WorldWideScience

Sample records for ap-1 homolog bzlf1

  1. Recombinant production of Epstein-Barr virus BZLF1 trans-activator and characterization of its DNA-binding specificity.

    Science.gov (United States)

    Lim, Chun Shen; Goh, Siang Ling; Krishnan, Gopala; Ng, Ching Ching

    2014-03-01

    This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.

  2. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  3. Urea-mediated cross-presentation of soluble Epstein-Barr virus BZLF1 protein.

    Directory of Open Access Journals (Sweden)

    Sascha Barabas

    2008-11-01

    Full Text Available Soluble extracellular proteins usually do not enter the endogenous human leukocyte antigen (HLA I-dependent presentation pathway of antigen-presenting cells, strictly impeding their applicability for the re-stimulation of protein-specific CD8(+ cytotoxic T lymphocytes (CTL. Here we present for the Epstein-Barr virus (EBV BZLF1 a novel strategy that facilitates protein translocation into antigen-presenting cells by its solubilisation in high molar urea and subsequent pulsing of cells in presence of low molar urea. Stimulation of PBMC from HLA-matched EBV-seropositive individuals with urea-treated BZLF1 but not untreated BZLF1 induces an efficient reactivation of BZLF1-specific CTL. Urea-treated BZLF1 (uBZLF1 enters antigen-presenting cells in a temperature-dependent manner by clathrin-mediated endocytosis and is processed by the proteasome into peptides that are bound to nascent HLA I molecules. Dendritic cells and monocytes but also B cells can cross-present uBZLF1 in vitro. The strategy described here has potential for use in the development of improved technologies for the monitoring of protein-specific CTL.

  4. BZLF1 Expression of EBV is correlated with PARP1 Regulation on Nasopharyngeal Carcinoma Tissues

    Directory of Open Access Journals (Sweden)

    Wahyu nur laili fajri, Ahmad Rofi'i, Fatchiyah Fatchiyah

    2013-04-01

    Full Text Available Nasopharyngeal carcinomas (NPC is a cancer that arises in the epithelial tissue that covers the inside of the nasopharyngeal mucosa and nasopharynx. Infected Epstein Barr Virus (EBV cell in a latent infection associated with the expression of nine latent proteins. Latent Membrane Protein 1 (LMP1 is one of latent proteins, and mayor EBV oncoprotein, with functions including virus growth, and to activate BamHI-Z Leftward Reading Frame 1 (BZLF1-EBV, which can inhibit p53 to induce apoptotic resistance, metastasis, and immune modulation. The body will respond to the expansion of EBV infection with activation of Poly(ADP-ribosePolymerase-1 (PARP1. The objective of study is to observe the expression of BZLF1 and determine PARP1 regulation in nasopharyngeal tissues. NPC-T2, NPC-T3 and polyp tissues slides are from Ulin Hospital, Banjarmasin. To characterize the necrotic cells such as pyknosis, karyorrhexsis, and karyolysis, histological slides were stained by HE that the necrotic cells measured by using a BX-53 microscope (Olympus with CellSens Standard software. Tissues slides were stained by using immunofluorohistochemistry with EBV-BZLF1 antibody-Mouse anti-EBV monoclonal antibody against Goat anti-mouse IgG-FITC and anti-PARP1 antibody (MC-10 against Goat anti-mouse IgG labeled Rhodamin. The expression intensities were measured by Confocal Laser Scanning Microscope (Olympus. The percentage number of necrotic cells and BZLF1 and PARP1 expression intensity were analyzed using SPSS 16.0 by one-way ANOVA test with α = 0.05, beside that we use correlate and regression analyze. The research showed that the amount of karryorhexis higher than pyknosis and karyolysis in both tissues. BZLF1 expression 1.79 INT/sel (in polyp, 2.76 INT/sel (NPC Type 2 and 4.36 INT/sel (NPC Type 3, PARP1 expression 2.25 INT/sel (in polyp, 3.31 INT/sel (NPC Type 2, dan 5.93 INT/sel (NPC Type 3.The high of intensity of expression BZLF1 induced the increasing of PARP1 expression

  5. Epigenetic Modification of the Epstein-Barr Virus BZLF1 Promoter Regulates Viral Reactivation from Latency

    Directory of Open Access Journals (Sweden)

    Takayuki eMurata

    2013-04-01

    Full Text Available The Epstein-Barr virus (EBV is an oncogenic human gamma-herpesvirus that predominantly establishes latent infection in B lymphocytes. Viral genomes exist as extrachromosomal episomes with a nucleosomal structure. Maintenance of virus latency or execution of reactivation is controlled by the expression of BZLF1, a viral immediate-early gene product, tightly controlled at the transcriptional level. In this article, we review how BZLF1 transcription is controlled, in other words how virus reactivation is regulated, especially in terms of epigenetics. We recently found that histone H3 lysine 27 trimethylation (H3K27me3 and H4K20me3 markers are crucial for suppression of BZLF1 in latent Raji cells. In addition, H3K9me2/3, HP1 and H2A ubiquitination are associated with latency, whereas positive markers, such as higher histone acetylation and H3K4me3, are concomitant with reactivation. Since lytic replication eventually causes cell cycle arrest and cell death, development of oncolytic therapy for EBV-positive cancers is conceivable using epigenetic disruptors. In addition, we note the difficulties in analyzing roles of epigenetics in EBV, including issues like cell type dependence and virus copy numbers.

  6. Shutoff of BZLF1 gene expression is necessary for immortalization of primary B cells by Epstein-Barr virus.

    Science.gov (United States)

    Yu, Xianming; McCarthy, Patrick J; Wang, Zhenxun; Gorlen, Daniel A; Mertz, Janet E

    2012-08-01

    The BZLF1 gene controls the switch between latent and lytic infection by Epstein-Barr virus (EBV). We previously reported that both the ZV and ZIIR elements within the BZLF1 promoter, Zp, are potent transcription silencers within the context of an intact EBV genome. We report here identification of another sequence element, ZV', which synergized with ZV in repressing Zp via binding ZEB1 or ZEB2. We then determined the phenotype of a variant of EBV strain B95.8 in which the ZV, ZV', and ZIIR elements were concurrently mutated. HEK293 cell lines infected with this triple mutant (tmt) virus spontaneously synthesized 6- to 10-fold more viral BZLF1, BRLF1, BMRF1, and BLLF1 RNAs, 3- to 6-fold more viral Zta, Rta, and EAD proteins, 3- to 5-fold more viral DNA, and 7- to 9-fold more infectious virus than did 293 cell lines latently infected with either the ZV ZV' double mutant (dmt) or ZIIR mutant (mt) virus. While ZV ZV' ZIIR tmt EBV efficiently infected human primary blood B cells in vitro, it was highly defective in immortalizing them. Instead of the nearly complete silencing of BZLF1 gene expression that occurs within 4 days after primary infection with wild-type EBV, the ZV ZV' ZIIR tmt-infected cells continued to synthesize BZLF1 RNA, with 90% of them dying within 9 days postinfection. BL41 cells infected with this "superlytic" virus also exhibited increased synthesis of BZLF1 and BMRF1 RNAs. Thus, we conclude that the ZV, ZV', and ZIIR silencing elements act synergistically to repress transcription from Zp, thereby tightly controlling BZLF1 gene expression, which is crucial for establishing and maintaining EBV latency.

  7. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle.

    OpenAIRE

    1989-01-01

    A spliced cDNA spanning the Epstein-Barr virus BZLF1 gene expresses the BZLF1 protein and is active in inducing the virus productive cycle. A deletion mutant which lacks the N-terminal half of the protein is inactive. Cotransfection experiments in EBV-negative B-lymphocyte cell lines demonstrated that the BZLF1 gene activates the promoter for the BSLF2 + BMLF1 gene in the absence of any other EBV gene product. These results confirmed that the spliced BZLF1 gene is the transactivating gene str...

  8. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  9. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution.

    Science.gov (United States)

    Sather, D Noah; Golenberg, Edward M

    2009-02-01

    The AP1/FUL clade of MADS box genes have undergone multiple duplication events among angiosperm species. While initially identified as having floral meristem identity and floral organ identity function in Arabidopsis, the role of AP1 homologs does not appear to be universally conserved even among eudicots. In comparison, the role of FRUITFULL has not been extensively explored in non-model species. We report on the isolation of three AP1/FUL genes from cultivated spinach, Spinacia oleracea L. Two genes, designated SpAPETALA1-1 (SpAP1-1) and SpAPETALA1-2 (SpAP1-2), cluster as paralogous genes within the Caryophyllales AP1 clade. They are highly differentiated in the 3', carboxyl-end encoding region of the gene following the third amphipathic alpha-helix region, while still retaining some elements of a signature AP1 carboxyl motifs. In situ hybridization studies also demonstrate that the two paralogs have evolved different temporal and spatial expression patterns, and that neither gene is expressed in the developing sepal whorl, suggesting that the AP1 floral organ identity function is not conserved in spinach. The spinach FRUITFULL homolog, SpFRUITFULL (SpFUL), has retained the conserved motif and groups with Caryophyllales FRUITFULL homologs. SpFUL is expressed in leaf as well as in floral tissue, and shows strong expression late in flower development, particularly in the tapetal layer in males, and in the endothecium layer and stigma, in the females. The combined evidence of high rates of non-synonymous substitutions and differential expression patterns supports a scenario in which the AP1 homologs in the spinach AP1/FUL gene family have experienced rapid evolution following duplication.

  10. Characterization of variants in the promoter of BZLF1 gene of EBV in nonmalignant EBV-associated diseases in Chinese children

    Directory of Open Access Journals (Sweden)

    Yang Shuang

    2010-05-01

    Full Text Available Abstract Background Diseases associated with Epstein-Barr virus (EBV infections, such as infectious mononucleosis (IM, EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH and chronic active EBV infection (CAEBV are not rare in Chinese children. The association of type 1 or type 2 EBV and variants of the EBV BZLF1 promoter zone (Zp with these diseases is unclear. Results The objective of this study was to investigate the relationship between EBV genotypes (Zp variants and EBV type 1 and 2 and the clinical phenotypes of EBV-associated diseases in Chinese children. The Zp region was directly sequenced in 206 EBV-positive DNA samples from the blood of patients with IM, EBV-HLH, CAEBV, and healthy controls. Type 1 or type 2 EBV was examined by PCR for EBNA2 and EBNA3C subtypes. Four polymorphic Zp variants were identified: Zp-P, Zp-V3, Zp-P4 and Zp-V1, a new variant. The Zp-V3 variant was significantly associated with CAEBV (P ≤ 0.01. The frequency of co-infection with Zp variants was higher in patients with CAEBV and EBV-HLH, compared with IM and healthy controls, mostly as Zp-P+V3 co-infection. Type 1 EBV was predominant in all categories (81.3-95% and there was no significant difference in the frequency of the EBV types 1 and 2 in different categories (P > 0.05. Conclusions Type 1 EBV and BZLF1 Zp-P of EBV were the predominant genotypes in nonmalignant EBV associated diseases in Chinese children and Zp-V3 variant may correlates with the developing of severe EBV infection diseases, such as CAEBV and EBV-HLH.

  11. Epstein-Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2.

    Directory of Open Access Journals (Sweden)

    Jianmin Zuo

    2011-12-01

    Full Text Available Evasion of immune T cell responses is crucial for viruses to establish persistence in the infected host. Immune evasion mechanisms of Epstein-Barr virus (EBV in the context of MHC-I antigen presentation have been well studied. In contrast, viral interference with MHC-II antigen presentation is less well understood, not only for EBV but also for other persistent viruses. Here we show that the EBV encoded BZLF1 can interfere with recognition by immune CD4+ effector T cells. This impaired T cell recognition occurred in the absence of a reduction in the expression of surface MHC-II, but correlated with a marked downregulation of surface CD74 on the target cells. Furthermore, impaired CD4+ T cell recognition was also observed with target cells where CD74 expression was downregulated by shRNA-mediated inhibition. BZLF1 downregulated surface CD74 via a post-transcriptional mechanism distinct from its previously reported effect on the CIITA promoter. In addition to being a chaperone for MHC-II αβ dimers, CD74 also functions as a surface receptor for macrophage Migration Inhibitory Factor and enhances cell survival through transcriptional upregulation of Bcl-2 family members. The immune-evasion function of BZLF1 therefore comes at a cost of induced toxicity. However, during EBV lytic cycle induced by BZLF1 expression, this toxicity can be overcome by expression of the vBcl-2, BHRF1, at an early stage of lytic infection. We conclude that by inhibiting apoptosis, the vBcl-2 not only maintains cell viability to allow sufficient time for synthesis and accumulation of infectious virus progeny, but also enables BZLF1 to effect its immune evasion function.

  12. RAD51AP1-deficiency in vertebrate cells impairs DNA replication.

    Science.gov (United States)

    Parplys, Ann C; Kratz, Katja; Speed, Michael C; Leung, Stanley G; Schild, David; Wiese, Claudia

    2014-12-01

    RAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells. Targeted inactivation of both RAD51AP1 alleles has no effect on either viability or doubling-time in undamaged cells, but leads to increased levels of cytotoxicity after exposure to cisplatin or to ionizing radiation. Interestingly, ectopic expression of GgRAD51AP1, but not of HsRAD51AP1 is able to fully complement in cell survival assays. Notably, in RAD51AP1-deficient DT40 cells the resolution of DNA damage-induced RAD51 foci is greatly slowed down, while their formation is not impaired. We also identify, for the first time, an important role for RAD51AP1 in counteracting both spontaneous and DNA damage-induced replication stress. In human and in chicken cells, RAD51AP1 is required to maintain wild type speed of replication fork progression, and both RAD51AP1-depleted human cells and RAD51AP1-deficient DT40 cells respond to replication stress by a slow-down of replication fork elongation rates. However, increased firing of replication origins occurs in RAD51AP1-/- DT40 cells, likely to ensure the timely duplication of the entire genome. Taken together, our results may explain why RAD51AP1 commonly is overexpressed in tumor cells and tissues, and we speculate that the disruption of RAD51AP1 function could be a promising approach in targeted tumor therapy.

  13. Ectopic expression of Jatropha curcas APETALA1 (JcAP1 caused early flowering in Arabidopsis, but not in Jatropha

    Directory of Open Access Journals (Sweden)

    Mingyong Tang

    2016-04-01

    Full Text Available Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1 is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1 was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.

  14. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model.

    Science.gov (United States)

    Ma, Shi-Dong; Yu, Xianming; Mertz, Janet E; Gumperz, Jenny E; Reinheim, Erik; Zhou, Ying; Tang, Weihua; Burlingham, William J; Gulley, Margaret L; Kenney, Shannon C

    2012-08-01

    Immunosuppressed patients are at risk for developing Epstein-Barr Virus (EBV)-positive lymphomas that express the major EBV oncoprotein, LMP1. Although increasing evidence suggests that a small number of lytically infected cells may promote EBV-positive lymphomas, the impact of enhanced lytic gene expression on the ability of EBV to induce lymphomas is unclear. Here we have used immune-deficient mice, engrafted with human fetal hematopoietic stem cells and thymus and liver tissue, to compare lymphoma formation following infection with wild-type (WT) EBV versus infection with a "superlytic" (SL) mutant with enhanced BZLF1 (Z) expression. The same proportions (2/6) of the WT and SL virus-infected animals developed B-cell lymphomas by day 60 postinfection; the remainder of the animals had persistent tumor-free viral latency. In contrast, all WT and SL virus-infected animals treated with the OKT3 anti-CD3 antibody (which inhibits T-cell function) developed lymphomas by day 29. Lymphomas in OKT3-treated animals (in contrast to lymphomas in the untreated animals) contained many LMP1-expressing cells. The SL virus-infected lymphomas in both OKT3-treated and untreated animals contained many more Z-expressing cells (up to 30%) than the WT virus-infected lymphomas, but did not express late viral proteins and thus had an abortive lytic form of EBV infection. LMP1 and BMRF1 (an early lytic viral protein) were never coexpressed in the same cell, suggesting that LMP1 expression is incompatible with lytic viral reactivation. These results show that the SL mutant induces an "abortive" lytic infection in humanized mice that is compatible with continued cell growth and at least partially resistant to T-cell killing.

  15. The Epstein-Barr virus BZLF1 protein inhibits tumor necrosis factor receptor 1 expression through effects on cellular C/EBP proteins.

    Science.gov (United States)

    Bristol, Jillian A; Robinson, Amanda R; Barlow, Elizabeth A; Kenney, Shannon C

    2010-12-01

    The Epstein-Barr virus immediate-early protein, BZLF1 (Z), initiates the switch between latent and lytic infection and plays an essential role in mediating viral replication. Z also inhibits expression of the major receptor for tumor necrosis factor (TNF), TNFR1, thus repressing TNF cytokine signaling, but the mechanism for this effect is unknown. Here, we demonstrate that Z prevents both C/EBPα- and C/EBPβ-mediated activation of the TNFR1 promoter (TNFR1p) by interacting directly with both C/EBP family members. We show that Z interacts directly with C/EBPα and C/EBPβ in vivo and that a Z mutant altered at alanine residue 204 in the bZIP domain is impaired for the ability to interact with both C/EBP proteins. Furthermore, we find that the Z(A204D) mutant is attenuated in the ability to inhibit the TNFR1p but mediates lytic viral reactivation and replication in vitro in 293 cells as well as wild-type Z. Although Z does not bind directly to the TNFR1p in EMSA studies, chromatin immunoprecipitation studies indicate that Z is complexed with this promoter in vivo. The Z(A204D) mutant has reduced interaction with the TNFR1p in vivo but is similar to wild-type Z in its ability to complex with the IL-8 promoter. Finally, we show that the effect of Z on C/EBPα- and C/EBPβ-mediated activation is promoter dependent. These results indicate that Z modulates the effects of C/EBPα and C/EBPβ in a promoter-specific manner and that in some cases (including that of the TNFR1p), Z inhibits C/EBPα- and C/EBPβ-mediated activation.

  16. Characterization of Epstein-Barr virus (EBV) BZLF1 gene promoter variants and comparison of cellular gene expression profiles in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Imajoh, Masayuki; Hashida, Yumiko; Murakami, Masanao; Maeda, Akihiko; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2012-06-01

    Epstein-Barr virus (EBV) genotypes can be distinguished based on gene sequence differences in EBV nuclear antigens 2, 3A, 3B, and 3C, and the BZLF1 promoter zone (Zp). EBV subtypes and BZLF1 Zp variants were examined in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis. The results of EBV typing showed that samples of infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis all belonged to EBV type 1. However, sequencing analysis of BZLF1 Zp found three polymorphic Zp variants in the same samples. The Zp-P prototype and the Zp-V3 variant were both detected in infectious mononucleosis and chronic active EBV infection. Furthermore, a novel variant previously identified in Chinese children with infectious mononucleosis, Zp-V1, was also found in 3 of 18 samples of infectious mononucleosis, where it coexisted with the Zp-P prototype. This is the first evidence that the EBV variant distribution in Japanese patients resembles that found in other Asian patients. The expression levels of 29 chronic active EBV infection-associated cellular genes were also compared in the three EBV-related disorders, using quantitative real-time reverse transcription polymerase chain reaction analysis. Two upregulated genes, RIPK2 and CDH9, were identified as common specific markers for chronic active EBV infection in both in vitro and in vivo studies. RIPK2 activates apoptosis and autophagy, and could be responsible for the pathogenesis of chronic active EBV infection.

  17. Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV BZLF-1 (ZEBRA protein: implications for interactions with NF-κB and p53

    Directory of Open Access Journals (Sweden)

    Ghoda Lucy Y

    2011-09-01

    Full Text Available Abstract Background The carboxyl terminal of Epstein-Barr virus (EBV ZEBRA protein (also termed BZLF-1 encoded replication protein Zta or ZEBRA binds to both NF-κB and p53. The authors have previously suggested that this interaction results from an ankyrin-like region of the ZEBRA protein since ankyrin proteins such as IκB interact with NF-κB and p53 proteins. These interactions may play a role in immunopathology and viral carcinogenesis in B lymphocytes as well as other cell types transiently infected by EBV such as T lymphocytes, macrophages and epithelial cells. Methods Randomization of the ZEBRA terminal amino acid sequence followed by statistical analysis suggest that the ZEBRA carboxyl terminus is most closely related to ankyrins of the invertebrate cactus IκB-like protein. This observation is consistent with an ancient origin of ZEBRA resulting from a recombination event between an ankyrin regulatory protein and a fos/jun DNA binding factor. In silico modeling of the partially solved ZEBRA carboxyl terminus structure using PyMOL software demonstrate that the carboxyl terminus region of ZEBRA can form a polymorphic structure termed ZANK (ZEBRA ANKyrin-like region similar to two adjacent IκB ankyrin domains. Conclusions Viral capture of an ankyrin-like domain provides a mechanism for ZEBRA binding to proteins in the NF-κB and p53 transcription factor families, and also provides support for a process termed "Ping-Pong Evolution" in which DNA viruses such as EBV are formed by exchange of information with the host genome. An amino acid polymorphism in the ZANK region is identified in ZEBRA from tumor cell lines including Akata that could alter binding of Akata ZEBRA to the p53 tumor suppressor and other ankyrin binding protein, and a novel model of antagonistic binding interactions between ZANK and the DNA binding regions of ZEBRA is suggested that may be explored in further biochemical and molecular biological models of viral

  18. Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Jing; Zhang, Xiaoming; Yan, Guohua; Zhou, Yu; Zhang, Kaichun

    2013-02-15

    A homologue of SQUAMOSA/APETALA1, designated PaAP1, was isolated from Prunus avium by reverse transcription-PCR (RT-PCR). The full length of PaAP1 cDNA is 753 bp, and it codes for a polypeptide of 250 amino acid residues. Sequence comparison revealed that PaAP1 belongs to the MADS-box gene family. Phylogenetic analysis indicated that PaAP1 shared the highest identity with SQUA/AP1 homologues from Prunus serrulata. Real-time fluorescence quantitative PCR analysis showed that PaAP1 was expressed at high levels in petal, sepal, style, and flower buds, which was slightly different from the expression pattern of AP1 of Arabidopsis thaliana. To characterize the functions of PaAP1, we assessed Arabidopsis transformed with 35S::PaAP1. A total of 8 transgenic T(1) lines with an early flowering phenotype were obtained, and a 3:1 segregation ratio of flowering time was observed in the T(2) generation of 4 lines. This study provides the first functional analysis of an SQUA/AP1 homolog from P. avium and suggests that PaAP1 is potentially useful for shortening the juvenile period in sweet cherry.

  19. First molluscan transcription factor activator protein-1 (Ap-1) member from disk abalone and its expression profiling against immune challenge and tissue injury.

    Science.gov (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Lee, Youngdeuk; Lee, Sukkyoung; Oh, Chulhong; Whang, Ilson; Yeo, Sang-Yeop; Choi, Cheol Young; Lee, Jehee

    2010-12-01

    The regulation of transcriptional activation is an essential and critical point in gene expression. In this study, we describe a novel transcription factor activator protein-1 (Ap-1) gene from disk abalone Haliotis discus discus (AbAp-1) for the first time in mollusk. It was identified by homology screening of an abalone normalized cDNA library. The cloned AbAp-1 consists of a 945 bp coding region that encodes a putative protein containing 315 amino acids. The AbAp-1 gene is composed of a characteristic Jun transcription factor domain and a highly conserved basic leucine zipper (bZIP) signature similar to known Ap-1 genes. The AbAp-1 shares 46, 43 and, 40% amino acid identities with fish (Takifugu rubripes), human and insect (Ixodes scapularis) Ap-1, respectively. Quantitative real time RT-PCR analysis confirmed that AbAp-1 gene expression is constitutive in all selected tissues. AbAp-1 was upregulated in gills after bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) challenge; and, upregulated in hemocytes and gills by viral hemorrhagic septicemia virus (VHSV) challenge. Shell damage and tissue injury also increased the transcriptional level of Ap-1 in mantle together with other transcription factors (NF-kB, LITAF) and pro-inflammatory TNF-α. All results considered, identification and gene expression data demonstrate that abalone Ap-1 is an important regulator in innate immune response against bacteria and virus, as well as in the inflammatory response during tissue injury. In addition, stimulation of Ap-1 under different external stimuli could be useful to understand the Ap-1 biology and its downstream target genes, especially in abalone-like mollusks.

  20. Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif

    Institute of Scientific and Technical Information of China (English)

    Ye LUO; Yu HAO; Tai-ping SHI; Wei-wei DENG; Na LI

    2008-01-01

    Aim: To verify the suppressive effect of berberine on the proliferation of the human pulmonary giant cell carcinoma cell line PG and to demonstrate the mecha-nisms behind the antitumoral effects of berberine. Methods: The proliferative effects of PG cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetry. The cell cycle was examined by flow cytometry. The expression level of cyclin D1 was detected by RT-PCR. The activities of the activating protein-1 (AP-1) and NF-κB signaling pathways related to cyclin D1 were examined by luciferase assay. The cytoplasmic level of c-Jun was detected by Western blot analysis. An electrophoretic mobility shift assay was used to examiae the binding of transcription factors to the cyclin D1 gene (CCNDl) AP-1 motif. Results: The results showed that the proliferation of PG cells treated with different concentrations (10, 20, and 40 μg/mL) of berberine for 24 and 48 h was suppressed significantly compared to the control group. After treatment with berberine, the proportion of PG cells at the G0/G1 phase increased, while cells at the S and G2/M phases decreased. Berberine could inhibit the expression of cyclin D1 in PG cells. Berberine inhibited the activity of the AP-1 signaling pathway, but had no significant effect on the NF-κB signaling pathway. Berberine suppressed the expression of c-Jun and decreased the binding of tran-scription factors to the CCND1 AP-1 motif. Conclusion: Berberine suppresses the activity of the AP-1 signaling pathway and decreases the binding of transcrip-tion factors to the CCND1 AP-1 motif. This is one of the important mechanisms behind the antitumoral effects of berberine as a regulator of cyclin D1.

  1. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression.

    Science.gov (United States)

    Schanke, J T; Marcuzzi, A; Podzorski, R P; Van Ness, B

    1994-01-01

    Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells. Images PMID:7816634

  2. Luteolin, a flavonoid, inhibits AP-1 activation by basophils.

    Science.gov (United States)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio

    2006-02-03

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.

  3. Enhanced Antimicrobial Activity of AamAP1-Lysine, a Novel Synthetic Peptide Analog Derived from the Scorpion Venom Peptide AamAP1

    Directory of Open Access Journals (Sweden)

    Ammar Almaaytah

    2014-04-01

    Full Text Available There is great interest in the development of antimicrobial peptides as a potentially novel class of antimicrobial agents. Several structural determinants are responsible for the antimicrobial and cytolytic activity of antimicrobial peptides. In our study, a new synthetic peptide analog, AamAP1-Lysine from the naturally occurring scorpion venom antimicrobial peptide AamAP1, was designed by modifying the parent peptide in order to increase the positive charge and optimize other physico-chemical parameters involved in antimicrobial activity. AamAP1-Lysine displayed potent antibacterial activity against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration was in the range of 5 to 15 µM with a 10 fold increase in potency over the parent peptide. The hemolytic and antiproliferative activity of AamAP1-Lysine against eukaryotic mammalian cells was minimal at the concentration range needed to inhibit bacterial growth. The antibacterial mechanism analysis indicated that AamAP1-Lysine is probably inducing bacterial cell death through membrane damage and permeabilization determined by the release of β-galactosidase enzyme from peptide treated E. coli cells. DNA binding studies revealed that AamAP1-Lysine caused complete retardation of DNA migration and could display intracellular activities in addition to the membrane permeabilization mode of action reported earlier. In conclusion, AamAP1-Lysine could prove to be a potential candidate for antimicrobial drug development in future studies.

  4. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation.

    Science.gov (United States)

    Jansen, Eric J R; Timal, Sharita; Ryan, Margret; Ashikov, Angel; van Scherpenzeel, Monique; Graham, Laurie A; Mandel, Hanna; Hoischen, Alexander; Iancu, Theodore C; Raymond, Kimiyo; Steenbergen, Gerry; Gilissen, Christian; Huijben, Karin; van Bakel, Nick H M; Maeda, Yusuke; Rodenburg, Richard J; Adamowicz, Maciej; Crushell, Ellen; Koenen, Hans; Adams, Darius; Vodopiutz, Julia; Greber-Platzer, Susanne; Müller, Thomas; Dueckers, Gregor; Morava, Eva; Sykut-Cegielska, Jolanta; Martens, Gerard J M; Wevers, Ron A; Niehues, Tim; Huynen, Martijn A; Veltman, Joris A; Stevens, Tom H; Lefeber, Dirk J

    2016-05-27

    The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.

  5. Distinct and Redundant Functions of μ1 Medium Chains of the AP-1 Clathrin-Associated Protein Complex in the Nematode Caenorhabditis elegans

    Science.gov (United States)

    Shim, Jaegal; Sternberg, Paul W.; Lee, Junho

    2000-01-01

    In the nematode Caenorhabditis elegans, there exist two μ1 medium chains of the AP-1 clathrin-associated protein complex. Mutations of unc-101, the gene that encodes one of the μ1 chains, cause pleiotropic effects (Lee et al., 1994). In this report, we identified and analyzed the second μ1 chain gene, apm-1. Unlike the mammalian homologs, the two medium chains are expressed ubiquitously throughout development. RNA interference (RNAi) experiments with apm-1 showed that apm-1 and unc-101 were redundant in embryogenesis and in vulval development. Consistent with this, a hybrid protein containing APM-1, when overexpressed, rescued the phenotype of an unc-101 mutant. However, single disruptions of apm-1 or unc-101 have distinct phenotypes, indicating that the two medium chains may have distinct functions. RNAi of any one of the small or large chains of AP-1 complex (ς1, β1, or γ) showed a phenotype identical to that caused by the simultaneous disruption of unc-101 and apm-1, but not that by single disruption of either gene. This suggests that the two medium chains may share large and small chains in the AP-1 complexes. Thus, apm-1 and unc-101 encode two highly related μ1 chains that share redundant and distinct functions within AP-1 clathrin-associated protein complexes of the same tissue. PMID:10930467

  6. Protein Product Encoded by a Human Novel Gene E9730 Enhances AP-1 Activity through Interacting with Jab1

    Institute of Scientific and Technical Information of China (English)

    Zhao-Qing WANG; Han-Dong WEI; Fu-Chu HE

    2004-01-01

    A novel human gene, named E9730 (a clone number of fetal liver cDNA library), has been identified from more than 14,000 expressed sequence tags (ESTs) based on our large scale sequencing of human fetal liver cDNA libraries. Although sequencing of this novel human gene indicates that it is a leucine zipper protein, the function of E9730 and its homologous genes among species is unknown yet. To find out physiological functional clue of E9730, the yeast two-hybrid system was used to screen the E9730-interacting protein(s), and one clone containing a cDNA insert with almost the entire coding sequence (amino acids 39-335) of human Jab1 (Jun-activating domain binding protein 1) that interacted specifically with E9730 was identified. A specific association between Jab1 and E9730 was shown by co-immunoprecipitation and co-localization experiments. Furthermore, E9730 appeared to enhance Jab1-induced AP-1 activity in a concentration-dependent manner and Jab1 may be involved in the intracellular signaling transduction from E9730 to AP-1.

  7. Protein Product Encoded by a Human Novel Gene E9730 Enhances AP-1 Activity through Interacting with Jab1

    Institute of Scientific and Technical Information of China (English)

    Zhao-QingWANG; Han-DongWEI; Fu-ChuHE

    2004-01-01

    A novel human gene, named E9730 (a clone number of fetal liver cDNA library), has been identified from more than 14,000 expressed sequence tags (ESTs) based on our large scale sequencing of human fetal liver cDNA libraries. Although sequencing of this novel human gene indicates that it is a leucine zipper protein, the function of E9730 and its homologous genes among species is unknown yet. To find out physiological functional clue of E9730, the yeast two-hybrid system was used to screen the E9730-interacting protein(s), and one clone containing a cDNA insert with almost the entire coding sequence (amino acids 39-335) of human Jabl (Jun-activating domain binding protein 1) that interacted specifically with E9730 was identified. A specific association between Jab1 and E9730 was shown by co-immunoprecipitation and co-localization experiments. Furthermore, E9730 appeared to enhance Jabl-induced AP-1 activity in a concentration-dependent manner and Jabl may be involved in the intracellular signaling tra.nsduction from E9730 to AP-1.

  8. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  9. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma

    OpenAIRE

    Nguyen, Cu; Teo, Jia-Ling; Matsuda, Akihisa; Eguchi, Masakatsu; Emil Y Chi; William R Henderson; Kahn, Michael

    2003-01-01

    Asthma is characterized by an oxidant/antioxidant imbalance in the lungs leading to activation of redox-sensitive transcription factors, nuclear factor κB (NF-κB), and activator protein-1 (AP-1). To develop therapeutic strategies for asthma, we used a chemogenomics approach to screen for small molecule inhibitor(s) of AP-1 transcription. We developed a β-strand mimetic template that acts as a reversible inhibitor (pseudosubstrate) of redox proteins. This template incorporates an enedione moie...

  10. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    Directory of Open Access Journals (Sweden)

    Fubito Nakatsu

    2014-11-01

    Full Text Available The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis. Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.

  11. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    Directory of Open Access Journals (Sweden)

    Daniel Pérez-Núñez

    Full Text Available African swine fever virus (ASFV CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  12. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  13. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta.

    Science.gov (United States)

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki

    2004-01-01

    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  14. Low concentrations of copper in drinking water increase AP-1 binding in the brain.

    Science.gov (United States)

    Lung, Shyang; Li, Huihui; Bondy, Stephen C; Campbell, Arezoo

    2015-12-01

    Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson's, Menkes', Alzheimer's, and Parkinson's diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding.

  15. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa;

    2012-01-01

    ) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass....... This effect was phenocopied, at an even stronger level, by overexpressiong of a dominant-negative DNJunD, a pure AP1 antagonist. Taken together these results suggest that downregulation of AP1 activity in the hypothalamus profoundly increases energy expenditure and bone formation, leading to both a decrease...... in adipose mass and an increase in bone mass. These findings may have physiological implications since ¿FosB is expressed and regulated in the hypothalamus. © 2012 American Society for Bone and Mineral Research....

  16. Specific activation of human interleukin-5 depends on de novo synthesis of an AP-1 complex.

    Science.gov (United States)

    Schwenger, Gretchen T F; Kok, Chee Choy; Arthaningtyas, Estri; Thomas, Marc A; Sanderson, Colin J; Mordvinov, Viatcheslav A

    2002-12-06

    It is clear from the biology of eosinophilia that a specific regulatory mechanism must exist. Because interleukin-5 (IL5) is the key regulatory cytokine, it follows that a gene-specific control of IL5 expression must exist that differs even from closely related cytokines such as IL4. Two features of IL5 induction make it unique compared with other cytokines; first, induction by cyclic adenosine monophosphate (cAMP), which inhibits other T-cell-derived cytokines, and second, sensitivity to protein synthesis inhibitors, which have no effect on other cytokines. This study has utilized the activation of different transcription factors by different stimuli in a human T-cell line to study the role of conserved lymphokine element 0 (CLE0) in the specific induction of IL5. In unstimulated cells the ubiquitous Oct-1 binds to CLE0. Stimulation induces de novo synthesis of the AP-1 members JunD and Fra-2, which bind to CLE0. The amount of IL5 produced correlates with the production of the AP-1 complex, suggesting a key role in IL5 expression. The formation of the AP-1 complex is essential, but the rate-limiting step is the synthesis of AP-1, especially Fra-2. This provides an explanation for the sensitivity of IL5 to protein synthesis inhibitors and a mechanism for the specific induction of IL5 compared with other cytokines.

  17. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma.

    Science.gov (United States)

    Nguyen, Cu; Teo, Jia-Ling; Matsuda, Akihisa; Eguchi, Masakatsu; Chi, Emil Y; Henderson, William R; Kahn, Michael

    2003-02-04

    Asthma is characterized by an oxidantantioxidant imbalance in the lungs leading to activation of redox-sensitive transcription factors, nuclear factor kappaB (NF-kappaB), and activator protein-1 (AP-1). To develop therapeutic strategies for asthma, we used a chemogenomics approach to screen for small molecule inhibitor(s) of AP-1 transcription. We developed a beta-strand mimetic template that acts as a reversible inhibitor (pseudosubstrate) of redox proteins. This template incorporates an enedione moiety to trap reactive cysteine nucleophiles in the active sites of redox proteins. Specificity for individual redox factors was achieved through variations in X and Y functionality by using a combinatorial library approach. A limited array (2 x 6) was constructed where X was either NHCH(3) or NHCH(2) Ph and Y was methyl, phenyl, m-cyanophenyl, m-nitrophenyl, m-acetylaniline, or m-methylbenzoate. These analogs were evaluated for their ability to inhibit transcription in transiently transfected human lung epithelial A549 cells from either an AP-1 or NF-kappaB reporter. A small-molecule inhibitor, PNRI-299, was identified that selectively inhibited AP-1 transcription (IC(50) of 20 microM) without affecting NF-kappaB transcription (up to 200 microM) or thioredoxin (up to 200 microM). The molecular target of PNRI-299 was determined to be the oxidoreductase, redox effector factor-1 by an affinity chromatography approach. The selective redox effector factor-1 inhibitor, PNRI-299, significantly reduced airway eosinophil infiltration, mucus hypersecretion, edema, and IL-4 levels in a mouse asthma model. These data validate AP-1 as an important therapeutic target in allergic airway inflammation.

  18. Directed homology

    DEFF Research Database (Denmark)

    Fahrenberg, Uli

    2004-01-01

    We introduce a new notion of directed homology for semicubical sets. We show that it respects directed homotopy and is functorial, and that it appears to enjoy some good algebraic properties. Our work has applications to higher-dimensional automata....

  19. Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae.

    Science.gov (United States)

    Cartwright, Gemma M; Scott, Barry

    2013-10-01

    One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA.

  20. AP-1 is a component of the transcriptional network regulated by GSK-3 in quiescent cells.

    Directory of Open Access Journals (Sweden)

    John W Tullai

    Full Text Available BACKGROUND: The protein kinase GSK-3 is constitutively active in quiescent cells in the absence of growth factor signaling. Previously, we identified a set of genes that required GSK-3 to maintain their repression during quiescence. Computational analysis of the upstream sequences of these genes predicted transcription factor binding sites for CREB, NFκB and AP-1. In our previous work, contributions of CREB and NFκB were examined. In the current study, the AP-1 component of the signaling network in quiescent cells was explored. METHODOLOGY/PRINCIPAL FINDINGS: Using chromatin immunoprecipitation analysis, two AP-1 family members, c-Jun and JunD, bound to predicted upstream regulatory sequences in 8 of the 12 GSK-3-regulated genes. c-Jun was phosphorylated on threonine 239 by GSK-3 in quiescent cells, consistent with previous studies demonstrating inhibition of c-Jun by GSK-3. Inhibition of GSK-3 attenuated this phosphorylation, resulting in the stabilization of c-Jun. The association of c-Jun with its target sequences was increased by growth factor stimulation as well as by direct GSK-3 inhibition. The physiological role for c-Jun was also confirmed by siRNA inhibition of gene induction. CONCLUSIONS/SIGNIFICANCE: These results indicate that inhibition of c-Jun by GSK-3 contributes to the repression of growth factor-inducible genes in quiescent cells. Together, AP-1, CREB and NFκB form an integrated transcriptional network that is largely responsible for maintaining repression of target genes downstream of GSK-3 signaling.

  1. JUNB/AP-1 controls IFN-γ during inflammatory liver disease

    Science.gov (United States)

    Thomsen, Martin K.; Bakiri, Latifa; Hasenfuss, Sebastian C.; Hamacher, Rainer; Martinez, Lola; Wagner, Erwin F.

    2013-01-01

    Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of Junb in immune cells and hepatocytes protected against hepatitis in experimental models that involved NK/NKT cells. The absence of JUNB in immune cells decreased IFN-γ expression and secretion from NK and NKT cells, leading to reduced STAT1 pathway activation. Systemic IFN-γ treatment or adenovirus-based IRF1 delivery to Junb-deficient mice restored hepatotoxicity, and we demonstrate that Ifng is a direct transcriptional target of JUNB. These findings demonstrate that JUNB/AP-1 promotes cell death during acute hepatitis by regulating IFN-γ production in NK and NKT cells and thus functionally antagonizes the hepatoprotective function of c-JUN/AP-1 in hepatocytes. PMID:24200694

  2. The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells.

    Science.gov (United States)

    Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F; Schett, Georg; Mielenz, Dirk; David, Jean-Pierre

    2014-10-20

    The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell-specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression.

  3. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking

    NARCIS (Netherlands)

    Setta-Kaffetzi, N.; Simpson, M.A.; Navarini, A.A.; Patel, V.M.; Lu, H.C.; Allen, M.H.; Duckworth, M.; Bachelez, H.; Burden, A.D.; Choon, S.E.; Griffiths, C.E.; Kirby, B.; Kolios, A.; Seyger, M.M.B.; Prins, C.; Smahi, A.; Trembath, R.C.; Fraternali, F.; Smith, C.H.; Barker, J.N.; Capon, F.

    2014-01-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has

  4. Temporal pattern of AP-1 DNA-binding activity in the rat hippocampus following a kindled seizure

    Energy Technology Data Exchange (ETDEWEB)

    Shomori, T. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Hayabara, T. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Ishihara, T. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Okada, S. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Akiyama, K. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Sato, K. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Kashihara, K. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan)

    1997-07-28

    DNA binding by transcripton factor AP-1 was enhanced remarkably following kindling stimulation in rat amygdala. Maximum increase occurred 2 h after stimulation with return to baseline within 24 h. Supershift and western analyses revealed that 38,000 mol. wt Fos-related antigen and JunD were the main components of the evoked AP-1 complexes at the time their induction reached maximum. AP-1 induction 2 h after the last kindling stimulation was more prominent in samples from previously kindled rats than in those from non-kindled rats. This study sought to establish the role of AP-1 in plastic changes of the hippocampus associated with kindling. Male Sprague-Dawley rats were kindled from the left amygdala until they exhibited Racine [15] class 5 generalized seizures. Nuclear proteins were extracted from dorsal hippocampi obtained from 0 to 24 h after final stimulations. From these, we evaluated the temporal pattern of DNA binding by AP-1 using a gel mobility-shift assay with a {sup 32}P-labelled AP-1 probe. Supershift and western analyses were added to investigate components of the seizure-evoked AP-1 complexes. Our results suggest that the basal level of AP-1 complexes is not associated with the seizure susceptibility in kindling. However, development of kindling appears to facilitate stimulus-evoked AP-1 induction, probably via plastic changes in the central nervous system. AP-1 may mediate such changes by regulating expression of certain genes. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses.

    Science.gov (United States)

    Wu, Feng; Shi, Xiaowei; Lin, Xuelei; Liu, Yuan; Chong, Kang; Theißen, Günter; Meng, Zheng

    2017-01-01

    The well-known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B- and C-functions are highly conserved throughout flowering plants and even in gymnosperms, the A-function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL-like subfamily of MADS-box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass-specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)-function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL-like genes were independently recruited to fulfil the (A)-function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed.

  6. Expression and significance of TLR7and AP-1 in basal cell carcinoma%TLR7和AP-1在基底细胞癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    邓妮; 高永良; 赵恒光

    2013-01-01

    Objective :To investigate the expression of TLR7 and AP - 1 in basal cell carcinoma , and to explore their possibilities of occurrence and development .Method The expression of TLR7 and AP -1 were detected in 30 cases of basal cell carcinoma and 26 cases of normal tissue .Specimens were detected by immunohistochemistry .Result Immunohistochemistry showed that TLR 7 and AP-1 were both highly expressed in tumor tissue (P 0 .05) .Conclusion TLR7 and AP -1 were highly expressed in basal cell carcinoma ,and their expression level was significant positive correlation .These results suggested the TLR7 and AP -1 gene may play important roles in basal cell carcinoma occurrence and development .%提目的:观察基底细胞癌中TLR7和AP-1蛋白的表达,探讨二者与基底细胞癌发生发展的关系。方法:收集基底细胞癌患者皮损30例及正常人皮肤组织26例,采用免疫组织化学法检测癌组织中TLR7和AP-1蛋白的表达水平;分析TLR7和AP-1在基底细胞癌中的表达水平以及二者之间的相互关系。结果:TLR7和AP-1在癌组织中表达均较正常皮肤组织高(P<0.05),表达水平与性别、年龄均无差异( P>0.05);TLR7和AP-1在基底细胞癌中的蛋白表达水平成明显正相关(r=0.78,p<0.01)。结论:TLR7和AP -1蛋白在基底细胞癌中高表达,且二者的表达水平呈明显正相关;TLR7和AP-1可能与基底细胞癌的发生发展有关。

  7. Co-expression Analysis Identifies CRC and AP1 the Regulator of Arabidopsis Fatty Acid Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Xinxin Han; Linlin Yin; Hongwei Xue

    2012-01-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development,however,the regulation of FA metabolism is still poorly understood.To study the relevant regulatory network,fifty-eight FA biosynthesis genes including de novo synthases,desaturases and elongases were selected as "guide genes" to construct the co-expression network.Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT)identifies 797 candidate FA-correlated genes.Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism,and function in many processes.Interestingly,63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched.Two TF genes,CRC and AP1,both correlating with 8 FA guide genes,were further characterized.Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds.The contents of palmitoleic acid,stearic acid,arachidic acid and eicosadienoic acid are decreased,whereas that of oleic acid is increased in ap1 and crc seeds,which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes.In addition,yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15,indicating that CRC may directly regulate FA biosynthesis.

  8. Signalling in inflammatory skin disease by AP-1 (Fos/Jun).

    Science.gov (United States)

    Uluçkan, Özge; Guinea-Viniegra, Juan; Jimenez, Maria; Wagner, Erwin F

    2015-01-01

    Skin inflammation is a physiological reaction to tissue injury, pathogen invasion and irritants. During this process, innate and/or adaptive immune cells are activated and recruited to the site of inflammation to either promote or suppress inflammation. The sequential recruitment and activation of immune cells is modulated by a combination of cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-κB, NFATs, and STATs. Here we review the present evidence and the underlying mechanisms of how Jun/AP-1 proteins control skin inflammation. Genetically engineered mouse models (GEMMs) in which AP-1 proteins are deleted in the epidermis have revealed that these proteins control cytokine expression at multiple levels. Constitutive epidermal deletion of JunB in mice leads to a multi-organ disease characterised by increased levels of pro-inflammatory cytokines. These JunB-deficient mutant mice display several phenotypes from skin inflammation to a G-CSF-dependent myeloproliferative disease, as well as kidney atrophy and bone loss, reminiscent of psoriasis and systemic lupus erythematosus. Importantly, epidermal deletion of both JunB and c-Jun in an inducible manner in adult mice leads to a psoriasis-like disease, in which the epidermal proteome expression profile is comparable to the one from psoriasis patient samples. In this GEMM and in psoriasis patient-derived material, S100A8/A9-dependent C3/CFB complement activation, as well as a miR-21-dependent TIMP-3/TACE pathway leading to TNF-α shedding, plays causal roles in disease development. The newly identified therapeutic targets from GEMMs together with investigations in human patient samples open up new avenues for therapeutic interventions for psoriasis and related inflammatory skin diseases.

  9. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Directory of Open Access Journals (Sweden)

    Lee Sung

    2010-07-01

    Full Text Available Abstract Background Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde, tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Methods Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Results Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Conclusion Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative

  10. Arsenic may be involved in fluoride-induced bone toxicity through PTH/PKA/AP1 signaling pathway.

    Science.gov (United States)

    Zeng, Qi-bing; Xu, Yu-yan; Yu, Xian; Yang, Jun; Hong, Feng; Zhang, Ai-hua

    2014-01-01

    Chronic exposure to combined fluoride and arsenic continues to be a major public health problem worldwide, affecting thousands of people. In recent years, more and more researchers began to focus on the interaction between the fluorine and the arsenic. In this study, the selected investigation site was located in China. The study group was selected from people living in fluoride-arsenic polluted areas due to burning coal. The total number of participants was 196; including the fluoride-arsenic anomaly group (130) and the fluoride-arsenic normal group (63). By observing the changes in gene and protein expression of PTH/PKA/AP1 signaling pathway, the results show that fluoride can increase the expression levels of PTH, PKA, and AP1, but arsenic can only affect the expression of AP1; fluoride and arsenic have an interaction on the expression of AP1. Further study found that fluoride and arsenic can affect the mRNA expression level of c-fos gene (AP1 family members), and have an interaction on the expression of c-fos, but not c-jun. The results indicate that PTH/PKA/AP1 signaling pathway may play an important role in bone toxicity of fluoride. Arsenic can affect the expression of c-fos, thereby affecting the expression of transcription factor AP1, indirectly involved in fluoride-induced bone toxicity.

  11. Prevention of Breast Cell Transformation by Blockade of the AP-1 Transcription Factor.

    Science.gov (United States)

    1997-09-01

    Bodadonna, G. Cancer of the Breast. In: J. Devita VT, H. S and R. SA (eds.), Cancer of the Breast, pp. 1264-1332. Philadelphia: J.B. Lippincott Co., 1993...Berkeley, California 94720 [M. R. S.]; and The University of Texas Health Science Center at San Antonio, Division of Medical Oncology /Department of...Division of Medical Oncology /Department of (c-erbB2 and c-Ha-ras) on the AP-1 transactivating activity in im- Medicine, 7703 Floyd Curl Drive, San Antonio

  12. Sharp weak type estimates for weights in the class $A_{p_1, p_2}$

    CERN Document Server

    Reznikov, Alexander

    2011-01-01

    We get sharp estimates for the distribution function of nonnegative weights, which satisfy so called $A_{p_1, p_2}$ condition. For particular choices of parameters $p_1$, $p_2$ this condition becomes an $A_p$-condition or Reverse H\\"{o}lder condition. We also get maximizers for these sharp estimates. We use the Bellman technique and try to carefully present and motivate our tactics. As an illustration of how these results can be used, we deduce the following result: if a weight $w$ is in $A_2$ then it self-improves to a weight, which satisfies a Reverse H\\"{o}lder condition.

  13. Spleen Tyrosine Kinase Regulates AP-1 Dependent Transcriptional Response to Minimally Oxidized LDL

    Science.gov (United States)

    Choi, Soo-Ho; Wiesner, Philipp; Almazan, Felicidad; Kim, Jungsu; Miller, Yury I.

