WorldWideScience

Sample records for aortic vascular smooth

  1. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  2. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    Science.gov (United States)

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  3. Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms

    Science.gov (United States)

    Parastatidis, Ioannis; Weiss, Daiana; Joseph, Giji; Taylor, W Robert

    2013-01-01

    Objective Elevated levels of oxidative stress have been reported in abdominal aortic aneurysms (AAA), but which reactive oxygen species (ROS) promotes the development of AAA remains unclear. Here we investigate the effect of the hydrogen peroxide (H2O2) degrading enzyme catalase on the formation of AAA. Approach and Results AAA were induced with the application of calcium chloride (CaCl2) on mouse infrarenal aortas. The administration of PEG-catalase, but not saline, attenuated the loss of tunica media and protected against AAA formation (0.91±0.1 mm vs. 0.76±0.09 mm). Similarly, in a transgenic mouse model, catalase over-expression in the vascular smooth muscle cells (VSMC) preserved the thickness of tunica media and inhibited aortic dilatation by 50% (0.85±0.14 mm vs. 0.57±0.08 mm). Further studies showed that injury with CaCl2 decreased catalase expression and activity in the aortic wall. Pharmacologic administration or genetic over-expression of catalase restored catalase activity and subsequently decreased matrix metalloproteinase activity. In addition, a profound reduction in inflammatory markers and VSMC apoptosis was evident in aortas of catalase over-expressing mice. Interestingly, as opposed to infusion of PEG-catalase, chronic over-expression of catalase in VSMC did not alter the total aortic H2O2 levels. Conclusions The data suggest that a reduction in aortic wall catalase activity can predispose to AAA formation. Restoration of catalase activity in the vascular wall enhances aortic VSMC survival and prevents AAA formation primarily through modulation of matrix metalloproteinase activity. PMID:23950141

  4. A new iridoid and effect on the rat aortic vascular smooth muscle cell proliferation of isolated compounds from Buddleja officinalis.

    Science.gov (United States)

    Tai, Bui Huu; Nhiem, Nguyen Xuan; Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Tung, Nguyen Huu; Kim, Yohan; Lee, Jung-Jin; Myung, Chang-Seon; Cuong, Nguyen Manh; Kim, Young Ho

    2011-06-01

    A new iridoid, named methylscutelloside (1) together with 19 known compounds belonging to the iridoids (2-4), monoterpenoids (5), flavonoids (6-8), triterpenoids (9-14), and phenylethanoids (15-20) were isolated from the flowers of Buddleja officinalis. Their chemical structures were elucidated on the basis of physicochemical properties, and by spectroscopic methods including 1D, 2D NMR, and MS. All isolated compounds were tested in vitro for their effects on the proliferation of rat aortic vascular smooth muscle cells (VSMCs). Among them, iridoids were the main active components and showed significant inhibitory effects on PDGF-BB-induced proliferation in rat aortic VSMCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Hydroxyapatite and Calcified Elastin Induce Osteoblast-like Differentiation in Rat Aortic Smooth Muscle Cells

    Science.gov (United States)

    Lei, Yang; Sinha, Aditi; Nosoudi, Nasim; Grover, Ankit; Vyavahare, Naren

    2014-01-01

    Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear. We hypothesize that the initial deposition of hydroxyapatite-like mineral in MAC occurs on degraded elastin first and that causes osteogenic transformation of VSMCs. To test this, rat aortic smooth muscle cells (RASMCs) were cultured on hydroxyapatite crystals and calcified aortic elastin. Using RT-PCR and specific protein assays, we demonstrate that RASMCs lose their smooth muscle lineage markers like alpha smooth muscle actin (SMA) and myosin heavy chain (MHC) and undergo chondrogenic/osteogenic transformation. This is indicated by an increase in the expression of typical chondrogenic proteins such as aggrecan, collagen type II alpha 1(Col2a1) and bone proteins such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, when calcified conditions are removed, cells return to their original phenotype. Our data supports the hypothesis that elastin degradation and calcification precedes VSMCs' osteoblast-like differentiation. PMID:24447384

  6. Generation and Characterization of Vascular Smooth Muscle Cell Lines Derived from a Patient with a Bicuspid Aortic Valve

    Directory of Open Access Journals (Sweden)

    Pamela Lazar-Karsten

    2016-04-01

    Full Text Available Thoracic aortic dilation is the most common malformation of the proximal aorta and is responsible for 1%–2% of all deaths in industrialized countries. In approximately 50% of patients with a bicuspid aortic valve (BAV, dilation of any or all segments of the aorta occurs. BAV patients with aortic dilation show an increased incidence of cultured vascular smooth muscle cell (VSMC loss. In this study, VSMC, isolated from the ascending aorta of BAV, was treated with Simian virus 40 to generate a BAV-originated VSMC cell line. To exclude any genomic DNA or cross-contamination, highly polymorphic short tandem repeats of the cells were profiled. The cells were then characterized using flow cytometry and karyotyping. The WG-59 cell line created is the first reported VSMC cell line isolated from a BAV patient. Using an RT2 Profiler PCR Array, genes within the TGFβ/BMP family that are dependent on losartan treatment were identified. Endoglin was found to be among the regulated genes and was downregulated in WG-59 cells following treatment with different losartan concentrations, when compared to untreated WG-59 cells.

  7. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection.

    Science.gov (United States)

    An, Zhao; Qiao, Fan; Lu, Qijue; Ma, Ye; Liu, Yang; Lu, Fanglin; Xu, Zhiyun

    2017-12-01

    Interleukin-6 (IL-6) overexpression played an important role in the pathogenesis of thoracic aortic dissection (TAD). Our previous study found enhanced autophagy accompanying with contractile proteins α smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α) degradation in TAD aortic vascular smooth muscle cells (VSMCs). Autophagy is an important way for intracellular proteins degradation, while IL-6 has been found as a contributing factor of autophagy in some cancers. These indicated IL-6 might contribute to the occurrence of TAD by promoting autophagy-induced contractile proteins degradation, which has not been investigated. The aim of the present study is to verify this hypothesis and investigate the mechanism of it. We collected 10 TAD and 10 control aortic specimens from patients underwent TAD surgical repair and coronary artery bypass grafting, respectively. Quantitative real-time polymerase chain reaction was used to detect mRNA expression. Protein expression level was assessed by enzyme-linked immunosorbent assay, western blot, and immunohistochemistry. Microtubule-associated protein 1 light chain 3 beta overexpression adenovirus with green and red fluorescent protein tags and transmission electron microscopy were used to detect autophagy level in VSMCs. 3-Methyladenine (3-MA) and chloroquine were used to block autophagy in human VSMCs. Experiment results showed that the expression of IL-6 was significantly increased accompanying with up-regulated autophagy in TAD aortic wall compared with controls. In vitro results showed that IL-6 stimulation decreased the expression of VSMCs contractile proteins α-SMA and SM22α accompanying with up-regulated autophagy. Blocking autophagy with 3-MA or chloroquine inhibited IL-6 induced α-SMA and SM22α degradation. Further investigation showed that autophagy-related 4B cysteine peptidase (ATG4B) was significantly overexpressed in TAD aortic wall and played important role in IL-6 induced autophagy up

  8. From depolarization-dependent contractions in gastrointestinal smooth muscle to aortic pulse-synchronized contractions

    Directory of Open Access Journals (Sweden)

    Marion SB

    2014-03-01

    contractions occur in the aortic wall in synchrony with the heartbeat and share a common pacemaker with the heart. We conclude that important observations in the vascular system became derivative from those in the gastrointestinal system. The challenging of scientific dogma potentially leads to the expansion of our fundamental knowledge base.Keywords: gastrointestinal smooth muscle, aortic smooth muscle, contractions, intracellular calcium pools, Windkessel hypothesis, pulse-synchronized contractions

  9. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  10. Biophysical induction of vascular smooth muscle cell podosomes.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Vascular smooth muscle cell (VSMC migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu, however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.

  11. Vascular complications associated with transcatheter aortic valve replacement.

    Science.gov (United States)

    Sardar, M Rizwan; Goldsweig, Andrew M; Abbott, J Dawn; Sharaf, Barry L; Gordon, Paul C; Ehsan, Afshin; Aronow, Herbert D

    2017-06-01

    Transcatheter aortic valve replacement (TAVR) is now an accepted pathway for aortic valve replacement for patients who are at prohibitive, severe and intermediate risk for traditional aortic valve surgery. However, with this rising uptrend and adaptation of this new technology, vascular complications and their management remain an Achilles heel for percutaneous aortic valve replacement. The vascular complications are an independent predictor of mortality for patients undergoing TAVR. Early recognition of these complications and appropriate management is paramount. In this article, we review the most commonly encountered vascular complications associated with currently approved TAVR devices and their optimal percutaneous management techniques.

  12. [Mechanism of losartan suppressing vascular calcification in rat aortic artery].

    Science.gov (United States)

    Shao, Juan; Wu, Panfeng; Wu, Jiliang; Li, Mincai

    2016-08-01

    Objective To investigate the effect of the angiotensin II receptor 1 (AT1R) blocker losartan on vascular calcification in rat aortic artery and explore the underlying mechanisms. Methods SD rats were divided randomly into control group, vascular calcification model group and treatment group. Vascular calcification models were made by subcutaneous injection of warfarin plus vitamin K1 for two weeks. Rats in the treatment group were subcutaneously injected with losartan (10 mg/kg) at the end of the first week and consecutively for one week. We observed the morphological changes by HE staining and the calcium deposition by Alizarin red staining in the artery vascular wall. The mRNA expressions of bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) were analyzed by reverse transcription PCR. The BMP2 and RUNX2 protein expressions were determined by Western blotting. The apoptosis of smooth muscle cells (SMCs) were detected by TUNEL. The AT1R expression was tested by fluorescent immunohistochemistry. Results The aortic vascular calcification was induced by warfarin and vitamin K1. Compared with the vascular calcification model group, the mRNA and protein expressions of BMP2 and RUNX2 were significantly downregulated in the aorta in the losartan treatment group. Furthermore, the apoptosis of SMCs and the AT1R expression obviously decreased. Conclusion AT1R blocker losartan inhibits the apoptosis of SMCs and reduces AT1R expression; it downregulates the BMP2 and RUNX2 expressions in the vascular calcification process.

  13. Chronic inflammation, immune response, and infection in abdominal aortic aneurysms

    DEFF Research Database (Denmark)

    Lindholt, Jes Sanddal; Shi, G-P

    2006-01-01

    Abdominal aortic aneurysms (AAA) are associated with atherosclerosis, transmural degenerative processes, neovascularization, decrease in content of vascular smooth muscle cells, and a chronic infiltration, mainly located in the outer aortic wall. The chronic infiltration consists mainly of macrop......Abdominal aortic aneurysms (AAA) are associated with atherosclerosis, transmural degenerative processes, neovascularization, decrease in content of vascular smooth muscle cells, and a chronic infiltration, mainly located in the outer aortic wall. The chronic infiltration consists mainly...... matrix metalloproteases and cysteine proteases for aortic matrix remodeling. The lymphocyte activation may be mediated by microorganisms as well as autoantigens generated from vascular structural proteins, perhaps through molecular mimicry. As in autoimmune diseases, the risk of AAA is increased...

  14. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    Science.gov (United States)

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  15. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Biraja C. Dash

    2016-07-01

    Full Text Available There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs. Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.

  16. Aortic stenosis and vascular calcifications in alkaptonuria.

    Science.gov (United States)

    Hannoush, Hwaida; Introne, Wendy J; Chen, Marcus Y; Lee, Sook-Jin; O'Brien, Kevin; Suwannarat, Pim; Kayser, Michael A; Gahl, William A; Sachdev, Vandana

    2012-02-01

    Alkaptonuria is a rare metabolic disorder of tyrosine catabolism in which homogentisic acid (HGA) accumulates and is deposited throughout the spine, large joints, cardiovascular system, and various tissues throughout the body. In the cardiovascular system, pigment deposition has been described in the heart valves, endocardium, pericardium, aortic intima and coronary arteries. The prevalence of cardiovascular disease in patients with alkaptonuria varies in previous reports. We present a series of 76 consecutive adult patients with alkaptonuria who underwent transthoracic echocardiography between 2000 and 2009. A subgroup of 40 patients enrolled in a treatment study underwent non-contrast CT scans and these were assessed for vascular calcifications. Six of the 76 patients had aortic valve replacement. In the remaining 70 patients, 12 patients had aortic sclerosis and 7 patients had aortic stenosis. Unlike degenerative aortic valve disease, we found no correlation with standard cardiac risk factors. There was a modest association between the severity of aortic valve disease and joint involvement, however, we saw no correlation with urine HGA levels. Vascular calcifications were seen in the coronaries, cardiac valves, aortic root, descending aorta and iliac arteries. These findings suggest an important role for echocardiographic screening of alkaptonuria patients to detect valvular heart disease and cardiac CT to detect coronary artery calcifications. Published by Elsevier Inc.

  17. Loss of MURC/Cavin-4 induces JNK and MMP-9 activity enhancement in vascular smooth muscle cells and exacerbates abdominal aortic aneurysm.

    Science.gov (United States)

    Miyagawa, Kotaro; Ogata, Takehiro; Ueyama, Tomomi; Kasahara, Takeru; Nakanishi, Naohiko; Naito, Daisuke; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Nishi, Masahiro; Kimura, Taizo; Yamada, Hiroyuki; Aoki, Hiroki; Matoba, Satoaki

    2017-06-03

    Abdominal aortic aneurysm (AAA) is relatively common in elderly patients with atherosclerosis. MURC (muscle-restricted coiled-coil protein)/Cavin-4 modulating the caveolae function of muscle cells is expressed in cardiomyocytes, skeletal muscle cells and smooth muscle cells. Here, we show a novel functional role of MURC/Cavin-4 in vascular smooth muscle cells (VSMCs) and AAA development. Both wild-type (WT) and MURC/Cavin-4 knockout (MURC -/- ) mice subjected to periaortic application of CaCl 2 developed AAAs. Six weeks after CaCl 2 treatment, internal and external aortic diameters were significantly increased in MURC -/- AAAs compared with WT AAAs, which were accompanied by advanced fibrosis in the tunica media of MURC -/- AAAs. The activity of JNK and matrix metalloproteinase (MMP) -2 and -9 were increased in MURC -/- AAAs compared with WT AAAs at 5 days after CaCl 2 treatment. At 6 weeks after CaCl 2 treatment, MURC -/- AAAs exhibited attenuated JNK activity compared with WT AAAs. There was no difference in the activity of MMP-2 or -9 between saline and CaCl 2 treatments. In MURC/Cavin-4-knockdown VSMCs, TNFα-induced activity of JNK and MMP-9 was enhanced compared with control VSMCs. Furthermore, WT, MURC -/- , apolipoprotein E -/- (ApoE -/- ), and MURC/Cavin-4 and ApoE double-knockout (MURC -/- ApoE -/- ) mice were subjected to angiotensin II (Ang II) infusion. In both ApoE -/- and MURC -/- ApoE -/- mice infused for 4 weeks with Ang II, AAAs were promoted. The internal aortic diameter was significantly increased in Ang II-infused MURC -/- ApoE -/- mice compared with Ang II-infused ApoE -/- mice. In MURC/Cavin-4-knockdown VSMCs, Ang II-induced activity of JNK and MMP-9 was enhanced compared with control VSMCs. Our results suggest that MURC/Cavin-4 in VSMCs modulates AAA progression at the early stage via the activation of JNK and MMP-9. MURC/Cavin-4 is a potential therapeutic target against AAA progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch.

    Science.gov (United States)

    Lundberg, M S; Sadhu, D N; Grumman, V E; Chilian, W M; Ramos, K S

    1995-09-01

    The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and alpha 1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of alpha 1B-adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in alpha 1B-adrenoceptor or beta/gamma-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

  19. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  20. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    International Nuclear Information System (INIS)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  1. Effects of High Glucose on Vascular Endothelial Growth Factor Synthesis and Secretion in Aortic Vascular Smooth Muscle Cells from Obese and Lean Zucker Rats

    Directory of Open Access Journals (Sweden)

    Mariella Trovati

    2012-07-01

    Full Text Available Type 1 diabetes is characterized by insulin deficiency, type 2 by both insulin deficiency and insulin resistance: in both conditions, hyperglycaemia is accompanied by an increased cardiovascular risk, due to increased atherosclerotic plaque formation/instabilization and impaired collateral vessel formation. An important factor in these phenomena is the Vascular Endothelial Growth Factor (VEGF, a molecule produced also by Vascular Smooth Muscle Cells (VSMC. We aimed at evaluating the role of high glucose on VEGF-A164 synthesis and secretion in VSMC from lean insulin-sensitive and obese insulin-resistant Zucker rats (LZR and OZR. In cultured aortic VSMC from LZR and OZR incubated for 24 h with D-glucose (5.5, 15 and 25 mM or with the osmotic controls L-glucose and mannitol, we measured VEGF-A164 synthesis (western, blotting and secretion (western blotting and ELISA. We observed that: (i D-glucose dose-dependently increases VEGF-A164 synthesis and secretion in VSMC from LZR and OZR (n = 6, ANOVA p = 0.002–0.0001; (ii all the effects of 15 and 25 mM D-glucose are attenuated in VSMC from OZR vs. LZR (p = 0.0001; (iii L-glucose and mannitol reproduce the VEGF-A164 modulation induced by D-glucose in VSMC from both LZR and OZR. Thus, glucose increases via an osmotic mechanism VEGF synthesis and secretion in VSMC, an effect attenuated in the presence of insulin resistance.

  2. Antibodies against AT1 receptors are associated with vascular endothelial and smooth muscle function impairment: protective effects of hydroxysafflor yellow A.

    Directory of Open Access Journals (Sweden)

    Zhu Jin

    Full Text Available Ample evidence has shown that autoantibodies against AT1 receptors (AT1-AA are closely associated with human cardiovascular disease. The aim of this study was to investigate mechanisms underlying AT1-AA-induced vascular structural and functional impairments in the formation of hypertension, and explore ways for preventive treatment. We used synthetic peptide corresponding to the sequence of the second extracellular loop of the AT1 receptor (165-191 to immunize rats and establish an active immunization model. Part of the model received preventive therapy by losartan (20 mg/kg/day and hyroxysafflor yellow A (HSYA (10 mg/kg/day. The result show that systolic blood pressure (SBP and heart rate (HR of immunized rats was significantly higher, and closely correlated with the plasma AT1-Ab titer. The systolic response of thoracic aortic was increased, but diastolic effects were attenuated markedly. Histological observation showed that the thoracic aortic endothelium of the immunized rats became thinner or ruptured, inflammatory cell infiltration, medial smooth muscle cell proliferation and migration, the vascular wall became thicker. There was no significant difference in serum antibody titer between losartan and HSYA groups and the immunized group. The vascular structure and function were reversed, and plasma biochemical parameters were also improved significantly in the two treatment groups. These results suggest that AT1-Ab could induce injury to vascular endothelial cells, and proliferation of smooth muscle cells. These changes were involved in the formation of hypertension. Treatment with AT1 receptor antagonists and anti oxidative therapy could block the pathogenic effect of AT1-Ab on vascular endothelial and smooth muscle cells.

  3. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  4. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  5. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  6. Nicotinamide Phosphoribosyltransferase in Smooth Muscle Cells Maintains Genome Integrity, Resists Aortic Medial Degeneration, and Is Suppressed in Human Thoracic Aortic Aneurysm Disease.

    Science.gov (United States)

    Watson, Alanna; Nong, Zengxuan; Yin, Hao; O'Neil, Caroline; Fox, Stephanie; Balint, Brittany; Guo, Linrui; Leo, Oberdan; Chu, Michael W A; Gros, Robert; Pickering, J Geoffrey

    2017-06-09

    The thoracic aortic wall can degenerate over time with catastrophic consequences. Vascular smooth muscle cells (SMCs) can resist and repair artery damage, but their capacities decline with age and stress. Recently, cellular production of nicotinamide adenine dinucleotide (NAD + ) via nicotinamide phosphoribosyltransferase (Nampt) has emerged as a mediator of cell vitality. However, a role for Nampt in aortic SMCs in vivo is unknown. To determine whether a Nampt-NAD + control system exists within the aortic media and is required for aortic health. Ascending aortas from patients with dilated aortopathy were immunostained for NAMPT, revealing an inverse relationship between SMC NAMPT content and aortic diameter. To determine whether a Nampt-NAD + control system in SMCs impacts aortic integrity, mice with Nampt -deficient SMCs were generated. SMC- Nampt knockout mice were viable but with mildly dilated aortas that had a 43% reduction in NAD + in the media. Infusion of angiotensin II led to aortic medial hemorrhage and dissection. SMCs were not apoptotic but displayed senescence associated-ß-galactosidase activity and upregulated p16, indicating premature senescence. Furthermore, there was evidence for oxidized DNA lesions, double-strand DNA strand breaks, and pronounced susceptibility to single-strand breakage. This was linked to suppressed poly(ADP-ribose) polymerase-1 activity and was reversible on resupplying NAD + with nicotinamide riboside. Remarkably, we discovered unrepaired DNA strand breaks in SMCs within the human ascending aorta, which were specifically enriched in SMCs with low NAMPT. NAMPT promoter analysis revealed CpG hypermethylation within the dilated human thoracic aorta and in SMCs cultured from these tissues, which inversely correlated with NAMPT expression. The aortic media depends on an intrinsic NAD + fueling system to protect against DNA damage and premature SMC senescence, with relevance to human thoracic aortopathy. © 2017 American Heart

  7. Uremia modulates the phenotype of aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Madsen, Marie; Pedersen, Annemarie Aarup; Albinsson, Sebastian

    2017-01-01

    the phenotype of aortic SMCs in vivo. METHODS: Moderate uremia was induced by 5/6 nephrectomy in apolipoprotein E knockout (ApoE(-/-)) and wildtype C57Bl/6 mice. Plasma analysis, gene expression, histology, and myography were used to determine uremia-mediated changes in the arterial wall. RESULTS: Induction...... of moderate uremia in ApoE(-/-) mice increased atherosclerosis in the aortic arch en face 1.6 fold (p = 0.04) and induced systemic inflammation. Based on histological analyses of aortic root sections, uremia increased the medial area, while there was no difference in the content of elastic fibers or collagen...... in the aortic media. In the aortic arch, mRNA and miRNA expression patterns were consistent with a uremia-mediated phenotypic modulation of SMCs; e.g. downregulation of myocardin, α-smooth muscle actin, and transgelin; and upregulation of miR146a. Notably, these expression patterns were observed after acute (2...

  8. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  9. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    Science.gov (United States)

    Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela

    2014-01-01

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168

  10. Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Michael J Herr

    Full Text Available The most prevalent cardiovascular diseases arise from alterations in vascular smooth muscle cell (VSMC morphology and function. Tetraspanin CD9 has been previously implicated in regulating vascular pathologies; however, insight into how CD9 may regulate adverse VSMC phenotypes has not been provided. We utilized a human model of aortic smooth muscle cells to understand the consequences of CD9 deficiency on VSMC phenotypes. Upon knocking down CD9, the cells developed an abnormally small and rounded morphology. We determined that this morphological change was due to a lack of typical parallel actin arrangement. We also found similar total RhoA but decreased GTP-bound (active RhoA levels in CD9 deficient cells. As a result, cells lacking a full complement of CD9 were less contractile than their control treated counterparts. Upon restoration of RhoA activity in the CD9 deficient cells, the phenotype was reversed and cell contraction was restored. Conversely, inhibition of RhoA activity in the control cells mimicked the CD9-deficient cell phenotype. Thus, alteration in CD9 expression was sufficient to profoundly disrupt cellular actin arrangement and endogenous cell contraction by interfering with RhoA signaling. This study provides insight into how CD9 may regulate previously described vascular smooth muscle cell pathophysiology.

  11. Aortic endothelial and smooth muscle histamine metabolism. Relationship to aortic 125I-albumin accumulation in experimental diabetes

    International Nuclear Information System (INIS)

    Hollis, T.M.; Gallik, S.G.; Orlidge, A.; Yost, J.C.

    1983-01-01

    We studied rat aortic endothelial and smooth muscle cell de novo histamine synthesis mediated by histidine decarboxylase (HD) and the effects of its inhibition by alpha-hydrazinohistidine on the intracellular histamine content and intraaortic albumin accumulation in streptozotocin-induced diabetes. Diabetes was induced by a single jugular vein injection of streptozotocin (60 mg/kg, pH 4.5, ether anesthesia), with animals held 4 weeks following the overt manifestation of diabetes. Additional diabetic and nondiabetic rats received alpha-hydrazinohistidine (25 mg/kg, i.p. every 12 hours) during the last week; this had no effect on the severity of diabetes in any animal receiving streptozotocin. Data indicate that the aortic endothelial (EC) HD activity was increased more than 130% in the untreated diabetic group but was similar to control values in the diabetic group receiving alpha-hydrazinohistidine; similarily, the EC histamine content from diabetic aortas increased 127% over control values, but in EC from diabetic animals receiving alpha-hydrazinohistidine it was comparable to control values. Similar trends were observed for the subjacent aortic smooth muscle. In untreated diabetic animals the aortic 125I-albumin mass transfer rate was increased 60% over control values, while in diabetic animals receiving alpha-hydrazinohistidine the 125I-albumin mass transfer rate was essentially identical to controls. These data indicate that in streptozotocin diabetes there is an expansion of the inducible aortic histamine pool, and that this expansion is intimately related to the increased aortic albumin accumulation

  12. MDCT assessment of tracheomalacia in symptomatic infants with mediastinal aortic vascular anomalies: preliminary technical experience

    International Nuclear Information System (INIS)

    Lee, Edward Y.; Mason, Keira P.; Zurakowski, David; Waltz, David A.; Ralph, Amy; Riaz, Farhana; Boiselle, Phillip M.

    2008-01-01

    Mediastinal aortic vascular anomalies are relatively common causes of extrinsic central airway narrowing in infants with respiratory symptoms. Surgical correction of mediastinal aortic vascular anomalies alone might not adequately treat airway symptoms if extrinsic narrowing is accompanied by intrinsic tracheomalacia (TM), a condition that escapes detection on routine end-inspiratory imaging. Paired inspiratory-expiratory multidetector CT (MDCT) has the potential to facilitate early diagnosis and timely management of TM in symptomatic infants with mediastinal aortic vascular anomalies. To assess the technical feasibility of paired inspiratory-expiratory MDCT for evaluating TM among symptomatic infants with mediastinal aortic vascular anomalies. The study group consisted of five consecutive symptomatic infants (four male, one female; mean age 4.1 months, age range 2 weeks to 6 months) with mediastinal aortic vascular anomalies who were referred for paired inspiratory-expiratory MDCT during a 22-month period. CT angiography was concurrently performed during the end-inspiration phase of the study. Two pediatric radiologists in consensus reviewed all CT images in a randomized and blinded fashion. The end-inspiration and end-expiration CT images were reviewed for the presence and severity of tracheal narrowing. TM was defined as ≥50% reduction in tracheal cross-sectional luminal area between end-inspiration and end-expiration. The presence of TM was compared to the bronchoscopy results when available (n = 4). Paired inspiratory-expiratory MDCT was technically successful in all five patients. Mediastinal aortic vascular anomalies included a right aortic arch with an aberrant left subclavian artery (n = 2), innominate artery compression (n = 2), and a left aortic arch with an aberrant right subclavian artery (n 1). Three (60%) of the five patients demonstrated focal TM at the level of mediastinal aortic vascular anomalies. The CT results were concordant with the results

  13. Heterogeneity of smooth muscle cells in tunica media of aorta in ...

    African Journals Online (AJOL)

    ... of the tunica media of goat aorta are phenotypically heterogeneous and run in multiple directions. These characteristics probably confer mechanical strength and functional plasticity to the aortic wall. Designers of aortic substitutes should bear this in mind. Keywords: Vascular, Smooth Muscle Cells, Heterogeneity, Aorta ...

  14. Vascular endothelial dysfunction in β-thalassemia occurs despite increased eNOS expression and preserved vascular smooth muscle cell reactivity to NO.

