B. microti and further localized in cytoplasm of the B. microti merozoite. rBmMetAP1 was found to be immunogenic, eliciting a high antibody titer in mice. Moreover, rBmMetAP1 stimulated the production of IFN-γ and IL-12 but not IL-4. Finally, rBmMetAP1 was able to provide considerable protection to mice against a B. microti challenge infection based on a reduction in peak parasitemia levels and earlier clearance of the parasite as compared with control mice. Taken together, these results suggest that rBmMetAP1 confers significant protection against experimental B. microti infection and might be considered a potential vaccine target against human babesiosis. PMID:27306898

  3. Anticancer effects of monocarbonyl analogs of curcumin: oxidative stress, nuclear translocation and modulation of AP-1 and NF-κB

    Directory of Open Access Journals (Sweden)

    Brian Adams

    2015-01-01

    Full Text Available Purpose: In order to elucidate anticancer effects of monocarbonyl analogs of curcumin (MACs, we have undertaken the present study to obtain information regarding drug targets by using a microarray approach, and to study the cellular localization of EF24 and the activity of two key transcription factors, AP-1 and NF-κB, involved in complex cellular responses of cell survival and death. Methods: Cytotoxic activity of various drugs was evaluated using a Neutral Red Dye assay. Cellular localization of biotinylated EF24 (active and reduced EF24 (inactive was determined using light and confocal microscopy. Measurement of transcription factor binding was carried out using Transfactor ELISA kits (BD Clontech, Palo Alto, CA. Gene microarray processing was performed at Expression Analysis, Inc (Durham, NC using Affymetrix Human U133A Gene Chips.Results: In this study, we demonstrated that EF24 and UBS109 exhibit much more potent cytotoxic activity against pancreatic cancer than the current standard chemotherapeutic agent gemcitabine. EF24, rapidly localizes to the cell nucleus. The compound modulates the DNA binding activity of NF-κB and AP-1 in MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells. Immunohistochemical studies utilizing biotinylated-EF24 and chemically-reduced EF24 show that the unsaturated compound and biotinylated EF24, but not reduced EF24, translocates to the nucleus within 30 minutes after the addition of drug. Through a gene microarray study, EF24 is shown to affect genes directly involved in cytoprotection, tumor growth, angiogenesis, metastasis and apoptosis. Conclusion: EF24 and UBS109 warrant further investigation for development of pancreatic cancer therapy. The dualistic modulations of gene expression may be a manifestation of the cell responses for survival against oxidative stress by EF24. However, the cytotoxic action of EF24 ultimately prevails to kill the cells.

  4. NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

    Directory of Open Access Journals (Sweden)

    Van Thai Ha

    2014-01-01

    Full Text Available AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO/prostaglandin (PG E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS- treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS, cyclooxygenase- (COX- 2, and interleukin- (IL- 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation.

  5. Correlation between UV dose requirement for lambda bacteriophage induction and lambda repressor concentration

    International Nuclear Information System (INIS)

    Escherichia coli K-12 wild type and a uvrA mutant derivative were used to construct isogenic strains bearing one, two, three, or more phage lambda cI genomes and containing increasing concentrations of lambda repressor as measured by in vitro operator DNA-binding assays. The survival and phage induction in response to uv irradiation were determined. In both strains, dose-response relationships were obtained as a function of the cellular repressor concentration. The uvrA lysogens required one-tenth the uv fluence of the wild-type counterparts for induction. Lysogenic strains containing plasmids that overproduce the lambda ind+ repressor and the same lysogens with plasmids overproducing the lambda ind- repressor displayed the same suvival curves as the nonlysogenic parental strain; however, only the former produced infectious centers (at a frequency of 2 x 10-3 to 5 x 10-4) in response to radiation

  6. Regulation of phage Mu repressor transcription by IHF depends on the level of the early transcription.

    OpenAIRE

    van Rijn, P A; Goosen, N; Turk, S C; van de Putte, P

    1989-01-01

    Integration Host Factor (IHF) of E. coli can stimulate both early and repressor transcription of bacteriophage Mu. We introduced several mutations in the early promoter (Pe) and studied the effect of these mutations on the stimulation of early and repressor transcription by IHF. All mutant promoters are still positive regulated by IHF, but the level of stimulation is dependent on the strength of the promoter. The strength of the early promoter has an even greater impact on the regulation of t...

  7. The src Homology 3-Like Domain of the Diphtheria Toxin Repressor (DtxR) Modulates Repressor Activation through Interaction with the Ancillary Metal Ion-Binding Site

    OpenAIRE

    Love, John F.; vanderSpek, Johanna C.; Murphy, John R.

    2003-01-01

    The diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor that acts as a global regulatory element in the control of iron-sensitive genes in Corynebacterium diphtheriae. We recently described (L. Sun, J. C. vanderSpek, and J. R. Murphy, Proc. Natl. Acad. Sci. USA 95:14985-14990, 1998) the isolation and in vivo characterization of a hyperactive mutant of DtxR, DtxR(E175K), that appeared to be constitutively active. We demonstrate here that while DtxR(E175K) remains ac...

  8. Clinical significance of AP-1 pathway alterations in cervical carcinoma%宫颈癌中激活蛋白1通路的活化及临床意义

    Institute of Scientific and Technical Information of China (English)

    朱皓皞; 于晓红; 杜丽英; 熊敦勇; 寇辉; 王芳胜

    2014-01-01

    Objective To investigate the expression and clinical significance of activator protein-1 (AP-1),an important sig-naling pathway component of c-jun and c-fos,in cervical cancer .Methods Immunohistochemical ( SP) method was used to detect the expression of c-jun and c-fos in 70 cases of cervical squamous cell carcinoma ,30 cases of cervical intraepithelial lesions and 20 cases of chronic cervicitis .The relationship between expressions and clinicopathologic characteristics and prognostic significance was analyzed . Results The positive expression rates of c-jun and c-fos were 57.1%(40/70) and 60%(42/70) in 70 cases of cervical squamous cell carcinoma.The positive expression rates were 53.3%(16/30) and 63.3%(19/30) in 30 cases of cervical intraepithelial neopla-sia.The positive expression rate in the 20 cases of chronic cervicitis was 0.The expression rate in cervical cancer group and the chronic cervicitis group has a significant difference (P0.05).The different expression of c-jun and c-fos protein in cervical carcinomas was statistically signif-icant in the different groups of clinical stage ,pathology grading and lymph node metastasis (P0.05).Additionally,the expression of c-jun was positively correlated with that of c-fos (r=0.67,P<0.05).Conclusion AP-1 pathway alterations may play a critical role in the development of cervical cancer,and c-jun and c-fos make synergistic action during the process of cervical cancer .%目的:探讨激活蛋白1(AP-1)信号通路的重要组分c-jun和c-fos在宫颈癌中的表达及临床意义。方法免疫组织化学( SP)法检测c-jun和c-fos在70例宫颈鳞状细胞癌、30例宫颈上皮内瘤变及20例慢性宫颈炎中的表达情况,同时分析其与宫颈癌临床病理特征和预后的关系。结果70例宫颈癌中c-jun和c-fos的阳性表达率分别为57.1%(40/70)、60.0%(42/70),在30例宫颈上皮内瘤变的表达阳性率分别为53.3%(16/30)、63.3%(19/30),而在20

  9. 下调AP-1基因表达在冬凌草甲素抑制结直肠癌中的作用%Downregulation of AP-1 gene expression is an initial event in oridonin-mediated inhibition of colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    金黑鹰; 戴功建; 丁义江; 夏建国; 刘秀芳; 刘飞; 谈瑄忠; 耿建祥

    2011-01-01

    Objective Oridonin is the active ingredient isolated from the Chinese herb Rabdosia rubescens. We used both in vivo and in vitro approaches to elucidate the underlying mechanism of the oridonin-mediated inhibition of colorectal cancer. Methods Two colorectal cell lines, LoVo and SW480,were treated with oridonin in solution. The effect of this treatment on inhibition of cell proliferation rate was determined by the methyl thiazol tetrazolium (MTT) method. The changes in gene expression that occurred in both cell lines in response to treatment with oridonin were determined via illumine expression sensor.Additionally, a colorectal cancer colostomy implantation model was established. Animals were injected intraperitoneally with an oridonin solution. Results Treatment of LoVo and SW480 cells with oridonin inhibited cell proliferation in a dose-dependent manner. The inhibition rate was increased with prolonged treatment. The growth rate of the colorectal cancer colostomy implantation model was significantly lower than control cells when treated with oridonin ( P < 0. 01 ). However, oridonin treatment did not have a signiticant effect on tumor growth rate ( P > 0. 05 ). In the tumor model, AP-1 was the only gene found to be downregulated after oridonin treatment by the gene expression sensor. After 4 weeks of treatment, AP-1,nuclear factor-κB (NF-κB) and p38 were all found to be downregulated. Conclusion Our study has confirmed the inhibitory effects of oridonin on colovectal cancer. These results indicate that the downregulation of AP-1 might be an initial response to treatment by oridonin. This regulation could, in turn, affect the expression of the NF-κB and MAPK pathways, thereby inhibiting tumor growth.%目的 探讨冬凌草甲素对结自肠癌的抑制作用及其机制.方法 以冬凌草甲素水溶液处理LoVo和SW480结直肠癌细胞株,噻唑蓝(MTT)比色法检测细胞增殖抑制率,以Illumina表达芯片检测LoVo细胞和SW480细胞基因表

  10. Role of adaptor proteins in secretory granule biogenesis and maturation

    Directory of Open Access Journals (Sweden)

    RichardEMains

    2013-08-01

    Full Text Available In the regulated secretory pathway, secretory granules (SGs store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network (TGN and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins, which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by PACS-1 (Phosphofurin Acidic Cluster Sorting protein 1, a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The GGA (Golgi-localized, -ear containing, ADP-ribosylation factor binding family of adaptor proteins serve a similar role. We review the functions of AP-1A, PACS-1 and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by adaptor proteins.

  11. Deubiquitylating Enzyme UBP64 Controls Cell Fate through Stabilization of the Transcriptional Repressor Tramtrack▿

    Science.gov (United States)

    Bajpe, Prashanth Kumar; van der Knaap, Jan A.; Demmers, Jeroen A. A.; Bezstarosti, Karel; Bassett, Andrew; van Beusekom, Heleen M. M.; Travers, Andrew A.; Verrijzer, C. Peter

    2008-01-01

    Protein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate in the developing eye. UBP64 represses neuronal cell fate but promotes the formation of nonneuronal cone cells. Using a proteomics approach, we identified the transcriptional repressor Tramtrack (TTK) as a primary UBP64 substrate. In common with TTK, reduced UBP64 levels lead to a loss of cone cells, supernumerary photoreceptors, and mechanosensory bristle cells. Previously, it was demonstrated that the blockade of neuronal cell fate was relieved by SINA-dependent ubiquitylation and degradation of TTK. We found that UBP64 counteracts SINA function by deubiquitylating TTK, leading to its stabilization and thereby promoting a nonneuronal cell fate. Mass spectrometric mapping revealed that SINA ubiquitylates multiple sites dispersed throughout TTK, which are duly deubiquitylated by UBP64. This observation suggests that both E3 SINA and UBP64 use a scanning mechanism to (de)ubiquitylate TTK. We conclude that the balance of TTK ubiquitylation by SINA and deubiquitylation by UBP64 constitutes a specific posttranslational switch controlling cell fate. PMID:18160715

  12. Activation of pur Gene Expression by a Homologue of the Bacillus subtilis PurR repressor:

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Martinussen, Jan

    1998-01-01

    R encoded repressor from Bacillus subtilis. The wildtype purR gene complements the purine auxotrophy of a purR::Iss1mutant, and it was shown that the purR::Iss1 mutation lowers transcription from the purine regulated L. lactis purD promoter. In a parallel study on the regulation of purC and purD expression....... We have identified a PurBox sequence overlapping the -35 region of the L. lactis purR promoter and found, by studies of a purR-lacLM fusion plasmid, that purR is autoregulated. Because of the high similarity of the PurR proteins from B. subtilis and L. lactis, we looked for PurBox sequences in the...... promoter regions of the PurR regulated genes in B. subtilis, and identified a perfectly matching PurBox in the purA promoter region, and slightly degenerate PurBox like sequences in the promoter regions for the pur operon and the purR gene....

  13. JAZ repressors: Possible Involvement in Nutrients Deficiency Response in Rice and Chickpea

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh

    2015-11-01

    Full Text Available Jasmonates (JA are well-known phytohormones which play important roles in plant development and defence against pathogens. Jasmonate ZIM domain (JAZ proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behaviour of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify ten novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK and micronutrients (Zn, Fe deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity towards type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations

  14. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription.

    Directory of Open Access Journals (Sweden)

    Aamna Kaul

    2014-08-01

    Full Text Available Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling, and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase. We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in "active" chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone

  15. 三氯乙烯致敏豚鼠单核淋巴细胞中β-arrestin蛋白表达和核转录因子及激活蛋白-1活性的研究%β-arrestin and NF-κB, AP-1 activity in peripheral blood mononuclear cells of guinea pigs sensitized by trichloroethylene

    Institute of Scientific and Technical Information of China (English)

    汪立杰; 郭瑞娟; 沈彤; 朱启星

    2010-01-01

    Objective To explore the regulatory mechanism of immune response of guinea pigs sensitized by trichloroethylene (TCE), and the expression level of β-arrestin, and the activity of NF-κB and AP-1 in peripheral blood mononuclear cells (PBMC) of guinea pigs sensitized by TCE. Methods Guinea pigs were treated with TCE based on the guinea pig maximum response test (GPMT); Blank control group and DNCB positive control group were established. Scores of skin reaction were evaluated and used to determine whether or not allergy in guinea pig. Then TCE treated group was divided into sensitized group or un-sensitized group. The expression levels of β-arrestin protein, activity of NF-κB and AP-1 in PBMC were detected by Western Blotting and EMSA, respectively. TNF-α level in serum was detected by ELISA Kits. Results No erythema or edema was found in the control group; part of guinea pigs treated with TCE developed erythema and edema, while obvious erythema and edema could be found in DNCB group. The sensitization rates were 71.4% and 100% in TCE and DNCB group,respectively. Compared with TCE un-sensitized group, expression of β-arrestin and AP-1 activity were not significantly different in TCE sensitized group (P>0.05). While the NF-κB activity was elevated obviously(P0.05).与空白对照组和TCE未致敏组相比,TCE致敏组NF-κB活性明显升高,且差异有统计学意义(P0.05).TCE致敏组血清中TNF-α水平[(55.485+8.732)pg/ml]较空白对照组[(32.118±12.550)pg/ml]明显升高,差异有统计学意义(P<0.05).结论 以TCE致敏豚鼠β-arrestin和AP-1可能没被激活,而NF-κB被明显激活且在TCE致敏免疫反应中发挥着调节作用.

  16. Quaternary re-arrangement analysed by spectral enhancement: the interaction of a sporulation repressor with its antagonist.

    Science.gov (United States)

    Scott, D J; Leejeerajumnean, S; Brannigan, J A; Lewis, R J; Wilkinson, A J; Hoggett, J G

    1999-11-12

    The protein/protein interaction between SinI and SinR has been studied by analytical ultracentrifugation and gel electrophoresis in an attempt to understand how these proteins contribute to developmental control of sporulation in Bacillus subtilis. SinR was found to be tetrameric, while SinI was found to exist as monomers and dimers in a rapidly reversible equilibrium. Labelling of SinR by incorporating the tryptophan analogue 7-azatryptophan (7AW) into the protein in place of tryptophan shifts the UV absorbance spectrum, thus allowing selective monitoring of 7AWSinR at 315 nm using the UV absorption optics of the analytical ultracentrifuge. Selective monitoring of SinR in mixtures of SinR and SinI enables the binding and stoichiometry of the interaction to be investigated quantitatively and unambiguously. We demonstrate that the oligomeric forms of SinR and SinI re-arrange to form a tight 1:1 SinR:SinI complex, with no stable intermediate species. A fragment of SinR, SinR(1-69), which contains only the DNA-binding domain, was found to be monomeric, showing that the protein appears not to oligomerise in a similar manner to the Cro repressor, a protein with which it shares a marked structural similarity. PMID:10547280

  17. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover.

    Science.gov (United States)

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade

    2013-10-10

    Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498

  18. Yeast Interacting Proteins Database: YPR029C, YLR170C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR029C APL4 Gamma-adaptin, large subunit of the clathrin-associated protein (AP-1) complex; bin ... is involved in protein sorting at the trans-Golgi network ; homolog of the sigma subunit of the mammalian cla ... is involved in protein sorting at the trans-Golgi network ; homolog of the sigma subunit of the mammalian cla ...

  19. Interplay of protein and DNA structure revealed in simulations of the lac operon.

    Directory of Open Access Journals (Sweden)

    Luke Czapla

    Full Text Available The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.

  20. Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Yang, Limeng; Li, Chenghua; Chang, Yaqing; Gao, Yinxue; Wang, Yi; Wei, Jing; Song, Jian; Sun, Ping

    2015-08-01

    The transcription factor activator protein-1 (AP-1) is an important gene expression regulator with typical Jun and region-leucine zipper (bZIP) domains and can respond to a plethora of physiological and pathological stimulus. In this study, we identified a novel AP-1 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjAP-1). The full-length of AjAP-1 was of 2944 bp including a 5' untranslated region (UTR) of 201 bp, a 3' UTR of 1753 bp and a putative open reading frame of 990 bp encoding a polypeptide of 329 amino acid residues. Two representative domains of Jun and bZIP as well as two nuclear localization signals (NLSs) were also detected in deduced amino acid of AjAP-1. Spatial distribution expression indicated that AjAP-1 was ubiquitously expressed in all examined tissues with predominant expression in the body wall, moderate in the tube feet, respiratory tree and colemocytes and slightly weak in the intestine and longitudinal muscle. Time-course expression analysis in intestine and coelomocytes revealed that AjAP-1 both reached its peak expression at 4 h after Vibrio splendidus challenge with a 2.6 and 8.2-fold increase compared to their control groups, respectively. Taken together, all these results suggested that AjAP-1 was a novel immune factor and might be involved in the processes of anti-bacteria response in sea cucumber. PMID:26093208

  1. λ cro repressor complex with O/sub R/3 DNA: 15N NMR observations

    International Nuclear Information System (INIS)

    15N NMR studies of the coliphage λ cro repressor are presented. The protein has been uniformly labeled with 15N, and individual amino acids have been incorporated. Although the four C-terminal residues (63-66) were not located in the original crystallographic studies of the protein it has been proposed that the C-terminus is involved in DNA binding. These experiments give direct verification of that proposal. [15N] Amide resonances are assigned for residues 56, 62, 63, and 66 in the C-terminus by enzymatic digestion and by 13C-15N double-labeling experiments. 15N{1H} nuclear Overhauser effects show that the C-terminus is mobile on a nanosecond time scale. Exchange experiments using distortionless enhancement via polarization transfer, which is sensitive to proton exchange on the 1/J/sub NH/(10 ms) time scale, indicate that the amide protons in the C-terminus are freely accessible to solvent. It is thus a flexible arm in solution. The binding of both specific operator and nonspecific DNA is shown to reduce both the mobility and the degree of solvent exposure of this arm. Two-dimensional 15N-1H correlation experiments using 15N-labeled cro reveal inconsistencies with previously reported 1H NMR assignments for the lysine amides. This result suggests that those assignments require reexamination, illustrating the utility of 15N labeling for obtaining 1H resonance assignments of biomolecules. Furthermore, isomerization of the peptide bond of Pro-59, which has been previously suggested and which would significantly affect the properties of the C-terminal arm, is shown to not occur

  2. ZEB-1, a Repressor of the Semaphorin 3F Tumor Suppressor Gene in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Clarhaut

    2009-02-01

    Full Text Available SEMA3F is a secreted semaphorin with potent antitumor activity, which is frequently downregulated in lung cancer. In cancer cell lines, SEMA3F overexpression decreases hypoxia-induced factor 1α protein and vascular endothelial growth factor mRNA, and inhibits multiple signaling components. Therefore, understanding how SEMA3F expression is inhibited in cancer cells is important. We previously defined the promoter organization of SEMA3F and found that chromatin remodeling by a histone deacetylase inhibitor was sufficient to activate SEMA3F expression. In lung cancer, we have also shown that ZEB-1, an E-box transcription repressor, is predominantly responsible for loss of E-Cadherin associated with a poor prognosis and resistance to epidermal growth factor receptor inhibitors. In the present study, we demonstrated that ZEB-1 also inhibits SEMA3F in lung cancer cells. Levels of ZEB-1, but not ZEB-2, Snail or Slug, significantly correlate with SEMA3F inhibition, and overexpression or inhibition of ZEB-1 correspondingly affected SEMA3F expression. Four conserved E-box sites were identified in the SEMA3F gene. Direct ZEB-1 binding was confirmed by chromatin immunoprecipitation assays for two of these, and ZEB-1 binding was reduced when cells were treated with a histone deacetylase inhibitor. These results demonstrate that ZEB-1 directly inhibits SEMA3F expression in lung cancer cells. SEMA3F loss was associated with changes in cell signaling: increased phospho-AKT in normoxia and increase of hypoxia-induced factor 1α protein in hypoxia. Moreover, exogenous addition of SEMA3F could modulate ZEB-1-induced angiogenesis in a chorioallantoic membrane assay. Together, these data provide further support for the importance of SEMA3F and ZEB-1 in lung cancer progression.

  3. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte

    KAUST Repository

    Guerreiro, Ana

    2014-11-03

    Background Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown. Results We identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5′ untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development. Conclusions Our study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.

  4. 胰岛素诱导Zucker肥胖大鼠肾小球系膜细胞AP-1活化强度与基因型和鼠龄的关系:一项关于糖尿病肾损伤机制的研究%Relationship between the activity of AP-1 in glomrular mesangial cells induced by insulin to the ages and genotype of Zucker rats:a study of regarding injury of kidney induced by diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    甘卫华; 丁桂霞; 陈荣华

    2004-01-01

    目的 :研究胰岛素( INS)对体外培养的 Zucker大鼠肾小球系膜细胞( GMC)中核转录因子激活蛋白- 1( AP-1)活性的影响,观察 INS诱导的 AP-1活性的变化与 Zucker大鼠鼠龄及基因型的相关性. 方法:①采用 Zucker 肥胖大鼠( 3月龄和 10月龄)及 Zucker 瘦型大鼠( 3月龄和 10月龄)的 4种 GMC株( O3m, O10m, L3m ,L10m)进行传代培养.②利用凝胶迁移率实验( EMSA)和超迁移率实验检测不同浓度及不同时相 INS对 Zucker大鼠 GMC AP-1活性的影响,以及 AP-1二聚体中 c-jun和 c-fos成分的变化. 结果 :① INS诱导后, 4组 GMC内 AP-1活性均较对照组明显增强( F= 244.53, P< 0.01).②随着 INS刺激浓度增加和时间的延长, GMC内 AP-1活性相应增强, 0.5 mg/L的 INS刺激 15 h时, AP-1活性强度达最高峰.③ INS主要激活 AP-1二聚体成分中的 c-jun.④ O10m组 AP-1的活性显著高于 O3m组( q=10.72, P< 0.01), L10m组 AP-1的活性显著高于 L3m组( q=9.88, P< 0.01), O10m组显著高于 L10m组( P< 0.01) , O3m组显著高于 L3m组( q=16.37, P< 0.01). 结论 :INS可诱导 Zucker大鼠 GMC内 AP-1活化,其活化方式呈时间和浓度依赖;活化强度与大鼠的基因型及鼠龄密切相关; INS对 GMC内 AP-1的诱导活化在 Zucker肥胖大鼠晚期的肾损害中起着更为重要的作用.

  5. Stromelysin-3 induction and interstitial collagenase repression by retinoic acid. Therapeutical implication of receptor-selective retinoids dissociating transactivation and AP-1-mediated transrepression.

    Science.gov (United States)

    Guérin, E; Ludwig, M G; Basset, P; Anglard, P

    1997-04-25

    Human stromelysin-3 and interstitial collagenase are matrix metalloproteinases whose expression by stromal cells in several types of carcinomas has been associated with cancer progression. We compared here the regulation of the expression of both proteinases by retinoids in human fibroblasts. Physiological concentrations of retinoic acid were found to simultaneously induce stromelysin-3 and repress interstitial collagenase. In both cases, the involvement of a transcriptional mechanism was supported by run-on assays. Furthermore, in transient transfection experiments, the activity of the stromelysin-3 promoter was induced by retinoic acid through endogenous receptors acting on a DR1 retinoic acid-responsive element. The ligand-dependent activation of the receptors was also investigated by using selective synthetic retinoids, and we demonstrated that retinoic acid-retinoid X receptor heterodimers were the most potent functional units controlling both stromelysin-3 induction and interstitial collagenase repression. However, specific retinoids dissociating the transactivation and the AP-1-mediated transrepression functions of the receptors were found to repress interstitial collagenase without inducing stromelysin-3. These findings indicate that such retinoids may represent efficient inhibitors of matrix metalloproteinase expression in the treatment of human carcinomas. PMID:9111003

  6. AP1000反应堆厂房总体布置设计分析%Analysis of the Overall Layout Design of AP1 000 Reactor Plant

    Institute of Scientific and Technical Information of China (English)

    薛静; 马强

    2013-01-01

    The general layout design of nuclear power plant is an important stage in the whole design work, plays a decisive role to improve plant safety, economy. This paper introduces designs the overal arrangement in the AP1 000 reactor buildin-g, by analyzing the main characteristics of its layout, reviewes and discusses the design idea in the general arrangement of re-actor buildings, and provides some references for other power plant general layout designs.%核电站的总体布置设计是整个设计工作中的重要阶段,对提高电站的安全性、经济性有着举足轻重的作用。本文对AP1000的反应堆厂房内的总体布置设计进行介绍,通过分析其布置的主要特点,对其在反应堆厂房的总体布置中采取的设计理念进行总结和探讨,为其他电站的厂房总体布置设计提供一定的借鉴和参考。

  7. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    Science.gov (United States)

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  8. Isolation and identification of a repressor TetR for 3,17β-HSD expressional regulation in Comamonas testosteroni.

    Science.gov (United States)

    Pan, Tianyuan; Huang, Pu; Xiong, Guangming; Maser, Edmund

    2015-06-01

    Comamonas testosteroni (C. testosteroni) is able to catabolize a variety of steroids and polycyclic aromatic hydrocarbons. 3,17β-Hydroxysteroid dehydrogenase (3,17β-HSD) from C. testosteroni is a key enzyme in steroid degradation. Understanding the mechanism of 3,17β-HSD gene (βhsd) induction may help us to elucidate its complete molecular regulation. Sequencing the C. testosteroni ATCC11996 genome lead us to identify the tetR (522 bp) downstream of βhsd. Two repeat sequences (RS; 13 bp), that are separated to each other by 1661 bp, were found upstream of βhsd. A bioinformatic analysis revealed that TetR family proteins act as transcriptional repressors which are sensitive to environmental signals. Since, C. testosteroni responds to environmental steroid induction and upregulates steroid catabolic genes, we hypothesized that TetR might act in C. testosteroni as repressor for βhsd expression. The tetR was cloned into different plasmids, including an EGFP reporter system, for functional characterization and/or overexpression. The data indicate that, indeed, TetR acts as a repressor for 3,17β-HSD expression. Testosterone in turn, which is known to induce βhsd expression, could not resolve TetR repression. To further substantiate TetR as repressor for βhsd expression, a tetR gene knock-out mutant of C. testosteroni was generated. TetR gene knock-out mutants showed the same basal low level of βhsd expression as the C. testosteroni wild type cells. Interestingly, testosterone induction leads to a strong increase in βhsd expression, especially in the tetR gene knock-out mutants. The result with the knock-out mutant, in principle, supports our hypothesis that TetR is a repressor for βhsd expression, but the exact role of testosterone in this context remains unknown. Finally, it turned out that TetR is obviously also involved in the regulation of the hsdA gene. PMID:25559855

  9. Crystal Structure of the lamda Repressor and a Model for Pairwise Cooperative Operator Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stayrook,S.; Jaru-Ampornpan, P.; Ni, J.; Hochschild, A.; Lewis, M.

    2008-01-01

    Bacteriophage {lambda} has for many years been a model system for understanding mechanisms of gene regulation1. A 'genetic switch' enables the phage to transition from lysogenic growth to lytic development when triggered by specific environmental conditions. The key component of the switch is the cI repressor, which binds to two sets of three operator sites on the chromosome that are separated by about 2,400 base pairs (bp)2, 3. A hallmark of the system is the pairwise cooperativity of repressor binding4. In the absence of detailed structural information, it has been difficult to understand fully how repressor molecules establish the cooperativity complex. Here we present the X-ray crystal structure of the intact cI repressor dimer bound to a DNA operator site. The structure of the repressor, determined by multiple isomorphous replacement methods, reveals an unusual overall architecture that allows it to adopt a conformation that appears to facilitate pairwise cooperative binding to adjacent operator sites.

  10. Neuroendocrine differentiation factor, IA-1, is a transcriptional repressor and contains a specific DNA-binding domain: identification of consensus IA-1 binding sequence

    OpenAIRE

    Breslin, Mary B; Zhu, Min; Notkins, Abner L.; Lan, Michael S.

    2002-01-01

    A novel cDNA, insulinoma-associated antigen-1 (IA-1), containing five zinc-finger DNA-binding motifs, was isolated from a human insulinoma subtraction library. IA-1 expression is restricted to fetal but not adult pancreatic and brain tissues as well as tumors of neuroendocrine origin. Using various GAL4 DNA binding domain (DBD)/IA-1 fusion protein constructs, we demonstrated that IA-1 functions as a transcriptional repressor and that the region between amino acids 168 and 263 contains the maj...

  11. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4

    OpenAIRE

    Maria Delcuratolo; Jasmin Fertey; Markus Schneider; Johanna Schuetz; Natalie Leiprecht; Benjamin Hudjetz; Stephan Brodbeck; Silke Corall; Marcel Dreer; Roxana Michaela Schwab; Martin Grimm; Shwu-Yuan Wu; Frank Stubenrauch; Cheng-Ming Chiang; Thomas Iftner

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncog...

  12. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    International Nuclear Information System (INIS)

    Research highlights: → BTG2 associates with AR, androgen causes an increase of the interaction. → BTG2 as a co-repressor inhibits the AR-mediated transcription activity. → BTG2 inhibits the transcription activity and expression of PSA. → An intact 92LxxLL96 motif is essential and necessary for these activities of BTG2, while the 20LxxLL24 motif is not required. → Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs (20LxxLL24 and 92LxxLL96), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5α-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant 20LxxLL24 motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant 92LxxLL96 motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact 92LxxLL96 motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  13. A critical role for the co-repressor N-CoR in erythroid differentiation and heme synthesis

    Institute of Scientific and Technical Information of China (English)

    Dianzheng Zhang; Ellen Cho; Jiemin Wong

    2007-01-01

    Co-repressor N-CoR (nuclear receptor co-repressor) has important roles in different biological processes, including proliferation, differentiation and development. Mutant mice lacking N-CoR are embryonically lethal and appear to die from anemia owing to defects in definitive erythropoiesis. However, the underlying molecular mechanisms of N-CoR-mediated erythroid differentiation are largely unknown. Using the human erythroleukemic K562 cell line, which can be chemically induced to differentiate into either erythroid or megakaryocytic lineages depending on the inducers used, we have investigated the role of N-CoR in erythroid differentiation. We show that knockdown of N-CoR either transiently (siRNA) or permanently (shRNA) impairs the cytosine arabinoside (Ara-C)- but not hemin-induced erythroid differentiation of K562 cells. RT-PCR analysis reveals that N-CoR is required for induction by Ara-C of 5-aminolevulinate synthase (ALA-S2), a key enzyme involved in heme biosynthesis. Furthermore, the amount of N-CoR proteins increases significantly during Ara-C-induced K562 differentiation, apparently through a post-transcriptional mechanism. Consistent with the data from N-CoR-null mice, N-CoR is not required for the differentiation of K562 cells into megakaryocytic lineages, induced by phorbol 12-myristate 13-acetate. Thus, our in vitro study confirms a role for N-CoR in erythroid differentiation and reveals for the first time that N-CoR is required for the induction of a key enzyme involved in heme synthesis.

  14. Role of Bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Kandegedara, A.; Thiyagarajan, S; Kondapalli, K; Stemmler, T; Rosen, B

    2009-01-01

    The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to Cd(II)/Pb(II)/Zn(II). Expression is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. The crystal structure of CadC shows two types of metal binding sites, termed Site 1 and Site 2, and the homodimer has two of each. Site 1 is the physiological inducer binding site. The two Site 2 metal binding sites are formed at the dimerization interface. Site 2 is not regulatory in CadC but is regulatory in the homologue SmtB. Here the role of each site was investigated by mutagenesis. Both sites bind either Cd(II) or Zn(II). However, Site 1 has higher affinity for Cd(II) over Zn(II), and Site 2 prefers Zn(II) over Cd(II). Site 2 is not required for either derepression or dimerization. The crystal structure of the wild type with bound Zn(II) and of a mutant lacking Site 2 was compared with the SmtB structure with and without bound Zn(II). We propose that an arginine residue allows for Zn(II) regulation in SmtB and, conversely, a glycine results in a lack of regulation by Zn(II) in CadC. We propose that a glycine residue was ancestral whether the repressor binds Zn(II) at a Site 2 like CadC or has no Site 2 like the paralogous ArsR and implies that acquisition of regulatory ability in SmtB was a more recent evolutionary event.

  15. Aryl Hydrocarbon Receptor Repressor and TiPARP (ARTD14 Use Similar, but also Distinct Mechanisms to Repress Aryl Hydrocarbon Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Laura MacPherson

    2014-05-01

    Full Text Available The aryl hydrocarbon receptor (AHR regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. The AHR repressor (AHRR is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose polymerase (TiPARP; ARTD14 also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1 in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.

  16. Immunohistochemical analysis of the expression of cellular transcription NFκB (p65), AP-1 (c-Fos and c-Jun), and JAK/STAT in leprosy.

    Science.gov (United States)

    Silva, Luciana Mota; Hirai, Kelly Emi; de Sousa, Jorge Rodrigues; de Souza, Juarez; Fuzii, Hellen Thais; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2015-05-01

    Leprosy is a disease whose clinical spectrum depends on the cytokine patterns produced during the early stages of the immune response. The main objective of this study was to describe the activation pattern of cellular transcription factors and to correlate these factors with the clinical forms of leprosy. Skin samples were obtained from 16 patients with the tuberculoid (TT) form and 14 with the lepromatous (LL) form. The histologic sections were immunostained with anti-c-Fos and anti-c-Jun monoclonal antibodies for investigation of AP-1, anti-NFκB p65 for the study of NFκB, and anti-JAK2, STAT1, STAT3, and STAT4 for investigation of the JAK/STAT pathway. Cells expressing STAT1 were more frequent in the TT form than in LL lesions (P = .0096), in agreement with the protective immunity provided by IFN-γ. STAT4 was also more highly expressed in the TT form than in the LL form (P = .0098). This transcription factor is essential for the development of a Th1 response because it is associated with interleukin-12. NFκB (p65) and STAT4 expression in the TT form showed a strong and significant correlation (r = 0.7556 and P = .0007). A moderate and significant correlation was observed between JAK2 and STAT4 in the TT form (r = 0.6637 and P = .0051), with these factors responding to interleukin-12 in Th1 profiles. The results suggest that STAT1, JAK2, and NFκB, together with STAT4, contribute to the development of cell-mediated immunity, which is able to contain the proliferation of Mycobacterium leprae. PMID:25771902

  17. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes

    Directory of Open Access Journals (Sweden)

    Yang Chuen-Mao

    2012-01-01

    Full Text Available Abstract Background Japanese encephalitis virus (JEV infection is a major cause of acute encephalopathy in children, which destroys central nervous system (CNS cells, including astrocytes and neurons. Matrix metalloproteinase (MMP-9 has been shown to degrade components of the basal lamina, leading to disruption of the blood-brain barrier (BBB and to contribute to neuroinflammatory responses in many neurological diseases. However, the detailed mechanisms of JEV-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells are largely unclear. Methods In this study, the effect of JEV on expression of MMP-9 was determined by gelatin zymography, western blot analysis, RT-PCR, and promoter assay. The involvement of AP-1 (c-Jun and c-Fos, c-Src, PDGFR, PI3K/Akt, and MAPKs in these responses were investigated by using the selective pharmacological inhibitors and transfection with siRNAs. Results Here, we demonstrate that JEV induces expression of pro-form MMP-9 via ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent, AP-1 activation in RBA-1 cells. JEV-induced MMP-9 expression and promoter activity were inhibited by pretreatment with inhibitors of AP-1 (tanshinone, c-Src (PP1, PDGFR (AG1296, and PI3K (LY294002, and by transfection with siRNAs of c-Jun, c-Fos, PDGFR, and Akt. Moreover, JEV-stimulated AP-1 activation was inhibited by pretreatment with the inhibitors of c-Src, PDGFR, PI3K, and MAPKs. Conclusion From these results, we conclude that JEV activates the ROS/c-Src/PDGFR/PI3K/Akt/MAPKs pathway, which in turn triggers AP-1 activation and ultimately induces MMP-9 expression in RBA-1 cells. These findings concerning JEV-induced MMP-9 expression in RBA-1 cells imply that JEV might play an important role in CNS inflammation and diseases.

  18. Role of the lytic repressor in prophage induction of phage lambda as analyzed by a module-replacement approach.

    Science.gov (United States)

    Atsumi, Shota; Little, John W

    2006-03-21

    Using a module exchange approach, we have tested a long-standing model for the role of Cro repressor in lambda prophage induction. This epigenetic switch from lysogeny to the lytic state occurs on activation of the host SOS system, which leads to specific cleavage of CI repressor. It has been proposed that Cro repressor, which operates during lytic growth and which we shall term the lytic repressor, is crucial to prophage induction. In this view, Cro binds to the O(R)3 operator, thereby repressing the cI gene and making the switch irreversible. Here we tested this model by replacing lambda Cro with a dimeric form of Lac repressor and adding several lac operators. This approach allowed us to regulate the function of the lytic repressor at will and to prevent it from repressing cI, because lac repressor could not repress P(RM) in our constructs. Repression of cI by the lytic repressor was not required for prophage induction to occur. However, our evidence suggests that this binding can make induction more efficient, particularly at intermediate levels of DNA damage that otherwise cause induction of only a fraction of the population. These results indicate that this strategy of module exchange will have broad applications for analysis of gene regulatory circuits. PMID:16537413

  19. Structural Modeling of DNA Loops in Lactose-Repressor

    CERN Document Server

    Goyal, S; Goyal, Sachin; Perkins, Noel C.

    2007-01-01

    It is well known that the structural deformations (stressed states) of DNA molecule play a crucial role in its biological functions including gene expression. For instance, looping in DNA (often mediated by protein binding) is a crucial step in many gene regulatory mechanisms. We use the mechanical rod model of DNA molecules to simulate its structural interactions with proteins (enzymes) during gene expression. Our rod model can simulate the nonlinear dynamics of loop and supercoil formation in DNA on long length scales. The formulation accounts for the structural stiffness of the DNA strand, its intrinsic curvature, chiral (right-handed helical) construction and its physical interactions with the surrounding medium. The simulations of protein-mediated DNA looping illustrate how the mechanical properties of DNA may affect the chemical kinetics of DNA-protein interactions and thereby regulate gene expression.

  20. Effects of Task Familiarity on Stress Responses of Repressors and Sensitizers

    Science.gov (United States)

    Pagano, Don F.

    1973-01-01

    R.S. Lazarus's theory of coping was used to investigate appraisal and reappraisal of threat in repressors and sensitizers. Two indexes of stress, self-report ratings of affect and palmar skin conductance, were measured prior to performance on a reaction time task, after one-third of the task was completed and after two-thirds of the task was…

  1. A single mutation in the core domain of the lac repressor reduces leakiness

    NARCIS (Netherlands)

    Gatti-Lafranconi, Pietro; Dijkman, Willem; Devenish, Sean RA; Hollfelder, Florian

    2013-01-01

    The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements

  2. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    Czech Academy of Sciences Publication Activity Database

    Gillard, N.; Goffinont, S.; Buré, C.; Davídková, Marie; Maurizot, J. C.; Cadene, M.; Spotheim-Maurizot, M.

    2007-01-01

    Roč. 403, part 3 (2007), s. 463-472. ISSN 0264-6021 R&D Projects: GA MŠk 1P05OC085 Institutional research plan: CEZ:AV0Z10480505 Keywords : ionizing radiation * oxidative damage * DNA binding domain * lac repressor Subject RIV: CE - Biochemistry Impact factor: 4.009, year: 2007

  3. Dynamical analysis on gene activity in the presence of repressors and an interfering promoter.

    Science.gov (United States)

    Nakanishi, Hiizu; Mitarai, Namiko; Sneppen, Kim

    2008-11-01

    Transcription is regulated through interplay among transcription factors, an RNA polymerase (RNAP), and a promoter. Even for a simple repressive transcription factor that disturbs promoter activity at initial binding of RNAP, its repression level is not determined solely by the dissociation constant of transcription factor but is sensitive to timescales of processes in RNAP. We first analyze the promoter activity under strong repression by a slow binding repressor, in which case transcription events occur in bursts, followed by long quiescent periods while a repressor binds to the operator; the number of transcription events, bursting, and quiescent times are estimated by reaction rates. We then examine interference effect from an opposing promoter, using the correlation function of initiation events for a single promoter. The interference is shown to de-repress the promoter because RNAPs from the opposing promoter most likely encounter the repressor and remove it in case of strong repression. This de-repression mechanism should be especially prominent for the promoters that facilitate fast formation of open complex with the repressor whose binding rate is slower than approximately 1/s. Finally, we discuss possibility of this mechanism for high activity of promoter PR in the hyp-mutant of lambda-phage. PMID:18658208

  4. In vitro transcription accurately predicts lac repressor phenotype in vivo in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Matthew Almond Sochor

    2014-07-01

    Full Text Available A multitude of studies have looked at the in vivo and in vitro behavior of the lac repressor binding to DNA and effector molecules in order to study transcriptional repression, however these studies are not always reconcilable. Here we use in vitro transcription to directly mimic the in vivo system in order to build a self consistent set of experiments to directly compare in vivo and in vitro genetic repression. A thermodynamic model of the lac repressor binding to operator DNA and effector is used to link DNA occupancy to either normalized in vitro mRNA product or normalized in vivo fluorescence of a regulated gene, YFP. An accurate measurement of repressor, DNA and effector concentrations were made both in vivo and in vitro allowing for direct modeling of the entire thermodynamic equilibrium. In vivo repression profiles are accurately predicted from the given in vitro parameters when molecular crowding is considered. Interestingly, our measured repressor–operator DNA affinity differs significantly from previous in vitro measurements. The literature values are unable to replicate in vivo binding data. We therefore conclude that the repressor-DNA affinity is much weaker than previously thought. This finding would suggest that in vitro techniques that are specifically designed to mimic the in vivo process may be necessary to replicate the native system.

  5. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  6. Consequences of intramolecular dityrosine formation on a DNA-protein complex: a molecular modeling study

    International Nuclear Information System (INIS)

    Irradiation of the free lac repressor with γ-rays abolishes protein's ability to specifically bind operator DNA. A possible radiation-induced protein damage is a dityrosine (DTyr) formed by two spatially close radiation-induced tyrosyl radicals. We performed the molecular modeling of complexes between operator DNA and DTyr-bearing parts (headpieces) of the repressor. The presence of DTyr affects the structure and the interactions between partners. A detailed analysis allows to conclude this damage can partially account for the loss of repressor ability to bind DNA

  7. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  8. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  9. Purification, crystallization and preliminary X-ray diffraction studies of the arsenic repressor ArsR from Corynebacterium glutamicum

    International Nuclear Information System (INIS)

    The cysteine free derivative of the arsenic repressor ArsR from Corynebacterium glutamicum was expressed, purified, crystallized and X-ray diffraction data up to 1.86 Å resolution have been collected. The crystals belonged to the space group P4 with the unit-cell parameters a = b = 41.84, c = 99.47 Å. ArsR is a member of the SmtB/ArsR family of metalloregulatory proteins that regulate prokaryotic arsenic-resistance operons. Here, the crystallization and preliminary X-ray diffraction studies of a cysteine-free derivative of ArsR from Corynebacterium glutamicum (CgArsR-C15/16/55S) are reported. CgArsR-C15/16/55S was expressed, purified, crystallized and X-ray diffraction data were collected to 1.86 Å resolution. The protein crystallized in a tetragonal space group (P4), with unit-cell parameters a = b = 41.84, c = 99.47 Å

  10. Quantitative comparison of DNA detection by GFP-lac repressor tagging, fluorescence in situ hybridization and immunostaining

    Directory of Open Access Journals (Sweden)

    Rohr Karl

    2007-12-01

    Full Text Available Abstract Background GFP-fusion proteins and immunostaining are methods broadly applied to investigate the three-dimensional organization of cells and cell nuclei, the latter often studied in addition by fluorescence in situ hybridization (FISH. Direct comparisons of these detection methods are scarce, however. Results We provide a quantitative comparison of all three approaches. We make use of a cell line that contains a transgene array of lac operator repeats which are detected by GFP-lac repressor fusion proteins. Thus we can detect the same structure in individual cells by GFP fluorescence, by antibodies against GFP and by FISH with a probe against the transgene array. Anti-GFP antibody detection was repeated after FISH. Our results show that while all four signals obtained from a transgene array generally showed qualitative and quantitative similarity, they also differed in details. Conclusion Each of the tested methods revealed particular strengths and weaknesses, which should be considered when interpreting respective experimental results. Despite the required denaturation step, FISH signals in structurally preserved cells show a surprising similarity to signals generated before denaturation.

  11. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    International Nuclear Information System (INIS)

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit

  12. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes, E-mail: beatriz@lnls.br; Benedetti, Celso Eduardo, E-mail: beatriz@lnls.br [Center for Molecular and Structural Biology, Brazilian Synchrotron Light Laboratory, Campinas, SP, CP 6192, CEP 13083-970 (Brazil)

    2007-07-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit.

  13. Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes

    OpenAIRE

    Sitaram, Anand; Dennis, Megan K.; Chaudhuri, Rittik; De Jesus-Rojas, Wilfredo; Tenza, Danièle; Setty, Subba Rao Gangi; Wood, Christopher S.; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Bonifacino, Juan S.; Marks, Michael S.

    2012-01-01

    Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to...

  14. microRNA let-7c is essential for the anisomycin-elicited apoptosis in Jurkat T cells by linking JNK1/2 to AP-1/STAT1/STAT3 signaling.

    Science.gov (United States)

    Zhou, Zhiwei; Lu, Xijian; Wang, Jin; Xiao, Jia; Liu, Jing; Xing, Feiyue

    2016-01-01

    Anisomycin, an antibiotic produced by Streptomyces griseolus, strongly induces apoptosis in various tumor cells in vitro, superior dramatically to adriamycin. The present study aims to elucidate its detailed mechanistic process. The results showed that anisomycin sufficiently promoted the apoptosis in human leukemic Jurkat T cells at a quite low dose. microRNA let-7c (let-7c) contributed to the anisomycin-induced apoptosis, which could be abrogated by the inactivation of JNK signaling. The let-7c over-expression and the addition of its mimics facilitated the activation of AP-1, STAT1 and Bim by linking JNK1/2 to AP-1/STAT1, but rather inhibited the activation of STAT3 and Bcl-xL by connecting JNK1/2 to STAT3, followed by the augmented apoptosis in the cells. The let-7c deficiency reduced the AP-1, STAT1 and Bim activities, and enhanced the STAT3 and Bcl-xL, alleviating the anisomycin-induced apoptosis. The knockdown of the bim gene repressed the anisomycin-boosted apoptosis through the attenuation of the active Bak and Bax. The findings indicate for the first time that miR let-7c is essential for the anisomycin-triggered apoptosis by linking JNK1/2 to AP-1/STAT1/STAT3/Bim/Bcl-xL/Bax/Bak signaling. This provides a novel insight into the mechanism by which anisomycin leads to the tumor cell apoptosis, potentially laying the foundations for its development and clinical application. PMID:27087117

  15. Protein Quadratic Indices of the “Macromolecular Pseudograph’s α-Carbon Atom Adjacency Matrix”. 1. Prediction of Arc Repressor Alanine-mutant’s Stability

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2004-12-01

    Full Text Available This report describes a new set of macromolecular descriptors of relevance toprotein QSAR/QSPR studies, protein’s quadratic indices. These descriptors are calculatedfrom the macromolecular pseudograph’s α-carbon atom adjacency matrix. A study of theprotein stability effects for a complete set of alanine substitutions in Arc repressorillustrates this approach. Quantitative Structure-Stability Relationship (QSSR modelsallow discriminating between near wild-type stability and reduced-stability A-mutants. Alinear discriminant function gives rise to excellent discrimination between 85.4% (35/41and 91.67% (11/12 of near wild-type stability/reduced stability mutants in training andtest series, respectively. The model’s overall predictability oscillates from 80.49 until82.93, when n varies from 2 to 10 in leave-n-out cross validation procedures. This valuestabilizes around 80.49% when n was

  16. Model of the Brain Tumor–Pumilio translation repressor complex

    Science.gov (United States)

    Edwards, Thomas A.; Wilkinson, Brian D.; Wharton, Robin P.; Aggarwal, Aneel K.

    2003-01-01

    The Brain Tumor (Brat) protein is recruited to the 3′ untranslated region (UTR) of hunchback mRNA to regulate its translation. Recruitment is mediated by interactions between the Pumilio RNA-binding Puf repeats and the NHL domain of Brat, a conserved structural motif present in a large family of growth regulators. In this report, we describe the crystal structure of the Brat NHL domain and present a model of the Pumilio–Brat complex derived from in silico docking experiments and supported by mutational analysis of the protein–protein interface. A key feature of the model is recognition of the outer, convex surface of the Pumilio Puf domain by the top, electropositive face of the six-bladed Brat β-propeller. In particular, an extended loop in Puf repeat 8 fits in the entrance to the central channel of the Brat β-propeller. Together, these interactions are likely to be prototypic of the recruitment strategies of other NHL-containing proteins in development. PMID:14561773

  17. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses.

    Directory of Open Access Journals (Sweden)

    Sandra Fonseca

    Full Text Available Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs. Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.

  18. Spo0A positively regulates epr expression by negating the repressive effect of co-repressors, SinR and ScoC, in Bacillus subtilis

    Indian Academy of Sciences (India)

    Monica Gupta; Madhulika Dixit; K Krishnamurthy Rao

    2013-06-01

    Bacillus subtilis under nutritional deprivation exhibits several physiological responses such as synthesis of degradative enzymes, motility, competence, sporulation, etc. At the onset of post-exponential phase the global response regulator, Spo0A, directly or indirectly activates the expression of genes involved in the above processes. These genes are repressed during the exponential phase by a group of proteins called transition state regulators, e.g. AbrB, ScoC and SinR. One such post-exponentially expressed gene is epr, which encodes a minor extracellular serine protease and is involved in the swarming motility of B. subtilis. Deletion studies of the upstream region of epr promoter revealed that epr is co-repressed by transition state regulators, SinR and ScoC. Our study shows that Spo0A positively regulates epr expression by nullifying the repressive effect of co-repressors, SinR and ScoC. We demonstrate via in vitro mobility shift assays that Spo0A binds to the upstream region of epr promoter and in turn occludes the binding site of one of the co-repressor, SinR. This explains the mechanism behind the positive regulatory effect of Spo0A on epr expression.

  19. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri...

  20. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Selena Gimenez-Ibanez

    2014-02-01

    Full Text Available Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR, which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile. Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.

  1. Model of the Brain Tumor–Pumilio translation repressor complex

    OpenAIRE

    Edwards, Thomas A.; Wilkinson, Brian D.; Wharton, Robin P.; Aggarwal, Aneel K.

    2003-01-01

    The Brain Tumor (Brat) protein is recruited to the 3′ untranslated region (UTR) of hunchback mRNA to regulate its translation. Recruitment is mediated by interactions between the Pumilio RNA-binding Puf repeats and the NHL domain of Brat, a conserved structural motif present in a large family of growth regulators. In this report, we describe the crystal structure of the Brat NHL domain and present a model of the Pumilio–Brat complex derived from in silico docking experiments and supported by ...

  2. Adaptor protein complexes and intracellular transport

    OpenAIRE

    2014-01-01

    The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers th...

  3. Situational Discrimination in Repressor-type and Sensitizer-type Approval Seekers and the Birth Order by Subject Sex Interaction

    Science.gov (United States)

    Becker, Gilbert

    1970-01-01

    Five experiments are reported. One conclusion in that repressor-type high need-for-approval subjects made the discrimination and permitted less favorable self-description, but sensitizer-type high need-for-approval subjects did not. (DB)

  4. Repressors report fewer intrusions following a laboratory stressor: the role of reduced stressor-relevant concept activation and inhibitory functioning.

    Science.gov (United States)

    Overwijk, Sippie; Wessel, Ineke; de Jong, Peter J

    2009-03-01

    This study investigated whether a repressive coping style is associated with fewer intrusions following an experimentally controlled stressor. Furthermore, we examined whether lower activation of stressor-relevant concepts in long-term memory and better inhibitory functioning may contribute to this association. Extreme-scoring participants on a trait anxiety and a social desirability scale were selected to form repressor (n=35), low anxious (n=15), high anxious (n=30), and defensive (n=21) groups. In line with predictions, repressors reported fewer intrusions following a failure manipulation compared to non-repressors. Furthermore, pre-stressor inhibitory functioning was negatively associated with color-naming interference of stressor-related words. This suggests that overall, higher inhibitory control is related to lower activation of failure-related concepts. However, there was no evidence that concept activation and inhibitory control were responsible for repressors' lower number of self-reported intrusions. PMID:18937086

  5. Cro repressor structure and its interaction with DNA

    International Nuclear Information System (INIS)

    Cro is a small dimeric protein of 66 amino acide that binds to specific sites (operatore) on the genome of bacteriophage λ, and prevents (represses) transcription. There are six Cro-specific sites, each of which consists of a slightly different 17-base-pair DNA segment with approximate two-fold sequence symmetry. The three-dimensional structure of Cro has been determined by x-ray crystallography and shown to consist of three α-helices(α1,α2,α3) and a three-stranded antiparallel β-sheet. The third α-helix (α3)protrudes from the surface of the protein and, as described, is an obvious candidate for an interaction with DNA. Resides 55-61 of each monomer extend and lie against the surface of the other monomer. Phe 58, in particular, makes intimate hydrophobic contact with its partner subunit. The carboxyl-terminal residues 62-66 are disordered in the crystals and, presumably, in solution as well

  6. LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain.

    Science.gov (United States)

    Wang, Yixuan; Wu, Qian; Yang, Peng; Wang, Chenfei; Liu, Jing; Ding, Wenyu; Liu, Wensu; Bai, Ye; Yang, Yuanyuan; Wang, Hong; Gao, Shaorong; Wang, Xiaoqun

    2016-01-01

    Epigenetic regulatory complexes play key roles in the modulation of transcriptional regulation underlying neural stem cell (NSC) proliferation and progeny specification. How specific cofactors guide histone demethylase LSD1/KDM1A complex to regulate distinct NSC-related gene activation and repression in cortical neurogenesis remains unclear. Here we demonstrate that Rcor2, a co-repressor of LSD1, is mainly expressed in the central nervous system (CNS) and plays a key role in epigenetic regulation of cortical development. Depletion of Rcor2 results in reduced NPC proliferation, neuron population, neocortex thickness and brain size. We find that Rcor2 directly targets Dlx2 and Shh, and represses their expressions in developing neocortex. In addition, inhibition of Shh signals rescues the neurogenesis defects caused by Rcor2 depletion both in vivo and in vitro. Hence, our findings suggest that co-repressor Rcor2 is critical for cortical development by repressing Shh signalling pathway in dorsal telencephalon. PMID:26795843

  7. Funktionale Analysen zur SUMOylierung des transkriptionellen Repressors L3MBTL2

    OpenAIRE

    Stielow, Christina

    2013-01-01

    L3MBTL2 ist ein Mitglied der Familie von MBT-Domänen Proteinen. MBT-Domänen vermitteln die Bindung an methylierte Lysinreste innerhalb der N-Termini von Histonen. L3MBTL2 wurde als transkriptioneller Repressor beschrieben und ist ein Bestandteil verschiedener Multiproteinkomplexe. In Mäusen besitzt L3MBTL2 eine essentielle Funktion für die Embryonalentwicklung und beeinflusst die Proliferation muriner embryonaler Stammzel...

  8. ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis.

    Science.gov (United States)

    Janesick, Amanda; Abbey, Rachelle; Chung, Connie; Liu, Sophia; Taketani, Mao; Blumberg, Bruce

    2013-08-01

    Cells in the developing neural tissue demonstrate an exquisite balance between proliferation and differentiation. Retinoic acid (RA) is required for neuronal differentiation by promoting expression of proneural and neurogenic genes. We show that RA acts early in the neurogenic pathway by inhibiting expression of neural progenitor markers Geminin and Foxd4l1, thereby promoting differentiation. Our screen for RA target genes in early Xenopus development identified Ets2 Repressor Factor (Erf) and the closely related ETS repressors Etv3 and Etv3-like (Etv3l). Erf and Etv3l are RA responsive and inhibit the action of ETS genes downstream of FGF signaling, placing them at the intersection of RA and growth factor signaling. We hypothesized that RA regulates primary neurogenesis by inducing Erf and Etv3l to antagonize proliferative signals. Loss-of-function analysis showed that Erf and Etv3l are required to inhibit proliferation of neural progenitors to allow differentiation, whereas overexpression of Erf led to an increase in the number of primary neurons. Therefore, these RA-induced ETS repressors are key components of the proliferation-differentiation switch during primary neurogenesis in vivo. PMID:23824578

  9. Accurate genetic switch in Escherichia coli: novel mechanism of regulation by co-repressor.

    Science.gov (United States)

    Tabaka, Marcin; Cybulski, Olgierd; Hołyst, Robert

    2008-04-01

    Understanding a biological module involves recognition of its structure and the dynamics of its principal components. In this report we present an analysis of the dynamics of the repression module within the regulation of the trp operon in Escherichia coli. We combine biochemical data for reaction rate constants for the trp repressor binding to trp operator and in vivo data of a number of tryptophan repressors (TrpRs) that bind to the operator. The model of repression presented in this report greatly differs from previous mathematical models. One, two or three TrpRs can bind to the operator and repress the transcription. Moreover, reaction rates for detachment of TrpRs from the operator strongly depend on tryptophan (Trp) concentration, since Trp can also bind to the repressor-operator complex and stabilize it. From the mathematical modeling and analysis of reaction rates and equilibrium constants emerges a high-quality, accurate and effective module of trp repression. This genetic switch responds accurately to fast consumption of Trp from the interior of a cell. It switches with minimal dispersion when the concentration of Trp drops below a thousand molecules per cell. PMID:18313075

  10. The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop.

    Science.gov (United States)

    Miles, Wayne O; Lepesant, Julie M J; Bourdeaux, Jessie; Texier, Manuela; Kerenyi, Marc A; Nakakido, Makoto; Hamamoto, Ryuji; Orkin, Stuart H; Dyson, Nicholas J; Di Stefano, Luisa

    2015-12-01

    The lysine (K)-specific demethylase (LSD1) family of histone demethylases regulates chromatin structure and the transcriptional potential of genes. LSD1 is frequently deregulated in tumors, and depletion of LSD1 family members causes developmental defects. Here, we report that reductions in the expression of the Pumilio (PUM) translational repressor complex enhanced phenotypes due to dLsd1 depletion in Drosophila. We show that the PUM complex is a target of LSD1 regulation in fly and mammalian cells and that its expression is inversely correlated with LSD1 levels in human bladder carcinoma. Unexpectedly, we find that PUM posttranscriptionally regulates LSD1 family protein levels in flies and human cells, indicating the existence of feedback loops between the LSD1 family and the PUM complex. Our results highlight a new posttranscriptional mechanism regulating LSD1 activity and suggest that the feedback loop between the LSD1 family and the PUM complex may be functionally important during development and in human malignancies. PMID:26438601

  11. High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    Directory of Open Access Journals (Sweden)

    Du Peige

    2008-10-01

    Full Text Available Abstract Background Estrogen receptor α (ERα is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2. Results From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131 as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE. In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene. Conclusion We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells.

  12. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  13. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation

    Directory of Open Access Journals (Sweden)

    Seiboth Bernhard

    2011-05-01

    Full Text Available Abstract Background The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR: it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known. Results Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina by profiling transcription in a wild-type and a delta-cre1 mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes. Conclusions Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.

  14. The transcriptional repressor DREAM is involved in thyroid gene expression

    International Nuclear Information System (INIS)

    Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds to DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca2+ interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function

  15. Repressor Mutant Forms of the Azospirillum brasilense NtrC Protein

    OpenAIRE

    Huergo, Luciano F.; Assumpção, Marcelo C.; Emanuel M. Souza; Steffens, M. Berenice R.; Yates, M. Geoffrey; Chubatsu, Leda S; Pedrosa, Fábio O.

    2004-01-01

    The Azospirillum brasilense mutant strains FP8 and FP9, after treatment with nitrosoguanidine, showed a null Nif phenotype and were unable to use nitrate as their sole nitrogen source. Sequencing of the ntrC genes revealed single nucleotide mutations in the NtrC nucleotide-binding site. The phenotypes of these strains are discussed in relation to their genotypes.

  16. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hartmann Michelle

    2007-11-01

    Full Text Available Abstract Background The major uptake system responsible for the transport of fructose, glucose, and sucrose in Corynebacterium glutamicum ATCC 13032 is the phosphoenolpyruvate:sugar phosphotransferase system (PTS. The genes encoding PTS components, namely ptsI, ptsH, and ptsF belong to the fructose-PTS gene cluster, whereas ptsG and ptsS are located in two separate regions of the C. glutamicum genome. Due to the localization within and adjacent to the fructose-PTS gene cluster, two genes coding for DeoR-type transcriptional regulators, cg2118 and sugR, are putative candidates involved in the transcriptional regulation of the fructose-PTS cluster genes. Results Four transcripts of the extended fructose-PTS gene cluster that comprise the genes sugR-cg2116, ptsI, cg2118-fruK-ptsF, and ptsH, respectively, were characterized. In addition, it was shown that transcription of the fructose-PTS gene cluster is enhanced during growth on glucose or fructose when compared to acetate. Subsequently, the two genes sugR and cg2118 encoding for DeoR-type regulators were mutated and PTS gene transcription was found to be strongly enhanced in the presence of acetate only in the sugR deletion mutant. The SugR regulon was further characterized by microarray hybridizations using the sugR mutant and its parental strain, revealing that also the PTS genes ptsG and ptsS belong to this regulon. Binding of purified SugR repressor protein to a 21 bp sequence identified the SugR binding site as an AC-rich motif. The two experimentally identified SugR binding sites in the fructose-PTS gene cluster are located within or downstream of the mapped promoters, typical for transcriptional repressors. Effector studies using electrophoretic mobility shift assays (EMSA revealed the fructose PTS-specific metabolite fructose-1-phosphate (F-1-P as a highly efficient, negative effector of the SugR repressor, acting in the micromolar range. Beside F-1-P, other sugar-phosphates like fructose

  17. Transcriptional factor typing with SOX2, HNF4aP1, and CDX2 closely relates to tumor invasion and Epstein-Barr virus status in gastric cancer

    OpenAIRE

    Uozaki, Hiroshi; Barua, Rita Rani; Minhua, Sun; Ushiku, Tetsuo; Hino, Rumi; Shinozaki, Aya; Sakatani, Takashi; Fukayama, Masashi

    2011-01-01

    Background: Gastric cancer (GC) is a major cancer, sometimes associated with Epstein-Barr virus (EBV). Some transcriptional factors (TFs) are specific to the digestive tract and related to the character of the tumors. Methods: We studied three TFs, SOX2, CDX2, and hepatocyte nuclear factor 4 alpha-promoter 1 (HNF4aP1) in GC. First, 255 tumors including 31 EBV-associated GC were immunohistochemically examined using tissue arrays and compared TF type and mucin phenotype. We classified them into...

  18. The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

    Directory of Open Access Journals (Sweden)

    Gullberg Urban

    2010-05-01

    Full Text Available Abstract Background The Eight-Twenty-One (ETO nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16 and myeloid translocation Gene-Related protein 1 (MTGR1. By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function. Results A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells. Conclusions We demonstrate that the GATA-1 transcription factor binds and

  19. Repressor element-1 silencing transcription factor/neuronal restrictive silencer factor (REST/NRSF can regulate HSV-1 immediate-early transcription via histone modification

    Directory of Open Access Journals (Sweden)

    Hill James M

    2007-06-01

    Full Text Available Abstract Background During primary infection of its human host, Herpes Simplex Virus Type-1 (HSV-1 establishes latency in neurons where the viral genome is maintained in a circular form associated with nucleosomes in a chromatin configration. During latency, most viral genes are silenced, although the molecular mechanisms responsible for this are unclear. We hypothesized that neuronal factors repress HSV-1 gene expression during latency. A search of the HSV-1 DNA sequence for potential regulatory elements identified a Repressor Element-1/Neuronal Restrictive Silencer Element (RE-1/NRSE located between HSV-1 genes ICP22 and ICP4. We predicted that the Repressor Element Silencing Transcription Factor/Neuronal Restrictive Silencer Factor (REST/NRSF regulates expression of ICP22 and ICP4. Results Transient cotransfection indicated that REST/NRSF inhibited the activity of both promoters. In contrast, cotransfection of a mutant form of REST/NRSF encoding only the DNA-binding domain of the protein resulted in less inhibition. Stably transformed cell lines containing episomal reporter plasmids with a chromatin structure showed that REST/NRSF specifically inhibited the ICP4 promoter, but not the ICP22 promoter. REST/NRSF inhibition of the ICP4 promoter was reversed by histone deacetylase (HDAC inhibitor Trichostatin A (TSA. Additionally, chromatin immuno-precipitation (ChIP assays indicated that the corepressor CoREST was recruited to the proximity of ICP4 promoter and that acetylation of histone H4 was reduced in the presence of REST/NRSF. Conclusion Since the ICP4 protein is a key transactivator of HSV-1 lytic cycle genes, these results suggest that REST/NRSF may have an important role in the establishment and/or maintenance of HSV-1 gene silencing during latency by targeting ICP4 expression.

  20. Overexpression of the novel MATE fluoroquinolone efflux pump FepA in Listeria monocytogenes is driven by inactivation of its local repressor FepR.

    Directory of Open Access Journals (Sweden)

    François Guérin

    Full Text Available Whereas fluoroquinolone resistance mainly results from target modifications in gram-positive bacteria, it is primarily due to active efflux in Listeria monocytogenes. The aim of this study was to dissect a novel molecular mechanism of fluoroquinolone resistance in this important human pathogen. Isogenic L. monocytogenes clinical isolates BM4715 and BM4716, respectively susceptible and resistant to fluoroquinolones, were studied. MICs of norfloxacin and ciprofloxacin were determined in the presence or in the absence of reserpine (10 mg/L. Strain BM4715 was susceptible to norfloxacin (MIC, 4 mg/L and ciprofloxacin (MIC, 0.5 mg/L whereas BM4716 was highly resistant to both drugs (MICs 128 and 32 mg/L, respectively. Reserpine was responsible for a 16-fold decrease in both norfloxacin and ciprofloxacin MICs against BM4716 suggesting efflux associated resistance. Whole-genome sequencing of the strains followed by comparative genomic analysis revealed a single point mutation in the gene for a transcriptional regulator, designated fepR (for fluoroquinolone efflux protein regulator belonging to the TetR family. The frame-shift mutation was responsible for the introduction of a premature stop codon resulting in an inactive truncated protein. Just downstream from fepR, the structural gene for an efflux pump of the MATE family (named FepA was identified. Gene expression was quantified by qRT-PCR and demonstrated that fepA expression was more than 64-fold higher in BM4716 than in BM4715. The clean deletion of the fepR gene from BM4715 was responsible for an overexpression of fepA with resistance to norfloxacin and ciprofloxacin, confirming the role of FepR as a local repressor of fepA. In conclusion, we demonstrated that overexpression of the new MATE efflux pump FepA is responsible for fluoroquinolone resistance in L. monocytogenes and secondary to inactivation of the FepR repressor.

  1. Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding.

    Science.gov (United States)

    Hong, Jiang; Capp, Mike W; Saecker, Ruth M; Record, M Thomas

    2005-12-27

    Thermodynamic analysis of urea-biopolymer interactions and effects of urea on folding of proteins and alpha-helical peptides shows that urea interacts primarily with polar amide surface. Urea is therefore predicted to be a quantitative probe of coupled folding, remodeling, and other large-scale changes in the amount of water-accessible polar amide surface in protein processes. A parallel analysis indicates that glycine betaine [N,N,N-trimethylglycine (GB)] can be used to detect burial or exposure of anionic (carboxylate, phosphate) biopolymer surface. To test these predictions, we have investigated the effects of these solutes (0-3 m) on the formation of 1:1 complexes between lac repressor (LacI) and its symmetric operator site (SymL) at a constant KCl molality. Urea reduces the binding constant K(TO) [initial slope dlnK(TO)/dm(urea) = -1.7 +/- 0.2], and GB increases K(TO) [initial slope dlnK(TO)/dm(GB) = 2.1 +/- 0.2]. For both solutes, this derivative decreases with an increase in solute concentration. Analysis of these initial slopes predicts that (1.5 +/- 0.3) x 10(3) A2 of polar amide surface and (4.5 +/- 1.0) x 10(2) A2 of anionic surface are buried in the association process. Analysis of published structural data, together with modeling of unfolded regions of free LacI as extended chains, indicates that 1.5 x 10(3) A2 of polar amide surface and 6.3 x 10(2) A2 of anionic surface are buried in complexation. Quantitative agreement between structural and thermodynamic results is obtained for amide surface (urea); for anionic surface (GB), the experimental value is approximately 70% of the structural value. For LacI-SymL binding, two-thirds of the structurally predicted change in amide surface (1.0 x 10(3) A2) occurs outside the protein-DNA interface in protein-protein interfaces formed by folding of the hinge helices and interactions of the DNA binding domain (DBD) with the core of the repressor. Since urea interacts principally with amide surface, it is

  2. Fragile X mental retardation protein and synaptic plasticity

    OpenAIRE

    Sidorov, Michael S.; Auerbach, Benjamin D.; Bear, Mark F.

    2013-01-01

    Loss of the translational repressor FMRP causes Fragile X syndrome. In healthy neurons, FMRP modulates the local translation of numerous synaptic proteins. Synthesis of these proteins is required for the maintenance and regulation of long-lasting changes in synaptic strength. In this role as a translational inhibitor, FMRP exerts profound effects on synaptic plasticity.

  3. [Expression of cyclin-dependent kinase 2-associated protein 1 in chicken embryos of different sexes].

    Science.gov (United States)

    Yang, Yu; Feng, Yan-Ping; Gong, Ping; Huang, Pan; Li, Shi-Jun; Peng, Xiu-Li; Gong, Yan-Zhang

    2009-09-01

    To investigate the expression and functions of cyclin-dependent kinase 2-associated protein 1 (cdk2ap1) screened by suppression subtractive hybridization in chicken embryo development, a pair of primers was designed to amplify the cdk2ap1 fragment by RT-PCR and subsequently the fragment obtained was cloned into the plasmid pGEM-T. Sense and antisense probes labeled with digoxigenin were generated using SP6 and T7 RNA polymerases, respectively, and used to examine cdk2ap1 expression in chicken embryos of both sexes by whole-mount in situ hybridization. In both sexes, cdk2ap1 was expressed in the head mesenchyme, rhombencephalon, optic vesicles, spinal neural tube, and forelimb of 4.0-day-old embryos and the expression in males was significantly higher than that in females. In addition, in the genital ridge and hindlimb of the 4.0-day-old chicken embryo, cdk2ap1 was obviously expressed in the males but not in females. It is supposed that cdk2ap1 may play a role in the sexual differentiation and development of gonad of chicken embryo. PMID:19819846

  4. Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon.

    OpenAIRE

    Gui, L.; Sunnarborg, A; Pan, B.; LaPorte, D C

    1996-01-01

    The aceBAK operon was partially induced by a multicopy plasmid which carried the promoter region of the gene which encodes its repressor, iclR. Gel shift and DNase I analyses demonstrated that IclR binds to its own promoter. Disruption of iclR increased the expression of an iclR::lacZ operon fusion. Although aceBAK and iclR are both regulated by IclR, aceBAK expression responds to the carbon source, while expression of iclR does not.

  5. Highly Specific Epigenome Editing by CRISPR/Cas9 Repressors for Silencing of Distal Regulatory Elements

    OpenAIRE

    Thakore, Pratiksha I; D’Ippolito, Anthony M.; Song, Lingyun; Safi, Alexias; Shivakumar, Nishkala K.; Kabadi, Ami M.; Reddy, Timothy E.; Crawford, Gregory E; Gersbach, Charles A

    2015-01-01

    Epigenome editing with the CRISPR/Cas9 platform is a promising technology to modulate gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms of gene regulation. Fusions of the nuclease-inactive dCas9 to the KRAB repressor (dCas9-KRAB) can silence target gene expression, but the genome-wide specificity and the extent of heterochromatin formation catalyzed by dCas9-KRAB is not known. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that o...

  6. Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer

    DEFF Research Database (Denmark)

    Brokken, Leon J S; Lundberg-Giwercman, Yvonne; Rajpert-De Meyts, Ewa;

    2013-01-01

    In the Western world, testicular germ cell cancer (TGCC) is the most common malignancy of young men. The malignant transformation of germ cells is thought to be caused by developmental and hormonal disturbances, probably related to environmental and lifestyle factors because of rapidly increasing...... histological and clinical features of TGCC in 367 patients and 537 controls. Haplotype-tagging single-nucleotide polymorphisms (SNPs) were genotyped in genes encoding AHR and AHR repressor (AHRR). Binary logistic regression was used to calculate the risk of TGCC, non-seminoma versus seminoma, and metastasis...

  7. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Dongsheng eZhou

    2014-12-01

    Full Text Available Vibrio parahaemolyticus, a leading cause of seafood-associated diarrhea and gastroenteritis, harbors three major virulence gene loci T3SS1, Vp-PAI (T3SS1+tdh2 and T6SS2. As showing is this study, the nucleoid-associated DNA-binding regulator H-NS binds to multiple promoter-proximal regions in each of the above three loci to repress their transcription, and moreover H-NS inhibits the cytotoxicitiy, enterotoxicity, hemolytic activity, and mouse lethality of V. parahaemolyticus. H-NS appears to act as a major repressor of the virulence of this pathogen.

  8. Control of gene expression in Helicobacter pylori using the Tet repressor

    OpenAIRE

    McClain, Mark S.; Duncan, Stacy S.; Gaddy, Jennifer A.; Cover, Timothy L.

    2013-01-01

    The lack of a versatile system to control gene expression in Helicobacter pylori has hampered efforts to study H. pylori physiology and pathogenesis. To overcome these limitations, we evaluated the utility of an inducible system based on the well-characterized Tet repressor (TetR) and Tet operator (tetO). As validation of this system, we introduced three copies of tetO into the promoter region upstream of the cagUT operon (encoding two virulence factors required for function of the H. pylori ...

  9. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes

    OpenAIRE

    Albert, Nick W.

    2015-01-01

    The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia a...

  10. SatR Is a Repressor of Fluoroquinolone Efflux Pump SatAB

    OpenAIRE

    Escudero, Jose Antonio; San Millan, Alvaro; Montero, Natalia; Gutierrez, Belen; Ovejero, Cristina Martinez; Carrilero, Laura; González-Zorn, Bruno

    2013-01-01

    Streptococcus suis is an emerging zoonotic agent responsible for high-mortality outbreaks among the human population in China. In this species, the ABC transporter SatAB mediates fluoroquinolone resistance when overexpressed. Here, we describe and characterize satR, an open reading frame (ORF) encoding a MarR superfamily regulator that acts as a repressor of satAB. satR is cotranscribed with satAB, and its interruption entails the overexpression of the pump, leading to a clinically relevant i...

  11. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression

    OpenAIRE

    Yuri Tanaka; Yoshimi Oshima; Tomomichi Yamamura; Masao Sugiyama; Nobutaka Mitsuda; Norihiro Ohtsubo; Masaru Ohme-Takagi; Teruhiko Terakawa

    2013-01-01

    Cyclamen persicum (cyclamen) is a commercially valuable, winter-blooming perennial plant. We cloned two cyclamen orthologues of AGAMOUS (AG), CpAG1 and CpAG2, which are mainly expressed in the stamen and carpel, respectively. Cyclamen flowers have 5 petals, but expression of a chimeric repressor of CpAG1 (CpAG1-SRDX) caused stamens to convert into petals, resulting in a flower with 10 petals. By contrast, CpAG2-SRDX only caused incomplete formation of stamens and carpels. Expression in Arabid...

  12. Prediction of DtxR regulon: Identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae

    Directory of Open Access Journals (Sweden)

    Hasnain Seyed

    2004-09-01

    Full Text Available Abstract Background The diphtheria toxin repressor, DtxR, of Corynebacterium diphtheriae has been shown to be an iron-activated transcription regulator that controls not only the expression of diphtheria toxin but also of iron uptake genes. This study aims to identify putative binding sites and operons controlled by DtxR to understand the role of DtxR in patho-physiology of Corynebacterium diphtheriae. Result Positional Shannon relative entropy method was used to build the DtxR-binding site recognition profile and the later was used to identify putative regulatory sites of DtxR within C. diphtheriae genome. In addition, DtxR-regulated operons were also identified taking into account the predicted DtxR regulatory sites and genome annotation. Few of the predicted motifs were experimentally validated by electrophoretic mobility shift assay. The analysis identifies motifs upstream to the novel iron-regulated genes that code for Formamidopyrimidine-DNA glycosylase (FpG, an enzyme involved in DNA-repair and starvation inducible DNA-binding protein (Dps which is involved in iron storage and oxidative stress defense. In addition, we have found the DtxR motifs upstream to the genes that code for sortase which catalyzes anchoring of host-interacting proteins to the cell wall of pathogenic bacteria and the proteins of secretory system which could be involved in translocation of various iron-regulated virulence factors including diphtheria toxin. Conclusions We have used an in silico approach to identify the putative binding sites and genes controlled by DtxR in Corynebacterium diphtheriae. Our analysis shows that DtxR could provide a molecular link between Fe+2-induced Fenton's reaction and protection of DNA from oxidative damage. DtxR-regulated Dps prevents lethal combination of Fe+2 and H2O2 and also protects DNA by nonspecific DNA-binding. In addition DtxR could play an important role in host interaction and virulence by regulating the levels of sortase

  13. A new role for the cellular PABP repressor Paip2 as an innate restriction factor capable of limiting productive cytomegalovirus replication.

    Science.gov (United States)

    McKinney, Caleb; Yu, Dong; Mohr, Ian

    2013-08-15

    The capacity of polyadenylate-binding protein PABPC1 (PABP1) to stimulate translation is regulated by its repressor, Paip2. Paradoxically, while PABP accumulation promotes human cytomegalovirus (HCMV) protein synthesis, we show that this is accompanied by an analogous increase in the abundance of Paip2 and EDD1, an E3 ubiquitin ligase that destabilizes Paip2. Coordinate control of PABP1, Paip2, and EDD1 required the virus-encoded UL38 mTORC1 activator and resulted in augmented Paip2 synthesis, stability, and association with PABP1. Paip2 synthesis also increased following serum stimulation of uninfected normal fibroblasts, suggesting that this coregulation may play a role in how uninfected cells respond to stress. Significantly, Paip2 accumulation was dependent on PABP accrual, as preventing PABP1 accumulation suppressed viral replication and inhibited the corresponding Paip2 increase. Furthermore, depleting Paip2 restored the ability of infected cells to assemble the translation initiation factor eIF4F, promoting viral protein synthesis and replication without increasing PABP1. This establishes a new role for the cellular PABP1 inhibitor Paip2 as an innate defense that restricts viral protein synthesis and replication. Moreover, it illustrates how a stress-induced rise in PABP1 triggered by virus infection can counter and surpass a corresponding increase in Paip2 abundance and stability. PMID:23964095

  14. THAP5 is a DNA binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Science.gov (United States)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death. PMID:21110952

  15. H-NS is a repressor of the Proteus mirabilis urease transcriptional activator gene ureR.

    Science.gov (United States)

    Coker, C; Bakare, O O; Mobley, H L

    2000-05-01

    Expression of Proteus mirabilis urease is governed by UreR, an AraC-like positive transcriptional activator. A poly(A) tract nucleotide sequence, consisting of A(6)TA(2)CA(2)TGGTA(5)GA(6)TGA(5), is located 16 bp upstream of the sigma(70)-like ureR promoter P2. Since poly(A) tracts of DNA serve as binding sites for the gene repressor histone-like nucleoid structuring protein (H-NS), we measured beta-galactosidase activity of wild-type Escherichia coli MC4100 (H-NS(+)) and its isogenic derivative ATM121 (hns::Tn10) (H-NS(-)) harboring a ureR-lacZ operon fusion plasmid (pLC9801). beta-Galactosidase activity in the H-NS(-) host strain was constitutive and sevenfold greater (P mirabilis hns was able to complement and restore repression of the ureR promoter in the H-NS(-) host when provided in trans. Deletion of the poly(A) tract nucleotide sequence from pLC9801 resulted in an increase in beta-galactosidase activity in the H-NS(+) host to nearly the same levels as that observed for wild-type pLC9801 harbored by the H-NS(-) host. Urease activity in strains harboring the recombinant plasmid pMID1010 (encoding the entire urease gene cluster of P. mirabilis) was equivalent in both the H-NS(-) background and the H-NS(+) background in the presence of urea but was eightfold greater (P = 0.0001) in the H-NS(-) background in the absence of urea. We conclude that H-NS represses ureR expression in the absence of urea induction. PMID:10762273

  16. GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells.

    Directory of Open Access Journals (Sweden)

    Jason E Cain

    Full Text Available Truncating GLI3 mutations in Pallister-Hall Syndrome with renal malformation suggests a requirement for Hedgehog signaling during renal development. HH-dependent signaling increases levels of GLI transcriptional activators and decreases processing of GLI3 to a shorter transcriptional repressor. Previously, we showed that Shh-deficiency interrupts early inductive events during renal development in a manner dependent on GLI3 repressor. Here we identify a novel function for GLI3 repressor in controlling nephron number. During renal morphogenesis, HH signaling activity, assayed by expression of Ptc1-lacZ, is localized to ureteric cells of the medulla, but is undetectable in the cortex. Targeted inactivation of Smo, the HH effector, in the ureteric cell lineage causes no detectable abnormality in renal morphogenesis. The functional significance of absent HH signaling activity in cortical ureteric cells was determined by targeted deletion of Ptc1, the SMO inhibitor, in the ureteric cell lineage. Ptc1(-/-UB mice demonstrate ectopic Ptc1-lacZ expression in ureteric branch tips and renal hypoplasia characterized by reduced kidney size and a paucity of mature and intermediate nephrogenic structures. Ureteric tip cells are remarkable for abnormal morphology and impaired expression of Ret and Wnt11, markers of tip cell differentiation. A finding of renal hypoplasia in Gli3(-/- mice suggests a pathogenic role for reduced GLI3 repressor in the Ptc1(-/-UB mice. Indeed, constitutive expression of GLI3 repressor via the Gli3(Delta699 allele in Ptc1(-/-UB mice restores the normal pattern of HH signaling, and expression of Ret and Wnt11 and rescued the renal phenotype. Thus, GLI3 repressor controls nephron number by regulating ureteric tip cell expression of Wnt11 and Ret.

  17. Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression

    International Nuclear Information System (INIS)

    Ionizing radiation produces apoptosis in the developing rat brain. Strong c-Jun immunoreactivity, as revealed with the antibody c-Jun/AP-1 (N) which is raised against the amino acids 91-105 mapping with the amino terminal domain of mouse c-Jun p39, is simultaneously observed in the nucleus and cytoplasm of apoptotic cells. Western blotting of total brain homogenates, using the same antibody, shows a p39 band in control rats which is accompanied by a strong, phosphorylated p62 double-band in irradiated animals. In addition, increased c-Jun N-terminal kinase 1 expression, as found on western blots, is found in irradiated rats when compared with controls. Intraperitoneal injection of kainic acid at convulsant doses to the adult rat produces cell death with morphological features of necrosis, together with the appearance of cells with fine granular chromatin degeneration and small numbers of apoptotic-like cells, in the entorhinal and piriform cortices, basal amygdala, certain thalamic nuclei, and CA1 region of the hippocampus. c-Jun expression in kainic acid-treated rats, as revealed with the c-Jun/AP-1 (N) antibody, is found in the nuclei of a minority of cells in the same areas. The vast majority of c-Jun-immunoreactive cells have normal nuclear morphology, whereas necrotic cells are negative and only a few cells with fine granular chromatin condensation and apoptotic cells following kainic acid injection are stained with c-Jun antibodies. Western blotting, using the same antibody, shows a p39 band in control rats, which is accompanied by a band at about p26 from 6 h onwards following kainic acid injection. Decreased c-Jun N-terminal kinase 1 expression, as revealed on western blots, is observed in kainic acid-treated rats.These results show that the antibody c-Jun/AP-1 (N) recognizes three different forms of c-Jun-related immunoreactivity in normal and pathological states, which are associated with the different outcome of cells. These results stress the necessity

  18. Molecular and functional characterization of Aryl hydrocarbon receptor repressor from the chicken (Gallus gallus): interspecies similarities and differences.

    Science.gov (United States)

    Lee, Jin-Seon; Kim, Eun-Young; Nomaru, Koji; Iwata, Hisato

    2011-02-01

    The aryl hydrocarbon receptor (AHR) repressor (AHRR) has been recognized as a negative feedback modulator of AHR-mediated responses in fish and mammals. However, the repressive mechanism by the AHRR has not been investigated in other animals. To understand the molecular mechanism of dioxin toxicity and the evolutionary history of the AHR signaling pathway in avian species, the present study addresses chicken AHRR (ckAHRR). The complementary DNA sequence of ckAHRR encodes an 84-kDa protein sharing 29-52% identities with other AHRRs. High levels of ckAHRR messenger RNA were recorded in the kidney and intestine of nontreated chicks. In hepatoma LMH cells, the 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) 50% effective concentration value for ckAHRR induction (0.0016nM) was the same as that for chicken cytochrome P450 1A5 (ckCYP1A5), implying a shared transcriptional regulation of ckAHRR and ckCYP1A5 by chicken AHR (ckAHR). In ckAHRR transient transfection assays, ckAHRR repressed both ckAHR1- and ckAHR2-mediated transcriptional activities. Deletion and mutation assays revealed that basic helix-loop-helix/Per-ARNT-Sim A domains of ckAHRR, particularly 217-402 amino acid residues, are indispensable for the repression, but the AHR nuclear translocator sequestration by ckAHRR and SUMOylation of ckAHRR are not involved in its repressive mechanism. Additionally, subcellular localization assay of ckAHR1-enhanced green fluorescent protein fusion protein showed that ckAHRR did not affect nuclear translocation of the ckAHR1. Furthermore, ckAHRR inhibited the TCDD- and 17β estradiol-enhanced ckCYP1A5 transcription through AHR-estrogen receptor α (ERα) cross talk. Taken together, the function of AHRR is conserved in chicken in terms of the negative regulation of AHR and ERα activities, but its functional mechanism is likely distinct from those of the mammalian and fish homologues. PMID:21047992

  19. Change of cholinergic transmission and memory deficiency induced by injection of b-amyloid protein into NBM of rats

    Institute of Scientific and Technical Information of China (English)

    马晓峰; 叶惟泠; 梅镇彤

    2001-01-01

    The change of cholinergic transmission of b-amyloid protein (b-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. b-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of b-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of b-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh- release during behavioral performance was 57%, while in b-AP1-40 - treated rats it was 34%. The temporary in-crease of the ACh-release of the rat put into a new place was also significantly diminished in b-AP1-40 -treated rats. The results show that the injection of b-AP1-40 into NBM impairs the cholinergic transmission in frontal cortex, and the impairment of cholinergic transmission may be the main cause of the deficit of working memory.

  20. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    Science.gov (United States)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  1. The β-Lactamase Gene Regulator AmpR Is a Tetramer That Recognizes and Binds the d-Ala-d-Ala Motif of Its Repressor UDP-N-acetylmuramic Acid (MurNAc)-pentapeptide*

    Science.gov (United States)

    Vadlamani, Grishma; Thomas, Misty D.; Patel, Trushar R.; Donald, Lynda J.; Reeve, Thomas M.; Stetefeld, Jörg; Standing, Kenneth G.; Vocadlo, David J.; Mark, Brian L.

    2015-01-01

    Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal d-Ala-d-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the d-Ala-d-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function. PMID:25480792

  2. The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide.

    Science.gov (United States)

    Vadlamani, Grishma; Thomas, Misty D; Patel, Trushar R; Donald, Lynda J; Reeve, Thomas M; Stetefeld, Jörg; Standing, Kenneth G; Vocadlo, David J; Mark, Brian L

    2015-01-30

    Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal D-Ala-D-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the D-Ala-D-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function. PMID:25480792

  3. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr; Sieglová, Irena; Fábry, Milan; Otwinowski, Z.; Řezáčová, Pavlína

    2012-01-01

    Roč. 68, č. 2 (2012), s. 176-185. ISSN 0907-4449 R&D Projects: GA MŠk ME08016 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : repressor * dimerization * effector binding * isothermal titration calorimetry Subject RIV: CE - Biochemistry Impact factor: 14.103, year: 2012

  4. HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s alternative to the pPGI-pPGM-AGP pathway.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a involves plastidic phosphoglucomutase (pPGM, ADPglucose (ADPG pyrophosphorylase (AGP and starch synthase (SS, and (b is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI. This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b pPGM and AGP are not major determinants of intracellular ADPG content, and (c the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.

  5. The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish.

    Science.gov (United States)

    Imai, Y; Gates, M A; Melby, A E; Kimelman, D; Schier, A F; Talbot, W S

    2001-06-01

    Ventralizing transcriptional repressors in the Vox/Vent family have been proposed to be important regulators of dorsoventral patterning in the early embryo. While the zebrafish genes vox (vega1) and vent (vega2) both have ventralizing activity in overexpression assays, loss-of-function studies are needed to determine whether these genes have distinct or redundant functions in dorsoventral patterning and to provide critical tests of the proposed regulatory interactions among vox, vent and other genes that act to establish the dorsoventral axis. We show that vox and vent are redundant repressors of dorsal fates in zebrafish. Mutants that lack vox function have little or no dorsoventral patterning defect, and inactivation of either vox or vent by injection of antisense morpholino oligonucleotides has little or no effect on the embryo. In contrast, embryos that lack both vox and vent function have a dorsalized phenotype. Expression of dorsal mesodermal genes, including chordin, goosecoid and bozozok, is strongly expanded in embryos that lack vox and vent function, indicating that the redundant action of vox and vent is required to restrict dorsal genes to their appropriate territories. Our genetic analysis indicates that the dorsalizing transcription factor Bozozok promotes dorsal fates indirectly, by antagonizing the expression of vox and vent. In turn, vox and vent repress chordin expression, restricting its function as an antagonist of ventral fates to the dorsal side of the embryo. Our results support a model in which BMP signaling induces the expression of ventral genes, while vox and vent act redundantly to prevent the expression of chordin, goosecoid and other dorsal genes in the lateral and ventral mesendoderm. PMID:11493559

  6. Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Zhanmin; Wang, Chenglong; Zhang, Xinquan; Tang, Yixiong; Zhu, Xuemei; Shao, Jirong; Wu, Yanmin

    2015-10-01

    Sub-group 4 R2R3-type MYB transcription factors, including MYB3, MYB4, MYB7 and MYB32, act as repressors in phenylpropanoid metabolism. These proteins contain the conserved MYB domain and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) repression domain. Additionally, MYB4, MYB7 and MYB32 possess a putative zinc-finger domain and a conserved GY/FDFLGL motif in their C-termini. The protein 'sensitive to ABA and drought 2' (SAD2) recognizes the nuclear pore complex, which then transports the SAD2-MYB4 complex into the nucleus. Here, we show that the conserved GY/FDFLGL motif contributes to the interaction between MYB factors and SAD2. The Asp → Asn mutation in the GY/FDFLGL motif abolishes the interaction between MYB transcription factors and SAD2, and therefore they cannot be transported into the nucleus and cannot repress their target genes. We found that MYB4(D261N) loses the capacity to repress expression of the cinnamate 4-hydroxylase (C4H) gene and biosynthesis of sinapoyl malate. Our results indicate conservation among MYB transcription factors in terms of their interaction with SAD2. Therefore, the Asp → Asn mutation may be used to engineer transcription factors. PMID:26332741

  7. Effects of ionizing radiations on DNA-protein complexes

    International Nuclear Information System (INIS)

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  8. AP1- and NF-kappaB-binding sites conserved among mammalian WNT10B orthologs elucidate the TNFalpha-WNT10B signaling loop implicated in carcinogenesis and adipogenesis.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2007-04-01

    WNT signals are context-dependently transduced to canonical and non-canonical signaling cascades. We cloned and characterized wild-type human WNT10B, while another group cloned aberrant human WNT10B with Gly60Asp amino-acid substitution. Proto-oncogene WNT10B is expressed in gastric cancer, pancreatic cancer, breast cancer, esophageal cancer, and cervical cancer. Because WNT10B blocks adipocyte differentiation, coding SNP of WNT10B gene is associated with familial obesity. In 2001, we reported WNT10B upregulation by TNFalpha. Here, comparative integromics analyses on WNT10B orthologs were performed to elucidate the transcriptional mechanism of WNT10B. Chimpanzee WNT10B and cow Wnt10b genes were identified within NW_001223159.1 and AC150975.2 genome sequences, respectively, by using bioinformatics (Techint) and human intelligence (Humint). Chimpanzee WNT10B and cow Wnt10b showed 98.7% and 95.1% total-amino-acid identity with human WNT10B, respectively. N-terminal signal peptide, 24 Cys residues, two Asn-linked glycosylation sites, and Gly60 of human WNT10B were conserved among mammalian WNT10B orthologs. Transcription start site of human WNT10B gene was 106-bp upstream of NM_003394.2 RefSeq 5'-end. Number of GC di-nucleotide repeats just down-stream of WNT10B transcription start site varied among primates and human population. Comparative genomics analyses revealed that double AP1-binding sites in the 5'-flanking promoter region and NF-kappaB-binding site in intron 3 were conserved among human, chimpanzee, cow, mouse, and rat WNT10B orthologs. Because TNFalpha signaling through TNFR1 and TRADD/RIP/TRAF2 complex activates JUN kinase (JNK) and IkappaB kinase (IKK) signaling cascades, conserved AP1- and NF-kappaB-binding sites explain the mechanism of TNFalpha-induced WNT10B upregulation. TNFalpha-WNT10B signaling loop is the negative feedback mechanism of adipogenesis to prevent obesity and metabolic syndrome. On the other hand, TNFalpha-WNT10B signaling loop is

  9. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1.

    Directory of Open Access Journals (Sweden)

    Nadine Born

    Full Text Available The Krüppel-associated box (KRAB domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.

  10. Yeast Interacting Proteins Database: YOR380W, YOR380W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YOR380W RDR1 Transcriptional repressor involved in the control of multidrug resistance; negative ... s expression of the PDR5 gene; member of the Gal4p family ... of zinc cluster proteins Rows with this bait as ba ... s expression of the PDR5 gene; member of the Gal4p family ... of zinc cluster proteins Rows with this prey as pr ...

  11. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N

    2005-11-15

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  12. Polycomb group proteins: navigators of lineage pathways led astray in cancer

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Helin, Kristian

    2009-01-01

    The Polycomb group (PcG) proteins are transcriptional repressors that regulate lineage choices during development and differentiation. Recent studies have advanced our understanding of how the PcG proteins regulate cell fate decisions and how their deregulation potentially contributes to cancer. ...

  13. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function.

    Science.gov (United States)

    Minogue, Timothy D; Wehland-von Trebra, Markus; Bernhard, Frank; von Bodman, Susanne B

    2002-06-01

    Capsular polysaccharide synthesis and virulence in the plant pathogenic bacterium Pantoea stewartii ssp. stewartii requires the quorum-sensing regulatory proteins, EsaR and EsaI, and the diffusible inducer N-(3-oxo-hexanoyl)-L-homoserine lactone. Prior mutational studies suggested that EsaR might function as a repressor of quorum sensing in the control of capsular polysaccharide synthesis. Further, a lux box-like palindromic sequence coinciding with the putative -10 element of the esaR promoter suggested a possible negative autoregulatory role for EsaR. This report presents genetic evidence that EsaR represses the esaR gene under inducer-limiting conditions, and that addition of inducer promotes rapid, dose-dependent derepression. DNA mobility-shift assays and analyses by surface plasmon resonance refractometry show that EsaR binds target DNAs in a ligand-free state, and that inducer alters the binding characteristics of EsaR. Physical measurements indicate that the EsaR protein binds N-(3-oxo-hexanoyl)-L-homoserine lactone, in a 1:1 protein:ligand ratio, and that inducer binding enhances the thermal stability of the EsaR protein. These combined genetic and biochemical data establish that EsaR regulates its own expression by signal-independent repression and signal-dependent derepression. Additionally, we provide evidence that EsaR does not govern the expression of the linked esaI gene, thus EsaR has no role in controlling coinducer synthesis. PMID:12067349

  14. A Comprehensive Catalog of Human KRAB-associated Zinc Finger Genes: Insights into the Evolutionary History of a Large Family of Transcriptional Repressors

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, S; Baggott, D M; Hamilton, A T; Tran-Gyamfi, M; Yang, S; Kim, J; Gordon, L; Branscomb, E; Stubbs, L

    2005-09-30

    Krueppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotic species. In mammals, most ZNF proteins comprise a single class of transcriptional repressors in which a chromatin interaction domain, called the Krueppel-associated box (KRAB) is attached to a tandem array of DNA-binding zinc-finger motifs. KRAB-ZNF loci are specific to tetrapod vertebrates, but have expanded dramatically in numbers through repeated rounds of segmental duplication to create a gene family with hundreds of members in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the human genome for key motifs and used them to construct and manually curate gene models. The resulting KRAB-ZNF gene catalog includes 326 known genes, 243 of which were structurally corrected by manual annotation, and 97 novel KRAB-ZNF genes; this single family therefore comprises 20% of all predicted human transcription factor genes. Many of the genes are alternatively spliced, yielding a total of 743 distinct predicted proteins. Although many human KRAB-ZNF genes are conserved in mammals, at least 136 and potentially more than 200 genes of this type are primate-specific including many recent segmental duplicates. KRAB-ZNF genes are active in a wide variety of human tissues suggesting roles in many key biological processes, but most member genes remain completely uncharacterized. Because of their sheer numbers, wide-ranging tissue-specific expression patterns, and remarkable evolutionary divergence we predict that KRAB-ZNF transcription factors have played critical roles in crafting many aspects of human biology, including both deeply conserved and primate-specific traits.

  15. Saponins from the roots of Platycodon grandiflorum suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and NF-κB/AP-1-dependent signaling in HaCaT cells.

    Science.gov (United States)

    Hwang, Yong Pil; Kim, Hyung Gyun; Choi, Jae Ho; Han, Eun Hee; Kwon, Kwang-Il; Lee, Young Chun; Choi, Jun Min; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-12-01

    Saponins from the roots of Platycodon grandiflorum (CKS) have been shown to exhibit many pharmacological activities, including anti-cancer and anti-inflammatory activities and antioxidant effects. However, anti-skin photoaging effects of CKS have not yet been reported. In this study, we investigated the protective effects of CKS against UVA damage on immortalized human keratinocytes (HaCaT). We then explored the inhibitory effects of CKS on UVA-induced MMP-1 and investigated the molecular mechanism underlying those effects. CKS increased the cell viability and inhibited reactive oxygen species (ROS) production in HaCaT cells exposed to UVA irradiation. Pre-treatment of HaCaT cells with CKS inhibited UVA-induced production of MMP-1 and MMP-9. In addition, CKS decreased UVA-induced expression of the inflammatory cytokines IL-1β and IL-6. Western blot analysis further revealed that CKS markedly suppressed the enhancement of collagen degradation in UVA-exposed HaCaT cells. CKS also suppressed UVA-induced activation of NF-κB or c-Jun and c-Fos, and the phosphorylation of MAPKs, which are upstream modulators of NF-κB and AP-1. PMID:22005258

  16. On the association of glycoprotein Ib and actin-binding protein in human platelets

    OpenAIRE

    1985-01-01

    Glycoprotein (GP) Ib was purified from lysates of human platelets prepared in the presence or absence of inhibitors of the endogenous calcium-activated neutral protease (CANP) by immunoaffinity chromatography, employing the GPIb-specific murine monoclonal antibody, AP1, coupled to Sepharose CL4B. When derived from lysates prepared in the presence of EDTA or leupeptin, the eluate from the AP1-affinity column contained a 240,000-260,000-mol-wt protein in addition to GPIb. In SDS PAGE, this prot...

  17. A computational system for modelling flexible protein-protein and protein-DNA docking.

    Science.gov (United States)

    Sternberg, M J; Aloy, P; Gabb, H A; Jackson, R M; Moont, G; Querol, E; Aviles, F X

    1998-01-01

    A computational system is described that predicts the structure of protein/protein and protein/DNA complexes starting from unbound coordinate sets. The approach is (i) a global search with rigid-body docking for complexes with shape complementarity and favourable electrostatics; (ii) use of distance constraints from experimental (or predicted) knowledge of critical residues; (iii) use of pair potential to screen docked complexes and (iv) refinement and further screening by protein-side chain optimisation and interfacial energy minimisation. The system has been applied to model ten protein/protein and eight protein-repressor/DNA (steps i to iii only) complexes. In general a few complexes, one of which is close to the true structure, can be generated. PMID:9783224

  18. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity.

    OpenAIRE

    van Rooijen, R J; Gasson, M. J.; de Vos, W M

    1992-01-01

    We determined the location, activity, and regulation of the promoter of the Lactococcus lactis 8-kb lactose operon (lacABCDFEGX), which encodes the enzymes of the lactose phosphotransferase system and the tagatose 6-phosphate pathway. The lac promoter sequence corresponds closely to the consensus promoter described for gram-positive bacteria and is located in a back-to-back configuration with the promoter of the divergently transcribed lacR gene, which encodes the LacR repressor. The transcri...

  19. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  20. The Ets dominant repressor En/Erm enhances intestinal epithelial tumorigenesis in ApcMin mice

    International Nuclear Information System (INIS)

    Ets transcription factors have been widely implicated in the control of tumorigenesis, with most studies suggesting tumor-promoting roles. However, few studies have examined Ets tumorigenesis-modifying functions in vivo using model genetic systems. Using mice expressing a previously characterized Ets dominant repressor transgene in the intestinal epithelium (Villin-En/Erm), we examined the consequences of blocking endogenous Ets-mediated transcriptional activation on tumorigenesis in the ApcMin model of intestinal carcinoma. En/Erm expression in the intestine, at levels not associated with overt crypt-villus dysmorphogenesis, results in a marked increase in tumor number in ApcMin animals. Moreover, when examined histologically, tumors from En/Erm-expressing animals show a trend toward greater stromal invasiveness. Detailed analysis of crypt-villus homeostasis in these En/Erm transgenic animals suggests increased epithelial turnover as one possible mechanism for the enhanced tumorigenesis. Our findings provide in vivo evidence for a tumor-restricting function of endogenous Ets factors in the intestinal epithelium

  1. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.

    Science.gov (United States)

    Bonhoure, Nicolas; Byrnes, Ashlee; Moir, Robyn D; Hodroj, Wassim; Preitner, Frédéric; Praz, Viviane; Marcelin, Genevieve; Chua, Streamson C; Martinez-Lopez, Nuria; Singh, Rajat; Moullan, Norman; Auwerx, Johan; Willemin, Gilles; Shah, Hardik; Hartil, Kirsten; Vaitheesvaran, Bhavapriya; Kurland, Irwin; Hernandez, Nouria; Willis, Ian M

    2015-05-01

    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences. PMID:25934505

  2. PRMT4 Blocks Myeloid Differentiation by Assembling a Methyl-RUNX1-Dependent Repressor Complex

    Directory of Open Access Journals (Sweden)

    Ly P. Vu

    2013-12-01

    Full Text Available Defining the role of epigenetic regulators in hematopoiesis has become critically important, because recurrent mutations or aberrant expression of these genes has been identified in both myeloid and lymphoid hematological malignancies. We found that PRMT4, a type I arginine methyltransferase whose function in normal and malignant hematopoiesis is unknown, is overexpressed in acute myelogenous leukemia patient samples. Overexpression of PRMT4 blocks the myeloid differentiation of human stem/progenitor cells (HSPCs, whereas its knockdown is sufficient to induce myeloid differentiation of HSPCs. We demonstrated that PRMT4 represses the expression of miR-223 in HSPCs via the methylation of RUNX1, which triggers the assembly of a multiprotein repressor complex that includes DPF2. As part of the feedback loop, PRMT4 expression is repressed posttranscriptionally by miR-223. Depletion of PRMT4 results in differentiation of myeloid leukemia cells in vitro and their decreased proliferation in vivo. Thus, targeting PRMT4 holds potential as a novel therapy for acute myelogenous leukemia.

  3. Regulation of MntH by a dual Mn(II- and Fe(II-dependent transcriptional repressor (DR2539 in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Hongxing Sun

    Full Text Available The high intracellular Mn/Fe ratio observed within the bacteria Deinococcus radiodurans may contribute to its remarkable resistance to environmental stresses. We isolated DR2539, a novel regulator of intracellular Mn/Fe homeostasis in D. radiodurans. Electrophoretic gel mobility shift assays (EMSAs revealed that DR2539 binds specifically to the promoter of the manganese acquisition transporter (MntH gene, and that DR0865, the only Fur homologue in D. radiodurans, cannot bind to the promoter of mntH, but it can bind to the promoter of another manganese acquisition transporter, MntABC. β-galactosidase expression analysis indicated that DR2539 acts as a manganese- and iron-dependent transcriptional repressor. Further sequence alignment analysis revealed that DR2539 has evolved some special characteristics. Site-directed mutagenesis suggested that His98 plays an important role in the activities of DR2539, and further protein-DNA binding activity assays showed that the activity of H98Y mutants decreased dramatically relative to wild type DR2539. Our study suggests that D. radiodurans has evolved a very efficient manganese regulation mechanism that involves its high intracellular Mn/Fe ratio and permits resistance to extreme conditions.

  4. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis.

    Science.gov (United States)

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko; Machida, Yasunori

    2016-01-01

    Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  5. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yoko Matsumura

    2016-07-01

    Full Text Available Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1 and AS2 (AS1-AS2 is critical to repress abaxial (ventral genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1 synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

  6. FISH to meiotic pachytene chromosomes of tomato locates the root-knot nematode resistance gene Mi-1 and the acid phosphatase gene Aps-1 near the junction of euchromatin and pericentromeric heterochromatin of chromosome arms 6S and 6L, respectively

    NARCIS (Netherlands)

    Zhong, X.B.; Bodeau, J.; Fransz, P.F.; Williamson, V.M.; Kammen, van A.; Jong, de J.H.; Zabel, P.

    1999-01-01

    The root-knot nematode resistance gene Mi-1 in tomato has long been thought to be located in the pericentromeric heterochromatin region of the long arm of chromosome 6 because of its very tight genetic linkage (approx. 1 cM) to the markers Aps-1 (Acid phosphatase 1) and yv (yellow virescent). Using

  7. Topology independent protein structural alignment

    Directory of Open Access Journals (Sweden)

    DasGupta Bhaskar

    2007-10-01

    Full Text Available Abstract Background Identifying structurally similar proteins with different chain topologies can aid studies in homology modeling, protein folding, protein design, and protein evolution. These include circular permuted protein structures, and the more general cases of non-cyclic permutations between similar structures, which are related by non-topological rearrangement beyond circular permutation. We present a method based on an approximation algorithm that finds sequence-order independent structural alignments that are close to optimal. We formulate the structural alignment problem as a special case of the maximum-weight independent set problem, and solve this computationally intensive problem approximately by iteratively solving relaxations of a corresponding integer programming problem. The resulting structural alignment is sequence order independent. Our method is also insensitive to insertions, deletions, and gaps. Results Using a novel similarity score and a statistical model for significance p-value, we are able to discover previously unknown circular permuted proteins between nucleoplasmin-core protein and auxin binding protein, between aspartate rasemase and 3-dehydrogenate dehydralase, as well as between migration inhibition factor and arginine repressor which involves an additional strand-swapping. We also report the finding of non-cyclic permuted protein structures existing in nature between AML1/core binding factor and ribofalvin synthase. Our method can be used for large scale alignment of protein structures regardless of the topology. Conclusion The approximation algorithm introduced in this work can find good solutions for the problem of protein structure alignment. Furthermore, this algorithm can detect topological differences between two spatially similar protein structures. The alignment between MIF and the arginine repressor demonstrates our algorithm's ability to detect structural similarities even when spatial

  8. The expression of inducible cAMP early repressor (ICER) is altered in prostate cancer cells and reverses the transformed phenotype of the LNCaP prostate tumor cell line.

    Science.gov (United States)

    Yehia, G; Razavi, R; Memin, E; Schlotter, F; Molina, C A

    2001-08-15

    Inducible cAMP early repressor (ICER) has been shown to be an important mediator of cAMP antiproliferative activity. In this report, it was found that cAMP retards LNCaP cell growth; in contrast, cAMP inhibits the growth of PC-3 and DU-145 cells. ICER protein levels were markedly reduced in prostate cancer epithelial cells and undetectable and uninducible by cAMP in LNCaP and DU 145 cells. Forced expression of ICER in LNCaP cells caused inhibition of cell growth and thymidine incorporation and halted cells at the G(1) phase of the cell cycle. These ICER-bearing LNCaP cells were rendered unable to grow in soft agar and unable to form tumors in nude mice. These results suggest that deregulation of ICER expression may be related to carcinogenesis of the prostate gland. PMID:11507053

  9. Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor.

    Science.gov (United States)

    Figueroa, Pablo; Browse, John

    2015-03-01

    Jasmonate hormone (JA) plays critical roles in both plant defense and reproductive development. Arabidopsis thaliana plants deficient in JA-biosynthesis or -signaling are male-sterile, with defects in stamen and pollen development. MYC2, MYC3 and MYC4 are JAZ-interacting bHLH transcription factors that play a major role in controlling JA responses in vegetative tissue, but are not likely to play a role in reproductive tissue. We found that a closely related transcription factor, MYC5 (bHLH28), was able to induce JAZ promoters that control some of the early JA-responsive genes in a Daucus carota (carrot) protoplast expression system. A G-box sequence in the JAZ2 promoter was necessary and sufficient for induction by MYC5 (as it is for MYC2, MYC3 and MYC4), and induction of JAZ genes was repressed by co-expression of a stabilized, JAZ1ΔJas repressor. Two allelic myc5 mutants exhibited no overt phenotype; however, transgenic lines expressing MYC5 fused to an SRDX (SUPERMAN repressive domain X) motif phenocopied mutants defective in JA signaling. In particular, MYC5-SRDX plants were male-sterile, with defects in stamen filament elongation, anther dehiscence and pollen viability. Importantly, expression of MYB21 and other transcription factors required for stamen and pollen maturation was strongly reduced in stamens of MYC5-SRDX plants relative to the wild type. Taken together, these results indicate that MYC5, probably together with other, redundant transcription factors, may be activated by JA signaling to induce the expression of MYB21 and components required for male fertility. PMID:25627909

  10. Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer

    Science.gov (United States)

    Brokken, Leon J. S.; Lundberg-Giwercman, Yvonne; Meyts, Ewa Rajpert-De; Eberhard, Jakob; Ståhl, Olof; Cohn-Cedermark, Gabriella; Daugaard, Gedske; Arver, Stefan; Giwercman, Aleksander

    2013-01-01

    In the Western world, testicular germ cell cancer (TGCC) is the most common malignancy of young men. The malignant transformation of germ cells is thought to be caused by developmental and hormonal disturbances, probably related to environmental and lifestyle factors because of rapidly increasing incidence of TGCC in some countries. Additionally, there is a strong genetic component that affects susceptibility. However, genetic polymorphisms that have been identified so far only partially explain the risk of TGCC. Many of the persistent environmental pollutants act through the aryl hydrocarbon receptor (AHR). AHR signaling pathway is known to interfere with reproductive hormone signaling, which is supposed to play a role in the pathogenesis and invasive progression of TGCC. The aim of the present study was to identify whether AHR-related polymorphisms were associated with risk as well as histological and clinical features of TGCC in 367 patients and 537 controls. Haplotype-tagging single-nucleotide polymorphisms (SNPs) were genotyped in genes encoding AHR and AHR repressor (AHRR). Binary logistic regression was used to calculate the risk of TGCC, non-seminoma versus seminoma, and metastasis versus localized disease. Four SNPs in AHRR demonstrated a significant allele association with risk to develop metastases (rs2466287: OR = 0.43, 95% CI 0.21–0.90; rs2672725: OR = 0.49, 95% CI: 0.25–0.94; rs6879758: OR = 0.27, 95% CI: 0.08–0.92; rs6896163: OR = 0.34, 95% CI: 0.12–0.98). This finding supports the hypothesis that compounds acting through AHR may play a role in the invasive progression of TGCC, either directly or through modification of reproductive hormone action. PMID:23420531

  11. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

    Directory of Open Access Journals (Sweden)

    Kamini Kunasegaran

    Full Text Available The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production. Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

  12. Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer

    Directory of Open Access Journals (Sweden)

    Leon J. S. Brokken

    2013-02-01

    Full Text Available In the Western world, testicular germ cell cancer (TGCC is the most common malignancy of young men. The malignant transformation of germ cells is thought to be caused by developmental and hormonal disturbances, probably related to environmental and lifestyle factors because of rapidly increasing incidence of TGCC in some countries. Additionally, there is a strong genetic component that affects susceptibility. However, genetic polymorphisms that have been identified so far only partially explain the risk of TGCC. Many of the persistent environmental pollutants act through the aryl hydrocarbon receptor (AHR. AHR signalling pathway is known to interfere with reproductive hormone signalling, which is supposed to play a role in the pathogenesis and invasive progression of TGCC. The aim of the present study was to identify whether AHR-related polymorphisms were associated with risk as well as histological and clinical features of TGCC in 367 patients and 537 controls. Haplotype-tagging single nucleotide polymorphisms (SNPs were genotyped in genes encoding AHR and AHR repressor (AHRR. Binary logistic regression was used to calculate the risk of TGCC, nonseminoma versus seminoma, and metastasis versus localised disease.Four SNPs in AHRR demonstrated a significant allele association with risk to develop metastases (rs2466287: OR = 0.43, 95% CI 0.21-0.90; rs2672725: OR = 0.49, 95% CI: 0.25-0.94; rs6879758: OR = 0.27, 95% CI: 0.08-0.92; rs6896163: OR = 0.34, 95% CI: 0.12-0.98.This finding supports the hypothesis that compounds acting through AHR may play a role in the invasive progression of TGCC, either directly or through modification of reproductive hormone action.

  13. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  14. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4.

    Directory of Open Access Journals (Sweden)

    Maria Delcuratolo

    2016-01-01

    Full Text Available We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis.

  15. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4.

    Science.gov (United States)

    Delcuratolo, Maria; Fertey, Jasmin; Schneider, Markus; Schuetz, Johanna; Leiprecht, Natalie; Hudjetz, Benjamin; Brodbeck, Stephan; Corall, Silke; Dreer, Marcel; Schwab, Roxana Michaela; Grimm, Martin; Wu, Shwu-Yuan; Stubenrauch, Frank; Chiang, Cheng-Ming; Iftner, Thomas

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. PMID:26727473

  16. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor

    OpenAIRE

    Olga Brandstätter; Oliver Schanz; Julia Vorac; Jessica König; Tetsushi Mori; Toru Maruyama; Markus Korkowski; Thomas Haarmann-Stemmann; Dorthe von Smolinski; Schultze, Joachim L.; Josef Abel; Charlotte Esser; Haruko Takeyama; Heike Weighardt; Irmgard Förster

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the a...

  17. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  18. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    International Nuclear Information System (INIS)

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD+-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  19. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Naotoshi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Hisahara, Shin; Hayashi, Takashi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University, Sapporo 060-8556 (Japan); Horio, Yoshiyuki, E-mail: horio@sapmed.ac.jp [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan)

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  20. Study of the glucoamylase promoter in Aspergillus niger using green fluorescent protein

    NARCIS (Netherlands)

    Santerre Henriksen, A.L.; Even, S.; Müller, C.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Nielsen, J.

    1999-01-01

    An Aspergillus niger strain expressing a red-shifted green fluorescent protein (GFP) in the cytoplasm under the control of the glucoamylase promoter (PglaA) was characterized with respect to its physiology and morphology. Although xylose acted as a repressor carbon source during batch cultivations,

  1. Yeast Golgi-localized, γ-Ear–containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment

    OpenAIRE

    Abazeed, Mohamed E.; Fuller, Robert S.

    2008-01-01

    Golgi-localized, γ-Ear–containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. T...

  2. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  3. Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells

    NARCIS (Netherlands)

    Kooistra, Susanne M.; Thummer, Rajkumar P.; Eggen, Bart J. L.

    2009-01-01

    In mice, during early embryonic development UTF1 (undifferentiated embryonic cell transcription factor 1) is expressed in the inner cell mass of blastocysts and in adult animals expression is restricted to the gonads. (Embryonic) Cells expressing UTF1 are generally considered pluripotent, meaning th

  4. Characterization of human UTF1, a chromatin-associated protein with repressor activity expressed in pluripotent cells

    OpenAIRE

    Susanne M Kooistra; Thummer, Rajkumar P.; Eggen, Bart J.L.

    2009-01-01

    In mice, during early embryonic development UTF1 (undifferentiated embryonic cell transcription factor 1) is expressed in the inner cell mass of blastocysts and in adult animals expression is restricted to the gonads. (Embryonic) Cells expressing UTF1 are generally considered pluripotent, meaning they can differentiate into all cell types of the adult body. In mouse it was shown that UTF1 is tightly associated with chromatin and that it is required for proper differentiation of embryonic carc...

  5. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census

    Science.gov (United States)

    Stewart, Mary K.; Cookson, Brad T.

    2014-01-01

    Summary Bistable flagellar and virulence gene expression generates specialized Salmonella subpopulations with distinct functions. Repressing flagellar genes allows Salmonella to evade caspase-1 mediated host defenses and enhances systemic colonization. By definition, bistability arises when intermediate states of gene expression are rendered unstable by the underlying genetic circuitry. We demonstrate sustained bistable fliC expression in virulent Salmonella 14028 and document dynamic control of the distribution, or single-cell census, of flagellar gene expression by the mutually repressing repressors YdiV and FliZ. YdiV partitions cells into the fliC-OFF subpopulation, while FliZ partitions cells into the fliC-HIGH subpopulation at late timepoints during growth. Bistability of ΔfliZ populations and ydiV-independent FliZ control of flagellar gene expression provide evidence that the YdiV-FliZ mutually repressing repressor circuit is not required for bistability. Repression and activation by YdiV and FliZ (respectively) can shape the census of fliC expression independently, and bistability collapses into a predominantly intermediate population in the absence of both regulators. Metered expression of YdiV and FliZ reveals variable sensitivity to these regulators and defines conditions where expression of FliZ enhances fliC expression and where FliZ does not alter the fliC census. Thus, this evolved genetic circuitry coordinates multiple layers of regulatory heterogeneity into a binary response. PMID:25315056

  6. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening.

    Science.gov (United States)

    Fan, Zhong-Qi; Kuang, Jian-Fei; Fu, Chang-Chun; Shan, Wei; Han, Yan-Chao; Xiao, Yun-Yi; Ye, Yu-Jie; Lu, Wang-Jin; Lakshmanan, Prakash; Duan, Xue-Wu; Chen, Jian-Ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  7. The Role of the CoREST/REST Repressor Complex in Herpes Simplex Virus 1 Productive Infection and in Latency

    Directory of Open Access Journals (Sweden)

    Bernard Roizman

    2013-04-01

    Full Text Available REST is a key component of the HDAC1 or 2, CoREST, LSD1, REST (HCLR repressor complex. The primary function of the HCLR complex is to silence neuronal genes in non-neuronal cells. HCLR plays a role in regulating the expression of viral genes in productive infections as a donor of LDS1 for expression of α genes and as a repressor of genes expressed later in infection. In sensory neurons the HCLR complex is involved in the silencing of viral genome in the course of establishment of latency. The thesis of this article is that (a sensory neurons evolved a mechanism to respond to the presence and suppress the transmission of infectious agents from the periphery to the CNS and (b HSV evolved subservience to the HCLR with at least two objectives: to maintain a level of replication consistent with maximal person-to-person spread and to enable it to take advantage of neuronal innate immune responses to survive and be available for reactivation shielded from adaptive immune responses of the host.

  8. Anxiety symptom interpretation in high-anxious, defensive high-anxious, low-anxious and repressor sport performers.

    Science.gov (United States)

    Mullen, Richard; Lane, Andrew; Hanton, Sheldon

    2009-01-01

    For the first time in a sport setting this study examined the intensity and direction of the competitive state anxiety response in collegiate athletes as a function of four different coping styles: high-anxious, defensive high-anxious, low-anxious and repressors. Specifically, the study predicted that repressors would interpret competitive state anxiety symptoms as more facilitative compared to high-anxious, defensive high-anxious, and low-anxious performers. Separate Multivariate Analyses of Variance (MANOVA) were performed on the intensity and direction subscales of the modified Competitive State Anxiety Inventory-2 (CSAI-2). A significant main effect was identified for trait worry revealing that low trait anxious athletes reported lower intensities of cognitive and somatic anxiety and higher self-confidence and interpreted these as more facilitative than high trait anxious athletes. The prediction that performers with a repressive coping style would interpret state anxiety symptoms as more facilitative than performers with non-repressive coping styles was not supported. PMID:18791904

  9. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Science.gov (United States)

    Rizvi, Noreen F; Weaver, Jessica D; Cram, Erin J; Lee-Parsons, Carolyn W T

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis. PMID:27467510

  10. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening

    Science.gov (United States)

    Fan, Zhong-qi; Kuang, Jian-fei; Fu, Chang-chun; Shan, Wei; Han, Yan-chao; Xiao, Yun-yi; Ye, Yu-jie; Lu, Wang-jin; Lakshmanan, Prakash; Duan, Xue-wu; Chen, Jian-ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  11. Localization and Differential Expression of the Krüppel-Associated Box Zinc Finger Proteins 1 and 54 in Early Mouse Development

    DEFF Research Database (Denmark)

    Albertsen, Maria; Teperek, Marta; Elholm, Grethe;

    2010-01-01

    -fused reporter gene into zygotes demonstrated the intracellular distribution of ZFP1-green fluorescent protein (GFP) and ZFP54-GFP colocalized with a DNA marker in the two-cell embryo. The KRAB domain was essential to colocalize with DNA, and deletion of the KRAB domain in ZFP1-GFP and ZFP54-GFP localized...... transcriptional repressors, zinc finger protein (ZFP1) and ZFP54, belonging to the Krüppel-associated box (KRAB) zinc finger family, were isolated. ZFP1 and ZFP54 contain an N-terminally located KRAB repressor domain followed by 8 and 12 repeats of Krüppel zinc-finger motifs, respectively. Reverse transcription...

  12. Yeast Gga Coat Proteins Function with Clathrin in Golgi to Endosome Transport

    OpenAIRE

    Costaguta, G; Stefan, C. J.; Bensen, E. S.; Emr, S D; Payne, G S

    2001-01-01

    Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the “ear” domain of the clathrin adaptor AP-1 γ subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Δ), the major Gga protein...

  13. Diploidy of Drosophila imaginal cells is maintained by a transcriptional repressor encoded by escargot.

    Science.gov (United States)

    Fuse, N; Hirose, S; Hayashi, S

    1994-10-01

    The Drosophila escargot (esg) gene encodes a C2-H2-type zinc finger protein that is expressed in the imaginal discs and histoblasts. In some esg mutants, the abdominal histoblasts become polyploid. It has therefore been suggested that the role of esg is to maintain diploidy of the imaginal cells. We show that esg encodes a DNA-binding protein with high affinity for G/ACAGGTG, the consensus-binding sequence for the basic helix-loop-helix (bHLH) family of transcription factors (E2 box). This DNA-binding activity is essential for esg function in vivo as the strong embryonic lethal allele esgVS8 is caused by an amino acid change within the zinc finger region, leading to reduced affinity for DNA. In cultured cells, a heterodimer of the bHLH proteins Scute and Daughterless activates transcription from promoters containing E2 boxes. The esg protein strongly inhibits this activation, suggesting that esg may regulate developmental processes dependent on bHLH proteins. In larvae, esg protein expressed by the heat shock promoter can rescue the polyploid phenotype of abdominal histoblasts, demonstrating that the phenotype is attributable to a loss of esg function. esg must be expressed continuously during the larval period for efficient rescue. Ectopic expression of esg in the salivary glands inhibits endoreplication of DNA. These results suggest that esg is involved in transcriptional inhibition of genes required for endoreplication. PMID:7958894

  14. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity

    NARCIS (Netherlands)

    Witteveen, Josefine S; Willemsen, Marjolein H; Dombroski, Thaís C D; van Bakel, Nick H M; Nillesen, Willy M; van Hulten, Josephus A; Jansen, Eric J R; Verkaik, Dave; Veenstra-Knol, Hermine E.; Ravenswaaij-Arts, van Conny; Klein Wassink-Ruiter, Jolien S.; Vincent, Marie; David, Albert; Le Caignec, Cedric; Schieving, Jolanda; Gilissen, Christian; Foulds, Nicola; Rump, Patrick; Strom, Tim; Cremer, Kirsten; Zink, Alexander M; Engels, Hartmut; de Munnik, Sonja A; Visser, Jasper E; Brunner, Han G; Martens, Gerard J M; Pfundt, Rolph; Kleefstra, Tjitske; Kolk, Sharon M

    2016-01-01

    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switc

  15. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum

    Science.gov (United States)

    Variation in flowering time was essential during widespread crop domestication and optimal timing of reproduction remains critical to modern agriculture. Ma1, the major repressor of flowering in sorghum in long days, was identified as the pseudo-response regulator protein PRR37. Three prr37 allele...

  16. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng-Fei [Xijing Hospital, Fourth Military Medical University, Xi' an (China); Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China); Han, Ya-Ling, E-mail: hanyaling53@gmail.com [Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China); Jie-Deng,; Yan, Cheng-Hui; Jian-Kang,; Bo-Luan,; Jie-Li [Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang (China)

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study

  17. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53

    DEFF Research Database (Denmark)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice;

    2016-01-01

    the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2......The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in...... cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53....

  18. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction

    DEFF Research Database (Denmark)

    Carvalho, Luciani R; Woods, Kathryn S; Mendonca, Berenice B; Marcal, Nathalie; Zamparini, Andrea L; Stifani, Stefano; Brickman, Joshua M; Arnhold, Ivo J P; Dattani, Mehul T

    2003-01-01

    The paired-like homeobox gene expressed in embryonic stem cells Hesx1/HESX1 encodes a developmental repressor and is expressed in early development in a region fated to form the forebrain, with subsequent localization to Rathke's pouch, the primordium of the anterior pituitary gland. Mutations...... within the gene have been associated with septo-optic dysplasia, a constellation of phenotypes including eye, forebrain, and pituitary abnormalities, or milder degrees of hypopituitarism. We identified a novel homozygous nonconservative missense mutation (I26T) in the critical Engrailed homology...... midline or optic nerve abnormalities. This I26T mutation did not affect the DNA-binding ability of HESX1 but led to an impaired ability to recruit the mammalian Groucho homolog/Transducin-like enhancer of split-1 (Gro/TLE1), a crucial corepressor for HESX1, thereby leading to partial loss of repression...

  19. Identification of NR0B1 as a novel androgen receptor co-repressor in mouse Sertoli cells.

    Science.gov (United States)

    Li, Yu-Chi; Luo, Man-Ling; Guo, Huan; Wang, Tian-Tian; Lin, Shou-Ren; Chen, Jian-Bo; Ma, Qian; Gu, Yan-Li; Jiang, Zhi-Mao; Gui, Yao-Ting

    2016-09-01

    Nuclear receptor subfamily 0 group B member 1 (Nr0b1) is an atypical member of the nuclear receptor family that is predominantly expressed in mouse Sertoli cells (SCs). Mutations of NR0B1 in humans cause adrenal failure and hypogonadotropic hypogonadism. The targeted mutagenesis of Nr0b1 in mice has revealed a primary gonadal defect characterized by the overexpression of aromatase and cellular obstruction of the seminiferous tubules and efferent ductules, leading to germ cell death and infertility. The transgenic expression of Nr0b1 under the control of the Müllerian-inhibiting substance promoter (MIS-Nr0b1), which is selectively expressed in SCs, improves fertility. Testicular androgen receptor (AR) was also expressed in SCs. Many genes are directly regulated by androgen and its AR, which are involved in spermatogenesis and male infertility. As the association between NR0B1 and AR remains unclear in mouse SCs, we decided to further explore the relationship between them. In the present study, we have identified NR0B1 as a novel AR co-repressor in mouse SCs. Using RT‑qPCR and immunofluorescence, we determined that NR0B1 was mainly expressed in mouse SCs in an age-dependent manner from 2-8 weeks of age postnatally. The inhibition of the effects of AR on AR target genes by NR0B1, in an androgen‑dependent manner, was further demonstrated by western blot analysis and RT-qPCR in TM4 cells, a mouse Sertoli cell line. Finally, in vitro luciferase and co-immunoprecipitation assays validated that NR0B1, as an AR co-repressor, significantly inhibited the transcriptional activation of its target genes. These results suggest that novel inhibitory mechanisms underlie the effects of NR0B1 in modulating androgen-dependent gene transcription in mouse SCs. PMID:27431683

  20. Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans.

    Science.gov (United States)

    Ries, Laure N A; Beattie, Sarah R; Espeso, Eduardo A; Cramer, Robert A; Goldman, Gustavo H

    2016-05-01

    Carbon catabolite repression (CCR) is a process that selects the energetically most favorable carbon source in an environment. CCR represses the use of less favorable carbon sources when a better source is available. Glucose is the preferential carbon source for most microorganisms because it is rapidly metabolized, generating quick energy for growth. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, a C2H2 finger domain DNA-binding protein. The aim of this work was to investigate the regulation of CreA and characterize its functionally distinct protein domains. CreA depends in part on de novo protein synthesis and is regulated in part by ubiquitination. CreC, the scaffold protein in the CreB-CreC deubiquitination (DUB) complex, is essential for CreA function and stability. Deletion of select protein domains in CreA resulted in persistent nuclear localization and target gene repression. A region in CreA conserved between Aspergillus spp. and Trichoderma reesei was identified as essential for growth on various carbon, nitrogen, and lipid sources. In addition, a role of CreA in amino acid transport and nitrogen assimilation was observed. Taken together, these results indicate previously unidentified functions of this important transcription factor. These novel functions serve as a basis for additional research in fungal carbon metabolism with the potential aim to improve fungal industrial applications. PMID:27017621

  1. Porphyromonas gingivalis induces receptor activator of NF-kappaB ligand expression in osteoblasts through the activator protein 1 pathway.

    Science.gov (United States)

    Okahashi, Nobuo; Inaba, Hiroaki; Nakagawa, Ichiro; Yamamura, Taihei; Kuboniwa, Masae; Nakayama, Koji; Hamada, Shigeyuki; Amano, Atsuo

    2004-03-01

    Porphyromonas gingivalis, an important periodontal pathogen, is closely associated with inflammatory alveolar bone resorption, and several components of the organism such as lipopolysaccharides have been reported to stimulate production of cytokines that promote inflammatory bone destruction. We investigated the effect of infection with viable P. gingivalis on cytokine production by osteoblasts. Reverse transcription-PCR and real-time PCR analyses revealed that infection with P. gingivalis induced receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) mRNA expression in mouse primary osteoblasts. Production of interleukin-6 was also stimulated; however, osteoprotegerin was not. SB20350 (an inhibitor of p38 mitogen-activated protein kinase), PD98059 (an inhibitor of classic mitogen-activated protein kinase kinase, MEK1/2), wortmannin (an inhibitor of phosphatidylinositol 3 kinase), and carbobenzoxyl-leucinyl-leucinyl-leucinal (an inhibitor of NF-kappaB) did not prevent the RANKL expression induced by P. gingivalis. Degradation of inhibitor of NF-kappaB-alpha was not detectable; however, curcumin, an inhibitor of activator protein 1 (AP-1), prevented the RANKL production induced by P. gingivalis infection. Western blot analysis revealed that phosphorylation of c-Jun, a component of AP-1, occurred in the infected cells, and an analysis of c-Fos binding to an oligonucleotide containing an AP-1 consensus site also demonstrated AP-1 activation in infected osteoblasts. Infection with P. gingivalis KDP136, an isogenic deficient mutant of arginine- and lysine-specific cysteine proteinases, did not stimulate RANKL production. These results suggest that P. gingivalis infection induces RANKL expression in osteoblasts through AP-1 signaling pathways and cysteine proteases of the organism are involved in RANKL production. PMID:14977979

  2. Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs

    OpenAIRE

    Huh, Sung Un; Kim, Min Jung; Paek, Kyung-Hee

    2012-01-01

    Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly,...

  3. Elk3 from hamster--a ternary complex factor with strong transcriptional repressor activity.

    Science.gov (United States)

    Hjortoe, Gertrud Malene; Weilguny, Dietmar; Willumsen, Berthe Marie

    2005-01-01

    Elk3 belongs to the Ets family of transcription factors, which are regulated by the Ras/mitogen-activated protein kinase-signaling pathway. In the absence of Ras, this protein is a strong inhibitor of transcription and may be directly involved in regulation of growth by downregulating the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3 is a target of the Ras-Raf-MAPK pathway, and cotransfections with constitutively active H-ras relieves its negative transcriptional activity. No cells stably expressing exogenous Elk3 could be obtained, possibly due to an unspecified toxic or growth retarding effect. These findings support a possible role for Elk3 in growth regulation and reveal a high degree of homology for this protein across species. PMID:15684718

  4. Tollip is a mediator of protein sumoylation.

    Directory of Open Access Journals (Sweden)

    Alessia Ciarrocchi

    Full Text Available Tollip is an interactor of the interleukin-1 receptor involved in its activation. The endosomal turnover of ubiquitylated IL-1RI is also controlled by Tollip. Furthermore, together with Tom1, Tollip has a general role in endosomal protein traffic. This work shows that Tollip is involved in the sumoylation process. Using the yeast two-hybrid technique, we have isolated new Tollip partners including two sumoylation enzymes, SUMO-1 and the transcriptional repressor Daxx. The interactions were confirmed by GST-pull down experiments and immunoprecipitation of the co-expressed recombinants. More specifically, we show that the TIR domain of the cytoplasmic region of IL-1RI is a sumoylation target of Tollip. The sumoylated and unsumoylated RanGAP-1 protein also interacts with Tollip, suggesting a possible role in RanGAP-1 modification and nuclear-cytoplasmic protein translocation. In fact, Tollip is found in the nuclear bodies of SAOS-2/IL-1RI cells where it colocalizes with SUMO-1 and the Daxx repressor. We conclude that Tollip is involved in the control of both nuclear and cytoplasmic protein traffic, through two different and often contrasting processes: ubiquitylation and sumoylation.

  5. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    International Nuclear Information System (INIS)

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  6. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.

    Directory of Open Access Journals (Sweden)

    Andrew Chen

    Full Text Available Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1. Extended exposures to low temperatures during the winter (vernalization induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1, which is mainly expressed in the apical meristem, VRN1 is also expressed at high levels in the leaves, but its function in this tissue is not well understood. Using tetraploid wheat lines with truncation mutations in the two homoeologous copies of VRN1 (henceforth vrn1-null mutants, we demonstrate that a central role of VRN1 in the leaves is to maintain low transcript levels of the VRN2 flowering repressor after vernalization. Transcript levels of VRN2 were gradually down-regulated during vernalization in both mutant and wild-type genotypes, but were up-regulated after vernalization only in the vrn1-null mutants. The up-regulation of VRN2 delayed flowering by repressing the transcription of FT, a flowering-integrator gene that encodes a mobile protein that is transported from the leaves to the apical meristem to induce flowering. The role of VRN2 in the delayed flowering of the vrn1-null mutant was confirmed using double vrn1-vrn2-null mutants, which flowered two months earlier than the vrn1-null mutants. Both mutants produced normal flowers and seeds demonstrating that VRN1 is not essential for wheat flowering, which contradicts current flowering models. This result does not diminish the importance of VRN1 in the seasonal regulation of wheat flowering. The up-regulation of VRN1 during winter is required to maintain low transcript levels of VRN2, accelerate the induction of FT in the leaves, and regulate a timely flowering in the spring. Our results also demonstrate the existence of redundant wheat flowering genes that may provide new targets for engineering wheat

  7. Distinct roles of the Pumilio and FBF translational repressors during C. elegans vulval development

    OpenAIRE

    Walser, C B; Battu, G; Hoier, E; Hajnal, A.

    2006-01-01

    The C. elegans PUF and FBF proteins regulate various aspects of germline development by selectively binding to the 3' untranslated region of their target mRNAs and repressing translation. Here, we show that puf-8, fbf-1 and fbf-2 also act in the soma where they negatively regulate vulvaI development. Loss-of-function mutations in puf-8 cause ectopic vulval differentiation when combined with mutations in negative regulators of the EGFR/RAS/MAPK pathway and suppress the vulvaless phenotype caus...

  8. The bacteriophage T4 regA gene: primary sequence of a translational repressor.

    OpenAIRE

    Trojanowska, M.; Miller, E S; Karam, J; Stormo, G; Gold, L

    1984-01-01

    The regA gene product of bacteriophage T4 is an autogenously controlled translational regulatory protein that plays a role in differential inhibition (translational repression) of a subpopulation of T4-encoded "early" mRNA species. The structural gene for this polypeptide maps within a cluster of phage DNA replication genes, (genes 45-44-62-regA-43-42), all but one of which (gene 43) are under regA-mediated translational control. We have cloned the T4 regA gene, determined its nucleotide sequ...

  9. Elk3 from hamster-a ternary complex factor with strong transcriptional repressor activity

    DEFF Research Database (Denmark)

    Hjortoe, G.M.; Weilguny, D.; Willumsen, Berthe Marie

    2005-01-01

    transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c......-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3 is a...

  10. The E-cadherin repressor slug and progression of human extrahepatic hilar cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Wang Xin-sheng

    2010-07-01

    Full Text Available Abstract Objectives This study explored the expression and function of Slug in human extrahepatic hilar cholangiocarcinoma (EHC to identify its role in tumor progression. Methods The expression of Snail and Slug mRNA in 52 human tissue samples of EHC was investigated. The mRNA of Snail and Slug were quantified using reverse transcriptase-PCR, and correlations with E-cadherin expression and clinicopathological factors were investigated. We then investigated transfection of Slug cDNA in endogenous E-cadherin-positive human EHC FRH0201 cells, selectively induced the loss of E-cadherin protein expression, and then small interfering RNA (siRNA for inhibition of Slug expression in endogenous Slug-positive human EHC QBC939 cells, selectively induced the loss of Slug protein expression. A Boyden chamber transwell assay was used for invasion. Results Slug mRNA was overexpressed in 18 cases (34.6% of EHC compared with adjacent noncancerous tissue. E-Cadherin protein expression determined in the same 52 cases by immunohistochemistry was significantly down-regulated in those cases with Slug mRNA overexpression (P = 0.0001. The tumor and nontumor ratio of Slug mRNA was correlated with nodal metastasis(p = 0.0102, distant metastasis (p = 0.0001and Survival time(p = 0.0443. However, Snail mRNA correlated with neither E-cadherin expression nor tumor invasiveness. By inhibiting Slug expression by RNA interference, we found that reduced Slug levels upregulated E-cadherin and decreased invasion in QBC939 cell. When the QBC939 cells was infected with Slug cDNA,, significant E-cadherin was downregulated and increased invasion in QBC939 cell. Conclusions The results suggested that Slug expression plays an important role in both the regulation of E-cadherin expression and in the acquisition of invasive potential in human EHC. Slug is possibly a potential target for an antitumor therapy blocking the functions of invasion and metastasis in human EHCs.

  11. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12.

    Science.gov (United States)

    Yang, Shanshan; Murphy, Rebecca L; Morishige, Daryl T; Klein, Patricia E; Rooney, William L; Mullet, John E

    2014-01-01

    Light signaling by phytochrome B in long days inhibits flowering in sorghum by increasing expression of the long day floral repressors PSEUDORESPONSE REGULATOR PROTEIN (SbPRR37, Ma1) and GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGHD7, Ma6). SbPRR37 and SbGHD7 RNA abundance peaks in the morning and in the evening of long days through coordinate regulation by light and output from the circadian clock. 58 M, a phytochrome B deficient (phyB-1, ma3R) genotype, flowered ∼60 days earlier than 100 M (PHYB, Ma3) in long days and ∼11 days earlier in short days. Populations derived from 58 M (Ma1, ma3R, Ma5, ma6) and R.07007 (Ma1, Ma3, ma5, Ma6) varied in flowering time due to QTL aligned to PHYB/phyB-1 (Ma3), Ma5, and GHD7/ghd7-1 (Ma6). PHYC was proposed as a candidate gene for Ma5 based on alignment and allelic variation. PHYB and Ma5 (PHYC) were epistatic to Ma1 and Ma6 and progeny recessive for either gene flowered early in long days. Light signaling mediated by PhyB was required for high expression of the floral repressors SbPRR37 and SbGHD7 during the evening of long days. In 100 M (PHYB) the floral activators SbEHD1, SbCN8 and SbCN12 were repressed in long days and de-repressed in short days. In 58 M (phyB-1) these genes were highly expressed in long and short days. Furthermore, SbCN15, the ortholog of rice Hd3a (FT), is expressed at low levels in 100 M but at high levels in 58 M (phyB-1) regardless of day length, indicating that PhyB regulation of SbCN15 expression may modify flowering time in a photoperiod-insensitive manner. PMID:25122453

  12. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12.

    Directory of Open Access Journals (Sweden)

    Shanshan Yang

    Full Text Available Light signaling by phytochrome B in long days inhibits flowering in sorghum by increasing expression of the long day floral repressors PSEUDORESPONSE REGULATOR PROTEIN (SbPRR37, Ma1 and GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGHD7, Ma6. SbPRR37 and SbGHD7 RNA abundance peaks in the morning and in the evening of long days through coordinate regulation by light and output from the circadian clock. 58 M, a phytochrome B deficient (phyB-1, ma3R genotype, flowered ∼60 days earlier than 100 M (PHYB, Ma3 in long days and ∼11 days earlier in short days. Populations derived from 58 M (Ma1, ma3R, Ma5, ma6 and R.07007 (Ma1, Ma3, ma5, Ma6 varied in flowering time due to QTL aligned to PHYB/phyB-1 (Ma3, Ma5, and GHD7/ghd7-1 (Ma6. PHYC was proposed as a candidate gene for Ma5 based on alignment and allelic variation. PHYB and Ma5 (PHYC were epistatic to Ma1 and Ma6 and progeny recessive for either gene flowered early in long days. Light signaling mediated by PhyB was required for high expression of the floral repressors SbPRR37 and SbGHD7 during the evening of long days. In 100 M (PHYB the floral activators SbEHD1, SbCN8 and SbCN12 were repressed in long days and de-repressed in short days. In 58 M (phyB-1 these genes were highly expressed in long and short days. Furthermore, SbCN15, the ortholog of rice Hd3a (FT, is expressed at low levels in 100 M but at high levels in 58 M (phyB-1 regardless of day length, indicating that PhyB regulation of SbCN15 expression may modify flowering time in a photoperiod-insensitive manner.

  13. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey; Saint-Pierre, Christine [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Kraut, Alexandra; Couté, Yohann [Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S_1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France); Plo, Isabelle [INSERM, U1009, Institut Gustave Roussy, Université Paris 11, 114 rue Edouard Vaillant, Villejuif F-94805 (France); Gasparutto, Didier; Ravanat, Jean-Luc [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Breton, Jean, E-mail: jean.breton@cea.fr [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France)

    2014-03-28

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.

  14. Insight into a Physiological Role for the EC Night-Time Repressor in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Mizuno, Takeshi; Kitayama, Miki; Takayama, Chieko; Yamashino, Takafumi

    2015-09-01

    Life cycle adaptation to seasonal variation in photoperiod and temperature is a major determinant of ecological success of widespread domestication of Arabidopsis thaliana. The circadian clock plays a role in the underlying mechanism for adaptation. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject of research in the field. We previously showed that a set of the target genes (i.e. GI, LNK1. PRR9 and PRR7) of the Evening Complex (EC) consisting of LUX-ELF3-ELF4 is synergistically induced in response to both warm-night and night-light signals. Here, we further show that the responses occur within a wide range of growth-compatible temperatures (16-28°C) in response to a small change in temperature (Δ4°C). A dim light pulse (tracking seasonal variation in photoperiod and temperature by conservatively double-checking both the light and temperature conditions. Another EC target output gene PIF4 regulating plant morphologies is also regulated by both the temperature and light stimuli during the night. Hence, the EC night-time repressor is also implicated in a physiological output of the PIF4-mediated regulation of morphologies in response to seasonal variation in photoperiod and ambient temperature. PMID:26108788

  15. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation.

    Science.gov (United States)

    Rappl, Gunter; Pabst, Stefan; Riemann, Dagmar; Schmidt, Annette; Wickenhauser, Claudia; Schütte, Wolfgang; Hombach, Andreas A; Seliger, Barbara; Grohé, Christian; Abken, Hinrich

    2011-07-01

    Sarcoidosis can evolve into a chronic disease with persistent granulomas accompanied by progressive fibrosis. While an unlimited inflammatory response suggests an impaired immune control in sarcoid lesions, it stands in contrast to the massive infiltration with CD4(+)CD25(high)FoxP3(+) regulatory T cells. We here revealed that those Treg cells in affected lung lesions were mainly derived from activated natural Treg cells with GARP (LRRC32)-positive phenotype but exhibited reduced repressor capacities despite high IL-10 and TGF-beta 1 levels. The repressive capacity of blood Treg cells, in contrast, was not impaired compared to age-matched healthy donors. Treg derived cells in granuloma lesions have undergone extensive rounds of amplifications indicated by shortened telomeres compared to blood Treg cells of the same patient. Lesional Treg derived cells moreover secreted pro-inflammatory cytokines including IL-4 which sustains granuloma formation through fibroblast amplification and the activation of mast cells, the latter indicated by the expression of membrane-bound oncostatin M. PMID:21482483

  16. Octamerization of lambda CI repressor is needed for effective repression of P(RM) and efficient switching from lysogeny.

    Science.gov (United States)

    Dodd, I B; Perkins, A J; Tsemitsidis, D; Egan, J B

    2001-11-15

    The CI repressor of bacteriophage lambda is a model for the role of cooperativity in the efficient functioning of genetic switches. Pairs of CI dimers interact to cooperatively occupy adjacent operator sites at O(R) and at O(L). These CI tetramers repress the lytic promoters and activate transcription of the cI gene from P(RM). CI is also able to octamerize, forming a large DNA loop between O(R) and O(L), but the physiological role of this is unclear. Another puzzle is that, although a dimer of CI is able to repress P(RM) by binding to the third operator at O(R), O(R)3, this binding seems too weak to affect CI production in the lysogenic state. Here we show that repression of P(RM) at lysogenic CI concentrations is absolutely dependent on O(L), in this case 3.8 kb away. A mutant defective in this CI negative autoregulation forms a lysogen with elevated CI levels that cannot efficiently switch from lysogeny to lytic development. Our results invalidate previous evidence that Cro binding to O(R)3 is important in prophage induction. We propose the octameric CI:O(R)-O(L) complex increases the affinity of CI for O(R)3 by allowing a CI tetramer to link O(R)3 and the third operator at O(L), O(L)3. PMID:11711436

  17. Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids.

    Science.gov (United States)

    Hofbauer, Harald F; Schopf, Florian H; Schleifer, Hannes; Knittelfelder, Oskar L; Pieber, Bartholomäus; Rechberger, Gerald N; Wolinski, Heimo; Gaspar, Maria L; Kappe, C Oliver; Stadlmann, Johannes; Mechtler, Karl; Zenz, Alexandra; Lohner, Karl; Tehlivets, Oksana; Henry, Susan A; Kohlwein, Sepp D

    2014-06-23

    Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription. PMID:24960695

  18. Inducible cyclic AMP early repressor produces reactivation of latent herpes simplex virus type 1 in neurons in vitro.

    Science.gov (United States)

    Colgin, M A; Smith, R L; Wilcox, C L

    2001-03-01

    Herpes simplex virus type 1 (HSV-1) establishes a latent infection in neurons of the peripheral nervous system. During latent HSV-1 infection, viral gene expression is limited to latency-associated transcripts (LAT). HSV-1 remains latent until an unknown mechanism induces reactivation. The ability of the latent virus to periodically reactivate and be shed is essential to the transmission of disease. In vivo, the stimuli that induce reactivation of latent HSV-1 include stress, fever, and UV damage to the skin at the site of initial infection. In vitro, in primary neurons harboring latent HSV-1, nerve growth factor (NGF) deprivation or forskolin treatment induces reactivation. However, the mechanism involved in the induction of reactivation remains poorly understood. An in vitro neuronal model of HSV-1 latency was used to investigate potential mechanisms involved in the induction of reactivation of latent HSV-1. In situ hybridization analysis of neuronal cultures harboring latent HSV-1 showed a marked, rapid decrease in the percentage of LAT-positive neurons following induction of reactivation by NGF deprivation or forskolin treatment. Western blot analysis showed a corresponding increase in expression of the cellular transcription factor inducible cyclic AMP early repressor (ICER) during reactivation. In transient-transfection assays, ICER downregulated LAT promoter activity. Expression of ICER from a recombinant adenoviral vector induced reactivation and decreased the percentage of LAT-positive neurons in neuronal cultures harboring latent HSV-1. These results indicate that ICER represses LAT expression and induces reactivation of latent HSV-1. PMID:11222716

  19. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor.

    Science.gov (United States)

    Brandstätter, Olga; Schanz, Oliver; Vorac, Julia; König, Jessica; Mori, Tetsushi; Maruyama, Toru; Korkowski, Markus; Haarmann-Stemmann, Thomas; von Smolinski, Dorthe; Schultze, Joachim L; Abel, Josef; Esser, Charlotte; Takeyama, Haruko; Weighardt, Heike; Förster, Irmgard

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli. PMID:27184933

  20. The Arabidopsis Floral Repressor BFT DelaysFlowering by Competing with FT for FD Bindingunder High Salinity

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Soil salinity is one of the most serious agricultural problems that significantly reduce crop yields in the aridand semi-arid regions. It influences various phases of plant growth and developmental processes, such as seed germina-tion, leaf and stem growth, and reproductive propagation. Salt stress delays the onset of flowering in many plant spe-cies. We have previously reported that the Arabidopsis BROTHER OF FT AND TFL1 (BFT) acts as a floral repressor undersalt stress. However, the molecular mechanisms underlying the BFT function in the salt regulation of flowering inductionis unknown. In this work, we found that BFT delays flowering under high salinity by competing with FLOWERING LOCUST (FT) for binding to the FD transcription factor. The flowering time of FD-deficient fd-2 mutant was insensitive to highsalinity. BFT interacts with FD in the nucleus via the C-terminal domain of FD, which is also required for the interactionof FD with FT, and interferes with the FT-FD interaction. These observations indicate that BFT constitutes a distinct saltstress signaling pathway that modulates the function of the FT-FD module and possibly provides an adaptation strategythat fine-tunes photoperiodic flowering under high salinity.

  1. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors.

    Science.gov (United States)

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-11-28

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp -308 to -188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp -65 to -56) and GC-box 2 (bp -18 to -9), the latter of which is also bound by FBI-1. We found that FRE3 (bp -244 to -236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  2. Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene.

    Science.gov (United States)

    Norris, M L; Millhorn, D E

    1995-10-01

    We reported recently that the gene that encodes tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, is regulated by hypoxia in the dopaminergic cells of the mammalian carotid body (Czyzyk-Krzeska, M. F., Bayliss, D. A., Lawson, E. E. & Millhorn, D. E. (1992) J. Neurochem. 58, 1538-1546) and in pheochromocytoma (PC12) cells (Czyzyk-Krzeska, M. F., Furnari, B. A., Lawson, E. E. & Millhorn, D. E. (1994) J. Biol. Chem. 269, 760-764). Regulation of this gene during low O2 conditions occurs at both the level of transcription and RNA stability. Increased transcription during hypoxia is regulated by a region of the proximal promoter that extends from -284 to + 27 bases, relative to transcription start site. The present study was undertaken to further characterize the sequences that confer O2 responsiveness of the TH gene and to identify hypoxia-induced protein interactions with these sequences. Results from chloramphenicol acetyltransferase assays identified a region between bases -284 and -150 that contains the essential sequences for O2 regulation. This region contains a number of regulatory elements including AP1, AP2, and HIF-1. Gel shift assays revealed enhanced protein interactions at the AP1 and HIF-1 elements of the native gene. Further investigations using supershift and shift-Western analysis showed that c-Fos and JunB bind to the AP1 element during hypoxia and that these protein levels are stimulated by hypoxia. Mutation of the AP1 sequence prevented stimulation of transcription of the TH-chloramphenicol acetyltransferase reporter gene by hypoxia. PMID:7559551

  3. The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi.

    Science.gov (United States)

    Condemine, G; Castillo, A; Passeri, F; Enard, C

    1999-01-01

    Erwinia chrysanthemi 3937 synthesizes an exopolysaccharide (EPS) composed of rhamnose, galactose, and galacturonic acid. Fourteen transcriptional fusions in genes required for EPS synthesis, named eps, were obtained by Tn5-B21 mutagenesis. Eleven of them are clustered on the chromosome and are repressed by PecT, a regulator of pectate lyase synthesis. In addition, expression of these fusions is repressed by the catabolite regulatory protein, CRP, and induced in low osmolarity medium. The three other mutations are located in genes that are not regulated by pecT. A 13-kb DNA fragment containing pecT-regulated eps genes has been cloned. All the genes identified on this fragment are transcribed in the same orientation and could form a large operon. The promoter region of this operon has been sequenced. It contains a JUMP-start sequence, a sequence required for the expression of polysaccharide-associated operons. E. chrysanthemi 3937 produces a systemic soft rot on its host Saintpaulia ionantha. An eps mutant was less efficient than the wild-type strain in initiating a maceration symptom, suggesting that production of EPS is required for the full expression of the E. chrysanthemi virulence. PMID:9885192

  4. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA

    DEFF Research Database (Denmark)

    Nielsen, Morten S; Gustafsen, Camilla; Madsen, Peder;

    2007-01-01

    -formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that......-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are...

  5. The JAZ proteins: a crucial interface in the jasmonate signaling cascade

    OpenAIRE

    Pauwels, Laurens; Goossens, Alain

    2011-01-01

    Jasmonates are phytohormones that regulate many aspects of plant growth, development, and defense. Within the signaling cascades that are triggered by jasmonates, the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins play a central role. The endogenous bioactive JA-Ile conjugate mediates the binding of JAZ proteins to the F-box protein CORONATINE INSENSITIVE1 (COI1), part of the Skp1/Cullin/F-box SCF(COI1) ubiquitin E3 ligase complex. Upon the subsequent destruction of the JAZ proteins by the 26S...

  6. Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs.

    Science.gov (United States)

    Huh, Sung Un; Kim, Min Jung; Paek, Kyung-Hee

    2013-01-01

    Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly, CMV RNA contained putative Pumilio-homology domain binding motifs in its 3' untranslated region (UTR) and internal places in its genome. APUM5 directly bound to the 3' UTR motifs and some internal binding motifs in CMV RNAs in vitro and in vivo. We showed that APUM5 acts as a translational repressor that regulates the 3' UTR of CMV and affects CMV replication. This study uncovered a unique defense system that Arabidopsis APUM5 specifically regulates CMV infection by the direct binding of CMV RNAs. PMID:23269841

  7. Role of Arabidopsis Pumilio RNA binding protein 5 in virus infection.

    Science.gov (United States)

    Un Huh, Sung; Paek, Kyung-Hee

    2013-05-01

    Regulation of gene expression is mediated by diverse RNA binding proteins which play important roles in development and defense processes. Pumilio/FBF (Puf) protein in mammals functions as a posttranscriptional/translational repressor by binding to the 3' UTR regions of its target mRNAs. Previous study reported that APUM5 provides protection against CMV infection by directly binding to CMV RNAs in Arabidopsis. CMV RNAs contain putative Pumilio-binding motifs and APUM5 bound to the 3' UTR and some of its internal motifs both in vitro and in vivo. APUM5 works as a negative regulator of the 3' UTR of CMV and it might regulate CMV replication. Our findings suggest that APUM5 acts as a defensive repressor in plants during CMV infection. However, functions of APUM5 and other APUM members are still not clear and more studies are needed to find out the interacting partners and target mRNAs in host plant. PMID:23511198

  8. Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment.

    Science.gov (United States)

    Abazeed, Mohamed E; Fuller, Robert S

    2008-11-01

    Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN-PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the beta subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Delta membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Delta mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  9. Yeast Golgi-localized, γ-Ear–containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment

    Science.gov (United States)

    Abazeed, Mohamed E.

    2008-01-01

    Golgi-localized, γ-Ear–containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN–PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the β subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Δ membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Δ mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  10. The translational repressors Nanos and Pumilio have divergent effects on presynaptic terminal growth and postsynaptic glutamate receptor subunit composition.

    Science.gov (United States)

    Menon, Kaushiki P; Andrews, Shane; Murthy, Mala; Gavis, Elizabeth R; Zinn, Kai

    2009-04-29

    Pumilio (Pum) is a translational repressor that binds selectively to target mRNAs and recruits Nanos (Nos) as a corepressor. In the larval neuromuscular system, Pum represses expression of the translation factor eIF-4E and the glutamate receptor subunit GluRIIA. Here, we show that Nos, like Pum, is expressed at the neuromuscular junction (NMJ) and in neuronal cell bodies. Surprisingly, however, Nos and Pum have divergent functions on both the presynaptic and postsynaptic sides of the NMJ. In nos mutant and nos RNA interference larvae, the number of NMJ boutons is increased, whereas loss of Pum reduces the bouton number. On the postsynaptic side, Nos acts in opposition to Pum in regulating the subunit composition of the glutamate receptor. NMJ active zones are associated with GluRIIA- and GluRIIB-containing receptor clusters. Loss of Nos causes downregulation of GluRIIA and increases the levels of GluRIIB. Consistent with this finding, the electrophysiological properties of NMJs lacking postsynaptic Nos suggest that they use primarily GluRIIB-containing receptors. Nos can regulate GluRIIB in the absence of GluRIIA, suggesting that the effects of Nos on GluRIIB levels are at least partially independent of synaptic competition between GluRIIA and GluRIIB. Nos is a target for Pum repression, and Pum binds selectively to the 3' untranslated regions of the nos and GluRIIA mRNAs. Our results suggest a model in which regulatory interplay among Pum, Nos, GluRIIA, and GluRIIB could cause a small change in Pum activity to be amplified into a large shift in the balance between GluRIIA and GluRIIB synapses. PMID:19403823

  11. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport.

    Science.gov (United States)

    Costaguta, G; Stefan, C J; Bensen, E S; Emr, S D; Payne, G S

    2001-06-01

    Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the "ear" domain of the clathrin adaptor AP-1 gamma subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Delta), the major Gga protein, accentuates growth and alpha-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Delta or a deletion of the AP-1 beta subunit gene (apl2Delta) alone are phenotypically normal, but cells carrying both gga2Delta and apl2Delta are defective in growth, alpha-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes. PMID:11408593

  12. The Transcriptional Repressor ID2 Can Interact with the Canonical Clock Components CLOCK and BMAL1 and Mediate Inhibitory Effects on mPer1 Expression*

    OpenAIRE

    Ward, Sarah M.; Fernando, Shanik J.; Hou, Tim Y.; Duffield, Giles E.

    2010-01-01

    ID2 is a rhythmically expressed HLH transcriptional repressor. Deletion of Id2 in mice results in circadian phenotypes, highlighted by disrupted locomotor activity rhythms and an enhanced photoentrainment response. ID2 can suppress the transactivation potential of the positive elements of the clock, CLOCK-BMAL1, on mPer1 and clock-controlled gene (CCG) activity. Misregulation of CCGs is observed in Id2−/− liver, and mutant mice exhibit associated alterations in lipid homeostasis. These data s...

  13. Characterization of Interactions between the Transcriptional Repressor PhlF and Its Binding Site at the phlA Promoter in Pseudomonas fluorescens F113

    OpenAIRE

    Abbas, Abdelhamid; John P. Morrissey; Marquez, Pilar Carnicero; Sheehan, Michelle M.; Delany, Isabel R.; O'Gara, Fergal

    2002-01-01

    The phlACBD genes responsible for the biosynthesis of the antifungal metabolite 2,4-diacetylphloroglucinol (PHL) by the biocontrol strain Pseudomonas fluorescens F113 are regulated at the transcriptional level by the pathway-specific repressor PhlF. Strong evidence suggests that this regulation occurs mainly in the early logarithmic phase of growth. First, the expression of the phlF gene is relatively high between 3 and 13 h of growth and relatively low thereafter, with the phlACBD operon fol...

  14. Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor

    OpenAIRE

    Morabbi Heravi, Kambiz; Lange, Julian; Watzlawick, Hildegard; Kalinowski, Jörn; Altenbuchner, Josef

    2014-01-01

    Corynebacterium glutamicum is able to utilize vanillate, the product of lignin degradation, as the sole carbon source. The vanillate utilization components are encoded by the vanABK operon. The vanA and vanB genes encode the subunits of vanillate O-demethylase, converting vanillate to protocatechuate, while VanK is the specific vanillate transporter. The vanABK operon is regulated by a PadR-type repressor, VanR. Heterologous gene expression and variations of the vanR open reading frame reveal...

  15. The activation function 2 domain of hepatic nuclear factor 4 is regulated by a short C-terminal proline-rich repressor domain.

    OpenAIRE

    Iyemere, V P; Davies, N H; Brownlee, G G

    1998-01-01

    Hepatic nuclear factor 4 (HNF4) is a transcription factor whose expression is crucial for mouse embryonic development, for liver-specific gene expression and for the prevention of one form of maturity-onset diabetes of the young. Its domain structure has been defined previously and is similar to other members of the nuclear receptor superfamily. A repressor domain has now been localised to a region of 14 amino acids (residues 428-441) near the C-terminus of HNF4 and is sufficient by itself to...

  16. A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis

    OpenAIRE

    Ding, Bo; Abe, Jun-ichi; Wei, Heng; Xu, Haodong; Che, Wenyi; Aizawa, Toru; Liu, Weimin; Molina, Carlos A.; Sadoshima, Junichi; Blaxall, Burns C.; Berk, Bradford C.; Yan, Chen

    2005-01-01

    cAMP plays crucial roles in cardiac remodeling and the progression of heart failure. Recently, we found that expression of cAMP hydrolyzing phosphodiesterase 3A (PDE3A) was significantly reduced in human failing hearts, accompanied by up-regulation of inducible cAMP early repressor (ICER) expression. Angiotensin II (Ang II) and the β-adrenergic receptor agonist isoproterenol (ISO) also induced persistent PDE3A down-regulation and concomitant ICER up-regulation in vitro, which is important in ...

  17. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    徐进平; 叶林柏

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  18. Status of APS 1-Mwe Parabolic Trough Project

    Energy Technology Data Exchange (ETDEWEB)

    Canada, S.; Brosseau, D.; Kolb, G.; Moore, L.; Cable, R.; Price, H.

    2005-11-01

    Arizona Public Service (APS) is currently installing new power facilities to generate a portion of its electricity from solar resources that will satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). During FY04, APS began construction on a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. Site preparation and construction activities continued throughout much of FY05, and startup activities are planned for Fall 2005 (with completion early in FY06). The plant will be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory. The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than the conventional steam Rankine cycle plant and allows unattended operation of the facility.

  19. Are corepressors always repressors?

    Directory of Open Access Journals (Sweden)

    Andrea Hessenauer

    2011-08-01

    Full Text Available In this review we summarize data on paradox actions of corepressors, acting under certain circumstances as activators of transcription. Putative mechanisms, including the role of splice variants, recruitment of coactivators by corepressors and the importance of chromatin structure and hormone response elements are discussed.

  20. C-terminal Binding Proteins are Essential Pro-survival Factors that Undergo Caspase-dependent Downregulation during Neuronal Apoptosis

    OpenAIRE

    Stankiewicz, Trisha R.; Schroeder, Emily K.; Kelsey, Natalie A.; Bouchard, Ron J.; Linseman, Daniel A.

    2013-01-01

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficie...

  1. DNA topology confers sequence specificity to nonspecific architectural proteins.

    Science.gov (United States)

    Wei, Juan; Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K

    2014-11-25

    Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid. PMID:25385626

  2. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription.

    OpenAIRE

    Hiebert, S W; Sun, W; Davis, J. N.; Golub, T; Shurtleff, S; Buijs, A; Downing, J R; Grosveld, G; Roussell, M F; Gilliland, D G; Lenny, N; Meyers, S

    1996-01-01

    The t(12;21) translocation is present in up to 30% of childhood B-cell acute lymphoblastic and fuses a potential dimerization motif from the ets-related factor TEL to the N terminus of AML1. The t(12;21) translocation encodes a 93-kDa fusion protein that localizes to a high-salt- and detergent-resistant nuclear compartment. This protein binds the enhancer core motif, TGTGGT, and interacts with the AML-1-binding protein, core-binding factor beta. Although TEL/AML-1B retains the C-terminal doma...

  3. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  4. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H2O2) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H2O2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  5. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis

    Directory of Open Access Journals (Sweden)

    Isabelle Gillot

    2009-01-01

    Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.

  6. Differential expression of SOS genes in an E. coli mutant producing unstable lexA protein enhances excision repair but inhibits mutagenesis

    International Nuclear Information System (INIS)

    The SOS response is displayed following treatments which damage DNA or inhibit DNA replication. Two associated activities include enhanced capacity for DNA repair resulting from derepression of the recA, uvrA, uvrB and uvrD genes and increased mutagenesis due to derepression of recA, umuC and umuD. These changes are the consequence of the derepression of at least seventeen unlinked operons negatively regulated by LexA repressor. Following treatments that induce the SOS response, a signal molecule interacts with RecA protein, converting it to an activated form. Activated RecA protein facilitates the proteolytic cleavage of LexA repressor, which results in derepression of the regulon. The cell then enters a new physiological state during which time DNA repair processes are augmented. The lexA41 mutant of E. coli is a uv-resistant derivative of another mutant, lexA3, which produces a repressor that is not cleaved following inducing treatments. The resultant protein is unstable. Lac operon fusions to most of the genes in the SOS regulon were used to show that the various damage-inducible genes were derepressed to different extents. uvrA, B, and D were almost fully derepressed. Consistent with this finding, the rate of removal of T4 endonuclease V-sensitive sites was more rapid in the uv-irradiated lexA41 mutant than in normal cells, suggesting a more active excision repair system. We propose that the instability of the LexA41 protein reduces the intracellular concentration of repressor to a level that allows a high level of excision repair. The additional observation that SOS mutagenesis was only weakly induced in a lexA41 uvrA- mutant implies that the mutant protein partially represses one or more genes whose products promote SOS mutagenesis. 17 refs., 4 figs., 1 tab

  7. Role of Arabidopsis Pumilio RNA binding protein 5 in virus infection

    OpenAIRE

    Un Huh, Sung; Paek, Kyung-Hee

    2013-01-01

    Regulation of gene expression is mediated by diverse RNA binding proteins which play important roles in development and defense processes. Pumilio/FBF (Puf) protein in mammals functions as a posttranscriptional/translational repressor by binding to the 3′ UTR regions of its target mRNAs. Previous study reported that APUM5 provides protection against CMV infection by directly binding to CMV RNAs in Arabidopsis. CMV RNAs contain putative Pumilio-binding motifs and APUM5 bound to the 3′ UTR and ...

  8. Human heterochromatin proteins form large domains containing KRAB-ZNF genes

    OpenAIRE

    Vogel, Maartje J.; Guelen, Lars; de Wit, Elzo; Hupkes, Daniel Peric; Lodén, Martin; Talhout, Wendy; Feenstra, Marike; Abbas, Ben; Classen, Anne-Kathrin; van Steensel, Bas

    2006-01-01

    Heterochromatin is important for gene regulation and chromosome structure, but the genes that are occupied by heterochromatin proteins in the mammalian genome are largely unknown. We have adapted the DamID method to systematically identify target genes of the heterochromatin proteins HP1 and SUV39H1 in human and mouse cells. Unexpectedly, we found that CBX1 (formerly HP1β) and SUV39H1 bind to genes encoding KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. These genes ...

  9. Recruitment of the ParG Segregation Protein to Different Affinity DNA Sites▿ §

    OpenAIRE

    Zampini, Massimiliano; Derome, Andrew; Bailey, Simon E. S.; Barillà, Daniela; Hayes, Finbarr

    2009-01-01

    The segrosome is the nucleoprotein complex that mediates accurate plasmid segregation. In addition to its multifunctional role in segrosome assembly, the ParG protein of multiresistance plasmid TP228 is a transcriptional repressor of the parFG partition genes. ParG is a homodimeric DNA binding protein, with C-terminal regions that interlock into a ribbon-helix-helix fold. Antiparallel β-strands in this fold are presumed to insert into the OF operator major groove to exert transcriptional cont...