    2012-01-01

    Oxidative modification of low-density lipoprotein (LDL) turns it into an endogenous ligand recognized by pattern-recognition receptors. We have demonstrated that minimally oxidized LDL (mmLDL) binds to CD14 and mediates TLR4/MD-2-dependent responses in macrophages, many of which are MyD88-independent. We have also demonstrated that the mmLDL activation leads to recruitment of spleen tyrosine kinase (Syk) to TLR4 and TLR4 and Syk phosphorylation. In this study, we produced a macrophage-specific Syk knockout mouse and used primary Syk−/− macrophages in our studies. We demonstrated that Syk mediated phosphorylation of ERK1/2 and JNK, which in turn phosphorylated c-Fos and c-Jun, respectively, as assessed by an in vitro kinase assay. c-Jun phosphorylation was also mediated by IKKε. c-Jun and c-Fos bound to consensus DNA sites and thereby completed an AP-1 transcriptional complex and induced expression of CXCL2 and IL-6. These results suggest that Syk plays a key role in TLR4-mediated macrophage responses to host-generated ligands, like mmLDL, with subsequent activation of an AP-1 transcription program. PMID:22384232

  14. Fos/AP-1 proteins in bone and the immune system.

    Science.gov (United States)

    Wagner, Erwin F; Eferl, Robert

    2005-12-01

    The skeleton and the immune system share a variety of different cytokines and transcription factors, thereby mutually influencing each other. These interactions are not confined to the bone marrow cavity where bone cells and hematopoietic cells exist in proximity but also occur at locations that are target sites for inflammatory bone diseases. The newly established research area termed 'osteoimmunology' attempts to unravel these skeletal/immunological relationships. Studies towards a molecular understanding of inflammatory bone diseases from an immunological as well as a bone-centered perspective have been very successful and led to the identification of several signaling pathways that are causally involved in inflammatory bone loss. Induction of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signals by activated T cells and subsequent activation of the key transcription factors Fos/activator protein-1 (AP-1), NF-kappaB, and NF for activation of T cells c1 (NFATc1) are in the center of the signaling networks leading to osteoclast-mediated bone loss. Conversely, nature has employed the interferon system to antagonize excessive osteoclast differentiation, although this counteracting activity appears to be overruled under pathological conditions. Here, we focus on Fos/AP-1 functions in osteoimmunology, because this osteoclastogenic transcription factor plays a central role in inflammatory bone loss by regulating genes like NFATc1 as well as the interferon system. We also attempt to put potential therapeutic strategies for inflammatory bone diseases in perspective.

  15. Chloroquine inhibits human CD4+ T-cell activation by AP-1 signaling modulation

    Science.gov (United States)

    Schmidt, Ralf L. J.; Jutz, Sabrina; Goldhahn, Katrin; Witzeneder, Nadine; Gerner, Marlene C.; Trapin, Doris; Greiner, Georg; Hoermann, Gregor; Steiner, Guenter; Pickl, Winfried F.; Burgmann, Heinz; Steinberger, Peter; Ratzinger, Franz; Schmetterer, Klaus G.

    2017-01-01

    Chloroquine (CQ) is widely used as an anti-inflammatory therapeutic for rheumatic diseases. Although its modes of action on the innate immune system are well described, there is still insufficient knowledge about its direct effects on the adaptive immune system. Thus, we evaluated the influence of CQ on activation parameters of human CD4+ T-cells. CQ directly suppressed proliferation, metabolic activity and cytokine secretion of T-cells following anti-CD3/anti-CD28 activation. In contrast, CQ showed no effect on up-regulation of T-cell activation markers. CQ inhibited activation of all T helper cell subsets, although IL-4 and IL-13 secretion by Th2 cells were less influenced compared to other Th-specific cytokines. Up to 10 μM, CQ did not reduce cell viability, suggesting specific suppressive effects on T-cells. These properties of CQ were fully reversible in re-stimulation experiments. Analyses of intracellular signaling showed that CQ specifically inhibited autophagic flux and additionally activation of AP-1 by reducing phosphorylation of c-JUN. This effect was mediated by inhibition of JNK catalytic activity. In summary, we characterized selective and reversible immunomodulatory effects of CQ on human CD4+ T-cells. These findings provide new insights into the biological actions of JNK/AP-1 signaling in T-cells and may help to expand the therapeutic spectrum of CQ. PMID:28169350

  16. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo.

    Science.gov (United States)

    Carvajal-Gonzalez, Jose Maria; Balmer, Sophie; Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek

    2015-04-07

    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo-distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo.

  17. Chemical shift assignments of zinc finger domain of methionine aminopeptidase 1 (MetAP1) from Homo sapiens.

    Science.gov (United States)

    Rachineni, Kavitha; Arya, Tarun; Singarapu, Kiran Kumar; Addlagatta, Anthony; Bharatam, Jagadeesh

    2015-10-01

    Methionine aminopeptidase Type I (MetAP1) cleaves the initiator methionine from about 70 % of all newly synthesized proteins in almost every living cell. Human MetAP1 is a two domain protein with a zinc finger on the N-terminus and a catalytic domain on the C-terminus. Here, we report the chemical shift assignments of the amino terminal zinc binding domain (ZBD) (1-83 residues) of the human MetAP1 derived by using advanced NMR spectroscopic methods. We were able to assign the chemical shifts of ZBD of MetAP1 nearly complete, which reveal two helical fragments involving residues P44-L49 (α1) and Q59-K82 (α2). The protein structure unfolds upon complex formation with the addition of 2 M excess EDTA, indicated by the appearance of amide resonances in the random coil chemical shift region of (15)NHSQC spectrum.

  18. Carbamoylcholine homologs

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Frølund, Bente; Bräuner-Osborne, Hans;

    2003-01-01

    -methylcarbamoylcholine and N,N-dimethylcarbamoylcholine (DMCC), which predominantly display nicotinic activity. In this study, 12 homologous analogs of DMCC and its corresponding tertiary amine, N,N-dimethylcarbamoyl-N,N-dimethylaminoethanol, were synthesized and their binding affinities to native mAChR and nAChR sites....... Furthermore, the compounds are tertiary amines, implying some advantages in terms of bioavailability pertinent to future in vivo pharmacological studies. Finally, observations made in the study hold promising perspectives for future development of ligands selective for specific nAChR subtypes....

  19. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    Science.gov (United States)

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  20. The function of AP-1 in the develotment of dentine and enamel%AP-1与牙本质、釉质发育相关研究进展

    Institute of Scientific and Technical Information of China (English)

    易思健(综述); 刘建国; 吴家媛(审校)

    2014-01-01

    AP-1是被国内外学者广泛研究的转录因子,是由原癌基因编码的蛋白质jun和fos组成的二聚体复合物。AP-1能与DNA结合,作为转录调控因子可通过激活或抑制目标基因的转录,参与多项细胞的活动,如细胞增殖、凋亡、生存,以及肿瘤的发生和组织形态等。近年来研究又发现,AP-1在牙发育过程中也有表达,主要表达于成熟的成釉细胞、成牙本质细胞等。本文就AP-1在牙本质、釉质发育过程中对相关因子的调节作用作一综述。%AP-1isatranscriptionfactor,adimercomplexofc-Junandc-Fosencodedbyproto-onco-gene.As a transcription regulatory factor,it binds to DNA.Through activating or inhibiting target gene transcription,it is involved in many cell activities,such as cell proliferation,apoptosis,cell survival and tumor development .AP-1 was recently found to be expressed in the process of tooth development,mainly in mature ameloblasts and odontoblasts. This review summarizes the regulatory role of AP-1 in dentine and enamel development.

  1. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway.

    Science.gov (United States)

    Sha, Xiaojin; Meng, Shu; Li, Xinyuan; Xi, Hang; Maddaloni, Massimo; Pascual, David W; Shan, Huimin; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-feng

    2015-07-31

    Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases.

  2. NF-kappa B和AP-1在非小细胞肺癌中的表达%Expression of NF-kappa B and AP-1 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    马建群; 张真发; 张林

    2005-01-01

    背景与目的核因子kappa B(NF-kappa B)和激活蛋白1(AP-1)在细胞凋亡和增生过程中所起的作用逐渐被人们所认知,在肿瘤的形成过程中也扮演着重要的角色.本研究分析了NF-kappa B、AP-1在非小细胞肺癌中的表达,以明确二者之间的相互关系,并进一步研究二者对周期蛋白cyclin D1和caspase 3在非小细胞肺癌中表达的影响.方法应用Western blot检测NF-kappa B、AP-1、cyclin D1和caspase 3在非小细胞肺癌中的蛋白表达,应用RT-PCR检测不同NF-kappa B和AP-1表达的肺癌组织中cyclin D1和caspase 3的mRNA表达.应用相关分析判断NF-kappa B和AP-1的相关性.结果在45例非小细胞肺癌患者中,NF-kappa B和AP-1在肺癌组织中的表达均高于癌旁肺组织中的表达(0.6047比0.2798,P<0.01).在NF-kappa B和AP-1较高表达的肺癌组织中,cyclin D1蛋白表达和mRNA表达均增加(P<0.01),而caspase 3的蛋白表达和mRNA表达减少(P<0.01).相关分析显示NF-kappa B和AP-1有明显的相关性(r=0.800,P<0.01).结论 NF-kappa B和AP-1作为转录因子可能在非小细胞肺癌的形成和发展中起重要作用.

  3. Two tobacco AP1-like gene promoters with highly specific, tightly regulated and uniquely expressed activity during floral transition, initiation and development

    Science.gov (United States)

    Biotech engineering of agronomic traits requires an array of highly specific and tightly regulated promoters in flower or other tissues. In this study, we isolated and characterized two tobacco AP1-like promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using GUS reporter and tissue-speci...

  4. Tobacco carcinogen mediated up-regulation of AP-1 dependent pro-angiogenic cytokines in head and neck carcinogenesis.

    Science.gov (United States)

    Swenson, Wade G; Wuertz, Beverly R K; Ondrey, Frank G

    2011-09-01

    Tobacco is notably genotoxic and associated with head and neck carcinogenesis. Cigarette carcinogens have the capacity to alter early response gene expression in tobacco-related malignancies via genes such as nuclear factor kappa B (NFκB). A number of early response gene activation events are also facilitated by fos/jun activator protein 1 (AP-1) associated pathways. In the present study, we hypothesize that tobacco products may induce microenvironment alterations, promoting angiogenesis and providing a permissive environment for head and neck cancer progression. In an in vitro analysis, we employed immortalized oral keratinocyte (HOK-16B) and laryngeal squamous carcinoma (UM-SCC-11A) cells to investigate interleukin (IL)-8 and vascular endothelial growth factor (VEGF) induction by cigarette smoke condensate (CSC). IL-8 and VEGF expression is based on interactions between NFκB, AP-1, and NF-IL6. We identified at least 1.5-fold dose-dependent induction of AP-1, VEGF, and IL-8 promoter/reporter gene activity after 24 h exposure to CSC. Next, we stably transfected UM-SCC-11A cells with A-Fos, a dominant negative AP-1 protein. Treatment with CSC of the A-Fos cell lines compared to empty vector controls significantly down-regulated AP-1, VEGF, and IL-8 promoter/reporter gene expression. We also performed ELISAs and discovered significant up-regulation of IL-8 and VEGF secretion by UMSCC 11A after treatment with phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, and CSC, which was down-regulated by the A-Fos dominant negative protein. We conclude tobacco carcinogens up-regulate AP-1 activity and AP-1 dependent IL-8 and VEGF gene expression in head and neck cancer. This up-regulation may promote an angiogenic phenotype favoring invasion in both premalignant and squamous cancer cells of the head and neck.

  5. Pro/antioxidant status and AP-1 transcription factor in murine skin following topical exposure to cumene hydroperoxide.

    Science.gov (United States)

    Murray, A R; Kisin, E R; Kommineni, C; Vallyathan, V; Castranova, V; Shvedova, A A

    2007-07-01

    Organic peroxides, widely used in the chemical and pharmaceutical industries, can act as skin tumor promoters and cause epidermal hyperplasia. They are also known to trigger free radical generation. The present study evaluated the effect of cumene hydroperoxide (Cum-OOH) on the induction of activator protein-1 (AP-1), which is linked to the expression of genes regulating cell proliferation, growth and transformation. Previously, we reported that topical exposure to Cum-OOH caused formation of free radicals and oxidative stress in the skin of vitamin E-deficient mice. The present study used JB6 P+ mouse epidermal cells and AP-1-luciferase reporter transgenic mice to identify whether exposure to Cum-OOH caused activation of AP-1, oxidative stress, depletion of antioxidants and tumor formation during two-stage carcinogenesis. In vitro studies found that exposure to Cum-OOH reduced the level of glutathione (GSH) in mouse epidermal cells (JB6 P+) and caused the induction of AP-1. Mice primed with dimethyl-benz[a]anthracene (DMBA) were topically exposed to Cum-OOH (82.6 micromol) or the positive control, 12-O-tetradecanoylphorbol-13-acetate (TPA, 17 nmol), twice weekly for 29 weeks. Activation of AP-1 in skin was detected as early as 2 weeks following Cum-OOH or TPA exposure. No AP-1 expression was found 19 weeks after initiation. Papilloma formation was observed in both the DMBA-TPA- and DMBA-Cum-OOH-exposed animals, whereas skin carcinomas were found only in the DMBA-Cum-OOH-treated mice. A greater accumulation of peroxidative products (thiobarbituric acid-reactive substances), inflammation and decreased levels of GSH and total antioxidant reserves were also observed in the skin of DMBA-Cum-OOH-exposed mice. These results suggest that Cum-OOH-induced carcinogenesis is accompanied by increased AP-1 activation and changes in antioxidant status.

  6. The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in Chinese lantern development in Physalis.

    Science.gov (United States)

    Zhao, Jing; Tian, Ying; Zhang, Ji-Si; Zhao, Man; Gong, Pichang; Riss, Simone; Saedler, Rainer; He, Chaoying

    2013-06-01

    The Chinese lantern phenotype or inflated calyx syndrome (ICS) is a postfloral morphological novelty in Physalis. Its origin is associated with the heterotopic expression of the MADS box gene 2 from Physalis floridana (MPF2) in floral organs, yet the process underlying its identity remains elusive. Here, we show that MPF3, which is expressed specifically in floral tissues, encodes a core eudicot APETALA1-like (euAP1) MADS-domain protein. MPF3 was primarily localized to the nucleus, and it interacted with MPF2 and some floral MADS-domain proteins to selectively bind the CC-A-rich-GG (CArG) boxes in the MPF2 promoter. Downregulating MPF3 resulted in a dramatic elevation in MPF2 in the calyces and androecium, leading to enlarged and leaf-like floral calyces; however, the postfloral lantern was smaller and deformed. Starch accumulation in pollen was blocked. MPF3 MPF2 double knockdowns showed normal floral calyces and more mature pollen than those found in plants in which either MPF3 or MPF2 was downregulated. Therefore, MPF3 specifies calyx identity and regulates ICS formation and male fertility through interactions with MPF2/MPF2. Furthermore, both genes were found to activate Physalis floridana invertase gene 4 homolog, which encodes an invertase cleaving Suc, a putative key gene in sugar partitioning. The novel role of the MPF3-MPF2 regulatory circuit in male fertility is integral to the origin of ICS. Our results shed light on the evolution and development of ICS in Physalis and on the functional evolution of euAP1s in angiosperms.

  7. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer.

    Science.gov (United States)

    Zhao, Chunyan; Qiao, Yichun; Jonsson, Philip; Wang, Jian; Xu, Li; Rouhi, Pegah; Sinha, Indranil; Cao, Yihai; Williams, Cecilia; Dahlman-Wright, Karin

    2014-07-15

    Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1-regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell-cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties.

  8. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    Energy Technology Data Exchange (ETDEWEB)

    Mohareer, Krishnaveni [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Sahdev, Sudhir [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Ranbaxy Pharmaceuticals, Gurgaon, New Delhi (India); Hasnain, Seyed E., E-mail: seh@bioschool.iitd.ac.in [Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016 (India); ILBS, Vasant Kunj, New Delhi (India); King Saud University, Riyadh, KSA (Saudi Arabia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  9. The transcription factor Ets21C drives tumor growth by cooperating with AP-1

    Science.gov (United States)

    Toggweiler, Janine; Willecke, Maria; Basler, Konrad

    2016-01-01

    Tumorigenesis is driven by genetic alterations that perturb the signaling networks regulating proliferation or cell death. In order to block tumor growth, one has to precisely know how these signaling pathways function and interplay. Here, we identified the transcription factor Ets21C as a pivotal regulator of tumor growth and propose a new model of how Ets21C could affect this process. We demonstrate that a depletion of Ets21C strongly suppressed tumor growth while ectopic expression of Ets21C further increased tumor size. We confirm that Ets21C expression is regulated by the JNK pathway and show that Ets21C acts via a positive feed-forward mechanism to induce a specific set of target genes that is critical for tumor growth. These genes are known downstream targets of the JNK pathway and we demonstrate that their expression not only depends on the transcription factor AP-1, but also on Ets21C suggesting a cooperative transcriptional activation mechanism. Taken together we show that Ets21C is a crucial player in regulating the transcriptional program of the JNK pathway and enhances our understanding of the mechanisms that govern neoplastic growth. PMID:27713480

  10. Expression of cell cycle regulator cdk2ap1 suppresses tumor cell phenotype by non-cell autonomous mechanisms

    OpenAIRE

    Zolochevska, Olga; Figueiredo, Marxa L

    2009-01-01

    We evaluated the effect of expressing the cell cycle regulator cdk2ap1 in epithelial or stromal cell compartments to reduce SCC growth in vitro and in vivo. Cell autonomous and/or non-cell autonomous expression of cdk2ap1 reduced tumor growth and invasion and altered cell cycle, adhesion, invasion, angiogenesis, and apoptotic gene expression, as assessed by several in vitro phenotype assays, quantitative real time PCR, and in vivo molecular imaging using a novel three-way xenograft animal mod...

  11. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2010-01-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. The aim of this study was to investigate the regulatory effect of quercetin (50 microM) on two main transcription factors (NF-kappa B and AP-1) related to survival/proliferation pathways in a human hepatoma cell line (HepG2) over time. Quercetin induced a significant time-dependent inactivation of the NF-kappa B pathway consistent with a downregulation of the NF-kappa B binding activity (from 15 min onward). These features were in concert with a time-dependent activation (starting at 15 min and maintained up to 18 h) of the AP-1/JNK pathway, which played an important role in the control of the cell death induced by the flavonoid and contributed to the regulation of survival/proliferation (AKT, ERK) and death (caspase-3, p38, unbalance of Bcl-2 proapoptotic and antiapoptotic proteins) signals. These data suggest that NF-kappa B and AP-1 play a main role in the tight regulation of survival/proliferation pathways exerted by quercetin and that the sustained JNK/AP-1 activation and inhibition of NF-kappa B provoked by the flavonoid induced HepG2 death.

  12. Involvement of AP-1 in p38MAPK signaling pathway in osteoblast apoptosis induced by high glucose.

    Science.gov (United States)

    Feng, Z P; Deng, H C; Jiang, R; Du, J; Cheng, D Y

    2015-04-10

    We investigated the effect of p38MAPK/AP-1 (activator protein-1) signaling on the apoptosis of osteoblasts induced by high glucose. A lentivirus vector of small hairpin RNA (shRNA) targeting p38MAPK was constructed in vitro. Osteoblasts MC3T3-E1 cultured in vitro were treated with vehicle, high glucose, p38MAPK-shRNA transfection, p38MAPK inhibitor, and unrelated shRNA transfection. Apoptosis, protein levels of p38MAPK, and activities of AP-1 in MC3T3-E1 osteoblasts were measured using TUNEL and flow cytometry, Western blot analysis, and an electrophoretic mobility shift assay. Compared with the vehicle group, high glucose induced apoptosis of MC3T3-E1 osteoblasts and activated p38MAPK and AP-1. p38MAPK-shRNA transfection blocked the effect of high glucose stimulation, and the p38MAPK inhibitor showed similar effects as those observed in p38MAPK transfection. Unrelated shRNA had no effect on these changes in MC3T3-E1 osteoblasts induced by high glucose. Therefore, our results suggest that p38MAPK-shRNA reduce apoptosis of MC3T3-E1 osteoblasts induced by high glucose by inhibiting the p38MAPK-AP-1 signaling pathway.

  13. Homology and causes.

    Science.gov (United States)

    Van Valen, L M

    1982-09-01

    Homology is resemblance caused by a continuity of information. In biology it is a unified developmental phenomenon. Homologies among and within individuals intergrade in several ways, so historical homology cannot be separated sharply from repetitive homology. Nevertheless, the consequences of historical and repetitive homologies can be mutually contradictory. A detailed discussion of the rise and fall of the "premolar-analogy" theory of homologies of mammalian molar-tooth cusps exemplifies such a contradiction. All other hypotheses of historical homology which are based on repetitive homology, such as the foliar theory of the flower considered phyletically, are suspect.

  14. Heparin (GAG-hed inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    Directory of Open Access Journals (Sweden)

    López-Bayghen Esther

    2006-08-01

    Full Text Available Abstract Background High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR, plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs, such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Methods Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. Results We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Conclusion Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell

  15. 真菌中氧胁迫调控因子AP-1研究进展%Research progress on oxidative stress transcript factor AP-1 in fungi

    Institute of Scientific and Technical Information of China (English)

    王琦; 王龑; 戴小枫; 郭维; 刘阳

    2015-01-01

    氧化应激是细胞应激反应的一种,在所有生物中都是保守进化的。应激反应的调控包括转录、翻译和翻译后修饰,决定生物体是否适应、存活、或者死亡。酵母中b-ZIP型激活蛋白(Yap)家族包括8个成员, Yap1是酵母Yap家族中首先发现的成员,具有DNA结合结构域和转录激活活性,在细胞的氧化应激中发挥着必不可少的作用。在氧化压力下, Yap1的活性增加。本文对近年来AP-1转录因子在真菌中的主要研究进展进行了综述,重点介绍了 AP-1作为主要的氧化应激调节器参与的生物学应激反应、致病性及产生真菌毒素等,并介绍了AP-1在铁代谢、钴毒性、DNA损伤、耐药性中的功能。%ABSTRACT:Oxidative stress, which is one of cellular stress responses, is evolutionarily conserved in all living organisms. The regulation of stress response includes transcriptional, translational and post-translational mechanisms, deciding whether the organism adapts, survives, or dies. The yeast activator protein (Yap) family of b-ZIP proteins consists of 8 members. Yap1, the first member of the Yap family to be found, has a DNA binding domain and transcriptional activation and is essential for the normal response of cells to oxidative stress. When it is under oxidative stress conditions, the activity of Yap1 will increase. In this paper, the main research progress in recent years on the AP-1 transcription factor in fungi was reviewed, focusing on AP-1 involving in biological stress response as the main regulator of oxidative stress, pathogenicity, and mycotoxin biosynthesis, and the function of AP-1 in iron metabolism, cobalt toxicity, DNA damage, and drug resistance was also be introduced.

  16. Transcriptomic analysis by RNA-seq reveals AP-1 pathway as key regulator that green tea may rely on to inhibit lung tumorigenesis.

    Science.gov (United States)

    Pan, Jing; Zhang, Qi; Xiong, Donghai; Vedell, Peter; Yan, Ying; Jiang, Hui; Cui, Peng; Ding, Feng; Tichelaar, Jay W; Wang, Yian; Lubet, Ronald A; You, Ming

    2014-01-01

    Green tea is a promising chemopreventive agent for lung cancer. Multiple signaling events have been reported, however, the relative importance of these mechanisms in mediating the chemopreventive function of green tea is unclear. In the present study, to examine the involvement of AP-1 in green tea polyphenols induced tumor inhibition, human NSCLC cell line H1299 and mouse SPON 10 cells were identified as AP-1 dependent, as these two lines exhibit high constitutive AP-1 activity, and when TAM67 expression was induced with doxycycline, cell growth was inhibited and correlated with suppressed AP-1 activity. RNA-seq was used to determine the global transcriptional effects of AP-1 inhibition and also uncover the possible involvement of AP-1 in tea polyphenols induced chemoprevention. TAM67 mediated changes in gene expression were identified, and within down-regulated genes, AP-1 was identified as a key transcription regulator. RNA-seq analysis revealed that Polyphenon E-treated cells shared 293 commonly down-regulated genes within TAM67 expressing H1299 cells, and by analysis of limited Chip-seq data, over 10% of the down-regulated genes contain a direct AP-1 binding site, indicating that Polyphenon E elicits chemopreventive activity by regulating AP-1 target genes. Conditional TAM67 expressing transgenic mice and NSCLC cell lines were used to further confirm that the chemopreventive activity of green tea is AP-1 dependent. Polyphenon E lost its chempreventive function both in vitro and in vivo when AP-1 was inhibited, indicating that AP-1 inhibition is a major pathway through which green tea exhibits chemopreventive effects.

  17. HPV16E6-Dependent c-Fos Expression Contributes to AP-1 Complex Formation in SiHa Cells

    Directory of Open Access Journals (Sweden)

    Feixin Liang

    2011-01-01

    Full Text Available To date, the major role of HPV16E6 in cancer has been considered to be its ability to inhibit the p53 tumor-suppressor protein, thereby thwarting p53-mediated cytotoxic responses to cellular stress signals. Here, we show that HPV16E6-dependent c-fos oncogenic protein expression contributes to AP-1 complex formation under oxidative stress in SiHa cells (HPV16-positive squamous cell carcinoma of the cervix. In addition, we examined the role of HPV16E6 in TGF-α-induced c-fos expression and found that the c-fos protein expression induced by TGF-α is HPV16E6 dependent. Thus, our results provide the first evidence that HPV16E6 contributes to AP-1 complex formation after both ligand-dependent and independent EGFR activation, suggesting a new therapeutic approach to the treatment of HPV-associated tumors.

  18. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element.

    Science.gov (United States)

    Guyton, K Z; Xu, Q; Holbrook, N J

    1996-01-01

    GADD153 is a CCAAT/enhancer-binding-protein-related gene that may function to control cellular growth in response to stress signals. In this study, a variety of oxidant treatments were shown to stimulate endogenous GADD153 mRNA expression and to transcriptionally activate a GADD153 promoter-reporter gene construct in transfected HeLa cells. Both commonalities and distinctions in the induction of GADD153 by H2O2 and the thiol-reactive compound arsenite were demonstrated. GADD153 mRNA induction by both H2O2 and arsenite was potentiated by GSH depletion, and completely inhibited by N-acetyl-cysteine. o-Phenanthroline and mannitol blocked GADD153 induction by H2O2, indicating that iron-generated hydroxyl radical mediates this induction. Concordantly, GSH peroxidase overexpression in WI38 cells attenuated GADD153 mRNA induction by H2O2. However, GADD153 induction by arsenite was only modestly reduced in the same cells, suggesting a lesser contribution of peroxides to gene activation by arsenite. We also demonstrated that oxidative stress participates in the induction of GADD153 by UVC (254 nm) irradiation. Finally, both promoter-deletion analysis and point mutation of the AP-1 site in an otherwise intact promoter support a significant role for AP-1 in transcriptional activation of GADD153 by UVC or oxidant treatment. Indeed, exposure of cells to oxidants or UVC stimulated binding of Fos and Jun to the GADD153 AP-1 element. Together, these results demonstrate that both free-radical generation and thiol modification can transcriptionally activate GADD153, and that AP-1 is critical to oxidative regulation of this gene. This study further supports a role for the GADD153 gene product in the cellular response to oxidant injury. PMID:8670069

  19. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1.

    Science.gov (United States)

    Cao, Zhen; Wu, Xue-Fei; Peng, Yan; Zhang, Rui; Li, Na; Yang, Jin-Yi; Zhang, Shu-Qin; Zhang, Wan-Qin; Zhao, Jie; Li, Shao

    2015-11-01

    Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine.

  20. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms.

    Science.gov (United States)

    Turner, Suzanne D; Yeung, Debra; Hadfield, Kathryn; Cook, Simon J; Alexander, Denis R

    2007-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

  1. Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1.

    Science.gov (United States)

    Matsudaira, Tatsuyuki; Niki, Takahiro; Taguchi, Tomohiko; Arai, Hiroyuki

    2015-08-15

    The retrograde pathway is defined by the transport of proteins and lipids from the plasma membrane through endosomes to the Golgi complex, and is essential for a variety of cellular activities. Recycling endosomes are important sorting stations for some retrograde cargo. SMAP2, a GTPase-activating protein (GAP) for Arf1 with a putative clathrin-binding domain, has previously been shown to participate in the retrograde transport of the cholera toxin B-subunit (CTxB) from recycling endosomes. Here, we found that clathrin, a vesicle coat protein, and clathrin adaptor protein complex 1 (AP-1) were present at recycling endosomes and were needed for the retrograde transport of CTxB from recycling endosomes to the Golgi, but not from the plasma membrane to recycling endosomes. SMAP2 immunoprecipitated clathrin and AP-1 through a putative clathrin-binding domain and a CALM-binding domain, and SMAP2 mutants that did not interact with clathrin or AP-1 could not localize to recycling endosomes. Moreover, knockdown of Arf1 suppressed the retrograde transport of CTxB from recycling endosomes to the Golgi. These findings suggest that retrograde transport is mediated by clathrin-coated vesicles from recycling endosomes and that the role of the coat proteins is in the recruitment of Arf GAP to transport vesicles.

  2. Characterization of CRTAM gene promoter: AP-1 transcription factor control its expression in human T CD8 lymphocytes.

    Science.gov (United States)

    Valle-Rios, Ricardo; Patiño-Lopez, Genaro; Medina-Contreras, Oscar; Canche-Pool, Elsy; Recillas-Targa, Felix; Lopez-Bayghen, Esther; Zlotnik, Albert; Ortiz-Navarrete, Vianney

    2009-10-01

    Class-I MHC-restricted T-cell associated molecule (CRTAM) is a member of the Nectin-like adhesion molecule family. It is rapidly induced in NK, NKT and CD8(+) T cells. Interaction with its ligand Nectin-like 2 results in increased secretion of IFN-gamma by activated CD8(+) T lymphocytes. Through sequential bioinformatic analyses of the upstream region of the human CRTAM gene, we detected cis-elements potentially important for CRTAM gene transcription. Analyzing 2kb upstream from the ATG translation codon by mutation analysis in conjunction with luciferase reporter assays, electrophoretic mobility shify assay (EMSA) and supershift assays, we identified an AP-1 binding site, located at 1.4kb from the ATG translation codon of CRTAM gene as an essential element for CRTAM expression in activated but not resting human CD8(+) T cells. CRTAM expression was reduced in activated CD8(+) T cells treated with the JNK inhibitor SP600125, indicating that CRTAM expression is driven by the JNK-AP-1 signaling pathway. This study represents the first CRTAM gene promoter analysis in human T cells and indicates that AP-1 is a positive transcriptional regulator of this gene, a likely important finding because CRTAM has recently been shown to play a role in IFN-gamma and IL-17 production and T cell proliferation.

  3. Combinatorial Floer Homology

    CERN Document Server

    de Silva, Vin; Salamon, Dietmar

    2012-01-01

    We define combinatorial Floer homology of a transverse pair of noncontractibe nonisotopic embedded loops in an oriented 2-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology.

  4. Pseudoephedrine inhibits T-cell activation by targeting NF-κB, NFAT and AP-1 signaling pathways.

    Science.gov (United States)

    Fiebich, Bernd L; Collado, Juan A; Stratz, Cristian; Valina, Christian; Hochholzer, Willibald; Muñoz, Eduardo; Bellido, Luz M

    2012-02-01

    Pseudoephedrine (PSE) is a stereoisomer of ephedrine that is commonly used as a nasal decongestant in combination with other anti-inflammatory drugs for the symptomatic treatment of some common pathologies such as common cold. Herein, we describe for the first time the effects of PSE on T-cell activation events. We found that PSE inhibits interleukin-2 (IL-2) and tumor necrosis factor (TNF) alpha-gene transcription in stimulated Jurkat cells, a human T-cell leukemia cell line. To further characterize the inhibitory mechanisms of PSE at the transcriptional level, we examined the transcriptional activities of nuclear factor kappa B (NF-κB), nuclear factor of activated T cells (NFAT), and activator protein-1 (AP-1) transcription factors and found that PSE inhibited NF-κB-dependent transcriptional activity without affecting either the phosphorylation, the degradation of the cytoplasmic NF-κB inhibitory protein, IκBα or the DNA-binding activity. However, phosphorylation of the p65/RelA subunit was clearly inhibited by PSE in stimulated cells. In addition, PSE inhibited the transcriptional activity of NFAT without interfering with the calcium-induced NFAT dephosphorylation event, which represents the major signaling pathway for its activation. NFAT cooperates with c-Jun, a compound of the AP-1 complex, to activate target genes, and we also found that PSE inhibited both JNK activation and AP-1 transcriptional activity. These findings provide new mechanistic insights into the potential immunomodulatory activities of PSE and highlight their potential in designing novel therapeutic strategies to manage inflammatory diseases.

  5. SCF/C-Kit/JNK/AP-1 Signaling Pathway Promotes Claudin-3 Expression in Colonic Epithelium and Colorectal Carcinoma.

    Science.gov (United States)

    Wang, Yaxi; Sun, Tingyi; Sun, Haimei; Yang, Shu; Li, Dandan; Zhou, Deshan

    2017-04-06

    Claudin-3 is a major protein of tight junctions (TJs) in the intestinal epithelium and is critical for maintaining cell-cell adhesion, barrier function, and epithelium polarity. Recent studies have shown high claudin-3 levels in several solid tumors, but the regulation mechanism of claudin-3 expression remains poorly understood. In the present study, colorectal cancer (CRC) tissues, HT-29 and DLD-1 CRC cell lines, CRC murine model (C57BL/6 mice) and c-kit loss-of-function mutant mice were used. We demonstrated that elevated claudin-3 levels were positively correlated with highly expressed c-kit in CRC tissues based upon analysis of protein expression. In vitro, claudin-3 expression was clearly increased in CRC cells by overexpressed c-kit or stimulated by exogenous recombinant human stem cell factor (rhSCF), while significantly decreased by the treatment with c-kit or c-Jun N-terminal kinase (JNK) inhibitors. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay showed that SCF/c-kit signaling significantly promoted activator protein-1 (AP-1) binding with CLDN-3 promoter and enhanced its transcription activity. Furthermore, decreased expression of claudin-3 was obtained in the colonic epithelium from the c-Kit loss-of-function mutant mice. In conclusion, SCF/c-kit-JNK/AP-1 signaling pathway significantly promoted claudin-3 expression in colonic epithelium and CRC, which could contribute to epithelial barrier function maintenance and to CRC development.

  6. Breeding of Selectable Marker-Free Transgenic Rice Lines Containing AP1 Gene with Enhanced Disease Resistance

    Institute of Scientific and Technical Information of China (English)

    YU Heng-xiu; LIU Qiao-quan; WANG Ling; ZHAO Zhi-peng; XU Li; HUANG Ben-li; GONG Zhi-yun; TANG Shu-zhu; GU Ming-hong

    2006-01-01

    In order to obtain marker-free transgenic rice with improved disease resistance, the AP1 gene of Capsicum annuum and hygromycin-resistance gene (HPT) were cloned into the two separate T-DNA regions of the binary vector pSB 130,respectively, and introduced into the calli derived from the immature seeds of two elite japonica rice varieties, Guangling Xiangjing and Wuxiangjing 9, mediated by Agrobacterium-mediated transformation. Many cotransgenic rice lines containing both the AP1 gene and the marker gene were regenerated and the integration of both transgenes in the transgenic rice plants was confirmed by either PCR or Southern blotting technique. Several selectable marker-free transgenic rice plants were subsequently obtained from the progeny of the cotransformants, and confirmed by both PCR and Southern blotting analysis. These transgenic rice lines were tested in the field and their resistance to disease was c arefully investigated, the results showed that after inoculation the resistance to either bacterial blight or sheath blight of the selected transgenic lines was improved when compared with those of wild type.

  7. The Synonymous Ala87 Mutation of Estrogen Receptor Alpha Modifies Transcriptional Activation Through Both ERE and AP1 Sites.

    Science.gov (United States)

    Fernández-Calero, Tamara; Flouriot, Gilles; Marín, Mónica

    2016-01-01

    Estrogen receptor α (ERα) exerts regulatory actions through genomic mechanisms. In the classical pathway, ligand-activated ERα binds directly to DNA through estrogen response elements (ERE) located in the promoter of target genes. ERα can also exert indirect regulation of transcription via protein-protein interaction with other transcription factors such as AP-1.S everal ERα synonymous polymorphisms have been identified and efforts to understand their implications have been made. Nevertheless effects of synonymous polymorphisms are still neglected. This chapter focuses on the experimental procedure employed in order to characterize the transcriptional activity of a synonymous polymorphism of the ERα (rs746432) called Alanine 87 (Ala87). Activity of both WT and Ala87 ERα isoforms on transcriptional pathways can be analyzed in transiently transfected cells using different reporter constructs. ERα efficiency on the classical genomic pathway can be analyzed by determining its transactivation activity on an ERE-driven thymidine kinase (TK) promoter controlling the expression of the luciferase reporter gene. Transcriptional activity through the indirect genomic pathway can be analyzed by employing an AP-1 DNA response element-driven promoter also controlling the expression of luciferase reporter gene.

  8. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  9. AP-1 as a Regulator of MMP-13 in the Stromal Cell of Giant Cell Tumor of Bone

    Directory of Open Access Journals (Sweden)

    Isabella W. Y. Mak

    2011-01-01

    Full Text Available Matrix-metalloproteinase-13 (MMP-13 has been shown to be an important protease in inflammatory and neoplastic conditions of the skeletal system. In particular, the stromal cells of giant cell tumor of bone (GCT express very high levels of MMP-13 in response to the cytokine-rich environment of the tumor. We have previously shown that MMP-13 expression in these cells is regulated, at least in part, by the RUNX2 transcription factor. In the current study, we identify the expression of the c-Fos and c-Jun elements of the AP-1 transcription factor in these cells by protein screening assays and real-time PCR. We then used siRNA gene knockdown to determine that these elements, in particular c-Jun, are upstream regulators of MMP-13 expression and activity in GCT stromal cells. We conclude that there was no synergy found between RUNX2 and AP-1 in the regulation of the MMP13 expression and that these transcription factors may be independently regulated in these cells.

  10. Increased DNA binding activity of NF-κB, STAT-3, SMAD3 and AP-1 in acutely damaged liver

    Institute of Scientific and Technical Information of China (English)

    Adriana Salazar-Montes; Luis Ruiz-Corro; Ana SandovaI-Rodriguez; Alberto Lopez-Reyes; Juan Armendariz-Borunda

    2006-01-01

    AIM: To investigate the role of genes and kinetics of specific transcription factors in liver regeneration, and to analyze the gene expression and the activity of some molecules crucially involved in hepatic regeneration.METHODS: USING gel-shift assay and RT-PCR,transcription factors, such as NF-κB, STAT-3, SMAD3and AP-1, and gene expression of inducible nitric oxide synthase (iNOS), hepatocyte growth factor (HGF) and c-met were analyzed in an animal model of chemically induced hepatectomy.RESULTS: Gene expression of HGF and its receptor c-met peaked at 3 h and 24 h after acute CCl4 intoxication. iNOS expression was only observed from 6 to 48 h.Transcriptional factor NF-κB had an early activation at 30min after acute liver damage. STAT-3 peaked 3 h postintoxication, while AP-1 displayed a peak of activation at 48 h. SMAD3 showed a high activity at all analyzed times.CONCLUSION: TNF-α and IL-6 play a central role in hepatic regeneration. These two molecules are responsible for triggering the cascade of events and switch-on of genes involved in cell proliferation, such as growth factors, kinases and cyclins which are direct participants of cell proliferation.

  11. Lectures on functor homology

    CERN Document Server

    Touzé, Antoine

    2015-01-01

    This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is o...

  12. Transcription factor AP1 binds the functional region of the promoter and regulates gene expression of human PPARdelta in LoVo cell.

    Science.gov (United States)

    Jiang, Xiaogang; Yang, Xudong; Han, Yan; Lu, Shemin

    2013-12-01

    Peroxisome proliferator-activated receptor δ gene (PPARδ) is correlated with carcinogenesis of colorectal cancer, but the regulation of its gene transcription remains unclear. We herein report that AP1 binds the promoter and regulates PPARδ gene expression. With a luciferase reporter system, we identified a functional promoter region of 30 bp of PPARδ gene by deletion and electrophoretic mobility shift assays (EMSA). Using site-directed mutagenesis and decoy analyses, we demonstrated that AP1 bound the functional transcriptional factor binding site in a region extending from -176 to -73 of the PPARδ promoter, which was confirmed using EMSA and supershift assays. Consequently, inhibition of the AP1 binding site led to decreased PPARδ mRNA. Our study demonstrated that AP1 is the transcriptional factor that contributes to PPARδ expression in LoVo cells.

  13. Lectures on knot homology

    CERN Document Server

    Nawata, Satoshi

    2015-01-01

    We provide various formulations of knot homology that are predicted by string dualities. In addition, we also explain the rich algebraic structure of knot homology which can be understood in terms of geometric representation theory in these formulations. These notes are based on lectures in the workshop "Physics and Mathematics of Link Homology" at Centre de Recherches Math\\'ematiques, Universit\\'e de Montr\\'eal.

  14. Loss-of-Function Mutations in YY1AP1 Lead to Grange Syndrome and a Fibromuscular Dysplasia-Like Vascular Disease.

    Science.gov (United States)

    Guo, Dong-Chuan; Duan, Xue-Yan; Regalado, Ellen S; Mellor-Crummey, Lauren; Kwartler, Callie S; Kim, Dong; Lieberman, Kenneth; de Vries, Bert B A; Pfundt, Rolph; Schinzel, Albert; Kotzot, Dieter; Shen, Xuetong; Yang, Min-Lee; Bamshad, Michael J; Nickerson, Deborah A; Gornik, Heather L; Ganesh, Santhi K; Braverman, Alan C; Grange, Dorothy K; Milewicz, Dianna M

    2017-01-05

    Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-β-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.

  15. Two tobacco AP1-like gene promoters drive highly specific, tightly regulated and unique expression patterns during floral transition, initiation and development.

    Science.gov (United States)

    Zhang, Jinjin; Yan, Guohua; Wen, Zhifeng; An, Young-Qiang; Singer, Stacy D; Liu, Zongrang

    2014-02-01

    The genetic engineering of agronomic traits requires an array of highly specific and tightly regulated promoters that drive expression in floral tissues. In this study, we isolated and characterized two tobacco APETALA1-like (AP1-like) promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using the GUS reporter system, along with tissue-specific ablation analyses. Our results demonstrated that the two promoters are active in floral inflorescences but not in vegetative apical meristems or other vegetative tissues, as reflected by strong GUS staining and DT-A-mediated ablation of apical shoot tips during reproductive but not vegetative growth. We also showed that the NtAP1Lb1 promoter was more active than NtAP1La in inflorescences, as the former yielded higher frequencies and greater phenotypic evidence of tissue ablation compared to the latter. We further revealed that both promoters were uniformly expressed in the meristems of stage 1 and 2 floral buds, but were differentially expressed in floral organs later during development. While NtAP1La was found to be active in stage 4-5 carpels, later becoming confined to ovary tissue from stage 9 onwards, NtAP1Lb1 activity was apparent in all floral organs from stages 3 to 7, becoming completely absent in all floral organs from stage 11 onward. Therefore, it seems that the two tobacco promoters have acquired similar but distinct inflorescence-, floral meristem- and floral organ-specific and development-dependent regulatory features without any leaky activity in vegetative tissues. These features are novel and have rarely been observed in other flower-specific promoters characterized to date. The potential application of these promoters for engineering sterility, increasing biomass production and modifying flower architecture, as well as their putative use in flower-specific transgene excision, will be discussed.

  16. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation.

    Science.gov (United States)

    Tempé, D; Vives, E; Brockly, F; Brooks, H; De Rossi, S; Piechaczyk, M; Bossis, G

    2014-02-13

    The inducible proto-oncogenic (c-Fos:c-Jun)/AP-1 transcription complex binds 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive elements (TRE) in its target genes. It is tightly controlled at multiple levels to avoid the deleterious effects of its inappropriate activation. In particular, SUMOylation represses its transactivation capacity in transient reporter assays using constitutively expressed proteins. This led to the presumption that (c-Fos:c-Jun)/AP-1 SUMOylation would be required to turn-off transcription of its target genes, as proposed for various transcription factors. Instead, thanks to the generation of an antibody specific for SUMO-modified c-Fos, we provide here direct evidence that SUMOylated c-Fos is present on a stably integrated reporter TPA-inducible promoter at the onset of transcriptional activation and colocalizes with RNA polymerase II within chromatin. Interestingly, (c-Fos:c-Jun)/AP-1 SUMOylation limits reporter gene induction, as well as the appearance of active transcription-specific histone marks on its promoter. Moreover, non-SUMOylatable mutant (c-Fos:c-Jun)/AP-1 dimers accumulate to higher levels on their target promoter, suggesting that SUMOylation might facilitate the release of (c-Fos:c-Jun)/AP-1 from promoters. Finally, activation of GADD153, an AP-1 target gene, is also associated with a rapid increase in SUMOylation at the level of its TRE and c-Fos SUMOylation dampens its induction by TPA. Taken together, our data suggest that SUMOylation could serve to buffer transcriptional activation of AP-1 target genes.

  17. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.

    Science.gov (United States)

    Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D

    2015-11-01

    Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.

  18. Parthenolide inhibits ERK and AP-1 which are dysregulated and contribute to excessive IL-8 expression and secretion in cystic fibrosis cells

    Directory of Open Access Journals (Sweden)

    Saadane Aicha

    2011-10-01

    Full Text Available Abstract Background Excessive secretion of IL-8 characterizes cystic fibrosis (CF. This has been attributed to excessive activation of epithelial cell I-κB Kinase and/or NFκB. Maximum IL-8 production requires 3 cooperative mechanisms: 1 release of the promoter from repression; 2 activation of transcription by NFκB and AP-1; 3 stabilization of mRNA by p38-MAPK. Little is known about regulation of IL-8 by MAPKs or AP-1 in CF. Methods We studied our hypothesis in vitro using 3-cellular models. Two of these models are transformed cell lines with defective versus normal cystic fibrosis transmembrane conductance regulator (CFTR expression: an antisense/sense transfected cell line and the patient derived IB3-1/S9. In the third series of studies, we studied primary necropsy human tracheal epithelial cells treated with an inhibitor of CFTR function. All cell lines were pretreated with parthenolide and then stimulated with TNFα and/or IL-1β. Results In response to stimulation with TNFα and/or IL-1β, IL-8 production and mRNA expression was greater in CF-type cells than in non-CF controls. This was associated with enhanced phosphorylation of p38, ERK1/2 and JNK and increased activation of AP-1. Since we previously showed that parthenolide inhibits excessive IL-8 production by CF cells, we evaluated its effects on MAPK and AP-1 activation and showed that parthenolide inhibited ERK and AP-1 activation. Using a luciferase promoter assay, our studies showed that parthenolide decreased activation of the IL-8 promoter in CF cells stimulated with TNFα/IL-1β. Conclusions In addition to NFκB MAPKs ERK, JNK and p38 and the transcription factor AP-1 are also dysregulated in CF epithelial cells. Parthenolide inhibited both NFκB and MAPK/AP-1 pathways contributing to the inhibition of IL-8 production.

  19. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  20. HOMOLOGY RIGIDITY OF GRASSMANNIANS

    Institute of Scientific and Technical Information of China (English)

    Li Fang; Duan Haibao

    2009-01-01

    Applying the theory of GrSbner basis to the Schubert presentation for the cohomology of Grassmannians [2], we extend the homology rigidity results known for the classical Grassmaniaas to the exceptional cases.

  1. Sutures and contact homology I

    CERN Document Server

    Colin, Vincent; Honda, Ko; Hutchings, Michael

    2010-01-01

    We define a relative version of contact homology for contact manifolds with convex boundary, and prove basic properties of this relative contact homology. Similar considerations also hold for embedded contact homology.

  2. A novel bipartite UNC-101/AP-1 μ1 binding signal mediates KVS-4/Kv2.1 somatodendritic distribution in Caenorhabditis elegans.

    Science.gov (United States)

    Zhou, Xin; Zeng, Jia; Ouyang, Chenxi; Luo, Qianyun; Yu, Miao; Yang, Zhenrong; Wang, Hui; Shen, Kang; Shi, Anbing

    2016-01-01

    Potassium channels such as Kv2.1 are targeted to specific subcellular compartments to fulfill various functions. However, the mechanisms for their localization are poorly understood. Here, we show that KVS-4/Kv2.1 somatodendritic localization in Caenorhabditis elegansDA9 neuron requires UNC-101(AP-1 μ subunit). We define a bipartite sorting signal within KVS-4 consisting of a C-terminal EQMIL and N-terminal WNIIE motifs. The bipartite signal is sufficient to target nonpolarized transmembrane protein MIG-13 into DA9 somatodendritic compartments. Furthermore, we found that AP-1 interacts with the bipartite signal through UNC-101/AP-1 μ N-terminal predicted Longin-like domain. Our results provide new insight into the mechanisms of Kv2.1 post-Golgi sorting and targeting.

  3. The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBPβ and AP-1 in Pigs

    Directory of Open Access Journals (Sweden)

    Xinyun Li

    2014-08-01

    Full Text Available S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS or porcine circovirus type 2 (PCV2. In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ and activator protein-1 (AP-1 genes were up-regulated in PK-15 (ATCC, CCL-33 cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  4. The inflammation-related gene S100A12 is positively regulated by C/EBPβ and AP-1 in pigs.

    Science.gov (United States)

    Li, Xinyun; Tang, Juan; Xu, Jing; Zhu, Mengjin; Cao, Jianhua; Liu, Ying; Yu, Mei; Zhao, Shuhong

    2014-08-08

    S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS) or porcine circovirus type 2 (PCV2). In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ) and activator protein-1 (AP-1) genes were up-regulated in PK-15 (ATCC, CCL-33) cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA) to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  5. Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation.

    Science.gov (United States)

    Hong, Ju-Mi; Kwon, Ok-Kyoung; Shin, In-Sik; Song, Hyuck-Hwan; Shin, Na-Rae; Jeon, Chan-Mi; Oh, Sei-Ryang; Han, Sang-Bae; Ahn, Kyung-Seop

    2015-01-01

    Physalis alkekengi has been traditionally used for the treatment of coughs, middle ear infections, and sore throats in Korea, Europe, and China. It exhibits a variety of pharmacological activities such as anti-inflammatory, anti-oxidant, and anti-cancer effects. The anti-inflammatory effects of the P. alkekengi methanol extract (PA) and its molecular mechanisms have not yet been fully investigated. In the present study, the chromatogram of PA was established by UPLC analysis. The anti-inflammatory effects of PA were also investigated using murine microphage cell lines, RAW 264.7 cells, and a murine model of OVA induced asthma. In LPS-stimulated RAW264.7 cells, PA reduced the MMP-9 expression with decreases in the production of nitric oxide, inteleukin-6, and tumor necrosis factor-α. Furthermore, PA suppressed the phosphorylation of MAPKs, which resulted in the inhibition of AP-1 activation. These effects of PA were consistent with the results of the in vivo experiment. PA-treated mice significantly inhibited inflammatory cell counts and cytokine production in bronchoalveolar lavage fluids and airway-hyperresponsiveness in OVA-induced asthmatic mice. PA treated mice also showed a marked inhibition of inducible nitric oxide synthase and MMP-9 expression. In conclusion, our results suggest that PA may be a valuable therapeutic material in treating various inflammatory diseases, including allergic asthma.

  6. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field.

    Science.gov (United States)

    Jahangiri, Leila; Sharpe, Michka; Novikov, Natasha; González-Rosa, Juan Manuel; Borikova, Asya; Nevis, Kathleen; Paffett-Lugassy, Noelle; Zhao, Long; Adams, Meghan; Guner-Ataman, Burcu; Burns, Caroline E; Burns, C Geoffrey

    2016-01-01

    The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage.

  7. Functional analysis of FoAP1 in Fusarium oxysporum f.sp.cubense infecting the host Musa paradisiaca%FoAP1基因在香蕉枯萎病菌致病过程中的功能分析

    Institute of Scientific and Technical Information of China (English)

    齐兴柱; 杨腊英; 郭立佳; 黄俊生

    2013-01-01

    为了探究AP1转录因子在尖孢镰刀菌古巴专化型4号生理小种(Foc4)中是否参与香蕉枯萎病的致病过程,借助尖孢镰刀菌Fo5176菌株(GenBank序列号:AFQF01001482.1)全基因组序列,通过PCR和RT-PCR技术克隆获得了Foc4中AP1转录因子的基因组DNA和cDNA编码序列.利用PEG介导的原生质体转化法获得AP1基因敲除转化子.利用qRT-PCR分析AP1可能调控的下游基因表达.利用灌根法(直接在根部浇菌)检测了AP1缺失突变体的致病能力.结果表明Foc4的AP1转录因子cDNA编码序列长1 770 bp,编码63.9 kDa(589 aa)蛋白,是一个典型的bZIP型转录因子,命名为FoAP1;FoAP1缺失突变体的气生菌丝大量减少,菌丝的入侵生长受到严重限制.对外源氧化胁迫不敏感,但致病能力减弱.

  8. 转基因白桦杂种T1代的生长发育及AP1基因的遗传分析%Growth and developmental analysis of T1 generation from BpAP1 transgenic birch

    Institute of Scientific and Technical Information of China (English)

    王朔; 黄海娇; 杨光; 姜静; 刘桂丰

    2016-01-01

    Woody plants are characterized by long developing period and high heterozygosity. It is important to shorten the life cycle of trees in tree breeding. APETALA1 (AP1) is a member of MADS-box gene family involved in flower development in plants. Overexpression of AP1 genes induces early flowering in transgenic plants. In order to investigate the genetic stability and regularity of foreign BpAP1 gene in BpAP1 transgenic birch, we generated T1 generation seedlings using three 35S BpAP1 transgenic plants and one wild-type plant as male parents, and three wild-type birch, Betula platyphylla í Betula pendula, as female parents. The growth, development and flowering characteristics of the T1 generation seedlings were analyzed. The results indicated that the foreign BpAP1 slightly influenced the pollen vitality of transgenic plants. About 36% -58% of T1 generation inherited the foreign BpAP1 gene from their parents. Chi-square test of BpAP1 gene segregation ratios revealed that BpAP1 was inherited in accordance with Mendelian inheritance. T1 generation seedlings carrying BpAP1 gene inherited the characteristics of early flowering and dwarfism from their male parent. The average heights of 1-and 2-year-old T1 generation seedlings carrying BpAP1 gene were significantly shorter than the progeny from hybridization of wild-type birch with the percentages of 44. 19% and 18. 92%, respectively. The phenotypes of T1 generation birch carrying foreign BpAP1 gene were quite different from the ones that were lack of foreign BpAP1 gene. According to the different phenotypes, we can infer whether the T1 generation seedlings carry BpAP1 gene or not. Our study proved that the exogenous AP1 gene can be stably inherited by sexual reproduction, and the acquired transgenic birch lines exhibited accelerated flowering time and a shortened juvenile phase, indicating that it can be used as parent materials for genetic studies on birch traits.%本文以3株野生型白桦为母本、3株35S宜BpAP

  9. Amelioration of severe TNBS induced colitis by novel AP-1 and NF- κ B inhibitors in rats.

    Science.gov (United States)

    El-Salhy, Magdy; Umezawa, Kazuo; Gilja, Odd Helge; Hatlebakk, Jan G; Gundersen, Doris; Hausken, Trygve

    2014-01-01

    AP-1 and NF-κ B inhibitors, namely, DTCM-G and DHMEQ, were investigated in male Wistar rats with severe colitis, induced by TNBS. The animals were randomized into 3 groups. The control group received 0.5 mL of 0.5% of the vehicle i.p., the DTCM-G group received 22.5 mg/kg body weight DTCM-G in 0.5% i.p., and the DHMEQ group received 15 mg/kg body weight DHMEQ i.p., all twice daily for 5 days. The body weight losses and mortality rates were significantly higher in the control group than those in DTCM-G-treated and DHMEQ-treated groups. The endoscopic inflammation scores in the control, DTCM-G-treated, and DHMEQ-treated groups were 6.3 ± 0.7, 1.0 ± 0.3, and 0.7 ± 0.3, respectively (P = 0.004 and 0.02, resp.). The inflammation scores as assessed by the macroscopic appearance were 4.3 ± 0.8, 0.7 ± 0.3, and 1.2 ± 0.4 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.01 and 0.009, resp.). The histopathological inflammation scores were 6.4 ± 0.7, 2.0 ± 1.0, and 2.2 ± 0.6 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.03 and 0.01, resp.). It was concluded that DTCM-G and DHMEQ exhibit strong anti-inflammatory and anticancer activities with no apparent toxicity, which make them excellent drug candidates for clinical use in inflammatory bowel diseases.

  10. Amelioration of Severe TNBS Induced Colitis by Novel AP-1 and NF-κB Inhibitors in Rats

    Directory of Open Access Journals (Sweden)

    Magdy El-Salhy

    2014-01-01

    Full Text Available AP-1 and NF-κB inhibitors, namely, DTCM-G and DHMEQ, were investigated in male Wistar rats with severe colitis, induced by TNBS. The animals were randomized into 3 groups. The control group received 0.5 mL of 0.5% of the vehicle i.p., the DTCM-G group received 22.5 mg/kg body weight DTCM-G in 0.5% i.p., and the DHMEQ group received 15 mg/kg body weight DHMEQ i.p., all twice daily for 5 days. The body weight losses and mortality rates were significantly higher in the control group than those in DTCM-G-treated and DHMEQ-treated groups. The endoscopic inflammation scores in the control, DTCM-G-treated, and DHMEQ-treated groups were 6.3 ± 0.7, 1.0 ± 0.3, and 0.7 ± 0.3, respectively (P = 0.004 and 0.02, resp.. The inflammation scores as assessed by the macroscopic appearance were 4.3 ± 0.8, 0.7 ± 0.3, and 1.2 ± 0.4 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.01 and 0.009, resp.. The histopathological inflammation scores were 6.4 ± 0.7, 2.0 ± 1.0, and 2.2 ± 0.6 in the control, DTCM-G-treated, and DHMEQ-treated groups, respectively (P = 0.03 and 0.01, resp.. It was concluded that DTCM-G and DHMEQ exhibit strong anti-inflammatory and anticancer activities with no apparent toxicity, which make them excellent drug candidates for clinical use in inflammatory bowel diseases.

  11. Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting.

    Science.gov (United States)

    Terauchi, Kaede; Asakura, Tomiko; Ueda, Haruko; Tamura, Tomoko; Tamura, Kentaro; Matsumoto, Ichiro; Misaka, Takumi; Hara-Nishimura, Ikuko; Abe, Keiko

    2006-07-01

    Most aspartic proteinases (APs) of plant origin are characterized by the presence of plant-specific insertion (PSI) in their primary structure. PSI has been reported to function as signals for both transport of AP molecules from the endoplasmic reticulum (ER) and for their targeting to the vacuole. To determine the functions of the PSIs in soyAP1 and soyAP2 identified in our previous study, we examined their subcellular localization by transient expression of a green fluorescent protein (GFP) fusion protein in the protoplasts of Arabidopsis suspension-cultured cells. Both soyAP1-GFP and soyAP2-GFP were targeted to the vacuole. To confirm the role of the PSI, we prepared PSI-deleted soyAP1 and soyAP2, and investigated their vacuolar targeting by the same method. While the former deletion mutant was always transported to the vacuole, the latter sometimes remained in the ER and was only sometimes transported to the vacuole. These observations indicated that, in the case of soyAP1, the PSI is not involved in vacuolar targeting, also suggesting that the function of the PSI differs depending on its origin.

  12. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression

    Directory of Open Access Journals (Sweden)

    Amy L. Silvers

    2003-07-01

    Full Text Available To further delineate ultraviolet A (UVA signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs in UVA-induced activator protein-1 (AP-1 transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor and SP600125 (JNK inhibitor, were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 MM and SP600125 (62-125 nM treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer.

  13. Identification of GATA2 and AP-1 activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene

    Science.gov (United States)

    Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study ...

  14. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    Science.gov (United States)

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  15. Collagen XVI induces expression of MMP9 via modulation of AP-1 transcription factors and facilitates invasion of oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Konstanze B Bedal

    Full Text Available Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT. It is overexpressed during the progression of oral squamous cell carcinoma (OSCC. The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.

  16. Collagen XVI induces expression of MMP9 via modulation of AP-1 transcription factors and facilitates invasion of oral squamous cell carcinoma.

    Science.gov (United States)

    Bedal, Konstanze B; Grässel, Susanne; Oefner, Peter J; Reinders, Joerg; Reichert, Torsten E; Bauer, Richard

    2014-01-01

    Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT). It is overexpressed during the progression of oral squamous cell carcinoma (OSCC). The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK) in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt) to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones) transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.

  17. Gorenstein homological dimensions

    DEFF Research Database (Denmark)

    Holm, Henrik Granau

    2004-01-01

    In basic homological algebra, the projective, injective and 2at dimensions of modules play an important and fundamental role. In this paper, the closely related Gorenstein projective, Gorenstein injective and Gorenstein 2at dimensions are studied. There is a variety of nice results about Gorenstein...

  18. Gorenstein homological dimensions

    DEFF Research Database (Denmark)

    Holm, Henrik Granau

    2004-01-01

    In basic homological algebra, the projective, injective and 2at dimensions of modules play an important and fundamental role. In this paper, the closely related Gorenstein projective, Gorenstein injective and Gorenstein 2at dimensions are studied. There is a variety of nice results about Gorenste...

  19. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model.

    Directory of Open Access Journals (Sweden)

    Chirine Toufaily

    Full Text Available Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1 and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.

  20. JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells.

    Science.gov (United States)

    Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André

    2017-01-01

    The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells.

  1. Loss of p12CDK2-AP1 Expression in Human Oral Squamous Cell Carcinoma with Disrupted Transforming Growth Factor-β-Smad Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2006-12-01

    Full Text Available We examined correlations between TGF-β1, TβR-I and TβR-II, p12CDK2-AP1 p21WAF1 p27KIP1 Smad2, and p-Smad2 in 125 cases of human oral squamous cell carcinoma (OSCC to test the hypothesis that resistance to TGF-β1-induced growth suppression is due to the disruption of its signaling pathway as a consequence of reduced or lost p12CDK2-AP1. Immunoreactivity for TβR-II decreased in OSCC with increasing disease aggressiveness; however, no differences were observed for TβR-I and TGF-β1. The expression of TβR-II significantly correlated with p12CDK2-AP1 and p27KIP1 (P<.001 and P<.01, respectively. Furthermore, there was a significant relationship between TβR-II expression and p-Smad2 (P < .001. The in vivo correlation of the levels of TβR-II, p12CDK2-AP1 and p27 KIP1 was confirmed in normal and OSCC cell lines. Additionally, in vitro analysis of TGF-β-treated cells showed that TGF-β1 treatment of normal keratinocytes suppressed cell growth with upregulation of p-Smad2, p12CDK2-API and p21WAF1 expression, whereas there was no effect on OSCC cell lines. These results provide evidence of a link between a disrupted TGF-β-Smad signaling pathway and loss of induction of cell cycle-inhibitory proteins, especially p12CDK2-AP1 in OSCC, which may lead to the resistance of TGF-β1 growth-inhibitory effect on OSCC.

  2. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  3. Cells in G2/M phase increased in human nasopharyngeal carcinoma cell line by EBV-LMP1 through activation of NF-κB and AP-1

    Institute of Scientific and Technical Information of China (English)

    LIN DENG; JING YANG; XIAO RONG ZHAO; XI YUN DENG; LIANG ZENG; HUAN HUA GU; MIN TANG; YA CAO

    2003-01-01

    Although previous studies showed that the principal oncoprotein encoded by Epstein-Barr virus, latentmembrane protein 1(LMP1), could induce the nasopharyngeal carcinoma cells in G2/M phase increased, littleis known about the target molecules and mechanisms. The present study demonstrated that LMP1 couldinduce the accumulation of p53 protein and upregulate its transactivity in a dose dependent manner, whichresulted in the decrease of the kinase activity of cdc2/cyclin B complex and inducing arrest at G2/M phasethrough the activation of NF-κB and AP-1 signaling pathways, and the effect of NF-κB was more obviousthan that of AP-1. This study provided some significant evidence for further elucidating the molecularmechanisms that LMP1 had effects on the surveillance mechanism of cell cycle and promoting the survivalof transformed cells and tumorigenesis.

  4. Rabinowitz Floer homology: A survey

    CERN Document Server

    Albers, Peter

    2010-01-01

    Rabinowitz Floer homology is the semi-infinite dimensional Morse homology associated to the Rabinowitz action functional used in the pioneering work of Rabinowitz. Gradient flow lines are solutions of a vortex-like equation. In this survey article we describe the construction of Rabinowitz Floer homology and its applications to symplectic and contact topology, global Hamiltonian perturbations and the study of magnetic fields.

  5. Ultraviolet irradiation induces CYR61/CCN1, a mediator of collagen homeostasis, through activation of transcription factor AP-1 in human skin fibroblasts.

    Science.gov (United States)

    Quan, Taihao; Qin, Zhaoping; Xu, Yiru; He, Tianyuan; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2010-06-01

    UV irradiation from the sun elevates the production of collagen-degrading matrix metalloproteinases (MMPs) and reduces the production of new collagen. This imbalance of collagen homeostasis impairs the structure and function of the dermal collagenous extracellular matrix (ECM), thereby promoting premature skin aging (photoaging). We report here that aberrant dermal collagen homeostasis in UV-irradiated human skin is mediated in part by a CCN-family member, cysteine-rich protein-61 (CYR61/CCN1). CYR61 is significantly elevated in acutely UV-irradiated human skin in vivo, and UV-irradiated human skin fibroblasts. Knockdown of CYR61 significantly attenuates UV irradiation-induced inhibition of type-I procollagen and upregulation of MMP-1. Determination of CYR61 mRNA and protein indicates that the primary mechanism of CYR61 induction by UV irradiation is transcriptional. Analysis of CYR61 proximal promoter showed that a sequence conforming to the consensus binding site for transcription factor activator protein-1 (AP-1) is required for promoter activity. UV irradiation increased the binding of AP-1-family members c-Jun and c-Fos to this AP-1 site. Furthermore, functional blockade of c-Jun or knockdown of c-Jun significantly reduced the UV irradiation-induced activation of CYR61 promoter and CYR61 gene expression. These data show that CYR61 is transcriptionally regulated by UV irradiation through transcription factor AP-1, and mediates altered collagen homeostasis that occurs in response to UV irradiation in human skin fibroblasts.

  6. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells.

    LENUS (Irish Health Repository)

    Looby, Eileen

    2009-01-01

    BACKGROUND: The progression from Barrett\\'s metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. METHODS: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. RESULTS: DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1\\/2- and p38 MAPK while Erk1\\/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK\\/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. CONCLUSION: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  7. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Directory of Open Access Journals (Sweden)

    Panagiotis A. Konstantinopoulos

    2007-01-01

    Full Text Available Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN, p-Iκ:B-α (phosphorylated Iκ:B-α, EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production.

  8. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Kang, Ki Sung [College of Korean Medicine, Gachon University, Seongnam 461-701 (Korea, Republic of); Kim, Yong Kee, E-mail: yksnbk@sm.ac.kr [College of Pharmacy, Sookmyung Women’s University, Seoul 140-742 (Korea, Republic of); Kim, Su-Nam, E-mail: snkim@kist.re.kr [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  9. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Directory of Open Access Journals (Sweden)

    Long Aideen

    2009-06-01

    Full Text Available Abstract Background The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Methods Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. Results DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. Conclusion DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  10. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts.

    Science.gov (United States)

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi

    2015-01-01

    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  11. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene.

    Science.gov (United States)

    Kobayashi, Kaoru; Yasuno, Naoko; Sato, Yutaka; Yoda, Masahiro; Yamazaki, Ryo; Kimizu, Mayumi; Yoshida, Hitoshi; Nagamura, Yoshiaki; Kyozuka, Junko

    2012-05-01

    In plants, the transition to reproductive growth is of particular importance for successful seed production. Transformation of the shoot apical meristem (SAM) to the inflorescence meristem (IM) is the crucial first step in this transition. Using laser microdissection and microarrays, we found that expression of PANICLE PHYTOMER2 (PAP2) and three APETALA1 (AP1)/FRUITFULL (FUL)-like genes (MADS14, MADS15, and MADS18) is induced in the SAM during meristem phase transition in rice (Oryza sativa). PAP2 is a MADS box gene belonging to a grass-specific subclade of the SEPALLATA subfamily. Suppression of these three AP1/FUL-like genes by RNA interference caused a slight delay in reproductive transition. Further depletion of PAP2 function from these triple knockdown plants inhibited the transition of the meristem to the IM. In the quadruple knockdown lines, the meristem continued to generate leaves, rather than becoming an IM. Consequently, multiple shoots were formed instead of an inflorescence. PAP2 physically interacts with MAD14 and MADS15 in vivo. Furthermore, the precocious flowering phenotype caused by the overexpression of Hd3a, a rice florigen gene, was weakened in pap2-1 mutants. Based on these results, we propose that PAP2 and the three AP1/FUL-like genes coordinately act in the meristem to specify the identity of the IM downstream of the florigen signal.

  12. A genomic and expression study of AP-1 in primary cutaneous T-cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS.

    Science.gov (United States)

    Mao, Xin; Orchard, Guy; Mitchell, Tracey J; Oyama, Noritaka; Russell-Jones, Robin; Vermeer, Maarten H; Willemze, Rein; van Doorn, Remko; Tensen, Cornelis P; Young, Bryan D; Whittaker, Sean J

    2008-10-01

    Activator protein 1 (AP-1) consists of a group of transcription factors including the JUN and FOS family proteins with diverse biological functions. This study assessed the genomic and expression status of the AP-1 transcription factors in primary cutaneous T-cell lymphoma (CTCL) by using immunohistochemistry (IHC), Affymetrix expression microarray, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescent in situ hybridization (FISH). IHC showed JUNB protein expression in tumor cells from 17 of 33 cases of Sezary syndrome (SS) and JUND protein expression in 16 of 23 mycosis fungoides cases. There was no correlation between JUNB and CD30 expression. However, 7 of 12 JUNB-positive SS cases expressed both phosphorylated and total extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinase (MAPK) proteins. Expression microarray showed over threefold increased expression of JUNB in three of six SS patients and similar findings were also noted after re-analysis of previously published data. Real-time RT-PCR confirmed the overexpression of JUNB in four SS cases and of JUND in three of four cases. FISH showed increased JUNB copy number in four of seven SS cases. These findings suggest that deregulation of AP-1 expression in CTCL is the result of aberrant expression of JUNB and possible JUND resulting from genomic amplification and constitutive activation of ERK1/2 MAPK in this type of lymphoma.

  13. Discs large 1 (Dlg1) scaffolding protein participates with clathrin and adaptator protein complex 1 (AP-1) in forming Weibel-Palade bodies of endothelial cells.

    Science.gov (United States)

    Philippe, Monique; Léger, Thibaut; Desvaux, Raphaëlle; Walch, Laurence

    2013-05-03

    Weibel-Palade bodies (WPBs) are specific cigar-shaped granules that store von Willebrand factor (VWF) for its regulated secretion by endothelial cells. The first steps of the formation of these granules at the trans-Golgi network specifically require VWF aggregation and an external scaffolding complex that contains the adaptator protein complex 1 (AP-1) and clathrin. Discs large 1 (Dlg1) is generally considered to be a modular scaffolding protein implicated in the control of cell polarity in a large variety of cells by specific recruiting of receptors, channels, or signaling proteins to specialized zones of the plasma membrane. We propose here that in endothelial cells, Dlg1, in a complex with AP-1 and clathrin, participates in the biogenesis of WPBs. Supporting data show that Dlg1 colocalizes with microtubules, intermediate filaments, and Golgi markers. Tandem mass spectrometry experiments led to the identification of clathrin as an Dlg1-interacting partner. Interaction was confirmed by in situ proximity ligation assays. Furthermore, AP-1 and VWF immunoprecipitate and colocalize with Dlg1 in the juxtanuclear zone. Finally, Dlg1 depletion by siRNA duplexes disrupts trans-Golgi network morphology and WPB formation. Our results provide the first evidence for an unexpected role of Dlg1 in controlling the formation of specific secretory granules involved in VWF exocytosis in endothelial cells.

  14. A phosphorylation defective retinoic acid receptor mutant mimics the effects of retinoic acid on EGFR mediated AP-1 expression and cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Kim Randie

    2002-10-01

    Full Text Available Abstract Background The effects of the vitamin A metabolite retinoic acid (RA are mediated at the transcriptional level by retinoic acid receptors (RAR. These proteins are part of a superfamily of transcription factors which activate target gene expression when bound to their respective ligands. In addition to ligand binding, heterodimerization with transcriptional cofactors and posttranslational modification such as phosphorylation are also critical for transactivation function. Previous studies have shown that phosphorylation of a serine residue at amino acid 77 in the RARα amino terminus was required for basal activation function of the transcription factor. Results We have determined that RA inhibits cyclin H and cdk7 expression thereby decreasing levels of phosphorylated RARα in human cancer cell lines. To determine the effects of decreased RARα phosphorylation in human cancer cells, we stably transfected a phosphorylation defective mutant RARα expression construct into SCC25 cultures. Cells expressing the mutant RARα proliferated more slowly than control clones. This decreased proliferation was associated with increased cyclin dependent kinase inhibitor expression and decreased S phase entry. In the absence of ligand, the RARα mutant inhibited AP-1 activity to an extent similar to that of RA treated control clones. Levels of some AP-1 proteins were inhibited due to decreased EGFR expression upstream in the signaling pathway. Conclusions These results indicate that hypophosphorylated RARα can mimic the anti-AP-1 effects of RA in the absence of ligand.

  15. IL-1β and IL-6 activate inflammatory responses of astrocytes against Naegleria fowleri infection via the modulation of MAPKs and AP-1.

    Science.gov (United States)

    Kim, J-H; Song, A-R; Sohn, H-J; Lee, J; Yoo, J-K; Kwon, D; Shin, H-J

    2013-01-01

    Naegleria fowleri, a free-living amoeba, has been found in diverse habitats throughout the world. It causes primary amoebic meningoencephalitis in children and young adults. The amoeba attaches to nasal mucosa, migrates along olfactory nerves and enters the brain. Astrocytes are involved in the defence against infection and produce inflammatory responses. In this study, we focus on the mechanism of immune responses in astrocytes. We showed, using RNase protection assay, RT-PCR and ELISA in an in vitro culture system, that N. fowleri lysates induce interleukin-1beta (IL-1β) and IL-6 expression of astrocytes. In addition, cytokine levels of astrocytes gradually decreased due to extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 inhibitors. To determine the transcription factor, we used transcription inhibitor (AP-1 inhibitor), which downregulated IL-1β and IL-6 expression. These results show that AP-1 is related to IL-1β and IL-6 production. N. fowleri-mediated IL-1β and IL-6 expression requires ERK, JNK and p38 mitogen-activated protein kinases (MAPKs) activation in astrocytes. These findings show that N. fowleri-stimulated astrocytes in an in vitro culture system lead to AP-1 activation and the subsequent expressions of IL-1β and IL-6, which are dependent on ERK, JNK and p38 MAPKs activation. These results may imply that proinflammatory cytokines have important roles in inflammatory responses to N. fowleri infection.

  16. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1.

    Science.gov (United States)

    Yang, Xinyu; Li, Lin; Liu, Jin; Lv, Ben; Chen, Fangping

    2016-01-01

    Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1.

  17. Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells

    Directory of Open Access Journals (Sweden)

    Rosseau Simone

    2006-07-01

    Full Text Available Abstract Background Although pneumococcal pneumonia is one of the most common causes of death due to infectious diseases, little is known about pneumococci-lung cell interaction. Herein we tested the hypothesis that pneumococci activated pulmonary epithelial cell cytokine release by c-Jun-NH2-terminal kinase (JNK Methods Human bronchial epithelial cells (BEAS-2B or epithelial HEK293 cells were infected with S. pneumoniae R6x and cytokine induction was measured by RT-PCR, ELISA and Bioplex assay. JNK-phosphorylation was detected by Western blot and nuclear signaling was assessed by electrophoretic mobility shift assay (EMSA and chromatin immunoprecipitation (ChIP. JNK was modulated by the small molecule inhibitor SP600125 and AP1 by transfection of a dominant negative mutant. Results S. pneumoniae induced the release of distinct CC and CXC, as well as Th1 and Th2 cytokines and growth factors by human lung epithelial cell line BEAS-2B. Furthermore, pneumococci infection resulted in JNK phosphorylation in BEAS-2B cells. Inhibition of JNK by small molecule inhibitor SP600125 reduced pneumococci-induced IL-8 mRNA expression and release of IL-8 and IL-6. One regulator of the il8 promoter is JNK-phosphorylated activator protein 1 (AP-1. We showed that S. pneumoniae time-dependently induced DNA binding of AP-1 and its phosphorylated subunit c-Jun with a maximum at 3 to 5 h after infection. Recruitment of Ser63/73-phosphorylated c-Jun and RNA polymerase II to the endogenous il8 promoter was found 2 h after S. pneumoniae infection by chromatin immunoprecipitation. AP-1 repressor A-Fos reduced IL-8 release by TLR2-overexpressing HEK293 cells induced by pneumococci but not by TNFα. Antisense-constructs targeting the AP-1 subunits Fra1 and Fra2 had no inhibitory effect on pneumococci-induced IL-8 release. Conclusion S. pneumoniae-induced IL-8 expression by human epithelial BEAS-2B cells depended on activation of JNK and recruitment of phosphorylated c

  18. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte.

    Directory of Open Access Journals (Sweden)

    Stéphane Chavanas

    Full Text Available Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs catalyse the conversion of protein-bound arginine into citrulline (deimination, a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6. Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE, an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.

  19. Low doses of LPS and minimally oxidized LDL cooperatively activate macrophages via NF-kappaB and AP-1: Possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia

    Science.gov (United States)

    Wiesner, Philipp; Choi, Soo-Ho; Almazan, Felicidad; Benner, Christopher; Huang, Wendy; Diehl, Cody J.; Gonen, Ayelet; Butler, Susan; Witztum, Joseph L.; Glass, Christopher K.; Miller, Yury I.

    2010-01-01

    Rationale Oxidized low-density lipoprotein (LDL) is an important determinant of inflammation in atherosclerotic lesions. It has also been documented that certain chronic infectious diseases, such as periodontitis and chlamydial infection, exacerbate clinical manifestations of atherosclerosis. In addition, low-level but persistent metabolic endotoxemia is often found in diabetic and obese subjects and is induced in mice fed a high-fat diet. Objective In this study, we examined cooperative macrophage activation by low levels of bacterial LPS and by minimally oxidized LDL (mmLDL), as a model for subclinical endotoxemia-complicated atherosclerosis. Methods and Results We found that both in vitro and in vivo, mmLDL and LPS (Kdo2-LipidA) cooperatively activated macrophages to express pro-inflammatory cytokines Cxcl2 (MIP-2), Ccl3 (MIP-1alpha), and Ccl4 (MIP-1beta). Importantly, the mmLDL and LPS cooperative effects were evident at a threshold LPS concentration (1 ng/ml) at which LPS alone induced only a limited macrophage response. Analyzing microarray data with a de novo motif discovery algorithm, we found that genes transcribed by promoters containing an AP-1 binding site were significantly upregulated by co-stimulation with mmLDL and LPS. In a nuclear factor-DNA binding assay, the cooperative effect of mmLDL and LPS co-stimulation on c-Jun and c-Fos DNA binding, but not on p65 or p50, was dependent on mmLDL-induced activation of ERK1/2. In addition, mmLDL induced JNK-dependent derepression of AP-1 by removing the corepressor NCoR from the chemokine promoters. Conclusions The cooperative engagement of AP-1 and NF-kappaB by mmLDL and LPS may constitute a mechanism of increased transcription of inflammatory cytokines within atherosclerotic lesions. PMID:20489162

  20. Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages

    Science.gov (United States)

    Zheng, Bin; Wen, Zheng-Shun; Huang, Yun-Juan; Xia, Mei-Sheng; Xiang, Xing-Wei; Qu, You-Le

    2016-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines. PMID:27657093

  1. C3 toxin activates the stress signaling pathways, JNK and p38, but antagonizes the activation of AP-1 in rat-1 cells.

    Science.gov (United States)

    Beltman, J; Erickson, J R; Martin, G A; Lyons, J F; Cook, S J

    1999-02-05

    Lysophosphatidic acid (LPA) stimulates the c-Fos serum response element (SRE) by activating two distinct signal pathways regulated by the small GTPases, Ras and RhoA. Ras activates the ERK cascade leading to phosphorylation of the transcription factors Elk-1 and Sap1a at the Ets/TCF site. RhoA regulates an undefined pathway required for the activation of the SRF/CArG site. Here we have examined the role of the Ras and RhoA pathways in activation of the SRE and c-Fos expression in Rat-1 cells. Pertussis toxin and PD98059 strongly inhibited LPA-stimulated c-Fos expression and activation of a SRE:Luc reporter. C3 toxin completely inhibited RhoA function, partially inhibited SRE:Luc activity, but had no effect on LPA-stimulated c-Fos expression. Thus, in a physiological context the Ras-Raf-MEK-ERK pathway, but not RhoA, is required for LPA-stimulated c-Fos expression in Rat-1 cells. C3 toxin stimulated the stress-activated protein kinases JNK and p38 and potentiated c-Jun expression and phosphorylation; these properties were shared by another cellular stress agonist the protein kinase C inhibitor Ro-31-8220. However, C3 toxin alone or in combination with growth factors did not stimulate AP-1:Luc activity and actually antagonized the synergistic activation of AP-1:Luc observed in response to co-stimulation with growth factors and Ro-31-8220. These data indicate that C3 toxin is a cellular stress which antagonizes activation of AP-1 at a point downstream of stress-activated kinase activation or immediate-early gene induction.

  2. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  3. GDNF-independent ureteric budding: role of PI3K-independent activation of AKT and FOSB/JUN/AP-1 signaling

    Directory of Open Access Journals (Sweden)

    James B. Tee

    2013-07-01

    A significant fraction of mice deficient in either glial cell-derived neurotrophic factor (GDNF or its co-receptors (Gfrα1, Ret, undergoes ureteric bud (UB outgrowth leading to the formation of a rudimentary kidney. Previous studies using the isolated Wolffian duct (WD culture indicate that activation of fibroblast growth factor (FGF receptor signaling, together with suppression of BMP/Activin signaling, is critical for GDNF-independent WD budding (Maeshima et al., 2007. By expression analysis of embryonic kidney from Ret(−/− mice, we found the upregulation of several FGFs, including FGF7. To examine the intracellular pathways, we then analyzed GDNF-dependent and GDNF-independent budding in the isolated WD culture. In both conditions, Akt activation was found to be important; however, whereas this occurred through PI3-kinase in GDNF-dependent budding, in the case of GDNF-independent budding, Akt activation was apparently via a PI3-kinase independent mechanism. Jnk signaling and the AP-1 transcription factor complex were also implicated in GDNF-independent budding. FosB, a binding partner of c-Jun in the formation of AP-1, was the most highly upregulated gene in the ret knockout kidney (in which budding had still occurred, and we found that its siRNA-mediated knockdown in isolated WDs also blocked GDNF-independent budding. Taken together with the finding that inhibition of Jnk signaling does not block Akt activation/phosphorylation in GDNF-independent budding, the data support necessary roles for both FosB/Jun/AP-1 signaling and PI3-kinase-independent activation of Akt in GDNF-independent budding. A model is proposed for signaling events that involve Akt and JNK working to regulate GDNF-independent WD budding.

  4. Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin

    Science.gov (United States)

    Chaiprasongsuk, Anyamanee; Lohakul, Jinaphat; Soontrapa, Kitipong; Sampattavanich, Somponnat; Akarasereenont, Pravit

    2017-01-01

    UVA irradiation plays a role in premature aging of the skin through triggering oxidative stress-associated stimulation of matrix metalloproteinase-1 (MMP-1) responsible for collagen degradation, a hallmark of photoaged skin. Compounds that can activate nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant gene expression, should therefore serve as effective antiphotoaging agents. We investigated whether genetic silencing of Nrf2 could relieve UVA-mediated MMP-1 upregulation via activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling using human keratinocyte cell line (HaCaT). Antiphotoaging effects of hispidulin (HPD) and sulforaphane (SFN) were assessed on their abilities to activate Nrf2 in controlling MMP-1 and collagen expressions in association with phosphorylation of MAPKs (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38), c-Jun, and c-Fos, using the skin of BALB/c mice subjected to repetitive UVA irradiation. Our findings suggested that depletion of Nrf2 promoted both mRNA expression and activity of MMP-1 in the UVA-irradiated HaCaT cells. Treatment of Nrf2 knocked-down HaCaT cells with MAPK inhibitors significantly suppressed UVA-induced MMP-1 and AP-1 activities. Moreover, pretreatment of the mouse skin with HPD and SFN, which could activate Nrf2, provided protective effects against UVA-mediated MMP-1 induction and collagen depletion in correlation with the decreased levels of phosphorylated MAPKs, c-Jun, and c-Fos in the mouse skin. In conclusion, Nrf2 could influence UVA-mediated MMP-1 upregulation through the MAPK/AP-1 signaling cascades. HPD and SFN may therefore represent promising antiphotoaging candidates. PMID:28011874

  5. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    Science.gov (United States)

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  6. Oxidant exposure induces cysteine-rich protein 61 (CCN1 via c-Jun/AP-1 to reduce collagen expression in human dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    Full Text Available Human skin is a primary target of oxidative stress from reactive oxygen species (ROS generated from both extrinsic and intrinsic sources. Oxidative stress inhibits the production of collagen, the most abundant protein in skin, and thus contributes to connective tissue aging. Here we report that cysteine-rich protein 61 (CCN1, a negative regulator of collagen production, is markedly induced by ROS and mediates loss of type I collagen in human dermal fibroblasts. Conversely, antioxidant N-acetyl-L-cysteine significantly reduced CCN1 expression and prevented ROS-induced loss of type I collagen in both human dermal fibroblasts and human skin in vivo. ROS increased c-Jun, a critical member of transcription factor AP-1 complex, and increased c-Jun binding to the AP-1 site of the CCN1 promoter. Functional blocking of c-Jun significantly reduced CCN1 promoter and gene expression and thus prevented ROS-induced loss of type I collagen. Targeting the c-Jun/CCN1 axis may provide clinical benefit for connective tissue aging in human skin.

  7. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages.

    Science.gov (United States)

    Youn, Gi Soo; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-08-01

    Although histone deacetylase 6 (HDAC6) has been implicated in inflammatory diseases, direct involvement and its action mechanism of HDAC6 in the transcriptional regulation of pro-inflammatory genes have been unclear. In this study, we investigated the possible role of HDAC6 in the expression of pro-inflammatory mediators, indicator of macrophage activation, in RAW 264.7 cells and primary mouse macrophages. HDAC6 overexpression significantly enhanced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, with concomitant reduction in acetylated α-tubulin. HDAC6 overexpression significantly induced ROS generation via upregulation of NADPH oxidase expression and activity. Inhibition of ROS generation by N-acetyl cysteine, diphenyl iodonium and apocynin suppressed HDAC6-induced pro-inflammatory cytokines. An HDAC6 enzymatic inhibitor significantly inhibited ROS generation and expression of HDAC6-induced pro-inflammatory mediators, indicating the requirement of HDAC6 enzymatic activity for induction of pro-inflammatory cytokines. In addition, HDAC6 overexpression increased activation of MAPK species including ERK, JNK, and p38. Furthermore, HDAC6 overexpression resulted in activation of the NF-κB and AP-1 signaling pathways. Overall, our results provide the first evidence that HDAC6 is capable of inducing expression of pro-inflammatory genes by regulating the ROS-MAPK-NF-κB/AP-1 pathways and serves as a molecular target for inflammation.

  8. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  9. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Young-Rae Lee

    2013-04-01

    Full Text Available Sulforaphane [1-isothiocyanato-4-(methylsulfinyl-butane] is anisothiocyanate found in some cruciferous vegetables, especiallybroccoli. Sulforaphane has been shown to displayanti-cancer properties against various cancer cell lines. Matrixmetalloproteinase-9 (MMP-9, which degrades the extracellularmatrix (ECM, plays an important role in cancer cell invasion.In this study, we investigated the effect of sulforaphane on12-O-tetradecanoyl phorbol-13-acetate (TPA-induced MMP-9expression and cell invasion in MCF-7 cells. TPA-inducedMMP-9 expression and cell invasion were decreased bysulforaphane treatment. TPA substantially increased NF-κB andAP-1 DNA binding activity. Pre-treatment with sulforaphaneinhibited TPA-stimulated NF-κB binding activity, but not AP-1binding activity. In addition, we found that sulforaphanesuppressed NF-κB activation, by inhibiting phosphorylation ofIκB in TPA-treated MCF-7 cells. In this study, we demonstratedthat the inhibition of TPA-induced MMP-9 expression and cellinvasion by sulforaphane was mediated by the suppression ofthe NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4:201-206

  10. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Science.gov (United States)

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  11. Notch-1 Confers Chemoresistance in Lung Adenocarcinoma to Taxanes through AP-1/microRNA-451 Mediated Regulation of MDR-1.

    Science.gov (United States)

    Huang, Jiayuan; Chen, Yitian; Li, Junyang; Zhang, Kai; Chen, Jing; Chen, Dongqin; Feng, Bing; Song, Haizhu; Feng, Jifeng; Wang, Rui; Chen, Longbang

    2016-01-01

    We previously demonstrated that expression of Notch-1 is associated with poor prognosis in lung adenocarcinoma (LAD) patients. The aim of this study is to reveal whether Notch-1 was associated with Taxanes-resistant LAD and, the underlying mechanisms. We collected 39 patients of advanced LAD treated with Taxanes and found that positive Notch-1 expression is closely related to LAD lymph node metastasis, recurrence and poorer prognosis, and Notch-1 acts as an independent poor prognostic factor in LAD by multivariate analysis with Cox regression model. Then, by using the Docetaxel (DTX)-resistant LAD cell lines that we established previously, we found that Notch-1 contributes to resistance of LAD cells to DTX in vitro, and inhibition of Notch-1 sensitizes LAD to DTX in vivo. We further demonstrated that Notch-1 mediates chemoresistance response and strengthens proliferation capacity in LAD cells partially through negative regulation of miR-451 by transcription factor AP-1. Moreover, we found that MDR-1 is a direct target of miR-451 and influences chemoresistance of LAD cells. Taken together, our data revealed a novel Notch-1/AP-1/miR-451/MDR-1 signaling axis, and suggested a new therapeutic strategy of combining DTX with Notch inhibitors to treat DTX-resistant LAD.

  12. Homology theory on algebraic varieties

    CERN Document Server

    Wallace, Andrew H

    1958-01-01

    Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n

  13. Compositional Homology and Creative Thinking

    Directory of Open Access Journals (Sweden)

    Salvatore Tedesco

    2015-05-01

    Full Text Available The concept of homology is the most solid theoretical basis elaborated by the morphological thinking during its history. The enucleation of some general criteria for the interpretation of homology is today a fundamental tool for life sciences, and for restoring their own opening to the question of qualitative innovation that arose so powerfully in the original Darwinian project. The aim of this paper is to verify the possible uses of the concept of compositional homology in order to provide of an adequate understanding of the dynamics of creative thinking.

  14. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    Full Text Available BACKGROUND: The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif. METHODS AND FINDINGS: Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction. CONCLUSIONS: These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  15. Fivebranes and 3-manifold homology

    CERN Document Server

    Gukov, Sergei; Vafa, Cumrun

    2016-01-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[M_3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  16. Members of the CREB/ATF and AP1 family of transcription factors are involved in the regulation of SOX18 gene expression

    Directory of Open Access Journals (Sweden)

    Petrović Isidora

    2011-01-01

    Full Text Available The SOX18 transcription factor plays an important role in endothelial cell specification, angiogenesis and atherogenesis. By profiling transcription factor interactions (TranSignal TM TF Protein Array we identified several transcription factors implicated in angiogenesis that have the ability to bind to the SOX18 optimal promoter region in vitro. In this report we focused our attention on distinct transcription factors identified by the array as belonging to AP-1 and CREB/ATF protein families. In particular, we analyzed the effects of CREB, JunB, c-Jun and ATF3 on SOX18 gene expression. Functional analysis revealed that CREB acts as a repressor, while JunB, c-Jun and ATF3 act as activators of SOX18 promoter activity. Our findings indicate that a transcriptional network that includes CREB, JunB, c-Jun and ATF3 could be involved in angiogenesis-related transcriptional regulation of the SOX18 gene.

  17. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells.

    Science.gov (United States)

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Peng, Shu-Fen; Tsuzuki, Minoru; Amagaya, Sakae; Huang, Wen-Wen; Yang, Jai-Sing

    2013-08-01

    Kaempferol is a natural flavonoid that possesses anti-proliferative and apoptosis-inducing activities in several cancer cell lines. In the present study, we investigated the anti-metastatic activity of kaempferol and its molecular mechanism(s) of action in human osteosarcoma cells. Kaempferol displayed inhibitory effects on the invasion and adhesion of U-2 osteosarcoma (OS) cells in a concentration-dependent manner by Matrigel Transwell assay and cell adhesion assay. Kaempferol also inhibited the migration of U-2 OS cells in a concentration-dependent manner at different treatment time points by wound-healing assay. Additional experiments showed that kaempferol treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator (uPA) by gelatin and casein-plasminogen zymography assays and western blot analyses. Kaempferol also downregulated the mRNA levels of MMP-2 and MMP-9 by quantitative PCR analyses. Furthermore, kaempferol was able to reduce the protein phosphorylation of ERK, p38 and JNK by western blotting. By electrophoretic mobility-shift assay (EMSA), we demonstrated that kaempferol decreased the DNA binding activity of AP-1, an action likely to result in the reduced expression of MMP-2, MMP-9 and uPA. Collectively, our data showed that kaempferol attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the decreased DNA binding ability of AP-1, and hence, the downregulation in the expression and enzymatic activities of MMP-2, MMP-9 and uPA, contributing to the inhibition of metastasis of U-2 OS cells. Our results suggest a potential role of kaempferol in the therapy of tumor metastasis of OS.

  18. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2016-03-01

    Full Text Available For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA, was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae. MOA modulates cytokine expression in lipopolysaccharide (LPS-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2, thus blocking nuclear translocation of activation protein (AP-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs and one of their downstream transcription factors, activator protein-1 (AP-1. Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.

  19. UVB-irradiated human keratinocytes and interleukin-1αindirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVA-irradiated dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yong; BI Zhi-gang

    2006-01-01

    Background Solar ultraviolet (UV) irradiation induces the production of matrix metalloproteinases (MMPs) by activating cellular signalling transduction pathways. MMPs are responsible for the degradation and/or inhibition of synthesis of collagenous extracellular matrix in connective tissues. We mimicked the action of environmental ultraviolet on skin and investigated the effects of UVB-irradiated human keratinocytes HaCaT and IL-1α on mitogen activated protein (MAP) kinase activation, c-Jun and c-Fos (AP-1 is composed of Jun and Fos proteins)mRNA expression and MMP-1 production in UVA-irradiated dermal fibroblasts.Methods Following UVA irradiation, the culture medium of fibroblasts was replaced by culture medium from UVB-irradiated HaCaT, or replaced by the complete culture medium with interleukin (IL)-1α. MAP kinase activity expression in fibroblasts was detected by Western blot. c-Jun and c-Fos mRNA expressions were determined by reverse transcriptional polymerase chain reaction (RT-PCR); MMP-1 production in culture medium was detected by enzyme-linked immunosorbent assay (ELISA).Results Culture medium from UVB-irradiated keratinocytes increased MAP kinase activity and c-Jun mRNA expression in UVA-irradiated fibroblasts. IL-1α increased MAP kinase activity and c-Jun mRNA expression,IL-1 α also increased c-Fos mRNA expression. Both culture media from UVB-irradiated human keratinocytes and externally applied IL-1 α increased MMP-1 production in UVA-irradiated fibroblasts.Conclusions UVB-irradiated keratinocytes and IL-1α indirectly promote MMP-1 production in UVA-irradiated fibroblasts by increasing MAP kinase/AP-1 activity. IL-1 may play an important role in the paracrine activation and dermal collagen excessive degradation leading to skin photoaging.

  20. NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

    Directory of Open Access Journals (Sweden)

    Van Thai Ha

    2014-01-01

    Full Text Available AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO/prostaglandin (PG E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS- treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS, cyclooxygenase- (COX- 2, and interleukin- (IL- 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation.

  1. Kukoamine A Prevents Radiation-Induced Neuroinflammation and Preserves Hippocampal Neurogenesis in Rats by Inhibiting Activation of NF-κB and AP-1.

    Science.gov (United States)

    Zhang, Yaqiong; Gao, Lingyue; Cheng, Zhihua; Cai, Jiayi; Niu, Yixuan; Meng, Weihong; Zhao, Qingchun

    2017-02-01

    Impaired hippocampal neurogenesis and neuroinflammation are involved in the pathogenesis of radiation-induced brain injury. Kukoamine A (KuA) was demonstrated to have neuroprotective effects through inhibiting oxidative stress and apoptosis after whole-brain irradiation (WBI) in rats. The aim of this study was to investigate whether administration of KuA would prevent radiation-induced neuroinflammation and the detrimental effect on hippocampal neurogenesis. For this study, male Wistar rats received either sham irradiation or WBI (30 Gy single dose of X-rays) followed by the immediate injection of either KuA or vehicle intravenously. The dose of KuA was 5, 10, and 20 mg/kg, respectively. The levels of pro-inflammatory cytokines were assayed by ELISA kits. The newborn neurons were detected by 5-bromo-2-deoxyuridine (BrdU)/neuronal nuclei (NeuN) double immunofluorescence. Microglial activation was measured by Iba-1 immunofluorescence. The expression of Cox-2 and the activation of nuclear factor κB (NF-κB), activating protein 1(AP-1), and PPARδ were evaluated by western blot. WBI led to a significant increase in the level of TNF-α, IL-1β, and Cox-2, and it was alleviated by KuA administration. KuA attenuated microglial activation in rat hippocampus after WBI. Neurogenesis impairment induced by WBI was ameliorated by KuA. Additionally, KuA alleviated the increased translocation of NF-κB p65 subunit and phosphorylation of c-jun induced by WBI and elevated the expression of PPARδ. These data indicate that KuA could ameliorate the neuroinflammatory response and protect neurogenesis after WBI, partially through regulating the activation of NF-κB, AP-1, and PPARδ.

  2. SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways.

    Directory of Open Access Journals (Sweden)

    Anna Santoro

    Full Text Available Osteoarthritis (OA is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs in chondrocytes, contributing thus to the extracellular matrix (ECM degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2, under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored.SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis.Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1.Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA.

  3. 下调AP-1基因表达在冬凌草甲素抑制结直肠癌中的作用%Downregulation of AP-1 gene expression is an initial event in oridonin-mediated inhibition of colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    金黑鹰; 戴功建; 丁义江; 夏建国; 刘秀芳; 刘飞; 谈瑄忠; 耿建祥

    2011-01-01

    Objective Oridonin is the active ingredient isolated from the Chinese herb Rabdosia rubescens. We used both in vivo and in vitro approaches to elucidate the underlying mechanism of the oridonin-mediated inhibition of colorectal cancer. Methods Two colorectal cell lines, LoVo and SW480,were treated with oridonin in solution. The effect of this treatment on inhibition of cell proliferation rate was determined by the methyl thiazol tetrazolium (MTT) method. The changes in gene expression that occurred in both cell lines in response to treatment with oridonin were determined via illumine expression sensor.Additionally, a colorectal cancer colostomy implantation model was established. Animals were injected intraperitoneally with an oridonin solution. Results Treatment of LoVo and SW480 cells with oridonin inhibited cell proliferation in a dose-dependent manner. The inhibition rate was increased with prolonged treatment. The growth rate of the colorectal cancer colostomy implantation model was significantly lower than control cells when treated with oridonin ( P < 0. 01 ). However, oridonin treatment did not have a signiticant effect on tumor growth rate ( P > 0. 05 ). In the tumor model, AP-1 was the only gene found to be downregulated after oridonin treatment by the gene expression sensor. After 4 weeks of treatment, AP-1,nuclear factor-κB (NF-κB) and p38 were all found to be downregulated. Conclusion Our study has confirmed the inhibitory effects of oridonin on colovectal cancer. These results indicate that the downregulation of AP-1 might be an initial response to treatment by oridonin. This regulation could, in turn, affect the expression of the NF-κB and MAPK pathways, thereby inhibiting tumor growth.%目的 探讨冬凌草甲素对结自肠癌的抑制作用及其机制.方法 以冬凌草甲素水溶液处理LoVo和SW480结直肠癌细胞株,噻唑蓝(MTT)比色法检测细胞增殖抑制率,以Illumina表达芯片检测LoVo细胞和SW480细胞基因表

  4. Effect of curcumin on p-ERK1/2-AP-1 cascade and diabetic neuropathic pain in rats%p-ERK1/2-AP-1通路在姜黄素抗大鼠糖尿病神经病理性痛中的作用

    Institute of Scientific and Technical Information of China (English)

    黄葱葱; 陈果; 吴艳; 连庆泉; 李军; 曹红

    2011-01-01

    AIM: To evaluate the role of p - ERK1/2 - AP - 1 cascade in the process of curcumin against diabetic neuropathic pain ( DNP ) in rats.METHODS: Ninety - six male Sprague - Dawley rats were randomly divided into 4 groups ( n = 24 ): normal control group, DNP group, DNP with solvent group and DNP with curcumin ( 100 mg/kg ) group.The rat model of diabetes was induced by a single intraperitoneal injection of streptozotocin ( STZ, 75 mg/kg ).Mechanical allodynia and thermal hyperalgesia were tested by mechanical withdrawal threshold ( MWT ) and thermal withdrawal latency ( TWL ) 2 weeks after induction, respectively.The diabetic rats were treated with curcumin ( 100 mg·kg-1·d-1 , ip ) for 2 weeks.The conditions of hyperalgesia and allodynia were determined 2 d before STZ injection, 14 d after STZ injection, and 3 d, 7 d, 14 d after administered with curcumin.The change of p - ERK1/2 was measured by the methods of Western blotting and immunohistochemistry.The expression of AP - 1 in spinal cord dorsal horn and dorsal root ganglion ( DRG ) was detected by electromobility shift assay ( EMSA ).RESULTS: Compared with normal control group, the rats in DNP group developed hyperglycemia and a decrease in MWT and TWL associated with an increase in the activity of p - ERK1/ 2 and AP - 1 in dorsal horn and DRG( P <0.05 ).Compared with DNP group, 7 - day treatment with curcumin significantly attenuated mechanical allodynia and thermal hyperalgesia, and these effects were correlated with inhibiting the hyper -activation of p - ERK1/2 and AP - 1 14 days after treatment with curcumin ( P <0.05 ).CONCLUSION: Curcumin has beneficial effects on hyperalgesia in STZ - induced peripheral neuropathic pain.Activation of p - ERK1/2 and AP - 1 may be the key mechanism of DNP in spinal cord and DRG.%目的:观察p-ERK1/2-AP-1通路在姜黄素(Cur)抗大鼠糖尿病神经病理性痛(DNP)中的作用.方法:雄性SD大鼠96只,随机分为4组(n=24):正常对照组、DNP组

  5. Object-oriented persistent homology

    Science.gov (United States)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  6. Cloning and Bioinformatics Analysis of AP1 Gene from the Leaves of in vitro Plantlets in Tagetes patula L.%孔雀草试管苗叶片AP1基因的克隆及其生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    刘敏; 赖钟雄

    2012-01-01

    In this experiment, the full-length cDNA of API gene was successfully cloned from the leaves of in vitro plantlets and the bioinformatics analysis for API gene was also conducted in Tagetes patula L. The full-length of API gene was 919 bp (The accession number was JX31O277 in GenBank), containing 92 bp 5'-UTR, 149 bp 3'-UTR, and 3'-end involved 25 bp poly (A) tails, the open reading frame had 678 bp, encoding 225 amino acids. AP1-1 protein was likely located in the cell nuclei, which was hydrophilic, without signal peptide and with 4 coil helix structures; The secondary structure was mainly constituted by the ot-helix and random coil, and there existed a leucine zipper structure and a MADS-box domain. This protein had likely 7 phosphorylation sites. The phylogenetic tree analysis indicated that this protein was highly genetic relationship with chrysanthemum lavandulifolium.%以孔雀草试管苗叶片为材料,成功克隆了孔雀草AP1基因的cDNA全长,并对其进行了生物信息学分析.AP1基因全长919 bp(GenBank登录号为JX310277),其中5'-UTR 92bp、3'-UTR 149bp、3'端poly (A)尾巴25 bp,开放阅读框为678 bp,编码225个氨基酸.AP1-1可能存在于细胞核中,为亲水蛋白,不含信号肽,共形成4个卷曲螺旋结构;二级结构主要有α螺旋和无规则卷曲构成,存在亮氨酸拉链结构和1个MADS-box 区.此蛋白可能发生磷酸化位点的位置有7个.从系统进化树分析表明,该蛋白与甘菊具有较高的亲缘关系.

  7. Homology of locally semialgebraic spaces

    CERN Document Server

    Delfs, Hans

    1991-01-01

    Locally semialgebraic spaces serve as an appropriate framework for studying the topological properties of varieties and semialgebraic sets over a real closed field. This book contributes to the fundamental theory of semialgebraic topology and falls into two main parts. The first dealswith sheaves and their cohomology on spaces which locally look like a constructible subset of a real spectrum. Topics like families of support, homotopy, acyclic sheaves, base-change theorems and cohomological dimension are considered. In the second part a homology theory for locally complete locally semialgebraic spaces over a real closed field is developed, the semialgebraic analogue of classical Bore-Moore-homology. Topics include fundamental classes of manifolds and varieties, Poincare duality, extensions of the base field and a comparison with the classical theory. Applying semialgebraic Borel-Moore-homology, a semialgebraic ("topological") approach to intersection theory on varieties over an algebraically closed field of ch...

  8. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B.

    Science.gov (United States)

    Budagian, Vadim; Bulanova, Elena; Brovko, Luba; Orinska, Zane; Fayad, Raja; Paus, Ralf; Bulfone-Paus, Silvia

    2003-01-17

    ATP-gated ion channel P2X receptors are expressed on the surface of most immune cells and can trigger multiple cellular responses, such as membrane permeabilization, cytokine production, and cell proliferation or apoptosis. Despite broad distribution and pleiotropic activities, signaling pathways downstream of these ionotropic receptors are still poorly understood. Here, we describe intracellular signaling events in Jurkat cells treated with millimolar concentrations of extracellular ATP. Within minutes, ATP treatment resulted in the phosphorylation and activation of p56(lck) kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase but not p38 kinase. These effects were wholly dependent upon the presence of extracellular Ca(2+) ions in the culture medium. Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK. Further, expression of c-Jun and c-Fos proteins and activator protein (AP-1) DNA binding activity were enhanced in a time-dependent manner. In contrast, DNA binding activity of NF-kappa B was reduced. ATP failed to stimulate the phosphorylation of ERK and c-Jun N-terminal kinase and activation of AP-1 in the p56(lck)-deficient isogenic T cell line JCaM1, suggesting a critical role for p56(lck) kinase in downstream signaling. Regarding the biological significance of the ATP-induced signaling events we show that although extracellular ATP was able to stimulate proliferation of both Jurkat and JCaM1 cells, an increase in interleukin-2 transcription was observed only in Jurkat cells. The nucleotide selectivity and pharmacological profile data supported the evidence that the ATP-induced effects in Jurkat cells were mediated through the P2X7 receptor. Taken together, these results demonstrate the ability of extracellular ATP to activate

  9. Thrombin mediates migration of rat brain astrocytes via PLC, Ca²⁺, CaMKII, PKCα, and AP-1-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Lin, Chih-Chung; Lee, I-Ta; Wu, Wen-Bin; Liu, Chiung-Ju; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chien-Chung; Yang, Chuen-Mao

    2013-12-01

    Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain unclear. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 and migration of RBA-1 cells, which were inhibited by pretreatment with the inhibitor of Gq-coupled receptor (GPAnt2A), Gi/o-coupled receptor (GPAnt2), PC-PLC (D609), PI-PLC (U73122), Ca(2+)-ATPase (thapsigargin, TG), calmodulin (CaMI), CaMKII (KN62), PKC (Gö6976 or GF109203X), MEK1/2 (PD98059), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) or the intracellular calcium chelator (BAPTA/AM) and transfection with siRNA of PKCα, Erk2, JNK1, p38 MAPK, c-Jun, or c-Fos. In addition, thrombin-induced elevation of intracellular Ca(2+) concentration was attenuated by PPACK (a thrombin inhibitor). Thrombin further induced CaMKII phosphorylation and PKCα translocation, which were inhibited by U73122, D609, KN62, TG, or BAPTA/AM. Thrombin also induced PKCα-dependent p42/p44 MAPK and JNK1/2, but not p38 MAPK activation. Finally, we showed that thrombin enhanced c-Fos expression and c-Jun phosphorylation. c-Fos mRNA levels induced by thrombin were reduced by PD98059, SP600125, and Gö6976, but not SB202190. Thrombin stimulated in vivo binding of c-Fos to the MMP-9 promoter, which was reduced by pretreatment with SP600125 or PD98059, but not SB202190. These results concluded that thrombin activated a PLC/Ca(2+)/CaMKII/PKCα/p42/p44 MAPK and JNK1/2 pathway, which in turn triggered AP-1 activation and ultimately induced MMP-9 expression in RBA-1 cells.

  10. Regulation of ectopic trypsin and proinflammatory cytokine expression by NF-κB and AP-1 in influenza A virus induced myocarditis%NF-κB 和 AP-1对 A 型流感病毒性心肌炎组织中异位胰蛋白酶及促炎细胞因子表达的调控

    Institute of Scientific and Technical Information of China (English)

    潘海燕; 薛陆静; 王逸平; 孙花梅; 潘闽

    2015-01-01

    目的:探讨核因子κB(NF-κB)及激活蛋白1(AP-1)对A型流感病毒(IAV)性心肌炎心肌组织中异位胰蛋白酶及促炎细胞因子表达的调控作用。方法:40只8周龄雄性BALB/c小鼠随机分为4组:正常对照组经鼻假感染15μL生理盐水;感染对照组经鼻感染40空斑形成单位( PFU) IAV;NF-κB抑制剂组经鼻感染40 PFU的IAV,腹腔注射吡咯烷二硫代氨基甲酸(PDTC)10 mg/kg,每天1次;AP-1抑制剂组经鼻感染40 PFU的IAV,腹腔注射去甲二氢愈创木酸(NDGA)2.5 mg/kg,每天1次。感染后第9天处死小鼠,切取心脏组织分别进行病理及生化检查。结果:IAV感染可诱导心肌组织中异位胰蛋白酶及促炎细胞因子白细胞介素( IL)-6、IL-1β及肿瘤坏死因子( TNF)-α表达显著上调,引发心肌急性炎症反应。 PDTC能显著抑制心肌中NF-κB激活以及异位胰蛋白酶和促炎细胞因子表达上调,有效抑制IAV复制,减轻心肌炎症反应( P<0.01)。 NDGA能有效抑制AP-1活性( P<0.01),轻度抑制促炎细胞因子表达上调(P<0.05),但对异位胰蛋白酶表达、IAV复制及心肌炎症程度无显著影响(P>0.05)。结论:IAV感染心肌组织后主要通过激活NF-κB诱导心肌中异位胰蛋白酶及促炎细胞因子表达上调,AP-1通路可能仅部分参与了促炎细胞因子的表达调控。%AIM: To investigate the regulatory effects of nuclear factor-κB ( NF-κB) and activator protein-1 (AP-1) on the expression of ectopic trypsin and proinflammatory cytokines in influenza A virus (IAV)-induced myocardi-tis.METHODS:Male BALB/c mice of 8 weeks old ( n=40) were randomly divided into 4 groups:normal control group ( NC) , infection control group ( IC) , NF-κB inhibitor group ( NI) and AP-1 inhibitor group ( AI) .The mice in NC group and IC group were instilled intranasally with 15μL saline and 40 plaque forming units ( PFU) IAV

  11. Homology group on manifolds and their foldings

    Directory of Open Access Journals (Sweden)

    M. Abu-Saleem

    2010-03-01

    Full Text Available In this paper, we introduce the definition of the induced unfolding on the homology group. Some types of conditional foldings restricted on the elements of the homology groups are deduced. The effect of retraction on the homology group of a manifold is dicussed. The unfolding of variation curvature of manifolds on their homology group are represented. The relations between homology group of the manifold and its folding are deduced.

  12. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    Directory of Open Access Journals (Sweden)

    Juin-Hua Huang

    2015-07-01

    Full Text Available Collaboration between heterogeneous pattern recognition receptors (PRRs leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3 and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA, genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

  13. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge

    2017-04-01

    Full Text Available Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential.

  14. EGF stimulates Pit-1 independent transcription of the human prolactin pituitary promoter in human breast cancer SK-BR-3 cells through its proximal AP-1 response element.

    Science.gov (United States)

    Manfroid, Isabelle; Van de Weerdt, Cécile; Baudhuin, Ariane; Martial, Joseph A; Muller, Marc

    2005-01-14

    Normal and neoplastic human mammary gland cells are targets for the proliferative action of prolactin. These cells also synthesize prolactin, thereby inducing an autocrine/paracrine proliferative loop. We present the first extensive analysis of the transcriptional regulation of the human prolactin gene (hPRL) in human mammary tumor cells, SK-BR-3. We show that the pituitary promoter is functional in these cells in the absence of the pituitary-specific factor Pit-1. Expression of exogenous Pit-1 or epidermal growth factor (EGF) treatment stimulates the transfected hPRL pituitary promoter and the endogenous hPRL expression. EGF stimulation is mediated by increased synthesis of c-fos and c-jun, resulting in AP-1 binding to the proximal hPRL pituitary promoter. This regulation involves the EGF receptor, possibly ErbB2 that is highly expressed in SK-BR-3 cells, and a PI3K/JNK pathway. The stimulation of hPRL gene transcription by EGF in mammary cells may include hPRL in a complex regulatory network controlling growth of human mammary cells.

  15. A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity.

    Science.gov (United States)

    Ando, Kozue; Hirao, Satoshi; Kabe, Yasuaki; Ogura, Yuji; Sato, Iwao; Yamaguchi, Yuki; Wada, Tadashi; Handa, Hiroshi

    2008-08-01

    APE1/Ref-1 is thought to be a multifunctional protein involved in reduction-oxidation (redox) regulation and base excision DNA repair, and is required for early embryonic development in mice. APE1/Ref-1 has redox activity and AP endonuclease activity, and is able to enhance DNA-binding activity of several transcription factors, including NF-kappaB, AP-1 and p53, through reduction of their critical cysteine residues. However, it remains elusive exactly how APE1/Ref-1 carries out its essential functions in vivo. Here, we show that APE1/Ref-1 not only reduces target transcription factors directly but also facilitates their reduction by other reducing molecules such as glutathione or thioredoxin. The new activity of APE1/Ref-1, termed redox chaperone activity, is exerted at concentration significantly lower than that required for its redox activity and is neither dependent on its redox activity nor on its AP endonuclease activity. We also show evidence that redox chaperone activity of APE1/Ref-1 is critical to NF-kappaB-mediated gene expression in human cells and is mediated through its physical association with target transcription factors. Thus, APE1/Ref-1 may play multiple roles in an antioxidative stress response pathway through its different biochemical activities. These findings also provide new insight into the mechanism of intracellular redox regulation.

  16. Peroxide sensing and signaling in the Sporothrix schenckii complex: an in silico analysis to uncover putative mechanisms regulating the Hog1 and AP-1 like signaling pathways.

    Science.gov (United States)

    Ortega, Ivy; Soares Felipe, Maria Sueli; Vasconcelos, Ana Tereza Ribeiro; Lopes Bezerra, Leila Maria; Da Silva Dantas, Alessandra

    2015-01-01

    In order to understand how fungal pathogens can survive inside the host, we must analyze how they evade the fungicidal mechanisms mounted by the host's immune system, such as generation of toxic reactive oxygen species. Studies have shown that infections caused by Sporothrix brasiliensis can be more aggressive than those due to Sporothrix schenckii. Therefore, we propose to analyze and compare the ability of these two pathogenic species to counteract oxidative stress, which, as noted, can be relevant in the host response to infection. We have shown that S. brasiliensis is more resistant to different oxidants, such as H2O2 and menadione, when compared with S. schenckii. Furthermore, our results suggest that the molecular mechanisms by which Sporothrix spp. AP-1 like transcription factors are regulated probably differs from the one seen in other fungal pathogens. Interestingly, comparison between sequences of SbHog1 and SsHog1 stress activated protein kinases suggest that S. brasiliensis Hog1 display mutations that could account for the differences seen in stress sensitivities of these two species. In summary, this is the first study to our knowledge to investigate oxidative stress responses of Sporothrix spp. and provided a model that can be employed in vivo to address how these fungal pathogens can surmount the oxidative stress generated by the host.

  17. A versatile ΦC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture.

    Directory of Open Access Journals (Sweden)

    Nirmalya Chatterjee

    Full Text Available This paper describes the construction and characterization of a system of transcriptional reporter genes for monitoring the activity of signaling pathways and gene regulation mechanisms in intact Drosophila, dissected tissues or cultured cells. Transgenic integration of the reporters into the Drosophila germline was performed in a site-directed manner, using ΦC31 integrase. This strategy avoids variable position effects and assures low base level activity and high signal responsiveness. Defined integration sites furthermore enable the experimenter to compare the activity of different reporters in one organism. The reporter constructs have a modular design to facilitate the combination of promoter elements (synthetic transcription factor binding sites or natural regulatory sequences, reporter genes (eGFP, or DsRed.T4, and genomic integration sites. The system was used to analyze and compare the activity and signal response profiles of two stress inducible transcription factors, AP-1 and Nrf2. To complement the transgenic reporter fly lines, tissue culture assays were developed in which the same synthetic ARE and TRE elements control the expression of firefly luciferase.

  18. The designed protein M(II)-Gly-Lys-His-Fos(138-211) specifically cleaves the AP-1 binding site containing DNA.

    Science.gov (United States)

    Harford, C; Narindrasorasak, S; Sarkar, B

    1996-04-09

    A new specific DNA cleavage protein, Gly-Lys-His-Fos(138-211), was designed, expressed, and characterized. The DNA-binding component of the design uses the basic and leucine zipper regions of the leucine zipper Fos, which are represented by Fos(138-211). The DNA cleavage moiety was provided by the design of the amino-terminal Cu(II)-, Ni(II)-binding site GKH at the amino terminus of Fos(138-211). Binding of Cu(II) or Ni(II) by the protein activates its cleavage ability. The GKH motif was predicted to form a specific amino-terminal Cu(II)-, Ni(II)-binding motif as previously defined [Predki, P. F., Harford, C., Brar, P., & Sarkar, B. (1992) Biochem. J. 287, 211 -215]. This prediction was verified as the tripeptide, GKH, and the expressed protein, GKH-Fos(138-211), were both shown to be capable of binding Cu(II) and Ni(II). The designed protein upon heterodimerization with Jun(248-334) was shown to bind to and cleave several forms of DNA which contained an AP-1 binding site. The cleavage was shown to be specific. This design demonstrates the versatility of the amino-terminal Cu(II)-, Ni(II)-binding motif and the variety of motifs which can be generated. The site of cleavage by GKH-Fos(138-211) on DNA provides further information regarding the bending of DNA upon binding to Fos-Jun heterodimers.

  19. Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.

    Science.gov (United States)

    Baresic, Mario; Salatino, Silvia; Kupr, Barbara; van Nimwegen, Erik; Handschin, Christoph

    2014-08-01

    Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here, we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1α and gene expression upon PGC-1α overexpression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto-underestimated number of transcription factor partners involved in mediating PGC-1α action. In particular, principal component analysis of TFBSs at PGC-1α binding regions predicts that, besides the well-known role of the estrogen-related receptor α (ERRα), the activator protein 1 complex (AP-1) plays a major role in regulating the PGC-1α-controlled gene program of the hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1α.

  20. Homological Type of Geometric Transitions

    CERN Document Server

    Rossi, Michele

    2010-01-01

    The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the \\emph{homological type} of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.

  1. Homological stability of diffeomorphism groups

    DEFF Research Database (Denmark)

    Berglund, Alexander; Madsen, Ib Henning

    2013-01-01

    In this paper we prove a stability theorem for block diffeomorphisms of 2d -dimensional manifolds that are connected sums of S d ×S d . Combining this with a recent theorem of S. Galatius and O. Randal-Williams and Morlet’s lemma of disjunction, we determine the homology of the classifying space ...

  2. Grid diagrams and Khovanov homology

    DEFF Research Database (Denmark)

    Droz, Jean-Marie; Wagner, Emmanuel

    2009-01-01

    We explain how to compute the Jones polynomial of a link from one of its grid diagrams and we observe a connection between Bigelow’s homological definition of the Jones polynomial and Kauffman’s definition of the Jones polynomial. Consequently, we prove that the Maslov grading on the Seidel–Smith...

  3. TE-domestication and horizontal transfer in a putative Nef-AP1mu mimic of HLA-A cytoplasmic domain re-trafficking.

    Science.gov (United States)

    Murray, Joseph S; Murray, Elaina H

    2016-01-01

    Genes of the major histocompatibility complex (MHC; also called HLA in human) are polymorphic elements in the genomes of sharks to humans. Class-I and class-II MHC loci appear responsible for much of the genetic linkage to myriad disease states via the capacity to bind short (~8-15 a.a.) peptides of a given pathogen's proteome, or in some cases, the altered proteomes of cancerous cells, and even (in autoimmunity) certain nominal 'self' peptides (Janeway, 2004).(1) Unfortunately, little is known about how the canonical structure of the MHC-I/-II peptide-presenting gene evolved, particularly since beyond ~500 Mya (sharks) no paralogs exist.(2,3) We previously reported that HLA-A isotype alleles with the α1-helix, R65 motif, are wide-spread in phylogeny, but that the α 2-helix, H151R motif, has apparently segregated out of most species. Surprisingly, an uncharacterized orf in T. syrichta (Loc-103275158) encoded R151, but within a truncated A-23 like gene containing 5'- and 3'- footprints of the transposon (TE), tigger-1; the extant tarsier A-23 allele is totally missing exon-3 and part-of exon-4; together, suggesting TE-mediated inactivation of an intact/ancestral A-23 allele (Murray, 2015a).(4) The unique Loc-103275158 orf encodes a putative 15-exon transcript with no apparent paralogs throughout phylogeny. However, an HLA-A11 like gene in M. leucophaeus with a shortened C-terminal domain, and an HLA-A like orf in C. atys with two linked α1/α2/α3 domains, both contain a second transmembrane segment, which is conserved in Loc-103275158. Thus, we could model the putative protein with its Nef-like tail domain docked to its MHC-I like α3 domain (i.e., on the same side of a membrane). This modeled tertiary structure is strikingly similar to the solved structure of the Nef:MHC-I CD:AP1mu transporter (Jia, 2012).(5) Nef:AP1mu binds the CD of MHC-I in trafficking MHC-I away from the trans-golgi and into the endocytic pathway in HIV-1 infected cells. The CD loop of the

  4. The minimum amount of homology required for homologous recombination in mammalian cells.

    OpenAIRE

    Rubnitz, J; Subramani, S

    1984-01-01

    Although DNA sequence homology is believed to be a prerequisite for homologous recombination events in procaryotes and eucaryotes, no systematic study has been done on the minimum amount of homology required for homologous recombination in mammalian cells. We have used simian virus 40-pBR322 hybrid plasmids constructed in vitro as substrates to quantitate intramolecular homologous recombination in cultured monkey cells. Excision of wild-type simian virus 40 DNA by homologous recombination was...

  5. Expression of tyrosine kinase Etk/Bmx and its relationship with AP-1- and NF-kappaB-associated proteins in hepatocellular carcinoma.

    Science.gov (United States)

    Guo, Linlang; Guo, Ying; Xiao, Sha

    2007-01-01

    Etk/Bmx is a cytoplasmic tyrosine kinase, which was first identified in human bone marrow cells. It has been found to play an important role in the regulation of differentiation and tumorigenicity in some cancers. The aim of this study was to investigate the significance of Etk/Bmx expression in hepatocellular carcinoma (HCC) and the relationship between Etk/Bmx and activated protein-1 (AP-1)- and nuclear factor-kappaB (NF-kappaB)-associated proteins. We used immunohistochemisty to examine 40 cases of human HCC along with corresponding nontumor tissues to assess Etk/Bmx, Jun family (c-Jun, JunB, JunD), Fos family (c-Fos, FosB, Fra-1) and NF-kappaB p65 expression in these samples. Etk/Bmx expression was present in 12 of 40 (30%) HCC specimens, 4 of which among the 25 well-differentiated tumors and 8 among the 15 poorly differentiated tumors, respectively. In contrast, 6 of 40 (15%) cases expressed Etk/Bmx in adjacent nontumor tissues. Expression level and cellular localization of Etk/Bmx were different in cancer cells and nontumor cells. Etk/Bmx expression was correlated with histological differentiation, but not with clinicopathological features including tumor size, HBV infection, cirrhosis, and metastasis. There was a close relationship between Etk/Bmx and c-Fos expression in HCC. Etk/Bmx immunopositivity was independent of c-Jun, JunD, FosB, Fra-1 and NF-kappaB p65. Our results indicated that Etk/Bmx may have different biological roles in tumor and nontumor cells, and may be involved in regulating hepatocyte differentiation by c-Fos activation in HCC.

  6. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity.

    Science.gov (United States)

    Karmakar, Sudipan; Jin, Yetao; Nagaich, Akhilesh K

    2013-08-16

    The role of glucocorticoids in the inhibition of estrogen (17-β-estradiol (E2))-regulated estrogen receptor (ER)-positive breast cancer cell proliferation is well established. We and others have seen that synthetic glucocorticoid dexamethasone (Dex) antagonizes E2-stimulated endogenous ERα target gene expression. However, how glucocorticoids negatively regulate the ERα signaling pathway is still poorly understood. ChIP studies using ERα- and glucocorticoid receptor (GR)-positive MCF-7 cells revealed that GR occupies several ERα-binding regions (EBRs) in cells treated with E2 and Dex simultaneously. Interestingly, there was little or no GR loading to these regions when cells were treated with E2 or Dex alone. The E2+Dex-dependent GR recruitment is associated with the displacement of ERα and steroid receptor coactivator-3 from the target EBRs leading to the repression of ERα-mediated transcriptional activation. The recruitment of GR to EBRs requires assistance from ERα and FOXA1 and is facilitated by AP1 binding within the EBRs. The GR binding to EBRs is mediated via direct protein-protein interaction between the GR DNA-binding domain and ERα. Limited mutational analyses indicate that arginine 488 located within the C-terminal zinc finger domain of the GR DNA-binding domain plays a critical role in stabilizing this interaction. Together, the results of this study unravel a novel mechanism involved in glucocorticoid inhibition of ERα transcriptional activity and E2-mediated cell proliferation and thus establish a foundation for future exploitation of the GR signaling pathway in the treatment of ER-positive breast cancer.

  7. Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox and MAPKs/AP-1 pathways.

    Directory of Open Access Journals (Sweden)

    Feng-Lin Yen

    Full Text Available Upregulation of intercellular adhesion molecule-1 (ICAM-1 involves adhesions between both circulating and resident leukocytes and the human lung epithelial cells during lung inflammatory reactions. We have previously demonstrated that curcumin-loaded polyvinylpyrrolidone nanoparticles (CURN improve the anti-inflammatory and anti-oxidative properties of curcumin in hepatocytes. In this study, we focused on the effects of CURN on the expression of ICAM-1 in TNF-α-treated lung epithelial cells and compared these to the effects of curcumin water preparation (CURH. TNF-αinduced ICAM-1 expression, ROS production, and cell-cell adhesion were significantly attenuated by the pretreatment with antioxidants (DPI, APO, or NAC and CURN, but not by CURH, as revealed by western blot analysis, RT-PCR, promoter assay, and ROS detection and adhesion assay. In addition, treatment of TNF-α-treated cells with CURN and antioxidants also resulted in an inhibition of activation of p47 (phox and phosphorylation of MAPKs, as compared to that using CURH. Our findings also suggest that phosphorylation of MAPKs may eventually lead to the activation of transcription factors. We also observed that the effects of TNF-α treatment for 30 min, which includes a significant increase in the binding activity of AP-1 and phosphorylation of c-jun and c-fos genes, were reduced by CURN treatment. In vivo studies have revealed that CURN improved the anti-inflammation activities of CURH in the lung epithelial cells of TNF-α-treated mice. Our results indicate that curcumin-loaded polyvinylpyrrolidone nanoparticles may potentially serve as an anti-inflammatory drug for the treatment of respiratory diseases.

  8. FSL-1 Induces MMP-9 Production through TLR-2 and NF-κB /AP-1 Signaling Pathways in Monocytic THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Rasheed Ahmad

    2014-08-01

    Full Text Available Background: Matrix metalloproteinase-9 (MMP-9 is known to be implicated in the pathogenesis of many inflammatory disorders. FSL-1 (fibroblast-stimulating lipopeptide-1 induces cytokine production by monocytes/macrophages. However, it is unclear whether FSL-1 is also able to induce MMP-9 production. Herein, we determined whether FSL-1 could induce MMP-9 production, and if so, which signal transduction pathway(s were involved. Methods: MMP-9 expression was assessed with real-time qPCR and ELISA. Signaling pathways were studied by using THP1-XBlue™ cells, THP1-XBlue™-defMyD cells, anti-TLR2 mAb and pharmacological inhibitors. Phospho and total proteins were determined by Western blotting. Results: FSL-1 induces MMP-9 expression (PP-/- THP-1 cells did not express MMP-9 in response to FSL-1 treatment. By small interfering RNA-mediated knockdown, we also show that FSL-1-induced up-regulation of MMP-9 requires MyD88. Pre-treatment of THP-1 cells with inhibitors of JNK (SP600125, MEK/ERK (U0126; PD98056; XMD 8-92, p38 MAPK (SB203580 and NF-κB (BAY11-7085, Triptolide, Resveratrol significantly suppressed (PConclusion: These findings provide the first evidence that FSL-1 induces TLR-2-dependent MMP-9 gene expression which requires the recruitment of MyD88 and leads to activation of MEK1/2 /ERK 1/2, MEK5/ERK5, JNK, p38 MAPK and NF-κB/AP-1.

  9. Immunohistochemical analysis of the expression of cellular transcription NFκB (p65), AP-1 (c-Fos and c-Jun), and JAK/STAT in leprosy.

    Science.gov (United States)

    Silva, Luciana Mota; Hirai, Kelly Emi; de Sousa, Jorge Rodrigues; de Souza, Juarez; Fuzii, Hellen Thais; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2015-05-01

    Leprosy is a disease whose clinical spectrum depends on the cytokine patterns produced during the early stages of the immune response. The main objective of this study was to describe the activation pattern of cellular transcription factors and to correlate these factors with the clinical forms of leprosy. Skin samples were obtained from 16 patients with the tuberculoid (TT) form and 14 with the lepromatous (LL) form. The histologic sections were immunostained with anti-c-Fos and anti-c-Jun monoclonal antibodies for investigation of AP-1, anti-NFκB p65 for the study of NFκB, and anti-JAK2, STAT1, STAT3, and STAT4 for investigation of the JAK/STAT pathway. Cells expressing STAT1 were more frequent in the TT form than in LL lesions (P = .0096), in agreement with the protective immunity provided by IFN-γ. STAT4 was also more highly expressed in the TT form than in the LL form (P = .0098). This transcription factor is essential for the development of a Th1 response because it is associated with interleukin-12. NFκB (p65) and STAT4 expression in the TT form showed a strong and significant correlation (r = 0.7556 and P = .0007). A moderate and significant correlation was observed between JAK2 and STAT4 in the TT form (r = 0.6637 and P = .0051), with these factors responding to interleukin-12 in Th1 profiles. The results suggest that STAT1, JAK2, and NFκB, together with STAT4, contribute to the development of cell-mediated immunity, which is able to contain the proliferation of Mycobacterium leprae.

  10. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus.

    Science.gov (United States)

    Zhang, Ning; MohdZainudin, Nur A I; Scher, Keren; Condon, Bradford J; Horwitz, Benjamin A; Turgeon, B Gillian

    2013-12-01

    The gene SRE1, encoding the GATA transcription factor siderophore biosynthesis repressor (Sre1), was identified in the genome of the maize pathogen Cochliobolus heterostrophus and deleted. Mutants were altered in sensitivity to iron, oxidative stress, and virulence to the host. To gain insight into mechanisms of this combined regulation, genetic interactions among SRE1 (the nonribosomal peptide synthetase encoding gene NPS6, which is responsible for extracellular siderophore biosynthesis) and ChAP1 (encoding a transcription factor regulating redox homeostasis) were studied. To identify members of the Sre1 regulon, expression of candidate iron and oxidative stress-related genes was assessed in wild-type (WT) and sre1 mutants using quantitative reverse-transcription polymerase chain reaction. In sre1 mutants, NPS6 and NPS2 genes, responsible for siderophore biosynthesis, were derepressed under iron replete conditions, whereas the high-affinity reductive iron uptake pathway associated gene, FTR1, was not, in contrast to outcomes with other well-studied fungal models. C. heterostrophus L-ornithine-N(5)- monooxygenase (SIDA2), ATP-binding cassette (ABC6), catalase (CAT1), and superoxide dismutase (SOD1) genes were also derepressed under iron-replete conditions in sre1 mutants. Chap1nps6 double mutants were more sensitive to oxidative stress than either Chap1 or nps6 single mutants, while Chap1sre1 double mutants showed a modest increase in resistance compared with single Chap1 mutants but were much more sensitive than sre1 mutants. These findings suggest that the NPS6 siderophore indirectly contributes to redox homeostasis via iron sequestration, while Sre1 misregulation may render cells more sensitive to oxidative stress. The double-mutant phenotypes are consistent with a model in which iron sequestration by NPS6 defends the pathogen against oxidative stress. C. heterostrophus sre1, nps6, Chap1, Chap1nps6, and Chap1sre1 mutants are all reduced in virulence toward the

  11. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

    Directory of Open Access Journals (Sweden)

    Simon James

    2011-05-01

    Full Text Available Abstract Background Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (Pleurotus ostreatus in vitro and in vivo. Methods RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml in the absence or presence of lipopolysacharide (LPS or concanavalin A (ConA, respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS. Results OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE2 and nitric oxide (NO through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS in vivo. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ, IL-2, and IL-6 from concanavalin A (ConA-stimulated mouse splenocytes. Conclusions Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.

  12. Sutured Floer homology and hypergraphs

    CERN Document Server

    Juhász, András; Rasmussen, Jacob

    2011-01-01

    By applying Seifert's algorithm to a special alternating diagram of a link L, one obtains a Seifert surface F of L. We show that the support of the sutured Floer homology of the sutured manifold complementary to F is affine isomorphic to the set of lattice points given as hypertrees in a certain hypergraph that is naturally associated to the diagram. This implies that the Floer groups in question are supported in a set of Spin^c structures that are the integer lattice points of a convex polytope. This property has an immediate extension to Seifert surfaces arising from homogeneous link diagrams (including all alternating and positive diagrams). In another direction, together with work in progress of the second author and others, our correspondence suggests a method for computing the "top" coefficients of the HOMFLY polynomial of a special alternating link from the sutured Floer homology of a Seifert surface complement for a certain dual link.

  13. Minimax Rates for Homology Inference

    CERN Document Server

    Balakrishnan, Sivaraman; Sheehy, Don; Singh, Aarti; Wasserman, Larry

    2011-01-01

    Often, high dimensional data lie close to a low-dimensional submanifold and it is of interest to understand the geometry of these submanifolds. The homology groups of a manifold are important topological invariants that provide an algebraic summary of the manifold. These groups contain rich topological information, for instance, about the connected components, holes, tunnels and sometimes the dimension of the manifold. In this paper, we consider the statistical problem of estimating the homology of a manifold from noisy samples under several different noise models. We derive upper and lower bounds on the minimax risk for this problem. Our upper bounds are based on estimators which are constructed from a union of balls of appropriate radius around carefully selected points. In each case we establish complementary lower bounds using Le Cam's lemma.

  14. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells.

    Science.gov (United States)

    Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung

    2008-04-30

    A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

  15. Homologous recombination in Leishmania enriettii.

    OpenAIRE

    1991-01-01

    We have used derivatives of the recently developed stable transfection vector pALT-Neo to formally demonstrate that Leishmania enriettii contains the enzymatic machinery necessary for homologous recombination. This observation has implications for gene regulation, gene amplification, genetic diversity, and the maintenance of tandemly repeated gene families in the Leishmania genome as well as in closely related organisms, including Trypanosoma brucei. Two plasmids containing nonoverlapping del...

  16. Homologous recombination in Leishmania enriettii.

    Science.gov (United States)

    Tobin, J F; Laban, A; Wirth, D F

    1991-02-01

    We have used derivatives of the recently developed stable transfection vector pALT-Neo to formally demonstrate that Leishmania enriettii contains the enzymatic machinery necessary for homologous recombination. This observation has implications for gene regulation, gene amplification, genetic diversity, and the maintenance of tandemly repeated gene families in the Leishmania genome as well as in closely related organisms, including Trypanosoma brucei. Two plasmids containing nonoverlapping deletions of the chloramphenicol acetyltransferase (CAT) gene, as well as the neomycin-resistance gene, were cotransfected into L. enriettii. Analysis of the DNA from these cells by Southern blotting and plasmid rescue revealed that a full-length or doubly deleted CAT gene could be reconstructed by homologous crossing-over and/or gene conversion between the two deletion plasmids. Additionally, parasites cotransfected with pALT-Neo and pALT-CAT-S, a plasmid containing two copies of the chimeric alpha-tubulin-CAT gene, resulted in G418-resistant parasites expressing high levels of CAT activity. The structure of the DNA within these cells, as shown by Southern blot analysis and the polymerase chain reaction, is that which would be expected from a homologous exchange event occurring between the two plasmids.

  17. Deep homology: a view from systematics.

    Science.gov (United States)

    Scotland, Robert W

    2010-05-01

    Over the past decade, it has been discovered that disparate aspects of morphology - often of distantly related groups of organisms - are regulated by the same genetic regulatory mechanisms. Those discoveries provide a new perspective on morphological evolutionary change. A conceptual framework for exploring these research findings is termed 'deep homology'. A comparative framework for morphological relations of homology is provided that distinguishes analogy, homoplasy, plesiomorphy and synapomorphy. Four examples - three from plants and one from animals - demonstrate that homologous developmental mechanisms can regulate a range of morphological relations including analogy, homoplasy and examples of uncertain homology. Deep homology is part of a much wider range of phenomena in which biological (genes, regulatory mechanisms, morphological traits) and phylogenetic levels of homology can both be disassociated. Therefore, to understand homology, precise, comparative, independent statements of both biological and phylogenetic levels of homology are necessary.

  18. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways.

    Science.gov (United States)

    Khoi, Pham Ngoc; Xia, Yong; Lian, Sen; Kim, Ho Dong; Kim, Do Hyun; Joo, Young Eun; Chay, Kee-Oh; Kim, Kyung Keun; Jung, Young Do

    2014-10-01

    Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.

  19. Homology requirements for recombination in Escherichia coli.

    OpenAIRE

    Watt, V M; Ingles, C J; Urdea, M S; Rutter, W J

    1985-01-01

    The DNA sequence homology required for recombination in Escherichia coli has been determined by measuring the recombination frequency between insulin DNA in a miniplasmid pi VX and a homologous sequence in a bacteriophage lambda vector. A minimum of approximately equal to 20 base pairs in a completely homologous segment is required for significant recombination. There is an exponential increase in the frequency of recombination when the length of homologous DNA is increased from 20 base pairs...

  20. MENINGKATKAN KEAKTIFAN BELAJAR SISWA PADA MATA PELAJARAN MEMAHAMI PRINSIP-PRINSIP PENYELENGGARAAN ADMINISTRASI PERKANTORAN DENGAN MENGGUNAKAN METODE PEMBELAJARAN PROBING PROMPTING DI KELAS X AP 1 SMK HIDAYAH SEMARANG

    Directory of Open Access Journals (Sweden)

    Hasni Rahmawati

    2015-02-01

    Full Text Available Hasil observasi awal menunjukkan bahwa rata-rata keaktifan siswa kelas X AP 1 tergolong rendah yaitu hanya sebesar 52 %. Siswa di kelas tersebut cenderung pasif hanya beberapa siswa yang bertanya dan mengemukakan pendapat pada saat pembelajaran berlangsung. Berdasarkan latar belakang diatas, maka rumusan masalah dalam penelitian ini adalah sebagai berikut. Subjek penelitian ini adalah siswa kelas X Administrasi Perkantoran 1 SMK Hidayah Semarang yang terdiri dari 18 siswa. Hasil penelitian pada siklus I menunjukkan rata-rata keaktifan siswa sebesar 62,4% dalam kategori cukup aktif, rata-rata hasil belajar siswa sebesar 74,20 dengan ketuntasan klasikal sebesar 67%. Untuk hasil penelitian siklus II menunjukkan rata-rata keaktifan siswa sebesar 72% dalam kategori tinggi, rata-rata hasil belajar sebesar 79,62 dengan ketuntasan klasikal sebesar 72%. Untuk hasil penelitian siklus III menunjukkan rata-rata keaktifan siswa sebesar 78,88% dalam kategori tinggi, rata-rata hasil belajar sebesar 84,375 dengan ketuntasan klasikal sebesar 78%. Based on the initial observation, the data showed that the average students’ activeness of 10th grade students of Office Administration1 was less active, it was only 52%. Students were passive on the learning process because only several students who gave question and delivered arguments during the teaching learning proccess. Based on the background above, the questions of research were; 1 Did the implementations of Probing Prompting learning model improve students’ activeness? 2 The subject of this research was10th grade students of Office Administration I in SMK Hidayah Semarang, they were 18 students.. The data were collected by observation, documentation, and examination. The data were analyzed by classroom action research analysis and linear regression analysis.The result of cycle I showed that the average of students’ activeness was 62.4% which categorized on active enough, the average scor eof study result

  1. Treatment with novel AP-1 and NF-κB inhibitors restores the colonic endocrine cells to normal levels in rats with DSS-induced colitis.

    Science.gov (United States)

    El-Salhy, Magdy; Umezawa, Kazuo

    2016-03-01

    The aim of this study was to determine the effects of two anti-inflammatory agents on the abnormalities in colonic endocrine cells in dextran sodium sulfate (DSS)-induced colitis. Colitis was induced in male Wistar rats (n=45) using DSS; a further 15 rats without colitis were included in a healthy control group. The animals with DSS-induced colitis were randomly divided into 3 treatment groups as follows: i) DSS group, rats were treated with 0.5 ml of 0.5% carboxymethyl cellulose (CMC); ii) DSS‑G group, rats were treated with 3-[(dodecylthiocarbonyl)‑methyl]‑glutarimide (DTCM‑G), a novel activator protein 1 (AP-1) inhibitor, 20 mg/kg in CMC; and iii) DSS‑Q group, rats were treated with dehydroxymethylepoxyquinomicin, a nuclear factor κB (NF-κB) inhibitor, 15 mg/kg in CMC. The treatments were administered intraperitoneally, twice daily for 5 days, after which the animals were sacrificed and tissue samples from the colon were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), enteroglucagon, pancreatic polypeptide (PP), somatostatin, leukocytes, B/T lymphocytes, B lymphocytes, T lymphocytes, macrophages/monocytes and mast cells. The densities of these endocrine and immune cells were quantified by computer‑aided image analysis. The densities of CgA-, serotonin-, PYY- and enteroglucagon-producing cells were significantly higher, and those of PP- and somatostatin-producing cells were significantly lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all the immune cells were lower in the DSS‑G, DSS‑Q and control groups than in the DSS group. The densities of all endocrine cell types and immune cells in both the DSS groups treated with anti‑inflammatory agents were restored to control levels. In conclusion, our data demonstrate that there is an interaction between endocrine and immune cells during inflammation. This interaction with subsequent changes in endocrine cells is responsible for the

  2. Virtual Khovanov homology using cobordisms

    DEFF Research Database (Denmark)

    Tubbenhauer, Daniel

    2014-01-01

    We give a geometric interpretation of the Khovanov complex for virtual links. Geometric interpretation means that we use a cobordism structure like D. Bar-Natan, but we allow non orientable cobordisms. Like D. Bar-Natans geometric complex our construction should work for virtual tangles too....... This geometric complex allows, in contrast to the geometric version of V. Turaev and P. Turner, a direct extension of the classical Khovanov complex (h=t=0) and of the variant of Lee (h=0,t=1). Furthermore we give a classification of all unoriented TQFTs which can be used to define virtual link homologies...

  3. Weak homology of elliptical galaxies

    CERN Document Server

    Bertin, G; Principe, M D

    2002-01-01

    We start by studying a small set of objects characterized by photometric profiles that have been pointed out to deviate significantly from the standard R^{1/4} law. For these objects we confirm that a generic R^{1/n} law, with n a free parameter, can provide superior fits (the best-fit value of n can be lower than 2.5 or higher than 10), better than those that can be obtained by a pure R^{1/4} law, by an R^{1/4}+exponential model, and by other dynamically justified self--consistent models. Therefore, strictly speaking, elliptical galaxies should not be considered homologous dynamical systems. Still, a case for "weak homology", useful for the interpretation of the Fundamental Plane of elliptical galaxies, could be made if the best-fit parameter n, as often reported, correlates with galaxy luminosity L, provided the underlying dynamical structure also follows a systematic trend with luminosity. We demonstrate that this statement may be true even in the presence of significant scatter in the correlation n(L). Pr...

  4. The Homological Nature of Entropy

    Directory of Open Access Journals (Sweden)

    Pierre Baudot

    2015-05-01

    Full Text Available We propose that entropy is a universal co-homological class in a theory associated to a family of observable quantities and a family of probability distributions. Three cases are presented: (1 classical probabilities and random variables; (2 quantum probabilities and observable operators; (3 dynamic probabilities and observation trees. This gives rise to a new kind of topology for information processes, that accounts for the main information functions: entropy, mutual-informations at all orders, and Kullback–Leibler divergence and generalizes them in several ways. The article is divided into two parts, that can be read independently. In the first part, the introduction, we provide an overview of the results, some open questions, future results and lines of research, and discuss briefly the application to complex data. In the second part we give the complete definitions and proofs of the theorems A, C and E in the introduction, which show why entropy is the first homological invariant of a structure of information in four contexts: static classical or quantum probability, dynamics of classical or quantum strategies of observation of a finite system.

  5. Khovanov homology of links and graphs

    Science.gov (United States)

    Stosic, Marko

    2006-05-01

    In this thesis we work with Khovanov homology of links and its generalizations, as well as with the homology of graphs. Khovanov homology of links consists of graded chain complexes which are link invariants, up to chain homotopy, with graded Euler characteristic equal to the Jones polynomial of the link. Hence, it can be regarded as the "categorification" of the Jones polynomial. We prove that the first homology group of positive braid knots is trivial. Futhermore, we prove that non-alternating torus knots are homologically thick. In addition, we show that we can decrease the number of full twists of torus knots without changing low-degree homology and consequently that there exists stable homology for torus knots. We also prove most of the above properties for Khovanov-Rozansky homology. Concerning graph homology, we categorify the dichromatic (and consequently Tutte) polynomial for graphs, by categorifying an infinite set of its one-variable specializations. We categorify explicitly the one-variable specialization that is an analog of the Jones polynomial of an alternating link corresponding to the initial graph. Also, we categorify explicitly the whole two-variable dichromatic polynomial of graphs by using Koszul complexes. textbf{Key-words:} Khovanov homology, Jones polynomial, link, torus knot, graph, dichromatic polynomial

  6. Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E.

    OpenAIRE

    Faux, S P; Howden, P. J.

    1997-01-01

    Asbestos fibers cause persistent induction of the oxidative stress sensitive transcription factors nuclear factor kappa-B (NF-kappa B) and activator protein-1 (AP-1) in mammalian cells. These transcription factors play an important role in the regulation of cellular activity. Lipid peroxidation, mediated by reactive oxygen species, is thought to be a possible mechanism in the pathogenicity of asbestos fibers. These studies were designed to determine if crocidolite asbestos-induced lipid perox...

  7. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  8. Isolation and characterisation of P-EPTX-Ap1a and P-EPTX-Ar1a: pre-synaptic neurotoxins from the venom of the northern (Acanthophis praelongus) and Irian Jayan (Acanthophis rugosus) death adders.

    Science.gov (United States)

    Chaisakul, Janeyuth; Konstantakopoulos, Nicki; Smith, A Ian; Hodgson, Wayne C

    2010-09-15

    The neurotoxicity observed following death adder envenoming has been thought to be solely due to the presence of potent post-synaptic neurotoxins. Clinically, these effects are often poorly reversed by death adder antivenom or anticholinesterase, particularly when patients present with established paralysis. This suggests that either the post-synaptic neurotoxins are irreversible/'pseudo' irreversible, or the venom contains pre-synaptic neurotoxins that do not respond to antivenom. To support the later hypothesis, a pre-synaptic neurotoxin (P-EPTX-Aa1a) has recently been isolated from the venom of Acanthophis antarcticus. We examined Acanthophis praelongus and Acanthophis rugosus venoms for the presence of pre-synaptic neurotoxins. P-EPTX-Ap1a (40,719Da) and P-EPTX-Ar1a (40,879Da) were isolated from A. praelongus and A. rugosus venoms, respectively. P-EPTX-Ap1a and P-EPTX-Ar1a are comprised of three different subunits, alpha, beta1 and beta2. The two toxins displayed similar levels of PLA(2) activity which was almost solely attributed to the alpha subunit in both toxins. P-EPTX-Ap1a (20-100nM) and P-EPTX-Ar1a (20-100nM) caused inhibition of indirect twitches of the skeletal muscle preparation without affecting contractile responses to nicotinic receptor agonists. Interestingly, only the alpha subunit of both toxins (300nM) displayed neurotoxic activity. Inhibition of PLA(2) activity markedly reduced the effect of the toxins on muscle twitch height. These results confirm that P-EPTX-Ap1a and P-EPTX-Ar1a are pre-synaptic neurotoxins and represent the second and third such toxins to be isolated from death adder venom. The presence of pre-synaptic neurotoxins in Acanthophis sp. venoms indicates that treatment strategies for envenoming by these snakes needs to be reassessed given the likelihood of irreversible neurotoxicity.

  9. Equivariant ordinary homology and cohomology

    CERN Document Server

    Costenoble, Steven R

    2016-01-01

    Filling a gap in the literature, this book takes the reader to the frontiers of equivariant topology, the study of objects with specified symmetries. The discussion is motivated by reference to a list of instructive “toy” examples and calculations in what is a relatively unexplored field. The authors also provide a reading path for the first-time reader less interested in working through sophisticated machinery but still desiring a rigorous understanding of the main concepts. The subject’s classical counterparts, ordinary homology and cohomology, dating back to the work of Henri Poincaré in topology, are calculational and theoretical tools which are important in many parts of mathematics and theoretical physics, particularly in the study of manifolds. Similarly powerful tools have been lacking, however, in the context of equivariant topology. Aimed at advanced graduate students and researchers in algebraic topology and related fields, the book assumes knowledge of basic algebraic topology and group act...

  10. Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E.

    Science.gov (United States)

    Faux, S P; Howden, P J

    1997-09-01

    Asbestos fibers cause persistent induction of the oxidative stress sensitive transcription factors nuclear factor kappa-B (NF-kappa B) and activator protein-1 (AP-1) in mammalian cells. These transcription factors play an important role in the regulation of cellular activity. Lipid peroxidation, mediated by reactive oxygen species, is thought to be a possible mechanism in the pathogenicity of asbestos fibers. These studies were designed to determine if crocidolite asbestos-induced lipid peroxidation plays a role in the mechanism of formation of NF-kappa B and AP-1. Treatment of a rat lung fibroblast cell line (RFL-6) with crocidolite asbestos in the presence and absence of the membrane antioxidant vitamin E decreased the levels of crocidolite-induced AP-1 and NF-kappa B to background levels. Preincubation of RFL-6 cells with 5,8,11,14-eicosatetraynoic acid, an inhibitor of arachidonic acid metabolism, prior to exposure to crocidolite, abrogated crocidolite-induced NF-kappa B DNA-binding activity to background levels. Coincubation with indomethacin, a cyclooxygenase inhibitor, had no effect on NF-kappa B DNA-binding activity induced by crocidolite. However, nordihydroguaiaretic acid, a lipoxygenase inhibitor, decreased levels of NF-kappa B to background levels. This would suggest that lipoxygenase metabolites of arachidonic acid, produced following lipid peroxidation, are involved in the cellular signalling events to NF-kappa B transcription factor induction by asbestos.

  11. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    Directory of Open Access Journals (Sweden)

    Bin Fan

    Full Text Available Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO, TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1 and perilipin 2 (PLIN2. Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  12. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    Science.gov (United States)

    Fan, Bin; Dun, Sai-Hong; Gu, Jian-Qiu; Guo, Yang; Ikuyama, Shoichiro

    2015-01-01

    Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  13. Berberine attenuates high glucose-induced proliferation and extracellular matrix accumulation in mesangial cells: involvement of suppression of cell cycle progression and NF-κB/AP-1 pathways.

    Science.gov (United States)

    Lan, Tian; Wu, Teng; Chen, Cheng; Chen, Xiaolan; Hao, Jie; Huang, Junying; Wang, Lijing; Huang, Heqing

    2014-03-25

    Berberine has been shown to have renoprotective effects on diabetes through attenuating TGF-β1 and fibronectin (FN) expression. However, how berberine regulates TGF-β1 and FN is not fully clear. Here we investigated whether berberine inhibited TGF-β1 and FN expression in high glucose-cultured mesangial cells. Berberine significantly inhibited mesangial cell proliferation and hypertrophy by increasing the cell population in G1-phase and reducing that in S-phase. In addition, berberine reversed high glucose-induced down-regulation of cyclin-dependent kinase inhibitor p21(Waf1)/(Cip1) and p27(Kip1). Berberine inhibited p65 translocation to the nucleus and c-jun phosphorylation induced by high glucose. Furthermore, berberine attenuated high glucose-induced expression of TGF-β1 and FN. Using a luciferase reporter assay, we found that high glucose-induced transcription activity of NF-κB and AP-1 was blocked by berberine. Electrophoretic mobility shift assay showed that high glucose increased that NF-κB and AP-1 DNA binding activity. These data indicate that berberine inhibited mesangial cell proliferation and hypertrophy by modulating cell cycle progress. In addition, berberine suppressed high glucose-induced TGF-β1 and FN expression by blocking NF-κB/AP-1 pathways.

  14. EPO gene expression promotes proliferation, migration and invasion via the p38MAPK/AP-1/MMP-9 pathway by p21WAF1 expression in vascular smooth muscle cells.

    Science.gov (United States)

    Park, Sung Lyea; Won, Se Yeon; Song, Jun-Hui; Kambe, Taiho; Nagao, Masaya; Kim, Wun-Jae; Moon, Sung-Kwon

    2015-03-01

    The use of recombinant human erythropoietin (rHuEpo) can lead to hypertrophy and hyperplasia, and has induced the proliferation of vascular smooth muscle cells (VSMCs). The effect of the EPO gene in the migration and invasion of VSMCs remains unclear. In this study, overexpression of the EPO gene increased the DNA synthesis and phosphorylation of ERK1/2 and p38MAPK in VSMCs. In addition, EPO gene expression induced the migration and invasion of VSMCs via the expression of MMP-9 by the activation of NF-κB and AP-1 binding. A blockade of p38MAPK by specific p38MAPK inhibitor SB203580 led to a suppression of the increased DNA synthesis, migration, and invasion of VSMCs that was induced by the EPO gene. SB203580 treatment blocked the increased expression of MMP-9 through the binding activity of AP-1. Transfection of the EPO gene with VSMCs was associated with the up-regulation of cyclin D1/CDK4, cyclin E/CDK2, and p21WAF1, and with the down-regulation of p27KIP1. The specific suppression of p21WAF1 expression by siRNA rescued the enhancement of DNA synthesis via the phosphorylation of p38MAPK and the increase in migration and invasion through AP-1-mediated MMP-9 expression in EPO gene transfectants. These novel findings demonstrate that p21WAF1 regulates the proliferation, migration and invasion of VSMC induced by EPO gene.

  15. Homology in Electromagnetic Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Matti Pellikka

    2010-01-01

    Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.

  16. The molecular evolution of PL10 homologs

    Directory of Open Access Journals (Sweden)

    Chang Ti-Cheng

    2010-05-01

    Full Text Available Abstract Background PL10 homologs exist in a wide range of eukaryotes from yeast, plants to animals. They share a DEAD motif and belong to the DEAD-box polypeptide 3 (DDX3 subfamily with a major role in RNA metabolism. The lineage-specific expression patterns and various genomic structures and locations of PL10 homologs indicate these homologs have an interesting evolutionary history. Results Phylogenetic analyses revealed that, in addition to the sex chromosome-linked PL10 homologs, DDX3X and DDX3Y, a single autosomal PL10 putative homologous sequence is present in each genome of the studied non-rodent eutheria. These autosomal homologous sequences originated from the retroposition of DDX3X but were pseudogenized during the evolution. In rodents, besides Ddx3x and Ddx3y, we found not only Pl10 but another autosomal homologous region, both of which also originated from the Ddx3x retroposition. These retropositions occurred after the divergence of eutheria and opossum. In contrast, an additional X putative homologous sequence was detected in primates and originated from the transposition of DDX3Y. The evolution of PL10 homologs was under positive selection and the elevated Ka/Ks ratios were observed in the eutherian lineages for DDX3Y but not PL10 and DDX3X, suggesting relaxed selective constraints on DDX3Y. Contrary to the highly conserved domains, several sites with relaxed selective constraints flanking the domains in the mammalian PL10 homologs may play roles in enhancing the gene function in a lineage-specific manner. Conclusion The eutherian DDX3X/DDX3Y in the X/Y-added region originated from the translocation of the ancient PL10 ortholog on the ancestral autosome, whereas the eutherian PL10 was retroposed from DDX3X. In addition to the functional PL10/DDX3X/DDX3Y, conserved homologous regions on the autosomes and X chromosome are present. The autosomal homologs were also derived from DDX3X, whereas the additional X-homologs were derived

  17. Buoyancy instability of homologous implosions

    CERN Document Server

    Johnson, Bryan M

    2015-01-01

    I consider the hydrodynamic stability of imploding gases as a model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes under a homologous flow, a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)^(|N0| ti)$, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(pi |N0| ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular...

  18. Homotopic Chain Maps Have Equal s-Homology and d-Homology

    Directory of Open Access Journals (Sweden)

    M. Z. Kazemi-Baneh

    2016-01-01

    Full Text Available The homotopy of chain maps on preabelian categories is investigated and the equality of standard homologies and d-homologies of homotopic chain maps is established. As a special case, if X and Y are the same homotopy type, then their nth d-homology R-modules are isomorphic, and if X is a contractible space, then its nth d-homology R-modules for n≠0 are trivial.

  19. Why do bacteria engage in homologous recombination?

    NARCIS (Netherlands)

    Vos, M.

    2009-01-01

    Microbiologists have long recognized that the uptake and incorporation of homologous DNA from outside the cell is a common feature of bacteria, with important implications for their evolution. However, the exact reasons why bacteria engage in homologous recombination remain elusive. This Opinion art

  20. DNA Sequence Alignment during Homologous Recombination.

    Science.gov (United States)

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination.

  1. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937.

    Science.gov (United States)

    Riera, Humberto; Afonso, Valéry; Collin, Pascal; Lomri, Abderrahim

    2015-01-01

    Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.

  2. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937.

    Directory of Open Access Journals (Sweden)

    Humberto Riera

    Full Text Available Pyrrolidine dithiocarbamate (PDTC known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1 gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA show that PDTC increased binding of activating protein-1 (AP-1 in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125, p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.

  3. The mouse nac1 gene, encoding a cocaine-regulated Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger protein, is regulated by AP1.

    Science.gov (United States)

    Mackler, S A; Homan, Y X; Korutla, L; Conti, A C; Blendy, J A

    2003-01-01

    NAC1 cDNA was identified as a novel transcript induced in the nucleus accumbens from rats chronically treated with cocaine. NAC1 is a member of the Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger family of transcription factors and has been shown by overexpression studies to prevent the development of behavioral sensitization resulting from repeated cocaine treatment. This paper reports the cloning and characterization of the corresponding gene. The mouse Nac1 gene consist of six exons, with exon 2 containing an alternative splice donor, providing a molecular explanation of the splice variants observed in mouse and rat. Transcripts of Nac1 were ubiquitously detected in different mouse tissues with prominent expression in the brain. The mouse Nac1 gene was localized to chromosome 8, suggesting a highly plausible candidate gene to explain differences in cocaine-induced behaviors between C57BL6/J and DBA/2J mice that had previously been mapped to the area. In addition, a functional AP1 binding site has been identified in an intron 1 enhancer of the Nac1 gene that plays an essential role in the activation of the gene in differentiation of neuroblastoma cells. Co-transfection with c-jun and c-fos expression plasmids, which encode the two subunits of AP1, activated the wild type Nac1 intron 1 enhancer two-fold over basal, nearly at the level of NAC1 enhancer activity seen in differentiated N2A cells. Mutation of the AP1 site completely abrogated all activation of the NAC1 enhancer in differentiated N2A cells. Activation of immediate early genes such as c-fos and c-jun following chronic drug treatments has been well characterized. The present data describe one potential regulatory cascade involving these transcription factors and activation of NAC1. Identification of drug induced alterations in gene expression is key to understanding the types of molecular adaptations underlying addiction.

  4. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  5. Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-κB dependent AP-1-mediated ICAM-1 expression in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Kundu Gopal C

    2010-05-01

    Full Text Available Abstract Background Breast cancer is one of the most frequently diagnosed cancer and accounts for over 400,000 deaths each year worldwide. It causes premature death in women, despite progress in early detection, treatment, and advances in understanding the molecular basis of the disease. Therefore, it is important to understand the in depth mechanism of tumor progression and develop new strategies for the treatment of breast cancer. Thus, this study is aimed at gaining an insight into the molecular mechanism by which osteopontin (OPN, a member of SIBLING (Small Integrin Binding LIgand N-linked Glycoprotein family of protein regulates tumor progression through activation of various transcription factors and expression of their downstream effector gene(s in breast cancer. Results In this study, we report that purified native OPN induces ICAM-1 expression in breast cancer cells. The data revealed that OPN induces NF-κB activation and NF-κB dependent ICAM-1 expression. We also observed that OPN-induced NF-κB further controls AP-1 transactivation, suggesting that there is cross talk between NF-κB and AP-1 which is unidirectional towards AP-1 that in turn regulates ICAM-1 expression in these cells. We also delineated the role of mTOR and p70S6 kinase in OPN-induced ICAM-1 expression. The study suggests that inhibition of mTOR by rapamycin augments whereas overexpression of mTOR/p70S6 kinase inhibits OPN-induced ICAM-1 expression. Moreover, overexpression of mTOR inhibits OPN-induced NF-κB and AP-1-DNA binding and transcriptional activity. However, rapamycin further enhanced these OPN-induced effects. We also report that OPN induces p70S6 kinase phosphorylation at Thr-421/Ser-424, but not at Thr-389 or Ser-371 and mTOR phosphorylation at Ser-2448. Overexpression of mTOR has no effect in regulation of OPN-induced phosphorylation of p70S6 kinase at Thr-421/Ser-424. Inhibition of mTOR by rapamycin attenuates Ser-371 phosphorylation but does not have

  6. Hidden torsion, 3-manifolds, and homology cobordism

    CERN Document Server

    Cha, Jae Choon

    2011-01-01

    This paper continues our exploration of homology cobordism of 3-manifolds using our recent results on Cheeger-Gromov rho-invariants associated to amenable representations. We introduce a new type of torsion in 3-manifold groups we call hidden torsion, and an algebraic approximation we call local hidden torsion. We construct infinitely many hyperbolic 3-manifolds which have local hidden torsion in the transfinite lower central subgroup. By realizing Cheeger-Gromov invariants over amenable groups, we show that our hyperbolic 3-manifolds are not pairwise homology cobordant, yet remain indistinguishable by any prior known homology cobordism invariants.

  7. Threading homology through algebra selected patterns

    CERN Document Server

    Boffi, Giandomenico

    2006-01-01

    Aimed at graduate students and researchers in mathematics, this book takes homological themes, such as Koszul complexes and their generalizations, and shows how these can be used to clarify certain problems in selected parts of algebra, as well as their success in solving a number of them. - ;Threading Homology through Algebra takes homological themes (Koszul complexes and their variations, resolutions in general) and shows how these affect the perception of certain problems in selected parts of algebra, as well as their success in solving a number of them. The text deals with regular local ri

  8. The homologous recombination system of Ustilago maydis.

    Science.gov (United States)

    Holloman, William K; Schirawski, Jan; Holliday, Robin

    2008-08-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.

  9. Chikusetsusaponin IVa Methyl Ester Isolated from the Roots of Achyranthes japonica Suppresses LPS-Induced iNOS, TNF-α, IL-6, and IL-1β Expression by NF-κB and AP-1 Inactivation.

    Science.gov (United States)

    Lee, Hae-Jun; Shin, Ji-Sun; Lee, Woo-Seok; Shim, Heon-Yong; Park, Ji-Min; Jang, Dae-Sik; Lee, Kyung-Tae

    2016-01-01

    We investigated the effect of chikusetsusaponin IVa (CS) and chikusetsusaponin IVa methyl ester (CS-ME) from the roots of Achyranthes japonica NAKAI on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW264.7 macrophages. CS-ME more potently inhibited LPS-induced NO and PGE2 production than CS. CS-ME concentration-dependently inhibited LPS-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 and IL-1β production in RAW264.7 macrophages and mouse peritoneal macrophages. Consistent with these findings, CS-ME suppressed LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 at protein level as well as iNOS, COX-2, TNF-α, IL-6, and IL-1β at mRNA level. In addition, CS-ME suppressed LPS-induced transcriptional activity of nuclear factor (NF)-κB and activator protein (AP)-1. The anti-inflammatory properties of CS-ME might result from suppression of iNOS, COX-2, TNF-α, IL-6, and IL-1β expression through downregulation of NF-κB and AP-1 in macrophages.

  10. TGF-β2 induces Grb2 to recruit PI3-K to TGF-RII that activates JNK/AP-1-signaling and augments invasiveness of Theileria-transformed macrophages.

    Science.gov (United States)

    Haidar, Malak; Whitworth, Jessie; Noé, Gaelle; Liu, Wang Qing; Vidal, Michel; Langsley, Gordon

    2015-10-29

    Theileria-infected macrophages display many features of cancer cells such as heightened invasive capacity; however, the tumor-like phenotype is reversible by killing the parasite. Moreover, virulent macrophages can be attenuated by multiple in vitro passages and so provide a powerful model to elucidate mechanisms related to transformed macrophage virulence. Here, we demonstrate that in two independent Theileria-transformed macrophage cell lines Grb2 expression is down-regulated concomitant with loss of tumor virulence. Using peptidimer-c to ablate SH2 and SH3 interactions of Grb2 we identify TGF-receptor II and the p85 subunit of PI3-K, as Grb2 partners in virulent macrophages. Ablation of Grb2 interactions reduces PI3-K recruitment to TGF-RII and decreases PIP3 production, and dampens JNK phosphorylation and AP-1-driven transcriptional activity down to levels characteristic of attenuated macrophages. Loss of TGF-R>PI3-K>JNK>AP-1 signaling negatively impacts on virulence traits such as reduced JAM-L/ITG4A and Fos-B/MMP9 expression that contribute to virulent macrophage adhesion and invasiveness.

  11. Cafestol, a coffee-specific diterpene, is a novel extracellular signal-regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages.

    Science.gov (United States)

    Shen, Ting; Lee, Jaehwi; Lee, Eunji; Kim, Seong Hwan; Kim, Tae Woong; Cho, Jae Youl

    2010-01-01

    Coffee is a popular beverage worldwide with various nutritional benefits. Diterpene cafestol, one of the major components of coffee, contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects. In this study, we examined the precise molecular mechanism of the antiinflammatory activity of cafestol in terms of prostaglandin E(2) (PGE(2)) production, a critical factor involved in inflammatory responses. Cafestol inhibited both PGE(2) production and the mRNA expression of cyclooxygenase (COX)-2 from lipopolysaccharide (LPS)-treated RAW264.7 cells. Interestingly, this compound strongly decreased the translocation of c-Jun into the nucleus and AP-1 mediated luciferase activity. In kinase assays using purified extracellular signal-regulated kinase 2 (ERK2) or immunoprecipitated ERK prepared from LPS-treated cells in the presence or absence of cafestol, it was found that this compound can act as an inhibitor of ERK2 but not of ERK1 and mitogen-activated protein kinase kinase 1 (MEK 1). Therefore our data suggest that cafestol may be a novel ERK inhibitor with AP-1-targeted inhibitory activity against PGE(2) production in LPS-activated RAW264.7 cells.

  12. Luteolin 8-C-β-fucopyranoside inhibits invasion and suppresses TPA-induced MMP-9 and IL-8 via ERK/AP-1 and ERK/NF-κB signaling in MCF-7 breast cancer cells.

    Science.gov (United States)

    Park, Su-Ho; Kim, Jung-Hee; Lee, Dong-Hun; Kang, Jeong-Woo; Song, Hyuk-Hwan; Oh, Sei-Ryang; Yoon, Do-Young

    2013-11-01

    Matrix metalloproteinase 9 (MMP-9) and interleukin-8 (IL-8) play major roles in tumor progression and invasion of breast cancer cells. The present study was undertaken to investigate the inhibitory mechanism of cell invasion by luteolin 8-C-β-fucopyranoside (named as LU8C-FP), a C-glycosylflavone, in human breast cancer cells. We investigated whether LU8C-FP would inhibit MMP-9 activation and IL-8 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 breast cancer cells. LU8C-FP suppressed TPA-induced MMP-9 and IL-8 secretion and mRNA expression via inhibition of the MAPK signaling pathway and down-regulation of nuclear AP-1 and NF-κB. TPA-induced phosphorylation of ERK 1/2 was suppressed by LU8C-FP, whereas JNK and p38 MAPK phosphorylation were unaffected. In addition, LU8C-FP blocked the ERK 1/2 pathways following expression of MMP-9 and IL-8. These results suggest LU8C-FP may function to suppress invasion of breast cancer cells through the ERK/AP-1 and ERK/NF-κB signaling cascades.

  13. Comparison of the molecular topologies of stress-activated transcription factors HSF1, AP-1, NRF2, and NF-κB in their induction kinetics of HMOX1.

    Science.gov (United States)

    Pronk, Tessa E; van der Veen, Jochem W; Vandebriel, Rob J; van Loveren, Henk; de Vink, Erik P; Pennings, Jeroen L A

    2014-10-01

    For cells, reacting aptly to changes in their environment is of critical importance. The protein Heme oxygenase-1 (HMOX1) plays a critical role as a guard of cellular homeostasis and is considered as a reliable indicator of cellular oxidative stress. A better insight in the regulation of HMOX1 would assist in understanding the physiological role of HMOX1 as well as improving functional interpretation of the gene as a biomarker in toxicogenomics. Remarkably, as many as four transcription factors are known to regulate the HMOX1 gene: HSF1, AP-1, NRF2, and NF-κB. To investigate induction kinetics of these transcription factors, we constructed mathematical simulation models for each of them. We included the topology of the known interactions of molecules involved in the activation of the transcription factors, and the feedback loops resulting in their down-regulation. We evaluate how the molecular circuitries associated with the different transcription factors differ in their kinetics regarding HMOX1 induction, under different scenarios of acute and less acute stress. We also evaluate the combined effect of the four transcription factors on HMOX1 expression and the resulting alleviation of stress. Overall, the results support the assumption of different biological roles for the four transcription factors, with AP-1 being a fast acting general stress response protein at the expense of efficiency, and NRF2 being important for cellular homeostasis in maintaining low levels of oxidative stress.

  14. Excretory-secretory products of Giardia lamblia induce interleukin-8 production in human colonic cells via activation of p38, ERK1/2, NF-κB and AP-1.

    Science.gov (United States)

    Lee, H-Y; Hyung, S; Lee, N Y; Yong, T-S; Han, S-H; Park, S-J

    2012-04-01

    Giardia lamblia, a pathogen causing diarrhoeal outbreaks, is interesting how it triggers immune response in the human epithelial cells. This study defined the crucial roles of signalling components involved in G. lamblia-induced cytokine production in human epithelial cells. Incubation of the gastrointestinal cell line HT-29 with G. lamblia GS trophozoites triggered production of interleukin (IL)-1β, IL-8 and tumour necrosis factor (TNF)-α. IL-8 production was not significantly decreased by physically separating the HT-29 cells and G. lamblia GS trophozoites. Indeed, treatment of HT-29 with G. lamblia excretory-secretory products (ESP) induced IL-8 production. Electrophoretic mobility gel shift and transfection assays using mutagenized IL-8 promoter reporter plasmids indicated that IL-8 production by G. lamblia ESP occurs through activation of two transcriptional factors, nuclear factor kappaB (NF-κB) and activator protein 1 (AP-1) in HT-29 cells. In addition, activation of two mitogen-activated protein kinases (MAPKs), p38 and ERK1/2, was also detected in the HT-29 cells stimulated with G. lamblia ESP. Selective inhibition of these MAPKs resulted in decreased production of ESP-induced IL-8. These results indicate that activation of p38, ERK1/2 MAPK, NF-κB and AP-1 comprises the signalling pathway responsible for IL-8 production by G. lamblia ESP.

  15. Dualities in Persistent (Co)Homology

    Energy Technology Data Exchange (ETDEWEB)

    de Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-09-16

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establishalgebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existingalgorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. Wepresent experimental evidence for the practical efficiency of the latter algorithm.

  16. The homologous recombination system of Ustilago maydis

    OpenAIRE

    Holloman, William K.; Schirawski, Jan; Holliday, Robin

    2008-01-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we...

  17. Homolog pairing and segregation in Drosophila meiosis.

    Science.gov (United States)

    McKee, B D

    2009-01-01

    Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.

  18. On the hodological criterion for homology

    Science.gov (United States)

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  19. A Khovanov Type Link Homology with Geometric Interpretation

    Institute of Scientific and Technical Information of China (English)

    Mei Li ZHANG; Feng Chun LEI

    2016-01-01

    We study a Khovanov type homology close to the original Khovanov homology theory from Frobenius system. The homology is an invariant for oriented links up to isotopy by applying a tautological functor on the geometric complex. The homology has also geometric descriptions by introducing the genus generating operations. We prove that Jones Polynomial is equal to a suitable Euler characteristic of the homology groups. As an application, we compute the homology groups of (2, k)-torus knots for every k∈N.

  20. Investigating homology between proteins using energetic profiles.

    Directory of Open Access Journals (Sweden)

    James O Wrabl

    2010-03-01

    Full Text Available Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved

  1. Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression

    Energy Technology Data Exchange (ETDEWEB)

    Pozas, E. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain); Planas, A.M. [Departament de Farmacologia i Toxicologia, IIBB, CSIC Barcelona (Spain); Ferrer, I. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain)

    1997-07-14

    Ionizing radiation produces apoptosis in the developing rat brain. Strong c-Jun immunoreactivity, as revealed with the antibody c-Jun/AP-1 (N) which is raised against the amino acids 91-105 mapping with the amino terminal domain of mouse c-Jun p39, is simultaneously observed in the nucleus and cytoplasm of apoptotic cells. Western blotting of total brain homogenates, using the same antibody, shows a p39 band in control rats which is accompanied by a strong, phosphorylated p62 double-band in irradiated animals. In addition, increased c-Jun N-terminal kinase 1 expression, as found on western blots, is found in irradiated rats when compared with controls. Intraperitoneal injection of kainic acid at convulsant doses to the adult rat produces cell death with morphological features of necrosis, together with the appearance of cells with fine granular chromatin degeneration and small numbers of apoptotic-like cells, in the entorhinal and piriform cortices, basal amygdala, certain thalamic nuclei, and CA1 region of the hippocampus. c-Jun expression in kainic acid-treated rats, as revealed with the c-Jun/AP-1 (N) antibody, is found in the nuclei of a minority of cells in the same areas. The vast majority of c-Jun-immunoreactive cells have normal nuclear morphology, whereas necrotic cells are negative and only a few cells with fine granular chromatin condensation and apoptotic cells following kainic acid injection are stained with c-Jun antibodies. Western blotting, using the same antibody, shows a p39 band in control rats, which is accompanied by a band at about p26 from 6 h onwards following kainic acid injection. Decreased c-Jun N-terminal kinase 1 expression, as revealed on western blots, is observed in kainic acid-treated rats.These results show that the antibody c-Jun/AP-1 (N) recognizes three different forms of c-Jun-related immunoreactivity in normal and pathological states, which are associated with the different outcome of cells. These results stress the necessity

  2. Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages.

    Science.gov (United States)

    Park, Jun-Young; Chung, Tae-Wook; Jeong, Yun-Jeong; Kwak, Choong-Hwan; Ha, Sun-Hyung; Kwon, Kyung-Min; Abekura, Fukushi; Cho, Seung-Hak; Lee, Young-Choon; Ha, Ki-Tae; Magae, Junji; Chang, Young-Chae; Kim, Cheorl-Ho

    2017-01-01

    The natural fungal compound ascofuranone (5-chloro-3-[(2E,6E)-7-[(2S)-5,5-dimethyl-4-oxo-tetrahydrofuran-2-yl]-3-methyl-octa-2,6-dienyl]-2,4-dihydroxy-6-methyl-benzaldehyde, MW 420.93) (AF) isolated from Ascochyta viciae has been known to promote cell cycle arrest and inhibit invasion of tumor cells. We have previously studied a structurally similar compound ascochlorin (ASC; MW 404.93) with regard to its anti-inflammatory activity in LPS- stimulated RAW 264.7 macrophages. In order to examine the relationship between the anti-inflammatory activities and the molecular differences between AF and ASC, the activity of AF is herein studied, because ASC has a unique trimethyl oxocyclohexyl structure, while AF has a unique dimethyl-oxo-tetrahydrofuran structure. AF dose-dependently inhibited the production of NO and iNOS and the COX-2 mRNA and protein levels in RAW 264.7 cells. In addition, AF suppressed mRNA expression levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, as assessed by RT-PCR. AF (30-50 μg/ml) treatment clearly inhibited the nuclear translocation of NF-κB, AP-1 (p-c-Jun) from the cytosolic space. Phosphorylation of IκB, which functions to maintain the activity of NF-κB, was decreased by AF treatment. Moreover, AF suppressed the binding of NF-κB (p65). Inhibition of IkBa phosphorylation and degradation inhibits nuclear translocation of p65. Immunofluorescence confocal microscopy analysis also revealed that translocation of NF-κB and AP-1 (p-c-Jun) was decreased upon AF treatment. AF specifically decreased the expression level of p-ERK, but not the expression level of p-p38 or p-JNK. Given these results, we suggest that AF suppresses the inflammatory response by targeting p-ERK. This indicates that AF is a negative regulator of LPS-stimulated nuclear translocation of NF-κB and AP-1 (p-c-Jun) in RAW 264.7 macrophages, and specifically it targets p-ERK. Therefore, AF and ASC exert their effects in different ways, most probably because

  3. Hyper(co)homology for exact left covariant functors and a homology theory for topological spaces

    Science.gov (United States)

    Sklyarenko, E. G.

    1995-06-01

    Contents Introduction §1. Strong cohomology of dual complexes §2. Hyperhomology §3. Examples §4. Typical limit relations for Steenrod-Sitnikov homology §5. The strong homology of topological spaces §6. On the special position held by singular theory Bibliography

  4. [DNA homologous recombination repair in mammalian cells].

    Science.gov (United States)

    Popławski, Tomasz; Błasiak, Janusz

    2006-01-01

    DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.

  5. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion.

    Science.gov (United States)

    Presser, Lance D; McRae, Steven; Waris, Gulam

    2013-01-01

    Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1) in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP) assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs) activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA) and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection.

  6. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion.

    Directory of Open Access Journals (Sweden)

    Lance D Presser

    Full Text Available Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1 in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection.

  7. Dimerumic Acid Inhibits SW620 Cell Invasion by Attenuating H2O2-Mediated MMP-7 Expression via JNK/C-Jun and ERK/C-Fos Activation in an AP-1-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Bing-Ying Ho, Yao-Ming Wu, King-Jen Chang, Tzu-Ming Pan

    2011-01-01

    Full Text Available Reactive oxygen species (ROS such as hydrogen peroxide (H2O2 in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA for H2O2 isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H2O2 exposure was mediated by activation of mitogen-activated protein kinases (MAPKs such as Jun N-terminal kinase (JNK, extracellular-regulated kinase (ERK, and p38 kinase. DMA pretreatment suppressed activation of H2O2-mediated MAPK pathways and cell invasion. Moreover, H2O2-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1-dependent manner. Taken together, these results suggest that DMA suppresses H2O2-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes.

  8. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  9. Relative Derived Equivalences and Relative Homological Dimensions

    Institute of Scientific and Technical Information of China (English)

    Sheng Yong PAN

    2016-01-01

    Let A be a small abelian category. For a closed subbifunctor F of Ext1A (−,−), Buan has generalized the construction of Verdier’s quotient category to get a relative derived category, where he localized with respect to F-acyclic complexes. In this paper, the homological properties of relative derived categories are discussed, and the relation with derived categories is given. For Artin algebras, using relative derived categories, we give a relative version on derived equivalences induced by F-tilting complexes. We discuss the relationships between relative homological dimensions and relative derived equivalences.

  10. New mesogenic homologous series of -methylcinnamates

    Indian Academy of Sciences (India)

    R A Vora; A K Prajapati

    2001-04-01

    Compounds of a new smectogenic homologous series of -methylcinnamates were prepared by condensing different 4--alkoxybenzoyl chloride with methoxyethyl trans-4-hydroxy- -methylcinnamate. In this series, the first six members are non-mesogenic. -Heptyloxy derivative exhibits monotropic smectic A phase whereas rest of the members exhibit enantiotropic smectic A mesophase. The compounds are characterized by combination of elemental analysis and spectroscopic techniques. Enthalpies of few homologues are measured by DSC techniques. Fluorescent properties are also observed. The thermal stabilities of the present series are compared with those of other structurally related mesogenic homologous series.

  11. Homological and homotopical Dehn functions are different

    CERN Document Server

    Abrams, Aaron; Dani, Pallavi; Young, Robert

    2012-01-01

    The homological and homotopical Dehn functions are different ways of measuring the difficulty of filling a closed curve inside a group or a space. The homological Dehn function measures fillings of cycles by chains, while the homotopical Dehn function measures fillings of curves by disks. Since the two definitions involve different sorts of boundaries and fillings, there is no a priori relationship between the two functions, but prior to this work there were no known examples of finitely-presented groups for which the two functions differ. This paper gives the first such examples, constructed by amalgamating a free-by-cyclic group with several Bestvina-Brady groups.

  12. Homology and cohomology of Rees semigroup algebras

    DEFF Research Database (Denmark)

    Grønbæk, Niels; Gourdeau, Frédéric; White, Michael C.

    2011-01-01

    Let S by a Rees semigroup, and let 1¹(S) be its convolution semigroup algebra. Using Morita equivalence we show that bounded Hochschild homology and cohomology of l¹(S) is isomorphic to those of the underlying discrete group algebra.......Let S by a Rees semigroup, and let 1¹(S) be its convolution semigroup algebra. Using Morita equivalence we show that bounded Hochschild homology and cohomology of l¹(S) is isomorphic to those of the underlying discrete group algebra....

  13. Homological stability for unordered configuration spaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2013-01-01

    This paper consists of two related parts. In the first part we give a self-contained proof of homological stability for the spaces C_n(M;X) of configurations of n unordered points in a connected open manifold M with labels in a path-connected space X, with the best possible integral stability range...

  14. Persistent Homology for Random Fields and Complexes

    CERN Document Server

    Adler, Robert J; Borman, Matthew S; Subag, Eliran; Weinberger, Shmuel

    2010-01-01

    We discuss and review recent developments in the area of applied algebraic topology, such as persistent homology and barcodes. In particular, we discuss how these are related to understanding more about manifold learning from random point cloud data, the algebraic structure of simplicial complexes determined by random vertices, and, in most detail, the algebraic topology of the excursion sets of random fields.

  15. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  16. Gorenstein Homological Dimensions and Change of Rings

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan YANG

    2012-01-01

    In this paper,we shall be concerned with what happens of Gorenstein homological dimensions when certain modifications are made to a ring. The five structural operations addressed later are the formation of excellent extensions,localizations,Morita equivalences,polynomial extensions and power series extensions.

  17. Persistent homology in graph power filtrations.

    Science.gov (United States)

    Parks, Allen D; Marchette, David J

    2016-10-01

    The persistence of homological features in simplicial complex representations of big datasets in R (n) resulting from Vietoris-Rips or Čech filtrations is commonly used to probe the topological structure of such datasets. In this paper, the notion of homological persistence in simplicial complexes obtained from power filtrations of graphs is introduced. Specifically, the rth complex, r ≥ 1, in such a power filtration is the clique complex of the rth power G(r) of a simple graph G. Because the graph distance in G is the relevant proximity parameter, unlike a Euclidean filtration of a dataset where regional scale differences can be an issue, persistence in power filtrations provides a scale-free insight into the topology of G. It is shown that for a power filtration of G, the girth of G defines an r range over which the homology of the complexes in the filtration are guaranteed to persist in all dimensions. The role of chordal graphs as trivial homology delimiters in power filtrations is also discussed and the related notions of 'persistent triviality', 'transient noise' and 'persistent periodicity' in power filtrations are introduced.

  18. Khovanov homology for virtual tangles and applications

    DEFF Research Database (Denmark)

    Tubbenhauer, Daniel

    We extend the cobordism based categorification of the virtual Jones polynomial to virtual tangles. This extension is combinatorial and has semi-local properties. We use the semi-local property to prove an applications, i.e. we give a discussion of Lee's degeneration of virtual homology....

  19. Homological Perturbation Theory and Mirror Symmetry

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU

    2003-01-01

    We explain how deformation theories of geometric objects such as complex structures,Poisson structures and holomorphic bundle structures lead to differential Gerstenhaber or Poisson al-gebras. We use homological perturbation theory to construct A∞ algebra structures on the cohomology,and their canonically defined deformations. Such constructions are used to formulate a version of A∞algebraic mirror symmetry.

  20. Homology stability for the general linear group

    NARCIS (Netherlands)

    Maazen, Hendrik

    1979-01-01

    This thesis studies the homology stability problem for general linear groups over Euclidean rings and over subrings of the field of rational numbers. Affine linear groups, acting on affine space rather than linear space, are also considered. In order to get stability results one establishes that cer

  1. HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s alternative to the pPGI-pPGM-AGP pathway.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a involves plastidic phosphoglucomutase (pPGM, ADPglucose (ADPG pyrophosphorylase (AGP and starch synthase (SS, and (b is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI. This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b pPGM and AGP are not major determinants of intracellular ADPG content, and (c the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.

  2. The dysregulation of the monocyte/macrophage effector function induced by isopropanol is mediated by the defective activation of distinct members of the AP-1 family of transcription factors.

    Science.gov (United States)

    Carignan, Damien; Désy, Olivier; de Campos-Lima, Pedro O

    2012-01-01

    Isopropanol is the second most common cause of short-chain alcohol acute intoxication. Nonethanolic short-chain alcohols mediate their immunomodulatory effect by interfering with nuclear factor of activated T cells (NFAT) activation with or without additional activator protein-1 (AP-1) involvement. In the present study, we examined the immunomodulation induced by isopropanol in conditions that are not reliant on NFAT: the inflammatory cytokine response of lipopolysaccharide (LPS)-stimulated monocytes. Our hypothesis was that isopropanol acute exposure would have an attenuated effect or no consequence in this setting. To our surprise, the impairment of AP-1 activation was sufficient to mediate a severe and dose-dependent phenotype in human monocytes in vitro at alcohol concentrations as low as 0.16% (or 26 mM). There were three outcomes: interleukin (IL)-1β/IL-8 were unaltered; IL-6 was upregulated; and tumor necrosis factor alpha (TNF-α)/CCL2 were downregulated. The effector function of human monocyte-derived macrophages was also compromised. Our results showed that Toll-like receptor 4 early signaling was preserved, as isopropanol did not change the kinase activity of the IL-1 receptor-associated kinase 1 in LPS-stimulated cells. The nuclear factor-κB signaling cascade and the p38/c-Jun N-terminal kinase modules of the mitogen-activated protein kinase pathway were alcohol insensitive. Conversely, the activation of extracellular signal-regulated protein kinase and, ultimately, of c-Fos and JunB were impaired. The alcohol-induced cytokine dysregulation was confirmed in a mouse model of isopropanol intoxication in which the production of TNF-α in response to LPS challenge was virtually abolished. The magnitude of this alcohol effect was sufficiently high to rescue animals from LPS-induced toxic shock. Our data contribute to the dismal body of information on the immunotoxicology of isopropanol, one of the most ubiquitous chemicals to which the general population

  3. Prednisone inhibits the IL-1β-induced expression of COX-2 in HEI-OC1 murine auditory cells through the inhibition of ERK-1/2, JNK-1 and AP-1 activity.

    Science.gov (United States)

    Hong, Hua; Jang, Byeong-Churl

    2014-12-01

    Hearing loss can be induced by multiple causes, including cochlear inflammation. Prednisone (PDN) is a well-known steroid clinically used in the treatment of hearing loss. In the present study, we investigated the inhibitory effects and the mechanisms of action of PDN on the expression of cyclooxygenase (COX)-2, an inflammatory enzyme involved in the production of prostaglandins (PGs), in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells (a murine auditory cell line) treated with the inflammatory cytokine, interleukin (IL)-1β. The exposure of HEI-OC1 cells to IL-1β increased COX-2 protein and mRNA expression, COX-2 promoter-driven luciferase activity and COX-2 enzymatic activity [as indicated by the increased production of prostaglandin E2 (PGE2), a major COX-2 metabolite]. However, PDN markedly inhibited the IL-1β-induced COX-2 protein and mRNA expression, COX-2 promoter activity and PGE2 production in the HEI-OC1 cells without affecting COX-2 protein and mRNA stability. PDN further inhibited the IL-1β-induced activation of extracellular signal-regulated kinase (ERK)-1/2 and c-Jun N-terminal kinase (JNK)-1, but had no effect on the cytokine-induced activation of p38 MAPK and proteolysis of IκB-α, a nuclear factor-κB (NF-κB) inhibitory protein. PDN also partially suppressed the IL-1β‑induced activation of activator protein (AP)-1 (but not that of NF-κB) promoter-driven luciferase activity. Of note, the inhibitory effects of PDN on the IL-1β-induced expression of COX-2 and the activation of ERK-1/2 and JNK-1 in the HEI-OC1 cells were significantly diminished by RU486, a glucocorticoid receptor (GR) antagonist, suggesting that PDN exerts its inhibitory effects through GR. To the best of our knowledge, our study demonstrates for the first time that PDN inhibits the IL-1β-induced COX-2 expression and activity in HEI-OC1 cells by COX-2 transcriptional repression, which is partly associated with the inhibition of ERK-1/2, JNK-1 and AP-1 activation.

  4. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030 were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP. MicroRNA-4284 (miR-4284 was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK/stress-activated protein kinase (SAPK, resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an

  5. Translated points and Rabinowitz Floer homology

    CERN Document Server

    Albers, Peter

    2011-01-01

    We prove that if a contact manifold admits an exact filling then every local contactomorphism isotopic to the identity admits a translated point in the interior of its support, in the sense of Sandon [San11b]. In addition we prove that if the Rabinowitz Floer homology of the filling is non-zero then every contactomorphism isotopic to the identity admits a translated point, and if the Rabinowitz Floer homology of the filling is infinite dimensional then every contactmorphism isotopic to the identity has either infinitely many translated points, or a translated point on a closed leaf. Moreover if the contact manifold has dimension greater than or equal to 3, the latter option generically doesn't happen. Finally, we prove that a generic contactomorphism on $\\mathbb{R}^{2n+1}$ has infinitely many geometrically distinct iterated translated points all of which lie in the interior of its support.

  6. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  7. Relative K-homology and normal operators

    DEFF Research Database (Denmark)

    Manuilov, Vladimir; Thomsen, Klaus

    2009-01-01

    Let $A$ be a $C^*$-algebra, $J \\subset A$ a $C^*$-subalgebra, and let $B$ be a stable $C^*$-algebra. Under modest assumptions we organize invertible $C^*$-extensions of $A$ by $B$ that are trivial when restricted onto $J$ to become a group $\\mathrm{Ext}_J^{-1}(A,B)$, which can be computed by a six......-term exact sequence which generalizes the excision six-term exact sequence in the first variable of KK-theory. Subsequently we investigate the relative K-homology which arises from the group of relative extensions by specializing to abelian $C^*$-algebras. It turns out that this relative K-homology carries...... substantial information also in the operator theoretic setting from which the BDF theory was developed and we conclude the paper by extracting some of this information on approximation of normal operators....

  8. Homological Pisot Substitutions and Exact Regularity

    CERN Document Server

    Barge, Marcy; Jones, Leslie; Sadun, Lorenzo

    2010-01-01

    We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and where the first rational Cech cohomology is d-dimensional. We construct examples of such "homological Pisot" substitutions that do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide a power of the norm of the dilatation. To support this conjecture, we show that homological Pisot substitutions exhibit an Exact Regularity Property (ERP), in which the number of occurrences of a patch for a return length is governed strictly by the length. The ERP puts strong constraints on the measure of any cylinder set in the corresponding tiling space.

  9. Homology and phylogeny and their automated inference

    Science.gov (United States)

    Fuellen, Georg

    2008-06-01

    The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.

  10. Homological Methods in Equations of Mathematical Physics

    OpenAIRE

    Krasil'shchik, Joseph; Verbovetsky, Alexander

    1998-01-01

    These lecture notes are a systematic and self-contained exposition of the cohomological theories naturally related to partial differential equations: the Vinogradov C-spectral sequence and the C-cohomology, including the formulation in terms of the horizontal (characteristic) cohomology. Applications to computing invariants of differential equations are discussed. The lectures contain necessary introductory material on the geometric theory of differential equations and homological algebra.

  11. Nash equilibria via duality and homological selection

    Indian Academy of Sciences (India)

    Arnab Basu; Samik Basu; Mahan MJ

    2014-11-01

    Given a multifunction from to the -fold symmetric product Sym$_{k}(X)$, we use the Dold–Thom theorem to establish a homological selection theorem. This is used to establish existence of Nash equilibria. Cost functions in problems concerning the existence of Nash equilibria are traditionally multilinear in the mixed strategies. The main aim of this paper is to relax the hypothesis of multilinearity. We use basic intersection theory, Poincaré duality in addition to the Dold–Thom theorem.

  12. Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii).

    Science.gov (United States)

    Shimada, Kenshu

    2002-01-01

    The dentitions of lamniform sharks are said to exhibit a unique heterodonty called the "lamnoid tooth pattern." The presence of an inflated hollow "dental bulla" on each jaw cartilage allows the recognition of homologous teeth across most modern macrophagous lamniforms based on topographic correspondence through the "similarity test." In most macrophagous lamniforms, three tooth rows are supported by the upper dental bulla: two rows of large anterior teeth followed by a row of small intermediate teeth. The lower tooth row occluding between the two rows of upper anterior teeth is the first lower anterior tooth row. Like the first and second lower anterior tooth rows, the third lower tooth row is supported by the dental bulla and may be called the first lower intermediate tooth row. The lower intermediate tooth row occludes between the first and second upper lateral tooth rows situated distal to the upper dental bulla, and the rest of the upper and lower tooth rows, all called lateral tooth rows, occlude alternately. Tooth symmetry cannot be used to identify their dental homology. The presence of dental bullae can be regarded as a synapomorphy of Lamniformes and this character is more definable than the "lamnoid tooth pattern." The formation of the tooth pattern appears to be related to the evolution of dental bullae. This study constitutes the first demonstration of supraspecific tooth-to-tooth dental homologies in nonmammalian vertebrates.

  13. Note on homological modeling of the electric circuits

    OpenAIRE

    2014-01-01

    Based on a simple example, it is explained how the homological analysis may be applied for modeling of the electric circuits. The homological branch, mesh and nodal analyses are presented. Geometrical interpretations are given.

  14. Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Choo, Jin Ho; Han, Changpyo; Kim, Jae-Young; Kang, Hyun Ah

    2014-10-01

    Targeted gene replacement in the thermotolerant yeast Kluyveromyces marxianus KCTC 17555 has been hampered by its propensity to non-homologous end joining (NHEJ). To enhance homologous recombination (HR) by blocking NHEJ, we identified and disrupted the K. marxianus KU80 gene. The ku80 deletion mutant strain (Kmku80∆) of K. marxianus KCTC 17555 did not show apparent growth defects under several conditions with the exception of exposure to tunicamycin. The targeted disruption of the three model genes, KmLEU2, KmPDC1, and KmPDC5, was increased by 13-70 % in Kmku80∆, although the efficiency was greatly affected by the length of the homologous flanking fragments. In contrast, the double HR frequency was 0-13.7 % in the wild-type strain even with flanking fragments 1 kb long. Therefore, Kmku80∆ promises to be a useful recipient strain for targeted gene manipulation.

  15. PRIMO: An Interactive Homology Modeling Pipeline

    Science.gov (United States)

    Glenister, Michael

    2016-01-01

    The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO’s automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/. PMID:27855192

  16. Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding.

    Science.gov (United States)

    Das, B; Shu, X; Day, G J; Han, J; Krishna, U M; Falck, J R; Broek, D

    2000-05-19

    Vav and Sos1 are Dbl family guanine nucleotide exchange factors, which activate Rho family GTPases in response to phosphatidylinositol 3-kinase products. A pleckstrin homology domain adjacent to the catalytic Dbl homology domain via an unknown mechanism mediates the effects of phosphoinositides on guanine nucleotide exchange activity. Here we tested the possibility that phosphatidylinositol 3-kinase substrates and products control an interaction between the pleckstrin homology domain and the Dbl homology domain, thereby explaining the inhibitory effects of phosphatidylinositol 3-kinase substrates and stimulatory effects of the products. Binding studies using isolated fragments of Vav and Sos indicate phosphatidylinositol 3-kinase substrate promotes the binding of the pleckstrin homology domain to the Dbl homology domain and blocks Rac binding to the DH domain, whereas phosphatidylinositol 3-kinase products disrupt the Dbl homology/pleckstrin homology interactions and permit Rac binding. Additionally, Lck phosphorylation of Vav, a known activating event, reduces the affinities between the Vav Dbl homology and pleckstrin homology domains and permits Rac binding. We also show Vav activation in cells, as monitored by phosphorylation of Vav, Vav association with phosphatidylinositol 3,4,5-trisphosphate, and Vav guanine nucleotide exchange activity, is blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest the molecular mechanisms for activation of Vav and Sos1 require disruption of inhibitory intramolecular interactions involving the pleckstrin homology and Dbl homology domains.

  17. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  18. Periodic cyclic homology of affine Hecke algebras

    CERN Document Server

    Solleveld, Maarten

    2009-01-01

    This is the author's PhD-thesis, which was written in 2006. The version posted here is identical to the printed one. Instead of an abstract, the short list of contents: Preface 5 1 Introduction 9 2 K-theory and cyclic type homology theories 13 3 Affine Hecke algebras 61 4 Reductive p-adic groups 103 5 Parameter deformations in affine Hecke algebras 129 6 Examples and calculations 169 A Crossed products 223 Bibliography 227 Index 237 Samenvatting 245 Curriculum vitae 253

  19. Identification of plant microRNA homologs.

    Science.gov (United States)

    Dezulian, Tobias; Remmert, Michael; Palatnik, Javier F; Weigel, Detlef; Huson, Daniel H

    2006-02-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that regulate gene and protein expression in plants and animals. MiRNAs have so far been identified mostly by specific cloning of small RNA molecules, complemented by computational methods. We present a computational identification approach that is able to identify candidate miRNA homologs in any set of sequences, given a query miRNA. The approach is based on a sequence similarity search step followed by a set of structural filters.

  20. Railway vehicle performance optimisation using virtual homologation

    Science.gov (United States)

    Magalhães, H.; Madeira, J. F. A.; Ambrósio, J.; Pombo, J.

    2016-09-01

    Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are

  1. Excluded volume effect enhances the homology pairing of model chromosomes

    Science.gov (United States)

    Takamiya, Kazunori; Yamamoto, Keisuke; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.

  2. Excluded volume effect enhances the homology pairing of model chromosomes

    CERN Document Server

    Takamiya, Kazunori; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    2015-01-01

    To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.

  3. Exponential growth of colored HOMFLY-PT homology

    CERN Document Server

    Wedrich, Paul

    2016-01-01

    We define reduced colored sl(N) link homologies and use deformation spectral sequences to characterize their dependence on color and rank. We then define reduced colored HOMFLY-PT homologies and prove that they arise as large N limits of sl(N) homologies. Together, these results allow proofs of many aspects of the physically conjectured structure of the family of type A link homologies. In particular, we verify a conjecture of Gorsky, Gukov and Sto\\v{s}i\\'c about the growth of colored HOMFLY-PT homologies.

  4. UVB exposure enhanced benzanthrone-induced inflammatory responses in SKH-1 mouse skin by activating the expression of COX-2 and iNOS through MAP kinases/NF-κB/AP-1 signalling pathways.

    Science.gov (United States)

    Abbas, Sabiya; Alam, Shamshad; Pal, Anu; Kumar, Mahadeo; Singh, Dhirendra; Ansari, Kausar Mahmood

    2016-10-01

    This study was conducted to explore the role of UVB on benzanthrone (BA)-induced skin inflammation and its mechanism/s. SKH-1 hairless mice were topically exposed with BA (25 and 50 mg/kg b.wt) either alone or along with UVB (50 mJ/cm(2)) for 24 h and estimation of ROS, histopathological analysis, myeloperoxidase (MPO) activity, mast cell staining, immunohistochemistry for COX-2 and iNOS as well as western blotting for MAPKs, p-NF-κB, c-jun, c-fos COX-2 and iNOS were carried out. Enhanced ROS generation, increased epidermal thickness, mast cell number, MPO activity, enhanced expression of COX-2 and iNOS, MAPKs, c-jun, c-fos, NF-κB were found in BA either alone or when followed by UVB treatment, compared to the control groups. Expression of COX-2, iNOS and phosphorylation of ERK1/2 were found to be more enhanced in BA and UVB- exposed group compared to BA and UVB only group, while phosphorylation of JNK1/2, p38, NF-κB and expression of c-jun and c-fos were comparable with BA and UVB only groups. In summary, we suggest that UVB exposure enhanced BA-induced SKH-1 skin inflammation possibly via oxidative stress-mediated activation of MAPKs-NF-κB/AP-1 signalling, which subsequently increased the expression of COX-2 and iNOS and led to inflammation in SKH-1 mouse skin.

  5. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    Science.gov (United States)

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  6. Detailed assessment of homology detection using different substitution matrices

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Wei

    2006-01-01

    Homology detection plays a key role in bioinformatics, whereas substitution matrix is one of the most important components in homology detection. Thus, besides the improvement of alignment algorithms, another effective way to enhance the accuracy of homology detection is to use proper substitution matrices or even construct new matrices.A study on the features of various matrices and on the comparison of the performances between different matrices in homology detection enable us to choose the most proper or optimal matrix for some specific applications. In this paper, by taking BLOSUM matrices as an example, some detailed features of matrices in homology detection are studied by calculating the distributions of numbers of recognized proteins over different sequence identities and sequence lengths. Our results clearly showed that different matrices have different preferences and abilities to the recognition of remote homologous proteins. Furthermore, detailed features of the various matrices can be used to improve the accuracy of homology detection.

  7. Resonance for loop homology of spheres

    CERN Document Server

    Hingston, Nancy

    2011-01-01

    A Riemannian or Finsler metric on a compact manifold M gives rise to a length function on the free loop space \\Lambda M, whose critical points are the closed geodesics in the given metric. If X is a homology class on \\Lambda M, the minimax critical level cr(X) is a critical value. Let M be a sphere of dimension >2, and fix a metric g and a coefficient field G. We prove that the limit as deg(X) goes to infinity of cr(X)/deg(X) exists. We call this limit the "global mean frequency" of M. As a consequence we derive resonance statements for closed geodesics on spheres; in particular either all homology on \\Lambda M of sufficiently high degreee lies hanging on closed geodesics whose mean frequency (average index / length) equals the global mean frequency, or there is a sequence of infinitely many closed geodesics whose mean frequencies converge to the global mean frequency. The proof uses the Chas-Sullivan product and results of Goresky-Hingston [GH].

  8. Molecular Cloning and Functional Analysis of Three FLOWERING LOCUS T (FT Homologous Genes from Chinese Cymbidium

    Directory of Open Access Journals (Sweden)

    Weiting Huang

    2012-09-01

    Full Text Available The FLOWERING LOCUS T (FT gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense “Qi Jian Bai Mo”, Cymbidium goeringii and Cymbidium ensifolium “Jin Si Ma Wei”. The three genes contained 618-bp nucleotides with a 531-bp open reading frame (ORF of encoding 176 amino acids (AAs. Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94% with OnFT from Oncidium Gower Ramsey, 79% with Hd3a from Oryza sativa, and 74% with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark and short day (SD, 8-h light/16-h dark treatment. While the transcripts of both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT were higher under SD. Ectopic expression of CgFT in transgenic Arabidopsis plants resulted in early flowering compared to wild-type plants and significant up-regulation of APETALA1 (AP1 expression. Our data indicates that CgFT is a putative phosphatidylethanolamine-binding protein gene in Cymbidium that may regulate the vegetative to reproductive transition in flowers, similar to its Arabidopsis ortholog.

  9. Should nucleotide sequence analyzing computer algorithms always extend homologies by extending homologies?

    Science.gov (United States)

    Burnett, L; Basten, A; Hensley, W J

    1986-01-10

    Most computer algorithms used for comparing or aligning nucleotide sequences rely on the premise that the best way to extend a homology between the two sequences is to select a match rather than a mismatch. We have tested this assumption and found that it is not always valid.

  10. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-kappaB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents.

    Science.gov (United States)

    Giri, Rajan S; Thaker, Hardik M; Giordano, Tony; Williams, Jill; Rogers, Donna; Vasu, Kamala K; Sudarsanam, Vasudevan

    2010-04-01

    In an attempt to discover novel inhibitors of NF-kappaB and AP-1 mediated transcriptional activation utilizing the concept of chemical lead based medicinal chemistry and bioisosterism a series of 2-(2,3-disubstituted-thiophen-5-yl)-3H-quinazolin-4-one analogs was designed. A facile and simple route for the synthesis of the designed molecules was developed. Synthesized molecules were evaluated for their activity as inhibitors towards NF-kappaB and AP-1 mediated transcriptional activation in a cell line report-based assay. This series provides us with a substantial number of compounds inhibiting the activity of NF-kappaB and/or AP-1 mediated transcriptional activation. These compounds also exhibit anti-inflammatory and anti-cancer activity in in vivo models of inflammation and cancer. The 4-pyridyl group is found to be the most important pharmacophore on the third position of thiophene ring for inhibiting NF-kappaB and AP-1 mediated transcriptional activation. The relationships between the activities shown by these compounds in the in vivo and in vitro models have been established by using FVB transgenic mice model. These results suggest the suitability of the designed molecular framework as a potential scaffold for the design of molecules with inhibitory activity towards NF-kappaB and AP-1 mediated transcriptional activation, which may also exhibit anti-inflammatory and anti-cancer activity. This series of molecules warrants further study to explore their potential as therapies for use in chronic inflammatory conditions and cancer. Development of the synthetic protocol for the synthesis of this series of molecules, biological activities and a structure-activity relationship (SAR) have been discussed herein.

  11. Chatter detection in turning using persistent homology

    Science.gov (United States)

    Khasawneh, Firas A.; Munch, Elizabeth

    2016-03-01

    This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.

  12. Towards Stratification Learning through Homology Inference

    CERN Document Server

    Bendich, Paul; Wang, Bei

    2010-01-01

    A topological approach to stratification learning is developed for point cloud data drawn from a stratified space. Given such data, our objective is to infer which points belong to the same strata. First we define a multi-scale notion of a stratified space, giving a stratification for each radius level. We then use methods derived from kernel and cokernel persistent homology to cluster the data points into different strata, and we prove a result which guarantees the correctness of our clustering, given certain topological conditions; some geometric intuition for these topological conditions is also provided. Our correctness result is then given a probabilistic flavor: we give bounds on the minimum number of sample points required to infer, with probability, which points belong to the same strata. Finally, we give an explicit algorithm for the clustering, prove its correctness, and apply it to some simulated data.

  13. Homological mirror symmetry. New developments and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, Anton [California Inst. of Tech., Pasadena, CA (United States); Kreuzer, Maximilian [Technische Univ., Vienna (Austria). Inst. fuer Theoretische Physik; Schlesinger, Karl-Georg (eds.) [Vienna Univ. (Austria). Inst. fuer Theoretische Physik

    2009-07-01

    Homological Mirror Symmetry, the study of dualities of certain quantum field theories in a mathematically rigorous form, has developed into a flourishing subject on its own over the past years. The present volume bridges a gap in the literature by providing a set of lectures and reviews that both introduce and representatively review the state-of-the art in the field from different perspectives. With contributions by K. Fukaya, M. Herbst, K. Hori, M. Huang, A. Kapustin, L. Katzarkov, A. Klemm, M. Kontsevich, D. Page, S. Quackenbush, E. Sharpe, P. Seidel, I. Smith and Y. Soibelman, this volume will be a reference on the topic for everyone starting to work or actively working on mathematical aspects of quantum field theory. (orig.)

  14. Role of discs large homolog 5

    Institute of Scientific and Technical Information of China (English)

    Frauke Friedrichs; Monika Stoll

    2006-01-01

    In 2004, an association of genetic variation in the discs large homolog 5 (DLG5) gene with inflammatory bowel disease (IBD) was described in two large European study samples[1]. The initial report of DLG5 as a novel IBD susceptibility gene sparked a multitude of studies investigating its effect on CD and IBD, respectively,leading to controversial findings and ongoing discussions concerning the validity of the initial association finding and its role in the aetiology of Crohn disease. This review aims to summarize the current state of knowledge and to place the reported findings in the context of current concepts of complex diseases. This includes aspects of statistical power, phenotype differences and genetic heterogeneity between different populations as well as gene-gene and gene-environment interactions.

  15. Regulation of Homologous Recombination by SUMOylation

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina

    Double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions challenging genome integrity. The DNA damage response (DDR) promotes fast and effective detection and repair of the damaged DNA, leading to cell cycle arrest through checkpoint activation and the recruitment of repair...... factors such as the homologous recombination (HR) machinery. HR constitutes the main DSB repair pathway in Saccharomyces cerevisiae and despite being largely considered an error-free process and essential for genome stability, uncontrolled recombination can lead to loss of heterozygosity, translocations....... In this study I present new insights for the role of SUMOylation in regulating HR by dissecting the role of SUMO in the interaction between the central HR-mediator protein Rad52 and its paralogue Rad59 and the outcome of recombination. This data provides evidence for the importance of SUMO in promoting protein...

  16. How homologous recombination maintains telomere integrity.

    Science.gov (United States)

    Tacconi, Eliana M C; Tarsounas, Madalena

    2015-06-01

    Telomeres protect the ends of linear chromosomes against loss of genetic information and inappropriate processing as damaged DNA and are therefore crucial to the maintenance of chromosome integrity. In addition to providing a pathway for genome-wide DNA repair, homologous recombination (HR) plays a key role in telomere replication and capping. Consistent with this, the genomic instability characteristic of HR-deficient cells and tumours is driven in part by telomere dysfunction. Here, we discuss the mechanisms by which HR modulates the response to intrinsic cellular challenges that arise during telomere replication, as well as its impact on the assembly of telomere protective structures. How normal and tumour cells differ in their ability to maintain telomeres is deeply relevant to the search for treatments that would selectively eliminate cells whose capacity for HR-mediated repair has been compromised.

  17. The Chromosomal Courtship Dance-homolog pairing in early meiosis.

    Science.gov (United States)

    Klutstein, Michael; Cooper, Julia Promisel

    2014-02-01

    The intermingling of genomes that characterizes sexual reproduction requires haploid gametes in which parental homologs have recombined. For this, homologs must pair during meiosis. In a crowded nucleus where sequence homology is obscured by the enormous scale and packaging of the genome, partner alignment is no small task. Here we review the early stages of this process. Chromosomes first establish an initial docking site, usually at telomeres or centromeres. The acquisition of chromosome-specific patterns of binding factors facilitates homolog recognition. Chromosomes are then tethered to the nuclear envelope (NE) and subjected to nuclear movements that 'shake off' inappropriate contacts while consolidating homolog associations. Thereafter, homolog connections are stabilized by building the synaptonemal complex or its equivalent and creating genetic crossovers. Recent perspectives on the roles of these stages will be discussed.

  18. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Didelot Xavier

    2012-06-01

    Full Text Available Abstract Background Escherichia coli is an important species of bacteria that can live as a harmless inhabitant of the guts of many animals, as a pathogen causing life-threatening conditions or freely in the non-host environment. This diversity of lifestyles has made it a particular focus of interest for studies of genetic variation, mainly with the aim to understand how a commensal can become a deadly pathogen. Many whole genomes of E. coli have been fully sequenced in the past few years, which offer helpful data to help understand how this important species evolved. Results We compared 27 whole genomes encompassing four phylogroups of Escherichia coli (A, B1, B2 and E. From the core-genome we established the clonal relationships between the isolates as well as the role played by homologous recombination during their evolution from a common ancestor. We found strong evidence for sexual isolation between three lineages (A+B1, B2, E, which could be explained by the ecological structuring of E. coli and may represent on-going speciation. We identified three hotspots of homologous recombination, one of which had not been previously described and contains the aroC gene, involved in the essential shikimate metabolic pathway. We also described the role played by non-homologous recombination in the pan-genome, and showed that this process was highly heterogeneous. Our analyses revealed in particular that the genomes of three enterohaemorrhagic (EHEC strains within phylogroup B1 have converged from originally separate backgrounds as a result of both homologous and non-homologous recombination. Conclusions Recombination is an important force shaping the genomic evolution and diversification of E. coli, both by replacing fragments of genes with an homologous sequence and also by introducing new genes. In this study, several non-random patterns of these events were identified which correlated with important changes in the lifestyle of the bacteria, and

  19. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  20. RPA homologs and ssDNA processing during meiotic recombination

    OpenAIRE

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2015-01-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate re...

  1. [Homologous recombination among bacterial genomes: the measurement and identification].

    Science.gov (United States)

    Xianwei, Yang; Ruifu, Yang; Yujun, Cui

    2016-02-01

    Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical application for the analysis of homologous recombination in bacterial evolution research.

  2. AP- 1 regulates TGF- β1 -induced secrection of Type Ⅰ collagen in human lung fibroblasts%激活蛋白-1调控转化生长因子β1诱导的人肺成纤维细胞Ⅰ型胶原分泌

    Institute of Scientific and Technical Information of China (English)

    胡永斌; 曾庆富; 冯德云; 李翔; 彭劲武

    2007-01-01

    目的:探讨核转录因子激活蛋白-1(activator protein-1,AP-1)在转化生长因子β1(transforming growth factor-β1,TGF-β1)诱导人肺成纤维细胞Ⅰ型胶原分泌中的作用.方法:以人肺成纤维细胞HLF-02细胞系为研究对象,给予10 μg/L的TGF-β1刺激,于不同时间点收集细胞,采用RT-PCR和Wester blot检测细胞Ⅰ型胶原转录和分泌;阻断实验中选用AP-1抑制剂姜黄素为阻断剂,凝胶阻滞实验(electrophoretic mobility shift assay,EMSA)检测细胞内AP-1的DNA结合活性变化,同时Western印迹检测Ⅰ型胶原分泌变化.结果:TGF-β1能诱导HLF-02细胞Ⅰ型胶原mRNA的转录和分泌(P<0.05);TGF-β1能提高HLF-02细胞AP-1的DNA结合活力(P<0.05);姜黄素能明显抑制TGF-β1诱导的HLF-02细胞AP-1的DNA结合活力,抑制率分别为17.1%,17.6%,24.2%,31.3%(P<0.05);同时,姜黄素能明显抑制TGF-β1诱导的HLF-02细胞Ⅰ型胶原的分泌,抑制率分别为62.1%,58.8%,62.1%,59.6%(P<0.05).结论:核转录因子AP-1参与TGF-β1刺激的HLF-02细胞Ⅰ型胶原的分泌调控.

  3. Pleckstrin homology domains and the cytoskeleton.

    Science.gov (United States)

    Lemmon, Mark A; Ferguson, Kathryn M; Abrams, Charles S

    2002-02-20

    Pleckstrin homology (PH) domains are 100-120 amino acid protein modules best known for their ability to bind phosphoinositides. All possess an identical core beta-sandwich fold and display marked electrostatic sidedness. The binding site for phosphoinositides lies in the center of the positively charged face. In some cases this binding site is well defined, allowing highly specific and strong ligand binding. In several of these cases the PH domains specifically recognize 3-phosphorylated phosphoinositides, allowing them to drive membrane recruitment in response to phosphatidylinositol 3-kinase activation. Examples of these PH domain-containing proteins include certain Dbl family guanine nucleotide exchange factors, protein kinase B, PhdA, and pleckstrin-2. PH domain-mediated membrane recruitment of these proteins contributes to regulated actin assembly and cell polarization. Many other PH domain-containing cytoskeletal proteins, such as spectrin, have PH domains that bind weakly, and to all phosphoinositides. In these cases, the individual phosphoinositide interactions may not be sufficient for membrane association, but appear to require self-assembly of their host protein and/or cooperation with other anchoring motifs within the same molecule to drive membrane attachment.

  4. A cytohesin homolog in Dictyostelium amoebae.

    Directory of Open Access Journals (Sweden)

    Maria Christina Shina

    Full Text Available BACKGROUND: Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration. PRINCIPAL FINDINGS: Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG(- cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced. SIGNIFICANCE: The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote.

  5. Complete Cohomologies and Some Homological Invariants

    Institute of Scientific and Technical Information of China (English)

    Javad Asadollahi; Shokrollah Salarian

    2007-01-01

    There is a complete cohomology theory developed over a commutative noetherian ring in which injectives take the role of projectives in Vogel's construction of complete cohomology theory. We study the interaction between this complete cohomology, that is referred to as I-complete cohomology, and Vogel's one and give some sufficient conditions for their equivalence. Using I-complete functors, we assign a new homological invariant to any finitely generated module over an arbitrary commutative noetherian local ring,that would generalize Auslander's delta invariant. We generalize the results about the δ-invariant to arbitrary rings and give a sufficient condition for the vanishing of this new invariant. We also introduce an analogue of the notion of the index of a Gorenstein local ring, introduced by Auslander, for arbitrary local rings and study its behavior under flat extensions of local rings. Finally, we study the connection between the index and Loewy length of a local ring and generalize the main result of [11] to arbitrary rings.

  6. Precise genome editing by homologous recombination.

    Science.gov (United States)

    Hoshijima, K; Jurynec, M J; Grunwald, D J

    2016-01-01

    Simple and efficient methods are presented for creating precise modifications of the zebrafish genome. Edited alleles are generated by homologous recombination between the host genome and double-stranded DNA (dsDNA) donor molecules, stimulated by the induction of double-strand breaks at targeted loci in the host genome. Because several kilobase-long tracts of sequence can be exchanged, multiple genome modifications can be generated simultaneously at a single locus. Methods are described for creating: (1) alleles with simple sequence changes or in-frame additions, (2) knockin/knockout alleles that express a reporter protein from an endogenous locus, and (3) conditional alleles in which exons are flanked by recombinogenic loxP sites. Significantly, our approach to genome editing allows the incorporation of a linked reporter gene into the donor sequences so that successfully edited alleles can be identified by virtue of expression of the reporter. Factors affecting the efficiency of genome editing are discussed, including the finding that dsDNA products of I-SceI meganuclease enzyme digestion are particularly effective as donor molecules for gene-editing events. Reagents and procedures are described for accomplishing efficient genome editing in the zebrafish.

  7. Altering symplectic manifolds by homologous recombination

    CERN Document Server

    Abouzaid, Mohammed

    2010-01-01

    We use symplectic cohomology to study the non-uniqueness of symplectic structures on the smooth manifolds underlying affine varieties. Starting with a Lefschetz fibration on such a variety and a finite set of primes, the main new tool is a method, which we call homologous recombination, for constructing a Lefschetz fibration whose total space is smoothly equivalent to the original variety, but for which symplectic cohomology with coefficients in the given set of primes vanishes (there is also a simpler version that kills symplectic cohomology completely). Rather than relying on a geometric analysis of periodic orbits of a flow, the computation of symplectic cohomology depends on describing the Fukaya category associated to the new fibration. As a consequence we use a result of McLean to prove, for example, that an affine variety of real dimension greater than or equal to 4 supports infinitely many different (Wein)stein structures of finite type, and, assuming a mild cohomological condition, uncountably many d...

  8. CBH1 homologs and varian CBH1 cellulase

    Science.gov (United States)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  9. Molecular Phylogenetics and the Perennial Problem of Homology.

    Science.gov (United States)

    Inkpen, S Andrew; Doolittle, W Ford

    2016-12-01

    The concept of homology has a long history, during much of which the issue has been how to reconcile similarity and common descent when these are not coextensive. Although thinking molecular phylogeneticists have learned not to say "percent homology," the problems are deeper than that and unresolved.

  10. The tedious task of finding homologous noncoding RNA genes

    DEFF Research Database (Denmark)

    Menzel, Karl Peter; Gorodkin, Jan; Stadler, Peter F

    2009-01-01

    : BLAST still works better or equally good as other methods unless extensive expert knowledge on the RNA family is included. However, when good curated data are available the recent development yields further improvements in finding remote homologs. Homology search beyond the reach of BLAST hence...

  11. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2010-01-01

    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  12. [DNA homology in various strains of nitrogen-fixing bacteria].

    Science.gov (United States)

    Vardevanian, P O; Minasbekian, L A; Parsadanian, M A

    2000-01-01

    Melting temperature and GC content were evaluated for DNA of some nitrogen-fixing bacteria of Rhizobium leguminosarum and Onobrychis spp. (Adans). The degree of homology between strains of the same species was determined. A combination of thermal denaturing and molecular hybridization can serve as a rapid test for evaluating the genome homology of the organisms compared.

  13. DNA strand exchange and RecA homologs in meiosis.

    Science.gov (United States)

    Brown, M Scott; Bishop, Douglas K

    2014-12-04

    Homology search and DNA strand-exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand-exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand-exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved.

  14. Remarks on Khovanov Homology and the Potts Model

    CERN Document Server

    Kauffman, Louis H

    2009-01-01

    This paper is about Khovanov homology and its relationships with statistical mechanics models such as the Ising model and the Potts model. The paper gives a relatively self-contained introduction to Khovanov homology, and also to a reformulation of the Potts model in terms of a bracket state sum expansion on a knot diagram K(G) related to a planar graph G via the medial construction. We consider the original Khovanov homology and also the homology defined by Stosic via the dichromatic polynomial, and examine those values of the Potts model where the partition function can be expressed in terms of homological Euler characteristics. These points occur at imaginary temperature, and consequences of this phenomenon will be studied in subsequent work. This paper is dedicated to Oleg Viro on his 60-th birthday.

  15. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Galli, Andrea; Li, Yi-Ping

    2013-01-01

    . In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a......) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13-36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6...

  16. Relative rates of homologous and nonhomologous recombination in transfected DNA.

    Science.gov (United States)

    Roth, D B; Wilson, J H

    1985-05-01

    Both homologous and nonhomologous recombination events occur at high efficiency in DNA molecules transfected into mammalian cells. Both types of recombination occur with similar overall efficiencies, as measured by an endpoint assay, but their relative rates are unknown. In this communication, we measure the relative rates of homologous and nonhomologous recombination in DNA transfected into monkey cells. This measurement is made by using a linear simian virus 40 genome that contains a 131-base-pair duplication at its termini. Once inside the cell, this molecule must circularize to initiate lytic infection. Circularization can occur either by direct, nonhomologous end-joining or by homologous recombination within the duplicated region. Although the products of the two recombination pathways are different, they are equally infectious. Since homologous and nonhomologous recombination processes are competing for the same substrate, the relative amounts of the products of each pathway should reflect the relative rates of homologous and nonhomologous recombination. Analysis of individual recombinant genomes from 164 plaques indicates that the rate of circularization by nonhomologous recombination is 2- to 3-fold higher than the rate of homologous recombination. The assay system described here may prove to be useful for testing procedures designed to influence the relative rates of homologous and nonhomologous recombination.

  17. Homologous recombination in bovine pestiviruses. Phylogenetic and statistic evidence.

    Science.gov (United States)

    Jones, Leandro Roberto; Weber, E Laura

    2004-12-01

    Bovine pestiviruses (Bovine Viral Diarrea Virus 1 (BVDV 1) and Bovine Viral Diarrea Virus 2 (BVDV 2)) belong to the genus Pestivirus (Flaviviridae), which is composed of positive stranded RNA viruses causing significant economic losses world-wide. We used phylogenetic and bootstrap analyses to systematically scan alignments of previously sequenced genomes in order to explore further the evolutionary mechanisms responsible for variation in the virus. Previously published data suggested that homologous crossover might be one of the mechanisms responsible for the genomic rearrangements observed in cytopathic (cp) strains of bovine pestiviruses. Nevertheless, homologous recombination involves not just homologous crossovers, but also replacement of a homologous region of the acceptor RNA. Furthermore, cytopathic strains represent dead paths in evolution, since they are isolated exclusively from the fatal cases of mucosal disease. Herein, we report evidence of homologous inter-genotype recombination in the genome of a non-cytopathic (ncp) strain of Bovine Viral Diarrea Virus 1, the type species of the genus Pestivirus. We also show that intra-genotype homologous recombination might be a common phenomenon in both species of Pestivirus. This evidence demonstrates that homologous recombination contribute to the diversification of bovine pestiviruses in nature. Implications for virus evolution, taxonomy and phylogenetics are discussed.

  18. Cyclic structures in algebraic (co)homology theories

    CERN Document Server

    Kowalzig, Niels

    2010-01-01

    This note discusses the cyclic cohomology of a left Hopf algebroid ($\\times_A$-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel'd modules.

  19. Importing the homology concept from biology into developmental psychology.

    Science.gov (United States)

    Moore, David S

    2013-01-01

    To help introduce the idea of homology into developmental psychology, this article presents some of the concepts, distinctions, and guidelines biologists and philosophers of biology have devised to study homology. Some unresolved issues related to this idea are considered as well. Because homology reflects continuity across time, developmental scientists should find this concept to be useful in the study of psychological/behavioral development, just as biologists have found it essential in the study of the evolution and development of morphological and other characteristics.

  20. Seiberg-Witten-Floer Homology and Gluing Formulae

    Institute of Scientific and Technical Information of China (English)

    Alan L. CAREY; Bai Ling WANG

    2003-01-01

    This paper gives a detailed construction of Seiberg-Witten-Floer homology for a closed oriented 3-manifold with a non-torsion Spinc structure. Gluing formulae for certain 4-dimensional manifolds splitting along an embedded 3-manifold are obtained.

  1. Recombination, Pairing, and Synapsis of Homologs during Meiosis.

    Science.gov (United States)

    Zickler, Denise; Kleckner, Nancy

    2015-05-18

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.

  2. Homological Dimensions of the Extension Algebras of Monomial Algebras

    Institute of Scientific and Technical Information of China (English)

    Hong Bo SHI

    2015-01-01

    The main objective of this paper is to study the dimension trees and further the homo-logical dimensions of the extension algebras — dual and trivially twisted extensions — with a unified combinatorial approach using the two combinatorial algorithms — Topdown and Bottomup. We first present a more complete and clearer picture of a dimension tree, with which we are then able, on the one hand, to sharpen some results obtained before and furthermore reveal a few more hidden sub-tle homological phenomenons of or connections between the involved algebras; on the other hand, to provide two more effi cient combinatorial algorithms for computing dimension trees, and consequently the homological dimensions as an application. We believe that the more refined complete structural information on dimension trees will be useful to study other homological properties of this class of extension algebras.

  3. Spectral Invariants in Rabinowitz Floer homology and Global Hamiltonian perturbations

    CERN Document Server

    Albers, Peter

    2010-01-01

    Spectral invariant were introduced in Hamiltonian Floer homology by Viterbo, Oh, and Schwarz. We extend this concept to Rabinowitz Floer homology. As an application we derive new quantitative existence results for leaf-wise intersections. The importance of spectral invariants for the presented application is that spectral invariants allow us to derive existence of critical points of the Rabinowitz action functional even in degenerate situations where the functional is not Morse.

  4. Relative rates of homologous and nonhomologous recombination in transfected DNA.

    OpenAIRE

    Roth, D B; Wilson, J H

    1985-01-01

    Both homologous and nonhomologous recombination events occur at high efficiency in DNA molecules transfected into mammalian cells. Both types of recombination occur with similar overall efficiencies, as measured by an endpoint assay, but their relative rates are unknown. In this communication, we measure the relative rates of homologous and nonhomologous recombination in DNA transfected into monkey cells. This measurement is made by using a linear simian virus 40 genome that contains a 131-ba...

  5. Pairs of periodic orbits with fixed homology difference

    DEFF Research Database (Denmark)

    Risager, Morten S.; Sharp, Richard

    2010-01-01

    We obtain an asymptotic formula for the number of pairs of closed orbits of a  weak-mixing transitive Anosov ¿ow whose homology classes have a ¿xed di¿erence.......We obtain an asymptotic formula for the number of pairs of closed orbits of a  weak-mixing transitive Anosov ¿ow whose homology classes have a ¿xed di¿erence....

  6. Continuation homomorphism in Rabinowitz Floer homology for symplectic deformations

    CERN Document Server

    Bae, Youngjin

    2010-01-01

    Will Merry computed Rabinowitz Floer homology above Mane's critical value in terms of loop space homology by establishing an Abbondandolo-Schwarz short exact sequence. The purpose of this article is to provide an alternative proof of Merry's result. We construct a continuation homomorphism for symplectic deformations which enables us to reduce the computation to the untwisted case. Our construction takes advantage of a special version of the isoperimetric inequality which above Mane's critical value holds true.

  7. Rational equivariant K-homology of low dimensional groups

    CERN Document Server

    Lafont, Jean-François; Sánchez-García, Rubén J

    2011-01-01

    We consider groups G which have a cocompact, 3-manifold model for the classifying space \\underline{E}G. We provide an algorithm for computing the rationalized equivariant K-homology of \\underline{E}G. Under the additional hypothesis that the quotient 3-orbifold \\underline{E}G/G is geometrizable, the rationalized K-homology groups coincide with the rationalized K-theory of the reduced C*-algebra of G. We illustrate our algorithm on some concrete examples.

  8. Metagenomic gene annotation by a homology-independent approach

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  9. 三氯乙烯致敏豚鼠单核淋巴细胞中β-arrestin蛋白表达和核转录因子及激活蛋白-1活性的研究%β-arrestin and NF-κB, AP-1 activity in peripheral blood mononuclear cells of guinea pigs sensitized by trichloroethylene

    Institute of Scientific and Technical Information of China (English)

    汪立杰; 郭瑞娟; 沈彤; 朱启星

    2010-01-01

    Objective To explore the regulatory mechanism of immune response of guinea pigs sensitized by trichloroethylene (TCE), and the expression level of β-arrestin, and the activity of NF-κB and AP-1 in peripheral blood mononuclear cells (PBMC) of guinea pigs sensitized by TCE. Methods Guinea pigs were treated with TCE based on the guinea pig maximum response test (GPMT); Blank control group and DNCB positive control group were established. Scores of skin reaction were evaluated and used to determine whether or not allergy in guinea pig. Then TCE treated group was divided into sensitized group or un-sensitized group. The expression levels of β-arrestin protein, activity of NF-κB and AP-1 in PBMC were detected by Western Blotting and EMSA, respectively. TNF-α level in serum was detected by ELISA Kits. Results No erythema or edema was found in the control group; part of guinea pigs treated with TCE developed erythema and edema, while obvious erythema and edema could be found in DNCB group. The sensitization rates were 71.4% and 100% in TCE and DNCB group,respectively. Compared with TCE un-sensitized group, expression of β-arrestin and AP-1 activity were not significantly different in TCE sensitized group (P>0.05). While the NF-κB activity was elevated obviously(P0.05).与空白对照组和TCE未致敏组相比,TCE致敏组NF-κB活性明显升高,且差异有统计学意义(P0.05).TCE致敏组血清中TNF-α水平[(55.485+8.732)pg/ml]较空白对照组[(32.118±12.550)pg/ml]明显升高,差异有统计学意义(P<0.05).结论 以TCE致敏豚鼠β-arrestin和AP-1可能没被激活,而NF-κB被明显激活且在TCE致敏免疫反应中发挥着调节作用.

  10. Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis).

    Science.gov (United States)

    Bi, Zhenghong; Li, Xiang; Huang, Huasun; Hua, Yuwei

    2016-03-02

    A homolog of MOTHER OF FT AND TFL1 (MFT) was isolated from Hevea brasiliensis and its biological function was investigated. Protein multiple sequence alignment and phylogenetic analysis revealed that HbMFT1 conserved critical amino acid residues to distinguish MFT, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1)-like proteins and showed a closer genetic relationship to the MFT-like group. The accumulation of HbMFT1 was generally detected in various tissues except pericarps, with the highest expression in embryos and relatively higher expression in roots and stems of seedlings, flowering inflorescences, and male and female flowers. HbMFT1 putative promoter analysis showed that tissue-specific, environmental change responsive and hormone-signaling responsive elements were generally present. HbMFT1 was strongly induced under a short-day condition at 28 °C, with the highest expression after the onset of a day. Overexpression of HbMFT1 inhibited seed germination, seedling growth, and flowering in transgenic Arabidopsis. The qRT-PCR further confirmed that APETALA1 (AP1) and FRUITFULL (FUL) were drastically down-regulated in 35S::HbMFT1 plants. A histochemical β-glucuronidase (GUS) assay showed that HbMFT1::GUS activity was mainly detected in stamens and mature seeds coinciding with its original expression and notably induced in rosette leaves and seedlings of transgenic Arabidopsis by exogenous abscisic acid (ABA) due to the presence of ABA cis-elements in HbMFT1 promoter. These results suggested that HbMFT1 was mainly involved in maintenance of seed maturation and stamen development, but negatively controlled germination, growth and development of seedlings and flowering. In addition, the HbMFT1 promoter can be utilized in controlling transgene expression in stamens and seeds of rubber tree or other plant species.

  11. Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Zhenghong Bi

    2016-03-01

    Full Text Available A homolog of MOTHER OF FT AND TFL1 (MFT was isolated from Hevea brasiliensis and its biological function was investigated. Protein multiple sequence alignment and phylogenetic analysis revealed that HbMFT1 conserved critical amino acid residues to distinguish MFT, FLOWERING LOCUS T (FT and TERMINAL FLOWER1 (TFL1-like proteins and showed a closer genetic relationship to the MFT-like group. The accumulation of HbMFT1 was generally detected in various tissues except pericarps, with the highest expression in embryos and relatively higher expression in roots and stems of seedlings, flowering inflorescences, and male and female flowers. HbMFT1 putative promoter analysis showed that tissue-specific, environmental change responsive and hormone-signaling responsive elements were generally present. HbMFT1 was strongly induced under a short-day condition at 28 °C, with the highest expression after the onset of a day. Overexpression of HbMFT1 inhibited seed germination, seedling growth, and flowering in transgenic Arabidopsis. The qRT-PCR further confirmed that APETALA1 (AP1 and FRUITFULL (FUL were drastically down-regulated in 35S::HbMFT1 plants. A histochemical β-glucuronidase (GUS assay showed that HbMFT1::GUS activity was mainly detected in stamens and mature seeds coinciding with its original expression and notably induced in rosette leaves and seedlings of transgenic Arabidopsis by exogenous abscisic acid (ABA due to the presence of ABA cis-elements in HbMFT1 promoter. These results suggested that HbMFT1 was mainly involved in maintenance of seed maturation and stamen development, but negatively controlled germination, growth and development of seedlings and flowering. In addition, the HbMFT1 promoter can be utilized in controlling transgene expression in stamens and seeds of rubber tree or other plant species.

  12. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow, Rutgers University/Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University

    2010-05-19

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  13. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner

    2010-05-24

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  14. Primary homologies of the circumorbital bones of snakes.

    Science.gov (United States)

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes.

  15. PDBalert: automatic, recurrent remote homology tracking and protein structure prediction

    Directory of Open Access Journals (Sweden)

    Söding Johannes

    2008-11-01

    Full Text Available Abstract Background During the last years, methods for remote homology detection have grown more and more sensitive and reliable. Automatic structure prediction servers relying on these methods can generate useful 3D models even below 20% sequence identity between the protein of interest and the known structure (template. When no homologs can be found in the protein structure database (PDB, the user would need to rerun the same search at regular intervals in order to make timely use of a template once it becomes available. Results PDBalert is a web-based automatic system that sends an email alert as soon as a structure with homology to a protein in the user's watch list is released to the PDB database or appears among the sequences on hold. The mail contains links to the search results and to an automatically generated 3D homology model. The sequence search is performed with the same software as used by the very sensitive and reliable remote homology detection server HHpred, which is based on pairwise comparison of Hidden Markov models. Conclusion PDBalert will accelerate the information flow from the PDB database to all those who can profit from the newly released protein structures for predicting the 3D structure or function of their proteins of interest.

  16. Heteromorphic sex chromosomes: navigating meiosis without a homologous partner.

    Science.gov (United States)

    Checchi, Paula M; Engebrecht, Joanne

    2011-09-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have been modified in many different ways to ensure segregation of heteromorphic sex chromosomes at the first meiotic division. Additionally, an almost universal feature of heteromorphic sex chromosomes during meiosis is transcriptional silencing, or meiotic sex chromosome inactivation, an essential process proposed to prevent expression of genes deleterious to meiosis in the heterogametic sex as well as to shield unpaired sex chromosomes from recognition by meiotic checkpoints. Comparative analyses of the meiotic behavior of sex chromosomes in nematodes, mammals, and birds reveal important conserved features as well as provide insight into sex chromosome evolution.

  17. Nasal pungency, odor, and eye irritation thresholds for homologous acetates.

    Science.gov (United States)

    Cometto-Muñiz, J E; Cain, W S

    1991-08-01

    We measured detection thresholds for nasal pungency (in anosmics), odor (in normosmics) and eye irritation employing a homologous series of acetates: methyl through octyl acetate, decyl and dodecyl acetate. All anosmics reliably detected the series up to heptyl acetate. Only the anosmics without smell since birth (congenital) reliably detected octyl acetate, and only one congenital anosmic detected decyl and dodecyl acetate. Anosmics who lost smell from head trauma proved to be selectively less sensitive. As expected, odor thresholds lay well below pungency thresholds. Eye irritation thresholds for selected acetates came close to nasal pungency thresholds. All three types of thresholds decreased logarithmically with carbon chain length, as previously seen with homologous alcohols and as seen in narcotic and toxic phenomena. Results imply that nasal pungency for these stimuli rests upon a physical, rather than chemical, interaction with susceptible mucosal structures. When expressed as thermodynamic activity, nasal pungency thresholds remain remarkably constant within and across the homologous series of acetates and alcohols.

  18. Differential forms on singular varieties and cyclic homology

    CERN Document Server

    Brasselet, J P; Brasselet, Jean-Paul; Legrand, André

    1996-01-01

    A classical result of A. Connes asserts that the Frechet algebra of smooth functions on a smooth compact manifold X provides, by a purely algebraic procedure, the de Rham cohomology of X. Namely the procedure uses Hochschild and cyclic homology of this algebra. In the situation of a Thom-Mather stratified variety, we construct a Frechet algebra of functions on the regular part and a module of poles along the singular part. We associate to these objects a complex of differential forms and an Hochschild complex, on the regular part, both with poles along the singular part. The de Rham cohomology of the first complex and the cylic homology of the second one are related to the intersection homology of the variety, the corresponding perversity is determined by the orders of poles.

  19. Quantization of gauge fields, graph polynomials and graph homology

    Energy Technology Data Exchange (ETDEWEB)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de [Humboldt University, 10099 Berlin (Germany); Sars, Matthias [Humboldt University, 10099 Berlin (Germany); Suijlekom, Walter D. van [Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  20. Bacterial actin and tubulin homologs in cell growth and division.

    Science.gov (United States)

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  1. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation.

    Science.gov (United States)

    Sasaki, Katsutomo; Yamaguchi, Hiroyasu; Aida, Ryutaro; Shikata, Masahito; Abe, Tomoko; Ohtsubo, Norihiro

    2012-09-01

    We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs. This mutant had no stamens, and the floral organs consisted of sepals and carpels. Although the expression of a torenia class B MADS-box gene, GLOBOSA (TfGLO), was abolished in the 252 mutant, no mutation of TfGLO was found. Among torenia homologs such as APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO), which regulate expression of class B genes in Arabidopsis, only accumulation of the TfUFO transcript was diminished in the 252 mutant. Furthermore, a missense mutation was found in the coding region of the mutant TfUFO. Intact TfUFO complemented the mutant phenotype whereas mutated TfUFO did not; in addition, the transgenic phenotype of TfUFO-knockdown torenias coincided with the mutant phenotype. Yeast two-hybrid analysis revealed that the mutated TfUFO lost its ability to interact with TfLFY protein. In situ hybridization analysis indicated that the transcripts of TfUFO and TfLFY were partially accumulated in the same region. These results clearly demonstrate that the defect in TfUFO caused the sepaloid phenotype in the 252 mutant due to the loss of interaction with TfLFY.

  2. Khovanov-Rozansky Graph Homology and Composition Product

    DEFF Research Database (Denmark)

    Wagner, Emmanuel

    2008-01-01

    In analogy with a recursive formula for the HOMFLY-PT polynomial of links given by Jaeger, we give a recursive formula for the graph polynomial introduced by Kauffman and Vogel. We show how this formula extends to the Khovanov–Rozansky graph homology.......In analogy with a recursive formula for the HOMFLY-PT polynomial of links given by Jaeger, we give a recursive formula for the graph polynomial introduced by Kauffman and Vogel. We show how this formula extends to the Khovanov–Rozansky graph homology....

  3. RNA Structural Homology Search with a Succinct Stochastic Grammar Model

    Institute of Scientific and Technical Information of China (English)

    Ying-Lei Song; Ji-Zhen Zhao; Chun-Mei Liu; Kan Liu; Russell Malmberg; Li-Ming Cai

    2005-01-01

    An increasing number of structural homology search tools, mostly based on profile stochastic context-free grammars (SCFGs) have been recently developed for the non-coding RNA gene identification. SCFGs can include statistical biases that often occur in RNA sequences, necessary to profile specific RNA structures for structural homology search. In this paper, a succinct stochastic grammar model is introduced for RNA that has competitive search effectiveness. More importantly, the profiling model can be easily extended to include pseudoknots, structures that are beyond the capability of profile SCFGs. In addition, the model allows heuristics to be exploited, resulting in a significant speed-up for the CYK algorithm-based search.

  4. Ganea Term for Homology of Leibniz n-Algebras

    Institute of Scientific and Technical Information of China (English)

    J.M. Casas

    2005-01-01

    We extend the five-term exact sequence of homology with trivial coefficients of Leibniz n-algebras nH L1 ( K ) → nH L1 (L) → M → nH L0( K ) → nH L0( L ) → 0 associated to a central extension of Leibniz n-algebras 0 → M →K → L → 0 by means of a sixth term which is a generalization of the Ganea term for homology of Leibniz algebras. We use this sequence in order to analyze several questions related with the centre and central extensions of a Leibniz n-algebra.

  5. Characterization and expression pattern of the novel MIA homolog TANGO.

    Science.gov (United States)

    Bosserhoff, A K; Moser, M; Buettner, R

    2004-07-01

    A novel human gene, TANGO, encoding a MIA ('melanoma inhibitory activity') homologous protein was identified by a gene bank search. TANGO, together with the homologous genes MIA, OTOR (FPD, MIAL) and MIA2 define a novel gene family sharing important structural features, significant homology at both the nucleotide and protein level, and similar genomic organization. The four members share 34-45% amino acid identity and 47-59% cDNA sequence identity. TANGO encodes a mature protein of 103 amino acids in addition to a hydrophobic secretory signal sequence. Sequence homology confirms the highly conserved SH3 structure present also in MIA, OTOR and MIA2. Thus, it appears that there are a number of extracellular proteins with SH3-fold like structures. Interestingly, in situ hybridization, RT-PCR and Northern Blots revealed very broad TANGO expression patterns in contrast to the highly restricted expression patterns previously determined for the other members of the MIA gene family. The only cells lacking TANGO expression are cells belonging to the hematopoetic system. High levels of TANGO expression were observed both during embryogenesis and in adult tissues.

  6. Monitoring homologous recombination in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhuanying; Tang Li [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Li Meiru [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Chen Lei; Xu Jie [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Wu Goujiang [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Li Hongqing, E-mail: hqli@scnu.edu.cn [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China)

    2010-09-10

    Here we describe a system to assay homologous recombination during the complete life cycle of rice (Oryza sativa L.). Rice plants were transformed with two copies of non-functional GUS reporter overlap fragments as recombination substrate. Recombination was observed in all plant organs examined, from the seed stage until the flowering stage of somatic plant development. Embryogenic cells exhibited the highest recombination ability with an average of 3 x 10{sup -5} recombination events per genome, which is about 10-fold of that observed in root cells, and two orders of that observed in leaf cells. Histological analysis revealed that recombination events occurred in diverse cell types, but preferentially in cells with small size. Examples of this included embryogenic cells in callus, phloem cells in the leaf vein, and cells located in the root apical meristem. Steady state RNA analysis revealed that the expression levels of rice Rad51 homologs are positively correlated with increased recombination rates in embryogenic calli, roots and anthers. Finally, radiation treatment of plantlets from distinct recombination lines increased the recombination frequency to different extents. These results showed that homologous recombination frequency can be effectively measured in rice using a transgene reporter assay. This system will facilitate the study of DNA damage signaling and homologous recombination in rice, a model monocot.

  7. Multiresolution persistent homology for excessively large biomolecular datasets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin; Zhao, Zhixiong [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-10-07

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  8. O-minimal homotopy and generalized (co)homology

    CERN Document Server

    Piȩkosz, Artur

    2008-01-01

    This article gives a version of the homotopy theory (giving also generalized homology and cohomology theories), developed by H. Delfs and M. Knebusch in the semialgebraic case, extended to regular paracompact locally definable spaces and weakly definable spaces over a model R of an o-minimal theory T extending RCF, with some restrictions on T.

  9. Action of the cork twist on Floer homology

    CERN Document Server

    Akbulut, Selman

    2011-01-01

    We utilize the Ozsvath-Szabo contact invariant to detect the action of involutions on certain homology spheres that are surgeries on symmetric links, generalizing a previous result of Akbulut and Durusoy. Potentially this may be useful to detect different smooth structures on 4-manifolds by cork twisting operation.

  10. Real bundle gerbes, orientifolds and twisted KR-homology

    CERN Document Server

    Hekmati, Pedram; Szabo, Richard J; Vozzo, Raymond F

    2016-01-01

    We introduce a notion of Real bundle gerbes on manifolds equipped with an involution. We elucidate their relation to Jandl gerbes and prove that they are classified by their Real Dixmier-Douady class in Grothendieck's equivariant sheaf cohomology. We show that the Grothendieck group of Real bundle gerbe modules is isomorphic to twisted KR-theory for a torsion Real Dixmier-Douady class. Building on the Baum-Douglas model for K-homology and the orientifold construction in string theory, we introduce geometric cycles for twisted KR-homology groups using Real bundle gerbe modules. We prove that this defines a real-oriented generalised homology theory dual to twisted KR-theory for Real closed manifolds, and more generally for Real finite CW-complexes, for any Real Dixmier-Douady class. This is achieved by defining an explicit natural transformation to analytic twisted KR-homology and proving that it is an isomorphism. Our constructions give a new framework for the classification of orientifolds in string theory, p...

  11. Disruption of an ADE6 Homolog of Ustilago maydis

    Science.gov (United States)

    Ustilago maydis secretes iron-binding compounds during times of iron depletion. A putative homolog of the Sacharromyces cereviseae ADE6 and Escherichia coli purL genes was identified near a multigenic complex, which contains two genes sid1 and sid2 involved in a siderophore biosynthetic pathway. The...

  12. Homology and K-theory of the Bianchi groups

    CERN Document Server

    Rahm, Alexander D

    2011-01-01

    We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We use it to explicitly compute their integral group homology and equivariant K-homology. By the Baum/Connes conjecture, which holds for the Bianchi groups, we obtain the K-theory of their reduced C\\ast -algebras in terms of isomorphic images of the computed K-homology. We further find an application to Chen/Ruan orbifold cohomology. Nous mettons en \\'evidence une correspondance entre la torsion homologique des groupes de Bianchi et de nouveaux invariants g\\'eom\\'etriques, calculables gr\\^ace \\'a leur action sur l'espace hyperbolique. Nous l'utilisons pour calculer explicitement leur homologie de groupe \\'a coefficients entiers et leur K-homologie \\'equivariante. En cons\\'equence de la conjecture de Baum/Connes, qui est v\\'erifi\\'ee pour ces groupes, nous obtenons la K-th\\'eorie de leurs C\\ast-alg\\'ebres r\\'eduites en termes...

  13. Homology of classical groups and K-theory

    NARCIS (Netherlands)

    Mirzaii, B.

    2004-01-01

    The study of the homology groups of classical group over a ring R with coefficient A, where A is a commutative ring with trivial group action, seems important, notably because of their close relation to algebraic and Hermitian Ktheory and their appearance in the study of scissors congruence of polyh

  14. K-homology and index theory on contact manifolds

    CERN Document Server

    Baum, Paul F

    2011-01-01

    Let X be a closed connected contact manifold. On X there is a naturally arising class of hypoelliptic (but not elliptic) operators which are Fredholm. In this paper we solve the index problem for this class of operators. The solution is achieved by combining Van Erp's earlier partial result with the Baum-Douglas isomorphism of analytic and geometric K-homology.

  15. Remote homology and the functions of metagenomic dark matter

    Directory of Open Access Journals (Sweden)

    Briallen eLobb

    2015-07-01

    Full Text Available Predicted open reading frames (ORFs that lack detectable homology to known proteins are termed ORFans. Despite their prevalence in metagenomes, the extent to which ORFans encode real proteins, the degree to which they can be annotated, and their functional contributions, remain unclear. To gain insights into these questions, we applied sensitive remote-homology detection methods to functionally analyze ORFans from soil, marine, and human gut metagenome collections. ORFans were identified, clustered into sequence families, and annotated through profile-profile comparison to proteins of known structure.We found that a considerable number of metagenomic ORFans (73,896 of 484,121, 15.3% exhibit significant remote homology to structurally characterized proteins, providing a means for ORFan functional profiling. The extent of detected remote homology significantly exceeds that obtained for artificial protein families (1.4%. In addition, predicted ORFan functions show significant functional consistency with their gene neighbors (p < 0.001 as expected for real genes. Compared to genes annotated through standard homology searches, ORFans have intriguing functional differences such as an enrichment of virus-related functions and biological processes associated with extreme sequence diversity. Each environment also possesses many unique ORFan families that likely play important community roles such as identified ORFan polysaccharide degradation genes unique to the human gut metagenome. Lastly, ORFans are a valuable resource for finding novel enzymes of interest, as we demonstrate by identifying hundreds of ORFan metalloproteases that conserve a catalytic site despite a lack of overall sequence similarity to known proteins. Our ORFan functional predictions are a valuable resource for discovering novel protein families and exploring the boundaries of protein sequence space. Our resource of annotated metagenomic ORFans is available at http://doxey.uwaterloo.ca.

  16. Single-stranded heteroduplex intermediates in λ Red homologous recombination

    Directory of Open Access Journals (Sweden)

    Zhang Youming

    2010-07-01

    Full Text Available Abstract Background The Red proteins of lambda phage mediate probably the simplest and most efficient homologous recombination reactions yet described. However the mechanism of dsDNA recombination remains undefined. Results Here we show that the Red proteins can act via full length single stranded intermediates to establish single stranded heteroduplexes at the replication fork. We created asymmetrically digestible dsDNA substrates by exploiting the fact that Redα exonuclease activity requires a 5' phosphorylated end, or is blocked by phosphothioates. Using these substrates, we found that the most efficient configuration for dsDNA recombination occurred when the strand that can prime Okazaki-like synthesis contained both homology regions on the same ssDNA molecule. Furthermore, we show that Red recombination requires replication of the target molecule. Conclusions Hence we propose a new model for dsDNA recombination, termed 'beta' recombination, based on the formation of ssDNA heteroduplexes at the replication fork. Implications of the model were tested using (i an in situ assay for recombination, which showed that recombination generated mixed wild type and recombinant colonies; and (ii the predicted asymmetries of the homology arms, which showed that recombination is more sensitive to non-homologies attached to 5' than 3' ends. Whereas beta recombination can generate deletions in target BACs of at least 50 kb at about the same efficiency as small deletions, the converse event of insertion is very sensitive to increasing size. Insertions up to 3 kb are most efficiently achieved using beta recombination, however at greater sizes, an alternative Red-mediated mechanism(s appears to be equally efficient. These findings define a new intermediate in homologous recombination, which also has practical implications for recombineering with the Red proteins.

  17. Illustrating and homology modeling the proteins of the Zika virus

    Science.gov (United States)

    Ekins, Sean; Liebler, John; Neves, Bruno J.; Lewis, Warren G.; Coffee, Megan; Bienstock, Rachelle; Southan, Christopher; Andrade, Carolina H.

    2016-01-01

    The Zika virus (ZIKV) is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening. PMID:27746901

  18. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining.

    Science.gov (United States)

    Lemmens, Bennie B L G; Johnson, Nicholas M; Tijsterman, Marcel

    2013-01-01

    Successful completion of meiosis requires the induction and faithful repair of DNA double-strand breaks (DSBs). DSBs can be repaired via homologous recombination (HR) or non-homologous end joining (NHEJ), yet only repair via HR can generate the interhomolog crossovers (COs) needed for meiotic chromosome segregation. Here we identify COM-1, the homolog of CtIP/Sae2/Ctp1, as a crucial regulator of DSB repair pathway choice during Caenorhabditis elegans gametogenesis. COM-1-deficient germ cells repair meiotic DSBs via the error-prone pathway NHEJ, resulting in a lack of COs, extensive chromosomal aggregation, and near-complete embryonic lethality. In contrast to its yeast counterparts, COM-1 is not required for Spo11 removal and initiation of meiotic DSB repair, but instead promotes meiotic recombination by counteracting the NHEJ complex Ku. In fact, animals defective for both COM-1 and Ku are viable and proficient in CO formation. Further genetic dissection revealed that COM-1 acts parallel to the nuclease EXO-1 to promote interhomolog HR at early pachytene stage of meiotic prophase and thereby safeguards timely CO formation. Both of these nucleases, however, are dispensable for RAD-51 recruitment at late pachytene stage, when homolog-independent repair pathways predominate, suggesting further redundancy and/or temporal regulation of DNA end resection during meiotic prophase. Collectively, our results uncover the potentially lethal properties of NHEJ during meiosis and identify a critical role for COM-1 in NHEJ inhibition and CO assurance in germ cells.

  19. [Rule of homology and morbid anatomy (author's transl)].

    Science.gov (United States)

    Doerr, W

    1979-07-27

    1. According to J.W. Goethe, morphology is a theory of evolution, H. Braus defined it as a theory of historic incidents, and according to D. Starck morphology is the role of shapes of the organisms. 2. The term homology was coined by morphologic researchers. Of course, it is used nowadays also in mathematics, chemistry, and linguistics and other logic matters. 3. Homologies have a special position in Goethe's work on the theory of types. Goethe's morphologic research and Schiller's aesthetic speculations are considered to be the origin of a 'typologic point of view.' 4. Coherences of Platon's theory of ideas and Goethe's theory of types are scrutinized. The theory of shapes ('Gestalt theory') is inconceivable without Platon's theory, and scientic morphology is inconceivable without shapes, either, and according to C. v. Ehrenfels "Gestaltphilosophie" could not exist without the shapes of Platon's theory. 5. It is shown that without Gestalt philosophy one cannot comprehend the following coherences: Gestalt (shape) as an idea, idea as a type of Goethe's rule, type as an element of the theory of homologies and even of constitution. 6. Homology will be constituted using certain criterions: a) detection of an equal descent, b) equal position of organismic structures in individuals, c) evidence of interpositions, and d) certain qualities of parts which are compared with each other. Homologous structures may be dissimilar in their architecture. 7. The term homology is explained a) by giving an analysis of morphologic and teratologic lines, b) by scrutinizing froms of symmetry, and c) by presenting the histopathology of topographical diverse but according to the morphogenetic mode coinciding tumours which are resembling each other in their microscopic patterns. 8. The application of the rule of homology in the morphologic investigation of diseases proves to be a) valuable from a heuristic point of view, b) an instrument of communication to characterize comparable matters

  20. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2010-01-01

    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  1. Hochschild homology, global dimension, and truncated oriented cycles

    CERN Document Server

    Han, Yang

    2010-01-01

    It is shown that a bounded quiver algebra having a 2-truncated oriented cycle is of infinite Hochschild homology dimension and global dimension, which generalizes a result of Solotar and Vigu\\'{e}-Poirrier to nonlocal ungraded algebras having a 2-truncated oriented cycle of arbitrary length. Therefore, a bounded quiver algebra of finite global dimension has no 2-truncated oriented cycles. Note that the well-known "no loops conjecture", which has been proved to be true already, says that a bounded quiver algebra of finite global dimension has no loops, i.e., truncated oriented cycles of length 1. Moreover, it is shown that a monomial algebra having a truncated oriented cycle is of infinite Hochschild homology dimension and global dimension. Consequently, a monomial algebra of finite global dimension has no truncated oriented cycles.

  2. Back-Translation for Discovering Distant Protein Homologies

    Science.gov (United States)

    Gîrdea, Marta; Noé, Laurent; Kucherov, Gregory

    Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins’ common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level. To cope with this situation, we propose a novel method to infer distant homology relations of two proteins, that accounts for frameshift and point mutations that may have affected the coding sequences. We design a dynamic programming alignment algorithm over memory-efficient graph representations of the complete set of putative DNA sequences of each protein, with the goal of determining the two putative DNA sequences which have the best scoring alignment under a powerful scoring system designed to reflect the most probable evolutionary process. This allows us to uncover evolutionary information that is not captured by traditional alignment methods, which is confirmed by biologically significant examples.

  3. Identification of rodent homologs of hepatitis C virus and pegiviruses

    DEFF Research Database (Denmark)

    Kapoor, Amit; Simmonds, Peter; Scheel, Troels K H

    2013-01-01

    UNLABELLED: Hepatitis C virus (HCV) and human pegivirus (HPgV or GB virus C) are globally distributed and infect 2 to 5% of the human population. The lack of tractable-animal models for these viruses, in particular for HCV, has hampered the study of infection, transmission, virulence, immunity......, and pathogenesis. To address this challenge, we searched for homologous viruses in small mammals, including wild rodents. Here we report the discovery of several new hepaciviruses (HCV-like viruses) and pegiviruses (GB virus-like viruses) that infect wild rodents. Complete genome sequences were acquired...... to those found in human hepaciviruses and pegiviruses suggests the potential for the development of new animal systems with which to model HCV pathogenesis, vaccine design, and treatment. IMPORTANCE: The genetic and biological characterization of animal homologs of human viruses provides insights...

  4. The endless tale of non-homologous end-joining.

    Science.gov (United States)

    Weterings, Eric; Chen, David J

    2008-01-01

    DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.

  5. The endless tale of non-homologous end-joining

    Institute of Scientific and Technical Information of China (English)

    Eric Weterings; David J Chen

    2008-01-01

    DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addi-tion, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.

  6. Molecular evolution of a Drosophila homolog of human BRCA2.

    Science.gov (United States)

    Bennett, Sarah M; Noor, Mohamed A F

    2009-11-01

    The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region ("BRC repeats") with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.

  7. Homology and isomorphism: Bourdieu in conversation with New Institutionalism.

    Science.gov (United States)

    Wang, Yingyao

    2016-06-01

    Bourdieusian Field Theory (BFT) provided decisive inspiration for the early conceptual formulation of New Institutionalism (NI). This paper attempts to reinvigorate the stalled intellectual dialogue between NI and BFT by comparing NI's concept of isomorphism with BFT's notion of homology. I argue that Bourdieu's understanding of domination-oriented social action, transposable habitus, and a non-linear causality, embodied in his neglected concept of homology, provides an alternative theorization of field-level convergence to New Institutionalism's central idea of institutional isomorphism. To showcase how BFT can be useful for organizational research, I postulate a habitus-informed and field-conditioned theory of transference to enrich NI's spin-off thesis of 'diffusion'. I propose that while NI can benefit from BFT's potential of bringing social structure back into organizational research, BFT can enrich its social analysis by borrowing from NI's elaboration of the symbolic system of organizations.

  8. Levels of homology and the problem of neocortex.

    Science.gov (United States)

    Dugas-Ford, Jennifer; Ragsdale, Clifton W

    2015-07-08

    The neocortex is found only in mammals, and the fossil record is silent on how this soft tissue evolved. Understanding neocortex evolution thus devolves to a search for candidate homologous neocortex traits in the extant nonmammalian amniotes. The difficulty is that homology is based on similarity, and the six-layered neocortex structure could hardly be more dissimilar in appearance from the nuclear organization that is so conspicuous in the dorsal telencephalon of birds and other reptiles. Recent molecular data have, however, provided new support for one prominent hypothesis, based on neuronal circuits, that proposes the principal neocortical input and output cell types are a conserved feature of amniote dorsal telencephalon. Many puzzles remain, the greatest being understanding the selective pressures and molecular mechanisms that underlie such tremendous morphological variation in telencephalon structure.

  9. GHOSTM: a GPU-accelerated homology search tool for metagenomics.

    Directory of Open Access Journals (Sweden)

    Shuji Suzuki

    Full Text Available BACKGROUND: A large number of sensitive homology searches are required for mapping DNA sequence fragments to known protein sequences in public and private databases during metagenomic analysis. BLAST is currently used for this purpose, but its calculation speed is insufficient, especially for analyzing the large quantities of sequence data obtained from a next-generation sequencer. However, faster search tools, such as BLAT, do not have sufficient search sensitivity for metagenomic analysis. Thus, a sensitive and efficient homology search tool is in high demand for this type of analysis. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new, highly efficient homology search algorithm suitable for graphics processing unit (GPU calculations that was implemented as a GPU system that we called GHOSTM. The system first searches for candidate alignment positions for a sequence from the database using pre-calculated indexes and then calculates local alignments around the candidate positions before calculating alignment scores. We implemented both of these processes on GPUs. The system achieved calculation speeds that were 130 and 407 times faster than BLAST with 1 GPU and 4 GPUs, respectively. The system also showed higher search sensitivity and had a calculation speed that was 4 and 15 times faster than BLAT with 1 GPU and 4 GPUs. CONCLUSIONS: We developed a GPU-optimized algorithm to perform sensitive sequence homology searches and implemented the system as GHOSTM. Currently, sequencing technology continues to improve, and sequencers are increasingly producing larger and larger quantities of data. This explosion of sequence data makes computational analysis with contemporary tools more difficult. We developed GHOSTM, which is a cost-efficient tool, and offer this tool as a potential solution to this problem.

  10. A New Homologous Series of Lanthanum Copper Oxides

    NARCIS (Netherlands)

    Cava, R.J.; Siegrist, T.; Hessen, B.; Krajewski, J.J.; Peck, Jr.; Batlogg, B.; Tagaki, H.; Waszczak, J.V.; Schneemeyer, L.F.; Zandbergen, H.W.

    1991-01-01

    We report the synthesis and structural characterization of a new homologous series of lanthanum cuprates, with the formula La4+4nCu8+2nO14+8n . The n = 2 and n = 3 members, La2Cu2O5 and La8Cu7O19 , synthesized in the bulk, are stable in very narrow temperature ranges in air and oxygen. The n = 4 mem

  11. A Smale Type Result and Applications to Contact Homology

    Directory of Open Access Journals (Sweden)

    Vittorio Martino

    2014-12-01

    Full Text Available In this note we will show that the injection of a suitable subspace of the space of Legendrian loops into the full loop space is an S1-equivariant homotopy equivalence. Moreover, since the smaller space is the space of variations of a given action functional, we will compute the relative Contact Homology of a family of tight contact forms on the three-dimensional torus.

  12. Cosmetic Surgery in Integral Homology $L$-Spaces

    CERN Document Server

    Wu, Zhongtao

    2009-01-01

    Let $K$ be a non-trivial knot in $S^3$, and let $r$ and $r'$ be two distinct rational numbers of same sign, allowing $r$ to be infinite; we prove that there is no orientation-preserving homeomorphism between the manifolds $S^3_r(K)$ and $S^3_{r'}(K)$. We further generalize this uniqueness result to knots in arbitrary integral homology L-spaces.

  13. [An homologous recombination strategy to directly clone mammalian telemeres

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    We have pursued three goals over the past year. The first involved determining whether the HARY vector could be used for homologous integration in the human genome. The second was to ascertain whether inserted sequences could be amplified in preference to the endogenous DHFR genes. The third was to determine if the HARY insertion could provide an anchor point for long range restriction mapping. The progress in each goal is described.

  14. FastBLAST: homology relationships for millions of proteins.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    Full Text Available BACKGROUND: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding. METHODOLOGY/PRINCIPAL FINDINGS: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database ("NR", FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. CONCLUSIONS/SIGNIFICANCE: FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.

  15. Ocular toxicity of benzalkonium chloride homologs compared with their mixtures.

    Science.gov (United States)

    Okahara, Akihiko; Tanioka, Hidetoshi; Takada, Koichi; Kawazu, Kouichi

    2013-12-01

    This study was performed to assess the in vivo ocular toxicity of benzalkonium chloride (BAK) homologs compared with commercially available BAK (BAK mixture) and to assess the ocular toxicity of BAK homolog after repeated ocular application. Rabbit eyes were examined by ophthalmology and scanning electron microscopy (SEM) after 10 applications of BAK homologs with C12 (C12-BAK) and C14 (C14-BAK) alkyl chain lengths and a BAK mixture at concentrations of 0.001% (w/v), 0.003% (w/v), 0.005% (w/v), 0.01% (w/v) and 0.03% (w/v). The ocular toxicity of C12-BAK to rabbit eyes was examined by ophthalmology and histopathology after repeated ocular application for 39 weeks. In addition, the antimicrobial activities of C12-BAK and C14-BAK against A. niger, S. aureus and P. aeruginosa were assessed. Ocular toxicity of C12-BAK was less than those of the BAK mixture and C14-BAK. No ocular toxicity was noted after ocular application of 0.01% C12-BAK to rabbits for 39 weeks. C12-BAK showed antimicrobial activities at a concentration of 0.003%. These results suggest that the use of C12-BAK to replace BAK mixture as a preservative in ophthalmic solutions should be considered in order to reduce the incidence of the corneal epithelial cell injury induced clinically by BAK.

  16. Two pathways of homologous recombination in Trypanosoma brucei.

    Science.gov (United States)

    Conway, Colin; Proudfoot, Chris; Burton, Peter; Barry, J David; McCulloch, Richard

    2002-09-01

    African trypanosomes are unicellular parasites that use DNA recombination to evade the mammalian immune response. They do this in a process called antigenic variation, in which the parasites periodically switch the expression of VSG genes that encode distinct Variant Surface Glycoprotein coats. Recombination is used to move new VSG genes into specialised bloodstream VSG transcription sites. Genetic and molecular evidence has suggested that antigenic variation uses homologous recombination, but the detailed reaction pathways are not understood. In this study, we examine the recombination pathways used by trypanosomes to integrate transformed DNA into their genome, and show that they possess at least two pathways of homologous recombination. The primary mechanism is dependent upon RAD51, but a subsidiary pathway exists that is RAD51-independent. Both pathways contribute to antigenic variation. We show that the RAD51-independent pathway is capable of recombining DNA substrates with very short lengths of sequence homology and in some cases aberrant recombination reactions can be detected using such microhomologies.

  17. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  18. Xenogeneic homologous genes, molecular evolution and cancer therapy

    Institute of Scientific and Technical Information of China (English)

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  19. HLA-Modeler: Automated Homology Modeling of Human Leukocyte Antigens

    Directory of Open Access Journals (Sweden)

    Shinji Amari

    2013-01-01

    Full Text Available The three-dimensional (3D structures of human leukocyte antigen (HLA molecules are indispensable for the studies on the functions at molecular level. We have developed a homology modeling system named HLA-modeler specialized in the HLA molecules. Segment matching algorithm is employed for modeling and the optimization of the model is carried out by use of the PFROSST force field considering the implicit solvent model. In order to efficiently construct the homology models, HLA-modeler uses a local database of the 3D structures of HLA molecules. The structure of the antigenic peptide-binding site is important for the function and the 3D structure is highly conserved between various alleles. HLA-modeler optimizes the use of this structural motif. The leave-one-out cross-validation using the crystal structures of class I and class II HLA molecules has demonstrated that the rmsds of nonhydrogen atoms of the sites between homology models and crystal structures are less than 1.0 Å in most cases. The results have indicated that the 3D structures of the antigenic peptide-binding sites can be reproduced by HLA-modeler at the level almost corresponding to the crystal structures.

  20. HLA-Modeler: Automated Homology Modeling of Human Leukocyte Antigens.

    Science.gov (United States)

    Amari, Shinji; Kataoka, Ryoichi; Ikegami, Takashi; Hirayama, Noriaki

    2013-01-01

    The three-dimensional (3D) structures of human leukocyte antigen (HLA) molecules are indispensable for the studies on the functions at molecular level. We have developed a homology modeling system named HLA-modeler specialized in the HLA molecules. Segment matching algorithm is employed for modeling and the optimization of the model is carried out by use of the PFROSST force field considering the implicit solvent model. In order to efficiently construct the homology models, HLA-modeler uses a local database of the 3D structures of HLA molecules. The structure of the antigenic peptide-binding site is important for the function and the 3D structure is highly conserved between various alleles. HLA-modeler optimizes the use of this structural motif. The leave-one-out cross-validation using the crystal structures of class I and class II HLA molecules has demonstrated that the rmsds of nonhydrogen atoms of the sites between homology models and crystal structures are less than 1.0 Å in most cases. The results have indicated that the 3D structures of the antigenic peptide-binding sites can be reproduced by HLA-modeler at the level almost corresponding to the crystal structures.

  1. Three-Dimensional Modeling of Quasi-Homologous Solar Jets

    Science.gov (United States)

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-01-01

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  2. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  3. TALEN-mediated homologous recombination in Daphnia magna.

    Science.gov (United States)

    Nakanishi, Takashi; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2015-12-17

    Transcription Activator-Like Effector Nucleases (TALENs) offer versatile tools to engineer endogenous genomic loci in various organisms. We established a homologous recombination (HR)-based knock-in using TALEN in the crustacean Daphnia magna, a model for ecological and toxicological genomics. We constructed TALENs and designed the 67 bp donor insert targeting a point deletion in the eyeless mutant that shows eye deformities. Co-injection of the TALEN mRNA with donor DNA into eggs led to the precise integration of the donor insert in the germ line, which recovered eye deformities in offspring. The frequency of HR events in the germ line was 2% by using both plasmid and single strand oligo DNA with 1.5 kb and 80 nt homology to the target. Deficiency of ligase 4 involved in non-homologous end joining repair did not increase the HR efficiency. Our data represent efficient HR-based knock-in by TALENs in D. magna, which is a promising tool to understand Daphnia gene functions.

  4. Homologous recombination in DNA repair and DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Wolf-Dietrich Heyer

    2008-01-01

    Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical sup-port for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modaUties of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.

  5. The third homology of the special linear group of a field

    CERN Document Server

    Hutchinson, Kevin

    2008-01-01

    We prove that for any infinite field homology stability for the third integral homology of the special linear groups $SL(n,F)$ begins at $n=3$. When $n=2$ the cokernel of the map from the third homology of $SL(2,F)$ to the third homology of $SL(3,F)$ is naturally isomorphic to the square of Milnor $K_3$. We discuss applications to the indecomposable $K_3$ of the field and to Milnor-Witt K-theory.

  6. The third homology of the special linear group of a field

    OpenAIRE

    Hutchinson, Kevin; Tao, Liqun

    2009-01-01

    We prove that for any infinite field homology stability for the third integral homology of the special linear groups $SL(n,F)$ begins at $n=3$. When $n=2$ the cokernel of the map from the third homology of $SL(2,F)$ to the third homology of $SL(3,F)$ is naturally isomorphic to the square of Milnor $K_3$. We discuss applications to the indecomposable $K_3$ of the field and to Milnor-Witt K-theory.

  7. On mathematical arbitrariness of some papers on the potential homologous linear rule investigation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The history of homologous linear rule investigation is reviewed simply. The author puts forward a problem worth paying attention to in the recent potential homologous linear rule investigation, especially some mistakes made in these investigations on mathematical foundations. The author also exposes the mathematical arbitrariness of some papers on their potential homologous linear rule investigation.

  8. Genetic selection and DNA sequences of 4.5S RNA homologs

    DEFF Research Database (Denmark)

    Brown, S; Thon, G; Tolentino, E

    1989-01-01

    the homologs were determined. Since this approach does not require that the homologous genes hybridize with probes generated from the E. coli sequence, the sequences of the homologs were not all similar to the sequence of the E. coli gene. Despite the dissimilarity of the primary sequences of some...

  9. The ASH1 HOMOLOG 2 (ASHH2 histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Paul E Grini

    Full Text Available BACKGROUND: SET-domain proteins are histone lysine (K methyltransferases (HMTase implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2 protein (also called SDG8, EFS and CCR1 has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99 we observed a reduction of H3K36 trimethylation (me3, but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to

  10. The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Anna Lisa Gündner

    Full Text Available Phosphoinositide-3-kinase enhancer (PIKE proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH domain, a GTPase-activating (GAP domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to

  11. Building multiclass classifiers for remote homology detection and fold recognition

    Directory of Open Access Journals (Sweden)

    Karypis George

    2006-10-01

    Full Text Available Abstract Background Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems. Results We present a comprehensive evaluation of a number of methods for building SVM-based multiclass classification schemes in the context of the SCOP protein classification. These methods include schemes that directly build an SVM-based multiclass model, schemes that employ a second-level learning approach to combine the predictions generated by a set of binary SVM-based classifiers, and schemes that build and combine binary classifiers for various levels of the SCOP hierarchy beyond those defining the target classes. Conclusion Analyzing the performance achieved by the different approaches on four different datasets we show that most of the proposed multiclass SVM-based classification approaches are quite effective in solving the remote homology prediction and fold recognition problems and that the schemes that use predictions from binary models constructed for ancestral categories within the SCOP hierarchy tend to not only lead to lower error rates but also reduce the number of errors in which a superfamily is assigned to an entirely different fold and a fold is predicted as being from a different SCOP class. Our results also show that the limited size of the training data makes it hard to learn complex second-level models, and that models of moderate complexity lead to consistently better results.

  12. μ-Opioid receptor desensitization: homologous or heterologous?

    Science.gov (United States)

    Llorente, Javier; Lowe, Janet D; Sanderson, Helen S; Tsisanova, Elena; Kelly, Eamonn; Henderson, Graeme; Bailey, Chris P

    2012-12-01

    There is considerable controversy over whether μ-opioid receptor (MOPr) desensitization is homologous or heterologous and over the mechanisms underlying such desensitization. In different cell types MOPr desensitization has been reported to involve receptor phosphorylation by various kinases, including G-protein-coupled receptor kinases (GRKs), second messenger and other kinases as well as perturbation of the MOPr effector pathway by GRK sequestration of G protein βγ subunits or ion channel modulation. Here we report that in brainstem locus coeruleus (LC) neurons prepared from relatively mature rats (5-8 weeks old) rapid MOPr desensitization induced by the high-efficacy opioid peptides methionine enkephalin and DAMGO was homologous and not heterologous to α(2)-adrenoceptors and somatostatin SST(2) receptors. Given that these receptors all couple through G proteins to the same set of G-protein inwardly rectifying (GIRK) channels it is unlikely therefore that in mature neurons MOPr desensitization involves G protein βγ subunit sequestration or ion channel modulation. In contrast, in slices from immature animals (less than postnatal day 20), MOPr desensitization was observed to be heterologous and could be downstream of the receptor. Heterologous MOPr desensitization was not dependent on protein kinase C or c-Jun N-terminal kinase activity, but the change from heterologous to homologous desensitization with age was correlated with a decrease in the expression levels of GRK2 in the LC and other brain regions. The observation that the mechanisms underlying MOPr desensitization change with neuronal development is important when extrapolating to the mature brain results obtained from experiments on expression systems, cell lines and immature neuronal preparations.

  13. The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila.

    Science.gov (United States)

    Gündner, Anna Lisa; Hahn, Ines; Sendscheid, Oliver; Aberle, Hermann; Hoch, Michael

    2014-01-01

    Phosphoinositide-3-kinase enhancer (PIKE) proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH) domain, a GTPase-activating (GAP) domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK) and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to third instar

  14. A procedure for identifying homologous alternative splicing events

    Directory of Open Access Journals (Sweden)

    Orozco Modesto

    2007-07-01

    Full Text Available Abstract Background The study of the functional role of alternative splice isoforms of a gene is a very active area of research in biology. The difficulty of the experimental approach (in particular, in its high-throughput version leaves ample room for the development of bioinformatics tools that can provide a useful first picture of the problem. Among the possible approaches, one of the simplest is to follow classical protein function annotation protocols and annotate target alternative splice events with the information available from conserved events in other species. However, the application of this protocol requires a procedure capable of recognising such events. Here we present a simple but accurate method developed for this purpose. Results We have developed a method for identifying homologous, or equivalent, alternative splicing events, based on the combined use of neural networks and sequence searches. The procedure comprises four steps: (i BLAST search for homologues of the two isoforms defining the target alternative splicing event; (ii construction of all possible candidate events; (iii scoring of the latter with a series of neural networks; and (iv filtering of the results. When tested in a set of 473 manually annotated pairs of homologous events, our method showed a good performance, with an accuracy of 0.99, a precision of 0.98 and a sensitivity of 0.93. When no candidates were available, the specificity of our method varied between 0.81 and 0.91. Conclusion The method described in this article allows the identification of homologous alternative splicing events, with a good success rate, indicating that such method could be used for the development of functional annotation of alternative splice isoforms.

  15. Colored sl(N) link homology via matrix factorizations

    CERN Document Server

    Wu, Hao

    2011-01-01

    The Reshetikhin-Turaev sl(N) polynomial of links colored by wedge powers of the defining representation has been categorified via several different approaches. Here, we give a concise introduction to the categorification using matrix factorizations, which is a direct generalization of the Khovanov-Rozansky homology. Full details of the construction are given in [arXiv:0907.0695]. We also briefly review deformations and applications of this categorification given in [arXiv:1002.2662, arXiv:1011.2254, arXiv:1102.0586].

  16. Drosophila homolog of the murine Int-1 protooncogene.

    OpenAIRE

    1988-01-01

    We have isolated phage clones from Drosophila melanogaster genomic and cDNA libraries containing a sequence homologous to the murine Int-1 protooncogene. The Drosophila gene is represented by a single locus at position 28A1-2 on chromosome 2. The gene is expressed as a 2.9-kilobase-long polyadenylylated mRNA in embryo, larval, and pupal stages. It is hardly detectable in adult flies. The longest open reading frame of the cDNA clone corresponds to a protein 469 amino acids long. Alignment of t...

  17. Seamless gene tagging by endonuclease-driven homologous recombination.

    Directory of Open Access Journals (Sweden)

    Anton Khmelinskii

    Full Text Available Gene tagging facilitates systematic genomic and proteomic analyses but chromosomal tagging typically disrupts gene regulatory sequences. Here we describe a seamless gene tagging approach that preserves endogenous gene regulation and is potentially applicable in any species with efficient DNA double-strand break repair by homologous recombination. We implement seamless tagging in Saccharomyces cerevisiae and demonstrate its application for protein tagging while preserving simultaneously upstream and downstream gene regulatory elements. Seamless tagging is compatible with high-throughput strain construction using synthetic genetic arrays (SGA, enables functional analysis of transcription antisense to open reading frames and should facilitate systematic and minimally-invasive analysis of gene functions.

  18. The colocalization transition of homologous chromosomes at meiosis

    Science.gov (United States)

    Nicodemi, Mario; Panning, Barbara; Prisco, Antonella

    2008-06-01

    Meiosis is the specialized cell division required in sexual reproduction. During its early stages, in the mother cell nucleus, homologous chromosomes recognize each other and colocalize in a crucial step that remains one of the most mysterious of meiosis. Starting from recent discoveries on the system molecular components and interactions, we discuss a statistical mechanics model of chromosome early pairing. Binding molecules mediate long-distance interaction of special DNA recognition sequences and, if their concentration exceeds a critical threshold, they induce a spontaneous colocalization transition of chromosomes, otherwise independently diffusing.

  19. Building Multiclass Classifiers for Remote Homology Detection and Fold Recognition

    Science.gov (United States)

    2006-04-05

    NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...are thoroughly evaluated for both remote homology prediction and fold recognition using four differ- ent datasets derived from Astral [5]. Our...function may not be the most appropriate as it may lead to models where 5 Table 1: Dataset Statistics. Statistic DS1 DS2 DS3 DS4 ASTRAL filtering 90% 40% 25

  20. The Non-Homologous Nature of Solar Diameter Variations

    CERN Document Server

    Sofia, S; Demarque, P; Li, L; Thuillier, G; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Li, Linghuai; Thuillier, Gerard

    2005-01-01

    We show in this paper that the changes of the solar diameter in response to variations of large scale magnetic fields and turbulence are not homologous. For the best current model, the variation at the photospheric level is over 1000 times larger than the variation at a depth of 5 Mm, which is about the level at which f-mode solar oscillations determine diameter variations. This model is supported by observations that indicate larger diameter changes for high degree f-modes than for low degree f-modes, since energy of the former are concentrated at shallower layers than the latter.

  1. The growth rate of symplectic homology and affine varieties

    CERN Document Server

    McLean, Mark

    2010-01-01

    We will show that the cotangent bundle of an integrally hyperbolic manifold is not symplectomorphic to any smooth affine variety. We will also show that the unit cotangent bundle of such a manifold is not Stein fillable by a Stein domain whose completion is symplectomorphic to a smooth affine variety. For instance, these results hold when our manifolds are simply connected with at least one Betti number greater than the corresponding Betti number of the n torus. We use an invariant called the growth rate of symplectic homology to prove this result.

  2. Parallel Computation of Persistent Homology using the Blowup Complex

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Ryan [Stanford Univ., CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-27

    We describe a parallel algorithm that computes persistent homology, an algebraic descriptor of a filtered topological space. Our algorithm is distinguished by operating on a spatial decomposition of the domain, as opposed to a decomposition with respect to the filtration. We rely on a classical construction, called the Mayer--Vietoris blowup complex, to glue global topological information about a space from its disjoint subsets. We introduce an efficient algorithm to perform this gluing operation, which may be of independent interest, and describe how to process the domain hierarchically. We report on a set of experiments that help assess the strengths and identify the limitations of our method.

  3. A spectral sequence in odd Khovanov homology (Eine Spektralsequenz in ungerader Khovanov-Homologie)

    CERN Document Server

    Beier, Simon

    2011-01-01

    Ozsvath, Rasmussen and Szabo constructed odd Khovanov homology. It is a link invariant which has the same reduction modulo 2 as (even) Khovanov homology. Szabo introduced a spectral sequence with mod 2 coefficients from mod 2 Khovanov homology to another link homology. He got his spectral sequence from a chain complex with a filtration. We give an integral lift of Szabo's complex, that provides a spectral sequence from odd Khovanov homology to a link homology, from which one can get Szabo's link homology with the Universal Coefficient Theorem. Szabo has constructed such a lift independently, but has not yet published it. This is my master thesis which I wrote under supervision of Thomas Schick at Georg August University G\\"ottingen in summer 2011. It is in German. I will publish a reworked version in English later.

  4. Nasal pungency and odor of homologous aldehydes and carboxylic acids.

    Science.gov (United States)

    Cometto-Muñiz, J E; Cain, W S; Abraham, M H

    1998-01-01

    Airborne substances can stimulate both the olfactory and the trigeminal nerve in the nose, giving rise to odor and pungent (irritant) sensations, respectively. Nose, eye, and throat irritation constitute common adverse effects in indoor environments. We measured odor and nasal pungency thresholds for homologous aliphatic aldehydes (butanal through octanal) and carboxylic acids (formic, acetic, butanoic, hexanoic, and octanoic). Nasal pungency was measured in subjects lacking olfaction (i.e., anosmics) to avoid odor biases. Similar to other homologous series, odor and pungency thresholds declined (i.e., sensory potency increased) with increasing carbon chain length. A previously derived quantitative structure-activity relationship (QSAR) based on solvation energies predicted all nasal pungency thresholds, except for acetic acid, implying that a key step in the mechanism for threshold pungency involves transfer of the inhaled substance from the vapor phase to the receptive biological phase. In contrast, acetic acid - with a pungency threshold lower than predicted - is likely to produce threshold pungency through direct chemical reaction with the mucosa. Both in the series studied here and in those studied previously, we reach a member at longer chain-lengths beyond which pungency fades. The evidence suggests a biological cut-off, presumably based upon molecular size, across the various series.

  5. Flexible mapping of homology onto structure with Homolmapper

    Directory of Open Access Journals (Sweden)

    Lagarias J Clark

    2007-04-01

    Full Text Available Abstract Background Over the past decade, a number of tools have emerged for the examination of homology relationships among protein sequences in a structural context. Most recent software implementations for such analysis are tied to specific molecular viewing programs, which can be problematic for collaborations involving multiple viewing environments. Incorporation into larger packages also adds complications for users interested in adding their own scoring schemes or in analyzing proteins incorporating unusual amino acid residues such as selenocysteine. Results We describe homolmapper, a command-line application for mapping information from a multiple protein sequence alignment onto a protein structure for analysis in the viewing software of the user's choice. Homolmapper is small (under 250 K for the application itself and is written in Python to ensure portability. It is released for non-commercial use under a modified University of California BSD license. Homolmapper permits facile import of additional scoring schemes and can incorporate arbitrary additional amino acids to allow handling of residues such as selenocysteine or pyrrolysine. Homolmapper also provides tools for defining and analyzing subfamilies relative to a larger alignment, for mutual information analysis, and for rapidly visualizing the locations of mutations and multi-residue motifs. Conclusion Homolmapper is a useful tool for analysis of homology relationships among proteins in a structural context. There is also extensive, example-driven documentation available. More information about homolmapper is available at http://www.mcb.ucdavis.edu/faculty-labs/lagarias/homolmapper_home/homolmapper%20web%20page.htm.

  6. Discovery of a Homolog of Siderophilin in a Plant

    Institute of Scientific and Technical Information of China (English)

    Yun-Biao FEI; Peng-Xiu CAO; Su-Qin GAO; Ling-Bo WEI; Bin WANG

    2005-01-01

    Members belonging to the siderophilin family are iron-binding and iron-transporting proteins,which includes transferrin and lactoferrin. They have only been found in animals previously. If siderophilin could be found in and isolated from a plant, its production and subsequent extensive application could be increased. The present study is the first to report the discovery of a homolog of siderophilin in a plant. In order to purify antifreeze proteins from Ammopiptanthus mongolicus (Maxim.) Cheng f., the authors processed the proteins from the leaves using techniques such as column chromatography using DEAE-Cellulose-52, gel filtration via Sephacryl S-100 HR medium, hydrophobic interaction chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mass spectroscopy was performed on the three proteins purified and the sequence of one of the proteins (containing 32 amino acids) was found to have 97%homology with the corresponding part of one type of human lactoferrin. Moreover, one of the two peptides belongs to an iron-binding domain. So, it is possible that siderophilin also exists in plants and plays a role as an antibacterial and antifungal, among other actions.

  7. Reappearance from Obscurity: Mammalian Rad52 in Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kritika Hanamshet

    2016-09-01

    Full Text Available Homologous recombination (HR plays an important role in maintaining genomic integrity. It is responsible for repair of the most harmful DNA lesions, DNA double-strand breaks and inter-strand DNA cross-links. HR function is also essential for proper segregation of homologous chromosomes in meiosis, maintenance of telomeres, and resolving stalled replication forks. Defects in HR often lead to genetic diseases and cancer. Rad52 is one of the key HR proteins, which is evolutionarily conserved from yeast to humans. In yeast, Rad52 is important for most HR events; Rad52 mutations disrupt repair of DNA double-strand breaks and targeted DNA integration. Surprisingly, in mammals, Rad52 knockouts showed no significant DNA repair or recombination phenotype. However, recent work demonstrated that mutations in human RAD52 are synthetically lethal with mutations in several other HR proteins including BRCA1 and BRCA2. These new findings indicate an important backup role for Rad52, which complements the main HR mechanism in mammals. In this review, we focus on the Rad52 activities and functions in HR and the possibility of using human RAD52 as therapeutic target in BRCA1 and BRCA2-deficient familial breast cancer and ovarian cancer.

  8. Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA.

    Directory of Open Access Journals (Sweden)

    Wolfgang Goettel

    2009-06-01

    Full Text Available An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to

  9. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection.

    Science.gov (United States)

    Patnaik, Bharat Bhusan; Patnaik, Hongray Howrelia; Seo, Gi Won; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2014-10-01

    Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection.

  10. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales

    Directory of Open Access Journals (Sweden)

    Natalia ePabon-Mora

    2013-09-01

    Full Text Available Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal

  11. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales.

    Science.gov (United States)

    Pabón-Mora, Natalia; Hidalgo, Oriane; Gleissberg, Stefan; Litt, Amy

    2013-01-01

    Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes.

  12. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    Energy Technology Data Exchange (ETDEWEB)

    Henrique Barreta, Marcos [Universidade Federal de Santa Catarina, Campus Universitario de Curitibanos, Curitibanos, SC (Brazil); Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Ferreira, Rogerio [Centro de Educacao Superior do Oeste-Universidade do Estado de Santa Catarina, Chapeco, SC (Brazil); Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Bordignon, Vilceu, E-mail: vilceu.bordignon@mcgill.ca [Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC (Canada)

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  13. Two Lectures On The Jones Polynomial And Khovanov Homology

    CERN Document Server

    Witten, Edward

    2014-01-01

    In the first of these two lectures, I describe a gauge theory approach to understanding quantum knot invariants as Laurent polynomials in a complex variable q. The two main steps are to reinterpret three-dimensional Chern-Simons gauge theory in four dimensional terms and then to apply electric-magnetic duality. The variable q is associated to instanton number in the dual description in four dimensions. In the second lecture, I describe how Khovanov homology can emerge upon adding a fifth dimension. (Based on lectures presented at the Clay Research Conference at Oxford University, and also at the Galileo Galilei Institute in Florence, the University of Milan, Harvard University, and the University of Pennsylvania.)

  14. Homological interpretation of extensions and biextensions of 1-motives

    OpenAIRE

    Bertolin, Cristiana

    2008-01-01

    Let k be a separably closed field. Let K_i=[A_i \\to B_i] (for i=1,2,3) be three 1-motives defined over k. We define the geometrical notions of extension of K_1 by K_3 and of biextension of (K_1,K_2) by K_3. We then compute the homological interpretation of these new geometrical notions: namely, the group Biext^0(K_1,K_2;K_3) of automorphisms of any biextension of (K_1,K_2) by K_3 is canonically isomorphic to the cohomology group Ext^0(K_1 \\otimes K_2,K_3), and the group Biext^1(K_1,K_2;K_3) o...

  15. Homological mirror symmetry on noncommutative two-tori

    CERN Document Server

    Kajiura, H

    2004-01-01

    Homological mirror symmetry is a conjecture that a category constructed in the A-model and a category constructed in the B-model are equivalent in some sense. We construct a cyclic differential graded (DG) category of holomorphic vector bundles on noncommutative two-tori as a category in the B-model side. We define the corresponding Fukaya's category in the A-model side, and prove the equivalence of the two categories at the level of cyclic categories. We further write down explicitly Feynman rules for higher Massey products derived from the cyclic DG category. As a background of these arguments, a physical explanation of the mirror symmetry for noncommutative two-tori is also given.

  16. Refined homology model of monoacylglycerol lipase: toward a selective inhibitor

    Science.gov (United States)

    Bowman, Anna L.; Makriyannis, Alexandros

    2009-11-01

    Monoacylglycerol lipase (MGL) is primarily responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid with full agonist activity at both cannabinoid receptors. Increased tissue 2-AG levels consequent to MGL inhibition are considered therapeutic against pain, inflammation, and neurodegenerative disorders. However, the lack of MGL structural information has hindered the development of MGL-selective inhibitors. Here, we detail a fully refined homology model of MGL which preferentially identifies MGL inhibitors over druglike noninhibitors. We include for the first time insight into the active-site geometry and potential hydrogen-bonding interactions along with molecular dynamics simulations describing the opening and closing of the MGL helical-domain lid. Docked poses of both the natural substrate and known inhibitors are detailed. A comparison of the MGL active-site to that of the other principal endocannabinoid metabolizing enzyme, fatty acid amide hydrolase, demonstrates key differences which provide crucial insight toward the design of selective MGL inhibitors as potential drugs.

  17. Sequence analysis and homology modeling of laccase from Pycnoporus cinnabarinus.

    Science.gov (United States)

    Meshram, Rohan J; Gavhane, Aj; Gaikar, Rb; Bansode, Ts; Maskar, Au; Gupta, Ak; Sohni, Sk; Patidar, Ma; Pandey, Tr; Jangle, Sn

    2010-09-20

    Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2-azinobis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity.

  18. CHSMiner: a GUI tool to identify chromosomal homologous segments

    Directory of Open Access Journals (Sweden)

    Liu Lei

    2009-01-01

    Full Text Available Abstract Background The identification of chromosomal homologous segments (CHS within and between genomes is essential for comparative genomics. Various processes including insertion/deletion and inversion could cause the degeneration of CHSs. Results Here we present a Java software CHSMiner that detects CHSs based on shared gene content alone. It implements fast greedy search algorithm and rigorous statistical validation, and its friendly graphical interface allows interactive visualization of the results. We tested the software on both simulated and biological realistic data and compared its performance with similar existing software and data source. Conclusion CHSMiner is characterized by its integrated workflow, fast speed and convenient usage. It will be useful for both experimentalists and bioinformaticians interested in the structure and evolution of genomes.

  19. On the homology of the shoulder girdle in turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Sugahara, Fumiaki; Takechi, Masaki; Sato, Noboru; Kuratani, Shigeru

    2015-05-01

    The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.

  20. Homology of head sclerites in Burgess Shale euarthropods.

    Science.gov (United States)

    Ortega-Hernández, Javier

    2015-06-15

    The Cambrian fossil record of euarthropods (extant arachnids, myriapods, crustaceans, hexapods) has played a major role in understanding the origins of these successful animals and indicates that early ancestors underwent an evolutionary transition from soft-bodied taxa (lobopodians) to more familiar sclerotized forms with jointed appendages [1-3]. Recent advances in paleoneurology and developmental biology show that this major transformation is reflected by substantial changes in the head region of early euarthropods, as informed by the segmental affinity of the cephalic appendages [1, 4-6]. However, data on the implications of this reorganization for non-appendicular exoskeletal structures are lacking, given the difficulty of inferring the precise segmental affinities of these features. Here, I report neurological remains associated with the stalked eyes and "anterior sclerite" in the (middle Cambrian) Burgess Shale euarthropods Helmetia expansa and Odaraia alata and provide evidence that these features are associated with nerve traces originating from the anterior brain region, the protocerebrum. The position of the protocerebral ganglia in exceptionally preserved Cambrian euarthropods indicates the homology of the anterior sclerite in extinct groups (e.g., fuxianhuiids, bivalved forms, artiopodans [7, 8]) and allows new comparisons with the dorsal cephalic plate of radiodontans, large nektonic predators whose anterior segmental organization bears fundamental similarities to that of Paleozoic lobopodians [1, 6, 9, 10]. These observations allow reconstruction of the segmental architecture of the head region in the earliest sclerotized euarthropods and demonstrate the deep homology between exoskeletal features in an evolutionary continuum of taxa with distinct types of body organization.

  1. Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment

    CERN Document Server

    Lee, Dominic J; Albrecht, Tim; Kornyshev, Alexei A

    2014-01-01

    Homologous gene shuffling between DNA promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition is still an unsolved puzzle. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular electrostatic ones. In this proposed mechanism, sequences having the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts; the difference termed the recognition energy. Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignmen...

  2. Equidistribution of geodesics on homology classes and analogues for free groups

    DEFF Research Database (Denmark)

    Petridis, Y.N.; Risager, Morten

    2005-01-01

    We investigate how often geodesics have homology in a fixed set of the homology lattice of a compact Riemann surface. We prove that closed geodesics are equidistributed on a random set of homology classes and certain arithmetic sets. We explain the analogues for free groups, conjugacy classes and...... and discrete logarithms, in particular, we investigate the density of conjugacy classes with relatively prime discrete logarithms....

  3. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology.

    OpenAIRE

    Marcel Ander; Sivaraman Subramaniam; Karim Fahmy; Francis Stewart, A.; Erik Schäffer

    2015-01-01

    Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recog...

  4. Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Emad A. [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Philippens, Marielle E.P.; Kal, Henk B. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rooij, Dirk G. de, E-mail: d.g.derooij@uu.nl [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands); Boer, Peter de [Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen (Netherlands)

    2010-06-01

    This study was designed to obtain a better insight into the relative contribution of homologous recombination (HR) and non-homologous end joining (NHEJ) to the repair of radiation-induced DNA double-strand breaks (DSBs) at first meiotic prophase. Early and late pachytene and early diplotene spermatocytes that had completed crossing over were sampled. We studied the kinetics of {gamma}-H2AX chromatin foci removal after irradiation of mice deficient for HR and mice deficient for NHEJ. Analyzing {gamma}-H2AX signals in unirradiated RAD54/RAD54B deficient spermatocytes indicated incomplete meiotic recombination repair due to the pronounced increase of {gamma}-H2AX foci in late prophase primary spermatocytes. In these mice, 8 h after irradiation, early pachytene spermatocytes showed a reduction of the numbers of {gamma}-H2AX foci by 52% compared to 82% in the wild type, the difference being significant. However, after crossing over (in late pachytene and early diplotene), no effect of RAD54/RAD54B deficiency on the reduction of irradiation-induced foci was observed. In NHEJ deficient SCID mice, repair kinetics in early spermatocytes were similar to those in wild type mice. However, 1 h after irradiation in late pachytene and early diplotene spermatocytes 1.7 times more foci were found than in wild type mice. This difference might be related to the absence of a DNA-PKcs dependent fast repair component in SCID mice. As subsequent repair is normal, HR likely is taking over. Taken together, the results obtained in RAD54/RAD54B deficient mice and in SCID mice indicate that DSB repair in early pachytene spermatocytes is mainly carried out through HR. In late spermatocytes (late pachytenes and early diplotenes) NHEJ is active. However, probably there is an interplay between these repair pathways and when in late spermatocytes the NHEJ pathway is compromised HR may take over.

  5. Histone deacetylase inhibitors selectively target homology dependent DNA repair defective cells and elevate non-homologous endjoining activity.

    Directory of Open Access Journals (Sweden)

    Stephanie Smith

    Full Text Available BACKGROUND: We have previously used the ATAD5-luciferase high-throughput screening assay to identify genotoxic compounds with potential chemotherapeutic capabilities. The successful identification of known genotoxic agents, including the histone deacetylase inhibitor (HDACi trichostatin A (TSA, confirmed the specificity of the screen since TSA has been widely studied for its ability to cause apoptosis in cancer cells. Because many cancers have acquired mutations in DNA damage checkpoints or repair pathways, we hypothesized that these cancers may be susceptible to treatments that target compensatory pathways. Here, we used a panel of isogenic chicken DT40 B lymphocyte mutant and human cell lines to investigate the ability of TSA to define selective pathways that promote HDACi toxicity. RESULTS: HDACi induced a DNA damage response and reduced viability in all repair deficient DT40 mutants although ATM-nulls were least affected. The most dramatic sensitivity was observed in mutants lacking the homology dependent repair (HDR factor BLM or the non-homologous end-joining (NHEJ and HDR factors, KU/RAD54, suggesting an involvement of either HDR or NHEJ in HDACi-induced cell death. To extend these findings, we measured the frequencies of HDR and NHEJ after HDACi treatment and monitored viability in human cell lines comparably deficient in HDR or NHEJ. Although no difference in HDR frequency was observed between HDACi treated and untreated cells, HDR-defective human cell lines were clearly more sensitive than wild type. Unexpectedly, cells treated with HDACis showed a significantly elevated NHEJ frequency. CONCLUSIONS: HDACi targeting drugs induced significant increases in NHEJ activity in human cell lines but did not alter HDR frequency. Moreover, HDR is required for cellular resistance to HDACi therapy; therefore, NHEJ does not appear to be a critical axis for HDACi resistance. Rather, HDACi compounds induced DNA damage, most likely double strand breaks

  6. Introduction to 'Homology and convergence in nervous system evolution'.

    Science.gov (United States)

    Strausfeld, Nicholas J; Hirth, Frank

    2016-01-01

    The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss

  7. Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Despotopulos, John D. [Univ. of Nevada, Las Vegas, NV (United States)

    2015-03-12

    Study of the chemistry of the heaviest elements, Z ≥ 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extraction chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high-purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n)113Sn, natSn(p,n)124Sb, and Au(p,n)197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies; crown ethers show high selectivity for metal ions. Finally. a potential chemical system for Fl was established based on the Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is

  8. A somatic origin of homologous Robertsonian translocations and isochromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A. (Univ. of Zurich (Switzerland)); Basaran, S.; Yueksel-Apak, M. (Univ. of Istanbul (Turkey)); Neri, G. (Universita Cattolica, Rome (Italy)); Serville, F. (Hopital d' Enfants Pellegrin, Bordeaux (France)); Balicek, P.; Haluza, R. (Univ. Hospital of Hradeck Kralove, Hradec Kralove (Czech Republic)); Farah, L.M.S. (Escuola Paulista de Medicina, Sao Paulo (Brazil)) (and others)

    1994-02-01

    One t(14q 14q), three t(15q 15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange. 75 refs., 1 fig., 4 tabs.

  9. Cytoarchitecture of mouse and rat cingulate cortex with human homologies.

    Science.gov (United States)

    Vogt, Brent A; Paxinos, George

    2014-01-01

    A gulf exists between cingulate area designations in human neurocytology and those used in rodent brain atlases with a major underpinning of the former being midcingulate cortex (MCC). The present study used images extracted from the Franklin and Paxinos mouse atlas and Paxinos and Watson rat atlas to demonstrate areas comprising MCC and modifications of anterior cingulate (ACC) and retrosplenial cortices. The laminar architecture not available in the atlases is also provided for each cingulate area. Both mouse and rat have a MCC with neurons in all layers that are larger than in ACC and layer Va has particularly prominent neurons and reduced neuron densities. An undifferentiated ACC area 33 lies along the rostral callosal sulcus in rat but not in mouse and area 32 has dorsal and ventral subdivisions with the former having particularly large pyramidal neurons in layer Vb. Both mouse and rat have anterior and posterior divisions of retrosplenial areas 29c and 30, although their cytology is different in rat and mouse. Maps of the rodent cingulate cortices provide for direct comparisons with each region in the human including MCC and it is significant that rodents do not have a posterior cingulate region composed of areas 23 and 31 like the human. It is concluded that rodents and primates, including humans, possess a MCC and this homology along with those in ACC and retrosplenial cortices permit scientists inspired by human considerations to test hypotheses on rodent models of human diseases.

  10. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis.

    Science.gov (United States)

    Shima, Yoko; Fujisawa, Masaki; Kitagawa, Mamiko; Nakano, Toshitsugu; Kimbara, Junji; Nakamura, Nobutaka; Shiina, Takeo; Sugiyama, Junichi; Nakamura, Toshihide; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    Certain MADS-box transcription factors play central roles in regulating fruit ripening. RIPENING INHIBITOR (RIN), a tomato MADS-domain protein, acts as a global regulator of ripening, affecting the climacteric rise of ethylene, pigmentation changes, and fruit softening. Previously, we showed that two MADS-domain proteins, the FRUITFULL homologs FUL1 and FUL2, form complexes with RIN. Here, we characterized the FUL1/FUL2 loss-of-function phenotype in co-suppressed plants. The transgenic plants produced ripening-defective fruits accumulating little or no lycopene. Unlike a previous study on FUL1/FUL2 suppressed tomatoes, our transgenic fruits showed very low levels of ethylene production, and this was associated with suppression of the genes for 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene synthesis. FUL1/FUL2 suppression also caused the fruit to soften in a manner independent of ripening, possibly due to reduced cuticle thickness in the peel of the suppressed tomatoes.

  11. Transcription-coupled homologous recombination after oxidative damage.

    Science.gov (United States)

    Wei, Leizhen; Levine, Arthur Samuel; Lan, Li

    2016-08-01

    Oxidative DNA damage induces genomic instability and may lead to mutagenesis and carcinogenesis. As severe blockades to RNA polymerase II (RNA POLII) during transcription, oxidative DNA damage and the associated DNA strand breaks have a profoundly deleterious impact on cell survival. To protect the integrity of coding regions, high fidelity DNA repair at a transcriptionally active site in non-dividing somatic cells, (i.e., terminally differentiated and quiescent/G0 cells) is necessary to maintain the sequence integrity of transcribed regions. Recent studies indicate that an RNA-templated, transcription-associated recombination mechanism is important to protect coding regions from DNA damage-induced genomic instability. Here, we describe the discovery that G1/G0 cells exhibit Cockayne syndrome (CS) B (CSB)-dependent assembly of homologous recombination (HR) factors at double strand break (DSB) sites within actively transcribed regions. This discovery is a challenge to the current dogma that HR occurs only in S/G2 cells where undamaged sister chromatids are available as donor templates.

  12. Failure of homologous synapsis and sex-specific reproduction problems

    Directory of Open Access Journals (Sweden)

    Hiroki eKurahashi

    2012-06-01

    Full Text Available The prophase of meiosis I ensures the correct segregation of chromosomes to each daughter cell. This includes the pairing, synapsis and recombination of homologous chromosomes. A subset of chromosomal abnormalities, including translocation and inversion, disturbs these processes, resulting in the failure to complete synapsis. This activates the meiotic pachytene checkpoint, and the gametes are fated to undergo cell cycle arrest and subsequent apoptosis. Spermatogenic cells appear to be more vulnerable to the pachytene checkpoint, and male carriers of chromosomal abnormalities are more susceptible to infertility. In contrast, oocytes tend to bypass the checkpoint and instead generate other problems, such as chromosome imbalance that often leads to recurrent pregnancy loss in female carriers. Recent advances in genetic manipulation technologies have increased our knowledge about the pachytene checkpoint and surveillance systems that detect chromosomal synapsis. This review focuses on the consequences of synapsis failure in humans and provides an overview of the mechanisms involved. We also discuss the sexual dimorphism of the involved pathways that leads to the differences in reproductive outcomes between males and females.

  13. Homology among tet determinants in conjugative elements of streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.; Hazum, S.; Guild, W.R.

    1981-10-01

    A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative o(cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from Group D Streptococcus faecalis and Group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon TN916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes.

  14. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  15. Three Approaches in Computational Geometry and Topology : Persistent Homology, Discrete Differential Geometry and Discrete Morse Theory

    OpenAIRE

    Botnan, Magnus Bakke

    2011-01-01

    We study persistent homology, methods in discrete differential geometry and discrete Morse theory. Persistent homology is applied to computational biology and range image analysis. Theory from differential geometry is used to define curvature estimates of triangulated hypersurfaces. In particular, a well-known method for triangulated surfacesis generalised to hypersurfaces of any dimension. The thesis concludesby discussing a discrete analogue of Morse theory.

  16. Non-O1 Vibrio cholerae in Thailand: homology with cloned cholera toxin genes.

    OpenAIRE

    Hanchalay, S; Seriwatana, J; Echeverria, P.; Holmgren, J.; Tirapat, C.; Moseley, S L; Taylor, D N

    1985-01-01

    We examined 281 non-O1 Vibrio cholerae isolates from Thailand for homology with genes coding for cholera toxin. Five isolates from environmental sources were homologous with the cholera toxin gene probe and produced both the A and B subunits of cholera toxin.

  17. Density parameter estimation for finding clusters of homologous proteins-tracing actinobacterial pathogenicity lifestyles

    DEFF Research Database (Denmark)

    Röttger, Richard; Kalaghatgi, Prabhav; Sun, Peng

    2013-01-01

    Homology detection is a long-standing challenge in computational biology. To tackle this problem, typically all-versus-all BLAST results are coupled with data partitioning approaches resulting in clusters of putative homologous proteins. One of the main problems, however, has been widely neglected...

  18. In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells

    NARCIS (Netherlands)

    L. Rousseau (Laure); O. Etienne (Olivier); T. Roque (Telma); C. Desmaze (Chantal); C. Haton (Céline); M.-A. Mouthon (Marc-André.); J. Bernardino-Sgherri (Jacqueline); J. Essers (Jeroen); R. Kanaar (Roland); F.D. Boussin (François)

    2012-01-01

    textabstractWe characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical developm

  19. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage.

    NARCIS (Netherlands)

    J. Essers (Jeroen); A.B. Houtsmuller (Adriaan); L.R. van Veelen (Lieneke); C. Paulusma (Coen); A.L. Nigg (Alex); A. Pastink (Albert); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2002-01-01

    textabstractRecombination between homologous DNA molecules is essential for the proper maintenance and duplication of the genome, and for the repair of exogenously induced DNA damage such as double-strand breaks. Homologous recombination requires the RAD52 group proteins, including Rad51, Rad52 and

  20. Semi-algebraic partition and basis of Borel-Moore homology of hyperplane arrangements

    CERN Document Server

    Ito, Ko-Ki

    2011-01-01

    We describe an explicit semi-algebraic partition for the complement of the hyperplane arrangement such that each piece is contractible and forms a basis of Borel-Moore homology. We also give explicit correspondence between the de Rham cohomology and the Borel-Moore homology.

  1. Homology for higher-rank graphs and twisted C*-algebras

    CERN Document Server

    Kumjian, Alex; Sims, Aidan

    2011-01-01

    We introduce a homology theory for k-graphs and explore its fundamental properties. We establish connections with algebraic topology by showing that the homology of a k-graph coincides with the homology of its topological realisation as described by Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological constructions, and show that they are compatible, from a homological point of view, with their topological counterparts. We show how to twist the C*-algebra of a k-graph by a T-valued 2-cocycle and demonstrate that examples include all noncommutative tori. In the appendices, we construct a cubical set \\tilde{Q}(\\Lambda) from a k-graph {\\Lambda} and demonstrate that the homology and topological realisation of {\\Lambda} coincide with those of \\tilde{Q}(\\Lambda) as defined by Grandis.

  2. Intraspecies biodiversity of the genetically homologous species Brucella microti.

    Science.gov (United States)

    Al Dahouk, Sascha; Hofer, Erwin; Tomaso, Herbert; Vergnaud, Gilles; Le Flèche, Philippe; Cloeckaert, Axel; Koylass, Mark S; Whatmore, Adrian M; Nöckler, Karsten; Scholz, Holger C

    2012-03-01

    Brucellosis is one of the major bacterial zoonoses worldwide. In the past decade, an increasing number of atypical Brucella strains and species have been described. Brucella microti in particular has attracted attention, because this species not only infects mammalian hosts but also persists in soil. An environmental reservoir may pose a new public health risk, leading to the reemergence of brucellosis. In a polyphasic approach, comprising conventional microbiological techniques and extensive biochemical and molecular techniques, all currently available Brucella microti strains were characterized. While differing in their natural habitats and host preferences, B. microti isolates were found to possess identical 16S rRNA, recA, omp2a, and omp2b gene sequences and identical multilocus sequence analysis (MLSA) profiles at 21 different genomic loci. Only highly variable microsatellite markers of multiple-locus variable-number tandem repeat (VNTR) analysis comprising 16 loci (MLVA-16) showed intraspecies discriminatory power. In contrast, biotyping demonstrated striking differences within the genetically homologous species. The majority of the mammalian isolates agglutinated only with monospecific anti-M serum, whereas soil isolates agglutinated with anti-A, anti-M, and anti-R sera. Bacteria isolated from animal sources were lysed by phages F1, F25, Tb, BK2, Iz, and Wb, whereas soil isolates usually were not. Rough strains of environmental origin were lysed only by phage R/C. B. microti exhibited high metabolic activities similar to those of closely related soil organisms, such as Ochrobactrum spp. Each strain was tested with 93 different substrates and showed an individual metabolic profile. In summary, the adaptation of Brucella microti to a specific habitat or host seems to be a matter of gene regulation rather than a matter of gene configuration.

  3. Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties.

    Science.gov (United States)

    Grogan, Dennis W

    2009-02-01

    HR (homologous recombination) is expected to play important roles in the molecular biology and genetics of archaea, but, so far, few functional properties of archaeal HR have been measured in vivo. In the extreme thermoacidophile Sulfolobus acidocaldarius, a conjugational mechanism of DNA transfer enables quantitative analysis of HR between chromosomal markers. Early studies of this system indicated that HR occurred frequently between closely spaced mutations within the pyrE gene, and this result was later supported by various analyses involving defined point mutations and deletions. These properties of intragenic HR suggested a non-reciprocal mechanism in which donor sequences become incorporated into the recipient genome as short segments. Because fragmentation of donor DNA during cell-to-cell transfer could not be excluded from contributing to this result, subsequent analyses have focused on electroporation of selectable donor DNA directly into recipient strains. For example, S. acidocaldarius was found to incorporate synthetic ssDNA (single-stranded DNA) of more than approximately 20 nt readily into its genome. With respect to various molecular properties of the ssDNA substrates, the process resembled bacteriophage lambdaRed-mediated 'recombineering' in Escherichia coli. Another approach used electroporation of a multiply marked pyrE gene to measure donor sequence tracts transferred to the recipient genome in individual recombination events. Initial results indicate multiple discontinuous tracts in the majority of recombinants, representing a relatively broad distribution of tract lengths. This pattern suggests that properties of the HR process could, in principle, account for many of the apparent peculiarities of intragenic recombination initiated by S. acidocaldarius conjugation.

  4. Homologous radioimmunoassay for human epidermal growth factor (urogastrone)

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, G.E.; Kraus, J.W.; Orth, D.N.

    1978-06-01

    Epidermal growth factor (EGF), a polypeptide hormone originally discovered in the mouse submaxillary gland, stimulates growth in a variety of tissues in several species. This hormone has recently been identified in human urine. A homologous RIA for human EGF (RIA-hEGF) has been developed. In general, levels were similar to those recently reported using a heterologous RIA system. Twenty-four-hour urinary excretion of RIA-hEGF by normal adult males and females was 63.0 +- 3.0 and 52.0 +- 3.5 (mean +- SE) ..mu..g/total vol, or 29.7 +- 1.1 and 39.8 +- 1.7 ..mu..g/g creatinine, respectively. Excretion by females taking oral contraceptives was significantly greater (60.1 +- 2.7 ..mu..g/g creatinine; P < 0.01) than that by females who were not. Recent evidence suggests the probable identity of hEGF and ..beta..-urogastrone, a potent inhibitor of gastric acid secretion. Adult males with active peptic ulcer disease appeared to have lower urinary RIA-hEGF excretion (22.9 +- 2.6 ..mu..g/g creatinine) than normal men, but this was not significant (P > 0.05). Several of those with very low values had histories of alcohol abuse. Excretion by patients with Cushing's syndrome was normal. Patients with psoriasis or recovering from major burns excreted both abnormally high and abnormally low levels of RIA-hEGF, with no obvious correlation to their clinical condition. There was no apparent diurnal or postprandial variation in urinary RIA-hEGF excretion by normal subjects. An excellent linear correlation was observed between RIA-hEGF and creatinine concentrations in each urine sample for each subject, suggesting that RIA-hEGF concentration in a random urine sample provides a valid index of 24-h RIA-hEGF excretion.

  5. Ab initio Study of Naptho-Homologated DNA Bases

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Vazquez-Mayagoitia, Alvaro [ORNL; Huertas, Oscar [Universitat de Barcelona; Fuentes-Cabrera, Miguel A [ORNL; Orozco, Modesto [Institut de Recerca Biomedica, Parc Cientific de Barcelona, Barcelona, Spain; Luque, Javier [Universitat de Barcelona

    2008-01-01

    Naptho-homologated DNA bases have been recently used to build a new type of size expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naptho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like form of naptho-thymine (yyT) and naptho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naptho-guanine (yyG) and naptho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphto-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naptho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC.

  6. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs.

    Directory of Open Access Journals (Sweden)

    Nikita E Chavarria

    Full Text Available While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6 and ubiquitin-related modifier-1 (Urm1 are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii that is essential for maintaining cellular pools of thiolated tRNA(LysUUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1. Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(LysUUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.

  7. Physicochemical property distributions for accurate and rapid pairwise protein homology detection

    Directory of Open Access Journals (Sweden)

    Oehmen Christopher S

    2010-03-01

    Full Text Available Abstract Background The challenge of remote homology detection is that many evolutionarily related sequences have very little similarity at the amino acid level. Kernel-based discriminative methods, such as support vector machines (SVMs, that use vector representations of sequences derived from sequence properties have been shown to have superior accuracy when compared to traditional approaches for the task of remote homology detection. Results We introduce a new method for feature vector representation based on the physicochemical properties of the primary protein sequence. A distribution of physicochemical property scores are assembled from 4-mers of the sequence and normalized based on the null distribution of the property over all possible 4-mers. With this approach there is little computational cost associated with the transformation of the protein into feature space, and overall performance in terms of remote homology detection is comparable with current state-of-the-art methods. We demonstrate that the features can be used for the task of pairwise remote homology detection with improved accuracy versus sequence-based methods such as BLAST and other feature-based methods of similar computational cost. Conclusions A protein feature method based on physicochemical properties is a viable approach for extracting features in a computationally inexpensive manner while retaining the sensitivity of SVM protein homology detection. Furthermore, identifying features that can be used for generic pairwise homology detection in lieu of family-based homology detection is important for applications such as large database searches and comparative genomics.

  8. Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Zhu Qihui

    2006-10-01

    Full Text Available Abstract Background The identification of chromosomal homology will shed light on such mysteries of genome evolution as DNA duplication, rearrangement and loss. Several approaches have been developed to detect chromosomal homology based on gene synteny or colinearity. However, the previously reported implementations lack statistical inferences which are essential to reveal actual homologies. Results In this study, we present a statistical approach to detect homologous chromosomal segments based on gene colinearity. We implement this approach in a software package ColinearScan to detect putative colinear regions using a dynamic programming algorithm. Statistical models are proposed to estimate proper parameter values and evaluate the significance of putative homologous regions. Statistical inference, high computational efficiency and flexibility of input data type are three key features of our approach. Conclusion We apply ColinearScan to the Arabidopsis and rice genomes to detect duplicated regions within each species and homologous fragments between these two species. We find many more homologous chromosomal segments in the rice genome than previously reported. We also find many small colinear segments between rice and Arabidopsis genomes.

  9. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange.

    Science.gov (United States)

    Prentiss, Mara; Prévost, Chantal; Danilowicz, Claudia

    2015-01-01

    RecA family proteins include RecA, Rad51, and Dmc1. These recombinases are responsible for homology search and strand exchange. Homology search and strand exchange occur during double-strand break repair and in eukaryotes during meiotic recombination. In bacteria, homology search begins when RecA binds an initiating single-stranded DNA (ssDNA) in the primary DNA-binding site to form the presynaptic filament. The filament is a right-handed helix, where the initiating strand is bound deep within the filament. Once the presynaptic filament is formed, it interrogates nearby double-stranded DNA (dsDNA) to find a homologous sequence; therefore, we provide a detailed discussion of structural features of the presynaptic filament that play important functional roles. The discussion includes many diagrams showing multiple filament turns. These diagrams illustrate interactions that are not evident in single turn structures. The first dsDNA interactions with the presynaptic filament are insensitive to mismatches. The mismatch insensitive interactions lead to dsDNA deformation that triggers a homology testing process governed by kinetics. The first homology test involves ∼8 bases. Almost all interactions are rejected by this initial rapid test, leading to a new cycle of homology testing. Interactions that pass the initial rapid test proceed to a slower testing stage. That slower stage induces nonhomologous dsDNA to reverse strand exchange and begin a new cycle of homology testing. In contrast, homologous dsDNA continues to extend the heteroduplex strand-exchange product until ATP hydrolysis makes strand exchange irreversible.

  10. Sequence Conversion by Single Strand Oligonucleotide Donors via Non-homologous End Joining in Mammalian Cells*

    OpenAIRE

    Liu, Jia; Majumdar, Alokes; Liu, Jilan; Thompson, Lawrence H.; Seidman, Michael M.

    2010-01-01

    Double strand breaks (DSBs) can be repaired by homology independent nonhomologous end joining (NHEJ) pathways involving proteins such as Ku70/80, DNAPKcs, Xrcc4/Ligase 4, and the Mre11/Rad50/Nbs1 (MRN) complex. DSBs can also be repaired by homology-dependent pathways (HDR), in which the MRN and CtIP nucleases produce single strand ends that engage homologous sequences either by strand invasion or strand annealing. The entry of ends into HDR pathways underlies protocols for genomic manipulatio...

  11. Analysis of genetic homology and genotyping in Carbapenems-resistant Klebsiella pneumonia

    Institute of Scientific and Technical Information of China (English)

    杨丽君

    2013-01-01

    Objective To investigate genotyping and homology of Carbapenems-resistant Klebsiella pneumonia isolated from clinical specimens.Methods A total of 175 clinical isolates of Carbapenemsresistant Klebsiella pneumoniae were isolated from clinical specimens from January 2011 to June 2012

  12. A structural and functional homolog supports a general role for frataxin in cellular iron chemistry.

    Science.gov (United States)

    Qi, Wenbin; Cowan, J A

    2010-02-01

    Bacillus subtilis YdhG lacks sequence homology, but demonstrates structural and functional similarity to the frataxin family, supporting a general cellular role for frataxin-type proteins in cellular iron homeostasis.

  13. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniel P Kane

    Full Text Available In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.

  14. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole;

    2010-01-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.......0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models.......3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is...

  15. Homologous recombination in human telomerase-positive and ALT cells occurs with the same frequency

    OpenAIRE

    Bechter, Oliver E.; Zou, Ying; Shay, Jerry W.; Woodring E. Wright

    2003-01-01

    Homologous recombination is thought to be the molecular mechanism for maintaining telomere length in alternative lengthening of telomeres (ALT) cells. We used a recombination reporter system to show that the frequency of homologous recombination is the same for ALT- and telomerase-positive cells, suggesting that if ALT cells have a recombination defect it specifically involves telomeric sequences. We compared internal and telomere-adjacent positions of our ...

  16. Equidistribution of geodesics on homology classes and analogues for free groups

    DEFF Research Database (Denmark)

    Risager, Morten S.

    2008-01-01

    We investigate how often geodesics have homology in a fixed set of the homology lattice of a compact Riemann surface. We prove that closed geodesics are equidistributed on any set with asymptotic density with respect to a specific norm. We explain the analogues for free groups, conjugacy classes ...... and discrete logarithms, in particular, we investigate the density of conjugacy classes with relatively prime discrete logarithms....

  17. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  18. Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates.

    Science.gov (United States)

    McPartland, John M; Glass, Michelle

    2003-07-17

    Over the past decade, several putative homologs of cannabinoid receptors (CBRs) have been identified by homology screening. Homology screening utilizes sequence alignment search engines to recognize homologs. We investigated these putative CBR homologs further by 'functional mapping' of their deduced amino acid sequences. The entire pharmacophore of a CBR has not yet been elucidated, but point-mutation studies have identified over 20 amino acid residues that impart CBR specificity for ligand recognition and/or signal transduction. Twenty point-mutation studies were used to construct a CBR functionality matrix. Sixteen putative CBR homologs were then mapped over the matrix. Several putative homologs did not hold up to this analysis: human GPR3, GPR6, GPR12, and Caenorhabditis elegans C02H7.2 expressed a series of crippling substitutions in the matrix, strongly suggesting they do not encode functional CBRs. Mapping the contested leech (Hirudo medicinalis) CBR sequence suggests that it encodes a functional CB1; it expresses fewer substitutions than the sea squirt (Ciona intestinalis) CB1 sequence. Mapping a putative CB2 ortholog in the puffer fish (Fugu rubripes T012234) suggests it may encode a CBR other than CB2. These findings are consistent with the lack of experimental data proving these putative CBRs have affinity for cannabinoid ligands. Matrix analysis also reveals that SR144528, a 'CB2-specific' synthetic antagonist, has affinity for non-mammalian CB1 receptors, and that L3.45 appears to be CB2-specific, its cognate in CB1 receptors is F3.45. In conclusion, functional mapping, utilizing point-mutation studies, may improve the specificity of homology screening performed by sequence alignment search engines.

  19. Gene Disruption by Homologous Recombination in the Xylella fastidiosa Citrus Variegated Chlorosis Strain

    Science.gov (United States)

    Gaurivaud, Patrice; Souza, Leonardo C. A.; Virgílio, Andrea C. D.; Mariano, Anelise G.; Palma, Renê R.; Monteiro, Patrícia B.

    2002-01-01

    Mutagenesis by homologous recombination was evaluated in Xylella fastidiosa by using the bga gene, coding for β-galactosidase, as a model. Integration of replicative plasmids by homologous recombination between the cloned truncated copy of bga and the endogenous gene was produced by one or two crossover events leading to β-galactosidase mutants. A promoterless chloramphenicol acetyltransferase gene was used to monitor the expression of the target gene and to select a cvaB mutant. PMID:12200328

  20. Effect of chromosome homology an plasmid transformation and plasmid conjugal transfer in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Balganesh, M.; Setlow, J.K.

    1984-05-14

    The pairing between plasmid and the homologous part of the chromosome associated with plasmid establishment may differ from the pairing which results from integration of a homologous region of the plasmid into the chromosome. Thus the rate of novobiocin transformation decreases with duplication of the chromosomal portion in pMB2, but the rate of establishment of the plasmid increases with this duplication. A model to explain these data is given. 17 references, 5 figures, 4 tables.

  1. Homology Priority Task Scheduling in μC/OS-Ⅱ Real-Time Kernel

    Institute of Scientific and Technical Information of China (English)

    WANG Xibo; ZHOU Benhai; YU Ge; LI Qian

    2007-01-01

    μC/OS- Ⅱ is an open source real-time kernel adopting priority preemptive schedule strategy. Aiming at the problem of μC/OS-Ⅱ failing to support homology priority tasks scheduling,an approach for solution is proposed. The basic idea is adding round-robin scheduling strategy in its original scheduler in order to schedule homology priority tasks through time slice roundrobin. Implementation approach is given in detail. Firstly, the Task Control Block (TCB) is extended. And then, a new priority index table is created, in which each index pointer points to a set of homology priority tasks. Eventually, on the basis of reconstructing μC/OS-Ⅱ real-time kernel, task scheduling module is rewritten.Otherwise, schedulability of homology task supported by modified kernel had been analyzed, and deadline formula of created homology tasks is given. By theoretical analysis and experiment verification, the modified kernel can support homology priority tasks scheduling, meanwhile, it also remains preemptive property of original μC/OS- Ⅱ.

  2. Evolution and targeting of Omp85 homologs in the chloroplast outer envelope membrane

    Directory of Open Access Journals (Sweden)

    Philip Michael Day

    2014-10-01

    Full Text Available Translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75 is the core component of the chloroplast protein import machinery. It belongs to the Omp85 family whose members exist in various Gram-negative bacteria, mitochondria and chloroplasts of eukaryotes. Chloroplasts of Viridiplantae contain another Omp85 homolog called outer envelope protein 80 (OEP80, whose exact function is unknown. In addition, the Arabidopsis thaliana genome encodes truncated forms of Toc75 and OEP80. Multiple studies have shown a common origin of the Omp85 homologs of cyanobacteria and chloroplasts but their results about evolutionary relationships among cyanobacterial Omp85 (cyanoOmp85, Toc75 and OEP80 are inconsistent. The bipartite targeting sequence-dependent sorting of Toc75 has been demonstrated but the targeting mechanisms of other chloroplast Omp85 homologs remain largely unexplored. This study was aimed to address these unresolved issues in order to further our understanding of chloroplast evolution. Sequence alignments and recently determined structures of bacterial Omp85 homologs were used to predict structures of chloroplast Omp85 homologs. The results enabled us to identify amino acid residues that may indicate functional divergence of Toc75 from cyanoOmp85 and OEP80. Phylogenetic analyses using Omp85 homologs from various cyanobacteria and chloroplasts provided strong support for the grouping of Toc75 and OEP80 sister to cyanoOmp85. However, this support was diminished when the analysis included Omp85 homologs from other bacteria and mitochondria. Finally, results of import assays using isolated chloroplasts support outer membrane localization of OEP80tr and indicate that OEP80 may carry a cleavable targeting sequence.

  3. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Directory of Open Access Journals (Sweden)

    Morrical Scott W

    2010-12-01

    Full Text Available Abstract Homologous recombination (HR, a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR. T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.

  4. Homologous recombination and gene replacement at the dihydrofolate reductase-thymidylate synthase locus in Toxoplasma gondii.

    Science.gov (United States)

    Donald, R G; Roos, D S

    1994-02-01

    To investigate the feasibility of genomic transgene expression and gene targeting in Toxoplasma gondii, parasites have been transfected with constructs differing in the length of contiguous genomic sequence spanning the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene. We have previously reported that vectors derived from a DHFR-TS cDNA 'minigene' containing mutations in the DHFR coding sequence confer pyrimethamine resistance to transfected parasites (Donald and Roos, 1993). Stably resistant parasite clones arise at high frequency, generally by virtue of transgene integration into parasite chromosomes at locations scattered throughout the genome. In contrast, using a vector which contains 8 kb of contiguous genomic sequence (vs. homologous recombination. Homologous recombination appears to occur at even higher frequency when a 16 kb genomic clone is used. Circular plasmids were more efficient than linearized molecules at producing homologous recombination in this system, integrating by reciprocal crossing-over to produce a duplication of the DHFR-TS locus. Double crossing-over (or gene conversion) was also observed at low frequency, resulting in complete allelic replacement in this haploid stage of the parasite. The ability to produce either homologous or non-homologous recombinants, by the selection of appropriate transformation constructs, has considerable genetic potential.

  5. A homolog of the RPS2 disease resistance gene is constitutively expressed in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Malvas Celia C.

    2003-01-01

    Full Text Available In this study, we identified disease resistance gene homologs in Brassica oleracea and assessed their expression in lines resistant and susceptible to Xanthomonas campestris pv. campestris (Xcc. Two DNA fragments of approximately 2.5 kb (BI-16/RPS2 and Lc201/RPS2 were amplified by PCR from two Brassica lines using primers based on an RPS2 homologous sequence previously described in the Brassica oleracea ecotype B117. The sequences of these fragments shared high similarity (95-98% with RPS2 homologs from various Brassica species. The digestion of these fragments with restriction enzymes revealed polymorphisms at the Xba I restriction sites. The length polymorphisms were used as a co-dominant marker in an F2 population developed to segregate for resistance to Xcc, the causal agent of black rot. Linkage analysis showed no significant association between the marker and quantitative trait loci for black rot. RT-PCR with specific primers yielded an expected 453 bp fragment that corresponded to the RPS2 homologs in both resistant and susceptible lines inoculated with the pathogen, as well as in non-inoculated control plants. These results suggest that these homologs are constitutively expressed in B. oleracea.

  6. Measurement of recombination frequencies between two homologous DNA segments embedded in a YAC vector.

    Science.gov (United States)

    Yasui, H; Kurosawa, Y

    1993-07-15

    We measured the frequencies of recombination in a yeast host between two homologous segments of DNA that had been inserted with the same polarity in a yeast artificial chromosome (YAC) vector. Three kinds of YAC clones were constructed in which the gene encoding neomycin(Nm) resistance was sandwiched between two homologous segments of DNA, such as the IS3 elements of Escherichia coli or human Alu sequences. Frequencies of homologous recombination in yeast were measured in terms of loss of resistance to Nm. In the case of IS3 fragments, homologous recombination between them did occur at a relatively high frequency (5 x 10(-4). In contrast, recombination between two Alu sequences did not occur at a detectable level during a 30-day incubation. Thus, the frequency was less than 10(-5). These results indicate that the Alu sequences do not sufficiently promote the frequency of recombination between two homologous fragments in yeast as to induce rearrangements of DNA in a substantial fraction of YAC clones in libraries.

  7. The evolutionary fate of alternatively spliced homologous exons after gene duplication.

    Science.gov (United States)

    Abascal, Federico; Tress, Michael L; Valencia, Alfonso

    2015-04-29

    Alternative splicing and gene duplication are the two main processes responsible for expanding protein functional diversity. Although gene duplication can generate new genes and alternative splicing can introduce variation through alternative gene products, the interplay between the two processes is complex and poorly understood. Here, we have carried out a study of the evolution of alternatively spliced exons after gene duplication to better understand the interaction between the two processes. We created a manually curated set of 97 human genes with mutually exclusively spliced homologous exons and analyzed the evolution of these exons across five distantly related vertebrates (lamprey, spotted gar, zebrafish, fugu, and coelacanth). Most of these exons had an ancient origin (more than 400 Ma). We found examples supporting two extreme evolutionary models for the behaviour of homologous axons after gene duplication. We observed 11 events in which gene duplication was accompanied by splice isoform separation, that is, each paralog specifically conserved just one distinct ancestral homologous exon. At other extreme, we identified genes in which the homologous exons were always conserved within paralogs, suggesting that the alternative splicing event cannot easily be separated from the function in these genes. That many homologous exons fall in between these two extremes highlights the diversity of biological systems and suggests that the subtle balance between alternative splicing and gene duplication is adjusted to the specific cellular context of each gene.

  8. A SRS2 homolog from Arabidopsis thaliana disrupts recombinogenic DNA intermediates and facilitates single strand annealing.

    Science.gov (United States)

    Blanck, Sandra; Kobbe, Daniela; Hartung, Frank; Fengler, Karin; Focke, Manfred; Puchta, Holger

    2009-11-01

    Genetic and biochemical analyses of SRS2 homologs in fungi indicate a function in the processing of homologous recombination (HR) intermediates. To date, no SRS2 homologs have been described and analyzed in higher eukaryotes. Here, we report the first biochemical characterization of an SRS2 homolog from a multicellular eukaryote, the plant Arabidopsis thaliana. We studied the basic properties of AtSRS2 and were able to show that it is a functional 3'- to 5'-helicase. Furthermore, we characterized its biochemical function on recombinogenic intermediates and were able to show the unwinding of nicked Holliday junctions (HJs) and partial HJs (PX junctions). For the first time, we demonstrated strand annealing activity for an SRS2 homolog and characterized its strand pairing activity in detail. Our results indicate that AtSRS2 has properties that enable it to be involved in different steps during the processing of recombination intermediates. On the one hand, it could be involved in the unwinding of an elongating invading strand from a donor strand, while on the other hand, it could be involved in the annealing of the elongated strand at a later step.

  9. Randomly dividing homologous samples leads to overinflated accuracies for emotion recognition.

    Science.gov (United States)

    Liu, Shuang; Zhang, Di; Xu, Minpeng; Qi, Hongzhi; He, Feng; Zhao, Xin; Zhou, Peng; Zhang, Lixin; Ming, Dong

    2015-04-01

    There are numerous studies measuring the brain emotional status by analyzing EEGs under the emotional stimuli that have occurred. However, they often randomly divide the homologous samples into training and testing groups, known as randomly dividing homologous samples (RDHS), despite considering the impact of the non-emotional information among them, which would inflate the recognition accuracy. This work proposed a modified method, the integrating homologous samples (IHS), where the homologous samples were either used to build a classifier, or to be tested. The results showed that the classification accuracy was much lower for the IHS than for the RDHS. Furthermore, a positive correlation was found between the accuracy and the overlapping rate of the homologous samples. These findings implied that the overinflated accuracy did exist in those previous studies where the RDHS method was employed for emotion recognition. Moreover, this study performed a feature selection for the IHS condition based on the support vector machine-recursive feature elimination, after which the average accuracies were greatly improved to 85.71% and 77.18% in the picture-induced and video-induced tasks, respectively.

  10. Sequence homology of polymorphic AFLP markers in garlic (Allium sativum L.).

    Science.gov (United States)

    Ipek, Meryem; Ipek, Ahmet; Simon, Philipp W

    2006-10-01

    Linkage mapping and genetic diversity studies with DNA markers in plant species assume that comigrating bands are identical, or at least that they have homologous sequences. To test this assumption in a plant with a large genome, sequence identities of 7 polymorphic amplified fragment length polymorphism (AFLP) markers of garlic, previously used to estimate similarity in genetic diversity studies, were characterized. Among 37 diverse garlic clones, 87 bands from these 7 polymorphisms were excised, amplicons were cloned, and 2 to 6 colonies were sequenced from each band, to yield a total of 191 DNA amplicons. Of these 87 bands, 83 bands (95.4%) contained AFLP amplicons that were identical or highly homologous to the typical marker of that band; only 4 bands contained amplicons with little homology to the same-sized amplicons of other garlic clones. Of these 83 bands, 64 (73.6%) contained only highly homologous amplicons (>90% sequence identity), whereas 19 (21.8%) contained both homologous and nonhomologous amplicons, with sequence identities less than 60%. Of the 37 nonhomologous amplicons identified, 25 (67.5%) differed in length from other amplicons in the band. Sequence conservation of AFLP amplicons followed patterns similar to phylogenetic relationships among garlic clones, making them useful for developing simple PCR-based markers in genetic mapping and diversity assessment.

  11. A developmental approach to homology and brain evolution Un enfoque embriológico a la homología y la evolución cerebral

    OpenAIRE

    FRANCISCO ABOITIZ

    2010-01-01

    Although homology is central to evolutionary interpretations, establishing it has become a highly disputed issue in some instances. Here I argüe for a developmental understanding of evolution, where modifications of the developmental programs are a key source of evolutionary novelty. Although this perspective is not new, in comparative neurobiology it has remained controversial. Specifically, the evolutionary origin of the mammalian neocortex has been a particularly debated point. I propose a...

  12. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis

    CERN Document Server

    Matheus, Carlos

    2009-01-01

    We compute explicitly the action of the group of affine diffeomorphisms on the relative homology of two remarkable origamis discovered respectively by Forni (in genus 3) and Forni-Matheus (in genus 4). We show that, in both cases, the action on the non trivial part of the homology is through finite groups. In particular, the action on some 4-dimensional invariant subspace of the homology leaves invariant a root system of $D_4$ type. This provides as a by-product a new proof of (slightly stronger versions of) the results of Forni and Matheus: the non trivial Lyapunov exponents of the Kontsevich-Zorich cocycle for the Teichmuller disks of these two origamis are equal to zero.

  13. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Andrew R. Bassett

    2013-12-01

    We have applied the CRISPR/Cas9 system to Drosophila S2 cells to generate targeted genetic mutations in more than 85% of alleles. By targeting a constitutive exon of the AGO1 gene, we demonstrate homozygous mutation in up to 82% of cells, thereby allowing the study of genetic knockouts in a Drosophila cell line for the first time. We have shown that homologous gene targeting is possible at 1–4% efficiency using this system, allowing for the construction of defined insertions and deletions. We demonstrate that a 1 kb homology arm length is optimal for integration by homologous gene targeting, and demonstrate its efficacy by tagging the endogenous AGO1 protein. This technology enables controlled genetic manipulation in Drosophila cell lines, and its simplicity offers the opportunity to study cellular phenotypes genome-wide.

  14. KAP1 Deacetylation by SIRT1 Promotes Non-Homologous End-Joining Repair.

    Directory of Open Access Journals (Sweden)

    Yi-Hui Lin

    Full Text Available Homologous recombination and non-homologous end joining are two major DNA double-strand-break repair pathways. While HR-mediated repair requires a homologous sequence as the guiding template to restore the damage site precisely, NHEJ-mediated repair ligates the DNA lesion directly and increases the risk of losing nucleotides. Therefore, how a cell regulates the balance between HR and NHEJ has become an important issue for maintaining genomic integrity over time. Here we report that SIRT1-dependent KAP1 deacetylation positively regulates NHEJ. We show that up-regulation of KAP1 attenuates HR efficiency while promoting NHEJ repair. Moreover, SIRT1-mediated KAP1 deacetylation further enhances the effect of NHEJ by stabilizing its interaction with 53BP1, which leads to increased 53BP1 focus formation in response to DNA damage. Taken together, our study suggests a SIRT1-KAP1 regulatory mechanism for HR-NHEJ repair pathway choice.

  15. Increase and saturation of the third order hyperpolarizabilities in homologous series of symmetric cyanines

    Science.gov (United States)

    Werncke, W.; Pfeiffer, M.; Johr, T.; Lau, A.; Grahn, W.; Johannes, H.-H.; Dähne, L.

    1997-04-01

    The chain length dependencies of the static third order hyperpolarizabilities γSTAT for the homologous series of benzthiacyanine dyes and of simple bis(dimethylamino)methine dyes were extrapolated from nondegenerate four wave mixing dispersion measurements and compared with theoretical values. Up to the heptamethine the π-electron contributions γSTATπ of both homologous series show a similar increase with the growing number of π-electrons ( N) of the chain ( γSTATπ ˜ - N8 ± 2). However, the absolute values of the benzthiacyanines are considerable higher than of the corresponding bis(dimethylamino)methines. Negative valued hyperpolarizabilities γSTATπ in the homologous series increasing up to γSTATπ = - 850 × 10 -36 esu were determined. For the first time a saturation of the nonlinearity could be observed experimentally in the series of benzthiacyanines for the longest chain (benzthicyanine nonamethine).

  16. [Construction of Frankia genomic libraries and isolation of clones homologous to nodulation genes from Rhizobium leguminosarum].

    Science.gov (United States)

    Cui, Y H; Qin, M; Wang, Y L; Ding, J; Ma, Q S

    1990-01-01

    High molecular genomic DNAs were isolated by using the lysozyme plus achromopeptidase system from Frankia strains At4, Ccol and Hr16, the root nodule endophytes of Alnus, Casuarina and Hippophae respectively, and used to construct genomic libraries in pLAFR1, a broad host range cosmid vector within many gram-negative hosts. The genomic libraries were screened by in situ colony hybridization to identify clones homologous to common nodulation genes of Rhizobium leguminosarum, based on the sequence homology of EcoRI-digested Frankia total DNA to nodABC from Rhizobium meliloti. Several clones showing relatively strong hybridization were found, the recombinant plasmid was isolated, and their homology with Rhizobium nodulation genes was confirmed by spot hybridization. Further work on these positive clones is now underway.

  17. Identification of a mammalian mitochondrial homolog of ribosomal protein S7.

    Science.gov (United States)

    Cavdar Koc, E; Blackburn, K; Burkhart, W; Spremulli, L L

    1999-12-01

    Bovine mitochondrial small subunit ribosomal proteins were separated by two-dimensional electrophoresis. The region containing the most basic protein(s) was excised and the protein(s) present subjected to in-gel digestion with trypsin. Electrospray tandem mass spectrometry was used to provide sequence information on some of the peptide products. Searches of the human EST database using the sequence of the longest peptide analyzed indicated that this peptide was from the mammalian mitochondrial homolog of prokaryotic ribosomal protein S7 (MRP S7(human)). MRP S7(human) is a 28-kDa protein with a pI of 10. Significant homology to bacterial S7 is observed especially in the C-terminal half of the protein. Surprisingly, MRP S7(human) shows less homology to the corresponding mitochondrial proteins from plants and fungi than to bacterial S7.

  18. Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1987-01-01

    Three homologous flares observed in the UV lines of Fe XXI and O V and in X-rays from the SMM were studied. It was found that: (1) the homology of the flares was most noticeable in Fe XXI and soft X-ray emissions; (2) the three flares shared many of the same loop footprints which were located in O V bright kernals associated with hard X-ray bursts; and (3) in spite of the strong spatial homology, the temporal evolution in UV and X-ray emissions varied from flare to flare. A comparison between the UV observations and photospheric magnetograms revealed that the basic flare configuration was a complex loop system consisting of many loops or bundles of loops.

  19. Symplectic geometry of the moduli space of projective structures in homological coordinates

    CERN Document Server

    Bertola, Marco; Norton, Chaya

    2015-01-01

    We introduce a natural symplectic structure on the moduli space of quadratic differentials with simple zeros and describe its Darboux coordinate systems in terms of so-called homological coordinates. We then show that this structure coincides with the canonical Poisson structure on the cotangent bundle of the moduli space of Riemann surfaces, and therefore the homological coordinates provide a new system of Darboux coordinates. We define a natural family of commuting "homological flows" on the moduli space of quadratic differentials and find the corresponding action-angle variables. The space of projective structures over the moduli space can be identified with the cotangent bundle upon selection of a reference projective connection that varies holomorphically and thus can be naturally endowed with a symplectic structure. Different choices of projective connections of this kind (Bergman, Schottky, Wirtinger) give rise to equivalent symplectic structures on the space of projective connections but different sym...

  20. Long-term use and follow-up of autologous and homologous cartilage graft in rhinoplasty

    Directory of Open Access Journals (Sweden)

    Ghasemali Khorasani

    2016-05-01

    Full Text Available Background: Cartilage grafting is used in rhinoplasty and reconstructive surgeries. Autologous rib and nasal septum cartilage (auto graft is the preferred source of graft material in rhinoplasty, however, homologous cartilage (allograft has been extensively used to correct the nasal framework in nasal deformities. Autologous cartilage graft usage is restricted with complication of operation and limiting availability of tissue for extensive deformities. Alternatively, preserved costal cartilage allograft represents a readily available and easily contoured material. The current study was a formal systematic review of complications associated with autologous versus homologous cartilage grafting in rhinoplasty patients. Methods: In this cohort retrospective study, a total of 124 patients undergone primary or revision rhinoplasty using homologous or autologus grafts with postoperative follow-up ranging from 6 to 60 months were studied. The types of grafts and complications related to the grafts were evaluated. This included evaluation for warping, infection, resorption, mobility and fracture. Results: The total complications related to the cartilage grafts were 7 cases, which included 1 warped in auto graft group, three cases of graft displacement (two in allograft group and one in auto graft group and three fractures in allograft group. No infection and resorption was recorded. Complication rate (confidence interval 0.95 in autologous and homologous group were 1.25(0.4-3.88 and 2.08(0.78-5.55 in 1000 months follow up. There was no statistically significant difference between autologous and homologous group complications. Onset of complication in autologous and homologous group were 51.23(49.27-53.19 and 58.7(54.51-62.91 month respectively (P=0.81. Conclusion: The allograft cartilage has the advantage of avoiding donor-site scar. Moreover, it provides the same benefits as autologous costal cartilage with comparable complication rate. Therefore, it

  1. Oral region homologies in paleozoic crinoids and other plesiomorphic pentaradial echinoderms.

    Science.gov (United States)

    Kammer, Thomas W; Sumrall, Colin D; Zamora, Samuel; Ausich, William I; Deline, Bradley

    2013-01-01

    The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome) plate organization (Peristomial Border Systems) are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony-based phylogenetics for

  2. Oral region homologies in paleozoic crinoids and other plesiomorphic pentaradial echinoderms.

    Directory of Open Access Journals (Sweden)

    Thomas W Kammer

    Full Text Available The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome plate organization (Peristomial Border Systems are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony

  3. Relation between the equalized molecular chemical potential and the ionization potential of organic homologs

    Institute of Scientific and Technical Information of China (English)

    曹晨忠

    1995-01-01

    The ionization potential of organic homologs can be expressed as I_p=(∑X_i)/(a+bn).Here,X_i is the electronegativity(the average energy of valence electrons in a ground-state free atom)of the ith atomin an organic homologous molecule;n,the number of repeating units in the molecule;and(a+bn),the electronmoving range in the molecule orbit.The results of linear regression analysis show that the correlationcoefficients r are all "excellent"(r>0.990)for the 146 sets of photo electron spectroscopy data of 42 organichomologous series.

  4. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein

    Science.gov (United States)

    Ardisson-Araújo, Daniel M. P.; Melo, Fernando L.; Clem, Rollie J.; Wolff, José L. C.

    2015-01-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  5. Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination

    OpenAIRE

    Taylor, MRG; Špírek, M; Chaurasiya, KR; Ward, JD; Carzaniga, R.; Yu, X; Egelman, EH; Collinson, LM; Rueda, D.; Krejci, L; Boulton, SJ

    2015-01-01

    Summary Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which ...

  6. Chromosomal localization of the human apolipoprotein B gene and detection of homologous RNA in monkey intestine

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, S.S.; Disteche, C.; Motulsky, A.G.; Lebo, R.V.; Kan, Y.W.

    1986-01-01

    A cDNA clone of the human apolipoprotein B-100 was used as a hybridization probe to detect homologous sequences in both flow-sorted and in situ metaphase chromosomes. The results indicate that the gene encoding this protein is on the distal end of the short arm of chromosome 2 (2p23-2p24). RNA isolated from monkey small intestine contained sequences (6.5 and 18 kilobases) homologous to the cDNA of apolipoprotein B-100. These results are consistent with the hypothesis that one gene codes for both the intestinal (B-48) and the hepatic (B-100) forms.

  7. Higher orbital integrals, Shalika germs, and the Hochschild homology of Hecke algebras

    Directory of Open Access Journals (Sweden)

    Victor Nistor

    2001-01-01

    Full Text Available We give a detailed calculation of the Hochschild and cyclic homology of the algebra 𝒞c∞(G of locally constant, compactly supported functions on a reductive p-adic group G. We use these calculations to extend to arbitrary elements the definition of the higher orbital integrals introduced by Blanc and Brylinski (1992 for regular semi-simple elements. Then we extend to higher orbital integrals some results of Shalika (1972. We also investigate the effect of the “induction morphism” on Hochschild homology.

  8. Homologation of α-aryl amino acids through quinone-catalyzed decarboxylation/Mukaiyama-Mannich addition.

    Science.gov (United States)

    Haugeberg, Benjamin J; Phan, Johnny H; Liu, Xinyun; O'Connor, Thomas J; Clift, Michael D

    2017-03-09

    A new method for amino acid homologation by way of formal C-C bond functionalization is reported. This method utilizes a 2-step/1-pot protocol to convert α-amino acids to their corresponding N-protected β-amino esters through quinone-catalyzed oxidative decarboxylation/in situ Mukaiyama-Mannich addition. The scope and limitations of this chemistry are presented. This methodology provides an alternative to the classical Arndt-Eistert homologation for accessing β-amino acid derivatives. The resulting N-protected amine products can be easily deprotected to afford the corresponding free amines.

  9. Evolution of homologous sequences on the human X and Y chromosomes, outside of the meiotic pairing segment.

    OpenAIRE

    Bickmore, W A; Cooke, H J

    1987-01-01

    A sequence isolated from the long arm of the human Y chromosome detects a highly homologous locus on the X. This homology extends over at least 50 kb of DNA and is postulated to be the result of a transposition event between the X and Y chromosomes during recent human evolution, since homologous sequences are shown to be present on the X chromosome alone in the chimpanzee and gorilla.

  10. Floer homology for negative line bundles and Reeb chords in pre-quantization spaces

    CERN Document Server

    Albers, Peter

    2008-01-01

    In this article we prove existence of Reeb orbits for Bohr-Sommerfeld Legendrians in certain pre-quantization spaces. We give a quantitative estimate from below. These estimates are obtained by studying Floer homology for fibre-wise quadratic Hamiltonian functions on negative line bundles.

  11. Homological evolutionary vector fields in Korteweg-de Vries, Liouville, Maxwell, and several other models

    NARCIS (Netherlands)

    Kiselev, Arthemy V.

    2012-01-01

    We review the construction of homological evolutionary vector fields on infinite jet spaces and partial differential equations. We describe the applications of this concept in three tightly inter-related domains: the variational Poisson formalism (e.g., for equations of Korteweg-de Vries type), geom

  12. Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast

    NARCIS (Netherlands)

    Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Nowick, Katja

    2013-01-01

    The genes encoding many biomolecular systems and pathways are genomically organized in operons or gene clusters. With MultiGeneBlast, we provide a user-friendly and effective tool to perform homology searches with operons or gene clusters as basic units, instead of single genes. The contextualizatio

  13. Are Homologous Radio Bursts Driven by Solar Post-Flare Loops?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6 GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other instruments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole magnetic structures. By examining the evolutions of the magnetic polarities of sources (17 GHz),we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.

  14. Construction of yellow fever virus subgenomic replicons by yeast-based homologous recombination cloning technique

    Directory of Open Access Journals (Sweden)

    Sabrina R.A. Queiroz

    2013-03-01

    Full Text Available RNA replicon derived from Flavivirus genome is a valuable tool for studying viral replication independent of virion assembly and maturation, besides being a great potencial for heterologous gene expression. In this study we described the construction of subgenomic replicons of yellow fever virus by yeast-based homologous recombination technique. The plasmid containing the yellow fever 17D strain replicon (pBSC-repYFV-17D, previously characterized, was handled to heterologous expression of the green fluorescent protein (repYFV-17D-GFP and firefly luciferase (repYFV-17D-Luc reporter genes. Both replicons were constructed by homologous recombination between the linearized vector pBSC-repYFV-17D and the PCR product containing homologous 25 nucleotides ends incorporated into PCR primers. The genomic organization of these constructs is similar to repYFV-17D, but with insertion of the reporter gene between the remaining 63 N-terminal nucleotides of the capsid protein and 72 C-terminal nucleotides of the E protein. The replicons repYFV-17D-GFP and repYFV-17D-Luc showed efficient replication and expression of the reporter genes. The yeast-based homologous recombination technique used in this study proved to be applicable for manipulation of the yellow fever virus genome in order to construct subgenomic replicons.

  15. Refinement of homology-based protein structures by molecular dynamics simulation techniques

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    2004-01-01

    The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to asses

  16. Homology Modelling of the GABA Transporter and Analysis of Tiagabine Binding

    DEFF Research Database (Denmark)

    Skovstrup, S.; Taboureau, Olivier; Bräuner-Osborne, H.

    2010-01-01

    A homology model of the human GABA transporter (GAT-1) based on the recently reported crystal structures of the bacterial leucine transporter from Aquifex aeolicus (LeuT) was developed. The stability of the resulting model embedded in a membrane environment was analyzed by extensive molecular...

  17. "药食同源"源流探讨%Theoretical Origination of Medicine and Food Homology

    Institute of Scientific and Technical Information of China (English)

    朱建平; 邓文祥; 吴彬才; 向茗; 贺妍; 黄惠勇; 谢梦洲

    2015-01-01

    The theory of medicine and food homology was put forward between 1920s and 1930s, whereas, the formation of its theory was a very long course. The origination and development on theory of medicine and food homology of dietary therapy, medicated food and food prevention from ancient China to people's republic of China were reviewed by searching some history materials. It explicated the theoretical components of homology of medicine and food, providing the theoretical foundation for developing functional food of homology of medicine and food.%本文通过对历史文献的挖掘,简述从上古时期到新中国成立之间,食养、食疗、药膳等"药食同源"理论核心内容的起源与发展,梳理"药食同源"理论的形成基础,明确"药食同源"理论的组成,为开发药食同源功能性食品提供理论依据.

  18. Establishment of an anther clone of high regenerative frequency by anther culture of homologous tetraploidy rice

    Institute of Scientific and Technical Information of China (English)

    QINRuizhen; SHANXueyan

    1993-01-01

    By in vitro anther culture of various generational hybrids of homologous tetraploidy rices, we established an anther clone A87203 with high regenerative frequency from the combination H3774 in 1987. It possesses tbe characteristics of rapid growth, high multiplying ability, having a bud multiplication rate of 150-200times,

  19. Schizosaccharomyces pombe Mms1 channels repair of perturbed replication into Rhp51 independent homologous recombination

    DEFF Research Database (Denmark)

    Vejrup-Hansen, Rasmus; Mizuno, Ken'Ichi; Miyabe, Izumi;

    2011-01-01

    -like protein, Rtt101/Cul8, a potential paralog of Cullin 4. We performed epistasis analysis between ¿mms1 and mutants of pathways with known functions in genome integrity, and measured the recruitment of homologous recombination proteins to blocked replication forks and recombination frequencies. We show that...

  20. Identification of the MMS22L-TONSL complex that promotes homologous recombination

    DEFF Research Database (Denmark)

    Duro, Eris; Lundin, Cecilia; Ask, Katrine

    2010-01-01

    Budding yeast Mms22 is required for homologous recombination (HR)-mediated repair of stalled or broken DNA replication forks. Here we identify a human Mms22-like protein (MMS22L) and an MMS22L-interacting protein, NF¿BIL2/TONSL. Depletion of MMS22L or TONSL from human cells causes a high level of...