    Directory of Open Access Journals (Sweden)

    Ekatherina Stoyanova

    Full Text Available The hereditary β-thalassemia major condition requires regular lifelong blood transfusions. Transfusion-related iron overloading has been associated with the onset of cardiovascular complications, including cardiac dysfunction and vascular anomalies. By using an untransfused murine model of β-thalassemia major, we tested the hypothesis that vascular endothelial dysfunction, alterations of arterial structure and of its mechanical properties would occur despite the absence of treatments.Vascular function and structure were evaluated ex vivo. Compared to the controls, endothelium-dependent vasodilation with acetylcholine was blunted in mesenteric resistance arteries of β-thalassemic mice while the endothelium-independent vasodilator (sodium nitroprusside produced comparable vessel dilation, indicating endothelial cell impairment with preserved smooth muscle cell reactivity to nitric oxide (NO. While these findings suggest a decrease in NO bioavailability, Western blotting showed heightened expression of aortic endothelial NO synthase (eNOS in β-thalassemia. Vascular remodeling of the common carotid arteries revealed increased medial elastin content. Under isobaric conditions, the carotid arteries of β-thalassemic mice exhibited decreased wall stress and softening due to structural changes of the vessel wall.A complex vasculopathy was identified in untransfused β-thalassemic mice characterized by altered carotid artery structure and endothelial dysfunction of resistance arterioles, likely attributable to reduced NO bioavailability despite enhanced vascular eNOS expression.

  15. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    Science.gov (United States)

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  16. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  17. LPS, but not Angiotensin ll, lnduces Direct Pro-lnflammatory Effects in Cultured Mouse Arteries and Human Endothelial and Vascular Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Outzen, Emilie M; Zaki, Marina; Mehryar, Rahila

    2017-01-01

    resistance-sized arteries (MRA) supported by experiments in cultured human primary endothelial and vascular smooth muscle cells. Results showed that 24-hr organ culture of mouse MRA with 10 nM Ang II had, unlike 100 ng/mL LPS, no effects on IL-6 or MCP-1 secretion, VCAM1 mRNA expression or endothelial......]-Ang II had no concentration- or time-dependent effects on IL-6 and MCP-1 secretion in human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMC). AGTR1 or AGTR2 mRNA expression were undetectable in HUVEC, whereas HASMC expressed only AGTR1 mRNA. In summary, contrary...... rights reserved....

  18. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  19. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Wada, Hiromichi; Abe, Mitsuru; Ono, Koh; Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide; Satoh, Noriko; Fujita, Masatoshi; Kita, Toru; Shimatsu, Akira; Hasegawa, Koji

    2008-01-01

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs

  20. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hiromichi [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Abe, Mitsuru; Ono, Koh [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Satoh, Noriko [Division of Metabolic Research, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Fujita, Masatoshi [Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Kita, Toru [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Shimatsu, Akira [Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Hasegawa, Koji [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan)

    2008-10-03

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 {mu}M of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-{alpha}-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 {mu}M), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.

  1. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of [ 3 H]-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the α1 and α2 chains of type I and the α1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells

  2. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    International Nuclear Information System (INIS)

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of [ 35 S]-sodium sulfate and [ 3 H]-serine or [ 3 H]-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of 35 S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect

  3. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells.

    Science.gov (United States)

    Toghill, Bradley J; Saratzis, Athanasios; Freeman, Peter J; Sylvius, Nicolas; Bown, Matthew J

    2018-01-01

    Abdominal aortic aneurysm (AAA) is a deadly cardiovascular disease characterised by the gradual, irreversible dilation of the abdominal aorta. AAA is a complex genetic disease but little is known about the role of epigenetics. Our objective was to determine if global DNA methylation and CpG-specific methylation at known AAA risk loci is associated with AAA, and the functional effects of methylation changes. We assessed global methylation in peripheral blood mononuclear cell DNA from 92 individuals with AAA and 93 controls using enzyme-linked immunosorbent assays, identifying hyper-methylation in those with large AAA and a positive linear association with AAA diameter ( P  AAA risk loci identified in genome-wide association studies, using bisulphite next-generation sequencing (NGS) in vascular smooth muscle cells (VSMCs) taken from aortic tissues of 44 individuals (24 AAAs and 20 controls). In IL6R , 2 CpGs were hyper-methylated ( P  = 0.0145); in ERG , 13 CpGs were hyper-methylated ( P  = 0.0005); in SERPINB9 , 6 CpGs were hypo-methylated ( P  = 0.0037) and 1 CpG was hyper-methylated ( P  = 0.0098); and in SMYD2 , 4 CpGs were hypo-methylated ( P  = 0.0012).RT-qPCR was performed for each differentially methylated gene on mRNA from the same VSMCs and compared with methylation. This analysis revealed downregulation of SMYD2 and SERPINB9 in AAA, and a direct linear relationship between SMYD2 promoter methylation and SMYD2 expression ( P  = 0.038). Furthermore, downregulation of SMYD2 at the site of aneurysm in the aortic wall was further corroborated in 6 of the same samples used for methylation and gene expression analysis with immunohistochemistry. This study is the first to assess DNA methylation in VSMCs from individuals with AAA using NGS, and provides further evidence there is an epigenetic basis to AAA. Our study shows that methylation status of the SMYD2 promoter may be linked with decreased SMYD2 expression in disease pathobiology. In

  4. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    Science.gov (United States)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; Pmuscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  5. Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Sherin Samuel

    2017-04-01

    Full Text Available Background/Aims: Vascular relaxation caused by Triiodothyronine (T3 involves direct activation of endothelial cells (EC and vascular smooth muscle cells (VSMC. Activation of protein kinase G (PKG has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP signaling pathway in VSMC. Methods: Human aortic endothelial cells (HAEC and VSMC were treated with T3 for short (2 to 60 minutes and long term (24 hours. Nitric oxide (NO production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh and sodium nitroprusside (SNP. Results: Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Conclusion: Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation.

  6. Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Samuel, Sherin; Zhang, Kuo; Tang, Yi-Da; Gerdes, A Martin; Carrillo-Sepulveda, Maria Alicia

    2017-01-01

    Vascular relaxation caused by Triiodothyronine (T3) involves direct activation of endothelial cells (EC) and vascular smooth muscle cells (VSMC). Activation of protein kinase G (PKG) has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP) signaling pathway in VSMC. Human aortic endothelial cells (HAEC) and VSMC were treated with T3 for short (2 to 60 minutes) and long term (24 hours). Nitric oxide (NO) production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh) and sodium nitroprusside (SNP). Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  7. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  8. Targeted Reduction of Vascular Msx1 and Msx2 Mitigates Arteriosclerotic Calcification and Aortic Stiffness in LDLR-Deficient Mice Fed Diabetogenic Diets

    OpenAIRE

    Cheng, Su-Li; Behrmann, Abraham; Shao, Jian-Su; Ramachandran, Bindu; Krchma, Karen; Bello Arredondo, Yoanna; Kovacs, Attila; Mead, Megan; Maxson, Robert; Towler, Dwight A.

    2014-01-01

    When fed high-fat diets, male LDLR?/? mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR?/? mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in S...

  9. Electron histochemical and autoradiographic studies of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Kameyama, Kohji; Aida, Takeo; Asano, Goro

    1982-01-01

    The authors have studied the vascular smooth muscle cell in the aorta and the arteries of brain, heart in autopsied cases, cholesterol fed rabbits and canine through electron histochemical and autoradiographic methods, using 3 H-proline and 3 H-thymidine. The vascular changes are variable presumably due to the functional and morphological difference of vessels. Aging, pathological condition and physiological requirement induce the disturbances of vascular functions as contractility. According to various pathological conditions, the smooth muscle cell altered their shape, surface properties and arrangement of subcellular organelles including changes in number. The morphological features of arteries during aging is characterized by the thickening of endothelium and media. Decreasing cellularity and increasing collagen contents in media. The autoradiographic and histochemical observations using periodic acid methenamine silver (PAM) and ruthenium red stains demonstrated that the smooth muscle cell is a connective tissue synthetic cell. The PAM impregnation have proved that the small bundle of microfilaments become associated with small conglomerate of collagen and elastic fibers. Cytochemical examination will provide sufficient evidence to establish the contribution of subcellular structure. The acid phosphatase play an important role in vascular disease and they are directly involved in cellular lipid metabolism in cholesterol fed animals, and the activity of Na-K ATPase on the plasma membrane may contribute to the regulation of vascular blood flow and vasospasms. Direct injury and subsequent abnormal contraction of smooth muscle cell may initiate increased permeability of plasma protein and lipid in the media layer and eventually may developed and enhance arteriosclerosis. (author)

  10. Multidisciplinary Treatment Approach for Prosthetic Vascular Graft Infection in the Thoracic Aortic Area

    Science.gov (United States)

    Watanabe, Yoshinori

    2015-01-01

    Prosthetic vascular graft infection in the thoracic aortic area is a rare but serious complication. Adequate management of the complication is essential to increase the chance of success of open surgery. While surgical site infection is suggested as the root cause of the complication, it is also related to decreased host tolerance, especially as found in elderly patients. The handling of prosthetic vascular graft infection has been widely discussed to date. This paper mainly provides a summary of literature reports published within the past 5 years to discuss issues related to multidisciplinary treatment approaches, including surgical site infection, timing of onset, diagnostic methods, causative pathogens, auxiliary diagnostic methods, antibiotic treatment, anti-infective structures of vascular prostheses, surgical treatment, treatment strategy against infectious aortic aneurysms, future surgical treatment, postoperative systemic therapy, and antimicrobial stewardship. A thorough understanding of these issues will enable us to prevent prosthetic vascular graft infection in the thoracic aortic area as far as possible. In the event of its occurrence, the early introduction of appropriate treatment is expected to cure the disease without worsening of the underlying pathological condition. PMID:26356686

  11. Corynoxeine isolated from the hook of Uncaria rhynchophylla inhibits rat aortic vascular smooth muscle cell proliferation through the blocking of extracellular signal regulated kinase 1/2 phosphorylation.

    Science.gov (United States)

    Kim, Tack-Joong; Lee, Ju-Hyun; Lee, Jung-Jin; Yu, Ji-Yeon; Hwang, Bang-Yeon; Ye, Sang-Kyu; Shujuan, Li; Gao, Li; Pyo, Myoung-Yun; Yun, Yeo-Pyo

    2008-11-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by injury to the intima of arteries is an important etiologic factor in vascular proliferative disorders such as atherosclerosis and restenosis. Uncaria rhynchophylla is traditional Chinese herb that has been applied to the treatment of convulsive disorders, such as epilepsy, in China. In the present study, we examined whether corynoxeine exerts inhibitory effects on platelet-derived growth factor (PDGF)-BB-induced rat aortic VSMC proliferation and the possible mechanism of such effects. Pre-treatment of VSMCs with corynoxeine (5-50 microM) for 24 h resulted in significant decreases in cell number without any cytotoxicity; the inhibition percentages were 25.0+/-12.5, 63.0+/-27.5 and 88.0+/-12.5% at 5, 20 and 50 microM, respectively. Also, corynoxeine significantly inhibited the 50 ng/ml PDGF-BB-induced DNA synthesis of VSMCs in a concentration-dependent manner without any cytotoxicity; the inhibitions were 32.8+/-11.0, 51.8+/-8.0 and 76.9+/-7.4% at concentrations of 5, 20 and 50 microM, respectively. Pre-incubation of VSMCs with corynoxeine significantly inhibited PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, whereas corynoxeine had no effects on mitogen-activated protein kinase (MAPK/ERK)-activating kinase 1 and 2 (MEK1/2), Akt, or phospholipase C (PLC)gamma1 activation or on PDGF receptor beta (PDGF-Rbeta) phosphorylation. These results suggest that corynoxeine is a potent ERK1/2 inhibitor of key PDGF-BB-induced VSMC proliferation and may be useful in the prevention and treatment of vascular diseases and restenosis after angioplasty.

  12. Vascular tissue engineering by computer-aided laser micromachining.

    Science.gov (United States)

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  13. Emerging Role of Angiotensin Type 2 Receptor (AT2R)/Akt/NO Pathway in Vascular Smooth Muscle Cell in the Hyperthyroidism

    Science.gov (United States)

    Carrillo-Sepúlveda, Maria Alícia; Ceravolo, Graziela S.; Furstenau, Cristina R.; Monteiro, Priscilla de Souza; Bruno-Fortes, Zuleica; Carvalho, Maria Helena; Laurindo, Francisco R.; Tostes, Rita C.; Webb, R. Clinton; Barreto-Chaves, Maria Luiza M.

    2013-01-01

    Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium. PMID:23637941

  14. Emerging role of angiotensin type 2 receptor (AT2R/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism.

    Directory of Open Access Journals (Sweden)

    Maria Alícia Carrillo-Sepúlveda

    Full Text Available Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3 that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R, a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper. These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC. Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII, which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.

  15. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kurabayashi, Masahiko, E-mail: mkuraba@med.gunma-u.ac.jp [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan)

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  16. Norepinephrine-induced alteration in the coupling of α1-adrenergic receptor occupancy to calcium efflux in rabbit aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Colucci, W.S.; Alexander, R.W.

    1986-01-01

    To determine whether α-adrenergic desensitization of vascular smooth muscle is due to an alteration in α 1 -adrenergic receptor coupling, the authors determined the relationship between receptor occupancy and maximal receptor-coupled Ca 2+ efflux in cultured rabbit aortic smooth muscle cells (i) under basal conditions as defined by receptor inactivation with phenoxybenzamine and (ii) after 48 hr of exposure to several concentrations of 1-norepinephrine (NE). Neither phenoxybenzamine nor NE exposure caused a change in binding affinity for [ 3 H]prazosin or NE. Maximal [ 3 H]prazosin binding capacity and maximal NE-stimulated 45 Ca 2+ efflux decreased progressively with exposure of incubated cells to increasing concentrations of phenoxybenzamine or NE. An approximately 80% decrease in maximal [ 3 H]prazosin binding capacity caused by either phenoxybenzamine or NE resulted in complete loss of NE-stimulated 45 Ca 2+ efflux, indicating that under these conditions approximately 20% of α 1 -adrenergic receptors are not coupled to the Ca 2+ efflux. Under basal conditions, the relationship between maximal [ 3 H]prazosin binding capacity and maximal NE-stimulated 45 Ca 2+ efflux was markedly nonlinear, so that a near maximal response could be elicited by occupancy of only approximately 40% of the receptors. Thus, an alteration in occupancy-response coupling at a step proximal to Ca 2+ mobilization and/or influx, rather than a reduction in receptor number, is of primary importance in the process of agonist-induced α-adrenergic receptor desensitization of vascular smooth muscle cells

  17. Dipeptidyl peptidase-4 inhibitor gemigliptin protects against vascular calcification in an experimental chronic kidney disease and vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Soon-Youn Choi

    Full Text Available Although dipeptidyl peptidase-4 inhibitors, a class of antidiabetic drugs, have various pleiotropic effects, it remains undetermined whether gemigliptin has a beneficial effect on vascular calcification. Therefore, this study was performed to evaluate the effect of gemigliptin on vascular calcification in a rat model of adenine-induced chronic kidney disease and in cultured vascular smooth muscle cells. Gemigliptin attenuated calcification of abdominal aorta and expression of RUNX2 in adenine-induced chronic kidney disease rats. In cultured vascular smooth muscle cells, phosphate-induced increase in calcium content was reduced by gemigliptin. Gemigliptin reduced phosphate-induced PiT-1 mRNA expression, reactive oxygen species generation, and NADPH oxidase mRNA expression (p22phox and NOX4. The reduction of oxidative stress by gemigliptin was associated with the downregulation of phospho-PI3K/AKT expression. High phosphate increased the expression of frizzled-3 (FDZ3 and decreased the expression of dickkopf-related protein-1 (DKK-1 in the Wnt pathway. These changes were attenuated by gemigliptin treatment. Gemigliptin restored the decreased expression of vascular smooth muscle cells markers (α-SMA and SM22α and increased expression of osteogenic makers (CBFA1, OSX, E11, and SOST induced by phosphate. In conclusion, gemigliptin attenuated vascular calcification and osteogenic trans-differentiation in vascular smooth muscle cells via multiple steps including downregulation of PiT-1 expression and suppression of reactive oxygen species generation, phospho-PI3K/AKT, and the Wnt signaling pathway.

  18. Effect of hypertensive rat plasma on ion transport of cultured vascular smooth muscle

    International Nuclear Information System (INIS)

    Magargal, W.W.; Overbeck, H.W.

    1986-01-01

    We layered fresh, unprocessed plasma from healthy rats with early (less than or equal to 7 days) or benign, chronic (greater than 3 wk) one-kidney, one-clip hypertension and from paired one-kidney normotensive control rats over confluent primary-cultured rat aortic smooth muscle cells. Plasma from all rats increased cellular ouabain-sensitive 86 Rb + uptake and sodium content and decreased ouabain-insensitive 86 Rb + uptake compared with uptakes and content in the presence of balanced salt solution (P less than 0.01). Cells incubated in the presence of plasma from rats with early (P less than 0.02) or chronic hypertension (P less than 0.01) had significantly reduced ouabain-sensitive 86 Rb + uptake when compared with cells incubated in normotensive plasma, but their intracellular Na+ contents were not lower. We no longer detected this uptake difference when chronic hypertensives drank 0.9% NaCl instead of water. Plasma from hypertensive rats also altered ouabain-insensitive 86 Rb + uptake by the cultured cells. These findings of this new, reproducible, and specific assay system support the hypothesis that plasma factors inhibit the membrane sodium-potassium pump in vascular smooth muscle cells in this form of hypertension. The abnormality occurs in both early and chronic stages, but may not be related to sodium intake. The data also provide evidence for plasma factors in hypertension altering membrane K+ permeability

  19. Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells

    NARCIS (Netherlands)

    Bartolini, B.; Thelin, M.A.; Svensson, L.; Ghiselli, G.; Kuppevelt, T.H. van; Malmstrom, A.; Maccarana, M.

    2013-01-01

    Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS

  20. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    Science.gov (United States)

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  1. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Sweeney, Nicholas von Offenberg; Cummins, Philip M.; Birney, Yvonne A.; Redmond, Eileen M.; Cahill, Paul A.

    2004-01-01

    Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38 ± 6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 μM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration

  2. Thoracic aortic aneurysm: A rare cause of elevated hemidiaphragm

    Directory of Open Access Journals (Sweden)

    Md Arshad Ejazi

    2016-01-01

    Full Text Available Phrenic nerve palsy causing hemidiaphragm paralysis is a very uncommon feature of thoracic aortic aneurysm. In one case, a 30 year male complained of chronic dull aching chest pain, and hoarseness of voice; posteroanterior view chest radiograph revealed large spherical radiopacity on the left upper lung zone with smooth lobulated margin with elevated left hemidiaphragm. On Colour Doppler sonography, lesion was anechoic on gray scale sonography but on Doppler analysis revealed intense internal vascularity within it with characteristic "Ying Yang" sign. The finding favor the vascular origin of the lesion and a diagnosis of an arterial aneurysm was made Contrast-enhanced computed tomography (CT of the thorax revealed a large well defined spherical lesion of 8 × 10 cm size with smooth well defined margin arising from the aortic arch and attenuation of impending rupture or dissection were lesion on immediate post contrast and delayed scan was similar to that of aorta. Left hemidiaphragm elevation was explained by the gross mass effect of the aneurysm causing right phrenic nerve palsy.

  3. Identification and characterization of novel smoothelin isoforms in vascular smooth muscle.

    Science.gov (United States)

    Krämer, J; Quensel, C; Meding, J; Cardoso, M C; Leonhardt, H

    2001-01-01

    Smoothelin is a cytoskeletal protein specifically expressed in differentiated smooth muscle cells and has been shown to colocalize with smooth muscle alpha actin. In addition to the small smoothelin isoform of 59 kD, we recently identified a large smoothelin isoform of 117 kD. The aim of this study was to identify and characterize novel smoothelin isoforms. The genomic structure and sequence of the smoothelin gene were determined by genomic PCR, RT-PCR and DNA sequencing. Comparison of the cDNA and genomic sequences shows that the small smoothelin isoform is generated by transcription initiation 10 kb downstream of the start site of the large isoform. In addition to the known smoothelin cDNA (c1 isoform) we identified two novel cDNA variants (c2 and c3 isoform) that are generated by alternative splicing within a region, which shows similarity to the spectrin family of F-actin cross-linking proteins. Visceral organs express the c1 form, while the c2 form prevails in well-vascularized tissue as analyzed by RT-PCR. We then generated specific antibodies against the major smoothelin isoforms and could show by Western blotting and immunohistochemistry that the large isoform is specifically expressed in vascular smooth muscle cells, while the small isoform is abundant in visceral smooth muscle. These results strongly suggest that the smoothelin gene contains a vascular and a visceral smooth muscle promoter. The cell-type-specific expression of smoothelin isoforms that are associated with actin filaments may play a role in the modulation of the contractile properties of different smooth muscle cell types. Copyright 2001 S. Karger AG, Basel

  4. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  5. Targeted reduction of vascular Msx1 and Msx2 mitigates arteriosclerotic calcification and aortic stiffness in LDLR-deficient mice fed diabetogenic diets.

    Science.gov (United States)

    Cheng, Su-Li; Behrmann, Abraham; Shao, Jian-Su; Ramachandran, Bindu; Krchma, Karen; Bello Arredondo, Yoanna; Kovacs, Attila; Mead, Megan; Maxson, Robert; Towler, Dwight A

    2014-12-01

    When fed high-fat diets, male LDLR(-/-) mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) animals versus Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) controls, respectively. Aortic calcium was reduced by 31%, and pulse wave velocity, an index of stiffness, was decreased in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice vs. controls. Fasting blood glucose and lipids did not differ, yet SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) siblings became more obese. Aortic adventitial myofibroblasts from SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice exhibited reduced osteogenic gene expression and mineralizing potential with concomitant reduction in multiple Wnt genes. Sonic hedgehog (Shh) and Sca1, markers of aortic osteogenic progenitors, were also reduced, paralleling a 78% reduction in alkaline phosphatase (TNAP)-positive adventitial myofibroblasts. RNA interference revealed that although Msx1+Msx2 supports TNAP and Wnt7b expression, Msx1 selectively maintains Shh and Msx2 sustains Wnt2, Wnt5a, and Sca1 expression in aortic adventitial myofibroblast cultures. Thus, Msx1 and Msx2 support vascular mineralization by directing the osteogenic programming of aortic progenitors in diabetic arteriosclerosis. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Suppression of vascular smooth muscle cells' proliferation and ...

    African Journals Online (AJOL)

    This study aimed to determine the effects of valsartan on the proliferation and migration of isolated rat vascular smooth muscle cells (VSMCs) and the expression of phospho-p42/44 mitogen-activated protein kinase (MAPK) promoted by angiotensin II (Ang II). VSMCs from the rat thoracic aorta were cultured by ...

  7. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    Science.gov (United States)

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  8. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    Science.gov (United States)

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  9. Aortic VCAM-1: an early marker of vascular inflammation in collagen-induced arthritis.

    Science.gov (United States)

    Denys, Anne; Clavel, Gaëlle; Lemeiter, Delphine; Schischmanoff, Olivier; Boissier, Marie-Christophe; Semerano, Luca

    2016-05-01

    Cardiovascular disease (CVD) is a major cause of morbidity and mortality in rheumatoid arthritis (RA). There are limited experimental data on vascular involvement in arthritis models. To study the link between CVD and inflammation in RA, we developed a model of vascular dysfunction and articular inflammation by collagen-induced arthritis (CIA) in C57Bl/6 (B6) mice. We studied the expression of vascular inflammatory markers in CIA with and without concomitant hyperlipidic diet (HD). Collagen-induced arthritis was induced with intradermal injection of chicken type-II collagen followed by a boost 21 days later. Mice with and without CIA were fed a standard diet or an HD for 12 weeks starting from the day of the boost. Arthritis severity was evaluated with a validated clinical score. Aortic mRNA levels of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS) and interleukin-17 were analysed by quantitative RT-PCR. Vascular cell adhesion molecule-1 localization in the aortic sinus was determined by immunohistochemistry. Atherosclerotic plaque presence was assessed in aortas. Collagen-induced arthritis was associated with increased expression of VCAM-1, independent of diet. VCAM-1 overexpression was detectable as early as 4 weeks after collagen immunization and persisted after 15 weeks. The HD induced atheroma plaque formation and aortic iNOS expression regardless of CIA. Concomitant CIA and HD had no additive effect on atheroma or VCAM-1 or iNOS expression. CIA and an HD diet induced a distinct and independent expression of large-vessel inflammation markers in B6 mice. This model may be relevant for the study of CVD in RA. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    Science.gov (United States)

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  11. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2000-01-01

    In the present study, we tested whether the alpha(1A) subunit, which encodes a neuronal isoform of voltage-dependent Ca(2+) channels (VDCCs) (P-/Q-type), was present and functional in vascular smooth muscle and renal resistance vessels. By reverse transcription-polymerase chain reaction...... preglomerular resistance vessels and aorta, as well as mesangial cells, and that P-type VDCCs contribute to Ca(2+) influx in aortic and renal VSMCs and are involved in depolarization-mediated contraction in renal afferent arterioles....

  12. Elastase effect on the extracellular matrix of rat aortic smooth muscle cells in culture

    International Nuclear Information System (INIS)

    Kispert, J.; Mogayzel, P.J. Jr.; Pratt, C.A.; Toselli, P.; Wolfe, B.L.; Faris, B.; Franzblau, C.

    1986-01-01

    The effect of porcine pancreatic elastase on the extracellular matrix (ECM) of neonatal rat aortic smooth muscle cell cultures was monitored both chemically and ultrastructurally. Initially, the elastin appeared as non-coalesced material closely associated with filaments, presumably microfibrils. The insoluble elastin accumulated in the ECM of cells in culture for 6 weeks accounted for 40-45% of the total protein. After exposure to elastase for 30-60 minutes, the elastin content was reduced to 14-20%. The reduction in the total protein content of the cultures after elastase treatment was due primarily to the loss of elastin. Although the amino acid compositions of the elastin isolated from cultures both before and after elastase treatment were similar, there were striking ultrastructural differences in the amorphous elastin. The elastin assumed a mottled appearance after elastase exposure, similar to that seen in in vivo emphysema models. Pulse experiments with 3 H-valine demonstrated an increase in protein synthesis by the cells 20 hours after elastase exposure, suggesting the potential for elastin repair. The use of this culture system will aid in clarifying the role of elastolysis in pulmonary and vascular injuries

  13. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  14. Endovascular repair of abdominal aortic aneurysms: vascular anatomy, device selection, procedure, and procedure-specific complications.

    Science.gov (United States)

    Bryce, Yolanda; Rogoff, Philip; Romanelli, Donald; Reichle, Ralph

    2015-01-01

    Abdominal aortic aneurysm (AAA) is abnormal dilatation of the aorta, carrying a substantial risk of rupture and thereby marked risk of death. Open repair of AAA involves lengthy surgery time, anesthesia, and substantial recovery time. Endovascular aneurysm repair (EVAR) provides a safer option for patients with advanced age and pulmonary, cardiac, and renal dysfunction. Successful endovascular repair of AAA depends on correct selection of patients (on the basis of their vascular anatomy), choice of the correct endoprosthesis, and familiarity with the technique and procedure-specific complications. The type of aneurysm is defined by its location with respect to the renal arteries, whether it is a true or false aneurysm, and whether the common iliac arteries are involved. Vascular anatomy can be divided more technically into aortic neck, aortic aneurysm, pelvic perfusion, and iliac morphology, with grades of difficulty with respect to EVAR, aortic neck morphology being the most common factor to affect EVAR appropriateness. When choosing among the devices available on the market, one must consider the patient's vascular anatomy and choose between devices that provide suprarenal fixation versus those that provide infrarenal fixation. A successful technique can be divided into preprocedural imaging, ancillary procedures before AAA stent-graft placement, the procedure itself, postprocedural medical therapy, and postprocedural imaging surveillance. Imaging surveillance is important in assessing complications such as limb thrombosis, endoleaks, graft migration, enlargement of the aneurysm sac, and rupture. Last, one must consider the issue of radiation safety with regard to EVAR. (©)RSNA, 2015.

  15. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Ju [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Kim, Soo Yeon [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Han, Seong Su [University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA (United States); Kim, Chan Woo [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Kumar, Sandeep [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Park, Byeoung Soo [Nanotoxtech Co., Ansan (Korea, Republic of); Lee, Sung Eun [Division of Applied Biology and Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Yun, Yeo Pyo [College of Pharmacy, Chungbuk National University, Cheongju (Korea, Republic of); Jo, Hanjoong, E-mail: hjo@emory.edu [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Park, Young Hyun, E-mail: pyh012@sch.ac.kr [Department of Food Science and Nutrition, College of Natural Sciences, Soonchunhyang University, Asan (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  16. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture.

    Science.gov (United States)

    Schreier, Barbara; Schwerdt, Gerald; Heise, Christian; Bethmann, Daniel; Rabe, Sindy; Mildenberger, Sigrid; Gekle, Michael

    2016-07-01

    Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    Science.gov (United States)

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  18. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    Science.gov (United States)

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  19. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mast Cells in Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Shi, Guo-Ping; Lindholt, Jes Sanddal

    2013-01-01

    Mast cells (MCs) are proinflammatory cells that play important roles in allergic responses, tumor growth, obesity, diabetes, atherosclerosis, and abdominal aortic aneurysm (AAA). Although the presence and function of MCs in atherosclerotic lesions have been thoroughly studied in human specimens......, in primary cultured vascular cells, and in atherosclerosis in animals, their role in AAA was recognized only recently. Via multiple activation pathways, MCs release a spectrum of mediators � including histamine, inflammatory cytokines, chemokines, growth factors, proteoglycans, and proteases � to activate...... neighboring cells, degrade extracellular matrix proteins, process latent bioactive molecules, promote angiogenesis, recruit additional inflammatory cells, and stimulate vascular cell apoptosis. These activities associate closely with medial elastica breakdown, medial smooth-muscle cell loss and thinning...

  1. Transcatheter aortic valve replacement and vascular complications definitions.

    Science.gov (United States)

    Van Mieghem, Nicolas M; Généreux, Philippe; van der Boon, Robert M A; Kodali, Susheel; Head, Stuart; Williams, Matthew; Daneault, Benoit; Kappetein, Arie-Pieter; de Jaegere, Peter P; Leon, Martin B; Serruys, Patrick W

    2014-03-20

    Transcatheter aortic valve replacement (TAVR) requires large calibre catheters and is therefore associated with increased vascular complications. The aim of this study was to illustrate the impact of the different definitions of major vascular complications on their incidence and to underscore the importance of uniform reporting. We pooled dedicated databases of consecutive patients undergoing TAVR from two tertiary care facilities and looked for the incidence of major vascular complications using various previously reported definitions. The level of agreement (Kappa statistic) between the respective definitions and the Valve Academic Research Consortium (VARC) consensus definition of vascular complications was assessed. A total of 345 consecutive patients underwent transfemoral TAVR and were included in this analysis. A completely percutaneous access and closure technique was applied in 96% of cases. Arterial sheath size ranged between 18 and 24 Fr, the majority being 18 Fr (60%). Procedural success was reached in 94.5%. Depending on the definition used, major vascular complications occurred in 5.2-15.9% of patients. According to the VARC definitions, the rate of major and minor vascular complications was 9.0% and 9.6%, respectively. Major vascular complications according to VARC criteria demonstrated at least a substantial level of agreement with the SOURCE registry (k 0.80), the UK registry (k 0.82) the Italian registry (k 0.72) and "FRANCE" registry (k 0.70) definitions, compared to a moderate level of agreement with the definitions used in the German registry ( 0.47) and the 18 Fr Safety and Efficacy study (k 0.42). Minor complications according to VARC demonstrated a moderate agreement only with vascular complications using the German registry definition (k 0.54). Non-uniformity in how vascular complications are defined precludes any reliable comparison between previously reported TAVR registries. The VARC consensus document offers standardised endpoint

  2. Iduronic acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bartolini

    Full Text Available Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA, catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK and phospho-FAK (pFAK was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.

  3. An α-smooth muscle actin (acta2/αsma zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Thomas R Whitesell

    Full Text Available Mural cells of the vascular system include vascular smooth muscle cells (SMCs and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma, which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  4. Cardiovascular Disease in Ageing: An Overview on Thoracic Aortic Aneurysm as an Emerging Inflammatory Disease

    Directory of Open Access Journals (Sweden)

    Calogera Pisano

    2017-01-01

    Full Text Available Medial degeneration associated with thoracic aortic aneurysm and acute aortic dissection was originally described by Erdheim as a noninflammatory lesion related to the loss of smooth muscle cells and elastic fibre fragmentation in the media. Recent evidences propose the strong role of a chronic immune/inflammatory process in aneurysm evocation and progression. The coexistence of inflammatory cells with markers of apoptotic vascular cell death in the media of ascending aorta with aneurysms and type A dissections raises the possibility that activated T cells and macrophages may contribute to the elimination of smooth muscle cells and degradation of the matrix. On the other hand, several inflammatory pathways (including TGF-β, TLR-4 interferon-γ, chemokines, and interferon-γ seem to be involved in the medial degeneration related to aged and dilated aorta. This is an overview on thoracic aortic aneurysm as an emerging inflammatory disease.

  5. The angiotensin-(1-7/Mas axis counteracts angiotensin II-dependent and –independent pro-inflammatory signaling in human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Laura A Villalobos

    2016-12-01

    Full Text Available Background and aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7 is a member of the renin-angiotensin system (RAS that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7 to counteract human aortic smooth muscle cell (HASMC inflammation triggered by RAS-dependent and –independent stimuli, such as Ang II or interleukin (IL-1.Methods and Results: In cultured HASMC, the expression of iNOS and the release of nitric oxide were stimulated by both Ang II and IL-1, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7 in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7, suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and NF-B. Indeed, Ang-(1-7 markedly inhibited the activation of the NADPH oxidase and subsequently of NF-B, as determined by lucigenin-derived chemiluminiscence and electromobility shift assay, respectively.Conclusion: Ang-(1-7 can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  6. Palmitic Acid Induces Osteoblastic Differentiation in Vascular Smooth Muscle Cells through ACSL3 and NF-κB, Novel Targets of Eicosapentaenoic Acid

    Science.gov (United States)

    Kageyama, Aiko; Matsui, Hiroki; Ohta, Masahiko; Sambuichi, Keisuke; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Yokoyama, Tomoyuki; Kurabayashi, Masahiko

    2013-01-01

    Free fatty acids (FFAs), elevated in metabolic syndrome and diabetes, play a crucial role in the development of atherosclerotic cardiovascular disease, and eicosapentaenoic acid (EPA) counteracts many aspects of FFA-induced vascular pathology. Although vascular calcification is invariably associated with atherosclerosis, the mechanisms involved are not completely elucidated. In this study, we tested the hypothesis that EPA prevents the osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC) induced by palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma. PA increased and EPA abolished the expression of the genes for bone-related proteins, including bone morphogenetic protein (BMP)-2, Msx2 and osteopontin in human aortic smooth muscle cells (HASMC). Among the long-chain acyl-CoA synthetase (ACSL) subfamily, ACSL3 expression was predominant in HASMC, and PA robustly increased and EPA efficiently inhibited ACSL3 expression. Importantly, PA-induced osteoblastic differentiation was mediated, at least in part, by ACSL3 activation because acyl-CoA synthetase (ACS) inhibitor or siRNA targeted to ACSL3 completely prevented the PA induction of both BMP-2 and Msx2. Conversely, adenovirus-mediated ACSL3 overexpression enhanced PA-induced BMP-2 and Msx2 expression. In addition, EPA, ACSL3 siRNA and ACS inhibitor attenuated calcium deposition and caspase activation induced by PA. Notably, PA induced activation of NF-κB, and NF-κB inhibitor prevented PA-induction of osteoblastic gene expression and calcium deposition. Immunohistochemistry revealed the prominent expression of ACSL3 in VSMC and macrophages in human non-calcifying and calcifying atherosclerotic plaques from the carotid arteries. These results identify ACSL3 and NF-κB as mediators of PA-induced osteoblastic differentiation and calcium deposition in VSMC and suggest that EPA prevents vascular calcification by inhibiting such a new molecular pathway elicited

  7. [Right-side aortic arch with aberrant left subclavian artery and Kommerell's diverticulum. A cause of vascular ring].

    Science.gov (United States)

    Tamayo-Espinosa, Tania; Erdmenger-Orellana, Julio; Becerra-Becerra, Rosario; Balderrabano-Saucedo, Norma; Segura-Standford, Begoña

    The right-side aortic arch may be associated with aberrant left subclavian artery, in some cases this artery originates from an aneurismal dilation of the aorta called Kommerell's diverticulum. A report is presented on 2 cases of vascular ring formed by a right-side aortic arch, anomalous left subclavian artery, Kommerell's diverticulum and left patent ductus arteriosus. A review the literature was also performed as regards the embryological development and the imaging methods used to help in the diagnosis of this rare vascular anomaly. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  9. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II

    International Nuclear Information System (INIS)

    Friedrich, Erik B.; Clever, Yvonne P.; Wassmann, Sven; Werner, Nikos; Boehm, Michael; Nickenig, Georg

    2006-01-01

    Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy

  10. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    Science.gov (United States)

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelin B (ET B ) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ET B receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ET B receptors were selectively deleted from smooth muscle by crossing floxed ET B mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ET B deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ET B was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ET B -mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ET B -mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ET B knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ET B blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ET B -mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ET B knockout mice. In the absence of other pathology, ET B receptors in vascular smooth muscle make a small but significant contribution to ET B -dependent regulation of BP. These ET B receptors have no effect on vascular contraction or neointimal remodeling. © 2016 The Authors.

  11. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    Science.gov (United States)

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc

  12. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com [Department of Applied Mathematics and Sciences, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Christoforou, Nicolas, E-mail: nicolas.christoforou@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States); Teo, Jeremy C.M., E-mail: jeremy.teo@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates)

    2016-05-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  13. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    International Nuclear Information System (INIS)

    Timraz, Sara B.H.; Farhat, Ilyas A.H.; Alhussein, Ghada; Christoforou, Nicolas; Teo, Jeremy C.M.

    2016-01-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  14. Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells

    Science.gov (United States)

    Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas

    2001-01-01

    Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893

  15. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    Science.gov (United States)

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  16. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  17. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    Science.gov (United States)

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  18. Effect of gamma rays on electrically evoked contractions of non-vascular smooth muscles (rat vas deferens)

    International Nuclear Information System (INIS)

    Azroony, R.; Ksies, F.; Alya, G.

    2002-10-01

    We have tried, in this experiment, to study the modifications of non-vascular smooth muscles contraction induced via gamma rays. Smooth muscular fibers were isolated from the vas deferens of an adult rat and contractions were electrically evoked. Our results show that irradiation activates the VOC (Voltage Operated Channel) type of ionic channels which causes an increasing in the inward flux of Ca 2+ and then causes an increasing in the inner calcium concentration [Ca 2] i, the matter which means an increasing in the force of muscular contraction. Concerning to the response of vas deferens smooth muscles to the activation of membrane receptors, we have tried to study the effects of gamma rays on activating adrenergic and cholinergic receptors, also, we have tried to show the effects of different doses of gamma rays (1, 3, 5, 7 Gy) on regulating the contractile response of this type of smooth muscles. And results show that: - Irradiation increases contraction force, mediated by adrenergic and cholinergic receptors, in a dose dependent manner, with E m ax 1 Gy m axc 3 Gy m ax 5 Gy m ax 7 Gy. There is an important shift on irradiated rats (3, 5, 7 Gy) where the maximum effect of Acetylcholine (E m ax) can be obtained in lower concentrations of Acetylcholine. These results mean that irradiation activates the inward flux of Ca 2+ through the ROC (Receptors Operated Channels) type of ionic channels, which rely, in their activation, on activating the membrane receptors. By comparing these results with the effects of gamma rays on activating vascular adrenergic and cholinergic receptors, we concluded that: Non-vascular smooth muscles (vas deferens) are less sensitive to irradiation in comparing with vascular smooth muscles (venae portal hepatica), and irradiation increases the sensitivity of cholinergic receptors to acetylcholine in the smooth muscular fibers of vas deferens while; if decreases this sensitivity in the smooth muscular fibers of venae portal hepatica

  19. Design, synthesis and biological evaluation of novel ring-opened cromakalim analogues with relaxant effects on vascular and respiratory smooth muscles and as stimulators of elastin synthesis.

    Science.gov (United States)

    Bouhedja, Mourad; Peres, Basile; Fhayli, Wassim; Ghandour, Zeinab; Boumendjel, Ahcène; Faury, Gilles; Khelili, Smail

    2018-01-20

    Two new series of ring-opened analogues of cromakalim bearing sulfonylurea moieties (series A: with N-unmethylated sulfonylureas, series B: with N-methylated sulfonylureas) were synthesized and tested as relaxants of vascular and respiratory smooth muscles (rat aorta and trachea, respectively). Ex vivo biological evaluations indicated that the most active compounds, belonging to series B, displayed a marked vasorelaxant activity on endothelium-intact aortic rings and the trachea. A majority of series B compounds exhibited a higher vasorelaxant activity (EC 50  stronger relaxant effects on the trachea than the reference compound cromakalim (EC 50  = 124 μM), in particular compounds B4, B7 and B16 (EC 50   57 μM for all, and EC 50  > 200 μM for a majority of them), but some of them showed an interesting relaxing effect on trachea (i.e. A15 and A33, EC 50  = 30 μM). The most potent compounds of both series, i.e. A15, A33 and B16, tested on aortic rings in the presence of glibenclamide or 80 mM KCl, suggested that they acted as voltage-gated Ca 2+ channel blockers, like verapamil, instead of being ATP-potassium channel activators, as is cromakalim, the parent molecule. Further investigations on cultured vascular smooth muscle cells showed a strong stimulating effect on elastin synthesis, especially compound B16, which was more active at 20 μM than diazoxide, a reference ATP-sensitive potassium channel activator. Taken together, our results show that the N-methylation of the sulfonylurea moieties of ring-opened cromakalim analogues led to new compounds blocking calcium-gated channels, which had a major impact on the arterial and tracheal activities as well as selectivity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    Energy Technology Data Exchange (ETDEWEB)

    Helkin, Alex; Maier, Kristopher G. [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States); Gahtan, Vivian, E-mail: gahtanv@upstate.edu [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States)

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely

  1. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Jin, S.; Hansson, E.M.; Tikka, S.; Lanner, F.; Sahlgren, C.; Farnebo, F.; Baumann, M.; Kalimo, H.; Lendahl, U.

    2008-01-01

    Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor

  2. Vascular Response of Ruthenium Tetraamines in Aortic Ring from Normotensive Rats

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Conceição-Vertamatti

    2015-03-01

    Full Text Available Background: Ruthenium (Ru tetraamines are being increasingly used as nitric oxide (NO carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH34(Py(NO]3+, trans-[RuII(Cl(NO (cyclan](PF62, and trans-[RuII(NH34(4-acPy(NO]3+. Methods: Aortic rings were contracted with noradrenaline (10−6 M. After voltage stabilization, a single concentration (10−6 M of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10−6 M and sodium nitroprusside at 10−6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10−6 M at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.

  3. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    International Nuclear Information System (INIS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-01-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms

  4. Regulation and Roles of Urocortins in the Vascular System

    Directory of Open Access Journals (Sweden)

    Kazunori Kageyama

    2012-01-01

    Full Text Available Urocortins (Ucns are members of the corticotropin-releasing factor (CRF family of peptides. Ucns would have potent effects on the cardiovascular system via the CRF receptor type 2 (CRF2 receptor. Regulation and roles of each Ucn have been determined in the vascular system. Ucns have more potent vasodilatory effects than CRF. Human umbilical vein endothelial cells (HUVECs express Ucns1-3 mRNAs, and the receptor, CRF2a receptor mRNA. Ucns1-3 mRNA levels are differentially regulated in HUVECs. Differential regulation of Ucns may suggest differential roles of those in HUVECs. Ucn1 and Ucn2 have strong effects on interleukin (IL-6 gene expression and secretion in rat aortic smooth muscle A7r5 cells. The increase that we observed in IL-6 levels following Ucn treatment of A7r5 cells suggests that smooth muscle cells may be a source of IL-6 secretion under physiological stress conditions. Ucns are important and unique modulators of vascular smooth muscle cells and act directly or indirectly as autocrine and paracrine factors in the vascular system.

  5. Upregulation of decorin by FXR in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    He Fengtian; Zhang Qiuhong; Kuruba, Ramalinga; Gao Xiang; Li Jiang; Li Yong; Gong Wei; Jiang, Yu; Xie Wen; Li Song

    2008-01-01

    Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation

  6. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-01-01

    Highlights: ► Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. ► Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. ► CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-κB) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-κB activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-κB activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNFα)-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-κB transcriptional activity in RASMCs; however, did not affect the TNFα-induced NF-κB activity. Intriguingly, the TNFα-induced IκB phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of IκBα and IκBβ proteins, it did not alter the kinetics of TNFα-induced IκB protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-κB activity and TNFα-induced IκB kinase activation without affecting TNFα-induced NF-κB activity in VSMCs. In addition, knocking down of Cyld suppressed TNFα-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNFα-induced RASMC migration and monocyte adhesion to

  7. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    International Nuclear Information System (INIS)

    Nawrath, H.; Raschack, M.

    1987-01-01

    (-)-Desmethoxyverapamil [also known as (-)-devapamil or (-)-D888] has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and 45 Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and 45 Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle

  8. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nawrath, H.; Raschack, M.

    1987-09-01

    (-)-Desmethoxyverapamil (also known as (-)-devapamil or (-)-D888) has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and /sup 45/Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and /sup 45/Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle.

  9. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fu [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Chambon, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U596, ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg (France); Tellides, George [Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (United States); Kong, Wei [Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing (China); Zhang, Xiaoming, E-mail: rmygxgwk@163.com [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Li, Wei [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China)

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  10. Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration

    NARCIS (Netherlands)

    Taher, Taher E. I.; Derksen, Patrick W. B.; de Boer, Onno J.; Spaargaren, Marcel; Teeling, Peter; van der Wal, Allard C.; Pals, Steven T.

    2002-01-01

    A key event in neointima formation and atherogenesis is the migration of vascular smooth muscle cells (VSMCs) into the intima. This is controlled by cytokines and extracellular matix (ECM) components within the microenvironment of the diseased vessel wall. At present, these signals have only been

  11. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  12. Adhesion and growth of rat aortic smooth muscle cells on lactide-based polymers

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Lapčíková, Monika; Kubies, Dana; Rypáček, František

    2003-01-01

    Roč. 534, - (2003), s. 179-189 ISSN 0065-2598 R&D Projects: GA AV ČR IAA4050202; GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z4050913; CEZ:AV0Z5011922 Keywords : endothelial cells(EC) * vascular smooth cells (VSMC) Subject RIV: EI - Biotechnology ; Bionics

  13. Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured human fetal aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Bond, J.A.; Kocan, R.M.; Benditt, E.P.; Juchau, M.R.

    1979-01-01

    Cultured human fetal aortic smooth muscle cells derived from the abdominal aorta converted benzo[a]pyrene (BaP) and 7,12-dimethylbenz[a]anthracene (DMBA) via cytochrome P-450-dependent monooxygenation to metabolites detectable by both a highly sensitive radiometric assay and high pressure liquid chromatography (HPLC). Cells incubated with 3 H-BaP transformed this substrate primarily to phenols. 14 C-DMBA was converted to metabolites that cochromatographed with 12-hydroxymethyl-methylbenz[a]anthracene, 7-hydroxymethyl-12-methylbenz[a]anthracene, 7- 7,12-dihydroxymethylbenz[a]anthracene, and trans-8,9-dihydrodiol-7,12-DMBA. Exposure of cells in culture to 13 μM 1,2-benz[a]anthracene resulted in increased oxidative metabolism of both BaP and DMBA. In the case of BaP, total phenol formation was increased, while with DMBA all metabolites detected by HPLC were increased. Support for the potential role of metabolism of polycyclic aromatic hydrocarbons by aortic smooth muscle cells in the etiology of atherosclerosis was obtained

  14. 31P-nuclear magnetic resonance analysis of extracts of vascular smooth muscle

    International Nuclear Information System (INIS)

    Barron, J.T.; Messer, J.V.; Glonek, Thomas

    1986-01-01

    31 P-nuclear magnetic resonance spectroscopy was used to assess phosphate metabolites in perchloric acid extracts of rabbit aorta. In addition to the high energy phosphates, several other phosphorus compounds were detected and quantified. Most notable was the presence of a prominent phosphomonoester compound appearing at a chemical shift of 3.86 delta. This compound constituted 26% of the total extractable tissue phosphorus and is tentatively identified as ribose-5-phosphate, a pentose phosphate pathway intermediate. While ATP and phosphocreatine did not change during glucose and oxygen deprivation or during prolonged muscle contraction, the 3.86delta phosphate decreased significantly. Furthermore, theophylline, an agent that increases intracellular cAMP, also decreased the level of the 3.86 delta phosphate. These results are consistent with the concept that intermediate metabolism sustains high energy phosphate pools in vascular smooth muscle in the steady state under various conditions. The pentose phosphate pathway may play an important role in vascular smooth muscle metabolism. (author)

  15. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  16. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells.

    Science.gov (United States)

    Saleh Al-Shehabi, Tuqa; Iratni, Rabah; Eid, Ali H

    2016-10-15

    Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Experimental study on effect of arsenic trioxide on vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Lu Qin; An Yanli; Niu Huanzhang; Teng Gaojun; Wang Zihao; Zhang Dongsheng; Fang Juanjuan

    2007-01-01

    Objective: To investigate the effect of arsenic trioxide (As 2 O 3 ) nanoparticles on rabbit vascular smooth muscle cells in vitro in comparison with normal form As 2 O 3 . Methods: The rabbit vascular smooth muscle cells were cultured in vitro. Nano and normal forms of As 2 O 3 with drug concentrations of 3 μmol/L were added into the cells. Cell proliferation curve was drawn according to the light absorption values of MTT test. Flow cytometry was applied to observe the apoptosis. DNA was extracted and underwent electrophoresis. Results: Cell proliferation treated with the 3 μmol/L concentration of As 2 O 3 was inhibited. Cell growth was inhibited markedly with increased treatment time, and the inhibition effect of nano drug form seemed stronger than that of normal form. MTT light absorption values of cells treated at 24, 48 and 72 h showed statistically significant difference (H=10.934, 15.039, 15.539, P 2 O 3 , normal drug form of As 2 O 3 and control group of cells without As 2 O 3 were 44.97%, 58.54%, 74.02% respectively. The early apoptosis rates were 16.89%, 11.27%, 11.20%, late apoptosis rates were 26.56%, 23.60%, 12.46%, and necrosis rates were 11.58%, 6.59%, 2.32% respectively. Agarose gel electrophoresis showed 'ladder' strand of DNA, with more strands and obscurity for nano drug form treated cells. Conclusion: Arsenic trioxide may inhibit the growth of rabbit vascular smooth muscle cells. The nano drug form showed stronger inhibition effect than that of the normal drug form. (authors)

  18. p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation.

    Science.gov (United States)

    Singh, Nikhlesh K; Janjanam, Jagadeesh; Rao, Gadiparthi N

    2017-08-25

    Although the involvement of Rho proteins in the pathogenesis of vascular diseases is well studied, little is known about the role of their upstream regulators, the Rho guanine nucleotide exchange factors (RhoGEFs). Here, we sought to identify the RhoGEFs involved in monocyte chemotactic protein 1 (MCP1)-induced vascular wall remodeling. We found that, among the RhoGEFs tested, MCP1 induced tyrosine phosphorylation of p115 RhoGEF but not of PDZ RhoGEF or leukemia-associated RhoGEF in human aortic smooth muscle cells (HASMCs). Moreover, p115 RhoGEF inhibition suppressed MCP1-induced HASMC migration and proliferation. Consistent with these observations, balloon injury (BI) induced p115 RhoGEF tyrosine phosphorylation in rat common carotid arteries, and siRNA-mediated down-regulation of its levels substantially attenuated BI-induced smooth muscle cell migration and proliferation, resulting in reduced neointima formation. Furthermore, depletion of p115 RhoGEF levels also abrogated MCP1- or BI-induced Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling, which, as we reported previously, is involved in vascular wall remodeling. Our findings also show that protein kinase N1 (PKN1) downstream of Rac1-cyclin D1/CDK6 and upstream of CDK4-PAK1 in the p115 RhoGEF-Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling axis is involved in the modulation of vascular wall remodeling. Of note, we also observed that CCR2-G i/o -Fyn signaling mediates MCP1-induced p115 RhoGEF and Rac1 GTPase activation. These findings suggest that p115 RhoGEF is critical for MCP1-induced HASMC migration and proliferation in vitro and for injury-induced neointima formation in vivo by modulating Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    Science.gov (United States)

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  20. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Directory of Open Access Journals (Sweden)

    Rushendhiran Kesavan

    Full Text Available Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs, PDGF-BB (20 ng/ml induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml. The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA. Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  1. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Science.gov (United States)

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  2. Towards the therapeutic use of vascular smooth muscle progenitor cells.

    Science.gov (United States)

    Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2012-07-15

    Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.

  3. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-01-01

    Full Text Available Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II- induced proliferation and migration of vascular smooth muscle cells (VSMCs. Dichlorofluorescein diacetate (DCFH-DA staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS.

  4. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Mario eChiong

    2014-12-01

    Full Text Available Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs are essential processes of vascular development. VSMCs have biosynthetic, proliferative and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMCs play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e. mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER. Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial-ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.

  5. Effect of 103Pd on proliferation and apoptosis of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luo Quanyong; Zhu Jun; Lu Hankui; Zhu Ruisen

    2003-01-01

    This study aimed at the effect of γ-emitting radionuclide 103 Pd on the proliferation and apoptosis of vascular SMCs (smooth muscle cells) in vitro. The cavy aortic SMCs were cultured with culture medium M-199. The experiments were carried out in two groups, one for proliferation test and the other for apoptosis test. In each group, 103 Pd solutions with various radioactivities were respectively added to the culture solution to irradiate SMCs for 72 h, while non-radioactive palladium solution was added to the control. 3 H-thymidine incorporation test and liquid scintillator were used to detect the effect of 103 Pd on the proliferation of SMCs. Flow cytometer was used to detect the apoptotic SMCs. The inhibition rate of SMCs proliferation by 1.85 MBq 103 Pd solution was 2.3%, which was not significant, while the inhibition rate increased from 41.6% to 91.3% as the 103 Pd activity increased from 7.40 MBq to 37 MBq. The apoptosis rate of SMCs was extremely low (less than 4.0%) by 103 Pd with activity from 1.85 MBq to 37 MBq. The results suggest that the proliferation of SMCs can be repressed effectively in a dose-dependent fashion by 103 Pd in vitro. The mechanism of its inhibiting over neointima proliferation is likely to inhibit SMCs proliferation rather than to induce its apoptosis by 103 Pd. 103 Pd can be used as a γ-emitting intravascular brachytherapy radionuclide to inhibit SMCs proliferation

  6. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall.

    Science.gov (United States)

    Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz

    2016-12-01

    Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. © The Author(s), 2016.

  7. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    International Nuclear Information System (INIS)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N G -nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats

  8. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Universidade Federal de Sergipe, Universidade de São Paulo (Brazil)

    2015-08-15

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N{sup G}-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  9. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Tharciano Luiz Teixeira Braga da Silva

    2015-01-01

    Full Text Available Abstract Background: Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective: To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME-induced hypertensive rats. Methods: Wistar rats were divided into three groups: control (C, hypertensive (H, and exercised hypertensive (EH. Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN, potassium chloride (KCl and sodium nitroprusside (SNP. Results: Rats treated with L-NAME showed an increase (p < 0.001 in systolic blood pressure (SBP, diastolic blood pressure (DBP and mean arterial pressure (MAP compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001 the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01 smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion: One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  10. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  11. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  12. Epigallocatechin Gallate Attenuates Proliferation and Oxidative Stress in Human Vascular Smooth Muscle Cells Induced by Interleukin-1β via Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Po-Len Liu

    2014-01-01

    Full Text Available Proliferation of vascular smooth muscle cells (VSMCs triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−-epigallocatechin-3-gallate (EGCG, in human aortic smooth muscle cells (HASMCs, focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1. We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2 transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation.

  13. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration.

    Science.gov (United States)

    Kesavan, R; Chandel, S; Upadhyay, S; Bendre, R; Ganugula, R; Potunuru, U R; Giri, H; Sahu, G; Kumar, P Uday; Reddy, G Bhanuprakash; Joksic, G; Bera, A K; Dixit, Madhulika

    2016-04-01

    Studies suggest that Gentiana lutea (GL), and its component isovitexin, may exhibit anti-atherosclerotic properties. In this study we sought to investigate the protective mechanism of GL aqueous root extract and isovitexin on endothelial inflammation, smooth muscle cell migation, and on the onset and progression of atherosclerosis in streptozotocin (STZ)-induced diabetic rats. Our results show that both GL extract and isovitexin, block leukocyte adhesion and generation of reactive oxygen species in human umbilical vein endothelial cells (HUVECs) and rat aortic smooth muscle cells (RASMCs), following TNF-alpha and platelet derived growth factor-BB (PDGF-BB) challenges respectively. Both the extract and isovitexin blocked TNF-α induced expression of ICAM-1 and VCAM-1 in HUVECs. PDGF-BB induced migration of RASMCs and phospholipase C-γ activation, were also abrogated by GL extract and isovitexin. Fura-2 based ratiometric measurements demonstrated that, both the extact, and isovitexin, inhibit PDGF-BB mediated intracellular calcium rise in RASMCs. Supplementation of regular diet with 2% GL root powder for STZ rats, reduced total cholesterol in blood. Oil Red O staining demonstrated decreased lipid accumulation in aortic wall of diabetic animals upon treatment with GL. Medial thickness and deposition of collagen in the aortic segment of diabetic rats were also reduced upon supplementation. Immunohistochemistry demonstrated reduced expression of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and vascular endothelial cadherin (VE-cadherin) in aortic segments of diabetic rats following GL treatment. Thus, our results support that GL root extract/powder and isovitexin exhibit anti-atherosclerotic activities. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University

  14. Recipient origin of neointimal vascular smooth muscle cells in cardiac allografts with transplant arteriosclerosis

    NARCIS (Netherlands)

    Hillebrands, JL; van den Hurk, BMH; Klatter, FA; Popa, ER; Nieuwenhuis, P; Rozing, J

    2000-01-01

    Background: Coronary artery disease is today's most important post-heart transplantation problem after the first perioperative year. Histologically, coronary artery disease is characterized by transplant arteriosclerosis. The current view on this vasculopathy is that vascular smooth muscle (VSM)

  15. Inhibitory effects of epigallocatechin-3-O-gallate on serum-stimulated rat aortic smooth muscle cells via nuclear factor-κB down-modulation

    International Nuclear Information System (INIS)

    Han, Dong-Wook; Lim, Hye Ryeon; Baek, Hyun Sook; Lee, Mi Hee; Lee, Seung Jin; Hyon, Suong-Hyu; Park, Jong-Chul

    2006-01-01

    The abnormal growth of vascular smooth muscle cells (VSMCs) plays an important role in vascular diseases, including atherosclerosis and restenosis after angioplasty. Although (-)-epigallocatechin-3-O-gallate (EGCG) has antiproliferative effects on various cells, relatively a little is known about precise mechanisms of the inhibitory effects of EGCG on SMCs. In this study, the inhibitory effects of EGCG on attachment, proliferation, migration, and cell cycle of rat aortic SMCs (RASMCs) with serum stimulation were investigated. Also, the involvement of nuclear factor-κB (NF-κB) during these inhibitions by EGCG was examined. EGCG treatment resulted in significant (p < 0.05) inhibition in attachment and proliferation of RASMCs induced by serum. While non-treated RASMCs migrated into denuded area in response to serum and showed essentially complete closure after 36 h, EGCG-treated cells covered only 31% of the area even after 48 h of incubation. Furthermore, EGCG treatment resulted in an appreciable cell cycle arrest at both G0/G1- and G2/M-phases. The immunoblot analysis revealed that the constitutive expression of NF-κB/p65 nuclear protein in RASMCs was lowered by EGCG in both the cytosol and the nucleus in a dose-dependent manner. These results suggest that the EGCG-caused inhibitory effects on RASMCs may be mediated through NF-κB down-modulation

  16. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuai [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Lv, Jiaju [Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@pathology.ufl.edu [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  17. Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Zhi-Min; Zhang, Guan-Xin; Yang, Fan; Yan, Yan; Liu, Su-Xuan; Li, Song-Hua; Wang, Guo-Kun; Xu, Zhi-Yun

    2016-01-01

    The aortic medial degeneration is the key histopathologic feature of Thoracic aortic dissection (TAD). The aim of this study was to identify the change of autophagic activity in the aortic wall during TAD development, and to explore the roles of autophagy on regulating functional properties of smooth muscle cells (SMCs). Firstly, compared with control group (n = 11), the increased expression of autophagic markers Beclin1 and LC3 was detected in the aortic wall from TAD group (n = 23) by immunochemistry and western blot. We found that more autophagic vacuoles were present in the aortic wall of TAD patients using Transmission electron microscopy. Next, autophagic activity was examined in AD mice model established by β-aminopropionitrile fumarate (BAPN) and angiotensin II. Immunochemistry proved that autophagic activity was dynamically changed during AD development. Beclin1 and LC3 were detected up-regulated in the aortic wall in the second week after BAPN feeding, earlier than the fragmentation or loss of elastic fibers. When AD occurred in the 4th week, the expression of Beclin1 and LC3 began to decrease, but still higher than the control. Furthermore, autophagy was found to inhibit starvation-induced apoptosis of SMCs. Meanwhile, blockage of autophagy could suppress PDGF-induced phenotypic switch of SMCs. Taken together, autophagic activity was dynamically changed in the aortic wall during TAD development. The abnormal autophagy could regulate the functional properties of aortic SMCs, which might be the potential pathogenesis of TAD. - Highlights: • Autophagy is up-regulated in aorta wall from thoracic aorta dissection (TAD) patient. • Autophagic activity is dynamically changed during TAD development. • Dynamically change of autophagy is associated with pathological process of TAD. • Autophagy participate in the development of TAD by regulating function of SMCs.

  18. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia.

    Directory of Open Access Journals (Sweden)

    Junxi Wu

    Full Text Available Studies in global androgen receptor knockout (G-ARKO and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall.Mice with selective deletion of AR (ARKO from vascular smooth muscle cells (SM-ARKO, endothelial cells (VE-ARKO, or both (SM/VE-ARKO were compared with wild type (WT controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10-10-10-7M; 6 days.These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis.

  19. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Feng [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Yu, Hong-Wei [Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001 (China); Sun, Li-Li [Department of Ophthalmology, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); You, Lu; Tao, Gui-Zhou [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Qu, Bao-Ze, E-mail: qubaoze1971@hotmail.com [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2015-12-25

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  20. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    International Nuclear Information System (INIS)

    Liu, Qi-Feng; Yu, Hong-Wei; Sun, Li-Li; You, Lu; Tao, Gui-Zhou; Qu, Bao-Ze

    2015-01-01

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  1. Human induced pluripotent stem cell-derived vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Ayoubi, Sohrab; Sheikh, Søren P; Eskildsen, Tilde V

    2017-01-01

    . To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hi......PSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize...

  2. Multidetector-row computed tomography of thoracic aortic anomalies in dogs and cats: Patent ductus arteriosus and vascular rings

    Directory of Open Access Journals (Sweden)

    Nolte Ingo

    2011-09-01

    Full Text Available Abstract Background Diagnosis of extracardiac intrathoracic vascular anomalies is of clinical importance, but remains challenging. Traditional imaging modalities, such as radiography, echocardiography, and angiography, are inherently limited by the difficulties of a 2-dimensional approach to a 3-dimensional object. We postulated that accurate characterization of malformations of the aorta would benefit from 3-dimensional assessment. Therefore, multidetector-row computed tomography (MDCT was chosen as a 3-dimensional, new, and noninvasive imaging technique. The purpose of this study was to evaluate patients with 2 common diseases of the intrathoracic aorta, either patent ductus arteriosus or vascular ring anomaly, by contrast-enhanced 64-row computed tomography. Results Electrocardiography (ECG-gated and thoracic nongated MDCT images were reviewed in identified cases of either a patent ductus arteriosus or vascular ring anomaly. Ductal size and morphology were determined in 6 dogs that underwent ECG-gated MDCT. Vascular ring anomalies were characterized in 7 dogs and 3 cats by ECG-gated MDCT or by a nongated thoracic standard protocol. Cardiac ECG-gated MDCT clearly displayed the morphology, length, and caliber of the patent ductus arteriosus in 6 affected dogs. Persistent right aortic arch was identified in 10 animals, 8 of which showed a coexisting aberrant left subclavian artery. A mild dilation of the proximal portion of the aberrant subclavian artery near its origin of the aorta was present in 4 dogs, and a diverticulum analogous to the human Kommerell's diverticulum was present in 2 cats. Conclusions Contrast-enhanced MDCT imaging of thoracic anomalies gives valuable information about the exact aortic arch configuration. Furthermore, MDCT was able to characterize the vascular branching patterns in dogs and cats with a persistent right aortic arch and the morphology and size of the patent ductus arteriosus in affected dogs. This additional

  3. Robotic aortic surgery.

    Science.gov (United States)

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  4. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  5. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  6. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Poyhonen, Minna; Tikka, Saara; Behbahani, Homira

    2013-01-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ m ) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  7. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Matti [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Department of Geriatrics, Turku City Hospital and University of Turku, Turku (Finland); Sundström, Erik [Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Baumann, Marc [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Poyhonen, Minna [Department of Clinical Genetics, Helsinki University Hospital, HUSLAB, Helsinki (Finland); Tikka, Saara [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Behbahani, Homira, E-mail: homira.behbahani@ki.se [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Karolinska Institutet Alzheimer' s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden)

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  8. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  9. Transcatheter valve-in-valve implantation due to severe aortic regurgitation in a degenerated aortic homograft

    DEFF Research Database (Denmark)

    Olsen, Lene Kjaer; Engstrøm, Thomas; Søndergaard, Lars

    2009-01-01

    Transcatheter aortic valve implantation (TAVI) in severe aortic stenosis has proven to be a feasible and effective treatment modality for inoperable patients. Until now, neither aortic regurgitation nor degenerated bioprostheses has been an indication for TAVI. However, this article reports...... a successful valve-in-valve implantation of a CoreValve aortic valve prosthesis through the right subclavian artery in a case of severe aortic regurgitation within a degenerated aortic homograft. The case exemplifies the possibilities of expanding the indications for TAVI, as well as other vascular access...

  10. Epidermal growth factor-mediated effects on equine vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Grosenbaugh, D.A.; Amoss, M.S.; Hood, D.M.; Morgan, S.J.; Williams, J.D.

    1988-01-01

    Epidermal growth factor (EGF) receptor binding kinetics and EGF-mediated stimulation of DNA synthesis and cellular proliferation were studied in cultured vascular smooth muscle cells (VSMC) from the equine thoracic aorta. Binding studies, using murine 125 I-labeled EGF, indicate the presence of a single class of high-affinity binding sites, with an estimated maximal binding capacity of 5,800 sites/cells. EGF stimulated [ 3 H]thymidine uptake in confluent quiescent monolayers in a dose-dependent fashion, half-maximal stimulation occurring at 7.5 x 10 -11 M. Likewise, EGF-mediated cellular proliferation was dose dependent under reduced serum concentrations. Equine VSMC contain specific receptors for EGF, and EGF can stimulate DNA synthesis and proliferation in these cultured cells, which suggests that EGF may participate in the proliferative changes observed in equine distal digital peripheral vascular disease

  11. Expression of smooth muscle and non-muscle myosin heavy chain isoforms in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Rovner, A.S.; Murphy, R.A.; Owens, G.K.

    1986-01-01

    Immunocytochemical studies of cultured smooth muscle cells (SMCs) have disagreed on the nature of myosin expression. This investigation was undertaken to test for the presence of heterogeneous myosin heavy chain (MHC) isoforms in cell culture as a possible explanation for these results. Previously, Rovner et al. detected two MHCs in intact smooth muscles which differed in molecular weight by ca. 4000 daltons (SM1 and SM2) using a 3-4% acrylamide gradient SDS gel system. When sub-confluent primary cultures of rat aorta SMCs were assayed by this system, SM1 and SM2 were seen, along with large amounts of a third, unique MHC, NM, which closely resembled the MHC from human platelet in size and antigenicity. Data from 35 S-methionine autoradiograms showed that the log growth phase SMC cultures were producing almost exclusively NM, but the growth arrest, post-confluent cultures synthesized increased relative amounts of the SM MHC forms and contained comparable amounts of SM1, SM2, and NM. The same patterns of MHC synthesis were seen in sub-passaged SMCs. The expression of the SM-specific forms of myosin in quiescent, post-confluent cultures parallels that of smooth muscle actin suggesting that density induced growth arrest promotes cytodifferentiation in cultured vascular SMCs

  12. Angiotensin, transforming growth factor β and aortic dilatation in Marfan syndrome: Of mice and humans

    Directory of Open Access Journals (Sweden)

    Christopher Yu

    2018-03-01

    Full Text Available Marfan syndrome is consequent upon mutations in FBN1, which encodes the extracellular matrix microfibrillar protein fibrillin-1. The phenotype is characterised by development of thoracic aortic aneurysm. Current understanding of the pathogenesis of aneurysms in Marfan syndrome focuses upon abnormal vascular smooth muscle cell signalling through the transforming growth factor beta (TGFβ pathway. Angiotensin II (Ang II can directly induce aortic dilatation and also influence TGFβ synthesis and signalling. It has been hypothesised that antagonism of Ang II signalling may protect against aortic dilatation in Marfan syndrome. Experimental studies have been supportive of this hypothesis, however results from multiple clinical trials are conflicting. This paper examines current knowledge about the interactions of Ang II and TGFβ signalling in the vasculature, and critically interprets the experimental and clinical findings against these signalling interactions. Keywords: Aneurysm, Angiotensin blocker, Cell Signalling, Clinical trial

  13. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo

    International Nuclear Information System (INIS)

    Kern, Johann; Steurer, Michael; Gastl, Günther; Gunsilius, Eberhard; Untergasser, Gerold

    2009-01-01

    The murine homologue of human vasohibin (mVASH1), a putative antiangiogenic protein, was investigated for its effects on in vitro and in vivo angiogenesis. Cell growth and migration were analyzed in murine fibroblasts, smooth muscle cells and endothelial cells. Angiogenic sprouting was studied in human umbilical vein endothelial cells (HUVECs) in the spheroid sprouting assay. In vivo effects on blood vessel formation were investigated in the chorioallantoic membrane (CAM) assay and in the C57BL/6 melanoma xenograft model. Purified murine and human VASH1 protein induced apoptosis of murine fibroblasts in vitro, but not of vascular aortic smooth muscle cells (AoSMC) or endothelial cells. Adenoviral overexpression of murine and human VASH1 inhibited capillary sprouting of HUVECs in the spheroid assay. Administration of recombinant murine and human VASH1 inhibited growth of large vessels in the CAM assay and promoted the formation of a dense, fine vascular network. Murine VASH1-overexpressing B16F10 melanomas displayed a reduction in large vessels and vascular area. Moreover, tumors showed more microvessels that stained positive for the mural cell markers α-smooth muscle cell actin (ASMA) and proteoglycan (NG2). Our data imply that murine VASH1 causes angiogenic remodelling by inhibiting angiogenic sprouting and large vessel growth, thereby supporting the formation of a vascular bed consisting predominantly of mature microvessels

  14. Multi-detector row computed tomographic evaluation of a rare type of complete vascular ring: Double aortic arch with atretic left arch distal to the origin of left subclavian artery

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ying Ying; Fu, Ching Yun; Wei, Hao Ji; Tsai, I Chen; Chen, Clayton Chi Chang [Taichung Veterans General Hospital, Taichung (China)

    2013-10-15

    Double aortic arch with an atretic left arch distal to the origin of left subclavian artery was diagnosed with multi-detector row computed tomography (MDCT) in two children with dysphagia. This rare type of complete vascular ring is clinically important because it may be confused with right aortic arch in mirror imaging. Anatomic details of this rare type of complete vascular ring demonstrated on MDCT facilitated appropriate surgical treatment.

  15. From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta.

    Science.gov (United States)

    Michel, Jean-Baptiste; Jondeau, Guillaume; Milewicz, Dianna M

    2018-03-15

    Vascular smooth muscle cells (vSMCs) play a crucial role in both the pathogenesis of Aneurysms and Dissections of the ascending thoracic aorta (TAAD) in humans and in the associated adaptive compensatory responses, since thrombosis and inflammatory processes are absent in the majority of cases. Aneurysms and dissections share numerous characteristics, including aetiologies and histopathological alterations: vSMC disappearance, medial areas of mucoid degeneration, and extracellular matrix (ECM) breakdown. Three aetiologies predominate in TAAD in humans: (i) genetic causes in heritable familial forms, (ii) an association with bicuspid aortic valves, and (iii) a sporadic degenerative form linked to the aortic aging process. Genetic forms include mutations in vSMC genes encoding for molecules of the ECM or the TGF-β pathways, or participating in vSMC tone. On the other hand, aneurysms and dissections, whatever their aetiologies, are characterized by an increase in wall permeability leading to transmural advection of plasma proteins which could interact with vSMCs and ECM components. In this context, blood-borne plasminogen appears to play an important role, because its outward convection through the wall is increased in TAAD, and it could be converted to active plasmin at the vSMC membrane. Active plasmin can induce vSMC disappearance, proteolysis of adhesive proteins, activation of MMPs and release of TGF-β from its ECM storage sites. Conversely, vSMCs could respond to aneurysmal biomechanical and proteolytic injury by an epigenetic phenotypic switch, including constitutional overexpression and nuclear translocation of Smad2 and an increase in antiprotease and ECM protein synthesis. In contrast, such an epigenetic phenomenon is not observed in dissections. In this context, dysfunction of proteins involved in vSMC tone are interesting to study, particularly in interaction with plasma protein transport through the wall and TGF-β activation, to establish the

  16. Aortic arch malformations

    Energy Technology Data Exchange (ETDEWEB)

    Kellenberger, Christian J. [University Children' s Hospital, Department of Diagnostic Imaging, Zuerich (Switzerland)

    2010-06-15

    Although anomalies of the aortic arch and its branches are relatively uncommon malformations, they are often associated with congenital heart disease. Isolated lesions may be clinically significant when the airways are compromised by a vascular ring. In this article, the development and imaging appearance of the aortic arch system and its various malformations are reviewed. (orig.)

  17. Aortic arch malformations

    International Nuclear Information System (INIS)

    Kellenberger, Christian J.

    2010-01-01

    Although anomalies of the aortic arch and its branches are relatively uncommon malformations, they are often associated with congenital heart disease. Isolated lesions may be clinically significant when the airways are compromised by a vascular ring. In this article, the development and imaging appearance of the aortic arch system and its various malformations are reviewed. (orig.)

  18. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    Science.gov (United States)

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. © 2015 American Heart Association, Inc.

  19. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-08-01

    Full Text Available Individuals with bicuspid aortic valves (BAV are at a higher risk of developing thoracic aortic aneurysms (TAA than patients with trileaflet aortic valves (TAV. The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs in the ascending and descending aorta arise from neural crest (NC and paraxial mesoderm (PM, respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs-derived SMCs but not paraxial mesoderm cells (PMCs-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11 and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  20. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury.

    Science.gov (United States)

    Thyberg, J

    1998-07-01

    Smooth muscle cells build up the media of mammalian arteries and constitute one of the principal cell types in atherosclerotic and restenotic lesions. Accordingly, they show a high degree of plasticity and are able to shift from a differentiated, contractile phenotype to a less differentiated, synthetic phenotype, and then back again. This modulation occurs as a response to vascular injury and includes a prominent structural reorganization with loss of myofilaments and formation of an extensive endoplasmic reticulum and a large Golgi complex. At the same time, the expression of cytoskeletal proteins and other gene products is altered. As a result, the cells lose their contractility and become able to migrate from the media to the intima, proliferate, and secrete extracellular matrix components, thereby contributing to the formation of intimal thickenings. The mechanisms behind this change in morphology and function of the smooth muscle cells are still incompletely understood. A crucial role has been ascribed to basement membrane proteins such as laminin and collagen type IV and adhesive proteins such as fibronectin. A significant role is also played by mitogenic proteins such as platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF). An improved knowledge of the regulation of smooth muscle differentiated properties represents an important part in the search for new methods of prevention and treatment of vascular disease.

  1. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype

    NARCIS (Netherlands)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J. C.; Biessen, Erik A. L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic

  2. Influence of 103Pd radioactive stent on apoptosis of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Liu Yingmei; Wu Wei; Chen Xiaochao; Zhang Xuming; Wang Jingfeng; Wei Yulin; Yang Li

    2003-01-01

    Objective: To evaluate the influence of 103 Pd radioactive stent on apoptosis and its relative genes bcl-2 and bax in injured vascular media smooth muscle cells of rabbit abdominal arteries and to investigate the mechanism of 103 Pd radioactive stent for preventing restenosis after angioplasty. Methods: Fifty male New Zealand rabbits were randomized into stent group and 103 Pd stent group. Each group was subdivided into 5 sub-groups. Control group was set up. The study arteries were harvested at 3, 7, 14, 28 and 56 d after stenting and the pathomorphology, apoptosis analysis and in situ hybridization were performed to evaluate the expression of bcl-2 and bax mRNA. Results: The severity of the restenosis in 103 Pd stent group was less than that of stent group. It was most obvious at the 56th day (P 103 Pd stent group had much more apoptosis of vascular smooth muscle cells than stent group did and reached the peak at the 7th day, (14.72±0.53)% vs (12.42±1.13)% (P 103 Pd stent group was much lower than that of stent group at 3 to 28 d. The difference was most obvious at the 28th day after stenting, (18.43± 0.67)% vs (21.55±0.93)% (P 103 Pd stent group was higher than that of stent group, the peak was at the 7th day, (11.17±0.94)% vs (9.30±1.01)%. The ratio of bcl-2/bax in 103 Pd stent group was much lower than that of stent group at 3 to 28 d. Linear correlation analysis showed that there was significant negative correlation between bcl-2 mRNA and apoptosis. Between bax mRNA and apoptosis, the positive correlation was found (P 103 Pd radioactive stent induced more significant apoptosis in vascular media smooth muscle cells by promoting the expression of apoptosis related genes and relieved the expanding of restenosis

  3. TIMP-1 stimulates proliferation of human aortic smooth muscle cells and Ras effector pathways

    International Nuclear Information System (INIS)

    Akahane, Takemi; Akahane, Manabu; Shah, Amy; Thorgeirsson, Unnur P.

    2004-01-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional protein, which is found in most tissues and body fluids. Here, we demonstrated that recombinant TIMP-1 but not the synthetic matrix metalloproteinase inhibitor, GM6001, stimulated proliferation of human aortic smooth muscle cells (AoSMC) in a dose-dependent manner. The mitogenic effect was associated with activation of Ras, increased phosphorylation of ERK, and stimulation of cyclin D1 expression. The phosphatidylinositol 3-kinase (PI3K) signaling pathway was also involved since the PI3K inhibitor, LY294002, abolished the TIMP-1-mediated growth stimulation. These data suggest that TIMP-1 activates Ras, which then turns on the ERK and PI3K signaling pathways to promote cell cycle progression of the AoSMC

  4. Implicit discount rates of vascular surgeons in the management of abdominal aortic aneurysms.

    Science.gov (United States)

    Enemark, U; Lyttkens, C H; Troëng, T; Weibull, H; Ranstam, J

    1998-01-01

    A growing empirical literature has investigated attitudes towards discounting of health benefits with regard to social choices of life-saving and health-improving measures and individuals' time preferences for the management of their own health. In this study, the authors elicited the time preferences of vascular surgeons in the context of management of small abdominal aortic aneurysms, for which the choice between early elective surgery and watchful waiting is not straightforward. They interviewed 25 of a random sample of 30 Swedish vascular surgeons. Considerable variation in the time preferences was found in the choices between watchful waiting and surgical intervention among the otherwise very homogeneous group of surgeons. The discount rates derived ranged from 5.3% to 19.4%. The median discount rate (10.4%) is similar to those usually reported for social choices concerning life-saving measures. The surgeons who were employed in university hospitals had higher discount rates than did their colleagues in county and district hospitals.

  5. NF-kappaB signaling mediates vascular smooth muscle endothelin type B receptor expression in resistance arteries

    DEFF Research Database (Denmark)

    Zheng, Jian-Pu; Zhang, Yaping; Edvinsson, Lars

    2010-01-01

    Vascular smooth muscle cells (SMC) endothelin type B (ET(B)) receptor upregulation results in strong vasoconstriction and reduction of local blood flow. We hypothesizes that the underlying molecular mechanisms involve transcriptional factor nuclear factor-kappaB (NF-kappaB) pathway. ET(B) recepto...

  6. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats.

    Science.gov (United States)

    Ximenes, Carolina Falcão; Rodrigues, Samya Mere Lima; Podratz, Priscila Lang; Merlo, Eduardo; de Araújo, Julia Fernandez Puñal; Rodrigues, Lívia Carla Melo; Coitinho, Juliana Barbosa; Vassallo, Dalton Valentim; Graceli, Jones Bernardes; Stefanon, Ivanita

    2017-11-01

    Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g -1 . The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to N G -nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E 2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5

  7. A sex-related difference in the hypertrophic versus hyperplastic response of vascular smooth muscle cells to repeated passaging in culture

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Pellicciari, C.; Bottone, M. G.; Lisá, Věra; Mareš, Vladislav

    2001-01-01

    Roč. 16, č. 3 (2001), s. 675-684 ISSN 0213-3911 R&D Projects: GA AV ČR IAA7011908 Grant - others:FAR(IT) 1998 Institutional research plan: CEZ:AV0Z5011922 Keywords : rat aortic smooth muscle cells * polyploidization * gender differences Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.859, year: 2001

  8. Effect of 125I seeds and 103Pd stents on proliferation of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zhu Jun; Zhu Ruisen

    2004-01-01

    To establish the theoretical and practical base for implementing radioactive stents aft PTCA in order to prevent restenosis, in vitro observation was taken over the effects of 12 '5I-seeds and 103 Pd-implanted stents on the vascular smooth muscle cell (VSMC) proliferation. In vitro VSMC model from guinea-pig aortic arteries was established using adherent cell culture methods. The effects of 125 I-seeds and 103 Pd-implanted stents on the VSMC proliferation, with or without fetal bovine serum (FCS), were investigated through cell counting methods and 3 H-TDR implementation tests. It was shown that (1) 10% FCS significantly promoted the DNA synthesis of VSMC (P 125 I-seeds and 103 Pd-implanted stents inhibited the VSMC DNA synthesis in dose-dependent manner, regardless of 10% FCS inducement. At lower radioactive doses, neither 125 I-seeds (18.5-74 kBq) nor 103 Pd-implanted stents (1.48-2.96 MBq) exhibited distinctive effects on the VSMC DNA synthesis (P>0.05); and (3) 48 hour exposure from 125 I-seeds at 128 kBq or 10 '3Pd-implanted stents at 7.4 MBq did not result in VSMC morphological alteration, but 125 I-seeds at 370 kBq caused cells' morphological changes. Therefore both 125 I-seeds and 103 Pd-implanted stents inhibit the in vitro VSMC DNA synthesis, and the inhibition effects are significantly related to their exposure duration and doses. (authors)

  9. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    Science.gov (United States)

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  10. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    OpenAIRE

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidizati...

  11. Peptides PHI and VIP: comparison between vascular and nonvascular smooth muscle effect in rabbit uterus

    International Nuclear Information System (INIS)

    Bardrum, B.; Ottesen, B.; Fahrenkrug, J.

    1986-01-01

    The distribution and effects of the two neuropeptides, vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine amide (PHI), on vascular and nonvascular smooth muscle in the urogenital tract of nonpregnant rabbit female, were investigated. Immunoreactive VIP and PHI were present in all regions except the ovary with the highest concentration in the uterin cervix. By using in vitro tension recordings of myometrial specimens, it was demonstrated that both peptides displayed a dose-dependent inhibition of the mechanical activity. The dose-response curves of VIP and PHI were superimposable with and ID 50 of 3 x 10 -8 mol/l, and their combined effect was additive. In addition, the influence of the two peptides on myometrial blood flow (MBF) was investigated by the xenon-133 washout technique. Both peptides were found to increase MBF with the same potency and efficacy. Their combined effect was additive. In conclusion VIP and PHI are present in the rabbit urogenital tract, and the two peptides are equipotent inhibitors of mechanical nonvascular and vascular smooth muscle activity in the uterus

  12. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging.

    Science.gov (United States)

    Dinardo, Carla Luana; Venturini, Gabriela; Omae, Samantha Vieira; