WorldWideScience

Sample records for aot water reverse

  1. Ultrafast energy transfer in water-AOT reverse micelles

    NARCIS (Netherlands)

    Cringus, Dan; Bakulin, Artem; Lindner, Joerg; Voehringer, Peter; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    2007-01-01

    A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model

  2. Effect of micellar collisions and polyvinylpyrrolidone confinement on the electrical conductivity percolation parameters of water/AOT/isooctane reverse micelles

    Science.gov (United States)

    Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar

    2017-12-01

    The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.

  3. Binding Constant of Amines to Water/AOT/n-Hexene Reverse Micelles. Influence of the Chemical Structure

    Directory of Open Access Journals (Sweden)

    J. J. Silber

    2000-03-01

    Full Text Available The distribution of different amines between n-hexane bulk and the micellar pseudophase of AOT reverse micelles were measured by a fluorometric method. An independent method was used to corroborate the incorporation of the amines to the interface. The effect of the amine structure on the binding constant was analysed.

  4. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.

    Science.gov (United States)

    Hensel, Jennifer K; Carpenter, Andrew P; Ciszewski, Regina K; Schabes, Brandon K; Kittredge, Clive T; Moore, Fred G; Richmond, Geraldine L

    2017-12-19

    Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structure of regular (oil in water) and reverse (water in oil) nanoemulsions stabilized with the surfactant dioctyl sodium sulfosuccinate (AOT). Vibrational sum-frequency scattering spectroscopy (VSFSS) is used to measure the vibrational spectroscopy of these AOT stabilized regular and reverse nanoemulsions. Complementary studies of AOT adsorbed at the planar oil-water interface are conducted with vibrational sum-frequency spectroscopy (VSFS). Jointly, these give comparative insights into the orientation of interfacial water and the molecular characterization of the hydrophobic and hydrophilic regions of AOT at the different oil-water interfaces. Whereas the polar region of AOT and surrounding interfacial water molecules display nearly identical behavior at both the planar and droplet interface, there is a clear difference in hydrophobic chain ordering even when possible surface concentration differences are taken into account. This chain ordering is found to be invariant as the nanodroplets grow by Ostwald ripening and also with substitution of different counterions (Na:AOT, K:AOT, and Mg:AOT) that consequently also result in different sized nanoparticles. The results paint a compelling picture of surfactant assembly at these relatively large nanoemulsion surfaces and allow for an important comparison of AOT at smaller micellar (curved) and planar oil-water interfaces.

  5. Size and diffusion phenomena of AOT/alcohol/water system in the presence of morin by dynamic light scattering.

    Science.gov (United States)

    Bhattarai, Ajaya; Wilczura-Wachnik, Hanna

    2015-01-30

    Presented paper is a continuation of our studies on morin interaction with AOT (sodium bis(2-ethylhexyl) sulfosuccinate) reversed micelles solutions in two solvents: ethanol and n-decanol. Now we focused on morin influence on size and diffusion phenomena in the system morin/solvent/AOT/water. In this paper precise measurements of dynamic light scattering (DLS) of the effects of temperature, solvents (alcohols), water on the size and diffusion of AOT reversed micelles in the morin/AOT/alcohol/water system are reported. The concentrations of AOT were varied from 0.51 to 0.78mol/L. Morin concentration in during auto-correlation function registration was not the same in each solvent because of its different solubility depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=(H2O)/(AOT) and was equal 0 and 30 in ethanol, and 0 in n-decanol. DLS measurements were done at 298.15 and 308.15K. DLS experiment involved on detection two relaxation modes (fast and slow) in the systems containing AOT reversed micelles, water, morin and solvents (ethanol and n-decanol). The DLS data clearly show the solvent influence as well as morin presence on AOT reversed micelles size and consequently their diffusion coefficients. Contrary to n-decanol strong competition between morin and ethanol molecules in AOT reversed micelles palisade layer has been found. It suggests that morin molecules replaced ethanol in AOT reversed micelles and locate in their palisade layer strongly increasing AOT reversed micelles size. Furthermore, it was found a sharp increase in correlation radii of slow modes of AOT reversed micelles containing morin molecules and their diffusion coefficients diminishing. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Spectrometric study of AOT-hydrolysis reaction in water/AOT/isooctane microemulsions using phenolphthalein as a chemical probe.

    Science.gov (United States)

    Mao, Shiyan; Chen, Zhiyun; Fan, Dashuang; An, Xueqin; Shen, Weiguo

    2012-01-12

    The kinetics of the alkaline hydrolysis of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in water/AOT/isooctane microemulsions has been studied by monitoring the absorbance change of the phenolphthalein in the system with time. The apparent first-order rate constant k(obs) has been obtained and found to be dependent on both the molar ratio of water to AOT ω and the temperature. The dependences of k(obs) on ω have been analyzed by a pseudophase model which gives the true rate constants k(i) of the AOT-hydrolysis reaction on the interface and the partition coefficients K(wi) for the distribution of OH(-) between aqueous and interface pseudophases at various temperatures; the latter is almost independent of the temperature and ω. The temperature dependences of the reaction rate constants k(obs) and k(i) have been analyzed to obtain enthalpy ΔH(≠), entropy ΔS(≠), and energy E(a) of activation, which indicate that the distribution of OH(-) between aqueous and interface pseudophases increases ΔS(≠) but makes no contribution to E(a) and ΔH(≠). The influence of the overall concentration of AOT in the system on the rate constant has been examined and found to be negligible. It contradicts with what was reported by García-Río et al. (1) but confirms that the first-order reaction of the AOT-hydrolysis takes place on the surfactant interface. The study of the influence of AOT-hydrolysis on the kinetics of the alkaline fading of crystal violet or phenolphthalein in the water/AOT/isooctane microemulsions suggests that corrections for the AOT-hydrolysis in these reactions are required.

  7. Extraction of cobalt ion using reverse-micelle of F-AOT in liquid/supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ko, M. S.; Jin, Y. W.; Kim, J. R.; Park, K. H.; Kim, H. D.; Kim, H. W. [Kyunghee Univ., Youngin (Korea, Republic of)

    2002-05-01

    A green decontamination method using CO{sub 2} as an environmentally benign solvent has been studied for removal of contaminant in the nuclear power plant. We developed a decontamination technique using CO{sub 2} for removal of contamination in working dresses. Owing to the low solubilizing, A reverse micelle system was developed. Fluorinated AOT was synthesized and used as surfactants forming reverse-micelle with water. Cobalt was extracted by dissolution into reverse-micelle in liquid CO{sub 2}. If this decontamination technique is applied to nuclear industry, the secondary waste during decontamination will be reverentially reduced. Negligibly small amount of water is a net waste, while the surfactants and solvent CO{sub 2} are recovered and reused in the system.

  8. Recovery of silver nanoparticles synthesized on AOT/C(12)E(4) mixed reverse micelles by antisolvent CO(2).

    Science.gov (United States)

    Zhang, Jianling; Han, Buxing; Liu, Juncheng; Zhang, Xiaogang; He, Jun; Liu, Zhimin; Jiang, Tao; Yang, Guanying

    2002-09-02

    Silver nanoparticles were synthesized in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles in isooctane with tetraethylene glycol dodecyl ether (C(12)E(4)) as a cosurfactant. Recovery of the Ag particles from the reverse micelles by dissolving antisolvent CO(2) in the micellar solution was investigated. All the Ag particles in the reverse micelles could be precipitated by compressed CO(2) at suitable pressures, while the surfactants remained in the isooctane continuous phase, and well-dispersed Ag nanoparticles were obtained. The effects of operating conditions on the size and size distribution of the Ag particles were investigated. The particle size decreased with decreasing molar ratio (w) of water to surfactant. A higher CO(2) pressure in the recovery process favored production of smaller particles. A decrease in the molar ratio of reductant KBH(4) to AgNO(3) resulted in larger Ag particles with higher polydispersity.

  9. SAFARI 2000 AOT and Column Water Vapor, Kalahari Transect, Wet Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The data presented here include the aerosol optical thickness (AOT) and column water vapor measurements taken at sites along the Kalahari Transect using a...

  10. A reliable and reproducible method for the lipase assay in an AOT/isooctane reversed micellar system: modification of the copper-soap colorimetric method.

    Science.gov (United States)

    Kwon, Chang Woo; Park, Kyung-Min; Choi, Seung Jun; Chang, Pahn-Shick

    2015-09-01

    The copper-soap method, which is based on the absorbance of a fatty acid-copper complex at 715 nm, is a widely used colorimetric assay to determine the lipase activity in reversed micellar system. However, the absorbance of the bis(2-ethylhexyl) sodium sulfosuccinate (AOT)-copper complex prevents the use of an AOT/isooctane reversed micellar system. An extraction step was added to the original procedure to remove AOT and eliminate interference from the AOT-copper complex. Among the solvents tested, acetonitrile was determined to be the most suitable because it allows for the generation of a reproducible calibration curve with oleic acid that is independent of the AOT concentrations. Based on the validation data, the modified method, which does not experience interference from the AOT-copper complex, could be a useful method with enhanced accuracy and reproducibility for the lipase assay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Controlled Growth of Gold Nanoparticles in AOT/C(12)E(4)/Isooctane Mixed Reverse Micelles.

    Science.gov (United States)

    Chiang, Chen-Li

    2001-07-15

    Stable anisotropic gold nanoparticles were prepared by the reduction of a relatively high concentration of tetrachloroauric acid with hydrazine in mixed reverse micelles formed with anionic surfactant AOT and nonionic surfactant tetraethylene glycol dodecyl ether (C(12)E(4)) in isooctane. It was found that the C(12)E(4) serves not only as a structure modifier but also as a stabilizer for Au particles, to prevent their further growth and precipitation. By the analyses of a high-resolution electron microscope, electron diffraction patterns, and energy-dispersive X-ray analysis (EDX), the resultant particles have been found to be pure gold of face-centered cubic structure. In the presence of C(12)E(4), the Au particle size is larger than that in the absence of C(12)E(4), while the particle size decreases with increases in the concentration of C(12)E(4). The molar ratio of hydrazine to HAuCl(4) was found to be an important parameter in the control of size and shape for the production of gold nanoparticles. A decrease in the molar ratio of hydrazine to HAuCl(4) resulted in larger Au particles with significantly more polydispersity. When the HAuCl(4) was injected directly into the mixed reversed micelles containing hydrazine, anisotropic gold nanoparticles, such as cylinders and trigons, were obtained at the molar ratio of hydrazine to HAuCl(4) of less than 0.5. Copyright 2001 Academic Press.

  12. Kinetics and mechanism of the cutinase-catalyzed transesterification of oils in AOT reversed micellar system.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2011-11-01

    The kinetics of the enzymatic transesterification between a mixture of triglycerides (oils) and methanol for biodiesel production in a bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane reversed micellar system, using recombinant cutinase from Fusarium solani pisi as a catalyst, was investigated. In order to describe the results that were obtained, a mechanistic scheme was proposed, based on the literature and on the experimental data. This scheme includes the following reaction steps: the formation of the active enzyme-substrate complex, the addition of an alcohol molecule to the complex followed by the separation of a molecule of the fatty acid alkyl ester and a glycerol moiety, and release of the active enzyme. Enzyme inhibition and deactivation effects due to methanol and glycerol were incorporated in the model. This kinetic model was fitted to the concentration profiles of the fatty acid methyl esters (the components of biodiesel), tri-, di- and monoglycerides, obtained for a 24 h transesterification reaction performed in a stirred batch reactor under different reaction conditions of enzyme and initial substrates concentration.

  13. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.

    Science.gov (United States)

    Martinez, Anna Victoria; Małolepsza, Edyta; Domínguez, Laura; Lu, Qing; Straub, John E

    2015-07-23

    The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine-lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water-surfactant interface.

  14. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water: ALW AND AOT

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thien Khoi V. [Department of Environmental Sciences, Rutgers University, New Brunswick New Jersey USA; Ghate, Virendra P. [Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA; Carlton, Annmarie G. [Department of Chemistry, University of California, Irvine California USA

    2016-11-22

    Summertime aerosol optical thickness (AOT) over the Southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation affecting the satellite AOT, but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at IMRPOVE sites using measured ion mass concentrations and NARR meteorological data. Our findings suggest ALW provides a plausible explanation for the geographical and seasonal patterns in AOT and can reconcile previously noted discrepancies with surface mass measurements.

  15. Small-angle light scattering studies of dense AOT-water-decane microemulsions

    International Nuclear Information System (INIS)

    Micali, N.; Trusso, S.; Mallamace, F.; Chen, S.H.

    1996-01-01

    It is performed extensive studies of a three-component microemulsion system composed of AOT-water-decane using small-angle light scattering (SALS). The small-angle scattering intensities are measured in the angular interval 0.001-0.1 radians, corresponding to a Bragg wave number range of 0.14 μm -1 -1 . The measurements were made by changing temperature and volume fraction φ of the dispersed phase in the range 0.65< φ < 0.75. All samples have a fixed water-to-AOT molar ratio, w [water[/[AOT[ = 40.8, in order to keep the same average droplet size in the stable one-phase region. With the SALS technique it is observed all the phase boundaries of a very complex phase diagram with a percolation line and many structural organizations within it. It is observed at the percolation transition threshold, a scaling behavior of the intensity data. In addition it is described in detail a structural transition from a droplet microemulsion to a bi continuous one a suggested by a recent small-angle neutron scattering experiment. From the data analysis it is show that both the percolation phenomenon and this novel structural transition are described from a large-scale aggregation between microemulsion droplets

  16. Dielectric Properties of Water in Butter and Water-AOT-Heptane Systems Measured using Terahertz Time-Domain Spectroscopy

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    2010-01-01

    We investigate the dielectric properties of water confined in nanometer-sized inverse micelles in mixtures of water, AOT, and heptane. We show that the dielectric properties of the confined water are dependent on the water pool size and different from those of bulk water. We also discuss...... the dielectric properties of different vegetable oils, lard, and butter, and use these properties to deduce the dielectric properties of water in butter, which are shown to deviate significantly from the dielectric properties of bulk water....

  17. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    Science.gov (United States)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  18. Selective Reduction of Nitrite to Nitrogen with Carbon-Supported Pd-AOT Nanoparticles

    NARCIS (Netherlands)

    Perez-Coronado, A. M.; Calvo, L.; Baeza, J.A.; Palomar, J.; Lefferts, L.; Rodriguez, J-C.; Gilarranz, M.A.

    2017-01-01

    The catalytic reduction of nitrite in water with hydrogen has been studied using a new strategy to control selectivity. The catalysts used are based on size-controlled Pd-AOT nanoparticles, synthesized via sodium bis[2-ethylhexyl] sulfosuccinate (AOT)/isooctane reverse microemulsion, supported on

  19. Effect of the cationic surfactant moiety on the structure of water entrapped in two catanionic reverse micelles created from ionic liquid-like surfactants.

    Science.gov (United States)

    Villa, Cristian C; Silber, Juana J; Correa, N Mariano; Falcone, R Darío

    2014-10-06

    The behavior of water entrapped in reverse micelles (RMs) formed by two catanionic ionic liquid-like surfactants, benzyl-n-hexadecyldimethylammonium 1,4-bis-2-ethylhexylsulfosuccinate (AOT-BHD) and cetyltrimethylammonium 1,4-bis-2-ethylhexylsulfosuccinate (AOT-CTA), was investigated by using dynamic (DLS) and static (SLS) light scattering, FTIR, and (1)H NMR spectroscopy techniques. To the best of our knowledge, this is the first report in which AOT-CTA has been used to create RMs and encapsulate water. DLS and SLS results revealed the formation of RMs in benzene and the interaction of water with the RM interface. From FTIR and (1)H NMR spectroscopy data, a difference in the magnitude of the water-catanionic surfactant interaction at the interface is observed. For the AOT-BHD RMs, a strong water-surfactant interaction can be invoked whereas for AOT-CTA this interaction seems to be weaker. Consequently, more water molecules interact with the interface in AOT-BHD RMs with a completely disrupted hydrogen-bond network, than in AOT-CTA RMs in which the water structure is partially preserved. We suggest that the benzyl group present in the BHD(+) moiety in AOT-BHD is responsible for the behavior of the catanionic interface in comparison with the interface created in AOT-CTA. These results show that a simple change in the cationic component in the catanionic surfactant promotes remarkable changes in the RMs interface with interesting consequences, in particular when using the systems as nanoreactors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Temperature effect on the inter-micellar collision and maximum packaging volume fraction in water/AOT/isooctane micro-emulsions

    International Nuclear Information System (INIS)

    Guettari, Moez; Ben Naceur, Imen; Kassab, Ghazi; Tajouri, Tahar

    2016-01-01

    We have studied the viscosity behaviour of water/AOT/isooctane micro-emulsions as a function of the volume fraction of the dispersed phase over a temperature range from the (298.15 to 328.15) K. For all the studied temperature range, a sharp increase of the viscosities is observed when the droplets concentration was varied. Several equations based on hard sphere model were examined to explain the behaviours of micro-emulsions under temperature and concentration effects. According to these equations, the shape factor and the inter-particle interaction parameters were found to be dependent on temperature which is in contradiction with experimental results reported in the literature. A modified Vand equation, taking into account the inter-particle collision time, is used to interpret the results obtained. This deviation is attributed to the aggregation of the droplets which becomes important by increasing temperature. The maximum packaging volume fraction of particles Φ dm and the intrinsic viscosity [η] were determined according to the Krieger and Dougherty equation through the temperature range studied. These two parameters were shown to be dependent on temperature but their product was found to be constant and close to 2 as reported in theory.

  1. Structural study of the AOT reverse micellar system. Influence of attractive interactions induced by the solubilisation of native and modified proteins

    International Nuclear Information System (INIS)

    Cassin, Guillaume

    1994-01-01

    This research thesis reports the study of the influence of intra-micellar attractions on the thermodynamic behaviour of reverse micellar systems, as well as of the effects induced by the solubilisation of natives or modified proteins. The author proposes a model to explain the decrease of attractions between droplets when the volume fraction occupied by reverse micelles increases. This model which highlights the importance of depletion forces between reverse micelles, allows the building up of a theoretical relationship between the bonding parameter and the volume fraction of reverse micelles. In order to understand the appearance of an attractive term related to the solubilisation of native cytochrome-c in these systems, this protein has been chemically modified. The author highlights the role of the charge born by a micellar probe on the thermodynamic behaviour of micro-emulsions. Then, the author applies the model of dimerizing adhesive spheres to reverse micellar systems containing native cytochrome-c. He shows that theoretical predictions of this model are in agreement with obtained experimental results [fr

  2. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  3. Reduction of reversed micelle entrapped cytochrome c and cytochrome c3 by electrons generated by pulse radiolysis or by pyrene photoionization

    International Nuclear Information System (INIS)

    Vlsser, A.J.W.G.; Fendler, J.H.

    1982-01-01

    Horse heart cytochrome c and cytochrome c 3 , isolated from Desulfovibrio vulgaris, have been incorporated in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) entrapped water pools in heptane. The absorption spectra of the cytochromes have been found to be strongly dependent on the water to AOT concentration ratios. The proteins solubilized in heptane by the AOT reversed micelles have retained their ability to mediate electron transfer. They reacted very rapidly with hydrated electrons, generated pulse radiolytically or, alternatively, formed in the laser photoionization of pyrene

  4. Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations

    Science.gov (United States)

    Harpham, Michael R.; Ladanyi, Branka M.; Levinger, Nancy E.; Herwig, Kenneth W.

    2004-10-01

    Motion of water molecules in Aerosol OT [sodium bis(2-ethylhexyl) sulfosuccinate, AOT] reverse micelles with water content w0 ranging from 1 to 5 has been explored both experimentally through quasielastic neutron scattering (QENS) and with molecular dynamics (MD) simulations. The experiments were performed at the energy resolution of 85 μeV over the momentum transfer (Q) range of 0.36-2.53 Å-1 on samples in which the nonpolar phase (isooctane) and the AOT alkyl chains were deuterated, thereby suppressing their contribution to the QENS signal. QENS results were analyzed via a jump-diffusion/isotropic rotation model, which fits the results reasonably well despite the fact that confinement effects are not explicitly taken into account. This analysis indicates that in reverse micelles with low-water content (w0=1 and 2.5) translational diffusion rate is too slow to be detected, while for w0=5 the diffusion coefficient is much smaller than for bulk water. Rotational diffusion coefficients obtained from this analysis increase with w0 and are smaller than for bulk water, but rotational mobility is less drastically reduced than translational mobility. Using the Faeder/Ladanyi model [J. Phys. Chem. B 104, 1033 (2000)] of reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function FS(Q,t) for water hydrogens. Comparison of the time Fourier transform of this FS(Q,t) with the QENS dynamic structure factor S(Q,ω), shows good agreement between the model and experiment. Separate intermediate scattering functions FSR(Q,t) and FSCM(Q,t) were determined for rotational and translational motion. Consistent with the decoupling approximation used in the analysis of QENS data, the product of FSR(Q,t) and FSCM(Q,t) is a good approximation to the total FS(Q,t). We find that the decay of FSCM(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior is due to lower water mobility close to the interface and to

  5. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  6. Risk-based evaluation of Allowed Outage Times (AOTs) considering risk of shutdown

    International Nuclear Information System (INIS)

    Mankamo, T.; Kim, I.S.; Samanta, P.K.

    1992-01-01

    When safety systems fail during power operation, Technical Specifications (TS) usually limit the repair within Allowed Outage Time (AOT). If the repair cannot be completed within the AOT, or no AOT is allowed, the plant is required to be shut down for the repair. However, if the capability to remove decay heat is degraded, shutting down the plant with the need to operate the affected decay-heat removal systems may impose a substantial risk compared to continued power operation over a usual repair time. Thus, defining a proper AOT in such situations can be considered as a risk-comparison between the repair in frill power state with a temporarily increased level of risk, and the altemative of shutting down the plant for the repair in zero power state with a specific associated risk. The methodology of the risk-comparison approach, with a due consideration of the shutdown risk, has been further developed and applied to the AOT considerations of residual heat removal and standby service water systems of a boiling water reactor (BWR) plant. Based on the completed work, several improvements to the TS requirements for the systems studied can be suggested

  7. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    Science.gov (United States)

    Zhang, Wanzhong; Qiao, Xueliang; Chen, Jianguo

    2006-11-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag4+ intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6 nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields.

  8. Dynamic and spectroscopic studies of nano-micelles comprising dye in water/ dioctyl sodium sulfosuccinate /decane droplet microemulsion at constant water content

    Science.gov (United States)

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2017-01-01

    In the present work, the dynamic and spectroscopic properties of water-in-decane dioctyl sodium sulfosuccinate (AOT) microemulsions comprising dye, Rhodamine B (RB), were studied by varying content of decane at the constant water content (W = 20), by using dynamic light scattering (DLS), UV/visible, and fluorescence techniques. The characterization results of DLS of AOT micelles showed that by decreasing concentration of Rhodamine B in the water/AOT/decane microemulsion, the inter-droplet interactions changed from attractive to repulsive as the mass fraction of nano-droplets (MFD) increased. A deviation in the absorption spectra of Rhodamine B from the Beer's law at the high Rhodamine B concentration (0.001) was observed in the AOT reversed micelles. The Quenching in the emission intensity of AOT droplets comprising Rhodamine B and red shift in λmax of fluorescence of dye was observed as a function of concentration of RB in AOT RMs. The Stokes shift of AOT droplets containing the high concentration of RB, increased with mass fraction of nano-droplet (MFD), whereas at the low Rhodamine B concentration, its variation remained constant up to MFD = 0.07, and then increased.

  9. Plant experience with temporary reverse osmosis makeup water systems

    International Nuclear Information System (INIS)

    Polidoroff, C.

    1986-01-01

    Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment

  10. Investigating the evolution of the phase behavior of AOT-based w/o microemulsions in dodecane as a function of droplet volume fraction.

    Science.gov (United States)

    Ganguly, R; Choudhury, N

    2012-04-15

    AOT-based water in oil (w/o) microemulsions are one of the most extensively studied reverse micellar systems because of their rich phase behavior and their ability to form in the absence of any co-surfactant. The aggregation characteristics and interaction of the microemulsion droplets in these systems are known to be governed by AOT-oil compatibility and water to AOT molar ratio (w). In this manuscript by using Dynamic Light Scattering (DLS) and viscometry techniques, we show that droplet volume fraction too plays an important role in shaping the phase behavior of these microemulsions in dodecane. The phase separation characteristics and the evolution of the viscosity and the hydrodynamic radius of the microemulsion droplets on approaching the cloud points have thus been found to undergo complete transformation as one goes from low to high droplet volume fraction even at a fixed 'w'. Modeling of the DLS data attributes this to the weakening of inter droplet attractive interaction caused by the growing dominance of the excluded volume effect with increase in droplet volume fraction. In the literature, the inter droplet attractive interaction driven phase separation in these microemulsions is explained based on gas-liquid type phase transition, conceptualized in the framework of Baxter adhesive hard sphere theory. The modeling of our viscosity data, however, does not support such proposition as the characteristic stickiness parameter (τ(-1)) of the microemulsion droplets in this system remains much lower than the critical value (τ(c)(-1)≈10.25) required to enforce such phase transition. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. AOT-microemulsions-based formation and evolution of PbWO$_{4}$ crystals

    CERN Document Server

    Chen, D; Tang Kai Bin; Liang Zhen Hua; Zheng Hua Gui

    2004-01-01

    Anionic surfactant-AOT-microemulsions-assisted formation and evolution of PbWO//4 nanostructures with bundles rodlike, ellipsoidlike, and spherelike prepared at different media conditions were studied by powder X-ray diffraction pattern, field emission scanning electron microscopy, and transmission electron microscopy. The possible mechanisms for the formation of PbWO//4 samples in series of microemulsion systems were discussed. Various comparison experiments show that several experimental parameters, such as the AOT concentration, the water content, and reaction temperature play important roles in the morphological control of PbWO//4 nanostructures. Room-temperature photoluminescence of PbWO//4 samples with different morphologies has also been investigated and the results reveal that all these samples showed similar features with emissions at 480 similar to 510 nm but different luminescence intensity. 40 Refs.

  12. Degradation patterns of tetracycline antibiotics in reverse micelles and water.

    Science.gov (United States)

    Sah, Hongkee

    2006-11-01

    The objective of this study was to determine the chemical stability of tetracycline and oxytetracycline hydro-chlorides in reverse micelles. Their reverse micellar solutions were prepared using cetyltrimethylammonium bromide, water and ethyl formate. The aqueous solutions of the tetracycline antibiotics were also prepared for comparison. The reverse micellar and aqueous solutions were stored at 37 degrees C. Samples were analyzed by high performance liquid chromatography. When evaluation was performed on an aqueous tetracycline HCl solution, its half-life was estimated to be 329 h. Its chemical stability was not improved after being dissolved in the reverse micelles, and a similar half-life of 330 h was observed. However, there were noticeable differences between the two systems in terms of degradation kinetics and degradation byproducts. On the other hand, oxytetracycline HCl was unstable in water so that its half-life was only 34 h. Very interestingly, pronounced improvement in stability was attained with the reverse micellar system: upon dissolving in the reverse micelles, its half-life was increased to 2402 h. There were also marked differences in degradation patterns and mechanisms of oxytetracycline HCl in water and the reverse micelles. Our study indicates that the reverse micellar system has potential applications in solubilizing and stabilizing oxytetracycline HCl, thereby contributing to the development of its dosage forms. Copyright (c) 2006 John Wiley & Sons, Ltd.

  13. Improvement of water desalination technologies in reverse osmosis plants

    Science.gov (United States)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  14. Defluoridation of Ethiopian Rift Valley Region water using reverse ...

    African Journals Online (AJOL)

    Defluoridation of Ethiopian Rift Valley Region (ERVR) raw ground water using reverse osmosis (RO) membranes was studied. Four RO membranes CA995PlE, HR98PP, LFC and ESPA delivered by DSS and Hydranautics were investigated for the retention of fluoride in fluoride water. All four membranes were observed to ...

  15. Life cycle assessment of drinking water: comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles

    OpenAIRE

    Garfi, Marianna; Cadena, Erasmo; Sanchez Ramos, David; Ferrer Martí, Ivet

    2016-01-01

    This study evaluated the environmental impacts caused by drinking water consumption in Barcelona (Spain) using the Life Cycle Assessment (LCA) methodology. Five different scenarios were compared: 1) tap water from conventional drinking water treatment; 2) tap water from conventional drinking water treatment with reverse osmosis at the water treatment plant; 3) tap water from conventional drinking water treatment with domestic reverse osmosis; 4) mineral water in plastic bottles, and 5) minera...

  16. Evaluation of allowed outage times (AOTS) from a risk and reliability standpoint

    International Nuclear Information System (INIS)

    Vesely, W.E.

    1989-08-01

    This report describes the basic risks associated with allowed outage times (AOTS), defines strategies for selecting the risks to be quantified, and describes how the risks can be quantified. This report provides a basis for risk-based approaches for regulatory and plant implementation. The AOT risk evaluations can be applied to proposed one-time AOT changes, or to permanent changes. The evaluations can also be used to quantify risks associated with present AOTs, and in establishing AOTs from a risk perspective. The report shows that the standard way of calculating AOT risks in probabilistic risk analyses (PRAs) generally is not sufficient when evaluating all the risks associated with an AOT in order to assess its acceptability. The PRA calculates an average AOT risk which includes the frequency at which the AOT is expected to occur. Other risks associated with an AOT include the single downtime risk, which is the risk incurred when (given) the AOT has occurred. The single downtime risk is generally the most applicable risk in determining the acceptability of the AOT. The single downtime risks are generally much larger than the PRA-averaged risk. For more comprehensive evaluations, both risks should be calculated. The report also describes other risks which can be considered, including personnel and economic risks. Finally, the report discusses the detailed evaluations which are involved in calculating AOT risks, including considerations of uncertainty. (author)

  17. The treatment of river water by reverse osmosis

    International Nuclear Information System (INIS)

    Ray, N.J.; Jenkins, M.A.; Coates, A.

    1977-01-01

    The suitability of rod, spirally would and hollow fibre reverse osmosis systems has been assessed for the treatment of River Trent water to produce water of boiler feed quality. Particular attention has been paid to the effects of the suspended solids level of the influent water supply on operating and cleaning regimes. The best performance was given by the rod-type membranes which could be used with relatively dirty water if suitable chemical and/or physical cleaning techniques were applied. However, even this system, requires some form of clarification of the raw supply, and this affects capital and overall running costs. The hollow fibre membrane, which cannot be readily cleaned required an excessively clean water supply to avoid rapid and irreversible loss of output and is unlikely to have full-scale application on this, or similar, water. The spirally wound membranes, whilst not so susceptible to suspended solids as the hollow fibre system, did not tolerate dirty water, and required the raw water to be clarified to a level that is unlikely to be continuously guaranteed. In its current stage of development reverse osmosis is unlikely to give a cost advantage over the main cation/anion exchange stage of present water treatment plant, even for the treatment of waters relatively high in dissolved salts (500 mg kg -1 ). Moreover, conventional pretreatment and final mixed ion-exchange beds would still be required to produce water of boiler feed quality. Reverse osmosis does, however, remove organic species and non reactive silicon; its selection is likely to be dictated by such requirements or where space is at a premium e.g. extensions to existing water treatment plants. (orig.) [de

  18. Femtosecond water dynamics in reverse-micellar nanodroplets

    NARCIS (Netherlands)

    Cringus, D; Lindner, J; Milder, MTW; Pshenichnikov, MS; Vohringer, P; Wiersma, DA; Milder, Maaike T.W.; Pshenichnikov, Maxim S.; Vöhringer, Peter

    2005-01-01

    Vibrational energy relaxation and ultrafast thermalization following impulsive excitation of the OH-stretching band of water nanodroplets confined to reverse micelles is studied by infrared pump-probe spectroscopy with sub-100 fs time resolution. The self-consistent analysis of experimental data for

  19. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal

    International Nuclear Information System (INIS)

    Montaña, M.; Camacho, A.; Serrano, I.; Devesa, R.; Matia, L.; Vallés, I.

    2013-01-01

    A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant. -- Highlights: ► A study with a pilot plant using different membranes technologies was made. ► Big reduction on natural uranium and 40 K by reverse osmosis was found. ► Pilot plant and full-scale treatment plant behave similarly

  20. Synthesis and physico-chemical characterization of gold nanoparticles softly coated by AOT

    International Nuclear Information System (INIS)

    Longo, A.; Calandra, P.; Casaletto, M.P.; Giordano, C.; Venezia, A.M.; Liveri, V.Turco

    2006-01-01

    Size-controlled gold nanoparticles/surfactant stable systems were prepared by the combined action of the solvated metal atom dispersion (SMAD) technique and confinement in anhydrous sodium bis(2-ethylhexyl)sulfosuccinate (AOT) micellar solution. From liquid samples, by evaporation of the organic solvent, solid gold nanoparticle-surfactant liquid crystals composites were obtained. Sample characterization was performed by X-ray diffraction (SAXS and WAXS), XPS spectroscopy and UV-vis-NIR spectroscopy. All experimental data consistently revealed the coexistence of two gold nanoparticle size populations: bigger nanoparticles (size 20-50 A) and smaller ones (size of few A). The two differently-sized gold nanoparticles can be separated by resuspending the gold/surfactant nanocomposite in n-heptane. This operation causes the slow selective precipitation of the bigger nanoparticles softly coated by surfactant leaving, in the surnatant, only the smaller Au nanoparticles. The latter were found to be entrapped in the core of AOT reversed micelles and stabilised by the surfactant adsorption on their surface. Such nanoparticles, as shown by SAXS data, slowly rearrange to a narrower size distribution giving a surnatant containing stable and finely size-controlled gold nanoparticles

  1. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim

    2017-12-01

    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  2. Installations for water desalination by reverse osmosis. P. 2

    International Nuclear Information System (INIS)

    Bauermann, H.D.; Ermert, U.

    1974-01-01

    Starting with the explanation of an installation scheme of a reverse osmosis (RO) plant for water desalination, the various parts of such a plant are firstly discussed briefly. After a chapter dealing with the feed pre-treatment required, the operation of RO-plants is dealt with. The usual variations of arrangement are shown, as well as some information given on maintenance and costs of such methods of desalination. The last part contains some examples of plants installed so far. (orig.) [de

  3. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  4. Fluoride Removal from Water by Reverse Osmosis Membrane

    Directory of Open Access Journals (Sweden)

    Sara Namavar

    2013-09-01

    Full Text Available As fluoride concentration in drinking water is one of the effective parameters in human health, finding the way to remove excess amount of fluoride from drinking water is very important in water supply projects. Today, with developing in technology and finding new methods, the use of membrane technology for producing fresh water get improved. In this study the efficiency of reverse osmosis method to remove fluoride from water was investigated. Initial concentration of fluoride, sulfate and electrical conductivity in feed water and the effect of associated cation with fluoride ion were studied. All tests adapted from “Standard Methods for Examination of Water and Wastewater”. Determination of fluoride concentration was done according the standard SPANDS method by using a spectrophotometer DR/5000. Obtain results show that with increasing in concentration of fluoride and sulfate and electrical conductivity in feed water the efficiency of RO membrane to remove fluoride reduced. In addition, this efficiency for CaF2 was higher than NaF.

  5. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    Science.gov (United States)

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  6. A Well Water Reverse Osmosis Desalination Unit Diagnosis

    International Nuclear Information System (INIS)

    Elfil, H.; Hila, M.; Hannachi, A.; Yeza, A.

    2009-01-01

    In this present work the diagnosis results of a reverse osmosis desalination unit are reported. Since 1997, the desalination unit was supplying a 1200 bed hotel. The feed water was driven from a well situated 300 m away form the sea. The water has an approximate salinity of 6gg.L -1 . The unit was producing 600 m 3 per day of desalinated water with a Total Dissolved Salts (TDS) of nearly 400 mg.L -1 . The desalination unit has two stages with 67 pour cent and 42 pour cent yields respectively giving an average yield of 81 pour cent. The behavior of all water streams with respect to aggressiveness and scaling tendency was assessed. The 2nd stage reject water was shown to exhibit a very high scaling behavior with an instantaneous precipitation in the absence of feed water chemical treatment. The analyses have shown that the produced water was very aggressive. The second stage module autopsy has revealed a sharp decrease of the membrane performances because of mineral as well as organic fooling buildup. The inorganic scale was essentially made of coesite and calcite and kaolinite clay. The presence of silica and clay could be attributed to an inadequate filtration pre-treatment process that was not able to retain all the suspended matter in the feed water. Whereas the presence calcite crystals at the membrane surface, reveals that the chemical inhibition performed at the pre-treatment process without adjusting the water pH was not able to prevent calcium carbonate precipitation. A periodic acid wash of the 2nd stage membranes is then necessary to guarantee this stage desired objectives.

  7. Micropolarity and Hydrogen-Bond Donor Ability of Environmentally Friendly Anionic Reverse Micelles Explored by UV/Vis Absorption of a Molecular Probe and FTIR Spectroscopy.

    Science.gov (United States)

    Girardi, Valeria R; Silber, Juana J; Falcone, Ruben Darío; Correa, N Mariano

    2018-02-08

    In the present work we show how two biocompatible solvents, methyl laurate (ML) and isopropyl myristate (IPM), can be used as a less toxic alternative to replace the nonpolar component in a sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) reverse micelles (RMs) formulation. In this sense, the micropolarity and the hydrogen-bond ability of the interface were monitored through the use of the solvatochromism of a molecular probe (1-methyl-8-oxyquinolinium betaine, QB) and Fourier transform infrared spectroscopy (FTIR). Our results demonstrate that the micropolarity sensed by QB in ML RMs is lower than in IPM RMs. Additionally, the water molecules form stronger H-bond interactions with the polar head of AOT in ML than in IPM. By FTIR was revealed that more water molecules interact with the interface in ML/AOT RMs. On the other hand, for AOT RMs generated in IPM, the weaker water-surfactant interaction allows the water molecules to establish hydrogen bonds with each other trending to bulk water more easily than in ML RMs, a consequence of the dissimilar penetration of nonpolar solvents into the interfacial region. The penetration process is strongly controlled by the polarity and viscosity of the external solvents. All of these results allow us to characterize these biocompatible systems, providing information about interfacial properties and how they can be altered by changing the external solvent. The ability of the nontoxic solvent to penetrate or not into the AOT interface produces a new interface with attractive properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reverse osmosis for wash water recovery in space vehicles.

    Science.gov (United States)

    Lawrence, R. W.; Saltonstall, C. W., Jr.

    1973-01-01

    Tests were carried out on both synthetic and real wash water derived from clothes laundry to determine the utility of reverse osmosis in recovering the water for recycle use. A blend membrane made from cellulose di- and triacetates, and a cross-linked cellulose acetate/methacrylate were evaluated. Both were found acceptable. A number of detergents were evaluated, including a cationic detergent, sodium dodecyl sulfate, potassium palmitate, and sodium dodecylbenzenesulfonate. The tests were all made at a temperature of 165 F to minimize microbial growth. Long-term (15 to 30 day) runs were made at 600 and 400 psi on laundry water which was pretreated either by alum addition and sand filtration or by filtration only through 0.5 micron filters. A 30-day run was made using a 2-in. diameter by 22-in. long spiral module at 400 psig with filtering as the pretreatment. The membrane fouling by colloidal matter was found to be controllable. The unit produced initially 55 gal/day and 27 gal/day after 30 days.

  9. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments

  10. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The

  11. Local chemistry of the surfactant's head groups determines protein stability in reverse micelles.

    Science.gov (United States)

    Senske, Michael; Xu, Yao; Bäumer, Alexander; Schäfer, Sarah; Wirtz, Hanna; Savolainen, Janne; Weingärtner, Hermann; Havenith, Martina

    2018-03-28

    When comparing protein folding in vitro and in vivo significant differences have been found. This has been attributed to crowding and confinement effects. Using a combination of GHz- and THz-dielectric relaxation spectroscopy and MD simulations, we studied hydration dynamics and reviewed protein stability data inside sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and cetyltrimethylammonium bromide (CTAB) reverse micelles which are model systems for confinement. We find that water inside anionic AOT and cationic CTAB reverse micelles is characterized by a strong dielectric depolarization giving rise to a very low relative permittivity compared to an unconfined solution. Despite differences in the hydration dynamics of the surfactant's head groups, simulations using the two-phase thermodynamics method predict a similar reduction in water entropy for both reverse micelle systems compared to bulk water. When we compare the stability data of proteins in these reverse micelles we find that in contrast to our initial expectation, protein stability correlates rather with the local chemistry of the hydrated head groups than with the excluded volume effect or the low global permittivity.

  12. Multiple time-reversed guide-sources in shallow water

    Science.gov (United States)

    Gaumond, Charles F.; Fromm, David M.; Lingevitch, Joseph F.; Gauss, Roger C.; Menis, Richard

    2003-10-01

    Detection in a monostatic, broadband, active sonar system in shallow water is degraded by propagation-induced spreading. The detection improvement from multiple spatially separated guide sources (GSs) is presented as a method to mitigate this degradation. The improvement of detection by using information in a set of one-way transmissions from a variety of positions is shown using sea data. The experimental area is south of the Hudson Canyon off the coast of New Jersey. The data were taken using five elements of a time-reversing VLA. The five elements were contiguous and at midwater depth. The target and guide source was an echo repeater positioned at various ranges and at middepth. The transmitted signals were 3.0- to 3.5-kHz LFMs. The data are analyzed to show the amount of information present in the collection, a baseline probability of detection (PD) not using the collection of GS signals, the improvement in PD from the use of various sets of GS signals. The dependence of the improvement as a function of range is also shown. [The authors acknowledge support from Dr. Jeffrey Simmen, ONR321OS, and the chief scientist Dr. Charles Holland. Work supported by ONR.

  13. Validation and empirical correction of MODIS AOT and AE over ocean

    Directory of Open Access Journals (Sweden)

    N. A. J. Schutgens

    2013-09-01

    Full Text Available We present a validation study of Collection 5 MODIS level 2 Aqua and Terra AOT (aerosol optical thickness and AE (Ångström exponent over ocean by comparison to coastal and island AERONET (AErosol RObotic NETwork sites for the years 2003–2009. We show that MODIS (MODerate-resolution Imaging Spectroradiometer AOT exhibits significant biases due to wind speed and cloudiness of the observed scene, while MODIS AE, although overall unbiased, exhibits less spatial contrast on global scales than the AERONET observations. The same behaviour can be seen when MODIS AOT is compared against Maritime Aerosol Network (MAN data, suggesting that the spatial coverage of our datasets does not preclude global conclusions. Thus, we develop empirical correction formulae for MODIS AOT and AE that significantly improve agreement of MODIS and AERONET observations. We show these correction formulae to be robust. Finally, we study random errors in the corrected MODIS AOT and AE and show that they mainly depend on AOT itself, although small contributions are present due to wind speed and cloud fraction in AOT random errors and due to AE and cloud fraction in AE random errors. Our analysis yields significantly higher random AOT errors than the official MODIS error estimate (0.03 + 0.05 τ, while random AE errors are smaller than might be expected. This new dataset of bias-corrected MODIS AOT and AE over ocean is intended for aerosol model validation and assimilation studies, but also has consequences as a stand-alone observational product. For instance, the corrected dataset suggests that much less fine mode aerosol is transported across the Pacific and Atlantic oceans.

  14. REMOVAL OF CHLORINATED AND BROMINATED ALKANES FROM DRINKING WATER USING REVERSE OSMOSIS

    Science.gov (United States)

    Membrane use in water treatment has historically focused on desalination. With the development of new membrane materials, attention began to focus on reverse osmosis and pervaporation as alternatives to traditional water treatment processes. This paper addresses the use of reve...

  15. REMOVAL OF CHLORINATED ALKENE SOLVENTS FROM DRINKING WATER BY VARIOUS REVERSE OSMOSIS MEMBRANES

    Science.gov (United States)

    Historically, membranes have been used to desalinate water. As new membrane materials are developed, traditional water treatment schemes may incorporate membrane technologies, such as reverse osmosis, to address a variety of new concerns such as low molecular weight volatile org...

  16. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    Science.gov (United States)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  17. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Lee; Junghan Dong

    2004-06-03

    This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to

  18. Reverse osmosis based water treatment and purification systems for nuclear power installations

    International Nuclear Information System (INIS)

    Epimakhov, V.N.; Olejnik, M.S.; Moskvin, L.N.

    2004-01-01

    Experiments on the realization and service of specialized water treatment and purification plants based on the principle of reverse osmosis filtration of water at the NPU benches of the A.P. Aleksandrov Scientific Research Technological Institute (SRTI) are analyzed. Membrane-sorption unit including module of micro-, ultrafiltration, reverse osmosis and ion exchange with productivity to 0.5 m 3 /h is developed and operated at SRTI. It is demonstrated that reverse osmosis purification of manufacturing water significantly improves service conditions of NPU and decreases salinity [ru

  19. Working to reverse a water deficit | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Fayez Bataineh's desire to become a water engineer began when he was a young boy. "Even at a young age I saw the people suffering from a lack of water," he recalls. "I was sometimes obligated to go to the city to bring back water for my family. So I was always dreaming about water." SEE ALSO...

  20. Characterization of lipase in reversed micelles formulated by Cibacron Blue F-3GA modified Span 85

    DEFF Research Database (Denmark)

    Zhang, Dong Hao; Guo, Zheng; Sun, Yan

    2007-01-01

    as a model reaction. The micellar hydrodynamic radius results reflected, to some extent, the redistribution of surfactant and water after enzyme addition, and the correlation between surfactant formulation, water content (W0), micellar size, and enzyme activity. An adequate modification density of CB......Sorbitan trioleate (Span 85) modified by Cibacron Blue F-3GA (CB) was prepared and used as an affinity surfactant to formulate a reversed micellar system for Candida rugosa lipase (CRL) solubilization. The system was characterized and evaluated by employing CRL-catalyzed hydrolysis of olive oil...... was found to be important for the reversed micelles to retain enough hydration capacity and achieve high enzyme activity. Compared with the results in AOT-based reversed micelles, CRL in this micellar system exhibited a different activity behavior versus W0. The optimal pH and temperature...

  1. RECYCLING NICKEL ELECTROPLATING RINSE WATERS BY LOW TEMPERATURE EVAPORATION AND REVERSE OSMOSIS

    Science.gov (United States)

    Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperat...

  2. Membrane Fouling and Chemical Cleaning in Three Full-Scale Reverse Osmosis Plants Producing Demineralized Water

    NARCIS (Netherlands)

    Beyer, Florian; Laurinonyte, Judita; Zwijnenburg, Arie; Stams, Alfons J.M.; Plugge, Caroline M.

    2017-01-01

    Membrane fouling and cleaning were studied in three reverse osmosis (RO) plants. Feed water was secondary wastewater effluent, river water, and surface water. Membrane autopsies were used for fouling characterization. Fouling layer measurements included total organic carbon (TOC), adenosine

  3. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    Science.gov (United States)

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  4. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    Science.gov (United States)

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers.

  5. Social, Economical and Technical Evaluation of a reverse osmosis drinking water plant in the Stockholm Archipelago

    OpenAIRE

    Lindkvist, Jonas

    2007-01-01

    The drinking water plant in this case study is a combined groundwater and reverse osmosisplant in the Stockholm archipelago. The reverse osmosis purification step was added to theplant in 1995. This technique is relatively new in Sweden and there are possibilities for it tobecome a good complement to conventional drinking water treatment. The plant has used thistechnique for over 10 years with good results. It is therefore of great interest to evaluate anddocument it for the possibility to im...

  6. Fate of Thallium(I) in Reverse Osmosis and Chlorinated Water Matrices

    Science.gov (United States)

    2014-02-01

    THALLIUM (I) IN REVERSE OSMOSIS AND CHLORINATED WATER MATRICES ECBC-TR-1127 Approved for public release; distribution is unlimited...3. DATES COVERED (From - To) Apr 2010 - Dec 2011 4. TITLE AND SUBTITLE Fate of Thallium (I) in Reverse Osmosis and Chlorinated Water Matrices...SUPPLEMENTARY NOTES 14. ABSTRACT: This is the final report for a limited thallium fate study in support of the Joint Chemical Biological Radiological

  7. Determination of sodium bis(2-ethylhexylsulfosuccinate (AOT surfactant with liquid chromatography: Comparative study of evaporative light scattering detector, ultraviolet detector and conductivity detector

    Directory of Open Access Journals (Sweden)

    Ho Ryul Ryu

    2010-03-01

    Full Text Available This work presents comparison of performance of ultraviolet (UV detector, conductivity detector (CD and evaporative light scattering detector (ELSD in terms of quantitative analysis of AOT (sodium bis(2-ethylhexylsulfosuccinate using liquid chromatography. The employed chromatographic condition, including an acetonitrile/water (45:55, v/v isocratic eluent system, is suitable for the three different detectors, and the figures of merits obtained by building up calibration plots are compared. The sensitivities of the detectors are in the order of ELSD ≈ CD >> UV detector. The linear range for quantification of AOT depends on the type of detector: the lower limits are in the order of UV detector (207 ㎍ mL-1 < CD (310 ㎍ mL-1 << ELSD (930 ㎍ mL-1, while the upper limits are 3720 ㎍ mL-1 for all the detectors (the maximum concentration of injected standard solution. The detection limits are 155 ㎍ mL-1 for ELSD, 78 ㎍ mL-1 for UV detector and 13 ㎍ mL-1 for CD, respectively. The figures of merit for each detector could be a guideline in choosing a detector in quantization of AOT. Furthermore, application of the chromatographic method to two commercial products is demonstrated.

  8. AOT Retrieval Procedure for Distributed Measurements With Low-Cost Sun Photometers

    Science.gov (United States)

    Toledo, F.; Garrido, C.; Díaz, M.; Rondanelli, R.; Jorquera, S.; Valdivieso, P.

    2018-01-01

    We propose a new application of inexpensive light-emitting diode (LED)-based Sun photometers, consisting of measuring the aerosol optical thickness (AOT) with high resolution within metropolitan scales. Previously, these instruments have been used at continental scales by the GLOBE program, but this extension is already covered by more expensive and higher-precision instruments of the AERONET global network. For this we built an open source two-channeled LED-based Sun photometer based on previous developments, with improvements in the hardware, software, and modifications on the calibration procedure. Among these we highlight the use of MODTRAN to characterize the effect introduced by using LED sensors in the AOT retrieval, an open design available for the scientific community and a calibration procedure that takes advantage of a CIMEL Sun photometer located within the city, enables the intercomparison of several LED Sun photometers with a common reference. We estimated the root-mean-square error in the AOT retrieved by the prototypes as 0.006 at the 564 nm and 0.009 at the 408 nm. This error is way under the magnitude of the AOT daily cycle variability measured by us in our campaigns, even for distances closer than 15 km. In addition to inner city campaigns, we also show aerosol-tracing applications by measuring AOT variations from the city of Santiago to the Andes glaciers. Measuring AOT at high spatial resolution in urban areas can improve our understanding of urban scale aerosol circulation, providing information for solar energy planning, health policies, and climatological studies, among others.

  9. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis

    NARCIS (Netherlands)

    Daniilidis, Alexander; Vermaas, David; Herber, Rien; Nijmeijer, Dorothea C.

    2014-01-01

    Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power

  10. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Vermaas, David A.; Herber, Rien; Nijmeijer, Kitty

    Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power

  11. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation

    DEFF Research Database (Denmark)

    Vingerhoeds, Monique H.; Nijenhuis-de Vries, Mariska A.; Ruepert, Nienke

    2016-01-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from...

  12. Continuous Flow Aquatic Toxicity Testing Using Dilution Water by Reverse Osmosis

    Science.gov (United States)

    1979-04-01

    AMRL-TR-79-25 CONTINUOUS FLOW AQUATIC TOXICOLOGY TESTING USING DILUTION WATER BY REVERSE OSMOSIS J. W. FISHtER R. C INMAN M. A. HAGERMAN C. B. HARRAH...showing construction design. 8 DISCUSSION This system was designed for limited xise in an aquatic toxicology laboratory. The floor space and water quality

  13. Development of an optochemical sensor for continuous reversible determination of nitrate in drinking water and ground water

    International Nuclear Information System (INIS)

    Lumpp, R.

    1993-09-01

    An optochemical sensor has been developed for continuous reversible determination of nitrate in drinking water and ground water. The sensor is based on the combination of the anion selective liquid ion exchanger Ni(II[bathophenanthroline] 3 2+ with phenolsulfonephtalein dyes in a polyvinylchloride membrane. (orig.) [de

  14. Reverse capillary flow of condensed water through aligned multiwalled carbon nanotubes.

    Science.gov (United States)

    Yun, Jongju; Jeon, Wonjae; Alam Khan, Fakhre; Lee, Jinkee; Baik, Seunghyun

    2015-06-12

    Molecular transport through nanopores has recently received considerable attention as a result of advances in nanofabrication and nanomaterial synthesis technologies. Surprisingly, water transport investigations through carbon nanochannels resulted in two contradicting observations: extremely fast transport or rejection of water molecules. In this paper, we elucidate the mechanism of impeded water vapor transport through the interstitial space of aligned multiwalled carbon nanotubes (aligned-MWCNTs)--capillary condensation, agglomeration, reverse capillary flow, and removal by superhydrophobicity at the tip of the nanotubes. The origin of separation comes from the water's phase change from gas to liquid, followed by reverse capillary flow. First, the saturation water vapor pressure is decreased in a confined space, which is favorable for the phase change of incoming water vapor into liquid drops. Once continuous water meniscus is formed between the nanotubes by the adsoprtion and agglomeration of water molecules, a high reverse Laplace pressure is induced in the mushroom-shaped liquid meniscus at the entry region of the aligned-MWCNTs. The reverse Laplace pressure can be significantly enhanced by decreasing the pore size. Finally, the droplets pushed backward by the reverse Laplace pressure can be removed by superhydrophobicity at the tip of the aligned-MWCNTs. The analytical analysis was also supported by experiments carried out using 4 mm-long aligned-MWCNTs with different intertube distances. The water rejection rate and the separation factor increased as the intertube distance decreased, resulting in 90% and 10, respectively, at an intertube distance of 4 nm. This mechanism and nanotube membrane may be useful for energy-efficient water vapor separation and dehumidification.

  15. Biochemical synthesis of gold and zinc nanoparticles in reverse micelles

    Science.gov (United States)

    Egorova, E. M.

    2010-04-01

    Gold and zinc nanoparticles were obtained in AOT reverse micelles in isooctane by reduction of the corresponding metal ions by the natural pigment quercetin (the biochemical synthesis technique). Gold and zinc ions were introduced into the micellar solution of quercetin in the form of aqueous solutions, HAuCl4 and [Zn(NH3)4]SO4, to the water to AOT molar ratios 1-3 and 3-4, respectively. The process of nanoparticle formation was investigated by spectrophotometry. Nanoparticle size and shape were determined by transmission electron microscopy. The data obtained allow to conclude that there are two steps in metal ion-quercetin interaction: (1) complex formation, and (2) complex dissociation with subsequent formation of nanoparticles and a second product, presumably oxidized quercetin. Gold nanoparticles were found to be of various shapes (spheres, hexahedrons, triangles, and cylinders) and sizes, mainly in the 10-20 nm range; zinc nanoparticles are chiefly spherical and ˜5 nm in size. In both cases, the nanoparticles are stable in the air in micellar solution over long periods of time (from a several months to a several years).

  16. technical and economic considerations of water desalination by reverse osmosis

    International Nuclear Information System (INIS)

    Yossef, Y.A.A.

    2006-01-01

    product flow rate and salt rejection are the key performance parameters. they are mainly influenced by variable parameters such as feed pressure, feed temperature, and feed water salt concentration. the effect of feed temperature on membrane performance is the most important parameter. seawater membrane FT30 SW-2540 included in a test rig is used to perform this study. the membrane water permeability coefficient (K w ) is determined experimentally by the test rig measured parameters and compared with the obtained projected manufacturer system analysis program (ROSA) for the same operating conditions. besides, it correlated and presented with the different operating parameters . the results showed that the permeate flux increases by increasing the feed pressure and/or increase the feed temperature. for the same system productivity, the increase in the feed water temperature leads to reduce the applied feed pressure. for such case the results also showed that; an increase in the feed water temperature by one degree centigrade is associated with a reduction in applied feed pressure by 0.7% to 1.35%, a decrease in the membrane salt rejection of almost 1.4%, an increase of permeates flux from 1.11% to 2.58%, and a decrease of the specific energy consumption by an average value of 0.29 kw/1000 gal, according to the feed salt concentration and feed pressure. moreover, it was showed that an increase in feed salt concentration of one gram per liter decreases permeate flux by an average value of 2.41% to 2.8%, decreases the membrane salt rejection percentage by 0.06 to 0.16, decreases the membrane water permeability coefficient by 1.23%, and increases the specific energy consumption by an average value of 5.073 KW/1000 gal, according to the feed temperature. in addition, the membrane FT30 SW-2540 water permeability coefficient is experimentally determined, compared with manufacturer, and correlated as a function of feed temperature, and feed - brine osmotic pressure

  17. Membrane Mineral Scaling and its Mitigation in Reverse Osmosis Desalination of Brackish Water

    OpenAIRE

    Thompson, John Francis

    2017-01-01

    The treatment and desalination of inland water via reverse osmosis (RO) technology is gaining momentum for upgrading brackish groundwater and developing supplemental fresh water for various regions. In brackish RO plants, high water recovery is critical in order to minimize the volume of residual RO concentrate (brine), given the economic and environmental challenges of concentrate management. However, high recovery may be limited by mineral salt scaling resulting from supersaturation of spar...

  18. Specific features of emergency processes associated with water leacs into sodium in a reverse steam generator

    International Nuclear Information System (INIS)

    Sroelov, V.S.; Nikol'skij, R.V.; Chernobrovkin, Yu.V.; Privalov, Yu.V.; Bocharin, P.P.; Shtynda, Yu.E.

    1986-01-01

    Experimental and theoretical data characterizing the development of emergency processes arising in the course of water leaks into sodium in a reverse steam generator (sodium in tubes, water in intertube space) are considered. The results of calculations performed for BOR-60 reactor steam generator at initial leaks of 0.01 and 0.55 g/s are presented. It is shown that in the reverse steam generator the development of accident occurs much slower than in steam generators of traditional design. At same stage of accident sodium is displaced from the damaged tube and as a result the destruction of tube material discontinues. The conclusion is drawn that by the development of emergency protection systems for reverse steam generator the requirements for sensitivity and fast response of leak detectors could be reduced

  19. Application of reverse osmosis membrane for separation of toxic metal in water

    International Nuclear Information System (INIS)

    Syahril Ahmad

    2010-01-01

    Experimental separation of toxic metal in water has been done using reverse osmosis membrane made from composite material. Experiment was done by simulation in which metals that will be observed solved with water in different concentration and then used as feed solution in reverse osmosis process. Metals observed were Cr 6+ , Mn 2+ and Pb 2+ and reverse osmosis process was done at pressure of 40 Bar for all metals. Experiment result showed that value of feed solution concentration would affect flux and coefficient rejection of membrane. Composite membrane with polyacrylamide as active layer of membrane can reject metals observed with value of rejection coefficient more than 90%, except for Mn 2+ metal that have concentration 250 ppm and 500 ppm. (author)

  20. Physical modeling of stabilization water processes of reverse cooling system the thermal power plant

    Science.gov (United States)

    Vlasov, S. M.; Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Vinogradov, A. S.

    2017-11-01

    The system of reverse cooling is an integral part of combined heat and power plant and, respectively, demands constant control and regulation of structure and the number of deposits from circulating water for maintenance of the steady mode of equipment. Insufficient circulating water processing turns into a big internal problem for combined heat and power plant work and is a source of heat exchange, surfaces pollution sludge formation in device channels, equipment corrosion, biological fouling, biosludge formation, etc. Depending on the reverse cooling functioning at combined heat and power plant various problems demanding accurately differentiated approach to the decision are identified. Various criteria allowing to define existence and intensity of deposits and ways of fight against the formed deposits and equipment corrosion are offered. For each type of reverse cooling system the possible reasons of deposits formation on the heatpower equipment are analyzed and physical and chemical methods for circulating water stabilization are described. These methods safe water treatment installation modes in a case of the interfaced reverse cooling system and provide the minimum quantity of drains in a case with not interfaced system.

  1. Synthesis and agglomeration of gold nanoparticles in reverse micelles

    Science.gov (United States)

    Herrera, Adriana P.; Resto, Oscar; Briano, Julio G.; Rinaldi, Carlos

    2005-07-01

    Reverse micelles prepared in the system water, sodium bis-(2-ethylhexyl) sulfoccinate (AOT), and isooctane were investigated as a templating system for the production of gold nanoparticles from Au(III) and the reducing agent sulfite. A core-shell Mie model was used to describe the optical properties of gold nanoparticles in the reverse micelles. Dynamic light scattering of gold colloids in aqueous media and in reverse micelle solution indicated agglomeration of micelles containing particles. This was verified theoretically with an analysis of the total interaction energy between pairs of particles as a function of particle size. The analysis indicated that particles larger than about 8 nm in diameter should reversibly flocculate. Transmission electron microscopy measurements of gold nanoparticles produced in our reverse micelles showed diameters of 8-10 nm. Evidence of cluster formation was also observed. Time-correlated UV-vis absorption measurements showed a red shift for the peak wavelength. This was interpreted as the result of multiple scattering and plasmon interaction between particles due to agglomeration of micelles with particles larger than 8 nm.

  2. Rejection of Emerging Organic Contaminants by Nanofiltration and Reverse Osmosis Membranes : Effects of Fouling, Modelling and Water Reuse

    NARCIS (Netherlands)

    Yangali Quintanilla, V.

    2010-01-01

    The book contains a description of the presence of micropollutants (medicines, hormones, pesticides) in surface water and shows that conventional water treatment poorly removes micropollutants. Nanofiltration and reverse osmosis are more appropriate technologies; however removals can vary depending

  3. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.

    Science.gov (United States)

    Dolar, Davor; Vuković, Ana; Asperger, Danijela; Kosutić, Kresimir

    2011-01-01

    This study explored the removal of five veterinary pharmaceuticals (VPs) (sulfamethoxazole (SMETOX), trimethoprim (TMP), ciprofloxacin (CIPRO), dexamethasone (DEXA) and febantel (FEBA)) from different water matrices (Milli-Q water, model water, tap water and real pharmaceutical wastewater using four types of nanofiltration (NF) membranes (NF90, NF270, NF and HL) and two reverse osmosis (RO) membranes (LFC-1 and XLE). All VPs were added to different water matrices at a concentration of 10 mg/L. Rejections of VPs and water flux were measured. The rejection increased with increase of molecular weight. The highest rejections were obtained with RO membranes (LFC-1, XLE) and tight NF (NF90) membrane. In general, the rejection of VPs was higher in model water and tap water than in Milli-Q water, but the water flux was lower. This was mainly explained by ion adsorption inside the membranes pores. Narrower pore size counteracted the effect of presence of low concentration of natural organic matter (NOM) in tap water. The NOM was assumed to enhance the adsorption of VPs onto membrane surface, increased the size exclusion and electrostatic repulsion also appeared during the transport. Investigated water matrices had influence on water flux decline due to their complexity.

  4. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    Science.gov (United States)

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sulfonsuccinate (AOT Capped Pure and Mn-Doped CdS Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. Venkatesan

    2012-01-01

    Full Text Available CdS nanoparticles and thin films are well known for their excellent semiconducting properties. When transition metal ions are doped into the CdS, it exhibits magnetic properties in addition to semiconducting properties and they are termed as dilute magnetic semiconductors (DMSs. In this paper, we discuss the preparation of sodium bis(2-ethylhexyl sulfonsuccinate (AOT capped CdS nanoparticles and thin films doped with magnetic impurity Mn. Sodium bis(2-ethulexyl sulfonsuccinate (AOT, capping agent promotes the uniform formation of nanoparticles. Optical characterizations are made using the UV-Vis spectrometer, PL, and FTIR. XRD shows the hexagonal structure of the CdS. SEM images and EDS measurements were made for the thin films. EPR shows the clear hyperfine lines corresponding to Mn2+ ion in the CdS nanoparticles.

  6. Reverse self-assemblies based on amphiphilic polyphosphazenes for encapsulation of water-soluble molecules

    Science.gov (United States)

    Qiu, Liyan; Zhang, Jianxiang; Yan, Meiqiu; Jin, Yi; Zhu, Kangjie

    2007-11-01

    A novel series of amphiphilic polyphosphazenes (PNIPAm/AA-PPP) containing hydrophilic oligo-(N-isopropylacrylamide) (oligo-NIPAm) and various hydrophobic aliphatic amines as co-substitutes was synthesized via a two-step substitution reaction. The extraction and solubilization of water-soluble substances such as fluorescein sodium and trypan blue from an aqueous phase into the chloroform phase were supposed to result from the formation of polyphosphazene reverse self-assemblies in the organic phase. A field emission scanning electronic microscope was adopted to characterize the morphology of reverse assemblies in chloroform. Additionally, a significant improvement of encapsulation and release profiles of water-soluble substances was found for poly(lactic-co-glycolic acid) (PLGA) microparticles in the presence of amphiphilic copolymers, which was associated with the chemical structure of copolymers as well as the content of copolymer in the microparticles.

  7. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    S. Mazloomi ، R. Nabizadeh ، S. Nasseri ، K. Naddafi ، S. Nazmara ، A. H. Mahvi

    2009-10-01

    Full Text Available The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module was used. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decreased and with declining removal of EC, the removal of chloroform declined too. In this research, at the worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

  8. Evaluation of the use of reverse osmosis to eliminate natural radionuclides from water samples.

    Science.gov (United States)

    Nieto, Antonio; Palomo, Marta; Ruana, Josep; Peñalver, Alejandra; Aguilar, Carme; Borrull, Francesc

    2013-12-01

    The objective of drinking water treatment plants (DWTP) is to supply the population with tap water that is in optimal condition and in compliance with water quality regulations. In the DWTP of L'Ampolla (Tarragona, Spain), slightly high values of gross alpha activity and the amount of salts in the raw water have been observed. Conventional treatment has reduced these levels only minimally. This study tested a tertiary treatment based on reverse osmosis is tested in an industrial pilot plant (240 m3/day) The efficiency of this pilot plant to reduce the gross alpha and beta activities and the activity of some individual radioisotopes (U(238), U(234), U(235) and Ra(226)) was tested. Results showed that the elimination of alpha emitters was greater than 90%, whereas the elimination of beta emitters was about 35%. Overall, the data provided evidence that the pilot plant is effective for removing different radionuclides that can be present in the incoming water treated. Therefore, tertiary treatment based on reverse osmosis has a positive effect in water quality.

  9. Performance Study of Reverse Osmosis Plants for Water Desalination in Bandar-Lengeh, Iran

    Directory of Open Access Journals (Sweden)

    Alireza Zirakrad

    2013-04-01

    Full Text Available Introduction: Reverse osmosis (RO is best known for its use in desalination (removing the salt from seawater to get fresh water, but since the early 1970s it has also been used to purify fresh water for medical, industrial, and domestic applications. The aim of this research was the performance study of reverse osmosis plants for water desalination in Bandar-Lengeh, Iran. Materials and Methods: In this study the concentrations of a number of physical, chemical and biological quality parameters in raw and treated water of Bandar-Lengeh water Desalination Plants were determined and Performance of RO plants for seawater and costal groundwater desalination were studied. There are two desalination plants in Bandar-Lengeh. Water from these plants are used for municipal supply. Total production capacity of the two RO desalination plants is 8000 m3/d. Results: The results of this study showed average values of TDS, Sodium, Chloride, Sulfate, diatomaceous and Nematodes in seawater were 37749 mg/l; 9715 mg/l; 22020 mg/l; 3067 mg/l; 24337 N/100ml and 5 N/100ml and in treated water were 1233 mg/l; 436 mg/l; 710 mg/l; 58 mg/l, 0 N/100ml and 0 N/100ml, respectively. Also the results showed average values of TDS, Sodium, Chloride and Sulfate in coastal ground water were 37131 mg/l; 9303 mg/l; 21072 mg/l; 3745 mg/l; and in treated water were 687mg/l; 253 mg/l; 389 mg/l; 19 mg/l, respectively. Conclusion: The results showed the quality of feed water and pretreatment plays an extremely important role in operational problems such as fouling of RO systems.

  10. Data on daily fluoride intake based on drinking water consumption prepared by household desalinators working by reverse osmosis process

    OpenAIRE

    Vahid Noroozi Karbasdehi; Sina Dobaradaran; Abdolhamid Esmaili; Roghayeh Mirahmadi; Fatemeh Faraji Ghasemi; Mozhgan Keshtkar

    2016-01-01

    In this data article, we evaluated the daily fluoride contents in 20 household desalinators working by reverse osmosis (RO)1 Reverse Osmosis. process in Bushehr, Iran. The concentration levels of fluoride in inlet and outlet waters were determined by the standard SPADNS method using a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK). The fluoride content in outlet waters were compared with EPA and WHO guidelines for drinking water.

  11. Data on daily fluoride intake based on drinking water consumption prepared by household desalinators working by reverse osmosis process

    Directory of Open Access Journals (Sweden)

    Vahid Noroozi Karbasdehi

    2016-09-01

    Full Text Available In this data article, we evaluated the daily fluoride contents in 20 household desalinators working by reverse osmosis (RO1 Reverse Osmosis. process in Bushehr, Iran. The concentration levels of fluoride in inlet and outlet waters were determined by the standard SPADNS method using a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK. The fluoride content in outlet waters were compared with EPA and WHO guidelines for drinking water.

  12. 10 years of make-up water treatment with integrated reverse osmosis at Grosskraftwerk Mannheim

    International Nuclear Information System (INIS)

    Spindler, K.; Bloechl, H.; Bursik, A.

    1993-01-01

    Since 1982, at Grosskraftwerk Mannheim, a make-up water treatment in which three reverse osmosis plants are integrated, has been operating. The original high-pressure hollow fibre module of these plants has been replaced by low-pressure coil modules. The reasons for the change in system are described in the paper. In the low-pressure plant, coil modules have been installed by several manufacturers. The paper reports on experience with the low-pressure elements. The experience gained has been streamed into the planning proposals for the new make-up water treatment plant. (orig.) [de

  13. Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms

    Science.gov (United States)

    Shipp, Jessie; Gould, Ian R.; Herckes, Pierre; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.

    2013-03-01

    Many transformation reactions involving hydrocarbons occur in the presence of H2O in hydrothermal systems and deep sedimentary systems. We investigate these reactions using laboratory-based organic chemistry experiments at high temperature and pressure (300 °C and 100 MPa). Organic functional group transformation reactions using model organic compounds based on cyclohexane with one or two methyl groups provided regio- and stereochemical markers that yield information about reversibility and reaction mechanisms. We found rapidly reversible interconversion between alkanes, alkenes, dienes, alcohols, ketones, and enones. The alkane-to-ketone reactions were not only completely reversible, but also exhibited such extensive reversibility that any of the functional groups along the reaction path (alcohol, ketone, and even the diene) could be used as the reactant and form all the other groups as products. There was also a propensity for these ring-based structures to dehydrogenate; presumably from the alkene, through a diene, to an aromatic ring. The product suites provide strong evidence that water behaved as a reactant and the various functional groups showed differing degrees of reactivity. Mechanistically-revealing products indicated reaction mechanisms that involve carbon-centered cation intermediates. This work therefore demonstrates that a wide range of organic compound types can be generated by abiotic reactions at hydrothermal conditions.

  14. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5 kWh/m3) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4 kWh/m3), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m2-h is needed to compete with water reuse using UF-LPRO, and 5.5 L/m2-h is needed to recover and desalinate water at less cost than SWRO. © 2011 Elsevier B.V.

  15. Reverse micelles as suitable microreactor for increased biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Anjana [Nanotechnology and Molecular Biology Laboratory, Centre of Biotechnology, University of Allahabad, Allahabad 211002 (India); Pandey, Ashutosh [Centre of Energy Studies, MNNIT, Allahabad 211004 (India)

    2008-01-15

    Reverse micelles have been shown to act as efficient microreactors for enzymic reactions and whole cell entrapment in organic (non-aqueous) media wherein the reactants are protected from denaturation by the surrounding organic solvent. These micelles are thermodynamically stable, micrometer sized water droplets dispersed in an organic phase by a surfactant. It has been observed that when whole cells of photosynthetic bacteria (Rhodopseudomonas sphaeroides or Rhodobacter sphaeroides 2.4.1) are entrapped inside these reverse micelles, the H{sub 2} production enhanced from 25 to 35 folds. That is, 1.71mmol(mgprotein){sup -1}h{sup -1} in case of R. sphaeroides which is 25 fold higher in benzene-sodium lauryl sulfate reverse micelles. Whereas, in case of R. sphaeroides 2.4.1 the H{sub 2} production was increased by 35 fold within AOT-isooctane reverse micelles i.e. 11.5mmol(mgprotein){sup -1}h{sup -1}. The observations indicate that the entrapment of whole cells of microbes within reverse micelles provides a novel and efficient technique to produce hydrogen by the inexhaustible biological route. The two microorganisms R. sphaeroides 2.4.1 (a photosynthetic bacteria) and Citrobacter Y19 (a facultative anaerobic bacteria) together are also entrapped within AOT-isooctane and H{sub 2} production was measured i.e. 69mmol(mgprotein){sup -1}h{sup -1}. The nitrogenase enzyme responsible for hydrogen production by R. sphaeroides/R. sphaeroides 2.4.1 cells is oxygen sensitive, and very well protected within reverse micelles by the use of combined approach of two cells (R. sphaeroides 2.4.1 and Citrobacter Y19). In this case glucose present in the medium of Citrobacter Y19 serves double roles in enhancing the sustained production rate of hydrogen. Firstly, it quenches the free O{sub 2}liberated as a side product of reaction catalyzed by nitrogenase, which is O{sub 2} labile. Secondly, organic acid produced by this reaction is utilized by the Citrobacter Y19 as organic substrate in

  16. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  17. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia

    2016-07-14

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  18. Flux of gases across the air-water interface studied by reversed-flow gas chromatography.

    Science.gov (United States)

    Rashid, K A; Gavril, D; Katsanos, N A; Karaiskakis, G

    2001-11-16

    In the present work the reversed-flow gas chromatographic technique was applied for the study of flux of gases across the air-water interface. The model system was vinyl chloride-water, which is of great significance in food and environmental chemistry. Using suitable mathematical analysis, equations were derived by means of which the following physicochemical quantities were calculated: diffusion coefficient of vinyl chloride (VC) into water, partition coefficient of VC between the water (at the interface and the bulk) and the carrier gas nitrogen, overall mass transfer coefficients of VC in the gas (nitrogen) and the liquid (water), gas and liquid film transfer coefficients of VC, gas and liquid phase resistances for the transfer of VC into the water, and finally the thickness of the stagnant film in the liquid phase, according to the two-film theory of Whitman. From the variation of the above parameters with temperature, as well as the volume and the free surface area of the water, useful conclusions concerning the mechanism for the transfer of VC into water were extracted. These are discussed in comparison with the same parameters calculated from empirical equations or determined experimentally by other techniques.

  19. TR-ESR Investigation on Reaction of Vitamin C with Excited Triplet of 9,10-phenanthrenequinone in Reversed Micelle Solutions

    Science.gov (United States)

    Xu, Xin-sheng; Shi, Lei; Liu, Yi; Ji, Xue-han; Cui, Zhi-feng

    2011-04-01

    Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3PAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3PAQ* by VC is close to the diffusion-controlled value of 1.41 × 108 L/(mol ·s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG-H2O reversed micelle solutions, 3PAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3PAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3PAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically induced dynamic electron polarization of As.- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3PAQ* from VC.

  20. Reverse Osmosis Filter Use and High Arsenic Levels in Private Well Water

    Science.gov (United States)

    George, Christine M.; Smith, Allan H.; Kalman, David A.; Steinmaus, Craig M.

    2013-01-01

    Inorganic arsenic causes cancer, and millions of people worldwide are exposed to arsenic-contaminated water. Regulatory standards for arsenic levels in drinking water generally do not apply to private domestic wells. Reverse osmosis (RO) units commonly are used by well owners to reduce arsenic concentrations, but may not always be effective. In a survey of 102 homes in Nevada, 19 used RO devices. Pre- and post-RO filtration arsenic concentrations averaged 443 μg/l and 87 μg/l, respectively. The average absolute and percent reductions in arsenic concentrations after filtration were 356 μg/l and 79%, respectively. Postfiltration concentrations were higher than 10 μg/l in 10 homes and higher than 100 μg/l in 4 homes. These findings provide evidence that RO filters do not guarantee safe drinking water and, despite regulatory standards, some people continue to be exposed to very high arsenic concentrations. PMID:17867571

  1. Subtleties of catanionic surfactant reverse micelle assemblies revealed by a fluorescent molecular probe

    Science.gov (United States)

    Villa, Cristian C.; Silber, Juana J.; Darío Falcone, R.; Mariano Correa, N.

    2017-12-01

    In this work, the absorption and emission behavior of the cationic hemicyanine trans-4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (HC) in reverse micelles (RMs) formed by the catanionic surfactants benzyl-n-hexadecyldimethylammonium-1,4-bis-2-ethylhexylsulfosuccinate (AOT-BHD) and cetyltrimethylammonium-1,4-bis-2-ethylhexylsulfosuccinate (AOT-CTA) have been investigated. Our results show that the spectroscopic behavior of HC changes when the dye is dissolved in AOT-BHD or in AOT-CTA RMs. While HC undergoes an intramolecular charge-transfer process upon excitation in AOT-CTA RMs, in AOT-BHD RMs this process is inhibited due to a specific interaction between HC and the polar head group of the BHD+ cation. This implies that the chemical structure of CTA+ and BHD+ cations has a large impact on the excited stated from which HC emission occurs. Additionally, the structural difference between the two cations impacts on the water–RM interface interaction, which provides a way of controlling the solvation process in these RMs. Furthermore, differences in the interfacial fluidity between the two catanionic RMs is observed, a result that is particularly interesting with regard to these systems being used as nanoreactors.

  2. Particle count monitoring of reverse osmosis water treatment for removal of low-level radionuclides

    International Nuclear Information System (INIS)

    Moritz, E.J.; Hoffman, C.R.; Hergert, T.R.

    1995-01-01

    Laser diode particle counting technology and analytical measurements were used to evaluate a pilot-scale reverse osmosis (RO) water treatment system for removal of particulate matter and sub-picocurie low-level radionuclides. Stormwater mixed with Waste Water Treatment Plant (WWTP) effluent from the Rocky Flats Environmental Technology Site (RFETS), formerly a Department of Energy (DOE) nuclear weapons production facility, were treated. No chemical pretreatment of the water was utilized during this study. The treatment system was staged as follows: multimedia filtration, granular activated carbon adsorption, hollow tube ultrafiltration, and reverse osmosis membrane filtration. Various recovery rates and two RO membrane models were tested. Analytical measurements included total suspended solids (TSS), total dissolved solids (TDS), gross alpha (α) and gross beta (β) activity, uranium isotopes 233/234 U and 238 U, plutonium 239/240 Pu, and americium 241 Am. Particle measurement between 1--150 microns (μ) included differential particle counts (DPC), and total particle counts (TPC) before and after treatment at various sampling points throughout the test. Performance testing showed this treatment system produced a high quality effluent in clarity and purity. Compared to raw water levels, TSS was reduced to below detection of 5 milligrams per liter (mg/L) and TDS reduced by 98%. Gross α was essentially removed 100%, and gross β was reduced an average of 94%. Uranium activity was reduced by 99%. TPC between 1-150μ were reduced by an average 99.8% to less than 1,000 counts per milliliter (mL), similar in purity to a good drinking water treatment plant. Raw water levels of 239/240 Pu and 241 Am were below reliable quantitation limits and thus no removal efficiencies could be determined for these species

  3. Reverse Osmosis

    Indian Academy of Sciences (India)

    ment of Civil Engineering and is presently the. Chairman of Center for. Sustainable Technologies,. Indian Institute of Science,. Bangalore. His research areas include, unsaturated soil behaviour, hazardous waste management, water quality and remediation of contaminated water. Keywords. Osmosis, reverse osmosis,.

  4. Proton transfer in ionic and neutral reverse micelles.

    Science.gov (United States)

    Lawler, Christian; Fayer, Michael D

    2015-05-14

    Proton-transfer kinetics in both ionic and neutral reverse micelles were studied by time-correlated single-photon counting investigations of the fluorescent photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS). Orientational dynamics of dissolved probe molecules in the water pools of the reverse micelles were also investigated by time-dependent fluorescence anisotropy measurements of MPTS, the methoxy derivative of HPTS. These experiments were compared to the same experiments in bulk water. It was found that in ionic reverse micelles (surfactant Aerosol OT, AOT), orientational motion (fluorescence anisotropy decay) of MPTS was relatively unhindered, consistent with MPTS being located in the water core of the reverse micelle away from the water-surfactant interface. In nonionic reverse micelles (surfactant Igepal CO-520, Igepal), however, orientational anisotropy displayed a slow multiexponential decay consistent with wobbling-in-a-cone behavior, indicating MPTS is located at the water-surfactant interface. HPTS proton transfer in ionic reverse micelles followed kinetics qualitatively like those in bulk water, albeit slower, with the long-time power law time dependence associated with recombination of the proton with the dissociated photoacid, suggesting a modified diffusion-controlled process. However, the power law exponents in the ionic reverse micelles are smaller (∼ -0.55) than that in bulk water (-1.1). In neutral reverse micelles, proton-transfer kinetics did not show discernible power law behavior and were best represented by a two-component model with one relatively waterlike population and a population with a faster fluorescence lifetime and negligible proton transfer. We explain the Igepal results on the basis of close association between the probe and the neutral water-surfactant interface, with the probe experiencing a distribution of more and less waterlike environments. In addition, the observation in bulk water of a power law t(-1.1) for diffusion

  5. Response surface methodology and optimization of solar powered reverse osmosis plant for brackish water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Khayet, M.; Essalhi, M.; Cojocaru, C. [Univ. Complutense of Madrid, Madrid (Spain). Dept. of Applied Physics; Armenta-Deu, C. [Univ. Complutense of Madrid, Madrid (Spain). Dept. of Atomic Molecular and Nuclear Physics; Hilal, N. [Nottingham Univ., Nottingham (United Kingdom). Faculty of Engineering, Centre for Clear Water Technologies

    2010-07-01

    The costs and energy consumption associated with reverse osmosis (RO) desalination have decreased significantly in recent years due to the development of novel membranes and modules with high RO performance. In addition, adequate pretreatment processes are now used with along with energy recovery devices and renewable energy systems. Response surface methodology (RSM) was used in this study to develop a predictive model that characterized the general response of a brackish water reverse osmosis (BWRO) plant to determine the optimum operating conditions and the RO specific performance index. The RSM methodology allowed factors to be simultaneously varied between minimum and maximum values. The significance of the RSM polynomial model was determined by analysis of variance (ANOVA). The predicted and experimental responses of the BWRO plant were in good agreement. Optimization was carried out using canonical analysis and the step adjusting gradient method to ensure high quantity and quality potable water production with low energy consumption. The input variables were the feed temperature, the feed flow-rate and the feed pressure. The BWRO plant was powered with photovoltaic panels and a solar thermal collector. For a brackish water of 6 g/L salt concentration, the optimized BWRO plant guaranteed a production of 0.2 m{sup 3}/day with an energy consumption less than 1.3 kWh/m{sup 3}. 6 refs., 1 tab., 2 figs.

  6. Fluorescence resonance energy transfer in AOT/4-chlorophenol/m-xylene organogels

    International Nuclear Information System (INIS)

    Dandapat, Manika; Mandal, Debabrata

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) between donor coumarins (C102 and C153) and acceptor Rhodamine 6G were studied in AOT/4-chlorophenol/m-xylene organogels. The gel comprises a three-dimensional network of fiber bundles trapping the m-xylene solvent. Each fiber is an aggregate of several strands, and each strand consists of a central columnar stack of the phenols, surrounded by AOT headgroups. Our acceptor is ionic so that it was concentrated near the polar center of the strand, while the neutral donors were likely distributed over a wider region. With C153 as donor, clear evidence of FRET (time-constant~100 ps) was found, which indicated that the donor and acceptor may reside in neighboring strands within the same fiber. However, with C102 as donor, FRET probably occurred over an ultrashort, sub-picosecond time-scale suggesting that the donor and acceptor in this case resided in close vicinity. Thus, C102 tends to localize near the polar centre of the strands, compared to the more hydrophobic C153, which prefers to occupy the relatively non-polar peripheral regions of the strands and fibers. - Highlights: • FRET between coumarin donors and Rhodamine 6G acceptor studied in AOT organogels. • With Coumarin 153 donor, a ~100 ps FRET component detected in both donor and acceptor fluorescence. • With Coumarin 102 donor, FRET component too short to be detected with a time-resolution of ~70 ps. • The FRET rates reveal crucial differences in donor–acceptor distances for the two coumarin donors

  7. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    OpenAIRE

    Bender,J. P.; Junges,A.; Franceschi,E.; Corazza,F. C.; Dariva,C.; Oliveira,J. Vladimir; Corazza,M. L.

    2008-01-01

    This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE), liquid-liquid (L...

  8. Use of water processed by reverse osmosis For vapor generation in tobacco industry

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Klimeck Gouvea

    2012-06-01

    Full Text Available This article presents a study due to the technical use of reverse osmosis to treat the boiler water for steam generation in a plant of tobacco processing in Santa Catarina, Brazil. The monitoring was conducted between the years 2006 to 2008, presenting the results concerning the improvement of water quality with emphasis on environmental and financial gains. Water quality can be observed by the reduction of 90% in silica content and 100% hardness, leading to a reduction of incrustation and corrosion of the system. Moreover, a reduction in the discharges water from the boiler volume reduced the water consumption by approximately 6,000 m3/year and also the consumption of chemicals used in wastewater treatment plant, with a reduction of 32.76 m3/day of effluents to treatment. The reducing of energy with natural gas for water heating replacement was almost 900,000 m3/year (19.45%, because of increased in heat exchange efficiency. The reducing in the CO2 emissions was in order of 1215,65 t/year. Finally, based on the achieved results obtained, can be possible to assume a reducing costs of production as a whole.

  9. Pseudomonas-related populations associated with reverse osmosis in drinking water treatment.

    Science.gov (United States)

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2016-11-01

    Reverse osmosis membrane filtration technology (RO) is used to treat drinking water. After RO treatment, bacterial growth is still observed in water. However, it is not clear whether those microorganisms belong to species that can pose a health risk, such as Pseudomonas spp. The goal of this study is to characterize the bacterial isolates from a medium that is selective for Pseudomonas and Aeromonas which were present in the water fraction before and after the RO. To this end, isolates were recovered over two years and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. They were then biochemically phenotyped and the population similarity indexes were calculated. The isolates were analysed for their capacity to form biofilms in vitro and antimicrobial susceptibility. There were significant differences between the microbial populations in water before and after RO. Furthermore, the structures of the populations analysed at the same sampling point were similar in different sampling campaigns. Some of the isolates had the capacity to form a biofilm and showed resistance to different antibiotics. A successful level filtration via RO and subsequent recolonization of the membrane with different species from those in the feed water was found. Pseudomonas aeruginosa was not recovered from among the isolates. This study increases the knowledge on the microorganisms present in water after RO treatment, with focus in one of the genus causing problems in RO systems associated with human health risk, Pseudomonas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Performances of nano filtration (NF) and reverse osmosis (RO) in textile industry waste water treatment

    International Nuclear Information System (INIS)

    Ellouze, E.; Souissi, S.; Ben Amar, R.; Ben Salah, A.; Jrad, A.

    2009-01-01

    Textile industry process (dyeing, bleaching, printing and finishing) require a high-water consumption generating high amounts of water. Reactive dyeing of 1Kg of cotton requires about 150 Litres of water and 40g reactive dye resulting in a large volume of strongly coloured effluents. This fact in combination with the current water scarcity makes necessary textile waste water reuse. In this paper experimental results obtained from the treatment by different membranes Micro filtration (MF), Nano filtration (NF) and Reverse Osmosis (RO) of Sitex industry waste water pretreated by biological activated sludge are presented and compared. The results obtained from direct Nano filtration performed at different transmembrane pressures (8 - 1 m - 2 for a Volumetric Concentration Factor (VCF) of 4 and that the osmotic pressure π= 4Bars. A high quality of treated effluent in term of colour removal and desalination was obtained for a VCF of 2: salinity retention rate (RR) 57 pour cent and discoloration almost 100 pour cent at pressure of 12 bar. While, the permeate flux obtained using the combination MF/RO at a different pressures 25 - 1 m- 2 for a VCF of 6 indicating an important fouling. In this case, the osmotic pressure varied from 6 to 28 bars. The optimum salinity and colour retention rate (RR) were 86 pour cent and 100 pour cent respectively obtained at a VCF of 2.

  11. Biological support media influence the bacterial biofouling community in reverse osmosis water reclamation demonstration plants.

    Science.gov (United States)

    Ferrera, Isabel; Mas, Jordi; Taberna, Elisenda; Sanz, Joan; Sánchez, Olga

    2015-01-01

    The diversity of the bacterial community developed in different stages of two reverse osmosis (RO) water reclamation demonstration plants designed in a wastewater treatment plant (WWTP) in Tarragona (Spain) was characterized by applying 454-pyrosequencing of the 16S rRNA gene. The plants were fed by secondary treated effluent to a conventional pretreatment train prior to the two-pass RO system. Plants differed in the material used in the filtration process, which was sand in one demonstration plant and Scandinavian schists in the second plant. The results showed the presence of a highly diverse and complex community in the biofilms, mainly composed of members of the Betaproteobacteria and Bacteroidetes in all stages, with the presence of some typical wastewater bacteria, suggesting a feed water origin. Community similarities analyses revealed that samples clustered according to filter type, highlighting the critical influence of the biological supporting medium in biofilm community structure.

  12. Power generation from water salinity gradient via osmosis and reverse osmosis

    International Nuclear Information System (INIS)

    Ivanov, Milancho

    2015-01-01

    To reduce dependence on fossil fuels, while at the same time to meet the growing energy demands of the world, it is necessary to explore and promote new alternative energy sources. One such type of renewable energy sources, which recently gained greater credibility is the energy extracted from the water salinity gradient, which is also called blue energy. In this research project will be described a new model of osmotic power plant (MIOS plant), which uses a combination of reverse osmosis and osmosis to convert the energy from the water salinity gradient into electricity. MIOS plant can be built as a vessel anywhere on the surface of the oceans or in the form of dam on the land, which will have a huge advantage over existing plants that can be built only on mouths of rivers. (author)

  13. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.

  14. Treatment of tailings water from uranium ore processing by reverse osmosis

    International Nuclear Information System (INIS)

    Georgescu, D.P.; Andrei, L.

    2000-01-01

    Mining and metallurgical waste waters are considered to be the major sources of heavy metal contamination. The need of economic and effective methods for metals removal have resulted in the development of new separation technologies. Precipitation, ion exchange, electrochemical processes, filtration and flotation are commonly applied for industrial effluents treatment. Occasionally, the application of such processes is limited because of technical or economical constraints. The search for new technologies regarding the recovery and removal of toxic metals from waste waters has directed attention to membrane processes. These processes are developed in the recent years due to the availability of many new types of membranes. This paper presents the laboratory test results for liquid radioactive effluent treatment from alkaline uranium ore processing by reverse osmosis. (author)

  15. A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes

    KAUST Repository

    Teychene, Benoît

    2013-02-01

    This study aims to compare at lab-scale the rejection efficiency of several reverse osmosis membranes (RO) toward arsenic (III) and boron during the filtration of a synthetic brackish water. The effect of pH and operating conditions on the rejection of each RO membrane was studied. Two types of membrane were investigated: "brackish water" and "sea water" membranes. Our results showed that the metalloid rejection depends on the membrane type, pH and transmembrane pressure applied. Increasing pH above the dissociation constant (pKa) of each specie improves significantly the metalloid rejection by RO membranes, whatever the membrane type. Moreover, at identical operating conditions (pH, transmembrane pressure), results showed that the brackish water membranes have a higher water flux and exhibit lower metalloid rejection. The highest As(III) rejection value for the tested brackish water membranes was 99% obtained at pH = 9.6 and 40 bars, whereas it was found that the sea water RO membranes could highly reject As(III), more than 99%, even at low pH and low pressure (pH = 7.6 and 24 bars).Regarding Boron rejection, similar conclusions could be drawn. The sea water RO membranes exert higher removal, with a high rejection value above 96% over the tested conditions. More generally, this study showed that, whatever the operating conditions or the tested membranes, the boron and As(III) permeate concentrations are below the WHO guidelines. In addition, new data about the boron and arsenic permeability of each tested RO membrane was brought thanks to a theoretical calculation. © 2012 Elsevier B.V.

  16. Brackish water desalination by a stand alone reverse osmosis desalination unit powered by photovoltaic solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Hrayshat, Eyad S. [Tafila Technical University, P.O. Box 66, Tafila 66110 (Jordan)

    2008-08-15

    Desalination of brackish water as a viable option to cope with water scarcity and to overcome water deficit in Jordan is assessed. A stand alone reverse osmosis (RO) desalination unit powered by photovoltaic (PV) solar energy is proposed, and a computer code in C++ was generated in order to simulate the process, and to predict the water production at 10 selected sites based on the available solar radiation data, sunshine hours and salinity of the feed water (TDS of 3000, 5000, 7000, and 10,000 mg/L). It was found that most of the selected sites showed favorable application of the proposed system in Jordan. Tafila, Queira, Ras Muneef, H-4, and H-5 are the most favorable sites. With TDS of 7000 mg/L, the highest annual water production of 1679 m{sup 3}/year was observed in Tafila, followed by Queira with production of 1473 m{sup 3}/year. Ras Muneef, H-4, and H-5 showed close to each other production of 1363, 1345, and 1340 m{sup 3}/year, respectively. Among the most favorable sites (Tafila, Queira, Ras Muneef, H-4, and H-5), Ras Muneef was found to be the best site in terms of the daily amount of water produced during the driest months of the year (May-September). Its production during these months forms about 65% of its total daily water production during a 1-year cycle, while for each of the other most favorable sites namely Tafila, Queira, H-4, and H-5, a 61% of production was observed during the same period. (author)

  17. IMPACT ON WATER DISTRIBUTION SYSTEM BIOFILM DENSITIES FROM REVERSE OSMOSIS MEMBRANE TREATMENT OF SUPPLY WATER

    Science.gov (United States)

    The quality of potable water is such that the concentration of nutrients available for growth of microorganisms within distribution systems is limited. In such systems carbon is often the growth limiting nutrient. Research conducted in the Netherlands has indicated that low level...

  18. Effect of Mannosylerythritol lipid-A on light scattering of AOT/D2O/Octane

    Science.gov (United States)

    Sharifi, Soheil

    2016-09-01

    The light scattering technique is used for the study of interaction of Mannosylerythritol lipid-A on AOT/D2O/Octane. The collective diffusion of AOT/D2O droplets soluble in Octane mixed with lipid is founded from a correlation function of light scattering. We focus on the variation of the dynamic behavior of droplets as a function of the lipid concentrations and the size of droplets. The increase of concentration of Mannosylerythritol lipid-A on microemulsion decreases the dynamic of droplets. The SAXS experiment shows the size and the interaction of the droplets change by increase of Mannosylerythritol lipid-A concentration. A hard sphere model can describe the interaction of lipid with AOT/D2O droplets.

  19. Surface decontamination using microemulsion of F-AOT in liquid/supercritical CO2

    International Nuclear Information System (INIS)

    Youn, C. H.; Gho, M. S.; Park, G. H.; Kim, H. D.; Kim, H. W.

    2003-01-01

    Conventional chemical decontamination method for surface decontamination cause not only the 2nd radioactive wastes, but also corrosion and defect on the surface of equipment. If CO 2 is used as a solvent for decontamination of radioactive contaminants, the waste can be effectively reduced by recycling of CO 2 where only contaminants are left as wastes during evaporation of CO 2 . Polar material can be dissolved by microemulsion using F-AOT and HNO 3 (1M). We use these two technique for surface decontamination. Cu and Ni specimens made by electroplating Conventional chemical decontamination method for surface decontamination cause not only the 2nd radioactive wastes, but also corrosion and defect on the surface of equipment. If CO 2 is used as a solvent for decontamination of radioactive contaminants, the waste can be effectively reduced by recycling of CO 2 where only contaminants are left as wastes during evaporation of CO 2 . Polar material can be dissolved by microemulsion using F-AOT and HNO 3 (1M). We use these two technique for surface decontamination. Cu and Ni specimens made by electroplating on the QCM surface. The QCM was used for the quantitative analysis. In the case of Cu, The 0.054μg/sec and 0.024μg/sec of decontamination efficiency were obtained in LCO 2 /ScCO 2 microemulsion respectively. The 0.066μg/sec of decontamination efficiency was obtained in the case of Ni

  20. Efficiently combining water reuse and desalination through Forward Osmosis-Reverse Osmosis (FO-RO) hybrids: a critical review

    OpenAIRE

    Blandin, G.; Verliefde, A.R.D.; Comas, J.; Rodriguez-Roda, I.; Le-Clech, P.

    2016-01-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be ...

  1. Reverse Osmosis

    Indian Academy of Sciences (India)

    or the water reaches the tip of every leaf of a plant is due to osmotic pressure. ... concentration and temperature of the solution by a law that is similar to the gas law. ... waste management, water quality and remediation of contaminated water. Keywords. Osmosis, reverse osmosis, desalinatiion, seawater, water purification.

  2. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2010-03-01

    Recombinant cutinase from Fusarium solani pisi was used to catalyze the transesterification reaction between a mixture of triglycerides (oils) and methanol in reversed micelles of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane for the purposes of producing biodiesel. The use of a bi-phase lipase-catalyzed system brings advantages in terms of catalyst re-use and the control of water activity in the medium and around the enzyme micro-environment. Small-scale batch studies were performed to study the influence of the initial enzyme and alcohol concentrations, and the substrates molar ratio. Conversions in excess of 75 were obtained with reaction times under 24 h, which makes this enzymatic process highly competitive when compared to similar lipase catalyzed reactions for biodiesel production using methanol.

  3. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes

    KAUST Repository

    Duan, Jintang

    2015-01-01

    The application of nanotechnology to thin-film nanocomposites (TFN) is a new route to enhance membrane performance in water desalination. Here, the potential of polyhedral oligomeric silsesquioxane (POSS) as the nanofiller in polyamide (PA) reverse osmosis membranes was systematically investigated. Four POSS materials (P-8Phenyl, P-8NH3Cl, P-8NH2 and P-1NH2) were introduced into the selective layer by physical blending or chemical fixation during standard interfacial polymerization. Water flux and NaCl rejection were measured with 2000ppm NaCl solution under 15.5bar pressure, and SEM and TEM images of membrane selective layers were obtained. Membranes prepared without POSS showed water flux of 20.0±0.5L/m2·h and salt rejection of 98.0±0.2%. TFN membranes prepared with 0.4% (w/v) P-8Phenyl in the organic phase showed a 65% increase in water flux compared to the pristine PA membrane while maintaining high salt rejection. The selective layer of this membrane maintained the typical ridge-and-valley structure of aromatic PA. Results with P-8NH3Cl and P-8NH2 added to the organic phase were similar. TFN membranes prepared with monoamine P-1NH2 in the organic phase had poor water flux of 3.2L/m2·h, a smooth and more hydrophobic surface, and a much thicker (~400nm) selective layer. One of the four POSS compounds studied, P-8NH3Cl, is sufficiently soluble in water for incorporation into the selective layer via the aqueous phase. Membranes were prepared with P-8NH3Cl in the aqueous phase at varying reaction time, loading, and additive (triethylamine) concentration. With these parameters optimized, water flux increased to 35.4L/m2·h.

  4. Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications.

    Science.gov (United States)

    Romeyn, Travis R; Harijanto, Wesley; Sandoval, Sofia; Delagah, Saied; Sharbatmaleki, Mohamadali

    2016-01-01

    Water shortage is becoming more common due to droughts and global population increases resulting in the increasing popularity of water reuse to create new water sources. Reverse osmosis (RO) membrane systems are popular in these applications since they can produce drinking water quality effluent. Unfortunately, RO systems have the drawback of generating concentrate streams that contain contaminants rejected by the membrane including chemicals of emerging concern (CECs). CECs are chemicals such as hormones, steroids, pesticides, pharmaceuticals, and personal care products that are used for their intended purpose and then released into wastewater. CECs are believed to be detrimental to aquatic wildlife health and pose an unknown human health risk. This research gathered the existing knowledge on CEC presence in concentrate, available proven concentrate treatment methods, their CEC removal abilities, and current CEC regulations. It was found that 127 CECs have been measured in RO concentrate with 100 being detected at least once. The most potent treatment process available is UV/H2O2 as it offers the highest removal rates for the widest range of chemicals. The less expensive process of ozone/biologically activated carbon offers slightly lower removal abilities. This comprehensive report will provide the groundwork for better understanding, regulating and treating concentrate stream CECs.

  5. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Membrane Fouling and Chemical Cleaning in Three Full-Scale Reverse Osmosis Plants Producing Demineralized Water

    Directory of Open Access Journals (Sweden)

    Florian Beyer

    2017-01-01

    Full Text Available Membrane fouling and cleaning were studied in three reverse osmosis (RO plants. Feed water was secondary wastewater effluent, river water, and surface water. Membrane autopsies were used for fouling characterization. Fouling layer measurements included total organic carbon (TOC, adenosine triphosphate, polysaccharides, proteins, and heterotrophic plate counts. In all locations, membrane and spacer fouling was (bioorganic. Plant chemical cleaning efficiencies were evaluated from full-scale operational data and cleaning trials in a laboratory setup. Standard cleaning procedures were compared to two cleaning procedures specifically adapted to treat (bioorganic fouling using commercial blend cleaners (mixtures of active substances. The three RO plants were impacted by irreversible foulants causing permanently decreased performance in normalized pressure drop and water permeability even after thorough chemical cleaning. The standard plant and adapted cleaning procedures reduced the TOC by 45% on average, with a maximum of ~80%. In general, around 20% higher biomass removal could be achieved with adapted procedure I compared to adapted procedure II. TOC measurements and SEM showed that none of cleaning procedures applied could remove foulants completely from the membrane elements. This study underlines the need for novel cleaning approaches targeting resistant foulants, as none of the procedures applied resulted in highly effective membrane regeneration.

  7. Reverse osmosis for water purification and reuse in the biotechnological industry: Process design, operation and economic guidelines

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; S.B.A. Udugama, Isuru; Mitic, Aleksandar

    2017-01-01

    load on a wastewater treatment plant (WWTP), thereby investigating opportunities for process water reuse. In this case, a recovery unitis studied, where purification and concentration generates large volumes of wastewater. Reverse osmosis (RO) could ensure that the desired drinking water quality could...

  8. CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis.

    Science.gov (United States)

    Moreno, J; de Hart, N; Saakes, M; Nijmeijer, K

    2017-11-15

    When natural feed waters are used in the operation of a reverse electrodialysis (RED) stack, severe fouling on the ion exchange membranes and spacers occurs. Fouling of the RED stack has a strong influence on the gross power density output; which can decrease up to 50%. Moreover, an increase in the pressure loss occurs between the feed water inlet and outlet, increasing the pumping energy and thus decreasing the net power density that can be obtained. In this work, we extensively investigated the use of CO 2 saturated water as two-phase flow cleaning for fouling mitigation in RED using natural feed waters. Experiments were performed in the REDstack research facility located at the Afsluitdijk (the Netherlands) using natural feed waters for a period of 60 days. Two different gas combinations were experimentally investigated, water/air sparging and water/CO 2 (saturated) injection. Air is an inert gas mixture and induces air sparging in the stack. In the case of CO 2 , nucleation, i.e. the spontaneous formation of bubbles, occurs at the spacer filaments due to depressurization of CO 2 saturated water, inducing cleaning. Results showed that stacks equipped with CO 2 saturated water can produce an average net power density of 0.18 W/m 2 under real fouling conditions with minimal pre-treatment and at a low outside temperature of only 8 °C, whereas the stacks equipped with air sparging could only produce an average net power density of 0.04 W/m 2 . Electrochemical impedance spectroscopy measurements showed that the stacks equipped with air sparging increased in stack resistance due to the presence of stagnant bubbles remaining in the stack after every air injection. Furthermore, the introduction of CO 2 gas in the feed water introduces a pH decrease in the system (carbonated solution) adding an additional cleaning effect in the system, thus avoiding the use of environmentally unwanted cleaning chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All

  9. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  10. Corrosion Inhibition of the Galvanic Couple Copper-Carbon Steel in Reverse Osmosis Water

    Directory of Open Access Journals (Sweden)

    Irene Carrillo

    2011-01-01

    Full Text Available The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS, exposed to reverse osmosis water (RO used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP, potentiodynamic polarization (PP, and electrochemical impedance spectroscopy (EIS. The surface conditions were characterized by scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy (EDS. The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.

  11. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.

    Science.gov (United States)

    Dong, Xiaoli; Yu, Hongchuan; Ma, Yuanyuan; Bao, Junwei Lucas; Truhlar, Donald G; Wang, Yonggang; Xia, Yongyao

    2017-02-21

    Rechargeable batteries with organic electrodes are preferred to those with transition-metal-containing electrodes for their environmental friendliness, and resource availability, but all such batteries reported to date are based on organic electrolytes, which raise concerns of safety and performance. Here an aqueous-electrolyte all-organic rechargeable battery is reported, with a maximum operating voltage of 2.1 V, in which polytriphenylamine (PTPAn) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA)-derived polyimide (PNTCDA) serve as cathode and anode material, respectively. A key feature of the design is use of a "water-in-salt" electrolyte to bind "free" water; this impedes the side reaction of water oxidation, thereby enabling excellent reversibility in aqueous solution. The battery can deliver a maximum energy density of 52.8 Wh kg -1 , which is close to most of the all-organic batteries with organic electrolytes. The battery exhibits a supercapacitor-like high power of 32 000 W kg -1 and a long cycle life (700 cycles with capacity retention of 85 %), due to the kinetics not being limited by ion diffusion at either electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential

    KAUST Repository

    Naidu, Gayathri

    2016-11-29

    Membrane distillation (MD) was evaluated as a treatment option of wastewater reverse osmosis concentrate (WWROC) discharged from wastewater reclamation plants (WRPs). A direct contact MD (DCMD), at obtaining 85% water recovery of WWROC showed only 13–15% flux decline and produced good quality permeate (10–15 µS/cm, 99% ion rejection) at moderate feed temperature of 55 °C. Prevalent calcium carbonate (CaCO3) deposition on the MD membrane occurred in treating WWROC at elevated concentrations. The combination of low salinity and loose CaCO3 adhesion on the membrane did not significantly contribute to DCMD flux decline. Meanwhile, high organic content in WWROC (58–60 mg/L) resulted in a significant membrane hydrophobicity reduction (70% lower water contact angle than virgin membrane) attributed to low molecular weight organic adhesion onto the MD membrane. Granular activated carbon (GAC) pretreatment helped in reducing organic contents of WWROC by 46–50%, and adsorbed a range of hydrophobic and hydrophilic micropollutants. This ensured high quality water production by MD (micropollutants-free) and enhanced its reuse potential. The MD concentrated WWROC was suitable for selective ion precipitation, promising a near zero liquid discharge in WRPs.

  13. Subsurface intakes for seawater reverse osmosis facilities: Capacity limitation, water quality improvement, and economics

    KAUST Repository

    Missimer, Thomas M.

    2013-08-01

    The use of subsurface intake systems for seawater reverse osmosis (SWRO) desalination plants significantly improves raw water quality, reduces chemical usage and environmental impacts, decreases the carbon footprint, and reduces cost of treated water to consumers. These intakes include wells (vertical, angle, and radial type) and galleries, which can be located either on the beach or in the seabed. Subsurface intakes act both as intakes and as part of the pretreatment system by providing filtration and active biological treatment of the raw seawater. Recent investigations of the improvement in water quality made by subsurface intakes show lowering of the silt density index by 75 to 90%, removal of nearly all algae, removal of over 90% of bacteria, reduction in the concentrations of TOC and DOC, and virtual elimination of biopolymers and polysaccharides that cause organic biofouling of membranes. Economic analyses show that overall SWRO operating costs can be reduced by 5 to 30% by using subsurface intake systems. Although capital costs can be slightly to significantly higher compared to open-ocean intake system costs, a preliminary life-cycle cost analysis shows significant cost saving over operating periods of 10 to 30. years. © 2013 Elsevier B.V.

  14. Small angle X-ray scattering studies to access the influence of bovine serum albumin (BSA) and carbonic anhydrase (Boca) on the size and interaction among Aerosol-O T reversed micelles as a function of the micellar hydration degree

    International Nuclear Information System (INIS)

    Caetano, W.; Duarte, E.L.; Itri, R.

    2004-01-01

    Full text: Reversed micelles (RMs) of AOT (sodium bis-2-ethylhexyl sulfosuccinate) has constitute an efficient system to investigate membrane interaction and physical chemical behavior of short biologically active peptides, proteins and enzymes in water controlled environment and apolar medium. Information may be obtained from protein-membrane interaction, including solubilization, binding location, conformational changes, activity size droplet-dependent, and changes in the properties of RM environment, useful in studies in biocatalysis and bioseparation systems [1]. In this work, changes in the structural features and interactive forces among AOT RMs in hexane were monitored in several stages of micellar hydration W (= [buffer]/[0.1M AOT]), and in the presence of BSA (66.5 kDa) and BCA (30 Kda), by SAXS. The interactive forces between the RMs with proteins were analyzed within the framework of repulsion and attractive interaction potentials through the pairing stick hardsphere (PSHS) model [2]. In this way, the spherical core radius to the system of pure AOT RMs at W = 4, 10, 20 and 30 were respectively 15, 22, 33 and 43 A (20% of polydispersity), evaluated from the particle form factor P(q) modeling [1]. The PSHS analysis from SAXS curves of AOT RMs with BSA and BCA at smaller droplets size of 4 and 10, showed, respectively, an interplay between attractive and repulsive interactions between the micelles (attractive component in S(q) was predominant) with the preservation of the discrete RM radius in the presence of protein. On the other hand, for protein confined in the bigger RM droplet size with W=30, the attractive inter micellar forces were of minor importance for BSA and the appearing of a predominant repulsive hard sphere component in SAXS curves accompanied by a decreasing of the micellar radius to 36 A were detected. For BCA, however, at higher W (30), a phase separation was observed probably associated to the formation of unstable large BCA aggregates

  15. Annealing effect reversal by water sorption-desorption and heating above the glass transition temperature-comparison of properties.

    Science.gov (United States)

    Saxena, A; Jean, Y C; Suryanarayanan, R

    2013-08-05

    Our objective is to compare the physical properties of materials obtained from two different methods of annealing reversal, that is, water sorption-desorption (WSD) and heating above glass transition temperature (HAT). Trehalose was annealed by storing at 100 °C for 120 h. The annealing effect was reversed either by WSD or HAT, and the resulting materials were characterized by differential scanning calorimetry (DSC), water sorption studies, and positron annihilation spectroscopy (PAS). While the products obtained by the two methods of annealing reversal appeared to be identical by conventional characterization methods, they exhibited pronounced differences in their water sorption behavior. Positron annihilation spectroscopy (PAS), by measuring the fractional free volume changes in the processed samples, provided a mechanistic explanation for the differences in the observed behavior.

  16. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    Directory of Open Access Journals (Sweden)

    J. P. Bender

    2008-09-01

    Full Text Available This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE, liquid-liquid (LLE and vapor-liquid-liquid (VLLE equilibrium were recorded. It was experimentally observed that, at a given temperature and surfactant content, an increase in the concentration of glycerol/oil ratio led to a pronounced increase in the slope of the liquid-liquid coexistence curve. A comparison with results reported for the same system but using propane as solvent showed that much lower pressure transition values are obtained when using n-butane.

  17. State of the art and review on the treatment technologies of water reverse osmosis concentrates.

    Science.gov (United States)

    Pérez-González, A; Urtiaga, A M; Ibáñez, R; Ortiz, I

    2012-02-01

    The growing demand for fresh water is partially satisfied by desalination plants that increasingly use membrane technologies and among them reverse osmosis to produce purified water. Operating with water recoveries from 35% to 85% RO plants generate huge volumes of concentrates containing all the retained compounds that are commonly discharged to water bodies and constitute a potentially serious threat to marine ecosystems; therefore there is an urgent need for environmentally friendly management options of RO brines. This paper gives an overview on the potential treatments to overcome the environmental problems associated to the direct discharge of RO concentrates. The treatment options have been classified according to the source of RO concentrates and the maturity of the technologies. For the sake of clarity three different sources of RO concentrates are differentiated i) desalination plants, ii) tertiary processes in WWTP, and iii) mining industries. Starting with traditional treatments such as evaporation and crystallization other technologies that have emerged in last years to reduce the volume of the concentrate before disposal and with the objective of achieving zero liquid discharge and recovery of valuable compounds from these effluents are also reviewed. Most of these emerging technologies have been developed at laboratory or pilot plant scale (see Table 1). With regard to RO concentrates from WWTP, the manuscript addresses recent studies that are mainly focused on reducing the organic pollutant load through the application of innovative advanced oxidation technologies. Finally, works that report the treatment of RO concentrates from industrial sources are analyzed as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  19. Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions

    Science.gov (United States)

    Matyssek, R.; Wieser, G.; Nunn, A. J.; Kozovits, A. R.; Reiter, I. M.; Heerdt, C.; Winkler, J. B.; Baumgarten, M.; Häberle, K.-H.; Grams, T. E. E.; Werner, H.; Fabian, P.; Havranek, W. M.

    The current AOT40 concept for inferring risks in forest trees by ozone (O 3) injury is based on an accumulated external O 3 exposure rather than an internal O 3 dose or uptake rate. AOT40 assumes O 3 concentrations below 40 nl l -1 and night-time exposure to be negligible. Hence, this concept is rather inconsistent with observed forest conditions. In contrast, the flux concept of cumulative O 3 uptake (CU) into the leaves has the potential of reflecting a physiologically meaningful internal O 3 dose experienced by trees. In this paper, we relate AOT40 to cumulative O 3 uptake into European beech ( Fagus sylvatica), Norway spruce ( Picea abies), European larch ( Larix decidua) and cembran pine ( Pinus cembra) trees differing in size, age and site conditions. We demonstrate that the flux concept can be extended to the tree and the stand level, making use of sap flow measurements through tree trunks. Although in both seedlings and adult trees AOT40 may show some linearity in correlations with average CU, the latter varies, at given AOT40, by 25±11% within and between species. This is because O 3 flux is primarily influenced by stomatal aperture, the latter being affected by climate, canopy position, leaf and tree age while varying between species. In particular, if weighed by detoxification capacity, we suggest, therefore, O 3 uptake related air quality indices to be promoted towards ecologically meaningful standards in forest protection, overcoming the shortcomings of exposure concepts. As O 3 injury results from the balance between O 3 uptake and detoxification in the leaf mesophyll, we conclude the flux concept in combination with measures of biochemical defence to have the capacity for predicting tree response to O 3 stress.

  20. Reverse osmosis integrity monitoring in water reuse: The challenge to verify virus removal - A review.

    Science.gov (United States)

    Pype, Marie-Laure; Lawrence, Michael G; Keller, Jurg; Gernjak, Wolfgang

    2016-07-01

    A reverse osmosis (RO) process is often included in the treatment train to produce high quality reuse water from treated effluent for potable purposes because of its high removal efficiency for salinity and many inorganic and organic contaminants, and importantly, it also provides an excellent barrier for pathogens. In order to ensure the continued protection of public health from pathogen contamination, monitoring RO process integrity is necessary. Due to their small sizes, viruses are the most difficult class of pathogens to be removed in physical separation processes and therefore often considered the most challenging pathogen to monitor. To-date, there is a gap between the current log credit assigned to this process (determined by integrity testing approved by regulators) and its actual log removal capability as proven in a variety of laboratory and pilot studies. Hence, there is a challenge to establish a methodology that more closely links to the theoretical performance. In this review, after introducing the notion of risk management in water reuse, we provide an overview of existing and potentially new RO integrity monitoring techniques, highlight their strengths and drawbacks, and debate their applicability to full-scale treatment plants, which open to future research opportunities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology.

    Science.gov (United States)

    Gabarrón, S; Gernjak, W; Valero, F; Barceló, A; Petrovic, M; Rodríguez-Roda, I

    2016-05-15

    Emerging contaminants (EC) have gained much attention with globally increasing consumption and detection in aquatic ecosystems during the last two decades from ng/L to lower ug/L. The aim of this study was to evaluate the occurrence and removal of pharmaceutically active compounds (PhACs), endocrine disrupting chemicals (EDCs) and related compounds in a Drinking Water Treatment Plant (DWTP) treating raw water from the Mediterranean Llobregat River. The DWTP combined conventional treatment steps with the world's largest electrodialysis reversal (EDR) facility. 49 different PhACs, EDCs and related compounds were found above their limit of quantification in the influent of the DWTP, summing up to a total concentration of ECs between 1600-4200 ng/L. As expected, oxidation using chlorine dioxide and granular activated carbon filters were the most efficient technologies for EC removal. However, despite the low concentration detected in the influent of the EDR process, it was also possible to demonstrate that this process partially removed ionized compounds, thereby constituting an additional barrier against EC pollution in the product. In the product of the EDR system, only 18 out of 49 compounds were quantifiable in at least one of the four experimental campaigns, showing in all cases removals higher than 65% and often beyond 90% for the overall DWTP process. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Irreversible catalyst activation enables hyperpolarization and water solubility for NMR signal amplification by reversible exchange.

    Science.gov (United States)

    Truong, Milton L; Shi, Fan; He, Ping; Yuan, Bingxin; Plunkett, Kyle N; Coffey, Aaron M; Shchepin, Roman V; Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; Waddell, Kevin W; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-12-04

    Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized (1)H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst's full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent--paving the way to various biomedical applications of SABRE hyperpolarization methods.

  3. Poly-extremotolerant bacterium isolated from reverse osmosis reject: an implication toward waste water management.

    Science.gov (United States)

    Jain, D; Mishra, S K; Shrivastav, A; Rathod, M; Shethia, B D; Mishra, S; Jha, B

    2010-11-01

    We demonstrate the tolerance of bacterial strain SM2014 to various unsustainable conditions and suggest its implication in waste water management. Its sustainability to reverse osmosis pressure (2.1 MPa) during desalination, and survival percentage of 73 % under hyperbaric conditions (pressure tension of 3.1 MPa under absolute oxygen atmosphere) confirmed its pressure tolerance. The growth of this strain at pH 9 or 10 and at 60 °C alone or in combination revealed its unique physiology as poly-extremotolerant strain. As an adaptive mechanism, the ratio of saturated to unsaturated fatty acids changed with growth conditions. Under poly-extreme condition long chain saturated fatty acid (C₁₈:₀, C₁₆:₀, C₁₄:₀, C₁₂:₀) predominated at the expense of unsaturated fatty acids. The nucleotide BLAST of 16S rRNA gene sequence of strain SM2014 with the NCBI gene bank sequences showed its close identity to Bacillus licheniformis with a similarity match of 94 %. The secretion of industrially valuable enzymes proteinase, lipase and amylase under such harsh conditions further signified potential of this strain as a source of extremozymes. Its unique characteristics underscore its relevance in waste water management.

  4. Theory of Ion and Water Transport in Reverse-Osmosis Membranes

    Science.gov (United States)

    Oren, Y. S.; Biesheuvel, P. M.

    2018-02-01

    We present a theory for ion and water transport through reverse-osmosis (RO) membranes based on a Maxwell-Stefan framework combined with hydrodynamic theory for the reduced motion of particles in thin pores. We take into account all driving forces and frictions both on the fluid (water) and on the ions including ion-fluid friction and ion-wall friction. By including the acid-base characteristic of the carbonic acid system, the boric acid system, H3O+/OH- , and the membrane charge, we locally determine p H , the effective charge of the membrane, and the dissociation degree of carbonic acid and boric acid. We present calculation results for an experiment with fixed feed concentration, where effluent composition is a self-consistent function of fluxes through the membrane. A comparison with experimental results from literature for fluid flow vs pressure, and for salt and boron rejection, shows that our theory agrees very well with the available data. Our model is based on realistic assumptions for the effective size of the ions and makes use of a typical pore size of a commercial RO membrane.

  5. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-01-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and fullscale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used. © 2011 2011 Desalination Publications. All rights reserved.

  6. Using reverse osmosis to remove natural organic matter from power plant makeup water

    International Nuclear Information System (INIS)

    Mattaraj, S.; Kilduff, J.E.

    2003-01-01

    A field-scale reverse osmosis (RO) system was used to remove salts and natural organic matter (NOM) from a surface water source. The RO membrane exhibited an NOM solution hydraulic permeability of 8.33 x 10 -9 m x s -1 x kPa -1 , about 6% less than the clean water value, over pressures ranging from 414 to 1 000 kPa (60 to 145 psi). The rejection of salt and NOM were greater than 98% and 99%, respectively. Under controlled laboratory conditions, greater than 99% mass recovery of NOM could be obtained. A small fraction of NOM was not recovered using hydrodynamic cleaning but could be recovered with chemical cleaning (NaOH wash solution). The mass recovered in the NaOH solution increased from 6% with increasing transmembrane pressures from 414 kPa to 1 000 kPa, respectively. This is consistent with fouling that results from an increase in solution flux, and a concomitant decrease in tangential crossflow velocity. (orig.)

  7. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment.

    Science.gov (United States)

    Radjenović, J; Petrović, M; Ventura, F; Barceló, D

    2008-08-01

    This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaigns were analgesics and anti-inflammatory drugs such as ketoprofen, diclofenac, acetaminophen and propyphenazone, beta-blockers sotalol and metoprolol, an antiepileptic drug carbamazepine, the antibiotic sulfamethoxazole, a lipid regulator gemfibrozil and a diuretic hydrochlorothiazide. The highest concentrations in groundwater were recorded for hydrochlorothiazide (58.6-2548ngL(-1)), ketoprofen (MQL-314ngL(-1)), diclofenac (60.2-219.4ngL(-1)), propyphenazone (51.5-295.8ngL(-1)) and carbamazepine (8.7-166.5ngL(-1)). Excellent overall performance of both NF and RO was noted, with high rejection percentages for almost all of the pharmaceuticals investigated (>85%). Deteriorations in retentions on NF and RO membranes were observed for acetaminophen (44.8-73 %), gemfibrozil (50-70 %) and mefenamic acid (30-50%). Furthermore, since several pharmaceutical residues were detected in the brine stream of NF and RO processes at concentrations of several hundreds nanogram per litre, its disposal to a near-by river can represent a possible risk implication of this type of treatment.

  8. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.

    Science.gov (United States)

    Talaeipour, M; Nouri, J; Hassani, A H; Mahvi, A H

    2017-01-01

    As an appropriate tool, membrane process is used for desalination of brackish water, in the production of drinking water. The present study aims to investigate desalination processes of brackish water of Qom Province in Iran. This study was carried out at the central laboratory of Water and Wastewater Company of the studied area. To this aim, membrane processes, including nanofiltration (NF) and reverse osmosis (RO), separately and also their hybrid process were applied. Moreover, water physical and chemical parameters, including salinity, total dissolved solids (TDS), electric conductivity (EC), Na +1 and Cl -1 were also measured. Afterward, the rejection percent of each parameter was investigated and compared using nanofiltration and reverse osmosis separately and also by their hybrid process. The treatment process was performed by Luna domestic desalination device, which its membrane was replaced by two NF90 and TW30 membranes for nanofiltration and reverse osmosis processes, respectively. All collected brackish water samples were fed through membranes NF90-2540, TW30-1821-100(RO) and Hybrid (NF/RO) which were installed on desalination household scale pilot (Luna water 100GPD). Then, to study the effects of pressure on permeable quality of membranes, the simulation software model ROSA was applied. Results showed that percent of the salinity rejection was recorded as 50.21%; 72.82 and 78.56% in NF, RO and hybrid processes, respectively. During the study, in order to simulate the performance of nanofiltartion, reverse osmosis and hybrid by pressure drive, reverse osmosis system analysis (ROSA) model was applied. The experiments were conducted at performance three methods of desalination to remove physic-chemical parameters as percentage of rejections in the pilot plant are: in the NF system the salinity 50.21, TDS 43.41, EC 43.62, Cl 21.1, Na 36.15, and in the RO membrane the salinity 72.02, TDS 60.26, EC 60.33, Cl 43.08, Na 54.41. Also in case of the rejection in

  9. Speech and Language Disorders in a Dialysis Encephalopathy Patient and the Effect of Desferrioxamine and Reverse-Osmosis Water Treatment.

    Science.gov (United States)

    Lehtihalmes, Matti; And Others

    Dialysis encephalopathy is a progressive neurological disorder occurring after long-term hemodialysis in some renal failure patients. Accumulation of aluminum in the brain is suspected as its cause, and the use of reverse osmosis of the dialysis water and administration of desferrioxamine to the patient have been successful in reducing the…

  10. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis

    NARCIS (Netherlands)

    Zhao, R.; Porada, S.; Biesheuvel, P.M.; Wal, van der A.

    2013-01-01

    Membrane capacitive deionization (MCDI) is a non-faradaic, capacitive technique for desalinating brackish water by adsorbing ions in charged porous electrodes. To compete with reverse osmosis, the specific energy consumption of MCDI needs to be reduced to less than 1 kWh per m3 of freshwater

  11. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples

    Science.gov (United States)

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since o...

  12. Rejection of Emerging Organic Contaminants by Nanofiltration and Reverse Osmosis Membranes: Effects of Fouling, Modelling and Water Reuse

    OpenAIRE

    Yangali Quintanilla, V.

    2010-01-01

    The book contains a description of the presence of micropollutants (medicines, hormones, pesticides) in surface water and shows that conventional water treatment poorly removes micropollutants. Nanofiltration and reverse osmosis are more appropriate technologies; however removals can vary depending on the properties of compounds and types of membranes. Thus, quantification of removals is studied by means of multivariate data analysis techniques and more understanding of the separation of micr...

  13. Climatology Analysis of Aerosol Effect on Marine Water Cloud from Long-Term Satellite Climate Data Records

    Directory of Open Access Journals (Sweden)

    Xuepeng Zhao

    2016-04-01

    Full Text Available Satellite aerosol and cloud climate data records (CDRs have been used successfully to study the aerosol indirect effect (AIE. Data from the Advanced Very High Resolution Radiometer (AVHRR now span more than 30 years and allow these studies to be conducted from a climatology perspective. In this paper, AVHRR data are used to study the AIE on water clouds over the global oceans. Correlation analysis between aerosol optical thickness (AOT and cloud parameters, including cloud droplet effective radius (CDER, cloud optical depth (COD, cloud water path (CWP, and cloud cover fraction (CCF, is performed. For the first time from satellite observations, the long-term trend in AIE over the global oceans is also examined. Three regimes have been identified: (1 AOT < 0.08, where CDER increases with AOT; (2 0.08 < AOT < 0.3, where CDER generally decreases when AOT increases; and (3 AOT > 0.3, where CDER first increases with AOT and then levels off. AIE is easy to manifest in the CDER reduction in the second regime (named Regime 2, which is identified as the AIE sensitive/effective regime. The AIE manifested in the consistent changes of all four cloud variables (CDER, COD, CWP, and CCF together is located only in limited areas and with evident seasonal variations. The long-term trend of CDER changes due to the AIE of AOT changes is detected and falls into three scenarios: Evident CDER decreasing (increasing with significant AOT increasing (decreasing and evident CDER decreasing with limited AOT increasing but AOT values fall in the AIE sensitive Regime 2.

  14. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.

    Science.gov (United States)

    Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I

    2010-05-01

    This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants.

    Science.gov (United States)

    Bagastyo, Arseto Y; Keller, Jurg; Poussade, Yvan; Batstone, Damien J

    2011-03-01

    Water reclamation plants frequently utilise reverse osmosis (RO), generating a concentrated reject stream as a by-product. The concentrate stream contains salts, and dissolved organic compounds, which are recalcitrant to biological treatment, and may have an environmental impact due to colour and embedded nitrogen. In this study, we characterise organic compounds in RO concentrates (ROC) and treated ROC (by coagulation, adsorption, and advanced oxidation) from two full-scale plants, assessing the diversity and treatability of colour and organic compounds containing nitrogen. One of the plants was from a coastal catchment, while the other was inland. Stirred cell membrane fractionation was applied to fractionate the treated ROC, and untreated ROC along with chemical analysis (DOC, DON, COD), colour, and fluorescence excitation-emission matrix (EEM) scans to characterise changes within each fraction. In both streams, the largest fraction contained 10 kDa molecules, with 17-34% of organic compounds as COD. Iron coagulation affected a wider size range, with better removal of organics (41-49% as COD) at the same molar dosage. As with iron, adsorption reduced organics of a broader size range, including organic nitrogen (26-47%). Advanced oxidation (UV/H2O2) was superior for complete decolourisation and provided superior organics removal (50-55% as COD). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. DRINKING WATER FROM DESALINATION OF SEAWATER: OPTIMIZATION OF REVERSE OSMOSIS SYSTEM OPERATING PARAMETERS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2006-12-01

    Full Text Available This paper reports on the use of pilot scale membrane separation system coupled with another pilot scale plate heat exchanger to investigate the possibilities of sweetening seawater from Telok Kalong Beach, Terengganu, Malaysia. Reverse osmosis (RO membrane of a surface area of 0.5 m2 was used during the experimental runs. Experiments were conducted at different transmembrane pressures (TMP ranged from 40 to 55 bars, operation temperature ranged from 35 to 45oC, feed concentration (TDS ranged from 34900 to 52500 ppm and cross flow velocities ranged from 1.4 to 2.1 m/s. The result show that the flux values increased linearly with TMP as well as sodium ion rejection. Permeate flux values increased proportionally with the temperature and the later effect was more significant at high pressures. The temperature changing has also influenced the rejection of sodium ion. The minerals content especially NaCl and total dissolved solid (TDS in the drinking water produced in this research are conforming to the standards of World Health Organization (WHO.

  17. Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production

    Science.gov (United States)

    Whitlow, Jonathan E.

    2000-01-01

    This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.

  18. Extraction of monoclonal antibodies (IgG1) using anionic and anionic/nonionic reverse micelles.

    Science.gov (United States)

    George, Daliya A; Stuckey, David C

    2010-01-01

    Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid-liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2-ethyl-hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij-30, Tween-85, Span-85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij-30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween-85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40-45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs. © 2010 American Institute of

  19. Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes

    KAUST Repository

    Louie, Jennifer Sarah

    2011-02-01

    The application of polymer surface coatings to improve the fouling resistance of reverse osmosis membranes tends to increase flow resistance across the membrane. This paper presents a systematic analysis on how membrane properties and performance are impacted by the coating process steps, and investigates how such effects could contribute to lower water flux. On one hand, simply pre-soaking dry aromatic polyamide composite membranes in aliphatic alcohols results in a significant increase in water flux, which is attributed to wetting of pores in the selective polyamide layer and to changes in the polymer structure. This flux increase was not readily reversible, based on a 300-h water permeation test. Conversely, drying a wetted membrane led to a decrease in water flux, which we hypothesize is caused by increased interchain hydrogen-bonding in the selective layer. This drop in water flux was not permanent; higher flux was observed if the same wetted/dried membrane was then re-soaked in ethanol prior to the water permeation experiment. An ethanol pre-soaking step also increased water flux of a PEBAX-coated membrane by nearly 70%. In contrast to the reduction in water flux caused by the specific treatment sequence of ethanol-swelling followed by drying, this same sequence actually increased gas transport. The eight- to ten-fold increase in Knudsen diffusion-based gas permeance after this pre-treatment was attributed to an increase in the number or size of membrane defects. © 2010 Elsevier B.V.

  20. Water-Blown Polyurethane Foams Showing a Reversible Shape-Memory Effect

    Directory of Open Access Journals (Sweden)

    Elena Zharinova

    2016-11-01

    Full Text Available Water-blown polyurethane (PU foams are of enormous technological interest as they are widely applied in various fields, i.e., consumer goods, medicine, automotive or aerospace industries. The discovery of the one-way shape-memory effect in PU foams provided a fresh impetus for extensive investigations on porous polymeric actuators over the past decades. High expansion ratios during the shape-recovery are of special interest when big volume changes are required, for example to fill an aneurysm during micro-invasive surgery or save space during transportation. However, the need to program the foams before each operation cycle could be a drawback impeding the entry of shape-memory polymeric (SMP foams to our daily life. Here, we showed that a reversible shape-memory effect (rSME is achievable for polyurethane water-blown semicrystalline foams. We selected commercially available crystallizable poly(ε-caprolactone-diols of different molecular weight for foams synthesis, followed by investigations of morphology, thermal, thermomechanical and shape-memory properties of obtained compositions. Densities of synthesized foams varied from 110 to 180 kg∙m−3, while peak melting temperatures were composition-dependent and changed from 36 to 47 °C, while the melting temperature interval was around 15 K. All semicrystalline foams exhibited excellent one-way SME with shape-fixity ratios slightly above 100% and shape-recovery ratios from the second cycle of 99%. The composition with broad distribution of molecular weights of poly(ε-caprolactone-diols exhibited an rSME of about 12% upon cyclic heating and cooling from Tlow = 10 °C and Thigh = 47 °C. We anticipate that our experimental study opens a field of systematic investigation of rSMEs in porous polymeric materials on macro and micro scale and extend the application of water-blown polyurethane foams to, e.g., protective covers with zero thermal expansion or even cushions adjustable to a certain body

  1. Integrated removal of inorganic contaminants from acid mine drainage using BOF slag, lime, soda ash and reverse osmosis (RO): Implication for the production of drinking water

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-06-01

    Full Text Available purification technology. Hardness was reduced using lime and Reverse Osmosis (RO) was used to further clean the water to drinking standard. A single two element RO system was simulated in Reverse Osmosis System Analysis (ROSA). The produced water complied...

  2. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Thickness (AOT) and Aerosol Particle Size Parameter (APSP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Aerosol Optical Thickness (AOT) from the Visible Infrared Imaging Radiometer...

  3. NOAA Climate Data Record (CDR) of AVHRR Daily and Monthly Aerosol Optical Thickness (AOT) over Global Oceans, Version 3.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The product is the aerosol optical thickness (AOT) at 0.63 micron, which is retrieved from NOAA PATMOS-x level-2B orbital radinace and cloud CDR products. The...

  4. Evaluation of Military Field-Water Quality. Volume 7. Performance Evaluation of the 600-GPH Reverse Osmosis Water Purification Unit (ROWPU): reverse Osmosis (RO) Components

    Science.gov (United States)

    1986-02-01

    the contaminants in the feed water. " Very few experiments have been performed with the noncellulosic thin-film composite membranae of interest herein...The mixing portion of the model consisted of a completely stirred tank reactor (CSTR) element on the brine-water side of the membrane, as shown in Fig...per pressure vessel). (CSTR - completely stirred tank reactor ; i - integer.) 132 Table B-1. Comparison of A and B parameters obtained with CALIBRATOR

  5. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.

    Science.gov (United States)

    Yang, Linyan; She, Qianhong; Wan, Man Pun; Wang, Rong; Chang, Victor W-C; Tang, Chuyang Y

    2017-06-01

    Recent studies report high concentrations of haloacetic acids (HAAs), a prevalent class of toxic disinfection by-products, in swimming pool water (SPW). We investigated the removal of 9 HAAs by four commercial reverse osmosis (RO) and nanofiltration (NF) membranes. Under typical SPW conditions (pH 7.5 and 50 mM ionic strength), HAA rejections were >60% for NF270 with molecular weight cut-off (MWCO) equal to 266 Da and equal or higher than 90% for XLE, NF90 and SB50 with MWCOs of 96, 118 and 152 Da, respectively, as a result of the combined effects of size exclusion and charge repulsion. We further included 7 neutral hydrophilic surrogates as molecular probes to resolve the rejection mechanisms. In the absence of strong electrostatic interaction (e.g., pH 3.5), the rejection data of HAAs and surrogates by various membranes fall onto an identical size-exclusion (SE) curve when plotted against the relative-size parameter, i.e., the ratio of molecular radius over membrane pore radius. The independence of this SE curve on molecular structures and membrane properties reveals that the relative-size parameter is a more fundamental SE descriptor compared to molecular weight. An effective molecular size with the Stokes radius accounting for size exclusion and the Debye length accounting for electrostatic interaction was further used to evaluate the rejection. The current study provides valuable insights on the rejection of trace contaminants by RO/NF membranes. Copyright © 2017. Published by Elsevier Ltd.

  6. Photosynthetic oxygen evolution is not reversed at high oxygen pressures: mechanistic consequences for the water-oxidizing complex.

    Science.gov (United States)

    Kolling, Derrick R J; Brown, Tyler S; Ananyev, Gennady; Dismukes, G Charles

    2009-02-17

    We investigated the effects of elevated O(2) pressure on the production of O(2) by photosynthetic organisms in several species of plants, algae, and a cyanobacterium. Using a noninvasive fluorometry technique to monitor sequential turnover of the photosystem II (PSII) reaction center as a function of O(2) pressures, we showed that none of the reactions of water oxidation are affected by elevated O(2) pressures up to 50-fold greater than atmospheric conditions. Thus, the terminal step of O(2) release from the water oxidation complex (S(4) --> S(0) + O(2) + nH(+)) is not reversible in whole cells, leaves, or isolated thylakoid membranes containing PSII, in contrast to reports using detergent-extracted PSII complexes. This implies that there is no thermodynamically accessible intermediate that can be populated by preventing or reversing the O(2) release step with O(2) at atmospheric pressure. To assess the sensitivity of PSII charge recombination to O(2) pressure, we quantitatively modeled the consequences of two putative perturbations to the catalytic cycle of water oxidation within the framework of the Kok model. On the basis of the breadth of oxygenic phototrophs examined in this study, we conclude that O(2) accumulation in cells or the atmosphere does not suppress photosynthetic productivity through the reversal of water oxidation in contemporary phototrophs and would have been unlikely to influence the evolution of oxygenic photosynthesis.

  7. Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism

    Science.gov (United States)

    Araki, Takumi; Cruz-Silva, Rodolfo; Tejima, Syogo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Terrones, Mauricio; Endo, Morinobu

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The mechanism of water diffusion across reverse osmosis nanocomposite membranes made of carbon nanotubes (CNTs) and aromatic polyamide is not completely understood despite its high potential for desalination applications. While most of the groups have proposed that superflow inside the CNT might positively impact the water flow across membranes, here we show theoretical evidence that this is not likely the case in composite membranes because CNTs are usually oriented parallel to the membrane surface, not to mention that sometimes the nanotube cores are occluded. Instead, we propose an oriented diffusion mechanism that explains the high water permeation by decreasing the diffusion path of water molecules across the membranes, even in the presence of CNTs that behave as impermeable objects. Finally, we provide a comprehensive description of the molecular dynamics occurring in water desalination membranes by considering the bond polarizability caused by dynamic charge transfer and explore the use of molecular-dynamics-derived stochastic diffusion simulations. The proposed water diffusion mechanism offers an alternative and most likely explanation for the high permeation phenomena observed in CNTs and PA nanocomposite membranes, and its understanding can be helpful to design the next generation of reverse osmosis desalination membranes.

  8. Technical-Economic Analysis of Photovoltaik Reverse Osmosis Planning for Fulfillment of Fresh Water System on Ro-Pax Ship

    Directory of Open Access Journals (Sweden)

    Edi Jadmiko

    2017-09-01

    Full Text Available The need for fresh water in the world of industry is increasing with the rapid development of the global industry. The shipping industry is having a significant impact as part of a global industry concerning the sector of freshwater demand on ships. Freshwater supplies on ro-pax vessels are very important because they are the source of crew and passenger life when ships sail. Fulfillment of freshwater needs on a ro-pax vessel is made in a conventional system by filling clean water into a freshwater tank from the port. In this final project will be analyzed technical and economical on designing fresh water system using reverse osmosis system with solar panel as power supply and compare it with conventional system on ship KM. SABUK NUSANTARA 56. This Final Project includes installation design, size of fresh water tank, amount of cargo, investment cost and operational cost. The conclusion obtained in this final project is a reverse osmosis (RO system with solar panels as a very efficient power supply when applied to ro-pax ships such as ships KM SABUK NUSANTARA 56 because with this system the ship is able to produce their own fresh water, the size of the freshwater tank is smaller, for new shiploads can be increased. For the percentage of total cost of fresh water needs is dearer about 52 percent compared to conventional system and payload value increased 29.2 percent compared to conventional system.

  9. Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohua; Yang, Haijun; Yuan, Zhuliang; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2010-04-15

    The micellar formation and entrapment of bacteria cell in reverse micelles were investigated by ultraviolet spectrum (UV), fluorescence spectrum, and scanning electron microscope (SEM). The hydrogen production in reverse micelles was confirmed. The Gompertz equation was employed to evaluate the hydrogen-producing behavior in reverse micellar systems. Different systems including dioctyl sulfosuccinate sodium salt (AOT)-isooctane, sodium dodecyl sulfate (SDS)-benzene and SDS-carbon tetrachloride (CCl{sub 4}) reverse micelles were analysized. The results revealed that the maximum rate of hydrogen production (R{sub m}) was also suitable to formulate the relationship between hydrogen-producing rate and hydrogen productivity in reverse micelles. (author)

  10. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells

    KAUST Repository

    Kim, Y.

    2011-09-19

    There is a tremendous source of entropic energy available from the salinity difference between river water and seawater, but this energy has yet to be efficiently captured and stored. Here we demonstrate that H(2) can be produced in a single process by capturing the salinity driven energy along with organic matter degradation using exoelectrogenic bacteria. Only five pairs of seawater and river water cells were sandwiched between an anode, containing exoelectrogenic bacteria, and a cathode, forming a microbial reverse-electrodialysis electrolysis cell. Exoelectrogens added an electrical potential from acetate oxidation and reduced the anode overpotential, while the reverse electrodialysis stack contributed 0.5-0.6 V at a salinity ratio (seawater:river water) of 50. The H(2) production rate increased from 0.8 to 1.6 m(3)-H(2)/m(3)-anolyte/day for seawater and river water flow rates ranging from 0.1 to 0.8 mL/ min. H(2) recovery, the ratio of electrons used for H(2) evolution to electrons released by substrate oxidation, ranged from 72% to 86%. Energy efficiencies, calculated from changes in salinities and the loss of organic matter, were 58% to 64%. By using a relatively small reverse electrodialysis stack (11 membranes), only ~1% of the produced energy was needed for pumping water. Although Pt was used on the cathode in these tests, additional tests with a nonprecious metal catalyst (MoS(2)) demonstrated H(2) production at a rate of 0.8 m(3)/m(3)/d and an energy efficiency of 51%. These results show that pure H(2) gas can efficiently be produced from virtually limitless supplies of seawater and river water, and biodegradable organic matter.

  11. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    Science.gov (United States)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  12. Formation of polyol-fatty acid esters by lipases in reverse micellar media.

    Science.gov (United States)

    Hayes, D G; Gulari, E

    1992-06-05

    The synthesis of polyol-fatty acid esters has strong implications in such industries as foods, cosmetics, and polymers. We have investigated these esterification reactions employing the polyols ethylene glycol, 2-monoglyceride, and sugars and their derivatives with the biocatalyst lipase in water/AOT/isooctane reverse micellar media. For the first reaction, 50-60% conversion was achieved and product selectivity toward the monoester over the diester shown possible by employing lipase from Rhizopus delemar. A simple kinetic model based on the formation of acyl-enzyme intermediate accurately predicted the effect of polyol concentration but not the effect of fatty acid or water concentration probably due to the model exclusion of partitioning effects. The success of this reaction in reverse micellar media is due greatly to its capacity to solubilize large quantities of glycol despite the media's overall hydrophobicity. The second reaction, investigated for its potential for production of "mixed" glycerides, also achieved about 50% conversion but had only a small portion of triglyceride in its product distribution. Also, isomerization of the 2-monoglyceride to 1-monoglyceride, followed by hydrolysis of the latter, unfortunately occurred to a significant extent. Attempts at esterification with hexoses and their derivatives such as glucose and mannitol produced no conversion.

  13. Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters

    Science.gov (United States)

    This study was undertaken to solve the problem of removal of sulfate and silica from solutions of natural organic matter (NOM) that have been pre-concentrated by reverse osmosis. The goal is the development of a method by which NOM can be concentrated and desalted to obtain a low...

  14. CTAB/water/chloroform reverse micelles: a closed or open association model?

    Czech Academy of Sciences Publication Activity Database

    Klíčová, L.; Šebej, P.; Štacko, P.; Filippov, Sergey K.; Bogomolova, Anna; Padilla, M.; Klán, P.

    2012-01-01

    Roč. 28, č. 43 (2012), s. 15185-15192 ISSN 0743-7463 R&D Projects: GA ČR GAP108/12/0640 Institutional support: RVO:61389013 Keywords : CTAB * reverse micelles * AFM Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.187, year: 2012

  15. Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.

    Science.gov (United States)

    Jayasooriya, Upali A; Clayden, Nigel J; Steytler, David C; Oganesyan, Vasily S; Peck, Jamie N T; Khasanov, Rustem; Scheuermann, Robert; Stoykov, Alexey

    2016-01-26

    The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit.

  16. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant.

    Science.gov (United States)

    Rodriguez-Mozaz, Sara; Ricart, Marta; Köck-Schulmeyer, Marianne; Guasch, Helena; Bonnineau, Chloe; Proia, Lorenzo; de Alda, Miren Lopez; Sabater, Sergi; Barceló, Damià

    2015-01-23

    Water reuse is becoming a common practice in several areas in the world, particularly in those impacted by water scarcity driven by climate change and/or by rising human demand. Since conventional wastewater treatment plants (WWTPs) are not able to efficiently remove many organic contaminants and pathogens, more advanced water treatment processes should be applied to WWTP effluents for water reclamation purposes. In this work, a pilot plant based on microfiltration (MF) followed by reverse osmosis (RO) filtration was applied to the effluents of an urban WWTP. Both the WWTP and the pilot plant were investigated with regards to the removal of a group of relevant contaminants widely spread in the environment: 28 pharmaceuticals and 20 pesticides. The combined treatment by the MF-RO system was able to quantitatively remove the target micropollutants present in the WWTP effluents to values either in the low ng/L range or below limits of quantification. Monitoring of water quality of reclaimed water and water reclamation sources is equally necessary to design the most adequate treatment procedures aimed to water reuse for different needs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Nanostructured Titanium Oxide Film- And Membrane-Based Photocatalysis For Water Treatment

    Science.gov (United States)

    Titanium Oxide (TiO2) photocatalysis, one of the ultraviolet (UV)-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness ...

  18. Health, Sanitary and Economic Evaluation of Home-like Systems of Water Treatment (Reverse Osmosis, RO in Qom City

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jafaripour

    2011-07-01

    Full Text Available Reverse Osmosis (RO is one of the most useful techniques to improve the elimination of organic and mineral Substances from ground and surface water after primary purification processes such as coagulation, sedimentation and filtration.This System provides the required water quality characteristics to somehow.  However, in selection RO systems civil management decision and general public opinion along with cost and health impact must be considered. This study was done in 2010. Statistical methods have used to gather data about of families who used RO In their private homes and mode of eliminate of the wastewater generated by this process. The results indicated that in the normal operational conditions such as pressure 6- 10 kg / cm2 the, optimum recovery % 30 and flow rate 1lit/min , and water temperature 4- 38C°, an Amount of 14191200 kwh of power energy have been consumed to produce 157680 m3 / year treated water required for 36000 families. This has also generated 367920 m3 / year of wastewater being disposed without any management and environmental considerations. Apart from that more than 198000 of filters have been ejected to the environment. Also regarding health aspects, reducing the hardness and fluoride levels in treated water could be undesirable. It could be concluded that increasing the number of local water distribution points and speeding up the water supplying project from Dez river toQom can decrease the investment on RO system.

  19. Description and validation of an AOT product over land at the 0.6 μm channel of the SEVIRI sensor onboard MSG

    Directory of Open Access Journals (Sweden)

    E. Bernard

    2011-11-01

    Full Text Available The Spinning Enhanced Visible and InfraRed Imager (SEVIRI aboard Meteosat Second Generation (MSG launched in 2003 by EUMETSAT is dedicated to the Nowcasting applications and Numerical Weather Prediction and to the provision of observations for climate monitoring and research. We use the data in visible and near infrared (NIR channels to derive the aerosol optical thickness (AOT over land. The algorithm is based on the assumption that the top of the atmosphere (TOA reflectance increases with the aerosol load. This is a reasonable assumption except in case of absorbing aerosols above bright surfaces. We assume that the minimum in a 14-days time series of the TOA reflectance is, once corrected from gaseous scattering and absorption, representative of the surface reflectance. The AOT and the aerosol model (a set of 5 models is used, are retrieved by matching the simulated TOA reflectance with the TOA reflectances measured by SEVIRI in its visible and NIR spectral bands.

    The high temporal resolution of the data acquisition by SEVIRI allows to retrieve the AOT every 15 min with a spatial resolution of 3 km at sub-satellite point, over the entire SEVIRI disk covering Europe, Africa and part of South America. The resulting AOT, a level 2 product at the native temporal and spatial SEVIRI resolutions, is presented and evaluated in this paper.

    The AOT has been validated using ground based measurements from AErosol RObotic NETwork (AERONET, a sun-photometer network, focusing over Europe for 3 months in 2006. The SEVIRI estimates correlate well with the AERONET measurements, r = 0.64, with a slight overestimate, bias = −0.017. The sources of errors are mainly the cloud contamination and the bad estimation of the surface reflectance. The temporal evolutions exhibited by both datasets show very good agreement which allows to conclude that the AOT Level 2 product from SEVIRI can be used to quantify the aerosol content and to monitor

  20. A study of reverse osmosis applicability to light water reactor radwaste processing. Technical report

    International Nuclear Information System (INIS)

    Markind, J.; Van Tran, T.

    1979-04-01

    The use of membrane technology has demonstrated significant process potential in nuclear radioactive waste applications. Reverse osmosis and ultrafiltration can provide filtration capability without the need of filter aids, minimize the requirements of chemical regeneration and/or disposal of expensive resins and can preconcentrate wastes without requiring major process equipment with large auxiliary heat supplies. Because of these capabilities, a study was undertaken to review, evaluate and document the existing experience, both nuclear and appropriate non-nuclear, of the membrane industry as it applies to the processing of reactor radwaste by membrane technology and, in particular, reverse osmosis and ultrafiltration. Relevant information was collected from both the literature and extensive communications with users and suppliers of membrane equipment. The systems reviewed ranged from experimental laboratory units to full scale process units

  1. Synthesis by reverse microemulsion of nano structured ferrite to be utilized in hydrogen production by water

    International Nuclear Information System (INIS)

    Bellusci, M.; Annunziatini, C.; Alvani, C.; Colella, C.; La Barbera, A.; Padella, F.; Seralessandri, L.

    2005-10-01

    Micelle and reverse micelle microemulsions can be favourably utilized in producing nano sized particles. The paper reports a general description of microemulsions systems, as well as their application in materials synthesis. By using one of the described methods, nano structured manganese ferrite, to be utilized in hydrogen production. was synthesized and the produced material was characterized in terms of morphological, microstructure and thermal properties [it

  2. Improved hydrogen production by coupled systems of hydrogenase negative photosynthetic bacteria and fermentative bacteria in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anita [Centre for Biotechnology, University of Allahabad, Allahabad 211002 (India); Misra, Krishna [Indo-Russian Center for Bioinformatics, Indian Institute of Information Technology, Allahabad 211011 (India)

    2008-11-15

    Significant improvement in biological hydrogen production is achieved by the use of coupled bacterial cells in reverse micellar systems. Two coupled systems (a) Rhodopseudomonas palustris CGA009/Citrobacter Y19, and (b) Rhodobacter sphaeroides 2.4.1/Citrobacter Y19 bacteria have been immobilized separately in aqueous pool of the reverse micelles fabricated by various surfactants (AOT, CBAC and SDS) and apolar organic solvents (benzene and isooctane). The gene for uptake hydrogenase enzyme has been manipulated further for hydrogen generation. Mutants deficient in uptake hydrogenase (Hup{sup -}) were obtained from R. palustris CGA009 and R. sphaeroides 2.4.1, and entrapped with Citrobacter Y19 in the reverse micellar systems. More than two fold increase in hydrogen production was obtained by the use of Hup{sup -} mutants instead of wild-type photosynthetic bacteria together with Citrobacter Y19. Addition of sodium dithionite, a reducing agent to AOT/H{sub 2}O/isooctane reverse micellar system with the coupled systems of wild-type photosynthetic bacteria and fermentative bacterium Y19 effected similar increase in hydrogen production rate as it is obtained by the use of mutants. CBAC/H{sub 2}O/isooctane reverse micellar system is used for the first time for hydrogen production and is as promising as AOT/H{sub 2}O/isooctane reverse micellar system. All reverse micellar systems of coupled bacterial cultures gave encouraging hydrogen production (rate as well as yield) compared to uncoupled bacterial culture. (author)

  3. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane

    Directory of Open Access Journals (Sweden)

    Amine Mnif

    2017-01-01

    Full Text Available Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ, and the solute permeability coefficient (Ps. The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution.

  4. Ambiphilic Frustrated Lewis Pair Exhibiting High Robustness and Reversible Water Activation: Towards the Metal-Free Hydrogenation of Carbon Dioxide

    OpenAIRE

    Rochette, Étienne; Courtemanche, Marc-André; Pulis, Alexander; Bi, Wenhua; Fontaine, Frédéric-Georges

    2015-01-01

    The synthesis and structural characterization of a phenylene-bridged Frustrated Lewis Pair (FLP) having a 2,2,6,6‑tetramethylpiperidine (TMP) as the Lewis base and a 9-borabicyclo[3.3.1]nonane (BBN) as the Lewis acid is reported. This FLP exhibits unique robustness towards the products of carbon dioxide hydrogenation. The compound shows reversible splitting of water, formic acid and methanol while no reaction is observed in the presence of excess formaldehyde. The molecule is incredibly robus...

  5. A floating cogeneration system using the Russian KLT-40 reactor and Canadian reverse osmosis water purification technology

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.

    1997-01-01

    As the global consumption of water increases with growing populations and rising levels of industrialization, major new sources of potable water production must be developed. To address this issue efficiently and economically, a new approach has been developed in Canada for the integration of reverse osmosis (RO) desalination systems with nuclear reactors as an energy source. The use of waste heat from the electrical generation process to preheat the RO feedwater, advanced feedwater pre-treatment and sophisticated system design integration and optimization techniques have led to improved water production efficiency, lower water production costs and reduced environmental impacts. CANDESAL Inc., has studied the use of its approach to the application of RO technology in the Russian APWS-80 floating nuclear desalination plant. Case studies show that water production efficiently improvements up to about 16% can be achieved. The energy consumed for the CANDESAL optimized APWS-80 design configuration is 4.2 kW·h/m 3 compared to the base APWS-80 design value of 4.9 kW·h/m 3 . Although only a preliminary study, these results suggest that significant improvements in the cost of water production can be achieved. The potential benefits warrant further detailed evaluation followed by a demonstration project. (author). 1 ref., 6 figs, 2 tabs

  6. Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO Hybrids: A Critical Review

    Directory of Open Access Journals (Sweden)

    Gaetan Blandin

    2016-07-01

    Full Text Available Forward osmosis (FO is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application and water management challenges (proximity of wastewater and desalination plants, FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

  7. Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO) Hybrids: A Critical Review

    Science.gov (United States)

    Blandin, Gaetan; Verliefde, Arne R.D.; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre

    2016-01-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling. PMID:27376337

  8. Efficiently Combining Water Reuse and Desalination through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review.

    Science.gov (United States)

    Blandin, Gaetan; Verliefde, Arne R D; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre

    2016-07-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

  9. Unmanned Water Craft Identification and Adaptive Control in Low-Speed and Reversing Regions

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Galeazzi, Roberto; Blanke, Mogens

    2013-01-01

    This paper treats L1 adaptive hovering control of an unmanned surface vehicle in a station-keeping mode where a region of zero control authority and under-actuation are main challenges. Low-speed and reversing dynamics are identied from full scale sea trials, and parameter uncertainty is estimated....... With signicant parameter variation, an L1 adaptive controller is employed for heading control. The L1 family of controllers allows for several topologies and an architecture is suggested that suits heading control of a vessel, the requirements of which dier from that of previous L1 literature. The control design...

  10. Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering

    DEFF Research Database (Denmark)

    Arleth, L.; Pedersen, J.S.

    2001-01-01

    . Conductivity measurements show that there is a pronounced dependence of the temperature behavior of the microemulsion on the type of alkane used. In both cases the microemulsion droplets start to form larger aggregates when the temperature increases. But in the system with decane this aggregation temperature...... occurs at a temperature about 10 degreesC lower than in a similar system with iso-octane. Aggregation phenomena are avoided and the two systems are at approximately the same reduced temperature with respect to the aggregation temperature when the temperature of the AOT/D2O/decane microemulsion is 10...... degreesC and the temperature of the AOT/D2O/iso-octane microemulsion is 20 degreesC. Contrast variation small-angle neutron scattering measurements are performed at these temperatures on systems with volume fractions of 5% D2O+AOT by varying the scattering length density of the alkane. The small...

  11. The influence of water flow (reversal) on bond strength development in young masonry

    NARCIS (Netherlands)

    Groot, C.; Larbi, J.

    1999-01-01

    Water loss from the fresh mortar is believed to be related to mortar-brick bond strength development in masonry. Recent research on mortar-brick bond has shown that, particularly, effects of water flow on the composition and the hydration conditions of the mortar-brick interface have to be taken

  12. EPR lineshapes and dynamics of TEMPOL solubilized in the aqueous microphase of lecithin/cyclohexane/water reverse micelles

    Science.gov (United States)

    Ilangovan, U.; Raghunathan, P.

    1996-12-01

    EPR spectral lineshapes of the spin probe TEMPOL(4-hydroxy-2,2,6,6- tetramethyl-1-piperidinyl-1-oxyl), dissolved in the aqueous microphase of egg-yolk lecithin/cyclohexane/water reverse micelles, have been studied as a function of the water/lecithin molar ration, R. Although the spectral profiles reveal in general that the spin probe undergoes a 'fast' reorientational motion in the aqueous phase, the actual lineshapes are found to be non-Lorentzian. It is shown that, for an accurate lineshape analysis, the motion-dependent Lorentzian linewidths have to be convoluted with an appropriate motion-invariant Gaussian broadening factor representing unresolved isotropic superhyperfine interactions. Fast reorientational correlation times (τ), assessed from our iterative lineshape fitting procedure, span the range from 6.0 × 10 -10 to 3.0 × 10 -10 s as the R-value is increased.

  13. Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control.

    Science.gov (United States)

    Kazner, C; Jamil, S; Phuntsho, S; Shon, H K; Wintgens, T; Vigneswaran, S

    2014-01-01

    While high quality water reuse based on dual membrane filtration (membrane filtration or ultrafiltration, followed by reverse osmosis) is expected to be progressively applied, treatment and sustainable management of the produced reverse osmosis concentrate (ROC) are still important issues. Forward osmosis (FO) is a promising technology for maximising water recovery and further dewatering ROC so that zero liquid discharge is produced. Elevated concentrations of organic and inorganic compounds may act as potential foulants of the concentrate desalting system, in that they consist of, for example, FO and a subsequent crystallizer. The present study investigated conditions under which the FO system can serve as concentration phase with the focus on its fouling propensity using model foulants and real ROC. Bulk organics from ROC consisted mainly of humic acids (HA) and building blocks since wastewater-derived biopolymers were retained by membrane filtration or ultrafiltration. Organic fouling of the FO system by ROC-derived bulk organics was low. HA was only adsorbed moderately at about 7% of the initial concentration, causing a minor flux decline of about 2-4%. However, scaling was a major impediment to this process if not properly controlled, for instance by pH adjustment or softening.

  14. Biofouling of reverse osmosis membranes used in river water purification for drinking purposes: analysis of microbial populations.

    Science.gov (United States)

    Chiellini, Carolina; Iannelli, Renato; Modeo, Letizia; Bianchi, Veronica; Petroni, Giulio

    2012-01-01

    Biofouling in water treatment processes represents one of the most frequent causes of plant performance decline. Investigation of clogged membranes (reverse osmosis membranes, microfiltration membranes and ultrafiltration membranes) is generally performed on fresh membranes. In the present study, a multidisciplinary autopsy of a reverse osmosis membrane (ROM) was conducted. The membrane, which was used in sulfate-rich river water purification for drinking purposes, had become inoperative after 6 months because of biofouling and was later stored for 18 months in dry conditions before analysis. SSU rRNA gene library construction, clone sequencing, T-RFLP, light microscope, and scanning electron microscope (SEM) observations were used to identify the microorganisms present on the membrane and possibly responsible for biofouling at the time of removal. The microorganisms were mainly represented by bacteria belonging to the phylum Actinobacteria and by a single protozoan species belonging to the Lobosea group. The microbiological analysis was interpreted in the context of the treatment plant operations to hypothesize as to the possible mechanisms used by microorganisms to enter the plant and colonize the ROM surface.

  15. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

    Science.gov (United States)

    Shen, Junjie; Schäfer, Andrea I

    2015-09-15

    This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 1-Monoglyceride production from lipase-catalyzed esterification of glycerol and fatty acid in reverse micelles.

    Science.gov (United States)

    Hayes, D G; Gulari, E

    1991-08-20

    Glycerol-fatty acid esterification has been conducted with lipase from R. delemar in water/AOT/isooctane reverse micellar media, with the major product being 1-monoglyceride, a useful food-emulsifier. 1,3-diglyceride was also synthesized, but to a much lesser extent. For a given set of initial conditions, the reaction productivity, measured in terms of the initial product formation rate, V(0), and the final or equilibrium concentration of product, is optimal for a particular concentration of each surfactant, fatty acid, glycerol, and water. Many of these optimal values correlate well with a "critical" region on the phase diagram. Also, results indicate lipase-catalyzed esterification stops due to the achievement of kinetic equilibrium expect for a few cases where enzyme deactivation is severe. Dynamic light scattering was employed to examine the influence of water, glycerol, and fatty acid on micellar and interfacial structure. Results from this technique indicate enzyme kinetic are linked to interfacial phenomena and the presence of substrates at the interfacial region.

  17. Thermal Conductivity of Liquid Water from Reverse Nonequilibrium Ab Initio Molecular Dynamics

    Science.gov (United States)

    Tsuchida, Eiji

    2018-02-01

    We report on a theoretical framework for calculating the thermal conductivity of liquid water from first principles with the aid of the linear scaling method. We also discuss the possibility of obtaining equilibrium properties from a nonequilibrium trajectory.

  18. Critical risk points of nanofiltration and reverse osmosis processes in water recycling applications

    OpenAIRE

    Nghiem, Long D.; Schäfer, Andrea

    2006-01-01

    NF/RO membrane filtration processes have been recognized as an important technology to facilitate water recycling. Those processes are well-proven technologies, which can be used to remove a wide range of contaminants including trace contaminants that are of particular concern in water recycling. However, risk implications in association with brine or concentrate and membrane cleaning wastewater disposal have to date not been adequately understood. This study examines the adsorption and relea...

  19. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.

    Science.gov (United States)

    Pressman, Jonathan G; McCurry, Daniel L; Parvez, Shahid; Rice, Glenn E; Teuschler, Linda K; Miltner, Richard J; Speth, Thomas F

    2012-10-15

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking water research has been limited because the selected NOM sources are atypical of most drinking water sources. The purpose of this research was to demonstrate that reconstituted NOM from a lyophilized reverse-osmosis (RO) concentrate of a typical drinking water source closely represents DBP formation in the original NOM. A preliminary experiment assessed DBP formation kinetics and yields in concentrated NOM, which demonstrated that chlorine decays faster in concentrate, in some cases leading to altered DBP speciation. Potential changes in NOM reactivity caused by lyophilization were evaluated by chlorination of lyophilized and reconstituted NOM, its parent RO concentrate, and the source water. Bromide lost during RO concentration was replaced by adding potassium bromide prior to chlorination. Although total measured DBP formation tended to decrease slightly and unidentified halogenated organic formation tended to increase slightly as a result of RO concentration, the changes associated with lyophilization were minor. In lyophilized NOM reconstituted back to source water TOC levels and then chlorinated, the concentrations of 19 of 21 measured DBPs, constituting 96% of the total identified DBP mass, were statistically indistinguishable from those in the chlorinated source water. Furthermore, the concentrations of 16 of 21 DBPs in lyophilized NOM reconstituted back to the RO concentrate TOC levels, constituting 86% DBP mass, were statistically indistinguishable from those in the RO concentrate. This study suggests that lyophilization can be used to preserve concentrated NOM without substantially altering the precursors to DBP formation. Published by Elsevier Ltd.

  20. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  1. Lyophilization and Reconstitution of Reverse-Osmosis Concentrated Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating NOM with min...

  2. Microbial community analysis of fouled reverse osmosis membranes used in water recycling

    KAUST Repository

    Ayache, C.

    2013-06-01

    Biofouling on RO membranes has major cost implications in water reclamation. In this study membranes and water samples were collected from a RO pilot-plant operated on two sites to study the differences in microbial communities in order to develop a better understanding of the biofouling. For the two sites studied, the examination of the front membrane of the first stage and the tail membrane of the second stage of the RO train using 16S rRNA gene-based molecular technique showed that bacteria were similar on both stages and no significant effect of the membrane location within the RO train on the biofilm development could be discerned. However, the comparison of the identified bacteria from membrane samples between the two sites showed that each site is specific, leading to a different composition of microbial communities. The different nutrient concentrations in the RO feed water due to the different biological pre-treatments are one potential explanation for the observed differences in the microbial communities. Seasonal variations also play a major role in the development of microbial communities as shown by the significant differences observed between the communities measured in the samples in winter and summer on the second site. The results did not show similarity between the species identified on the RO membranes and in the feed water. Hence, the relationship of microbial community between the water generated during the pre-treatment process and RO membranes is not obvious. From this study, results showed that there is an actual need to investigate the development of microbial communities on membrane surface in real conditions in order to suggest tailored solutions for biofouling control and removal. © 2013 Elsevier Ltd.

  3. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    Science.gov (United States)

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  4. Ambiphilic Frustrated Lewis Pair Exhibiting High Robustness and Reversible Water Activation: Towards the Metal-Free Hydrogenation of Carbon Dioxide.

    Science.gov (United States)

    Rochette, Étienne; Courtemanche, Marc-André; Pulis, Alexander P; Bi, Wenhua; Fontaine, Frédéric-Georges

    2015-06-29

    The synthesis and structural characterization of a phenylene-bridged Frustrated Lewis Pair (FLP) having a 2,2,6,6‑tetramethylpiperidine (TMP) as the Lewis base and a 9-borabicyclo[3.3.1]nonane (BBN) as the Lewis acid is reported. This FLP exhibits unique robustness towards the products of carbon dioxide hydrogenation. The compound shows reversible splitting of water, formic acid and methanol while no reaction is observed in the presence of excess formaldehyde. The molecule is incredibly robust, showing little sign of degradation after heating at 80 °C in benzene with 10 equiv. of formic acid for 24 h. The robustness of the system could be exploited in the design of metal-free catalysts for the hydrogenation of carbon dioxide.

  5. Ambiphilic Frustrated Lewis Pair Exhibiting High Robustness and Reversible Water Activation: Towards the Metal-Free Hydrogenation of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Étienne Rochette

    2015-06-01

    Full Text Available The synthesis and structural characterization of a phenylene-bridged Frustrated Lewis Pair (FLP having a 2,2,6,6‑tetramethylpiperidine (TMP as the Lewis base and a 9-borabicyclo[3.3.1]nonane (BBN as the Lewis acid is reported. This FLP exhibits unique robustness towards the products of carbon dioxide hydrogenation. The compound shows reversible splitting of water, formic acid and methanol while no reaction is observed in the presence of excess formaldehyde. The molecule is incredibly robust, showing little sign of degradation after heating at 80 °C in benzene with 10 equiv. of formic acid for 24 h. The robustness of the system could be exploited in the design of metal-free catalysts for the hydrogenation of carbon dioxide.

  6. The Impact of Integrated Aquifer Storage and Recovery and Brackish Water Reverse Osmosis (ASRRO on a Coastal Groundwater System

    Directory of Open Access Journals (Sweden)

    Steven Eugenius Marijnus Ros

    2017-04-01

    Full Text Available Aquifer storage and recovery (ASR of local, freshwater surpluses is a potential solution for freshwater supply in coastal areas, as is brackish water reverse osmosis (BWRO of relatively shallow groundwater in combination with deeper membrane concentrate disposal. A more sustainable and reliable freshwater supply may be achieved by combining both techniques in one ASRRO system using multiple partially penetrating wells (MPPW. The impact of widespread use of ASRRO on a coastal groundwater system was limited based on regional groundwater modelling but it was shown that ASRRO decreased the average chloride concentration with respect to the autonomous scenario and the use of BWRO. ASRRO was successful in mitigating the local negative impact (saltwater plume formation caused by the deep disposal of membrane concentrate during BWRO. The positive impacts of ASRRO with respect to BWRO were observed in the aquifer targeted for ASR and brackish water abstraction (Aquifer 1, but foremost in the deeper aquifer targeted for membrane concentrate disposal (Aquifer 2. The formation of a horizontal freshwater barrier was found at the top of both aquifers, reducing saline seepage. The disposal of relatively fresh concentrate in Aquifer 2 led to brackish water outflow towards the sea. The net abstraction in Aquifer 1 enforced saltwater intrusion, especially when BWRO was applied. The conclusion of this study is that ASRRO can provide a sustainable alternative for BWRO.

  7. Case Study of a Small Scale Reverse Osmosis System for Treatment of Mixed Brackish Water and STP Effluent

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2017-04-01

    Full Text Available A case study on utilizing reverse osmosis (RO technology to fulfill fresh water needs at a mall and a hotel has been done on Bali Island, Indonesia. A mix of brackish water and sewage treatment plant (STP effluent was used as feed water in the RO system. The system used 36 membrane elements (CSM RE 8040 BLN arranged into two stages: 8 pressure vessels (PVs in the first stage and 4 PVs in the second stage, each loaded with 3 membranes. The objectives of this research were to assess the cleaning effectivity in the plant, to evaluate the cleaning of 1 membrane element using a CIP system, and to assess the use of the membrane for filtration in the pre-treatment system. SEM and FTIR analysis indicated that the foulants on the membrane surface were dominated by organic foulants and inorganic deposits. To clean the discarded membrane the proposed method used NaOH solution (pH 12 and pH 13 and citric acid (pH 2 and pH 3. All membranes displayed a dramatic decline in rejection of about 80%. Based on the rejection tests of SO42-, Cl-, turbidity reduction approached 100%. It can be concluded that an RO membrane that has undergone selectivity decline can be re-used as a filtration membrane in the pre-treatment system.

  8. Study of bicontinuous phase in (TTAB+pentanol)/water/n-octane reverse micellar system using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Singh, K Chandramani; Yadav, R; Khani, P H

    2013-01-01

    A phase diagram of (TTAB+pentanol)/water/n-octane has been mapped by using optical method. It exhibits a reverse micellar (L 2 ) phase extending over a wide range of concentrations of the constituents. To investigate the fine structure of the L 2 phase, a series of (TTAB+pentanol)/n-octane ternary mixtures having initial concentrations of (TTAB+pentanol) (1:1) in n-octane as 35%, 50% and 65% by weight were prepared. In each of these mixtures, positron lifetime measurements were performed as a function of the concentration of water, using a standard lifetime spectrometer. At water concentrations of 11.8%, 8.5% and 8.4% by weight respectively for the above systems, the o-Ps pick-off lifetime τ 3 shows an oscillatory behaviour while I 3 representing the Ps formation exhibits an abrupt change. These changes in the positron annihilation parameters have been explained on the basis of onset of bicontinuity in the microemulsion phase. The positron annihilation technique thus suggests the existence of droplet-like and bicontinuous structures in the L 2 phase which is otherwise considered optically to be a single phase as the system remains clear and isotropic throughout this phase. Supporting evidence has been provided by the electrical conductivity measurements performed in these systems. These results are presented in this paper.

  9. Stronger sexual selection in warmer waters: the case of a sex role reversed pipefish.

    Directory of Open Access Journals (Sweden)

    Nuno M Monteiro

    Full Text Available In order to answer broader questions about sexual selection, one needs to measure selection on a wide array of phenotypic traits, simultaneously through space and time. Nevertheless, studies that simultaneously address temporal and spatial variation in reproduction are scarce. Here, we aimed to investigate the reproductive dynamics of a cold-water pipefish simultaneously through time (encompassing variation within each breeding cycle and as individuals grow and space (by contrasting populations experiencing distinct water temperature regimes in order to test hypothesized differences in sexual selection. Even though the sampled populations inhabited locations with very different water temperature regimes, they exhibited considerable similarities in reproductive parameters. The most striking was the existence of a well-defined substructure in reproductive activity, where larger individuals reproduce for longer periods, which seemed dependent on a high temperature threshold for breeding rather than on the low temperatures that vary heavily according to latitude. Furthermore, the perceived disparities among populations, such as size at first reproduction, female reproductive investment, or degree of sexual size dimorphism, seemed dependent on the interplay between seawater temperature and the operational sex ratio (OSR. Contrary to our expectations of an enhanced opportunity for sexual selection in the north, we found the opposite: higher female reproductive investment coupled with increased sexual size dimorphism in warmer waters, implying that a prolonged breeding season does not necessarily translate into reduced sexual selection pressure. In fact, if the limited sex has the ability to reproduce either continuously or recurrently during the entire breeding season, an increased opportunity for sexual selection might arise from the need to compete for available partners under strongly biased OSRs across protracted breeding seasons. A more general

  10. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation

    Science.gov (United States)

    Ponton, Fleur; Lefèvre, Thierry; Guerin, Patrick M.; Lebarbenchon, Camille; Duneau, David; Biron, David G.; Thomas, Frédéric

    2011-01-01

    One of the most fascinating examples of parasite-induced host manipulation is that of hairworms, first, because they induce a spectacular “suicide” water-seeking behavior in their terrestrial insect hosts and, second, because the emergence of the parasite is not lethal per se for the host that can live several months following parasite release. The mechanisms hairworms use to increase the encounter rate between their host and water remain, however, poorly understood. Considering the selective landscape in which nematomorph manipulation has evolved as well as previously obtained proteomics data, we predicted that crickets harboring mature hairworms would display a modified behavioral response to light. Since following parasite emergence in water, the cricket host and parasitic worm do not interact physiologically anymore, we also predicted that the host would recover from the modified behaviors. We examined the effect of hairworm infection on different behavioral responses of the host when stimulated by light to record responses from uninfected, infected, and ex-infected crickets. We showed that hairworm infection fundamentally modifies cricket behavior by inducing directed responses to light, a condition from which they mostly recover once the parasite is released. This study supports the idea that host manipulation by parasites is subtle, complex, and multidimensional. PMID:22476265

  11. Reversible redox reaction and water configuration on a positively charged platinum surface: first principles molecular dynamics simulation.

    Science.gov (United States)

    Ikeshoji, Tamio; Otani, Minoru; Hamada, Ikutaro; Okamoto, Yasuharu

    2011-12-07

    The water dissociation reaction and water molecule configuration on a positively charged platinum (111) surface were investigated by means of first principles molecular dynamics under periodic boundary conditions. Water molecules on the Pt surface were mostly in the O-down orientation but some H-down structures were also found. OH(-) ion, generated by removing H from H(2)O in the bulk region, moved to the Pt surface, on which a positive charge is induced, by a Grotthuss-like proton-relay mechanism and adsorbed on it as OH(Pt). Hydrogen atom exchange between OH(Pt) and a near-by water molecule frequently occurred on the Pt surface and had a low activation energy of the same order as room temperature energy. When a positive charge (7 μC cm(-2)) was added to the Pt surface, H(3)O(+) and OH(Pt) were generated from 2H(2)O on the Pt. This may be coupled with an electron transfer to the Pt electrode [2H(2)O → H(3)O(+) + OH(Pt) + e(-)]. The opposite reaction was also observed on the same charged surface during a simulation of duration about 10 ps; it is a reversible redox reaction. When further positive charge (14 μC cm(-2)) was added, the reaction shifted to the right hand side completely. Thus, this one-electron transfer reaction, which is a part of the oxygen electrode reaction in fuel cells and water electrolysis, was confirmed to be a low activation energy process.

  12. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training

    Science.gov (United States)

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190

  13. Simultaneous Hydrogen Sulphide and Carbon Dioxide Removal from Biogas by Water-Swollen Reverse Osmosis Membrane

    Czech Academy of Sciences Publication Activity Database

    Dolejš, Petr; Poštulka, Václav; Sedláková, Zuzana; Jandová, Věra; Vejražka, Jiří; Esposito, E.; Jansen, J.C.; Izák, Pavel

    2014-01-01

    Roč. 131, JUN 27 (2014), s. 108-116 ISSN 1383-5866 R&D Projects: GA ČR GAP106/10/1194; GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk LH14006; GA MŠk(CZ) 7C11009; GA MŠk(CZ) LD13018 Grant - others:RFCS(XE) RFCRCT-2010-00009; PONRC(IT) PON01_01840 Institutional support: RVO:67985858 Keywords : agro-biogas upgrading * biomethane * water vapour Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.091, year: 2014

  14. DO3SE model applicability and O3 flux performance compared to AOT40 for an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma').

    Science.gov (United States)

    Assis, Pedro I L S; Alonso, Rocío; Meirelles, Sérgio T; Moraes, Regina M

    2015-07-01

    Phytotoxic ozone (O3) levels have been recorded in the Metropolitan Region of São Paulo (MRSP). Flux-based critical levels for O3 through stomata have been adopted for some northern hemisphere species, showing better accuracy than with accumulated ozone exposure above a threshold of 40 ppb (AOT40). In Brazil, critical levels for vegetation protection against O3 adverse effects do not exist. The study aimed to investigate the applicability of O3 deposition model (Deposition of Ozone for Stomatal Exchange (DO3SE)) to an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma') under the MRSP environmental conditions, which are very unstable, and to assess the performance of O3 flux and AOT40 in relation to O3-induced leaf injuries. Stomatal conductance (g s) parameterization for 'Paluma' was carried out and used to calculate different rate thresholds (from 0 to 5 nmol O3 m(-2) projected leaf area (PLA) s(-1)) for the phytotoxic ozone dose (POD). The model performance was assessed through the relationship between the measured and modeled g sto. Leaf injuries were analyzed and associated with POD and AOT40. The model performance was satisfactory and significant (R (2) = 0.56; P < 0.0001; root-mean-square error (RMSE) = 116). As already expected, high AOT40 values did not result in high POD values. Although high POD values do not always account for more injuries, POD0 showed better performance than did AOT40 and other different rate thresholds for POD. Further investigation is necessary to improve our model and also to check if there is a critical level of ozone in which leaf injuries arise. The conclusion is that the DO3SE model for 'Paluma' is applicable in the MRSP as well as in temperate regions and may contribute to future directives.

  15. Oilfield water treatment by electrocoagulation-reverse osmosis for agricultural use: effects on germination and early growth characteristics of sunflower.

    Science.gov (United States)

    de Souza, Paulo S A; Cerqueira, Alexandre A; Rigo, Michelle M; de Paiva, Julieta L; Couto, Rafael S P; Merçon, Fábio; Perez, Daniel V; Marques, Monica R C

    2017-05-01

    This study aims to evaluate the effects of oilfield water (OW), treated by a hybrid process of electrocoagulation and reverse osmosis (EC-RO), on seed germination and early growth characteristics of sunflower (Heliantus annus L.). In the EC step, tests were conducted with 28.6 A m -2 current density and 4 min. reaction time. In the RO step, the system was operated with 1 L min -1 constant flow and 2 MPa, 2.5 MPa and 3 MPa feed pressures. In all feed pressures, RO polymeric membranes achieved very high removals of chemical oxygen demand (up to 89%) and oils and greases (100%) from EC-treated effluent. In best feed pressure (2.5 MPa), turbidity, total dissolved salts, electrical conductivity, salinity, toxic ions and sodium adsorption ratio values attained internationally recognized standards for irrigation water. Using EC-RO (feed pressure:2.5 MPa) treated OW, germinated sunflower seeds percentage (86 ± 6%), speed of germination (30 ± 2) and biomass production (49 ± 5 mg) were statistically similar to control (distilled water) results. Vigor index average values obtained using OW treated by EC-RO (3871)were higher than that obtained by OW water treated by EC (3300). The results of this study indicate that EC-RO seems to be a promising alternative for treatment of OW aiming sunflower crops irrigation, since the use of this treated effluent did not affect adversely seed germination and seedling development, and improved seedling vigor. Furthermore, OW treatment by EC-RO reduces sodium levels into acceptable standards values avoiding soil degradation.

  16. Determination of appropriate exposure angles for the reverse water's view using a head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Su; Lee, Keun Ohk [Dept. of Radiology, Soonchunhyang University Hospital, Bucheon (Korea, Republic of); Choi, Jae Ho [Dept. of Radiological Technology, Ansan University, Ansan (Korea, Republic of); Jung, Jae Hong [Dept. of Biomedical Engineering, College of Medicine, The Catholic University, Seoul (Korea, Republic of)

    2017-06-15

    Early diagnosis for upper facial trauma is difficult by using the standard Water's view (S-Water's) in general radiograph due to overlapping of anatomical structures, the uncertainty of patient positioning, and specific patients with obese, pediatric, old, or high-risk. The purpose of this study was to analyze appropriate exposure angles through a comparison of two different protocols (S-Water's vs. reverse Water's view (R-Water's)) by using a head phantom. A head phantom and general radiograph with 75 kVp, 400 mA, 45 ms 18 mAs, and SID 100 cm. Images of R-Water's were obtained by different angles in the range of 0 degree to 50 degrees, which adjusted an angle at 1 degree interval in supine position. Survey elements were developed and three observers were evaluated with four elements including the maxillary sinus, zygomatic arch, petrous ridge, and image distortion. Statistical significant analysis were used the Krippendorff's alpha and Fleiss' kappa. The intra-class correlation (ICC) coefficient for three observers were high with maxillary, 0.957 (0.903, 0.995); zygomatic arch, 0.939 (0.866, 0.987); petrous ridge, 0.972 (0.897, 1.000); and image distortion, 0.949 (0.830, 1.000). The high-quality image (HI) and perfect agreement (PA) for acquired exposure angles were high in range of the maxillary sinus (36 degrees – 44 degrees), zygomatic arch (33 degrees – 40 degrees), petrous ridge (32 degrees – 50 degrees), and image distortion (44 degrees– 50 degrees). Consequently, an appropriate exposure angles for the R-Water's view in the supine position for patients with facial trauma are in the from 36 degrees to 40 degrees in this phantom study. The results of this study will be helpful for the rapid diagnosis of facial fractures by simple radiography.

  17. Determination of appropriate exposure angles for the reverse water's view using a head phantom

    International Nuclear Information System (INIS)

    Lee, Min Su; Lee, Keun Ohk; Choi, Jae Ho; Jung, Jae Hong

    2017-01-01

    Early diagnosis for upper facial trauma is difficult by using the standard Water's view (S-Water's) in general radiograph due to overlapping of anatomical structures, the uncertainty of patient positioning, and specific patients with obese, pediatric, old, or high-risk. The purpose of this study was to analyze appropriate exposure angles through a comparison of two different protocols (S-Water's vs. reverse Water's view (R-Water's)) by using a head phantom. A head phantom and general radiograph with 75 kVp, 400 mA, 45 ms 18 mAs, and SID 100 cm. Images of R-Water's were obtained by different angles in the range of 0 degree to 50 degrees, which adjusted an angle at 1 degree interval in supine position. Survey elements were developed and three observers were evaluated with four elements including the maxillary sinus, zygomatic arch, petrous ridge, and image distortion. Statistical significant analysis were used the Krippendorff's alpha and Fleiss' kappa. The intra-class correlation (ICC) coefficient for three observers were high with maxillary, 0.957 (0.903, 0.995); zygomatic arch, 0.939 (0.866, 0.987); petrous ridge, 0.972 (0.897, 1.000); and image distortion, 0.949 (0.830, 1.000). The high-quality image (HI) and perfect agreement (PA) for acquired exposure angles were high in range of the maxillary sinus (36 degrees – 44 degrees), zygomatic arch (33 degrees – 40 degrees), petrous ridge (32 degrees – 50 degrees), and image distortion (44 degrees– 50 degrees). Consequently, an appropriate exposure angles for the R-Water's view in the supine position for patients with facial trauma are in the from 36 degrees to 40 degrees in this phantom study. The results of this study will be helpful for the rapid diagnosis of facial fractures by simple radiography

  18. Reverse Flow Routing in a Bayesian Framework Using a GPU-accelerated 2D Shallow Water Model

    Science.gov (United States)

    D'Oria, M.; Ferrari, A.; Mignosa, P.; Tanda, M. G.; Vacondio, R.

    2017-12-01

    Knowledge of discharge hydrographs in specific sites of natural rivers is important for water resource management, flood frequency analysis, design of structures, etc. Many times, the flood hydrograph is needed in a river section upstream of a monitoring station; here the flood wave differs from the upstream one because of the effects of resistance, channel storage, lateral inflow, etc. Reverse flow routing is a method that allows obtaining hydrographs in upstream ungauged stations using information available at downstream monitored sites. In this study, we propose an inverse procedure, based on a Bayesian Geostatistical Approach, to solve the reverse problem. The upstream flow values over time (parameters) are considered as random variables and a-priori information about the parameters and observations (downstream discharge or water level values) are combined together in a Bayesian framework. The methodology needs a forward model of the considered open channel that includes the upstream ungauged station and the downstream gauged one and it is able to describe, with sufficient accuracy, the hydraulic routing processes. In many real cases, especially when large floodable areas are involved, a 1D hydraulic model is not able to capture the complex river hydrodynamic and a 2D model must be used. The inverse procedure requires a high number of flow model run to linearize the forward problem through multiple evaluations of a Jacobian matrix (sensitivity of each observation to each parameter) using a finite difference approach. For this reason, the computational efficiency of the forward model is a crucial element to reduce the overall computational costs. Therefore, in this work we used, in combination with the inverse procedure, a GPU-parallel numerical model for the solution of the 2D Shallow Water equations (implemented in CUDA/C++ code) that allows achieving ratio of physical to computational time of about 500-1000 (depending on the test case features). In addition

  19. Removal of heavy-metal pollutants from ground water using a reverse-osmosis/coupled-transport hybrid system

    International Nuclear Information System (INIS)

    Edlund, D.J.; Friesen, D.T.; Ray, R.J.; Scholfield, R.W.

    1993-01-01

    Two membrane processes - reverse osmosis (RO) and coupled transport (CT) - are useful in removing heavy metals from aqueous solutions and producing purified water. Each process has advantages. RO produces clean water reliably and relatively inexpensively. However, the pollutants are removed nonselectively and cannot be appreciably concentrated. CT removes pollutants selectively and can concentrate them by several orders of magnitude, but CT suffers from limited reliability and performs poorly at low pollutant concentrations. By combining these two unit processes in a hybrid process, it is possible to capitalize on the advantages of each process and to minimize their disadvantages. The RO/CT hybrid process the authors are developing removes more than 98% of the uranium and chromium in a contaminated groundwater stream - reducing concentrations of each pollutant to less than 100 ppb. These pollutants are simultaneously recovered as a concentrate at metal-ion concentrations greater than 1 wt% in relatively pure form. The hybrid process promises to be reliable and to reduce treatment costs below that for costs if either CT or RO were used alone. Even more importantly, the high selectivity of the hybrid process minimizes the volume of waste requiring disposal

  20. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    Science.gov (United States)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  1. Evaluating the efficiency of different microfiltration and ultrafiltration membranes used as pretreatment for Red Sea water reverse osmosis desalination

    KAUST Repository

    Almashharawi, Samir

    2013-01-01

    Conventional processes are widely used as pretreatment for reverse osmosis (RO) desalination technology since its development. However, these processes require a large footprint and have some limitation issues such as difficulty to maintain a consistent silt density index, coagulation control at low total suspended solids, and management of higher waste sludge. Recently, there has been a rapid growth in the use of low-pressure membranes as pretreatment for RO systems replacing the conventional processes. However, despite the numerous advantages of using this integrated membrane system mainly providing good and stable water quality to RO membranes, many issues have to be addressed. The primary limitation is membrane fouling which reduces the permeate flux; therefore, higher pumping intensity is required to maintain a consistent volume of product. This paper aims to optimize the permeation flux and cleaning frequency by providing high permeate quality. Different low-pressure polyethersulfone membranes with different pore sizes ranging from 0.1 lm to 50 kDa were tested. Eight different filtration configurations have been applied including the variation of coagulant doses aiming to control membrane fouling. Results showed that all the configurations with/without coagulation, provided permeate with excellent water quality which improves the stability of RO performance. However, more stable fluxes with less-energy consumption were achieved by using the 0.1 lm and 100 kDa membranes with 1 mg/L FeCl3 coagulation. The use of UF membranes, having tight pores, without coagulation also proved to be an excellent option for Red Sea water RO pretreatment. © 2013 Desalination Publications.

  2. Forward Osmosis/Low Pressure Reverse Osmosis for Water Reuse: Removal of Organic Micropollutants, Fouling and Cleaning

    KAUST Repository

    Linares, Rodrigo

    2011-07-01

    Forward osmosis (FO) is a natural process in which a solution with high concentration of solutes is diluted when being in contact, through a semipermeable membrane, with a low concentration solution. This osmotic process has been demonstrated to be efficient to recover wastewater effluents while diluting a saline draw solution. Nevertheless, the study of the removal of micropollutants by FO is barely described in the literature. This research focuses on the removal of these substances spiked in a secondary wastewater effluent, while diluting water from the Red Sea, generating feed water that can be desalinated with a low pressure reverse osmosis (LPRO) system. Another goal of this work is to characterize the fouling of the FO membrane, and its effect on micropollutants rejection, as well as the membrane cleaning efficiency of different methods. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% to 95.2%, 48.7% to 91.5% and 96.9% to 98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity and reduced mass transport capacity, membrane swelling, and the higher negative charge of the surface, related to the foulants. However, when coupled with low pressure reverse osmosis, the rejections for both, the clean and fouled membrane, increased above 98%. The fouling layer, after characterizing the wastewater effluent and the concentrated wastewater after the FO process, proved to be composed of biopolymers, which can be removed with air scouring during short periods

  3. Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis; Residual brine treated by wet-air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kocornik, D.; Renk, R.

    1986-09-01

    Laboratory research has been conducted to evaluate the chemical, physical, and toxicological characteristics of treated and untreated water pumped from the flooded modified in situ retort at lease tract C-a. This wastewater had a total dissolved solids (TDS) content of about 5450 mg/L and a total organic carbon content of about 16 mg/L. Wet chemical analyses, metals analyses, particle-size analyses, and MICROTOX assays were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis membrane used in this research was a Filmtec model SW30-2521 spiral-wound polyamide unit. In a short duration test at a TDS of 21,800 mg/L, the reverse osmosis system successfully removed dissolved solids and organics from the wastewater. The water was also much less toxic to the MICROTOX organism after treatment by reverse osmosis. Membrane fouling was observed when water with a TDS of 54,500 mg/L was treated. Treatment of the reverse osmosis residual brine was attempted by subcritical wet-air oxidation. The brine remaining after the 170-hour test on the water with a TDS of 5450 mg/L was subjected to temperatures ranging from 204/sup 0/C (400/sup 0/F) to 315/sup 0/C (600/sup 0/F) and pressures from 500 to 1600 psig for approximately 30 minutes. The waste treated by the higher temperatures and pressures showed good removals of organics, nitrogen compounds, and some metals. The sample treated at 302/sup 0/C (575/sup 0/F) and 1300 psi was assayed for MICROTOX response and no toxicity was measured. The reverse osmosis brine was significantly toxic to the MICROTOX organism before treatment by subcritical wet-air oxidation. 14 refs., 8 figs., 14 tabs.

  4. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    Science.gov (United States)

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  5. Molecular characterization of the bacterial communities in the different compartments of a full-scale reverse-osmosis water purification plant

    NARCIS (Netherlands)

    Bereschenko, L.A.; Heilig, G.H.J.; Nederlof, M.M.; Loosdracht, van M.C.M.; Stams, A.J.M.; Euverink, G.J.W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and

  6. Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant

    NARCIS (Netherlands)

    Bereschenko, L.A.; Heilig, G.H.J.; Nederlof, M.M.; Loosdrecht, M.C.M. van; Stams, A.J.M.; Euverink, G.J.W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and

  7. Recovery of drinking water and valuable minerals from acid mine drainage using an integration of magnesite, lime, soda ash, CO(sub)2 and reverse osmosis treatment processes

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-08-01

    Full Text Available solutions, Reverse Osmosis System Analysis (ROSA), version 9.1 was used to further purify the resultant water to meet the drinking quality standards as required by the South African National Standard (SANS) report (SANS 241). The obtained results revealed...

  8. Development of a simplified treatment for measuring tritium concentration in the environmental water. Removal of dissolved ions by reverse osmosis membrane for electrolysis enrichment

    International Nuclear Information System (INIS)

    Koganezawa, Takayuki; Iida, Takao; Ogata, Yoshimune; Tsuji, Naruhito; Kakiuchi, Masahisa; Satake, Hiroshi; Yamanishi, Hirokuni; Sakuma, Yoichi

    2004-01-01

    An apparatus for tritium enrichment by electrolysis using solid polymer electrolyte was recently developed. The apparatus has the advantage that is to be electrolyzed without adding electrolyte to the sample water. The new treatment both being replaced the distillation process with filtration before electrolysis and being omitted the distillation process after electrolysis, was proposed. Impurities eluted by the electrolysis of ultra pure water with the device introduced no influence on tritium measurement. As alternative treatment to distillation before enrichment, micro filtration and reverse osmosis was carried out. When the sample water treated by micro filtration was electrolyzed, ions adhered both to the electrodes and the solid polymer electrolyte of the device since micro filtration cannot remove ions in the sample water. Therefore, the sample water treated by micro filtration caused some troubles in the electrolysis device. On the other hand, the sample water treated by reverse osmosis did not cause any troubles because it could remove ions. Applying the new treatment to measure some environmental waters, such as river water, resulted in an effective measurement without any influence to liquid scintillation counting. The results proved that a period of the pretreatment process of the water sample could be decreased from about 2 days to about 1.5 hours by applying the proposed treatment. A simplified treatment on the procedure of electrolysis enrichment was established for tritium measurements in the environmental water samples via liquid scintillation counting. (author)

  9. Photoreactive surfactants: a facile and clean route to oxide and metal nanoparticles in reverse micelles.

    Science.gov (United States)

    de Oliveira, Rodrigo J; Brown, Paul; Correia, Gemima B; Rogers, Sarah E; Heenan, Richard; Grillo, Isabelle; Galembeck, André; Eastoe, Julian

    2011-08-02

    A new class of photoreactive surfactants (PRSs) is presented here, consisting of amphiphiles that can also act as reagents in photochemical reactions. An example PRS is cobalt 2-ethylhexanoate (Co(EH)(2)), which forms reverse micelles (RMs) in a hydrocarbon solvent, as well as mixed reversed micelles with the standard surfactant Aerosol-OT (AOT). Small-angle neutron scattering (SANS) data show that mixed AOT/PRS RMs have a spherical structure and size similar to that of pure AOT micelles. Excitation of the ligand-to-metal charge transfer (LMCT) band in the PRSs promotes electron transfer from PRS to associated metal counterions, leading to the generation of metal and metal-oxide nanoparticles inside the RMs. This work presents proof of concept for employing PRSs as precursors to obtain nearly monodisperse inorganic nanoparticles: here both Co(3)O(4) and Bi nanoparticles have been synthesized at high metal concentration (10(-2) M) by simply irradiating the RMs. These results point toward a new approach of photoreactive self-assembly, which represents a clean and straightforward route to the generation of nanomaterials.

  10. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    Science.gov (United States)

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  11. The acetonitrile shortage: is reversed HILIC with water an alternative for the analysis of highly polar ionizable solutes?

    Science.gov (United States)

    dos Santos Pereira, Alberto; David, Frank; Vanhoenacker, Gerd; Sandra, Pat

    2009-06-01

    In hydrophilic interaction chromatography (HILIC), best results are obtained with high concentrations of ACN. In the framework of green chromatography and the present shortage and very high price of this hazardous solvent, reversing the stationary phase to apolar and the mobile phase to aqueous can be of interest for several applications. The features of the aqueous RP technique called per aqueous LC (PALC) are illustrated with the analysis of catecholamines, nucleobases, acids, and amino acids. The ca. three-fold higher viscosity of water compared to ACN has consequences on the shape of the Van Deemter plot. For dopamine (N = 26.450 on a 25 cm x 4.6 mm id, 5 microm bare silica column), a reduced plate height of 1.9 at an u(opt) of 0.3 mm/s was calculated. The plate number, however, strongly depends on pH and ionic strength. As in RP separations, retention is shortened by adding an organic modifier. In the framework of green chromatography, the biodegradable ethanol was used. On the other hand, retention increased by lengthening the carbon chain of ion-pair reagents supporting the RP mechanism as well.

  12. Use of CuNi/YSZ and CuNi/SDC Catalysts for the Reverse Water Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Maxime Lortie

    2015-01-01

    Full Text Available Cu50Ni50 nanoparticles were synthesized using a modified polyol method and deposited on samarium-doped ceria, SDC, and yttria-stabilized zirconia, YSZ, supports to form reverse water-gas shift, RWGS, catalysts. The best CO yields, obtained with the Cu50Ni50/SDC catalyst, were about 90% of the equilibrium CO yields. In contrast CO yields using Pt/SDC catalysts were equal to equilibrium CO yields at 700°C. Catalyst selectivity to CO was 100% at hydrogen partial pressures equal to CO2 partial pressures, 1 kPa, and decreased as methane was formed when the hydrogen partial pressure was 2 kPa or greater. The reaction results were explained using a combination of Eley-Rideal and Langmuir-Hinshelwood mechanisms that involved adsorption on the metal surface and the concentration of oxygen vacancies in the support. Finally the Cu50Ni50/SDC catalyst was found to be thermally stable for 48 hours at 600/700°C.

  13. Reversible Monolayer-Bilayer Transition in Supported Phospholipid LB Films under the Presence of Water: Morphological and Nanomechanical Behavior.

    Science.gov (United States)

    Ruiz-Rincón, Silvia; González-Orive, Alejandro; de la Fuente, Jesús M; Cea, Pilar

    2017-08-01

    Mixed monolayer Langmuir-Blodgett (LB) films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (Chol) in the 1:1 ratio have been prepared onto solid mica substrates. Upon immersion in water or in an aqueous HEPES solution (pH 7.4) the monolayer LB films were spontaneously converted into well-organized bilayers leaving free mica areas. The process has been demonstrated to be reversible upon removal of the aqueous solution, resulting in remarkably free of defects monolayers that are homogeneously distributed onto the mica. In addition, the nanomechanical properties exhibited by the as-formed bilayers have been determined by means of AFM breakthrough force studies. The bilayers formed by immersion of the monolayer in an aqueous media exhibit nanomechanical properties and stability under compression analogous to those of DPPC:Chol supported bilayers obtained by other methods previously described in the literature. Consequently, the hydration of a monolayer LB film has been revealed as an easy method to produce well-ordered bilayers that mimic the cell membrane and that could be used as model cell membranes.

  14. Sterile Reverse Osmosis Water Combined with Friction Are Optimal for Channel and Lever Cavity Sample Collection of Flexible Duodenoscopes

    Directory of Open Access Journals (Sweden)

    Michelle J. Alfa

    2017-11-01

    Full Text Available IntroductionSimulated-use buildup biofilm (BBF model was used to assess various extraction fluids and friction methods to determine the optimal sample collection method for polytetrafluorethylene channels. In addition, simulated-use testing was performed for the channel and lever cavity of duodenoscopes.Materials and methodsBBF was formed in polytetrafluorethylene channels using Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Sterile reverse osmosis (RO water, and phosphate-buffered saline with and without Tween80 as well as two neutralizing broths (Letheen and Dey–Engley were each assessed with and without friction. Neutralizer was added immediately after sample collection and samples concentrated using centrifugation. Simulated-use testing was done using TJF-Q180V and JF-140F Olympus duodenoscopes.ResultsDespite variability in the bacterial CFU in the BBF model, none of the extraction fluids tested were significantly better than RO. Borescope examination showed far less residual material when friction was part of the extraction protocol. The RO for flush-brush-flush (FBF extraction provided significantly better recovery of E. coli (p = 0.02 from duodenoscope lever cavities compared to the CDC flush method.Discussion and conclusionWe recommend RO with friction for FBF extraction of the channel and lever cavity of duodenoscopes. Neutralizer and sample concentration optimize recovery of viable bacteria on culture.

  15. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

    2008-03-07

    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

  16. Reverse osmosis and ultrafiltration for recovery and reuse of larval rearing water in Anopheles arabiensis mass production: Effect of water quality on larval development and fitness of emerging adults.

    Science.gov (United States)

    Mamai, Wadaka; Hood-Nowotny, Rebecca; Maiga, Hamidou; Ali, Adel Barakat; Bimbile-Somda, Nanwintoun S; Soma, Diloma Dieudonné; Yamada, Hanano; Lees, Rosemary Susan; Gilles, Jeremie R L

    2017-06-01

    Countries around the world are showing increased interest in applying the sterile insect technique against mosquito disease vectors. Many countries in which mosquitoes are endemic, and so where vector control using the sterile insect technique may be considered, are located in arid zones where water provision can be costly or unreliable. Water reuse provides an alternate form of water supply. In order to reduce the cost of mass rearing of Anopheles arabiensis mosquitoes, the possibility of recycling and reusing larval rearing water was explored. The used rearing water ('dirty water') was collected after the tilting of rearing trays for collection of larvae/pupae, and larvae/pupae separation events and underwent treatment processes consisting of ultrafiltration and reverse osmosis. First-instar An. arabiensis larvae were randomly assigned to different water-type treatments, 500 larvae per laboratory rearing tray: 'clean' dechlorinated water, routinely used in rearing; dirty water; and 'recycled' dirty water treated using reverse osmosis and ultrafiltration. Several parameters of insect quality were then compared: larval development, pupation rate, adult emergence, body size and longevity. Water quality of the samples was analyzed in terms of ammonia, nitrite, nitrate, sulphate, dissolved oxygen, chloride, and phosphate concentrations after the larvae had all pupated or died. Surface water temperatures were also recorded continuously during larval development. Pupation rates and adult emergence were similar in all water treatments. Adult body sizes of larvae reared in recycled water were similar to those reared in clean water, but larger than those reared in the dirty larval water treatment, whereas the adult longevity of larvae reared in recycled water was significantly increased relative to both 'clean' and 'dirty' water. Dirty larval water contained significantly higher concentrations of ammonium, sulfate, phosphate and chloride and lower levels of dissolved

  17. Transmitted fresh water flow rate of reverse osmosis desalination system utilizing the static pressure head. Formulation of numerical results and comparison with experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Miyatake, Osamu; Tagawa, Kotaro; Noda, Hidehiko [Kyushu University, Fukuoka (Japan)

    1999-08-01

    Based on the authors' previous numerical results of a reverse osmosis desalination system for seawater or brackish water utilizing the static pressure head of seawater in a deep-sea region or brackish water in a vertical pit, a dimensionless expression is formulated to predict the transmitted fresh water flow rate from the geometry and the submerged depth of the device, the pure water permeability and the solute permeability of membrane, and the physical properties properties of seawater or brackish water. The derived expression is compared with experimental results obtained by field experiments carried out in the Sea of Japan and the East China with fair agreement and thus confirmed the applicability and usefulness of the expression. (author)

  18. Synergistic efficiency of the desilication of brackish underground water in Saudi Arabia by coupling γ-radiation and Fenton process: Membrane scaling prevention in reverse osmosis process

    Science.gov (United States)

    Aljohani, Mohammed S.

    2017-12-01

    One of the main water resources in arid Saudi Arabia is underground water. However, this brackish water has high silica content which can cause a recalcitrant deposit on the membrane in the reverse osmosis units during its desalination. In this study, we examined the synergistic efficiency of the removal of silica from the Buwaib water sample, when combining two advanced oxidation processes, γ-irradiation and the Fenton process, using hydrogen peroxide and zero valent metal iron as source of Fe3+. This latter adsorbs effectively on silica and co-precipitate. The influence of absorbed dose, iron dosage and pH effect were investigated. This preliminary study showed that these attractive and effective hybrid processes are very efficient in removing silica.

  19. Three-level cobblestone-like TiO2 micro/nanocones for dual-responsive water/oil reversible wetting without fluorination

    Science.gov (United States)

    Zhou, Chen; Li, Guoqiang; Li, Chuanzong; Zhang, Zhen; Zhang, Yachao; Wu, Sizhu; Hu, Yanlei; Zhu, Wulin; Li, Jiawen; Chu, Jiaru; Hu, Zhijia; Wu, Dong; Yu, Liandong

    2017-10-01

    In this work, a kind of three-level cobblestone-like anatase TiO2 microcone array was fabricated on titanium sheets by femtosecond laser-induced self-assembly. This three level structure consisted of cobblestone-like features (15-25 μm in height and 20-35 μm in diameter), ˜460 nm ripple-like features, and smaller particles (10-500 nm). The formation of microcone arrays can be ascribed to the interaction of alternant laser beam ablation. TiO2 surfaces display dual-responsive water/oil reversible wetting via heat treatment and selective UV irradiation without fluorination. It is indicated that three-level scale surface roughness can amplify the wetting character of the Ti surface, and the mechanism for reversible switching between extreme wettabilities is caused by the conversion between Ti-OH and Ti-O. Moreover, the double-faced superhydrophobic and double-faced superhydrophilic Ti samples were constructed, which exhibited stable superhydrophobicity and underwater superoleophobicity in water-oil solution, respectively, even when strongly shaken. Finally, we present the hybrid-patterned TiO2 surface and realized reversible switching pattern wettability.

  20. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    Science.gov (United States)

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Water and organic synthesis: a focus on the in-water and on-water border. Reversal of the in-water Breslow hydrophobic enhancement of the normal endo-effect on crossing to on-water conditions for Huisgen cycloadditions with increasingly insoluble organic liquid and solid 2π-dipolarophiles.

    Science.gov (United States)

    Butler, Richard N; Coyne, Anthony G; Cunningham, William J; Moloney, Eamon M

    2013-04-05

    Measurements of the endo/exo product ratios for Huisgen cycloadditions with a series of vinyl ketones, alkyl acrylates, and substituted styrenes as dipolarophiles with phthalazinium and pyridazinium dicyanomethanide 1,3-dipoles in acetonitrile and water show that as the reactions change from in-water (large hydrophobic enhancement of endo-products) to on-water, the hydrophobic enhancement of the endo-products is reduced and partially reversed (relative to acetonitrile). An expected increase of the endo-effect with increasing hydrophobic character of the dipolarophile is overcome by decreasing water solubility causing changeover to on-water conditions. On-water reactions do not show increased cycloaddition endo-effects (relative to organic solvents) as do in-water reactions.

  2. Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination ▿

    Science.gov (United States)

    Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.

    2011-01-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685

  3. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences.

    Science.gov (United States)

    A complete method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for determining interferences to phage recoveries from water sample concentrates and for detecting interferences to their analysis, was developed for the direct...

  4. Effect of urea on bovine serum albumin in aqueous and reverse micelle environments investigated by small angle X-ray scattering, fluorescence and circular dichroism

    International Nuclear Information System (INIS)

    Itri, Rosangela; Caetano, Wilker; Barbosa, Leandro R.S.; Baptista, Mauricio S.

    2004-01-01

    The influence that urea has on the conformation of water-soluble globular protein, bovine serum albumin (BSA), exposed directly to the aqueous solution as compared to the condition where the macromolecule is confined in the Aerosol-OT (AOT - sodium bis-2-ethylhexyl sulfosuccinate)/n-hexane/water reverse micelle (RM) is addressed. Small angle X-ray scattering (SAXS), tryptophan (Trp) fluorescence emission and circular dichroism (CD) spectra of aqueous BSA solution in the absence and in the presence of urea (3M and 5M) confirm the known denaturing effect of urea in proteins. The loss of the globular native structure is observed by the increase in the protein maximum dimension and gyration radius, through the Trp emission increase and maximum red-shift as well as the decrease in helix content. In RMs, the Trp fluorescence and CD spectra show that BSA is mainly located in its interfacial region independently of the micellar size. Addition of urea in this BSA/RM system also causes changes in the Trp fluorescence (emission decrease and maximum red-shift) and in the BSA CD spectra (decrease in helix content), which are compatible with the denaturation of the protein and Trp exposition to a more apolar environment in the RM. The fact that urea causes changes in the protein structure when it is located in the interfacial region (evidenced by CD) is interpreted as an indication that the direct interaction of urea with the protein is the major factor to explain its denaturing effect. (author)

  5. Discovery of Rapid and Reversible Water Insertion in Rare Earth Sulfates: A New Process for Thermochemical Heat Storage.

    Science.gov (United States)

    Hatada, Naoyuki; Shizume, Kunihiko; Uda, Tetsuya

    2017-07-01

    Thermal energy storage based on chemical reactions is a prospective technology for the reduction of fossil-fuel consumption by storing and using waste heat. For widespread application, a critical challenge is to identify appropriate reversible reactions that occur below 250 °C, where abundant low-grade waste heat and solar energy might be available. Here, it is shown that lanthanum sulfate monohydrate La 2 (SO 4 ) 3 ⋅H 2 O undergoes rapid and reversible dehydration/hydration reactions in the temperature range from 50 to 250 °C upon heating/cooling with remarkably small thermal hysteresis (dehydration/hydration behavior. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering.

    Science.gov (United States)

    D'Andrea, Rodrigo Matías; Andreo, Carlos Santiago; Lara, María Valeria

    2014-11-01

    Portulaca oleracea is a C(4) plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)-like one. While the C(3) -CAM shift is well known, the C(4) -CAM transition has only been described in Portulaca. Here, a CAM-like metabolism was induced in P. oleracea by drought and then reversed by re-watering. Physiological and biochemical approaches were undertaken to evaluate the drought and recovery responses. In CAM-like plants, chlorophyll fluorescence parameters were transitory affected and non-radiative energy dissipation mechanisms were induced. Induction of flavonoids, betalains and antioxidant machinery may be involved in photosynthetic machinery protection. Metabolic analysis highlights a clear metabolic shift, when a CAM-like metabolism is induced and then reversed. Increases in nitrogenous compounds like free amino acids and urea, and of pinitol could contribute to withstand drought. Reciprocal variations in arginase and urease in drought-stressed and in re-watered plants suggest urea synthesis is strictly regulated. Recovery of C(4) metabolism was accounted by CO(2) assimilation pattern and malate levels. Increases in glycerol and in polyamines would be of importance of re-watered plants. Collectively, in P. oleracea multiple strategies, from induction of several metabolites to the transitory development of a CAM-like metabolism, participate to enhance its adaptation to drought. © 2014 Scandinavian Plant Physiology Society.

  7. A Sensitivity Study of Human Errors in Optimizing Surveillance Test Interval (STI) and Allowed Outage Time (AOT) of Standby Safety System

    International Nuclear Information System (INIS)

    Chung, Dae Wook; Shin, Won Ky; You, Young Woo; Yang, Hui Chang

    1998-01-01

    In most cases, the surveillance test intervals (STIs), allowed outage times (AOTS) and testing strategies of safety components in nuclear power plant are prescribed in plant technical specifications. And, in general, it is required that standby safety system shall be redundant (i.e., composed of multiple components) and these components are tested by either staggered test strategy or sequential test strategy. In this study, a linear model is presented to incorporate the effects of human errors associated with test into the evaluation of unavailability. The average unavailabilities of 1/4, 2/4 redundant systems are computed considering human error and testing strategy. The adverse effects of test on system unavailability, such as component wear and test-induced transient have been modelled. The final outcome of this study would be the optimized human error domain from 3-D human error sensitivity analysis by selecting finely classified segment. The results of sensitivity analysis show that the STI and AOT can be optimized provided human error probability is maintained within allowable range. (authors)

  8. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production.

    Science.gov (United States)

    Schmidt, Stefan-André; Gukelberger, Ephraim; Hermann, Mario; Fiedler, Florian; Großmann, Benjamin; Hoinkis, Jan; Ghosh, Ashok; Chatterjee, Debashis; Bundschuh, Jochen

    2016-11-15

    Arsenic contamination of groundwater is posing a serious challenge to drinking water supplies on a global scale. In India and Bangladesh, arsenic has caused the most serious public health issue in the world for nearly two decades. The aim of this work was to study an arsenic removal system based on reverse osmosis at pilot scale treating two different water sources from two different locations in the State of Bihar, India. For this purpose two villages, Bind Toli and Ramnagar in the Patna District were selected, both located very close to the river Ganga. The trials were conducted with aerated and non-aerated groundwater. It is the first time that the arsenic removal efficiency for aerated and non-aerated groundwater by reverse osmosis technology in combination with an energy-saving recovery system have been studied. As the principle of reverse osmosis requires a relatively high pressure, its energy demand is naturally high. By using an energy recovery system, this demand can be lowered, leading to an energy demand per liter permeate of 3-4Wh/L only. Due to high iron levels in the groundwater and as a consequence the precipitation of ferric (hydr)oxides, it was necessary to develop a granular media filter for the trials under aeration in order to protect the membrane from clogging. Two different materials, first locally available sand, and second commercially available anthracite were tested in the granular media filter. For the trials with aerated groundwater, total arsenic removal efficiency at both locations was around 99% and the arsenic concentration in permeate was in compliance with the WHO and National Indian Standard of 10μg/L. However, trials under anoxic conditions with non-aerated groundwater could not comply with this standard. Additionally a possible safe discharge of the reverse osmosis concentrate into an abandoned well was studied. It was observed that re-injection of reject water underground may offer a safe disposal option. However, long

  9. Reversible Sterilization

    Science.gov (United States)

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  10. Improvement of the MSG code for the MONJU evaporators. Additional function of reverse flow calculation on water/steam model and animation for post processing

    International Nuclear Information System (INIS)

    Toda, Shin-ichi; Yoshikawa, Shinji; Oketani, Kazuhiro

    2003-05-01

    The improved version of the MSG code (Multi-dimensional Thermal-hydraulic Analysis Code for Steam Generators) has been released. It has been carried out to improve based on the original version in order to calculate reverse flow on water/steam side, and to animate the post-processing data. To calculate reverse flow locally, modification to set pressure at each divided node point of water/steam region in the helical-coil heat transfer tubes has been carried out. And the matrix solver has been also improved to treat a problem within practical calculation time against increasing the pressure points. In this case pressure and enthalpy have to be calculated simultaneously, however, it was found out that using the block-Jacobean method make a diagonal-dominant matrix, and solve the matrix efficiently with a relaxation method. As the result of calculations of a steady-state condition and a transient of SG blow down with manual trip operation, the improvement on calculation function of the MSG code was confirmed. And an animation function of temperature contour in the sodium shell side as a post processing has been added. Since the animation is very effective to understand thermal-hydraulic behavior on the sodium shell side of the SG, especially in case of transient condition, the analysis and evaluation of the calculation results will be enabled to be more quickly and effectively. (author)

  11. Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach.

    Science.gov (United States)

    Manjumeena, R; Duraibabu, D; Sudha, J; Kalaichelvan, P T

    2014-01-01

    Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles(AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

  12. Disinfection Byproduct Formation in Reverse-Osmosis Concentrated and Lyophilized Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...

  13. Time reversal communication system

    Science.gov (United States)

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  14. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boleda, Ma Rosa [AGBAR-Aiguees de Barcelona, Gral Batet 5-7, 08028 Barcelona (Spain); Galceran, Ma Teresa [University of Barcelona, Department Analytical Chemistry, Av. Diagonal 647, 08028 Barcelona (Spain); Ventura, Francesc, E-mail: fventura@agbar.es [AGBAR-Aiguees de Barcelona, Gral Batet 5-7, 08028 Barcelona (Spain)

    2011-06-15

    The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies {>=}94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse. - Highlights: > The presence of pharmaceuticals and drugs of abuse in surface water was demonstrated. > Elimination in both potabilization processes reached levels >99% for most compounds. > Four pharmaceuticals and three drugs of abuse survived the potabilization process. - The efficiency of potabilization processes to eliminate or transform pharmaceuticals and illicit drugs is evaluated.

  15. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  16. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments

    International Nuclear Information System (INIS)

    Boleda, Ma Rosa; Galceran, Ma Teresa; Ventura, Francesc

    2011-01-01

    The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies ≥94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse. - Highlights: → The presence of pharmaceuticals and drugs of abuse in surface water was demonstrated. → Elimination in both potabilization processes reached levels >99% for most compounds. → Four pharmaceuticals and three drugs of abuse survived the potabilization process. - The efficiency of potabilization processes to eliminate or transform pharmaceuticals and illicit drugs is evaluated.

  17. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    Science.gov (United States)

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  18. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  19. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Zhou, Zhengkun; Jiang, Feihong; Lee, Tung-Ching; Yue, Tianli

    2013-01-01

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe 3 O 4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe 3 O 4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe 3 O 4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe 3 O 4 /chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  20. Evaluating the Efficiency of Different Microfiltration and Ultrafiltration Membranes Used as Pre-treatment for Reverse Osmosis Desalination of Red Sea Water

    KAUST Repository

    AlMashharawi, Samer

    2011-07-01

    . Collectively, results showed that all eight configurations provided permeate with excellent water quality to be fed to reverse osmosis membrane. However, using the 0.1 μm and 100kDa membranes with 1 mg/l FeCl3 concentration, respectively, steadier fluxes correspond to less increment of pumping intensity and better water quality was achieved.

  1. Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore.

    Science.gov (United States)

    Severin, Nikolai; Lange, Philipp; Sokolov, Igor M; Rabe, Jürgen P

    2012-02-08

    The behavior of water and other molecular liquids confined to the nanoscale is of fundamental importance, e.g., in biology, material science, nanofluidics, and tribology. Direct microscopic imaging of wetting dynamics in subnanometer pores is however challenging. We will show in the following that a molecularly thin water film confined between mica and graphene is fluid. Ambient humidity allows to control the wetting and dewetting of the film. We follow these processes in space and time using scanning force microscopy imaging of the graphene conforming to the film. At sufficiently high humidity a continuous molecularly thin water film wets the interface between the graphene and mica. At lower humidities the film dewets with fractal depressions exhibiting dimensions around 1.7 and depths comparable to the size of a water molecule. The soft graphene cover offers a previously unexplored semihydrophilic slit pore of self-adjustable size, which enables high-resolution imaging of confined molecularly thin fluid films, and bears the potential for the fabrication of novel nanofluidic devices. © 2012 American Chemical Society

  2. Ozone risk assessment for an Alpine larch forest in two vegetative seasons with different approaches: comparison of POD1and AOT40.

    Science.gov (United States)

    Finco, Angelo; Marzuoli, Riccardo; Chiesa, Maria; Gerosa, Giacomo

    2017-12-01

    The upper vegetation belts like larch forests are supposed to be under great pressure because of climate change in the next decades. For this reason, the evaluation of the risks due to abiotic stressors like ozone is a key step. Two different approaches were used here: mapping AOT40 index by means of passive samplers and direct measurements of ozone deposition.Measurements of ozone fluxes using the eddy-correlation technique were carried out for the first time over a larch forest in Paspardo (I) at 1750 m a.s.l. Two field campaigns were run: the first one in 2010 from July to October and the second one in the following year from June to September. Vertical exchange of ozone, energy, and momentum were measured on a tower platform at 26 m above ground level to study fluxes dynamics over this ecosystem. Since the tower was located on a gentle slope, an "ad hoc" methodology was developed to minimize the effects of the terrain inclination. The larch forest uptake was estimated by means of a two-layer model to separate the understorey uptake from the larch one. Even if the total ozone fluxes were generally high, up to 30-40 nmol O 3  m -2  s -1 in both years, the stomatal uptake by the larch forest was relatively low (around 15% of the total deposition).Ozone risk was assessed considering the POD 1 received by the larch forest and the exposure index AOT40 estimated with both local data and data from the map obtained by the passive samplers monitoring.

  3. Synthesis of CuNi/C and CuNi/γ-Al2O3 Catalysts for the Reverse Water Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Maxime Lortie

    2015-01-01

    Full Text Available A new polyol synthesis method is described in which CuNi nanoparticles of different Cu/Ni atomic ratios were supported on both carbon and gamma-alumina and compared with Pt catalysts using the reverse water gas shift, RWGS, reaction. All catalysts were highly selective for CO formation. The concentration of CH4 was less than the detection limit. Cu was the most abundant metal on the CuNi alloy surfaces, as determined by X-ray photoelectron spectroscopy, XPS, measurements. Only one CuNi alloy catalyst, Cu50Ni50/C, appeared to be as thermally stable as the Pt/C catalysts. After three temperature cycles, from 400 to 700°C, the CO yield at 700°C obtained using the Cu50Ni50/C catalyst was comparable to that obtained using a Pt/C catalyst.

  4. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2 + in 100% aqueous media and application to real samples

    Science.gov (United States)

    Sun, Tao; Niu, Qingfen; Li, Tianduo; Guo, Zongrang; Liu, Haixia

    2018-01-01

    A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu2 + was developed. Sensor ADA showed high selectivity and sensitivity toward Cu2 + in 100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480 nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu2 + recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8 nM, which is much lower than the allowable level of Cu2 + in drinking water set by U.S. Environmental Protection Agency ( 20 μM) and the World Health Organization ( 30 μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu2 + with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field.

  5. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments.

    Science.gov (United States)

    Boleda, M A Rosa; Galceran, M A Teresa; Ventura, Francesc

    2011-06-01

    The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies ≥ 94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Decreased proliferation in the adult rat hippocampus after exposure to the Morris water maze and its reversal by fluoxetine

    Czech Academy of Sciences Publication Activity Database

    Náměstková, Kateřina; Šimonová, Zuzana; Syková, Eva

    2005-01-01

    Roč. 163, č. 1 (2005), s. 26-32 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA304/03/1189; GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50390512 Keywords : Antidepressant * Water maze * Neurogenesis Subject RIV: FJ - Surgery incl. Transplants Impact factor: 2.865, year: 2005

  7. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... by accounting for the significance of the materials and the equipment that enters into the production of statistics. Key words: Reversible statistics, diverse materials, constructivism, economics, science, and technology....

  8. Investigation of W/O microemulsion droplets by contrast variation ...

    Indian Academy of Sciences (India)

    The estimated extent of polydispersity index of 17% is found, whereas the ... It is therefore possible to combine water and AOT in such proportions that the average dielectric constant of water plus AOT is the same as that of the n-alkane ..... [6] E B Leodidis, T A Hatton in Structure and reactivity of reverse micelles edited by.

  9. UV Photolysis of Chloramine and Persulfate for 1,4-dioxane Removal in Reverse Osmosis Permeate for Potable Water Reuse.

    Science.gov (United States)

    Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen Peter; Ishida, Kenneth P; Liu, Haizhou

    2018-04-13

    A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane anti-fouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S2O82-) is an emerging oxidant which can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S2O82- and monochloramine (NH2Cl) on the removal of 1,4-dioxane (1,4-D) for potable water reuse. The dual oxidant effects of NH2Cl and S2O82- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH2Cl-to-S2O82- molar ratio of 0.1 was optimal, beyond which the scavenging by NH2Cl of HO•, SO4•-, and Cl2•- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH2Cl and S2O82- was sensitive to the solution pH, due to a disproportionation of NH2Cl at pH lower than 6 into less photo-reactive dichloramine (NHCl2) and radical scavenging by NH4+. The presence of chloride transformed HO• and SO4•- to Cl2•- that is less reactive with 1,4-D, while the presence of dissolved O2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramine can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH2Cl dosage and a minimal chloride residue.

  10. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  11. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    Science.gov (United States)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  12. Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: a case study.

    Science.gov (United States)

    Ledda, C; Schievano, A; Salati, S; Adani, F

    2013-10-15

    The correct management of livestock manure represents one of the major challenge for the agricultural sector development, as it may ensure environmental and economic sustainability of livestock farming. In this work, a new treatment process called N-Free(®), was monitored on two plants treating digested cattle manure (DCM) and digested swine manure (DSM). The process is characterized by sequential integration of solid/liquid separations, ultrafiltration, reverse osmosis and cold ammonia stripping. Solid and liquid streams were characterized regarding TS, TKN, N-NH4(+), P and K content allowing to draw a complete mass balance. The main results were a substantial reduction of initial digestate volume (38 and 51% in DCM and DSM respectively) as clean water and a high N-NH4(+) removal percentage (47 and 71% in DCM and DSM respectively), through cold ammonia stripping, allowing the production of up to 1.8 m(3) concentrated ammonium sulfate, every 100 m(3) of treated digestate. The concentrated streams, rich in either organic or mineral N, P and K, can be efficiently used for land application. The N-Free(®) technology demonstrated to be a valuable candidate for the path toward nutrient and water recycle, in a new sustainable agriculture and farming concept. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    International Nuclear Information System (INIS)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-01-01

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (π * ) and hydrogen-bond basicity (β), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents

  14. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  15. FATE OF REVERSE OSMOSIS (RO) MEMBRANES DURING OXIDATION BY DISINFECTANTS USED IN WATER TREATMENT: IMPACT ON MEMBRANE STRUCTURE AND PERFORMANCES

    KAUST Repository

    Maugin, Thomas

    2013-12-01

    Providing pretreatment prior RO filtration is essential to avoid biofouling and subsequent loss of membrane performances. Chlorine is known to degrade polymeric membrane, improving or reducing membrane efficiency depending on oxidation conditions. This study aimed to assess the impact of alternative disinfectant, NH2Cl, as well as secondary oxidants formed during chloramination of seawater, e.g. HOBr, HOI, or used in water treatment e.g. ClO2, O3, on membrane structure and performances. Permeability, total and specific rejection (Cl-, SO4 2-, Br-, Boron), FTIR profile, elemental composition were analyzed. Results showed that each oxidant seems to react differently with the membrane. HOCl, HOBr, ClO2 and O3 improved membrane permeability but decreased rejection in different extent. In comparison, chloramines resulted in identical trends but oxidized membrane very slowly. On the contrary, iodine improved membrane rejection e.g. boron, but decreased permeability. Reaction conducted with chlorine, bromine, iodine and chloramines resulted in the incorporation of halogen in the membrane structure. All oxidant except iodine were able to break amide bonds of the membrane structure in our condition. In addition, chloramine seemed to react with membrane differently, involving a potential addition of nitrogen. Chloramination of seawater amplified membrane performances evolutions due to generation of bromochloramine. Moreover, chloramines reacted both with NOM and membrane during oxidation in natural seawater, leading to additional rejection drop.

  16. Acromegaly is associated with decreased skin transepidermal water loss and temperature, and increased skin pH and sebum secretion partially reversible after treatment.

    Science.gov (United States)

    Borlu, Murat; Karaca, Zuleyha; Yildiz, Hatice; Tanriverdi, Fatih; Demirel, Beril; Elbuken, Gulsah; Cakir, Ilkay; Dokmetas, Hatice Sebila; Colak, Ramis; Unluhizarci, Kursad; Kelestimur, Fahrettin

    2012-04-01

    Acromegaly is characterized by an acquired progressive somatic disfigurement, mainly involving the face and extremities, besides many other organ involvement. Wet and oily skin was described in acromegaly patients and it was attributed to hyperhidrosis and increased sebum production but this suggestion has not been evaluated with reliable methods. The aim of this study was to examine the skin parameters of patients with acromegaly using measurements of skin hydration, sebum content, transepidermal water loss, pH and temperature and particularly the effects of 12 months of treatment on these parameters. 52 patients with acromegaly and 24 healthy control subjects were included in this two blinded prospective study. Skin properties were measured on forehead and forearm by Corneometer CM825, Sebumeter SM810, Tewameter TM210 and Phmeter PH900 as non-invasive reliable measuring methods. Serum GH, IGF-1 and all measurements of skin properties on forehead and forearm were repeated at the end of the 3, and 6 months of therapy in 20 cases. Patients were treated with appropriate replacement therapy for deficient pituitary hormones. The sebum content and pH of the skin of acromegalic patients were significantly higher and transepidermal water loss and skin temperature were found to be significantly lower in acromegalic patients when compared to the control group both on forehead and forearm. GH and IGF-1 levels were positively correlated with sebum levels and negatively correlated with skin temperature on both forehead and forearm. The sebum levels of the patients were significantly decreased both on forehead and forearm at 3rd and 6th months of treatment. The present study demonstrated increased sebum secretion, decreased transepidermal water loss, alkali and hypothermic skin surface in patients with acromegaly by reliable methods for the first time. These data suggest that GH and/or IGF-I may have a modulatory role on several skin characteristics which can be at least

  17. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  18. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    International Nuclear Information System (INIS)

    Delgado-Torres, Agustin M.; Garcia-Rodriguez, Lourdes

    2010-01-01

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects.

  19. Performance of aeolian generators driven reverse osmosis under autonomous operation mode for brackish water desalination; Desempenho de instalacoes de osmose reversa acionadas por geradores eolicos em modo autonomo para dessalinizacao de agua salobra

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo; Freire, Cristiano [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica

    1999-07-01

    This work analyses the elements influencing the performance of brackish water desalination by aeolian generators driven reverse osmosis, operating under autonomous regime considering the recent experiences and new technologies. The aspects of reduction in energy consumption and operation with one energy source of variable character are considered.

  20. Reverse Osmosis

    Indian Academy of Sciences (India)

    /fulltext/reso/016/12/1333-1336. Keywords. Osmos is ; reverseos mosis; desalinatiion; seawater; water purification. Author Affiliations. Sudhakar M Rao1. Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India.

  1. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  2. Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water-gas shift reaction.

    Science.gov (United States)

    Fishman, Zachary S; He, Yulian; Yang, Ke R; Lounsbury, Amanda W; Zhu, Junqing; Tran, Thanh Minh; Zimmerman, Julie B; Batista, Victor S; Pfefferle, Lisa D

    2017-09-14

    Understanding how nano-dimensionality impacts iron oxide based catalysis is central to a wide range of applications. Here, we focus on hematite nanosheets, nanowires and nanoparticles as applied to catalyze the reverse water gas shift (RWGS) probe reaction. We introduce a novel approach to synthesize ultrathin (4-7 nm) hematite nanosheets using copper oxide nanosheets as a hard template and propose a reaction mechanism based on density functional theory (DFT) calculations. Hematite nanowires and nanoparticles were also synthesized and characterized. H 2 temperature programmed reduction (H 2 -TPR) and RWGS reactions were performed to glean insights into the mechanism of CO 2 conversion to CO over the iron oxide nanomaterials and were compared to H 2 binding energy calculations based on density functional theory. While the nanosheets did exhibit high CO 2 conversion, 28% at 510 °C, we found that the iron oxide nanowires had the highest CO 2 conversion, reaching 50% at 750 °C under atmospheric pressure. No products besides CO and H 2 O were detected.

  3. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process.

    Science.gov (United States)

    Tay, Ming Feng; Liu, Chang; Cornelissen, Emile R; Wu, Bing; Chong, Tzyy Haur

    2018-02-01

    This study examines the feasibility of a novel nanofiltration membrane bioreactor (NF-MBR) followed by reverse osmosis (RO) process for water reclamation at 90% recovery and using an ultrafiltration MBR (UF-MBR)+RO as baseline for comparison. Both MBRs adopted the same external hollow fiber membrane configurations and operating conditions. The collected permeates of the MBRs were subsequently fed to the respective RO systems. The results showed that the NF-MBR (operated at a constant flux of 10 L/m 2 h) achieved superior MBR permeate quality due to enhanced biodegradation and high rejection capacity of the NF membrane, leading to lower RO fouling rates (∼3.3 times) as compared to the UF-MBR. Further analysis indicated that the cake layer fouling that caused the cake-enhanced osmotic pressure (CEOP) effect contributed predominantly to the transmembrane pressure (TMP) increase in the NF-MBR, while irreversible pore fouling was the major reason for UF membrane fouling. Furthermore, it was found that the biopolymers (i.e., organics with MW > 10 kDa) were the main components present in the foulants of the NF/UF membranes and RO membranes. The analysis indicated that the NF-MBR + RO system at recovery of 90% has comparable energy consumption as the UF-MBR + RO system at recovery of 75%. Our findings proved the feasibility of the NF-MBR + RO for water reclamation at a high recovery rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analyses of gibberellins in coconut (Cocos nucifera L.) water by partial filling-micellar electrokinetic chromatography-mass spectrometry with reversal of electroosmotic flow.

    Science.gov (United States)

    Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Hua, Lin; Ong, Eng Shi

    2008-05-01

    In this paper, we present the results of simultaneous screening of eight gibberellins (GAs) in coconut (Cocos nucifera L.) water by MEKC directly coupled to ESI-MS detection. During the development of MEKC-MS, partial filling (PF) was used to prevent the micelles from reaching the mass spectrometer as this is detrimental to the MS signal, and a cationic surfactant, cetyltrimethylammonium hydroxide, was added to the electrolyte to reverse the EOF. On the basis of the resolution of the neighboring peaks, different parameters (i.e., the pH and concentration of buffer, surfactant concentrations, length of the injected micellar plug, organic modifier, and applied separation voltage) were optimized to achieve a satisfactory PF-MEKC separation of eight GA standards. Under optimum conditions, a baseline separation of GA standards, including GA1, GA3, GA5, GA6, GA7, GA9, GA12, and GA13, was accomplished within 25 min. Satisfactory results were obtained in terms of precision (RSD of migration time below 0.9%), sensitivity (LODs in the range of 0.8-1.9 microM) and linearity (R2 between 0.981 and 0.997). MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity. PF-MEKC-MS/MS allowed the direct identification and confirmation of the GAs presented in coconut water (CW) sample after SPE, while, the quantitative analysis of GAs was performed by PF-MEKC-MS approach. GA1 and GA3 were successfully detected and quantified in CW. It is anticipated that the current PF-MEKC-MS method can be applicable to analyze GAs in a wide range of biological samples.

  5. Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector.

    Science.gov (United States)

    Minioti, Katerina S; Sakellariou, Christina F; Thomaidis, Nikolaos S

    2007-01-30

    A reversed-phase high performance liquid chromatographic method for the successful separation and determination of 13 synthetic food colorants (Tartrazine E 102, Quinoline Yellow E 104, Sunset Yellow E 110, Carmoisine E 122, Amaranth E 123, Ponceau 4R E 124, Erythrosine E 127, Red 2G E 128, Allura Red AC E 129, Patent Blue V E 131, Indigo Carmine E 132, Brilliant Blue FCF E 133 and Green S E 142) was developed. A C18 stationary phase was used and the mobile phase contained an acetonitrile-methanol (20:80 v/v) mixture and a 1% (m/v) ammonium acetate buffer solution at pH 7.5. Successful separation was obtained for all the compounds using an optimized gradient elution within 29 min. The diode-array detector was used to monitor the colorants between 350 and 800 nm. The method was thoroughly validated. Detection limits for all substances varied between 1.59 (E 142) and 22.1 (E 124) microg L(-1). The intra-day precision (as R.S.D.(r)) ranged from 0.37% (E 122 in fruit flavored drink at a concentration of 100 mg L(-1)) to 4.8% (E 142 in icing sugar at a level of 0.9 mg kg(-1)). The inter-day precision (as R.S.D.(R)) was between 0.86% for E 122 in fruit flavored drink at 100 mg L(-1) and 10% for E142 in jam at a concentration of 9 mg kg(-1). Satisfactory recoveries, ranging from 94% (E 142 in jam) to 102% (E 131 in sweets), were obtained. The method was applied to the determination of colorants in various water-soluble foods, such as fruit flavoured drinks, alcoholic drinks, jams, sugar confectionery and sweets, with simple pre-treatment (dilution or water extraction).

  6. Spontaneous direct and reverse osmosis

    International Nuclear Information System (INIS)

    Valitov, N.Kh.

    1996-01-01

    It has been ascertained experimentally that in the course of separation of CsCl, KCl, NaCl aqueous solutions by semi-permeable membrane from distilled water the direct and then reverse osmosis are observed. The same sequence is observed in case of separation of CsCl aqueous solutions from NaCl of different concentrations. The reason for the direct and reverse osmosis has been explained. 5 refs.; 3 figs. 1 tab

  7. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase.

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio

    2009-07-30

    Previously, retention of 26 pesticides in the reversed-phase column Gemini (Phenomenex) and water-acetonitrile mobile phase was modelled using a feed-forward artificial neural network (ANN) learned by error back-propagation, accounting for both the effect of solute structure and mobile phase composition. To this end, logK(ow) of solutes and four quantum chemical molecular descriptors (the dipole moment, the mean polarizability, the anisotropy of the polarizability and an hydrogen-bonding descriptor based on the atomic charges located on the acid and basic functional groups) and acetonitrile % (v/v) in the eluent (%ACN) were used as ANN inputs. The above ANN-based approach is here tested on further five similar octadecylsiloxane-bonded columns in water-acetonitrile mobile phase within the %ACN range 30-70%. A quite good predictive performance evaluated on three external solutes in the whole %ACN range is observed, prediction errors being lower than +/-0.1 log k units or slightly higher although still within +/-0.15 log k units. On the other hand, multilinear regression used in place of ANN provides a more diffuse and non-uniform residual distribution for all the investigated columns. ANN multiple-column retention prediction is attempted by adding to the above variables a column descriptor defined as the average retention of calibration solutes extrapolated to 100% water. This more general model is built using 16 solutes and five 5-microm columns in calibration, while its predictive performance is tested on the remaining 10 compounds. Under these conditions, prediction errors are generally within +/-0.2 log k units regardless of the kind of column. The possibility of cross-column prediction is evaluated by column leave-one-out cross-validation within the five 5-microm stationary phases and on a 4-microm external column. This analysis reveals that accuracy of retention prediction for unknown solutes in unknown columns is acceptable provided that the external column is

  8. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio

    2009-01-01

    Previously, retention of 26 pesticides in the reversed-phase column Gemini (Phenomenex) and water-acetonitrile mobile phase was modelled using a feed-forward artificial neural network (ANN) learned by error back-propagation, accounting for both the effect of solute structure and mobile phase composition. To this end, log K ow of solutes and four quantum chemical molecular descriptors (the dipole moment, the mean polarizability, the anisotropy of the polarizability and an hydrogen-bonding descriptor based on the atomic charges located on the acid and basic functional groups) and acetonitrile % (v/v) in the eluent (%ACN) were used as ANN inputs. The above ANN-based approach is here tested on further five similar octadecylsiloxane-bonded columns in water-acetonitrile mobile phase within the %ACN range 30-70%. A quite good predictive performance evaluated on three external solutes in the whole %ACN range is observed, prediction errors being lower than ±0.1 log k units or slightly higher although still within ±0.15 log k units. On the other hand, multilinear regression used in place of ANN provides a more diffuse and non-uniform residual distribution for all the investigated columns. ANN multiple-column retention prediction is attempted by adding to the above variables a column descriptor defined as the average retention of calibration solutes extrapolated to 100% water. This more general model is built using 16 solutes and five 5-μm columns in calibration, while its predictive performance is tested on the remaining 10 compounds. Under these conditions, prediction errors are generally within ±0.2 log k units regardless of the kind of column. The possibility of cross-column prediction is evaluated by column leave-one-out cross-validation within the five 5-μm stationary phases and on a 4-μm external column. This analysis reveals that accuracy of retention prediction for unknown solutes in unknown columns is acceptable provided that the external column is not very

  9. Reverse Osmosis

    Indian Academy of Sciences (India)

    Osmosis is a phenomenon which regulates many biological functions in plants and animals. That the plants stand upright, or the water reaches the tip of every leaf of a plant is due to osmotic pressure. The fact that we cannot survive by drinking seawater is also linked to this same phenomenon. J H van 't. Hoff showed in ...

  10. Synthesis of nanosilver particles by reverse micelle method and study of their bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Tran Thi Ngoc Dung; Ngo Quoc Buu; Dang Viet Quang; Le Anh Bang; Nguyen Hoai Chau; Nguyen Thi Ly [Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Huynh Thi Ha [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Nguyen Vu Trung [National Institute for Infectious and Tropical Diseases, 1 Ton That Tung, Dong Da Distr., Hanoi (Viet Nam)], E-mail: ttndzung@yahoo.com, E-mail: buu_nq@yahoo.com

    2009-09-01

    Nanosilver particles have been synthesized by the reverse micelle method, where AgNO{sub 3} was used as a silver ions source, NaBH{sub 4} and quercetin - as reducing agents, CTAB, SDOSS and AOT- as surfactants, while the stabilizer was Vietnamese chitosan. Studying the factors influencing the process of nanosilver particle formation, it was shown that the particle size of the nanosilver products depends on the concentration of the reaction components and their stoichiometric ratio. It was also shown that the reaction system using AOT surfactant is capable of producing nanosilver particles with smallest nanoparticles ({phi}{sub av} {approx} 5 nm) and good particle-size distribution. The study on bactericidal activity of the nanosilver products indicated that the disinfecting solution with a nanosilver concentration of 3 ppm was able to inhibit all E.coli and Coliforms, TPC and fungi at 15 ppm, while Vibrio cholerae cells were inactivated completely with 0.5 ppm of nanosilver after 30 minutes exposition.

  11. Reverse Osmosis Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McMordie Stoughton, Kate; Duan, Xiaoli; Wendel, Emily M.

    2013-08-26

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). ¬The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.¬

  12. Reverse Osmosis Optimization

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.

  13. Sorption-induced reversible oxidation of Fe(2) at the smectite/water interface under strictly anoxic conditions. A Moessbauer spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, A.; Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique (LGIT), Universite de Grenoble, 38 - Grenoble (France); Gehin, A. [Agence Nationale pour la Gestion des Dechets Radioactifs, ANDRA, 92 - Chatenay Malabry (France); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR-CNRS 6087, 72 - Le Mans (France); Brendle, J. [Universite de Haute Alsace, Lab. des Materiaux Mineraux (LMM), 68 - Mulhouse (France); Rancourt, D.G. [Ottawa Univ., Dept. of Physics, Ontario (Canada)

    2005-07-01

    not been polymerized, but is present as cations. This result shows that sorption at the clay-water interface occurs in a two steps mechanism: sorption of individual Fe(II) cations, followed by an oxidation of some of them. As a first hypothesis, water could be the oxidizing agent. However in this case, the reversibility of the phenomenon cannot be explained. Thus we proposed, as a second hypothesis, that as pH is increased, protons H{sup +} is removed from the clay surface and, more and more of highly reactive sites acquire steric properties that stabilize Fe(III) relative to Fe(II). This differential affinity induces in turn an Fe-to-clay particle electron transfer. The change in surface site local environment is shown by observed large pH induced change in the sorbed Fe(II) quadrupole splitting distributions. (authors)

  14. Non-Thermal Plasma (NTP) session overview: Second International Symposium on Environmental Applications of Advanced Oxidation Technologies (AOTs)

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1996-01-01

    Advanced Oxidation Technologies (used in pollution control and treating hazardous wastes) has expanded from using hydroxyl radicals to treat organic compounds in water, to using reductive free radicals as well, and to application to pollutants in both gases and aqueous media. Non-Thermal Plasma (NTP) is created in a gas by an electrical discharge or energetic electron injection. Highly reactive species (O atoms, OH, N radicals, plasma electrons) react with entrained hazardous organic chemicals in the gas, converting them to CO2, H2O, etc. NTP can be used to simultaneously remove different kinds of pollutants (eg, VOCs, SOx, NOx in flue gases). This paper presents an overview of NTP technology for pollution control and hazardous waste treatment; it is intended as an introduction to the NTP session of the symposium

  15. Fuzzy logic: applications to the pretreatment of brackish feed water in reverse osmosis treatment plants; Logica difusa: aplicaciones al pretratamiento del agua salobre de elimentacion de plantas desalladoras por osmosis inversa

    Energy Technology Data Exchange (ETDEWEB)

    Pluss Contino, J.; Simon Ruiz, J. L.; Hernandez, A.; Menendez Martinez, A.; Yaglian Steiner, E.; Menendez Fernandez, A.; Marcelo Cano, F.

    2004-07-01

    Frequently physical and chemical alteration that can suffer feed water composition and membranes behaviour of reverse osmosis desalination plants (RODP), define a vague nature system from the point of view of decision make process. In this work, we proposes the utilization of the approximate reasoning associated with the fuzzy logic, as an alternative to approach this problem and to make possible early corrective actions, that is, to do a proactive maintenance with Condition-based maintenance (CBM) technology. (Author) 21 refs.

  16. Confinement Effects on Chemical Equilibria: Pentacyano(PyrazineFerrate(II Stability Changes within Nanosized Droplets of Water

    Directory of Open Access Journals (Sweden)

    Teofilo Borunda

    2018-04-01

    Full Text Available Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazineferrate(II. The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN5pyz]3− and change the monomer-dimer equilibria between [Fe(CN5pyz]3− and [Fe2(CN10pyz]6−. Combined UV-Vis and 1H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN5pyz]3− stability is related to its solvation within the RM.

  17. Confinement Effects on Chemical Equilibria: Pentacyano(Pyrazine)Ferrate(II) Stability Changes within Nanosized Droplets of Water.

    Science.gov (United States)

    Borunda, Teofilo; Myers, Alexander J; Mary Fisher, J; Crans, Debbie C; Johnson, Michael D

    2018-04-09

    Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazine)ferrate(II). The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM) water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN)₅pyz] 3- and change the monomer-dimer equilibria between [Fe(CN)₅pyz] 3- and [Fe₂(CN) 10 pyz] 6- . Combined UV-Vis and ¹H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine) are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN)₅pyz] 3- stability is related to its solvation within the RM.

  18. Renewable synthesis-gas-production. Do hydrocarbons in the reactant flow of the reverse water-gas shift reaction cause coke formation?

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In a two-step synthetic fuel production process based on carbon dioxide and renewable hydrogen, the best possible selectivity towards liquid hydrocarbons (Hc) shall be implemented. The process consists of a combination of the Reverse Water-Gas Shift reaction and the Fischer-Tropsch synthesis. To achieve this goal, gaseous short-chained Hc from the FTS reactor are recycled in the RWGS unit. In this paper, challenges coming up with the implementation of a recycle loop are discussed. First of all, it has to be examined whether Hc are converted under conditions present in the RWGS reactor. The coking caused by the recycle of Hc is regarded, including thermal coking in the heating zone of the reactor and catalytic coking in the catalyst bed. Coking of course is unwanted, as it deactivates the catalyst. The scope of this work is to find out to which extent and under which conditions gaseous Hc can be recycled. Therefore, experiments were carried out in both, a quartz glass reactor using a commercial Ni-catalyst at ambient pressure and in a pressurized steel reactor (without catalyst) to examine coking during the thermal decomposition of Hc. The catalytic experiments at atmospheric pressure showed that a recycle of CH{sub 4} did not cause coking up to a ratio of CH{sub 4}/CO{sub 2} below one. For these conditions, long term stability was proved. The reaction rates of the CH{sub 4} conversion were below those of the RWGS reaction. However, replacing CH{sub 4} by C{sub 3}H{sub 8} leads to thermal and catalytic coking. Catalytic coking hits the maximum level at about 700 C and decreases for higher temperatures and, thus is not regarded as a problem for the RWGS reactor. In contrast to that, thermal coking raises with higher temperatures, but it can be supressed efficiently with additional injection of H{sub 2}O, which of course shifts the equilibrium towards the undesired reactant side. (orig.)

  19. Fouling in reverse electrodialysis under natural conditions

    NARCIS (Netherlands)

    Vermaas, David; Kunteng, Damnearn; Saakes, Michel; Nijmeijer, Dorothea C.

    2013-01-01

    Renewable energy can be generated from mixing salt water and fresh water in reverse electrodialysis. The potential for energy generation from mixing seawater and river water is enormous. To investigate the effect of fouling when such natural feed waters are used, the performance of three different

  20. Reverse osmosis application studies

    International Nuclear Information System (INIS)

    Golomb, A.

    1982-02-01

    To assess the feasibility of applying reverse osmosis (RO) and ultrafiltration (UF) for effective treatment of process and waste streams from operations at Ontario Hydro's thermal and nuclear stations, an extensive literature survey has been carried out. It is concluded that RO is not at present economic for pretreatment of Great Lakes water prior to ion exchange demineralization for boiler makeup. Using both conventional and novel commercial membrane modules, RO pilot studies are recommended for treatment of boiler cleaning wastes, fly ash leachates, and flue gas desulphurization scrubber discharges for removal of heavy metals. Volume reduction and decontamination of nuclear station low-level active liquid waste streams by RO/UF also appear promising. Research programmes are proposed

  1. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  2. Activity coefficients, interfacial tensions and retention in reversed-phase liquid chormatography on LiChrosorb RP-18 with methanol-water mixtures

    NARCIS (Netherlands)

    Hammers, W.E.; Meurs, G.J.; Ligny, C.L. de

    1982-01-01

    Literature data on activity coefficients of various solutes in water, of some tetraalkyl compounds in methanol-water mixture and of water in organic solvents have been correlated with the product of the molecular surface area of the solute and the solute-solvent interfacial tension at ambient

  3. HIV-1 reverse transcription.

    Science.gov (United States)

    Hu, Wei-Shau; Hughes, Stephen H

    2012-10-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.

  4. Simultaneous determination of aerosol optical thickness and water-leaving radiance from multispectral measurements in coastal waters

    Science.gov (United States)

    Shi, Chong; Nakajima, Teruyuki

    2018-03-01

    Retrieval of aerosol optical properties and water-leaving radiance over ocean is challenging since the latter mostly accounts for ˜ 10 % of the satellite-observed signal and can be easily influenced by the atmospheric scattering. Such an effort would be more difficult in turbid coastal waters due to the existence of optically complex oceanic substances or high aerosol loading. In an effort to solve such problems, we present an optimization approach for the simultaneous determination of aerosol optical thickness (AOT) and normalized water-leaving radiance (nLw) from multispectral satellite measurements. In this algorithm, a coupled atmosphere-ocean radiative transfer model combined with a comprehensive bio-optical oceanic module is used to jointly simulate the satellite-observed reflectance at the top of atmosphere and water-leaving radiance just above the ocean surface. Then, an optimal estimation method is adopted to retrieve AOT and nLw iteratively. The algorithm is validated using Aerosol Robotic Network - Ocean Color (AERONET-OC) products selected from eight OC sites distributed over different waters, consisting of observations that covered glint and non-glint conditions from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. Results show a good consistency between retrieved and in situ measurements at each site. It is demonstrated that more accurate AOTs are determined based on the simultaneous retrieval method, particularly in shorter wavelengths and sunglint conditions, where the averaged percentage difference (APD) of retrieved AOT is generally reduced by approximate 10 % in visible bands compared with those derived from the standard atmospheric correction (AC) scheme, since all the spectral measurements can be used jointly to increase the information content in the inversion of AOT, and the wind speed is also simultaneously retrieved to compensate the specular reflectance error estimated from the rough ocean surface model. For the

  5. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin☆

    OpenAIRE

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-01-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to mani...

  6. Reverse logistics - a framework

    OpenAIRE

    de Brito, M.P.; Dekker, R.

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of products, processes and actors. In addition we provide a decision framework for Reverse Logistics and we present it according to long, medium and short term decisions, i.e. strategic-tactic-operational decis...

  7. HIV-1 Reverse Transcription

    OpenAIRE

    Hu, Wei-Shau; Hughes, Stephen H.

    2012-01-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name “retrovirus” derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral fact...

  8. Effects of the proposed California WaterFix North Delta Diversion on flow reversals and entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel, northern California

    Science.gov (United States)

    Perry, Russell W.; Romine, Jason G.; Pope, Adam C.; Evans, Scott D.

    2018-02-27

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3/s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta.In this report, we conducted three analyses to investigate the effect of the NDD and its proposed operation on entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel (DCC). Fish that enter the interior Delta (the network of channels to the south of the Sacramento River) through Georgiana Slough and the DCC survive at lower rates than fish that use other migration routes (Sacramento River, Sutter Slough, and Steamboat Slough). Therefore, fisheries managers were concerned about the extent to which operation of the NDD would increase the proportion of the population entering the interior Delta, which, all else being equal, would lower overall survival through the Delta by increasing the fraction of the population subject to lower survival rates. Operation of the NDD would reduce flow in the Sacramento River, which has the potential to increase the magnitude and duration of reverse flows of the Sacramento River downstream of Georgiana Slough.In the first analysis, we

  9. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  10. Clean energy generation using capacitive electrodes in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David; Bajracharya, S.; Bastos Sales, B.; Saakes, Michel; Hamelers, B.; Nijmeijer, Dorothea C.

    2013-01-01

    Capacitive reverse electrodialysis (CRED) is a newly proposed technology to generate electricity from mixing of salt water and fresh water (salinity gradient energy) by using a membrane pile as in reverse electrodialysis (RED) and capacitive electrodes. The salinity difference between salt water and

  11. Improved Aerosol Optical Thickness, Columnar Water Vapor, and Surface Reflectance Retrieval from Combined CASI and SASI Airborne Hyperspectral Sensors

    Directory of Open Access Journals (Sweden)

    Hang Yang

    2017-02-01

    Full Text Available An increasingly common requirement in remote sensing is the integration of hyperspectral data collected simultaneously from different sensors (and fore-optics operating across different wavelength ranges. Data from one module are often relied on to correct information in the other, such as aerosol optical thickness (AOT and columnar water vapor (CWV. This paper describes problems associated with this process and recommends an improved strategy for processing remote sensing data, collected from both visible to near-infrared and shortwave infrared modules, to retrieve accurate AOT, CWV, and surface reflectance values. This strategy includes a workflow for radiometric and spatial cross-calibration and a method to retrieve atmospheric parameters and surface reflectance based on a radiative transfer function. This method was tested using data collected with the Compact Airborne Spectrographic Imager (CASI and SWIR Airborne Spectrographic Imager (SASI from a site in Huailai County, Hebei Province, China. Various methods for retrieving AOT and CWV specific to this region were assessed. The results showed that retrieving AOT from the remote sensing data required establishing empirical relationships between 465.6 nm/659 nm and 2105 nm, augmented by ground-based reflectance validation data, and minimizing the merit function based on AOT@550 nm optimization. The paper also extends the second-order difference algorithm (SODA method using Powell’s methods to optimize CWV retrieval. The resulting CWV image has fewer residual surface features compared with the standard methods. The derived remote sensing surface reflectance correlated significantly with the ground spectra of comparable vegetation, cement road and soil targets. Therefore, the method proposed in this paper is reliable enough for integrated atmospheric correction and surface reflectance retrieval from hyperspectral remote sensing data. This study provides a good reference for surface

  12. REMOVAL OF CHEMICAL AND MICROBIAL CONTAMINANTS IN DRINKING WATER - WATTS PREMIER M-2400 POINT-OF-ENTRY REVERSE OSMOSIS DRINKINGWATER TREATMENT SYSTEM

    Science.gov (United States)

    The Watts Premier M-2400 POE RO Drinking Water Treatment System was tested at the NSF Drinking Water Treatment Systems Laboratory for removal of the viruses fr and MS2, the bacteria Brevundimonas diminuta, and chemicals aldicarb, benzene, cadmium, carbofuran, cesium, chl...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, REMOVAL OF ARSENIC IN DRINKING WATER: WATTS PREMIER M-SERIES M-15,000 REVERSE OSMOSIS TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Watts Premier M-Series M-15,000 RO Treatment System was conducted over a 31-day period from April 26, 2004, through May 26, 2004. This test was conducted at the Coachella Valley Water District (CVWD) Well 7802 in Thermal, California. The source water...

  14. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  15. Comparison of nucleic acid extraction and reverse transcription-qPCR approaches for detection of GI and GII noroviruses in drinking water

    Science.gov (United States)

    Noroviruses (NoVs) are responsible for a number of waterborne and foodborne gastroenteritis cases each year. They are frequently associated with human sewage, and thus a potential link between wastewater discharge and contamination of source waters exists. Subsequently, contami...

  16. Boiler feedwater treatment using reverse osmosis at Suncor OSG

    International Nuclear Information System (INIS)

    Brown, T.

    1997-01-01

    The installation of a new 1000 cu m/hr reverse osmosis water treatment system for boiler feedwater at a Suncor plant was discussed. The selection process began in 1993 when Suncor identified a need to increase its boiler feedwater capacity. The company reviewed many options available to increase the treated water capacity. These included: contracting the supply of treated water, adding additional capacity, replacing the entire plant, reverse osmosis, and demineralization. The eventual decision was to build a new 1000 cu m/hr reverse osmosis water treatment plant with the following key components: a Degremont Infilco Ultra Pulsator Clarifier and a Glegg Water Conditioning multimedia filter, Amberpack softeners and reverse osmosis arrays. The reverse osmosis plant was environmentally favourable over an equivalent demineralization plant. A technical comparison was provided between demineralization and reverse osmosis. The system has proven to be successful and economical in meeting the plants needs. 5 figs

  17. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  18. Optical properties of CdS and CdS/ZnS quantum dots synthesized by reverse micelle method

    International Nuclear Information System (INIS)

    Vu Thi Kim Lien; Chu Viet Ha; Le Tien Ha; Nguyen Nhu Dat

    2009-01-01

    The CdS and CdS/ZnS semiconductor quantum dots have been synthesized by reverse micelle method using sodium bis (2-ethylhexyl) sulfosuccinate (AOT) surfactant agent. The quantum dot diameter is about 2.5 to 4 nm depending on the concentration of the surfactant agent. It is interesting that, in contrast to other colloidal methods, the size of quantum dots does not depend on the growth time. The absorption spectra of CdS quantum dots show the narrow size distribution. The photoluminescence (PL) spectra include two bands, the intrinsic emission of CdS nanocrystals and the emission of surface states. There is noticeable increase of the PL intensity and subsequent photostability of CdS/ZnS core-shell quantum dots in comparison with CdS quantum dots without the ZnS shell.

  19. Influence of a protein on percolation phenomena in water-in-oil micro-emulsions

    International Nuclear Information System (INIS)

    Huruguen, Jean-Pierre

    1991-01-01

    This research thesis addresses the study of a small protein named cytochrome c which has a peculiar affinity with the inner wall of droplets. This affinity is such that it increases the available interface in the system. The author first presents the properties and the solubilizing power of the ternary system made of AOT (sodium diethyl-hexyl sulfosuccinate, a surfactant), water and iso-octane. Then, he reports the study of the influence and behaviour of the protein in a dense micellar AOT/water/isooctane system: study of percolation phenomena and of light diffusion. The next part reports the structural study of the AOT/water/isooctane system in presence of the protein: models of polymer solutions, methods of exploitation of the diffused intensity, experimental conditions, study by X ray diffusion. The study of the reaction behaviour of the protein in dense medium is then reported: presentation of pulsed radiolysis, experimental results in presence or absence of cytochrome c. In the last part, the author reports the structural study of de-mixed phases: structural models, phase diagram, X and neutron diffusion of de-mixed phases, result interpretation [fr

  20. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    Science.gov (United States)

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-01

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379

  1. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus.

    Science.gov (United States)

    Copilaş-Ciocianu, Denis; Fišer, Cene; Borza, Péter; Petrusek, Adam

    2018-02-01

    Groundwater is an extreme environment due to its absence of light, resource scarcity and highly fragmentary nature. Successful groundwater colonizers underwent major evolutionary changes and exhibit eye and pigment loss (troglomorphies). Consequently, their chances of dispersal and survival in the well-connected surface waters are greatly decreased, resulting in significant endemism. The West Palaearctic subterranean amphipod genus Niphargus comprises hundreds of narrowly endemic and troglomorphic species. Nevertheless, a few are known to occur in surface waters, two of which, N. hrabei and N. valachicus, have extremely large ranges that even exceed those of many surface-water amphipods. We tested if this pattern results from a secondary colonization of the relatively well-connected epigean environment, and whether this ecological shift promoted the large-scale dispersal of these species. Results showed that despite their ecological and zoogeographic similarities, N. hrabei and N. valachicus are not closely related and independently colonized surface waters. Their phylogeographic patterns indicate Middle to Late Pleistocene dispersal episodes throughout the Danube lowlands, and relatively modest yet significant genetic differentiation among populations. Clustering based on morphology revealed that the two species are phenotypically closer to each other than they are to most other epigean congeners. We presume that the ecological shift to surface environments was facilitated by their ability to thrive in hypoxic waters where rheophilic competitors from the family Gammaridae cannot survive. In conclusion, our results indicate that adaptation to groundwater is not a one-way evolutionary path and that troglomorphic species can occasionally recolonize and widely disperse in surface waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  3. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    Science.gov (United States)

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  4. Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-12-01

    Full Text Available Osmosis (RO) system. The process can produce very pure water and recover valuable minerals such as hematite, goethite, gypsum, and limestone. Furthermore, brine will be taken to free desalinator for further recovery of salts. To achieve the goals...

  5. A model for triple helix formation on human telomerase reverse transcriptase (hTERT) promoter and stabilization by specific interactions with the water soluble perylene derivative, DAPER.

    Science.gov (United States)

    Rossetti, Luigi; D'Isa, Giuliana; Mauriello, Clementina; Varra, Michela; De Santis, Pasquale; Mayol, Luciano; Savino, Maria

    2007-08-01

    The promoter of human telomerase reverse transcriptase (hTERT) gene, in the region from -1000 to +1, contains two homopurine-homopyrimidine sequences (-835/-814 and -108/-90), that can be considered as potential targets to triple helix forming oligonucleotides (TFOs) for applying antigene strategy. We have chosen the sequence (-108/-90) on the basis of its unfavorable chromatin organization, evaluated by theoretical nucleosome positioning and nuclease hypersensitive sites mapping. On this sequence, anti-parallel triplex with satisfactory thermodynamic stability is formed by two TFOs, having different lengths. Triplex stability is significantly increased by specific interactions with the perylene derivative N,N'-bis[3,3'-(dimethylamino) propylamine]-3,4,9,10-perylenetetracarboxylic diimide (DAPER). Since DAPER is a symmetric molecule, the induced Circular Dichroism (CD) spectra in the range 400-600 nm allows us to obtain information on drug binding to triplex and duplex DNA. The drug-induced ellipticity is significantly higher in the case of triplex with respect to duplex and, surprisingly, it increases at decreasing of DNA. A model is proposed where self-stacked DAPER binds to triplex or to duplex narrow grooves.

  6. Influence of the solubilization of ribonuclease and of its hydrophobic derivatives on water-in-oil microemulsions

    International Nuclear Information System (INIS)

    Michel, Fabienne

    1993-01-01

    This research thesis addresses the study of the structural disruption of a water-in-oil microemulsion during the solubilization of an enzyme. More precisely, the microemulsion is the water/isooctane system, stabilised by the commonly named AOT anionic surfactant, and the disrupting agent is an enzymatic protein, ribonuclease A. The author addresses the following topics: interactions in microemulsion, percolation in microemulsion, use of microemulsions as micro-reactor, chemical modification of enzymes, and reactivity of enzymes. After a recall of the main results concerning AOT inverse micelles, the author addresses the influence of ribonuclease solubilisation on the micellar system. The micellar environment is then used as a micro-reactor in order to fix hydrophobic molecules in a covalent way onto the ribonuclease A, and then to promote the percolation process. The author then studies the structure of the microemulsion in presence of modified enzymes [fr

  7. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  8. NARCOSIS AND EMULSION REVERSAL BY INERT GASES

    Science.gov (United States)

    Sears, Dewey F.; Fenn, Wallace O.

    1957-01-01

    Investigations of the effect of high pressures of Na (100 to 130 atmospheres) and of Ar (60 to 80 atmospheres) showed that these gases are effective in reversing the phases of an oil in water emulsion. Nitrous oxide did not cause reversal at pressures as high as 53 atmospheres nor did helium as high as 107 atmospheres. We found CO2 most effective in reversing the emulsions and attributed this to its chemical properties. It is suggested that these observations may help to explain the narcotic effects of inert gases. PMID:13416527

  9. Emerging micropollutants in water/wastewater: growing demand on removal technologies.

    Science.gov (United States)

    Trapido, M; Epold, I; Bolobajev, J; Dulova, N

    2014-11-01

    Developing advanced treatment technologies for improving the removal of micropollutants in water/wastewater is important. A suitable treatment is more likely to be used as the polishing step in the treatment scheme. Advanced oxidation technologies (AOTs) are relevant for removing micropollutants. The ability of direct UV photolysis and selected AOTs to degrade pharmaceuticals, endocrine-disrupting compound and herbicide has been studied and compared. The tested methods resulted in the degradation of the studied micropollutants; however, none of the methods was preferred for the removal of all tested compounds. The UV-active processes have strong potential for removal of the studied micropollutants. The utilisation of a moderate hydrogen peroxide admixture resulted in a more reliable treatment.

  10. A flow method based on solvent extraction coupled on-line to a reversed micellar mediated chemiluminescence detection for selective determination of gold(III) and gallium(III) in water and industrial samples.

    Science.gov (United States)

    Hasanin, Tamer H A; Okamoto, Yasuaki; Fujiwara, Terufumi

    2016-02-01

    A rapid and sensitive flow method, based on the combination of on-line solvent extraction with reversed micellar mediated chemiluminescence (CL) detection using rhodamine B (RB), was investigated for the selective determination of Au(III) and Ga(III) in aqueous solutions. 2.0 M HCl was the optimum for extracting Au(III) while a 5.0M HCl solution containing 2.5M LiCl was selected as an optimum acidic medium for extraction of Ga(III). The Au(III) and Ga(III) chloro-complex anions were extracted from the above aqueous acidic solutions into toluene as their ion-pair complexes with the protonated RBH(+) ion followed by membrane phase separation in a flow system. In a flow cell of a detector, the extract was mixed with the reversed micellar solution of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water (1.0M HCl) containing 0.10 M cerium(IV) and 0.05 M lithium sulfate. Then uptake of the ion-pair by the CTAC reversed micelles and the subsequent CL oxidation of RB with Ce(IV) occurred easily and the CL signals produced were recorded. Using a flow injection system, a detection limit (DL) of 0.4 μM Au(III) and 0.6 μM Ga(III), and linear calibration graphs with dynamic ranges from the respective DLs to 10 μM for Au(III) and Ga(III) were obtained under the optimized experimental conditions. The relative standard deviations (n=6) obtained at 2.0 µM Au(III) and 4.0 µM Ga(III) were 3.0% and 2.4%, respectively. The presented CL methodology has been applied for the determination of Au(III) and Ga(III) in water and industrial samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The reversed-flow gas chromatography technique as a tool for the study of the evaporation retardation of SO2 and (CH3)2S from water by soluble surfactants.

    Science.gov (United States)

    Sevastos, D; Kotsalos, E; Koliadima, A

    2017-02-01

    In the present work the evaporation retardation of SO 2 and (CH 3 ) 2 S (=DMS) from water by soluble surfactants was studied by the Reversed-Flow Gas Chromatography (R.F.G.C.) technique. Using suitable mathematical analysis, rate coefficients, k c , for the transfer of SO 2 and DMS from pure or artificial sea water to the atmospheric environment were determined in the presence or the absence of surfactants. The efficiency of the three surfactants used (CTAB, TRITON X-100 and SDS) to retard the evaporation rate of SO 2 and DMS from water was estimated by the decrease of the k c values in the presence of the three surfactants, compared to those in the absence of surfactants. The more efficient surfactant for the retardation evaporation of SO 2 from both the pure and the artificial sea water was found to be the cationic CTAB surfactant, as the maximum decreases of the k c values were found to be 4.61×10 -3 cms -1 (number of films, n=1) and 3.07×10 -3 cms -1 (n=3), respectively. On the other hand, more efficient surfactant for the retardation evaporation of DMS from pure water was found to be the non-ionic TRITON X-100, in which the decrease of the k c value was estimated to be 18.20×10 -3 cms -1 (n=3) and from artificial sea water the cationic CTAB surfactant in which the decrease of the k c value was found to be 8.24×10 -3 cms -1 (n=3). Finally, the precision of the R.F.G.C. method in studying the retardation effect of various surfactants in the transfer of SO 2 and DMS from the water body to the atmosphere is estimated (mean value 96.69%), and the experimental values of k c are compared with those given in the literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Is This the Only Hope for Reversing Global Warming? Transitioning Each Country's All-Purpose Energy to 100% Electricity Powered by Wind, Water, and Solar

    Science.gov (United States)

    Jacobson, M. Z.

    2016-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. Can these problems be solved with existing technologies implemented on a large scale or do we need to wait for a miracle technology? This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of 139 countries of the world to those powered by 100% wind, water, and sunlight (WWS) for all purposes using existing technology along with efficiency measures. All purposes includes electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing. The roadmaps propose using existing WWS generator technologies along with existing electrical transportation, heating/cooling, and industrial devices and appliances, plus existing electricity storage technologies, (CSP with storage, pumped hydroelectric storage, and existing hydroelectric power) and existing heat/cold storage technologies (water, ice, and rocks) for the transitions. They envision 80% conversion to WWS by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces 2050 BAU demand due to the higher work to energy ratio of WWS electricity over combustion, the elimination of energy for mining, transporting, and processing fuels, and improvements in end-use efficiency beyond BAU. The study examines job creation versus loss, land use requirements, air pollution mortality and morbidity cost differences, and global warming cost differences due to the conversion in each country. Results suggest that implementing these roadmaps will stabilize energy prices because fuel costs are zero; reduce international conflict by creating energy-independent countries; reduce energy poverty; reduce power disruption by decentralizing power; and avoid exploding CO2 levels. Thus, the study concludes that a 100% WWS transition provides at least one solution to global warming Please see http

  13. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  14. Tubal Ligation Reversal

    Science.gov (United States)

    ... and other factors. Success rates may be as high as 80 percent or as low as near 40 percent depending on your circumstances. Tubal ligation reversal is abdominal surgery, which carries a risk of infection, bleeding and ...

  15. Effects of small ionic amphiphilic additives on reverse microemulsion morphology.

    Science.gov (United States)

    Hatzopoulos, Marios Hopkins; James, Craig; Rogers, Sarah; Grillo, Isabelle; Dowding, Peter J; Eastoe, Julian

    2014-05-01

    Initial studies (Hopkins Hatzopoulos et al. (2013)) have shown that ionic hydrotropic additives can drive a sphere-to-cylinder (ellipsoid) transition in water-in-oil (w/o) microemulsions stabilized by the anionic surfactant Aerosol-OT; however the origins of this behaviour remained unclear. Here systematic effects of chemical structure are explored with a new set of hydrotropes, in terms of an aromatic versus a saturated cyclic hydrophobic group, and linear chain length of alkyl carboxylates. It is proposed that hydrotrope-induced microemulsion sphere-to-cylinder (ellipsoid) transitions are linked to additive hydrophobicity, and so a correlation between the bulk aqueous phase critical aggregation concentration (cac) and perturbation of microemulsion structure is expected. Water-in-oil microemulsions were formulated as a function of water content w (= [water]/[AOT]) and concentration of different hydrotropes, being either cyclic (sodium benzoate or sodium cyclohexanoate), or linear chain systems (sodium hexanoate, sodium heptanoate and sodium octanoate). Phase behaviour studies were performed as a function of w, additive type and temperature at total surfactant concentration [ST]=0.10M and constant mole fraction x=0.10 (x=[hydrotrope]/[ST]). Microemulsion domain structures were investigated by small-angle neutron scattering (SANS), and these data were fitted by structural models to yield information on the shapes (spheres, ellipsoids or cylinders) and sizes of the nanodroplets. Under the conditions of study hydrotrope chemical structure has a significant effect on microemulsion structure: sodium cyclohexanoate does not induce the formation of cylindrical/ellipsoidal nanodroplets, whereas the aromatic analogue sodium benzoate does. Furthermore, the short chain sodium hexanoate does not cause anisotropic microemulsions, but the more hydrophobic longer chain heptanoate and octanoate analogues do induce sphere-to-ellipsoid transitions. This study shows that underlying

  16. Sex reversal in vertebrates

    OpenAIRE

    2016-01-01

    This special topic issue of Sexual Development gives an overview of sex reversal in vertebrates, from fishes naturally changing their sex, to rodents escaping the mammalian SRY-determining system. It offers eight up-to-date reviews on specific subjects in sex reversal, considering fishes, amphibians, reptiles, birds, marsupials, and placental mammals, including humans. The broad scope of represented animals makes this ideal for students and researchers, especially those interested in the...

  17. Separation of water-soluble vitamins by reversed-phase high performance liquid chromatography with ultra-violet detection: application to polyvitaminated premixes.

    Science.gov (United States)

    Heudi, Olivier; Kilinç, Tamara; Fontannaz, Patric

    2005-04-08

    Nine water-soluble vitamins: [thiamine (B1), ascorbic acid (C), nicotinamide (PP), pyridoxine (B6), calcium pantothenate (B5), folic acid (B9), cyanocobalamin (B12), riboflavin (B2) and biotin (B8)] were separated on a YMC-Pack Pro C18 column (250 mm x 4.6 mm, 5 microm particle size) in a single run with a gradient elution of mobile phase consisting of 0.025% trifluoroacetic acid pH 2.6 (solvent A) and acetonitrile (solvent B). The separation was achieved within 17 min with a flow rate of 0.8 ml min(-1) and the detection was performed at two wavelengths (210 and 275 nm). The calibration graphs plotted with six concentrations of each vitamin were linear with a regression coefficient R2 > 0.995. The method was applied for the quantification of vitamins B1, C, PP, B6, B5, B9 B2 and B8 in polyvitaminated premixes (premixes) used for the fortification of infant nutrition products. The sample preparation involves an aqueous extraction of vitamins and two different samples dilution were used prior the LC-analysis. The specificity of the method was demonstrated by the retention characteristics, UV spectra and by comparing the peak purity with the standard of each vitamin. The repeatability of the method was evaluated at different level of concentrations on 12 premixes and the coefficients of variation (CVr) were below 6.5%. The values of the intermediate precision (CV1) were below 9.6% (n = 6). The concentrations of vitamins found in premixes with our method were comparable to the declared values, since no bias was found between the two sets of results at 95% confidence. The simplicity of the procedure should make it highly desirable for quality control of premixes in the food industry.

  18. What do reversible programs compute?

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert

    2011-01-01

    transformation, program transformations such as inversion, and general static prediction of program properties. Historically, work on reversible computing has focussed on reversible simulations of irreversible computations. Here, we take the viewpoint that the property of reversibility itself should...

  19. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  20. Model of reverse steam generator

    International Nuclear Information System (INIS)

    Malasek, V.; Manek, O.; Masek, V.; Riman, J.

    1987-01-01

    The claim of Czechoslovak discovery no. 239272 is a model designed for the verification of the properties of a reverse steam generator during the penetration of water, steam-water mixture or steam into liquid metal flowing inside the heat exchange tubes. The design may primarily be used for steam generators with a built-in inter-tube structure. The model is provided with several injection devices configured in different heat exchange tubes, spaced at different distances along the model axis. The design consists in that between the pressure and the circumferential casings there are transverse partitions and that in one chamber consisting of the circumferential casings, pressure casing and two adjoining partitions there is only one passage of the injection device through the inter-tube space. (Z.M.). 1 fig

  1. Water

    Science.gov (United States)

    ... environment and your health: Green living Sun Water Health effects of water pollution How to protect yourself from water pollution Air ... can hurt your health. Learn more about the health effects of polluted water. You can also learn more ... Source: U.S. Environmental Protection Agency Here are ...

  2. Reversible Communicating Processes

    Directory of Open Access Journals (Sweden)

    Geoffrey Brown

    2016-02-01

    Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.

  3. Reverse electrodialysis : evaluation of suitable electrode systems

    NARCIS (Netherlands)

    Veerman, J.; Saakes, M.; Metz, S. J.; Harmsen, G. J.

    Reverse electrodialysis (RED) is a method for directly extracting electrical energy from salinity gradients, especially from sea and river water. For the commercial implementation of RED, the electrode system is a key component. In this paper, novel electrode systems for RED were compared with

  4. Experimental Investigation of Solar Powered Reverse Osmosis ...

    African Journals Online (AJOL)

    This paper deals with application of reverse osmosis, driven by desalination system using solar energy, to supply safe drinking water for the rural areas of northern Ethiopia. ... The entire process of irradiation potential measurements, the amount of energy generated using solar panel, and the amount of TDS is discussed.

  5. Reversed extension flow

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.

    2008-01-01

    Afilament stretching rheometer (FSR) was used for measuring the start-up of uni-axial elongational flow followed by reversed bi-axial flow, both with a constant elongational rate. A narrow molecular mass distribution linear polystyrene with a molecular weight of 145 kg / mole wis subjected...... to the start-up of elongation for three Hencky strain units and subsequently the reversed flow. The integral molecular stress function formulation within the 'interchain pressure' concept agrees with the experiments. In the experiments the Hencky strain at which the str~ss becomes zero (the recovery strain......) in the reversed flow has been identified. The recovery strain is found to increase with elongational rate, and has a maximum value of approximately 1.45. The Doi Edwards model using any stretch evolution equation is not able to predict the correct level of the recovery strain....

  6. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  7. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  8. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available to explore desalination for future capacity. Water is essential to life: the human body is about 75 percent water, with up to 85 percent of brain cells liquid. Around 71 percent of the planet is covered in water, but 97,5 percent of it is salt water... risen to 90 percent, leaving only 10 percent for animals and plants. Yet 40 percent of the water used globally is for sanitation and other uses in buildings. The operation of buildings places a strain on raw water reserves, while wastewater and sewage...

  9. Water

    Science.gov (United States)

    ... Marion County, Indiana Salt Lake County, Utah Seattle-King County, Washington Tools and Training CLPPP CAP Healthy ... wish to use tap water for drinking or cooking, especially when the water has been off and ...

  10. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  11. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  12. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    African Journals Online (AJOL)

    AMARA

    Solidified reverse micellar solutions (SRMS) are reverse micelles containing lecithin and a triglyceride, for example, SOFTISAN®142, which is hydrogenated coco glyceride. SRMS transform into a lamellar mesophase after melting on contact with water; this transformation enables controlled release of solubilized drugs.

  13. Recovery of uranium by a reverse osmosis process

    International Nuclear Information System (INIS)

    Cleary, J.G.; Stana, R.R.

    1980-01-01

    A method for concentrating and recovering uranium material from an aqueous solution, comprises passing a feed solution containing uranium through at least one reverse osmosis membrane system to concentrate the uranium, and then flushing the concentrated uranium solution with water in a reverse osmosis membrane system to further concentrate the uranium

  14. Mechanistic Insight into Reversible Core Structural Changes of Dinuclear μ-Hydroxoruthenium(II) Complexes with a 2,8-Di-2-pyridyl-1,9,10-anthyridine Backbone Prior to Water Oxidation Catalysis.

    Science.gov (United States)

    Hirahara, Masanari; Nagai, Sho; Takahashi, Kosuke; Watabe, Shunsuke; Sato, Taisei; Saito, Kenji; Yui, Tatsuto; Umemura, Yasushi; Yagi, Masayuki

    2017-09-05

    proximal,proximal-(p,p)-[Ru II 2 (tpy) 2 LXY] n+ (tpy = 2,2';6',2″-terpyridine, L = 5-phenyl-2,8-di-2-pyridyl-1,9,10-anthyridine, and X and Y = other coordination sites) yields the structurally and functionally unusual Ru II (μ-OH)Ru II core, which is capable of catalyzing water oxidation with key water insertion to the core (Inorg. Chem. 2015, 54, 7627). Herein, we studied a sequence of bridging-ligand substitution among p,p-[Ru 2 (tpy) 2 L(μ-Cl)] 3+ (Ru 2 (μ-Cl)), p,p-[Ru 2 (tpy) 2 L(μ-OH)] 3+ (Ru 2 (μ-OH)), p,p-[Ru 2 (tpy) 2 L(OH)(OH 2 )] 3+ (Ru 2 (OH)(OH 2 )), and p,p-[Ru 2 (tpy) 2 L(OH) 2 ] 2+ (Ru 2 (OH) 2 ) in aqueous solution. Ru 2 (μ-Cl) converted slowly (10 -4 s -1 ) to Ru 2 (μ-OH), and further Ru 2 (μ-OH) converted very slowly (10 -6 s -1 ) to Ru 2 (OH)(OH 2 ) by the insertion of water to reach equilibrium at pH 8.5-12.3. On the basis of density functional theory (DFT) calculations, Ru 2 (OH)(OH 2 ) was predicted to be thermodynamically stable by 13.3 kJ mol -1 in water compared to Ru 2 (μ-OH) because of the specially stabilized core structure by multiple hydrogen-bonding interactions involving aquo, hydroxo, and L backbone ligands. The observed rate from Ru 2 (μ-OH) to Ru 2 (OH) 2 by the insertion of an OH - ion increased linearly with an increase in the OH - concentration from 10 to 100 mM. The water insertion to the core is very slow (∼10 -6 s -1 ) in aqueous solution at pH 8.5-12.3, whereas the insertion of OH - ions is accelerated (10 -5 -10 -4 s -1 ) above pH 13.4 by 2 orders of magnitude. The kinetic data including activation parameters suggest that the associative mechanism for the insertion of water to the Ru II (μ-OH)Ru II core of Ru 2 (μ-OH) at pH 8.5-12.3 alters the interchange mechanism for the insertion of an OH - ion to the core above pH 13.4 because of relatively stronger nucleophilic attack of OH - ions. The hypothesized p,p-[Ru 2 (tpy) 2 L(μ-OH 2 )] 4+ and p,p-[Ru 2 (tpy) 2 L(OH 2 ) 2 ] 4+ formed by protonation from Ru 2

  15. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin

    Science.gov (United States)

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-08-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

  16. 49 CFR 230.89 - Reverse gear.

    Science.gov (United States)

    2010-10-01

    ... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants shall be maintained in a safe and suitable condition for service. Reverse lever latch shall be so...

  17. Posterior Reversible Encephalopathy (PRES)

    International Nuclear Information System (INIS)

    Moron E, Fanny E; Diaz Marchan, Pedro

    2005-01-01

    The Posterior Reversible Encephalopathy Syndrome (PRES) is a clinical Syndrome composed of cephalea, alteration in vision and convulsions, usually observed in patients with sudden elevation of arterial pressure. The imagenologic evidence shows reversible vasogenic brain edema without stroke. Its location is predominantly posterior; it affects the cortex and the subcortical white matter of the occipital, parietal and temporal lobes. The treatment with antihypertensive drugs and the removing of immunosupressor medication are generally associated with complete neurological recovery; this is reflected also in the images which return to their basal condition. The untreated hypertension, on the other side, can result in a progressive defect of the autoregulation system of the central nervous system with cerebral hemorrhage, irreversible brain stroke, coma and death

  18. Time-reversal acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Mathias [Laboratoire Ondes et Acoustique, Ecole Superieure de Physique et de Chimie Industrielle de la Ville de Paris, Universite Denis Diderot, UMR CNRS 7587, 10 Rue Vauquelin, 75005 Paris (France)], E-mail: mathias.fink@espci.fr

    2008-10-15

    Time-reversal mirrors (TRMs) refocus an incident acoustic field to the position of the original source regardless of the complexity of the propagation medium. TRM's have now been implemented in a variety of physical scenarios from MHz ultrasonics with order centimeter aperture size to hundreds/thousands of Hz in ocean acoustics with order hundred meter aperture size. Common to this broad range of scales is a remarkable robustness exemplified by observations at all scales that the more complex the medium between the probe source and the TRM, the sharper the focus. The relation between the medium complexity and the size of the focal spot is studied in this paper. It is certainly the most exciting property of TRM compared to standard focusing devices. A TRM acts as an antenna that uses complex environments to appears wider than it is, resulting for a broadband pulse in a refocusing quality that does not depend of the TRM aperture. In this paper, we investigate the time-reversal approach in various media of increasing complexity and we discuss the link existing between time-reversal approach and local helioseismology where Green's functions can be extracted from diffusive noise.

  19. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  20. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed

  1. A Study on Reverse Logistics

    OpenAIRE

    Reddy, Dhananjaya

    2011-01-01

    In the competitive world of manufacturing, companies are often searching for new ways to improve their process, customer satisfaction and stay ahead in the game with their competitors. Reverse logistics has been considered a strategy to bring these things to life for the past decade or so. This thesis work tries to shed some light on the basics of reverse logistics and how reverse logistics can be used as a management strategy. This paper points out the fundamentals of reverse logistics and l...

  2. transmitted fresh water flow rate of reverse osmosis desalination system utilizing the static pressure head-formulation of numerical results and comparison with experimental results; Seiatsuto wo riyo suru gyakushintohodatsuen shisutemu no tansuisuikaryuryo-suchikaisekikekka no shikika oyobi shikkenkekka tono hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Miyatake, O.; Tagawa, K.; Noda, H. [Kyushu University, Fukuoka (Japan)

    1999-07-10

    Based on the author's precious numerical results of a reverse osmosis desalination system for seawater or brackish water utilizing the static pressure head of seawater in a deep-sea region or brackish water in a vertical pit, a dimensionless expression is formulated to predict the transmitted fresh water flow rate from the geometry and the submerged depth of the device, the pure water permeability and the solute permeability of membrane, and the physical properties of seawater or brackish water. The derived expression is compared with experimental results obtained by field experiments carried out in the Sea of Japan and the East China Sea with fair agreement and thus confirmed the applicability and usefulness of the expression. (author)

  3. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  4. Reversible brazing process

    Science.gov (United States)

    Pierce, Jim D.; Stephens, John J.; Walker, Charles A.

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  5. Synthesis, characterisation, photo-physic and photochemistry properties of nanometer particles synthesised 'in situ' in reverse micelles

    International Nuclear Information System (INIS)

    Motte, Laurence

    1994-01-01

    This research thesis reports the use of inverse micelles as chemical micro-reactors for the synthesis of semiconductors of nano-metric size. The author first presents the properties of the inverse micellar system made of water, AOT and oil, and then describes electronic properties of semiconductors with respect to their size. After a bibliographical study on three semiconductors (CdS, AgI, Ag 2 S), the author highlights the presence of at least two types of water in the aqueous core of inverse micelles. She reports the study of the influence of the addition of a surfactant (CTAC, cetyl trimethyl ammonium chloride) on droplet properties, on the interaction between droplets, on reaction kinetics, and on crystallite size depending on the considered semiconductor (CdS, AgI or Ag 2 S) [fr

  6. Novel technologies for reverse osmosis concentrate treatment: a review.

    Science.gov (United States)

    Joo, Sung Hee; Tansel, Berrin

    2015-03-01

    Global water shortages due to droughts and population growth have created increasing interest in water reuse and recycling and, concomitantly, development of effective water treatment processes. Pressured membrane processes, in particular reverse osmosis, have been adopted in water treatment industries and utilities despite the relatively high operational cost and energy consumption. However, emerging contaminants are present in reverse osmosis concentrate in higher concentrations than in the feed water, and have created challenges for treatment of the concentrate. Further, standards and guidelines for assessment and treatment of newly identified contaminants are currently lacking. Research is needed regarding the treatment and disposal of emerging contaminants of concern in reverse osmosis concentrate, in order to develop cost-effective methods for minimizing potential impacts on public health and the environment. This paper reviews treatment options for concentrate from membrane processes. Barriers to emerging treatment options are discussed and novel treatment processes are evaluated based on a literature review. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  8. Determination of partition coefficients n-octanol/water for treosulfan and its epoxy-transformers: an example of a negative correlation between lipophilicity of unionized compounds and their retention in reversed-phase chromatography.

    Science.gov (United States)

    Główka, Franciszek K; Romański, Michał; Siemiątkowska, Anna

    2013-04-01

    For the last decade an alkylating agent treosulfan (TREO) has been successfully applied in clinical trials in conditioning prior to hematopoietic stem cell transplantation. Pharmacological activity of the pro-drug depends on its epoxy-transformers, monoepoxide (S,S-EBDM) and diepoxide (S,S-DEB), which are formed in a non-enzymatic consecutive reaction accompanied by a release of methanesulfonic acid. In the present study partition coefficient n-octanol/water (POW) of TREO as well as its biologically active epoxy-transformers was determined empirically (applying a classical shake-flask method) and in silico for the first time. In vitro the partition was investigated at 37°C in the system composed of the pre-saturated n-octanol and 0.05 M acetate buffer pH 4.4 adjusted with sodium and potassium chloride to ionic strength of 0.16 M. Concentration of the analytes was quantified by reversed-phase high performance liquid chromatography (RP-HPLC) method in which retention time increased from S,S-DEB to TREO. It was shown that neither association nor dissociation of the tested compounds in the applied phases occurred. Calculated logPOW (TREO: -1.58±0.04, S,S-EBDM: -1.18±0.02, S,S-DEB: -0.40±0.03) indicate the hydrophilic character of the all three entities, corresponding to its pharmacokinetic parameters described in the literature. Experimentally determined logPOW of the compounds were best comparable to the values predicted by algorithm ALOGPs. Interestingly, the POW values determined in vitro as well as in silico were inversely correlated with the retention times observed in the endcapped RP-HPLC column. It might be explained by the fact that a cleavage of methansulfonic acid from a small molecule of TREO generates significant changes in the molecular structure. Consequently, despite the common chemical origin, TREO, S,S-EBDM and S,S-DEB do not constitute a 'congeneric' series of compounds. We concluded that this might occur in other low-weight species, therefore

  9. The influence of salt matrices on the reversed-phase liquid chromatography behavior and electrospray ionization tandem mass spectrometry detection of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid in water.

    Science.gov (United States)

    Skeff, Wael; Recknagel, Constantin; Schulz-Bull, Detlef E

    2016-12-02

    The analysis of highly polar and amphoteric compounds in seawater is a continuing challenge in analytical chemistry due to the possible formation of complexes with the metal cations present in salt-based matrices. Here we provide information for the development of analytical methods for glyphosate, glufosinate, AMPA, and 2-AEP in salt water, based on studies of the effects of salt matrices on reversed-phase liquid chromatography-heated electrospray ionization-tandem mass spectrometry (RP-LC-HESI-MS/MS) after derivatization of the target compounds with FMOC-Cl. The results showed that glyphosate was the only analyte with a strong tendency to form glyphosate-metal complexes (GMC), which clearly influenced the analysis. The retention times (RTs) of GMC and free glyphosate differed by approximately 7.00min, reflecting their distinct RP-LC behaviors. Divalent cations, but not monovalent (Na + , K + ) or trivalent (Al 3+ , Fe 3+ ) cations, contributed to this effect and their influence was concentration-dependent. In addition, Cu 2+ , Co 2+ , Zn 2+ , and Mn 2+ prevented glyphosate detection whereas Ca 2+ , Mg 2+ , and Sr 2+ altered the retention time. At certain tested concentrations of Ca 2+ and Sr 2+ glyphosate yielded two peaks, which violated the fundamental rule of LC, that under the same analytical conditions a single substance yields only one LC-peak with a specific RT. Salt-matrix-induced ion suppression was observed for all analytes, especially under high salt concentrations. For glyphosate and AMPA, the use of isotopically labeled internal standards well-corrected the salt-matrix effects, with better results achieved for glufosinate and 2-AEP with the AMPA internal standard than with the glyphosate internal standard. Thus, our study demonstrated that Ca 2+ , Mg 2+ , and Sr 2+ can be used together with FMOC-Cl to form GMC-FMOC which is suitable for RP-LC-HESI-MS/MS analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Reversible posterior leukoencephalopathy syndrome

    International Nuclear Information System (INIS)

    Lee, Eun Ja; Yu, Won Jong; Ahn, Kook Jin; Jung, So Lyung; Lee, Yeon Soo; Kim, Ji Chang; Kang, Si Won; Song, Chang Joon; Song, Soon-Young; Koo, Ja Hong; Kim, Man Deuk

    2001-01-01

    To review reversible posterior leukoencephalopathy syndrome. We reviewed 22 patients (M:F=3:19; age, 17-46 years) with the characteristic clinical and imaging features of reversible posterior leukoencephalopathy syndrome. All underwent brain MRI, and in three cases both CT and MRI were performed. In one, MRA was obtained, and in eleven, follow-up MR images were obtained. We evaluated the causes of this syndrome, its clinical manifestations, and MR findings including the locations of lesions, the presence or absence of contrast enhancement, and the changes seen at follow-up MRI. Of the 22 patients, 13 had eclampsia (six during pregnancy and seven during puerperium). Four were receiving immunosuppressive therapy (three, cyclosporine ; one, FK 506). Four suffered renal failure and one had complicated migraine. The clinical manifestations included headache (n=12), visual disturbance (n=13), seizure (n=15), focal neurologic sign (n=3), and altered mental status (n=2). Fifteen patients had hypertension and the others normotension. MRI revealed that lesions were bilateral (n=20) or unilateral (n=2). In all patients the lesion was found in the cortical and subcortical areas of the parieto-occipital lobes ; other locations were the basal ganglia (n=9), posterior temporal lobe (n=8), frontal lobe (n=5), cerebellum (n=5), pons (n=2), and thalamus (n=1). All lesions were of high signal intensity on T2-weighted images, and of iso to low intensity on T1-weighted images. One was combined with acute hematoma in the left basal ganglia. In eight of 11 patients who underwent postcontrast T1-weighted MRI, there was no definite enhancement ; in one, enhancement was mild, and in tow, patchy. CT studies showed low attenuation, and MRA revealed mild vasospasm. The symptoms of all patients improved. Follow-up MRI in nine of 11 patients depicted complete resolution of the lesions ; in two, small infarctions remained but the extent of the lesions had decreased. Reversible posterior

  11. Reversible posterior leukoencephalopathy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ja; Yu, Won Jong; Ahn, Kook Jin; Jung, So Lyung; Lee, Yeon Soo; Kim, Ji Chang; Kang, Si Won [The Catholic Univ. of Korea, Taejon (Korea, Republic of); Song, Chang Joon [Chungnam National Univ. School of Medicine, Cheonju (Korea, Republic of); Song, Soon-Young; Koo, Ja Hong [Kwandong Univ. College of Medicine, Myungji Hospital, Seoul (Korea, Republic of); Kim, Man Deuk [College of Medicine Pochon CHA Univ., Seoul (Korea, Republic of)

    2001-10-01

    To review reversible posterior leukoencephalopathy syndrome. We reviewed 22 patients (M:F=3:19; age, 17-46 years) with the characteristic clinical and imaging features of reversible posterior leukoencephalopathy syndrome. All underwent brain MRI, and in three cases both CT and MRI were performed. In one, MRA was obtained, and in eleven, follow-up MR images were obtained. We evaluated the causes of this syndrome, its clinical manifestations, and MR findings including the locations of lesions, the presence or absence of contrast enhancement, and the changes seen at follow-up MRI. Of the 22 patients, 13 had eclampsia (six during pregnancy and seven during puerperium). Four were receiving immunosuppressive therapy (three, cyclosporine ; one, FK 506). Four suffered renal failure and one had complicated migraine. The clinical manifestations included headache (n=12), visual disturbance (n=13), seizure (n=15), focal neurologic sign (n=3), and altered mental status (n=2). Fifteen patients had hypertension and the others normotension. MRI revealed that lesions were bilateral (n=20) or unilateral (n=2). In all patients the lesion was found in the cortical and subcortical areas of the parieto-occipital lobes ; other locations were the basal ganglia (n=9), posterior temporal lobe (n=8), frontal lobe (n=5), cerebellum (n=5), pons (n=2), and thalamus (n=1). All lesions were of high signal intensity on T2-weighted images, and of iso to low intensity on T1-weighted images. One was combined with acute hematoma in the left basal ganglia. In eight of 11 patients who underwent postcontrast T1-weighted MRI, there was no definite enhancement ; in one, enhancement was mild, and in tow, patchy. CT studies showed low attenuation, and MRA revealed mild vasospasm. The symptoms of all patients improved. Follow-up MRI in nine of 11 patients depicted complete resolution of the lesions ; in two, small infarctions remained but the extent of the lesions had decreased. Reversible posterior

  12. Reverse photoacoustic standoff spectroscopy

    Science.gov (United States)

    Van Neste, Charles W [Kingston, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN

    2011-04-12

    A system and method are disclosed for generating a reversed photoacoustic spectrum at a greater distance. A source may emit a beam to a target and a detector measures signals generated as a result of the beam being emitted on the target. By emitting a chopped/pulsed light beam to the target, it may be possible to determine the target's optical absorbance by monitoring the intensity of light collected at the detector at different wavelengths. As the wavelength of light is changed, the target may absorb or reject each optical frequency. Rejection may increase the intensity at the sensing element and absorption may decrease the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.

  13. Sex Reversal in Amphibians.

    Science.gov (United States)

    Flament, Stéphane

    2016-01-01

    Amphibians have been widely used to study developmental biology due to the fact that embryo development takes place independently of the maternal organism and that observations and experimental approaches are easy. Some amphibians like Xenopus became model organisms in this field. In the first part of this article, the differentiation of the gonads in amphibians and the mechanisms governing this process are reviewed. In the second part, the state of the art about sex reversal, which can be induced by steroid hormones in general and by temperature in some species, is presented. Also information about pollutants found in the environment that could interfere with the development of the amphibian reproductive apparatus or with their reproductive physiology is given. Such compounds could play a part in the amphibian decline, since in the wild, many amphibians are endangered species. © 2016 S. Karger AG, Basel.

  14. A comparison of ROChem reverse osmosis and spiral wound reverse osmosis membrane modules

    Energy Technology Data Exchange (ETDEWEB)

    Siler, J.L.

    1992-01-31

    Testing of the ROChem Disc Tube[reg sign] reverse osmosis (RO) module's performance on biologically active feed waters has been completed. Both the ROChem module (using Filmtec standard-rejection seawater membranes) and the Filmtec spiral-wound membrane module (using Filmtec high-rejection seawater membranes) were tested with stimulant solutions containing typical bacteria and metal hydroxide levels found in the F/H Effluent Treatment Facility (ETF) influent. Results indicate that the ROChem module gave superior performance over the spiral-wound module. Water flux losses were reduced by over 30% for water recoveries above 40%.

  15. A comparison of ROChem reverse osmosis and spiral wound reverse osmosis membrane modules

    Energy Technology Data Exchange (ETDEWEB)

    Siler, J.L.

    1992-01-31

    Testing of the ROChem Disc Tube{reg_sign} reverse osmosis (RO) module`s performance on biologically active feed waters has been completed. Both the ROChem module (using Filmtec standard-rejection seawater membranes) and the Filmtec spiral-wound membrane module (using Filmtec high-rejection seawater membranes) were tested with stimulant solutions containing typical bacteria and metal hydroxide levels found in the F/H Effluent Treatment Facility (ETF) influent. Results indicate that the ROChem module gave superior performance over the spiral-wound module. Water flux losses were reduced by over 30% for water recoveries above 40%.

  16. Nitrate-nitrogen removal with small-scale reverse osmosis ...

    African Journals Online (AJOL)

    The nitrate-nitrogen concentration in water supplied to clinics in Limpopo Province is too high to be fit for human consumption (35 to 75 mg/ℓ NO3-N). Therefore, small-scale technologies (reverse osmosis, ion-exchange and electrodialysis) were evaluated for nitrate-nitrogen removal to make the water potable (< 10 mg/ℓ ...

  17. Micro-structured membranes for electricity generation by reverse electrodialysis

    NARCIS (Netherlands)

    Güler, E.; Elizen, Rianne; Saakes, Michel; Nijmeijer, Dorothea C.

    2014-01-01

    Reverse electrodialysis (RED) is a technology for extracting salinity gradient power by contacting waters with different salinity, i.e. seawater and river water, through ion exchange membranes. Conventionally, non-conductive spacers are used to separate these ion exchange membranes from each other

  18. Arsenic and Antimony Removal from Drinking Water by Point-of-Entry Reverse Osmosis Coupled with Dual Plumbing Distribution - U.S. EPA Demonstration Project at Carmel Elementary School in Carmel, ME -Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic and antimony removal treatment technology demonstration project at the Carmel Elementary School (CES) in Carmel, ME. An innovative approach of employing point of entry (POE) reverse osmo...

  19. Heraclitus, Seaford and Reversible Exchange

    OpenAIRE

    Kassam, C; Duschinsky, Robert Nathan

    2017-01-01

    In this essay we identify a characteristic pattern of Heraclitus’ thought and language, the “figure of reversible exchange”. We suggest that this figure allows Heraclitus to propose an ontological structure consisting of two intersecting circuits of relations: a pre-temporal reversible exchange between Being and Becoming and between One and Many, and a temporal reversible exchange within the Many as the very process of Becoming. Against Richard Seaford’s interpretation of Heraclitus’ thought ...

  20. MODELS OF PROJECT REVERSE ENGINEERING

    OpenAIRE

    Віктор Володимирович ІВАНОВ

    2017-01-01

    Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The mo...

  1. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  2. Physics of field reversed mirrors

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    Since the earliest days of fusion research it has been hoped that diamagnetic currents flowing in a plasma could be used to help confine the plasma. Recently this hope has been strengthened both by theoretical advances and by experimental results made possible by technological developments. On the theoretical front analytical treatments and computer simulation studies have demonstrated equilibrium solutions existing both in the fluid limit and in the large-orbit limit. Progress has also been made in determining the conditions required for the stability of field-reversed entities. It appears that configurations of the general form of fat doughnuts, possibly elongated to napkin-ring form, represent stable states. Building on previous experimental work, several investigators have been able to create field-reversed states. One method, based on the ASTRON idea of Christofilos, traps an intense relativistic electron beams (REB) to create a field-reversing current ring. Other approaches use either the reversed field theta pinch technique or REB pulses to create field-reversing diamagnetic currents in a long cylindrical plasma. In the former method, millisecond-long field-reversing electron rings have been achieved; in the latter method field-reversed plasma states lasting 30 to 50 microseconds have been achieved. Another approach under investigation is the Field Reversed Mirror (FRM) created by the tangential injection of high current neutral beams. Plasma states that approach field reversal have been achieved by this technique

  3. A reversible processor architecture and its reversible logic design

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock; Glück, Robert

    2012-01-01

    We describe the design of a purely reversible computing architecture, Bob, and its instruction set, BobISA. The special features of the design include a simple, yet expressive, locally-invertible instruction set, and fully reversible control logic and address calculation. We have designed an arch...

  4. Reverse osmosis separation of radium from dilute aqueous solutions

    International Nuclear Information System (INIS)

    Subramanian, K.S.; Sastri, V.S.

    1980-01-01

    Porous cellulose acetate membranes obtained from Osmonics Inc. were characterized in terms of pure water permeability constant, solute transport parameter, and mass transfer coefficient with aqueous sodium chloride solution as the reference system. Reverse osmosis separation behavior of radium-226 as nitrate, chloride, and sulfate salts was studied. Reverse osmosis method of removing radium-226 from aqueous solutions has been compared with other methods, and it has been shown to be one of the best methods for alleviating radium contamination problems

  5. Time reversal and holography with spacetime transformations

    Science.gov (United States)

    Bacot, Vincent; Labousse, Matthieu; Eddi, Antonin; Fink, Mathias; Fort, Emmanuel

    2016-10-01

    Wave control is usually performed by spatially engineering the properties of a medium. Because time and space play similar roles in wave propagation, manipulating time boundaries provides a complementary approach. Here, we experimentally demonstrate the relevance of this concept by introducing instantaneous time mirrors. We show with water waves that a sudden change of the effective gravity generates time-reversed waves that refocus at the source. We generalize this concept for all kinds of waves, introducing a universal framework which explains the effect of any time disruption on wave propagation. We show that sudden changes of the medium properties generate instant wave sources that emerge instantaneously from the entire space at the time disruption. The time-reversed waves originate from these `Cauchy sources’, which are the counterpart of Huygens virtual sources on a time boundary. It allows us to revisit the holographic method and introduce a new approach for wave control.

  6. Reverse osmosis membrane allows in situ regeneration

    International Nuclear Information System (INIS)

    Bonhomme, N.; Menjeaud, C.; Poyet, C.

    1989-01-01

    The use of mineral membranes on metallic supports has provided a novel solution to the problem of filtration by the reverse osmosis process. A new reverse osmosis membrane is described which is capable of resisting high operational temperatures (120 0 C), fluctuations in pH(3 to 12) and high pressure (100 bar), as well as significant chlorine concentrations. In addition, the membrane can be regenerated in-situ on the same porous metal support. Numerous membranes can thus be used over the multi-year life of the porous support. Moreover, accidental damage to the membrane is of no great consequence as the membrane itself can be easily replaced. The life of the installation can thus be extended and the overall cost of filtration reduced. The membrane's various applications include water and effluent treatment in the nuclear power industry. (author)

  7. Enzymatic reactions in reversed micelles

    NARCIS (Netherlands)

    Hilhorst, M.H.

    1984-01-01

    It has been recognised that enzymes in reversed micelles have potential for application in chemical synthesis. Before these expectations will be realised many problems must be overcome. This thesis deals with some of them.
    In Chapter 1 the present knowledge about reversed micelles and

  8. REVERSE LOGISTICS IN GLOBALIZATION ASPECTS

    OpenAIRE

    Janusz Grabara; Iwona Grabara

    2008-01-01

    This paper presents issues connected with adaptation of modern solutions of reverse logisticsmanagement in enterprise to the concept of sustainable development promoted by the European Union.Nowadays more and more businesses are looking to grow their reverse logistics capabilities in global market.

  9. Enzyme recovery using reversed micelles

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.

    Reversed micelles are aggregates of surfactant

  10. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  11. Reference counting for reversible languages

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2014-01-01

    Modern programming languages and operating systems use heap memory that allows allocation and deallocation of memory to be decoupled, so they don't follow a stack discipline. Axelsen and Glück have presented a reversible heap manager where allocation and deallocation are each other's logical...... inverses: Freeing a block of memory is done by running the allocation procedure backwards. Axelsen and Glück use this heap manager to sketch implementation of a simple reversible functional language where pattern matching a constructor is the inverse of construction, so pattern-matching implies...... a pointer decreases the reference count. We show reversible implementations of operations on nodes with reference counts. We then show these operations can be used when implementing a reversible functional language RCFUN to the reversible imperative language Janus....

  12. Reversible gates and circuits descriptions

    Science.gov (United States)

    Gracki, Krzystof

    2017-08-01

    This paper presents basic methods of reversible circuit description. To design reversible circuit a set of gates has to be chosen. Most popular libraries are composed of three types of gates so called CNT gates (Control, NOT and Toffoli). The gate indexing method presented in this paper is based on the CNT gates set. It introduces a uniform indexing of the gates used during synthesis process of reversible circuits. The paper is organized as follows. Section 1 recalls basic concepts of reversible logic. In Section 2 and 3 a graphical representation of the reversible gates and circuits is described. Section 4 describes proposed uniform NCT gates indexing. The presented gate indexing method provides gate numbering scheme independent of lines number of the designed circuit. The solution for a circuit consisting of smaller number of lines is a subset of solution for a larger circuit.

  13. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  14. Fundamentals of reversible flowchart languages

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2016-01-01

    Abstract This paper presents the fundamentals of reversible flowcharts. They are intended to naturally represent the structure and control flow of reversible (imperative) programming languages in a simple computation model, in the same way classical flowcharts do for conventional languages......, structured reversible flowcharts are as expressive as unstructured ones, as shown by a reversible version of the classic Structured Program Theorem. We illustrate how reversible flowcharts can be concretized with two example programming languages, complete with syntax and semantics: a low-level unstructured...... language and a high-level structured language. We introduce concrete tools such as program inverters and translators for both languages, which follow the structure suggested by the flowchart model. To further illustrate the different concepts and tools brought together in this paper, we present two major...

  15. Influence of pH and salt concentration on functional properties of walnut protein from different extraction methods.

    Science.gov (United States)

    Hu, Haifang; Fan, Tao; Zhao, Xiaoyan; Zhang, Xiaowei; Sun, Yali; Liu, Hongkai

    2017-08-01

    The effect of pH and NaCl on solubility and functional properties of walnut proteins obtained through AOT reverse micelles, enzyme-assisted reverse micelles and aqueous phase extraction methods was investigated and compared. Extraction yield, foaming properties, water holding capacities of protein obtained through enzyme-assisted reverse micelles at pH 2-12 and NaCl concentration 0.1-1 M were significantly higher than those of the AOT reverse micelles and aqueous phase extracted two. The solubility of proteins by AOT reverse micelles and enzyme-assisted reverse micelles at certain pH and NaCl concentration had no significant difference, but was higher that of the aqueous buffer. Oil holding capacity of three proteins was 2.35, 3.96 and 1.08 cm 3 /g, respectively. At pH 6-12 and NaCl concentration 0.1-1 M, the emulsifying activity of protein from AOT reverse micelles was higher than those of other two methods, while the emulsifying stability of protein from enzyme-assisted reverse micelles was the highest. The functional properties of walnut proteins were affected by extraction methods. It indicated that the walnut protein might be potentially applied in food industry as a food ingredient.

  16. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    Science.gov (United States)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  17. REVERSAL OF THE STREPTOMYCIN INJURY OF ESCHERICHIA COLI

    Science.gov (United States)

    Wasserman, Aaron E.; Lessner, James M.; West, Margaret K.

    1954-01-01

    The number of viable Escherichia coli in a young, actively growing culture is decreased approximately 99.9 per cent by a 30 second exposure to 25 φg. streptomycin/ml. The injury induced by the antibiotic is only potentially lethal, however, and may be reversed by subculture within 5 minutes into fresh culture medium, NH4NO3, NH4Cl, (NH4)2HPO4, NH4 citrate, and NH4 tartrate. Subculturing into water, glucose, or MgSO4 results in a more marked decrease in the number of viable organisms. In KNO3, NaNO3, K2HPO4, and Na2SO4 solutions reversal occurs first, followed by a rapid decrease in viability. True reversal of the streptomycin injury takes place, as demonstrated by the rapid rate of recovery to the viable count of the original culture. Development of resistance has been eliminated as the cause of regrowth since the streptomycin sensitivity of recovered cultures remained the same as that of the original culture. The use of water as diluent for viability determinations potentiates the lethal effect of streptomycin activity. Several compounds, at various dilutions, substituted for water as the diluent gave rise to four types of responses, group I, NH4NO3, NH4Cl, KNO3, NaNO3, Ca(NO3)2, showed complete reversal of the streptomycin injury at all levels of the salts tested, from 0.01 to 0.5 M concentrations. Group II, NaCl and K2HPO4 showed complete reversal at 0.03 and 0.1 M. Group III, glucose and urea allowed complete reversal at 0.5 M. Group IV, glycerol and glycerine showed no reversal at 0.5 M concentration. The reversal of the streptomycin injury to young actively growing bacteria is suggested as a tool for studying the pathology of the injury to the cells. PMID:13211997

  18. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  19. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  20. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  1. A Typology of Reverse Innovation

    DEFF Research Database (Denmark)

    von Zedtwitz, Max; Corsi, Simone; Søberg, Peder Veng

    2015-01-01

    Reverse innovation commonly refers to an innovation initially launched in a developing country and later introduced to an advanced country. Adopting a linear innovation model with the four sequential phases of concept ideation, product development, primary target market introduction, and subsequent...... secondary market introduction, this study expands the espoused definition of reverse innovation beyond its market-introduction focus with reversals in the flow of innovation in the ideation and product development phases. Recognizing that each phase can take place in different geographical locations...

  2. Reverse engineering for quality systems

    International Nuclear Information System (INIS)

    Nolan, A.J.

    1995-01-01

    When the age of software engineering began, many companies were faced with a problem of how to support the older, pre-software-engineering, programs. The techniques of reverse engineering and re-engineering were developed to bridge the gap between the past and the present. Although reverse engineering can be used for generating missing documentation, it can also be used as a means to demonstrate quality in these older programs. This paper presents, in the form of a case study, how Rolls-Royce and Associates Limited addressed the quality issues of reverse engineering and re-engineering. (author)

  3. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  4. Designing the Reverse Supply Chain

    DEFF Research Database (Denmark)

    Gobbi, Chiara

    2011-01-01

    for the reverse supply chain. Design/methodology/approach – In order to identify the relevance of the Fisher model, the model needs to be recast in terms of PRV, which, in this context, is considered the independent variable in the reverse logistics arena. Products defined as innovative in Fisher's taxonomy....... Research limitations/implications – The focus is restricted to the industry of electrical and electronic products. Practical implications – Based on the outcome of the study, managers are able to determine the basic prerequisites for the design of their reverse supply chains. Originality/value – Previous......Purpose – The purpose of this paper is to explore the impact of the product residual value (PRV) and the loss of value over time of returned products in the reverse supply chain configuration. It also examines whether or not the distinction of Fisher's functional and innovative products holds...

  5. Towards a reversible functional language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2012-01-01

    first-match policy for case expressions, we can write overlapping patterns in case branches, as is customary in ordinary functional languages, and also in leaf expressions, unlike existing inverse interpreter methods, which enables concise programs. In patterns, the use of a duplication....../equality operator also simplifies inverse computation and program inversion. We discuss the advantages of a reversible functional language using example programs, including run-length encoding. Program inversion is seen to be as lightweight as for imperative reversible languages and realized by recursive descent......We identify concepts of reversibility for a functional language by means of a set of semantic rules with specific properties. These properties include injectivity along with local backward determinism, an important operational property for an efficient reversible language. We define a concise...

  6. Initiation of HIV Reverse Transcription

    OpenAIRE

    Isel, Catherine; Ehresmann, Chantal; Marquet, Roland

    2010-01-01

    Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of...

  7. Liquid-liquid extraction by reversed micelles in biotechnological processes

    Directory of Open Access Journals (Sweden)

    Kilikian B. V.

    2000-01-01

    Full Text Available In biotechnology there is a need for new purification and concentration processes for biologically active compounds such as proteins, enzymes, nucleic acids, or cells that combine a high selectivity and biocompatibility with an easy scale-up. A liquid-liquid extraction with a reversed micellar phase might serve these purposes owing to its capacity to solubilize specific biomolecules from dilute aqueous solutions such as fermentation and cell culture media. Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. These reversed micelles are capable of selectively solubilizing polar compounds in an apolar solvent. This review gives an overview of liquid-liquid extraction by reversed micelles for a better understanding of this process.

  8. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  9. Reversal of idiopathic hypogonadotropic hypogonadism.

    Science.gov (United States)

    Raivio, Taneli; Falardeau, John; Dwyer, Andrew; Quinton, Richard; Hayes, Frances J; Hughes, Virginia A; Cole, Lindsay W; Pearce, Simon H; Lee, Hang; Boepple, Paul; Crowley, William F; Pitteloud, Nelly

    2007-08-30

    Idiopathic hypogonadotropic hypogonadism, which may be associated with anosmia (the Kallmann syndrome) or with a normal sense of smell, is a treatable form of male infertility caused by a congenital defect in the secretion or action of gonadotropin-releasing hormone (GnRH). Patients have absent or incomplete sexual maturation by the age of 18. Idiopathic hypogonadotropic hypogonadism was previously thought to require lifelong therapy. We describe 15 men in whom reversal of idiopathic hypogonadotropic hypogonadism was sustained after discontinuation of hormonal therapy. We defined the sustained reversal of idiopathic hypogonadotropic hypogonadism as the presence of normal adult testosterone levels after hormonal therapy was discontinued. Ten sustained reversals were identified retrospectively. Five sustained reversals were identified prospectively among 50 men with idiopathic hypogonadotropic hypogonadism after a mean (+/-SD) duration of treatment interruption of 6+/-3 weeks. Of the 15 men who had a sustained reversal, 4 had anosmia. At initial evaluation, 6 men had absent puberty, 9 had partial puberty, and all had abnormal secretion of GnRH-induced luteinizing hormone. All 15 men had received previous hormonal therapy to induce virilization, fertility, or both. Among those whose hypogonadism was reversed, the mean serum level of endogenous testosterone increased from 55+/-29 ng per deciliter (1.9+/-1.0 nmol per liter) to 386+/-91 ng per deciliter (13.4+/-3.2 nmol per liter, Phypogonadotropic hypogonadism and the Kallmann syndrome was noted after discontinuation of treatment in about 10% of patients with either absent or partial puberty. Therefore, brief discontinuation of hormonal therapy to assess reversibility of hypogonadotropic hypogonadism is reasonable. (ClinicalTrials.gov number, NCT00392756 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.

  10. Reverse hybrid total hip arthroplasty

    Science.gov (United States)

    Wangen, Helge; Havelin, Leif I; Fenstad, Anne M; Hallan, Geir; Furnes, Ove; Pedersen, Alma B; Overgaard, Søren; Kärrholm, Johan; Garellick, Göran; Mäkelä, Keijo; Eskelinen, Antti; Nordsletten, Lars

    2017-01-01

    Background and purpose The use of a cemented cup together with an uncemented stem in total hip arthroplasty (THA) has become popular in Norway and Sweden during the last decade. The results of this prosthetic concept, reverse hybrid THA, have been sparsely described. The Nordic Arthroplasty Register Association (NARA) has already published 2 papers describing results of reverse hybrid THAs in different age groups. Based on data collected over 2 additional years, we wanted to perform in depth analyses of not only the reverse hybrid concept but also of the different cup/stem combinations used. Patients and methods From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk of revision. The main endpoint was revision for any reason. We also performed specific analyses regarding the different reasons for revision and analyses regarding the cup/stem combinations used in more than 500 cases. Results We found a higher rate of revision for reverse hybrids than for cemented THAs, with an adjusted relative risk of revision (RR) of 1.4 (95% CI: 1.3–1.5). At 10 years, the survival rate was 94% (CI: 94–95) for cemented THAs and 92% (95% CI: 92–93) for reverse hybrids. The results for the reverse hybrid THAs were inferior to those for cemented THAs in patients aged 55 years or more (RR =1.1, CI: 1.0–1.3; p revision due to periprosthetic femoral fracture for reverse hybrids than for cemented THAs in patients aged 55 years or more (RR =3.1, CI: 2.2–4.5; p revision than cemented THAs in patients aged 55 or more. The difference in survival was mainly caused by a higher incidence of early revision due to periprosthetic femoral fracture in the reversed hybrid THAs. PMID:28095724

  11. Vasectomy reversal: a clinical update

    Directory of Open Access Journals (Sweden)

    Abhishek P Patel

    2016-01-01

    Full Text Available Vasectomy is a safe and effective method of contraception used by 42-60 million men worldwide. Approximately 3%-6% of men opt for a vasectomy reversal due to the death of a child or divorce and remarriage, change in financial situation, desire for more children within the same marriage, or to alleviate the dreaded postvasectomy pain syndrome. Unlike vasectomy, vasectomy reversal is a much more technically challenging procedure that is performed only by a minority of urologists and places a larger financial strain on the patient since it is usually not covered by insurance. Interest in this procedure has increased since the operating microscope became available in the 1970s, which consequently led to improved patency and pregnancy rates following the procedure. In this clinical update, we discuss patient evaluation, variables that may influence reversal success rates, factors to consider in choosing to perform vasovasostomy versus vasoepididymostomy, and the usefulness of vasectomy reversal to alleviate postvasectomy pain syndrome. We also review the use of robotics for vasectomy reversal and other novel techniques and instrumentation that have emerged in recent years to aid in the success of this surgery.

  12. Performance of tubular reverse osmosis for the desalination ...

    African Journals Online (AJOL)

    Municipal solid waste leachate (MSWL) has the potential to pollute the water environment and to affect biological treatment processes adversely if not properly handled. Reverse osmosis (RO) has the ability to remove both organics and inorganics effectively from effluents. Therefore, RO was evaluated for the treatment of ...

  13. International overview of seawater desalination plant by reverse osmosis technology

    OpenAIRE

    Kangwen, Shu

    2012-01-01

    Master's thesis in Environmental technology In a world faced with increased urbanization, population growth, climate change and degradation of water supplies, the importance of a reliable source of technology to provide fresh water emphasizes the importance of seawater desalination. Over the years a variety of seawater desalination methods have been developed throughout the world. The most common technologies available for desalination around the world are membrane reverse osmosis (RO),...

  14. Reverse Knowledge Transfer in MNEs

    DEFF Research Database (Denmark)

    Mudambi, Ram; Piscitello, Lucia; Rabbiosi, Larissa

    2014-01-01

    It is now well recognized that multinational enterprises (MNEs) are differentiated networks wherein subsidiaries vary in terms of their ability to create new knowledge and competencies for their parent groups. In much of this theory, it is taken for granted that subsidiary innovativeness has...... a positive correlation with the extent of reverse knowledge transfers to the parent MNE. Relying on the headquarters-subsidiary view of the MNE, we argue that, beyond a point, increasing subsidiary innovativeness will be associated with lower reverse knowledge transfers. Further, we argue...... that this relationship is sensitive to the subsidiary entry mode. Using data from a sample of 293 Italian subsidiaries, we find strong support for our hypotheses. In particular, our results confirm that the effect of subsidiary innovativeness on reverse knowledge transfers displays an inverted-U shape...

  15. Reverse innovation in maternal health.

    Science.gov (United States)

    Firoz, Tabassum; Makanga, Prestige Tatenda; Nathan, Hannah L; Payne, Beth; Magee, Laura A

    2017-09-01

    Reverse innovation, defined as the flow of ideas from low- to high-income settings, is gaining traction in healthcare. With an increasing focus on value, investing in low-cost but effective and innovative solutions can be of mutual benefit to both high- and low-income countries. Reverse innovation has a role in addressing maternal health challenges in high-income countries by harnessing these innovative solutions for vulnerable populations especially in rural and remote regions. In this paper, we present three examples of 'reverse innovation' for maternal health: a low-cost, easy-to-use blood pressure device (CRADLE), a diagnostic algorithm (mini PIERS) and accompanying mobile app (PIERS on the Move), and a novel method for mapping maternal outcomes (MOM).

  16. Extraction of DNA by the reverse micelle; Gyaku miseru ni yoru DNA no chushutsu

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro [Kyushu University, Fukuoka (Japan). Graduate School; Ono, Tsutomu; Horiuchi, Akihiko; Furusaki, Shintaro

    1999-03-05

    Using the reverse micelle which consisted of the surfactant of the cations, it succeeded in DNA extraction of the salmon spermatozoon. The transfer of DNA formed in the isooctane from water phase to the reverse micelle is greatly dependent on type and ionic strength of the surfactant. By the surfactant of quaternary ammonium salt type with two long-chain alkyl units, the DNA which was charged anionic was efficiently extracted in the reverse micelle. (translated by NEDO)

  17. Reverse genetics with animal viruses. NSV reverse genetics

    International Nuclear Information System (INIS)

    Mebatsion, T.

    2005-01-01

    New strategies to genetically manipulate the genomes of several important animal pathogens have been established in recent years. This article focuses on the reverse genetics techniques, which enables genetic manipulation of the genomes of non-segmented negative-sense RNA viruses. Recovery of a negative-sense RNA virus entirely from cDNA was first achieved for rabies virus in 1994. Since then, reverse genetic systems have been established for several pathogens of medical and veterinary importance. Based on the reverse genetics technique, it is now possible to design safe and more effective live attenuated vaccines against important viral agents. In addition, genetically tagged recombinant viruses can be designed to facilitate serological differentiation of vaccinated animals from infected animals. The approach of delivering protective immunogens of different pathogens using a single vector was made possible with the introduction of the reverse genetics system, and these novel broad-spectrum vaccine vectors have potential applications in improving animal health in developing countries. (author)

  18. Reverse Zymography: Overview and Pitfalls.

    Science.gov (United States)

    Sharma, Kanika; Bhattacharyya, Debasish

    2017-01-01

    Reverse zymography is a technique by which protease inhibitor(s) in a sample could be electrophoretically separated in a substrate-impregnated acrylamide gel and their relative abundance could be semi-quantified. The gel after electrophoresis is incubated with a protease when the impregnated substrate and all other proteins of the sample are degraded into small peptides except the inhibitor(s) that show clear bands against a white background. Since reverse zymography cannot distinguish between a protease inhibitor and a protein that is resistant against proteolysis, the results should be confirmed from inhibition of protease activity by solution state assay.

  19. Marburg Virus Reverse Genetics Systems

    Directory of Open Access Journals (Sweden)

    Kristina Maria Schmidt

    2016-06-01

    Full Text Available The highly pathogenic Marburg virus (MARV is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  20. Reverse hybrid total hip arthroplasty

    DEFF Research Database (Denmark)

    Wangen, Helge; Havelin, Leif I.; Fenstad, Anne M

    2017-01-01

    . Patients and methods - From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk...

  1. Reversibility of chronic airflow obstruction

    NARCIS (Netherlands)

    Postma, Dirkje Sjoukje

    1984-01-01

    This thesis deals with variations in airway diameter in patients with chronic, partly reversible airflow obstruction. The patients studied in this thesis have been addressed in the literature with terms as CAO, COPD, CNSLD. The confusion caused by combining patients in one descriptive term, e.g.

  2. CAPSULE REPORT: REVERSE OSMOSIS PROCESS

    Science.gov (United States)

    A failure analysis has been completed for the reverse osmosis (RO) process. The focus was on process failures that result in releases of liquids and vapors to the environment. The report includes the following: 1) A description of RO and coverage of the principles behind the proc...

  3. Reversible colour change in Arthropoda.

    Science.gov (United States)

    Umbers, Kate D L; Fabricant, Scott A; Gawryszewski, Felipe M; Seago, Ainsley E; Herberstein, Marie E

    2014-11-01

    The mechanisms and functions of reversible colour change in arthropods are highly diverse despite, or perhaps due to, the presence of an exoskeleton. Physiological colour changes, which have been recorded in 90 arthropod species, are rapid and are the result of changes in the positioning of microstructures or pigments, or in the refractive index of layers in the integument. By contrast, morphological colour changes, documented in 31 species, involve the anabolism or catabolism of components (e.g. pigments) directly related to the observable colour. In this review we highlight the diversity of mechanisms by which reversible colour change occurs and the evolutionary context and diversity of arthropod taxa in which it has been observed. Further, we discuss the functions of reversible colour change so far proposed, review the limited behavioural and ecological data, and argue that the field requires phylogenetically controlled approaches to understanding the evolution of reversible colour change. Finally, we encourage biologists to explore new model systems for colour change and to engage scientists from other disciplines; continued cross-disciplinary collaboration is the most promising approach to this nexus of biology, physics, and chemistry. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  4. Aerosol optical properties and precipitable water vapor column in the atmosphere of Norway.

    Science.gov (United States)

    Muyimbwa, Dennis; Frette, Øyvind; Stamnes, Jakob J; Ssenyonga, Taddeo; Chen, Yi-Chun; Hamre, Børge

    2015-02-20

    Between February 2012 and April 2014, we measured and analyzed direct solar radiances at a ground-based station in Bergen, Norway. We discovered that the spectral aerosol optical thickness (AOT) and precipitable water vapor column (PWVC) retrieved from these measurements have a seasonal variation with highest values in summer and lowest values in winter. The highest value of the monthly median AOT at 440 nm of about 0.16 was measured in July and the lowest of about 0.04 was measured in December. The highest value of the monthly median PWVC of about 2.0 cm was measured in July and the lowest of about 0.4 cm was measured in December. We derived Ångström exponents that were used to deduce aerosol particle size distributions. We found that coarse-mode aerosol particles dominated most of the time during the measurement period, but fine-mode aerosol particles dominated during the winter seasons. The derived Ångström exponent values suggested that aerosols containing sea salt could have been dominating at this station during the measurement period.

  5. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation

    Science.gov (United States)

    Maddah, Hisham; Chogle, Aman

    2017-10-01

    This paper is a comprehensive review of biofouling in reverse osmosis modules where we have discussed the mechanism of biofouling. Water crisis is an issue of pandemic concern because of the steady rise in demand of drinking water. Overcoming biofouling is vital since we need to optimize expenses and quality of potable water production. Various kinds of microorganisms responsible for biofouling have been identified to develop better understanding of their attacking behavior enabling us to encounter the problem. Both primitive and advanced detection techniques have been studied for the monitoring of biofilm development on reverse osmosis membranes. Biofouling has a negative impact on membrane life as well as permeate flux and quality. Thus, a mathematical model has been presented for the calculation of normalized permeate flux for evaluating the extent of biofouling. It is concluded that biofouling can be controlled by the application of several physical and chemical remediation techniques.

  6. Reversion phenomena of Cu-Cr alloys

    Science.gov (United States)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  7. Hyperfiltration/reverse osmosis: a handbook on membrane filtration for the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, C.A.; Pedersen, L.D.; Rose, W.W.

    1985-07-01

    The four chapters are titled: hyperfiltration/reverse osmosis technology, membranes and systems, energy recovery through renovation and recycle of hot water, and other applications of membrane technology in the food industry. (DLC)

  8. Artificial Self-Sufficient P450 in Reversed Micelles

    Directory of Open Access Journals (Sweden)

    Teruyuki Nagamune

    2010-04-01

    Full Text Available Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.

  9. Separation of mixtures of organic substance using reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shoji; Nakao, Shin' ichi; Tanimura, Shinobu

    1987-12-25

    With the arrival of energy crisis, attention has been concentrated on the production of alcohol by means of biomass conversion. Energy-saving concentration method was searched to replace a distillation method as a method of concentrating dilute alcohols, for which a reverse osmosis method was proposed; experimental results have been reported accordingly. One result is that the osmotic pressure method has a limitation of difficulty to exceed more than 15% concentration. For this, the reverse osmosis was reviewed and it was found that wider concentration range should be examined for the area where the reverse osmosis was not experimented. Fils employed were a polyamide film of Nitto Denko Co. and an acrylonitrile film of sumitomo Chemical Co.. The result revealed that alcohol could be concentrated up to rather high concentration in alcohol-water system; even in a non-aqueous system, separation with high selective permeability was possible by the proper selection of film materials. (4 figs, 2 refs)

  10. Thermodynamic advantages of nuclear desalination through reverse osmosis

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Prabhakar, S.; Tewari, P.K.

    2009-01-01

    Seawater Reverse Osmosis (SWRO) integrated with nuclear power station has significant thermodynamic advantages since it can utilize the waste heat available in the condenser cooling circuit and electrical power from the nuclear power plant with provision for using grid power in case of exigencies and shared infrastructure. Coupling of RO plants to the reactor is simple and straightforward and power loss due to RO unit, resulting in the loss of load, does not impact reactor turbine. Product water contamination probability is also very less since it has in-built mechanical barrier. Preheat reverse osmosis desalination has many thermodynamic advantages and studies have indicated improved performance characteristics thereby leading to savings in operational cost. The significant advantages include the operational flexibility of the desalination systems even while power plant is non-operational and non-requirement of safety systems for resource utilization. This paper brings out a comprehensive assessment of reverse osmosis process as a stand-alone nuclear desalination system. (author)

  11. Eddy Viscosity for Time Reversing Waves in a Dissipative Environment

    Science.gov (United States)

    Garnier, Josselin; Nachbin, André

    2004-10-01

    We present new results for the time reversal of weakly nonlinear pulses traveling in a random dissipative environment. Also we describe a new theory for calculating the eddy viscosity for weakly nonlinear waves propagating over a random surface. The turbulent viscosity is calculated from first principles, namely, without imposing any stress-strain hypothesis. A viscous shallow water model is considered and its effective viscosity characterized. We also show that weakly nonlinear waves can still be time reversed under weak dissipation. Incoherently scattered signals are recompressed, both for time reversal in transmission as well as in reflection. Under the weakly nonlinear, weakly dissipative regime, dissipation only affects the refocused pulse profile regarding its amplitude, but its shape is not corrupted. Numerical experiments are presented.

  12. Reversal agents in anaesthesia and critical care

    Directory of Open Access Journals (Sweden)

    Nibedita Pani

    2015-01-01

    Full Text Available Despite the advent of short and ultra-short acting drugs, an in-depth knowledge of the reversal agents used is a necessity for any anaesthesiologist. Reversal agents are defined as any drug used to reverse the effects of anaesthetics, narcotics or potentially toxic agents. The controversy on the routine reversal of neuromuscular blockade still exists. The advent of newer reversal agents like sugammadex have made the use of steroidal neuromuscular blockers like rocuronium feasible in rapid sequence induction situations. We made a review of the older reversal agents and those still under investigation for drugs that are regularly used in our anaesthesia practice.

  13. Laparoscopic reversal of Hartmann's procedure

    DEFF Research Database (Denmark)

    Svenningsen, Peter Olsen; Bulut, Orhan; Jess, Per

    2010-01-01

    %). There was no difference in postoperative complications between the two groups (10 versus 14%), and no anastomotic leaks. The total mortality was 2% as one patient died postoperatively after an open operation. CONCLUSION: It is possible for trained laparoscopic colorectal surgeons to perform laparoscopic reversal...... of all patients who underwent reversal of a colostomy after a primary Hartmann's procedure during the period May 2005 to December 2008 were reviewed retrospectively in a case-control study. RESULTS: A total of 43 patients were included. Twenty-one had a laparoscopic and 22 an open procedure. The two...... groups matched with regard to age, sex, American Society of Anestheologists (ASA) score, body mass index and indication for Hartmann's operation. A significantly longer operation time was found for laparoscopic than for open surgery (median 285 versus 158 minutes, p

  14. Laparoscopic reversal of Hartmann's procedure

    DEFF Research Database (Denmark)

    Svenningsen, Peter Olsen; Bulut, Orhan; Jess, Per

    2010-01-01

    INTRODUCTION: A change in procedure from open to laparoscopic reversal of Hartmann's colostomy was implemented at our department between May 2005 and December 2008. The aim of the study was to investigate if this change was beneficial for the patients. MATERIAL AND METHODS: The medical records...... of all patients who underwent reversal of a colostomy after a primary Hartmann's procedure during the period May 2005 to December 2008 were reviewed retrospectively in a case-control study. RESULTS: A total of 43 patients were included. Twenty-one had a laparoscopic and 22 an open procedure. The two...... groups matched with regard to age, sex, American Society of Anestheologists (ASA) score, body mass index and indication for Hartmann's operation. A significantly longer operation time was found for laparoscopic than for open surgery (median 285 versus 158 minutes, p

  15. Trend towards reverse leach process

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The South African gold mining industry is making notable strides in improving recovery methods for both gold and uranium with significant additions to profits because of higher efficiencies and reductions in costs in the recovery processes. The most notable step on the gold side recently is the adoption of the reverse leach process at Buffelsfontein and Western Deep Levels. This process was pioneered at Hartebeesfontein as far back as 1975 and when introduced there resulted in a two and a half per cent improvement in recovery efficiencies. The essence of reverse leaching under which the uranium is recovered before the gold is the fact that the gold partly coated with iron oxide or locked in uranite, is exposed to be recovered later by cyanidation

  16. A Generalized Reverse Jacket Transform

    OpenAIRE

    Lee, Moon Ho; Rajan, Sundar B; Park, JY

    2001-01-01

    Generalization of the well-known Walsh-Hadamard transform (WHT), namely center-weighted Hadamard transform (CWHT) and complex reverse-jacket transform (CRJT) have been proposed and their fast implementation and simple index generation algorithms have recently been reported. These transforms are of size 2(r) x 2(r) for integral values or r, and defined in terms of binary radix representation of integers. In this paper, using appropriate mixed-radix representation of integers, we present a gene...

  17. Interval orders and reverse mathematics

    OpenAIRE

    Marcone, Alberto

    2006-01-01

    We study the reverse mathematics of interval orders. We establish the logical strength of the implications between various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain $2 \\oplus 2$. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only if it cont...

  18. Theory of field reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs

  19. Malware analysis and reverse engineering

    OpenAIRE

    Šváb, Martin

    2014-01-01

    Focus of this thesis is reverse engineering in information technology closely linked with the malware analysis. It explains fundamentals of IA-32 processors architecture and basics of operating system Microsoft Windows. Main part of this thesis is dedicated to the malware analysis, including description of creating a tool for simplification of static part of the analysis. In Conclusion various approaches to the malware analysis, which were described in previous part of the thesis, are practic...

  20. Risperidone-induced reversible neutropenia.

    Science.gov (United States)

    Kattalai Kailasam, Vasanth; Chima, Victoria; Nnamdi, Uchechukwu; Sharma, Kavita; Shah, Kairav

    2017-01-01

    This case report presents a 44-year-old man with a history of schizophrenia who developed neutropenia on risperidone therapy. The patient's laboratory reports showed a gradual decline of leukocytes and neutrophils after resolution and rechallenging. This was reversed with the discontinuation of risperidone and by switching to olanzapine. In this case report, we also discuss the updated evidence base for management of risperidone-induced neutropenia.

  1. Reverse ventilation--perfusion mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

  2. CONCEPTUAL ISSUES REGARDING REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2013-12-01

    Full Text Available As the power of consumers is growing, the product return for customer service and customer retention has become a common practice in the competitive market, which propels the recent practice of reverse logistics in companies. Many firms attracted by the value available in the flow, have proactively participated in handling returned products at the end of their usefulness or from other parts of the product life cycle. Reverse logistics is the flow and management of products, packaging, components and information from the point of consumption to the point of origin. It is a collection of practices similar to those of supply chain management, but in the opposite direction, from downstream to upstream. It involves activities such as reuse, repair, remanufacture, refurbish, reclaim and recycle. For the conventional forward logistics systems, the flow starts upstream as raw materials, later as manufactured parts and components to be assembled and continues downstream to reach customers as final products to be disposed once they reach their economic or useful lives. In reverse logistics, the disposed products are pushed upstream to be repaired, remanufactured, refurbished, and disassembled into components to be reused or as raw material to be recycled for later use.

  3. Posterior reversible encephalopathy syndrome in the emergency ...

    African Journals Online (AJOL)

    Posterior reversible encephalopathy syndrome in the emergency service. ... The most common etiologies of PRES are hypertension and renal failure, and the most frequent pathophysiology is hyperperfusion. PRES is ... Keywords: Emergency service, hyperperfusion, posterior reversible encephalopathy, vasogenic edema ...

  4. A functional language for describing reversible logic

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal

    2012-01-01

    . Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...

  5. Reversal of sterilization by microsurgical technique.

    Science.gov (United States)

    Gaspari, A L; Ortensi, A; Parlangeli, V; Pellizzari, G; Setti, C; Lania, M

    1988-01-01

    Tubal sterilization techniques that spare the fimbriae and cause the least amount of tubal destruction offer the best chance for reversal of sterilization. Patients seeking reversal of sterilization should be carefully selected. Surgical technique and equipment are important factors in reversal procedures; microsurgical techniques are shown to be more effective than macroscopic techniques.

  6. Cleaning Our World through Reverse Graffiti

    Science.gov (United States)

    Randazzo, Gabe; LaJevic, Lisa

    2013-01-01

    Over the last decade artists have begun to experiment with "reverse pollution" techniques, such as reverse graffiti, which focuses on cleaning environmental surfaces. Having recently been introduced to the works of Moose, the artist known for inventing the reverse graffiti technique, the authors decided to design a curriculum to increase…

  7. Remote Whispering Applying Time Reversal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  8. Presbycusis: reversible with anesthesia drugs?

    Science.gov (United States)

    Kocher, Carl A

    2009-02-01

    Age-related hearing impairment, or presbycusis, is a degenerative condition not currently treatable by medication. It is therefore significant that the author, as a patient, experienced a reversal of high-frequency hearing loss during a 2-day period following abdominal surgery with general anesthesia. This report documents the surgery and the subsequent restoration of hearing, which was bilateral and is estimated to have exceeded 50dB at 4kHz. A possible role is noted for anesthetic agents such as lidocaine, propofol, or fentanyl. This experience may hold a clue for research toward the development of medical treatments for presbycusis.

  9. Global design of a reversible air/water heat pump with variable power for the residential sector; Conception globale d'une pompe a chaleur air/eau inversable a puissance variable pour le secteur residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Flach-Malaspina, N.

    2004-10-15

    Variable power is one of the means to improve the seasonal energy efficiency of heat pump space heating systems. The dual compressors technology is energetically efficient and is available in Europe. The main results of this work are: 1 - the identification of the origin of cycling losses in heating and cooling mode of existing mono-compressor air/water systems. The standby consumption of the heat pump is the only element which can efficiently contribute to reduce the energy losses at partial load. 2 - The quantification of the energy gains by adapting the dual compressors technology to a prototype of reference heat pump. 3 - A dynamic model of calculation of the seasonal coefficient of performance has been developed. 4 - The optimization of compressors operation and of the unfreezing system has permitted to increase the seasonal coefficient of performance from 14.7% to 18.6% with respect to the outdoor temperature. To carry out this study, design, experimental and modeling works have been done. The design of a heat pump fitted with two compressors has required the development of a new partial load testing bench. The several experimental and standardized tests have permitted to characterize an existing heat pump and a dual compressor heat pump whatever the operation mode and the outdoor climate. The dynamical model obtained has permitted to optimize the energy efficiency of the system thanks to a better management of the unfreezing system and to a proper regulation of the compressors. Some ways of improvement concern the dimensioning of compressors and the management of exchangers flow rates for an additional improvement of seasonal coefficients of performance. (J.S.)

  10. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit...... in reversible logic design by drastically reducing the number of garbage bits. Specialized designs benefit from support by reversible logic synthesis. All circuit components required for optimizing the original design could also be synthesized successfully by an implementation of an existing synthesis algorithm...

  11. Exercise prescription to reverse frailty.

    Science.gov (United States)

    Bray, Nick W; Smart, Rowan R; Jakobi, Jennifer M; Jones, Gareth R

    2016-10-01

    Frailty is a clinical geriatric syndrome caused by physiological deficits across multiple systems. These deficits make it challenging to sustain homeostasis required for the demands of everyday life. Exercise is likely the best therapy to reverse frailty status. Literature to date suggests that pre-frail older adults, those with 1-2 deficits on the Cardiovascular Health Study-Frailty Phenotype (CHS-frailty phenotype), should exercise 2-3 times a week, for 45-60 min. Aerobic, resistance, flexibility, and balance training components should be incorporated but resistance and balance activities should be emphasized. On the other hand, frail (CHS-frailty phenotype ≥ 3 physical deficits) older adults should exercise 3 times per week, for 30-45 min for each session with an emphasis on aerobic training. During aerobic, balance, and flexibility training, both frail and pre-frail older adults should work at an intensity equivalent to a rating of perceived exertion of 3-4 ("somewhat hard") on the Borg CR10 scale. Resistance-training intensity should be based on a percentage of 1-repetition estimated maximum (1RM). Program onset should occur at 55% of 1RM (endurance) and progress to higher intensities of 80% of 1RM (strength) to maximize functional gains. Exercise is the medicine to reverse or mitigate frailty, preserve quality of life, and restore independent functioning in older adults at risk of frailty.

  12. Reversal of diaschisis by zolpidem

    International Nuclear Information System (INIS)

    Claus, R.P.; Nel, H.W.; Sathekge, M.

    2004-01-01

    Full text: Introduction: Recent literature has reported on clinical improvement after zolpidem, a GABAergic anti insomnia drug, in brain injury and stroke patients. In this study, the effect of zolpidem on crossed cerebellar diaschisis was investigated in such patients. Method: Four patients with crossed cerebellar diaschisis after brain injury or stroke were investigated before and after application of 10 mg zolpidem by 99mTc HMPAO brain SPECT. Result: Apart from clinical improvements, 99mTc HMPAO brain SPECT studies showed reversal of the crossed cerebellar diaschisis and improvement of perfusion defects after zolpidem. Conclusion: 99mTc HMPAO brain SPECT may have a role to pre-select brain injury and stroke patients who will benefit clinically from zolpidem therapy. (author)

  13. How to play Reverse Hex

    DEFF Research Database (Denmark)

    Toft, Bjarne; Hayward, Ryan B.; Henderson, Philip

    2012-01-01

    We present new results on how to play Reverse Hex, also known as Rex, or Misère Hex, on n × n boards. We give new proofs – and strengthened versions – of Lagarias and Sleator’s theorem (for n × n boards, each player can prolong the game until the board is full, so the first/second player can always...... win if n is even/odd) and Evans’s theorem (for even n, the acute corner is a winning opening move for the first player). Also, for even n ≥ 4, we find another first-player winning opening (adjacent to the acute corner, on the first player’s side), and for odd n ≥ 3, and for each first-player opening......, we find second-player winning replies. Finally, in response to comments by Martin Gardner, for each n ≤ 5, we give a simple winning strategy for the n × n board....

  14. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  15. Principles of a reversible programming language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    The principles of reversible programming languages are explicated and illustrated with reference to the design of a high-level imperative language, Janus. The fundamental properties for such languages include backward as well as forward determinism and reversible updates of data. The unique design...... features of the language include explicit post-condition assertions, direct access to an inverse semantics and the possibility of clean (i.e., garbage-free) computation of injective functions. We suggest the clean simulation of reversible Turing machines as a criterion for computing strength of reversible...... languages, and demonstrate this for Janus. We show the practicality of the language by implementation of a reversible fast Fourier transform. Our results indicate that the reversible programming paradigm has fundamental properties that are relevant to many different areas of computer science....

  16. Mild desalination demo pilot: New normalization approach to effectively evaluate electrodialysis reversal technology

    Directory of Open Access Journals (Sweden)

    Roel Bisselink

    2016-06-01

    Full Text Available Key performance indicators for characterization of nanofiltration performance are well developed, similar key performance indicators for electrodialysis reversal are however underdeveloped. Under the E4Water project Dow Benelux BV and Evides Industriewater BV operate a pilot facility to compare both technologies for their application to mildly desalinate a variety of brackish water streams. Normalized pressure drop, normalized current efficiency and normalized membrane resistance proved to be a useful tool to interpret process performance and to initiate a cleaning procedure if required. The availability of these normalized key performance indicators enables optimization and process monitoring and control of electrodialysis reversal independent of the continuously changing conditions of the feed water.

  17. Hybrid membrane system for desalination and wastewater treatment : Integrating forward osmosis and low pressure reverse osmosis

    NARCIS (Netherlands)

    Valladares Linares, R.

    2014-01-01

    Since more than 97% of the water in the world is seawater, desalination technologies have the potential to solve the fresh water crisis. The most used desalination technology nowadays is seawater reverse osmosis (SWRO), where a membrane is used as a physical barrier to separate the salts from the

  18. Investigation of microbial adaptation to salinity variation for treatment of reverse osmosis concentrate by membrane bioreactor

    DEFF Research Database (Denmark)

    Jang, Duksoo; Moon, Chungman; Ahn, Kyuhong

    2014-01-01

    Even though reverse osmosis (RO) technologies are widely used for sustainable water reclamation, the control of concentrates containing a high concentration of dissolved matters originated from feed water should be considered. The effect of variations in salinity on biological wastewater treatment...

  19. Integrated Pumped Hydro Reverse Osmosis systems

    OpenAIRE

    Trimble, A Zachary; Ferrara, Marco; Slocum, Alexander H; Haji, Maha Niametullah; Ghaemsaidi, Sasan John

    2016-01-01

    Ideal head height for pumped hydro energy storage/generation systems and reverse osmosis desalination plants coincide (500–700 m). Many drought stricken coastal regions have nearby mountains of sufficient elevation to support upper reservoirs at this ideal head height. A good symbiotic match might thus be realized by co-locating a pumped hydro plant with a reverse osmosis desalination plant, which we call an Integrated Pumped Hydro Reverse Osmosis (IPHRO) system. Combining systems reduces cap...

  20. Gravity controlled anti-reverse rotation device

    Science.gov (United States)

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  1. Remediating biofouling of reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Siler, J.L.

    1991-10-22

    Several potential additives and the use of influent pH adjustment were examined to remediated the biofouling problem of the ETF reverse osmosis (RO) system. Tests were conducted with simulated RO feed containing salt, metal hydroxides and bacteria. The addition of sodium hexametaphosphate (SHMP), sodium bisulfite, and adjusting the influent pH to 3 were each successful in reducing the RO biofouling. Little or no benefit was found from the use of a biofilm remover (Filmtec Alkaline Cleaner) or the use of surfactants (Surfynol or sodium lauryl sulfate). In addition, Surfynol use resulted in irreversible fouling and necessitated membrane replacement. At the water recoveries used in the ETF (>90%), sodium bisulfite addition resulted in the recovery of 70--90% of the flux and almost complete restoration of the DF to prefouled conditions. Based on the bench-scale tests completed, IWT would recommend that sodium bisulfite addition be tested at the ETF. This testing would involve optimizing the amount of bisulfite required. In addition, it is recommended that the addition of SHMP or influent pH adjustment be evaluated since the relative differences in labscale tests were small and scale-up effects could be present. The ETF operating permit allows each to be added.

  2. Remediating biofouling of reverse osmosis membranes

    International Nuclear Information System (INIS)

    Siler, J.L.

    1991-01-01

    Several potential additives and the use of influent pH adjustment were examined to remediated the biofouling problem of the ETF reverse osmosis (RO) system. Tests were conducted with simulated RO feed containing salt, metal hydroxides and bacteria. The addition of sodium hexametaphosphate (SHMP), sodium bisulfite, and adjusting the influent pH to 3 were each successful in reducing the RO biofouling. Little or no benefit was found from the use of a biofilm remover (Filmtec Alkaline Cleaner) or the use of surfactants (Surfynol or sodium lauryl sulfate). In addition, Surfynol use resulted in irreversible fouling and necessitated membrane replacement. At the water recoveries used in the ETF (>90%), sodium bisulfite addition resulted in the recovery of 70--90% of the flux and almost complete restoration of the DF to prefouled conditions. Based on the bench-scale tests completed, IWT would recommend that sodium bisulfite addition be tested at the ETF. This testing would involve optimizing the amount of bisulfite required. In addition, it is recommended that the addition of SHMP or influent pH adjustment be evaluated since the relative differences in labscale tests were small and scale-up effects could be present. The ETF operating permit allows each to be added

  3. Reversed-Field Pinch Reactor (RFPR) concept

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Cort, G.E.

    1979-08-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a Reversed-Field Pinch (FRP) configuration is presented. A 50% atomic mixture of deuterium and tritium (DT) is ohmically heated to ignition by currents flowing in the toroidal plasma; this plasma current also inherently produces the confining magnetic fields in a toroidal chamber having a major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and burns at 10 to 20 keV for approx. 20 s to give a fuel burnup of approx. 50%. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented coolant tubes carrying a mixture of high-pressure steam and water. The slightly superheated steam emerging from this blanket would be used to drive a turbine directly. Low-pressure helium containing trace amounts of oxygen is circulated through the packed Li 2 O bed to extract the tritium. A 20-mm-thick copper first wall serves as a neutron multiplier, acts as a tritium barrier, and supports image currents to provide plasma stabilization on a 0.1-s timescale; external windings provide stability for longer times

  4. Solar Desalination System Model for Sizing of Photovoltaic Reverse Osmosis (PVRO)

    KAUST Repository

    Habib, Abdulelah

    2015-06-28

    The focus of this paper is to optimize the solar energy utilization in the water desalination process. Due to variable nature of solar energy, new system design is needed to address this challenge. Here, reverse osmosis units, as the electrical loads, are considered as an ON/OFF units to track these solar energy variations. Reverse osmosis units are different in sizes and numbers. Various combinations of reverse osmosis units in size and capacity provide different water desalination system performances. To assess each scenario of reverse osmosis units, the total capital cost and operation and maintenance (O&M) cost are considered. The implemented optimization algorithm search all of the possible scenarios to find the best solution. This paper deploys the solar irradiance data which is provided from west coast (Red Sea) of Saudi Arabia for model construction and optimization algorithm implementation.

  5. On the reversibility of environmental contamination with persistent organic pollutants.

    Science.gov (United States)

    Choi, Sung-Deuk; Wania, Frank

    2011-10-15

    An understanding of the factors that control the time trends of persistent organic pollutants (POPs) in the environment is required to evaluate the effectiveness of emission reductions and to predict future exposure. Using a regional contaminant fate model, CoZMo-POP 2, and a generic bell-shaped emission profile, we simulated time trends of hypothetical chemicals with a range of POP-like partitioning and degradation properties in different compartments of a generic warm temperate environment, with the objective of identifying the processes that may prevent the reversibility of environmental contamination with POPs after the end of primary emissions. Evaporation from soil and water can prevent complete reversibility of POP contamination of the atmosphere after the end of emissions. However, under the selected conditions, only for organic chemicals within a narrow range of volatility, that is, a logarithm of the octanol air equilibrium partition coefficient between 7 and 8, and with atmospheric degradation half-lives in excess of a few month can evaporation from environmental reservoirs sustain atmospheric levels that are within an order of magnitude of those resulting from primary emissions. HCB and α-HCH fulfill these criteria, which may explain, why their atmospheric concentrations have remained relatively high decades after their main primary emissions have been largely eliminated. Soil-to-water transfer is found responsible for the lack of reversibility of POP contamination of the aqueous environment after the end of emissions, whereas reversal of water-sediment exchange, although possible, is unlikely to contribute significantly. Differences in the reversibility of contamination in air and water suggests the possibility of changes in the relative importance of various exposure pathways after the end of primary emissions, namely an increase in the importance of the aquatic food chain relative to the agricultural one, especially if the former has a benthic

  6. Water purification by reverse osmosis using heterocyclic polymer membranes

    Science.gov (United States)

    Scott, H.

    1972-01-01

    Pyrrone (polyimidazopyrrolone) polymers are a new class of thermally stable, radiation and chemical resistant aromatic-heterocyclic polymers featuring a greater chemical and mechanical durability than cellulose acetate.

  7. Characterization of retentivity of reversed phase liquid chromatography columns.

    Science.gov (United States)

    Ying, P T; Dorsey, J G

    1991-03-01

    There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".

  8. Reverse Engineering Adverse Outcome Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  9. Reverse genetics in ecological research.

    Directory of Open Access Journals (Sweden)

    Jens Schwachtje

    2008-02-01

    Full Text Available By precisely manipulating the expression of individual genetic elements thought to be important for ecological performance, reverse genetics has the potential to revolutionize plant ecology. However, untested concerns about possible side-effects of the transformation technique, caused by Agrobacterium infection and tissue culture, on plant performance have stymied research by requiring onerous sample sizes. We compare 5 independently transformed Nicotiana attenuata lines harboring empty vector control (EVC T-DNA lacking silencing information with isogenic wild types (WT, and measured a battery of ecologically relevant traits, known to be important in plant-herbivore interactions: phytohormones, secondary metabolites, growth and fitness parameters under stringent competitive conditions, and transcriptional regulation with microarrays. As a positive control, we included a line silenced in trypsin proteinase inhibitor gene (TPI expression, a potent anti-herbivore defense known to exact fitness costs in its expression, in the analysis. The experiment was conducted twice, with 10 and 20 biological replicates per genotype. For all parameters, we detected no difference between any EVC and WT lines, but could readily detect a fitness benefit of silencing TPI production. A statistical power analyses revealed that the minimum sample sizes required for detecting significant fitness differences between EVC and WT was 2-3 orders of magnitude larger than the 10 replicates required to detect a fitness effect of TPI silencing. We conclude that possible side-effects of transformation are far too low to obfuscate the study of ecologically relevant phenotypes.

  10. Reversible hypothyroidism and Whipple's disease

    Directory of Open Access Journals (Sweden)

    Tran Huy A

    2006-05-01

    Full Text Available Abstract Background The major cause of primary hypothyroidism is autoimmune mediated with progressive and permanent destruction of the thyroid gland resulting in life-long replacement therapy. Treatable and reversible hypothyroidism is unusual and here forth is such a case due to infection of the thyroid gland with Tropheryma whippleii, Whipple disease. Case presentation A 45 year-old female presented with symptoms and signs consistent with primary hypothyroidism, which was also confirmed biochemically. Her response to thyroxine replacement therapy was poor however, requiring a significantly elevated amount. Further investigation revealed the presence of Whipple's disease involving the gastrointestinal trace and possibly the thyroid gland. Her thyroxine requirement decreased drastically following appropriate antimicrobial therapy for Whipple's disease to the extent that it was ceased. Thyrotropin releasing hormone testing in the steady state suggested there was diminished thyroid reserve due to Whipple's disease. Conclusion This is the first ante-mortem case report studying the possible involvement of the thyroid gland by Whipple's disease. Despite the normalization of her thyroid function test biochemically after antibiotic therapy, there is diminished thyroid reserve thus requiring close and regular monitoring.

  11. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription

    OpenAIRE

    Warren, Kylie; Warrilow, David; Meredith, Luke; Harrich, David

    2009-01-01

    There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the c...

  12. 14 CFR 25.507 - Reversed braking.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.507 Reversed braking. (a) The airplane...

  13. Evaluation of reversible contraceptive activities of Annona ...

    African Journals Online (AJOL)

    Evaluation of reversible contraceptive activities of Annona squamosa (Linn.) ... Plant Products Research Journal ... Therefore the present study was undertaken to evaluate the contraceptive activities of methanol extract of the stem bark of Annoa squamosa L. (Annonaceae) with their respective reversibility in male rats.

  14. Kronisk ileus efter iatrogen reversering af tyndtarmen

    DEFF Research Database (Denmark)

    Pedersen, Mark Ellebaek; Rahr, Hans B; Mahdi, Bassam

    2010-01-01

    We report a case of inadvertent reversal of the entire small intestine leading to severe complications and long-standing ileus. The clinical diagnosis was confirmed by magnetic resonance imaging and laparotomy. The patient was cured by surgical re-reversal of the bowel. Care should be taken to ma...... the bowel ends when multiple simultaneous bowel resections are performed....

  15. Reverse engineering of the robot base platform

    International Nuclear Information System (INIS)

    Anwar A Rahman; Azizul Rahman A Aziz; Mohd Arif Hamzah; Muhd Nor Atan; Fadil Ismail; Rosli Darmawan

    2009-01-01

    The robot base platform used to place the robotic arm version 2 was imported through a local company. The robot base platform is used as a reference for reverse egineering development for a smaller size robot. The paper will discuss the reverse engineering design process and parameters involved in the development of the robot base platform. (Author)

  16. Reversing Africa's Decline. Worldwatch Paper 65.

    Science.gov (United States)

    Brown, Lester R.; Wolf, Edward C.

    This paper highlights some of the themes that any successful strategy to reverse the decline of Africa must embrace. Africa is a continent experiencing a breakdown in the relationship between people and their natural support systems. Famine and the threat of famine are among the manifestations of this breakdown. This decline can be reversed. To do…

  17. Reverse Methanogenesis and Respiration in Methanotrophic Archaea

    NARCIS (Netherlands)

    Timmers, Peer H.A.; Welte, Cornelia U.; Koehorst, Jasper J.; Plugge, Caroline M.; Jetten, Mike S.M.; Stams, Alfons J.M.

    2017-01-01

    Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., "trace methane oxidation"). In

  18. Vibrational dynamics of ice in reverse micelles

    NARCIS (Netherlands)

    Dokter, A.M.; Petersen, C.; Woutersen, S.; Bakker, H.J.

    2008-01-01

    he ultrafast vibrational dynamics of HDO:D2O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is

  19. Online Reverse Auctions for Procurement of Services

    NARCIS (Netherlands)

    U.L. Radkevitch (Uladzimir)

    2008-01-01

    textabstractOnline reverse auctions, in which a buyer seeks to select a supplier and suppliers compete for contracts by bidding online, revolutionized corporate procurement early this century. Shortly after they had been pioneered by General Electric, many companies rushed to adopt reverse auctions

  20. Reversible logic gates on Physarum Polycephalum

    International Nuclear Information System (INIS)

    Schumann, Andrew

    2015-01-01

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum

  1. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...

  2. Reversal of laryngotracheal separation in paediatric patients.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    OBJECTIVE: Laryngotracheal separation (LTS) is an effective and reliable definitive treatment for intractable aspiration. A major advantage of this treatment for intractable aspiration is its\\' potential reversibility. Should the underlying disorder improve, a reversal of the procedure may be attempted. This has been successfully achieved in the adult population. To our knowledge, no previous cases have been reported of successful reversal of LTS in children. METHODS: A retrospective review from 2003 to 2010 identified four cases of intractable aspiration treated with LTS in our department. Two of these patients displayed objective evidence of sufficient recovery of their underlying aspiration to consider reversal. Patient selection for reversal was dependent upon successful oral intake for 9 months along with videofluoroscopic evidence of normal or minimally impaired swallow. RESULTS: Two children who were successfully treated for intractable aspiration with LTS demonstrated objective evidence of recovery sufficient to attempt reversal. Both children underwent successful surgical reversal of LTS using a cricotracheal resection with end-to-end anastamosis, similar to that used in treatment of subglottic stenosis. Both children can now tolerate oral diet and their speech and language development is in line with their overall developmental level. CONCLUSIONS: Laryngotracheal separation is an effective and reliable definitive treatment for intractable aspiration facilitating protection of the airway and allowing safe swallowing with unimpeded respiration, but with the major drawback of loss of phonation. To our knowledge, we document the first two cases of successful LTS reversal in children.

  3. Reverse engineering a visual age application

    NARCIS (Netherlands)

    Sneed, Harry M.; Verhoef, Chris

    2015-01-01

    This paper is an industrial case study of how a VisualAge application system on an IBM mainframe was reverse engineered into a system reference repository. The starting point was the code fragments generated by the VisualAge interactive development tool. The results of the reverse engineering

  4. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  5. The Rate Laws for Reversible Reactions.

    Science.gov (United States)

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  6. Estimation and uncertainty of reversible Markov models.

    Science.gov (United States)

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-07

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.

  7. Magnetic reversals from planetary dynamo waves

    DEFF Research Database (Denmark)

    Sheyko, Andrey; Finlay, Chris; Jackson, Andrew

    2016-01-01

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes...... place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines...... (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin...

  8. Designing Novel Quaternary Quantum Reversible Subtractor Circuits

    Science.gov (United States)

    Haghparast, Majid; Monfared, Asma Taheri

    2018-01-01

    Reversible logic synthesis is an important area of current research because of its ability to reduce energy dissipation. In recent years, multiple valued logic has received great attention due to its ability to reduce the width of the reversible circuit which is a main requirement in quantum technology. Subtractor circuits are between major components used in quantum computers. In this paper, we will discuss the design of a quaternary quantum reversible half subtractor circuit using quaternary 1-qudit, 2-qudit Muthukrishnan-Stroud and 3-qudit controlled gates and a 2-qudit Generalized quaternary gate. Then a design of a quaternary quantum reversible full subtractor circuit based on the quaternary half subtractor will be presenting. The designs shall then be evaluated in terms of quantum cost, constant input, garbage output, and hardware complexity. The proposed quaternary quantum reversible circuits are the first attempt in the designing of the aforementioned subtractor.

  9. Structure and reactivity in reverse micelles

    International Nuclear Information System (INIS)

    Pileni, M.P.

    1989-01-01

    This book gives an up-to-date, comprehensive assessment of current knowledge in the very fast-moving field of reverse micelles, ranging from physical studies to biotechnological applications. Starting with physical and spectroscopic studies of reverse micelle structure at the macro- and microstructural levels, topics dealt with in detail are the NMR spectroscopy of reverse micells, fluorescence quenching kinetics, photochemical behaviour, role and behaviour of hydrated electrons in reverse micelles, including femtosecond phenomena, reactivity-dependent applications such as microlatex formation, protein partitioning, extraction, and purification. The microreactor characteristics of reverse micelles are shown to allow formation of semiconductor clusters, peptide synthesis through enzyme-catalyzed reactions, reaction product extraction, and enhanced-reactivity phenomena. The reactivity effects and their consequences are particularly highlighted throughout the book

  10. Poly/vinyl alcohol/ membranes for reverse osmosis

    Science.gov (United States)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    A description is presented of the results of studies of the water and salt transport properties of PVA membranes, taking into account radiation crosslinked PVA membranes, diffusive salt permeability through PVA membranes, and heat treated PVA membranes. The experimental findings support an occurrence of independent water, and salt permeation processes. It is suggested that the salt permeation is governed by a solution-diffusion transport mechanism. The preparation of thin skinned, asymmetric PVA membranes is also discussed. The employed method has a certain similarity to the classical phase inversion method, which is widely applied in the casting of asymmetric reverse osmosis membranes. Instead of using a gelling bath composed of a nonsolvent for the membrane material and miscible with the solvent from which the membrane is cast, a 'complexing' bath is used, which is a solution of a complexing agent in water.

  11. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  12. Hybrid membrane system for desalination and wastewater treatment: Integrating forward osmosis and low pressure reverse osmosis

    OpenAIRE

    Valladares Linares, R.

    2014-01-01

    Since more than 97% of the water in the world is seawater, desalination technologies have the potential to solve the fresh water crisis. The most used desalination technology nowadays is seawater reverse osmosis (SWRO), where a membrane is used as a physical barrier to separate the salts from the water, using high hydraulic pressure as the driving force. However, the use of high hydraulic pressure imposes a high cost on operation of these systems, in addition to the known persistent fouling p...

  13. Reversible machine code and its abstract processor architecture

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert; Yokoyama, Tetsuo

    2007-01-01

    A reversible abstract machine architecture and its reversible machine code are presented and formalized. For machine code to be reversible, both the underlying control logic and each instruction must be reversible. A general class of machine instruction sets was proven to be reversible, building ...... on our concept of reversible updates. The presentation is abstract and can serve as a guideline for a family of reversible processor designs. By example, we illustrate programming principles for the abstract machine architecture formalized in this paper....

  14. Mechanism of flow reversal during solidification of an anomalous liquid

    Science.gov (United States)

    Kumar, Virkeshwar; Kumawat, Mitesh; Srivastava, Atul; Karagadde, Shyamprasad

    2017-12-01

    In a wide variety of fluidic systems involving thermal and compositional gradients, local density changes lead to the onset of natural convection that influences the process itself, for example, during phase-change phenomena and magmatic flows. Accurate knowledge of the flow characteristics is essential to quantify the impact of the flow of the processes. In this work, the first-ever demonstration of flow reversal during bottom-up solidification of water using full-field thermal and flow measurements and its direct impact on the solidifying interface is presented. Based on prior optical interferometric measurements of full-field temperature distribution in water during solidification, we use the particle image velocimetry technique to quantify and reveal the changing natural convection pattern arising solely due to the density anomaly of water between 0 °C and 4 °C. The independently captured thermal and flow fields show striking similarities and clearly elucidate the plausible mechanism explaining the formation of a curved interface at the stagnation point and the subsequent reversal of flow direction due to a changed interface morphology. A control volume analysis is further presented to estimate the energy invested in the formation of a perturbation and the resulting flip in the flow direction caused by this perturbation.

  15. Reversible Lithium Neurotoxicity: Review of the Literature

    Science.gov (United States)

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate

  16. Reversible lithium neurotoxicity: review of the literatur.

    Science.gov (United States)

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of

  17. Emulsifier development for high-concentrated reverse emulsions

    Directory of Open Access Journals (Sweden)

    I.L. Kovalenko

    2016-05-01

    Full Text Available The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifier of reverse emulsions. Materials and methods: Using the semi-dynamic method with use of the reverse stalagmometer it was determined the decreasing in interfacial tension on “water / diesel fuel” border in the presence of 0.5 wt % sorbitan monooleate of various producers. Emulsions with use of the chosen emulsifiers using the dynamic mixer on the basis of monosolution of ammonium nitrate and diesel fuel have been produced. The emulsions have the following composition, wt %: ammonium nitrate – 76.8; water – 15.6; diesel fuel – 6.0; emulsifier – 1.6. Results: By the researches results of the interfacial tension “surfactant water / solution in diesel fuel”, the stability of emulsions using monosolution of ammonium nitrate and the IR spectrums of SMO of various producers it is established that presence in product of impurity of oleic acid, di- and trioleates leads to decreasing in interphase activity, increasing of emulsifier oil solubility and decreasing the resistance of emulsions to crystallization. On the basis of the spectral data analysis it is suggested about possibility of specific interaction on the mechanism of “spectral resonance” between emulsifiers of the PIBSA-MEA, LZX type and crystals nucleus of NH4NO3 ammonium nitrate in dispersed phase of emulsion. Amidation of vegetable oils by monoethanol amine is implemented at the reduced temperatures (90…100 °C. It was proved the availability mainly of fatty acids amides in product

  18. Reversible aggregation of lysozyme in a biodegradable amphiphilic multiblock copolymer.

    Science.gov (United States)

    van de Weert, Marco; van Dijkhuizen-Radersma, Riemke; Bezemer, Jeroen M; Hennink, Wim E; Crommelin, Daan J A

    2002-07-01

    Lysozyme-loaded poly(ethylene glycol terephthalate)-poly(butylene terephthalate) (PEGT/PBT) films were prepared using a water-in-oil emulsification solvent evaporation method. Infrared spectroscopic analysis of the dried films indicated the presence of non-covalent lysozyme aggregates in the polymer matrix. The use of methanol to enhance the drying rate of the films increased the relative amount of aggregates. Surprisingly, quantitative in-vitro release of fully active, non-aggregated lysozyme was observed, indicating that lysozyme forms reversible aggregates during encapsulation in PEGT/PBT films.

  19. Parallelization of Reversible Ripple-carry Adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock

    2009-01-01

    The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme......{O}(m\\cdot k)$. The underlying mechanisms of the parallelization scheme are formally proven correct. We also show designs for garbage-less reversible comparison circuits. We compare the circuit costs of the resulting ripple-block carry adder with known optimized reversible ripple-carry adders in measures...

  20. Reverse logistics in the Brazilian construction industry.

    Science.gov (United States)

    Nunes, K R A; Mahler, C F; Valle, R A

    2009-09-01

    In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.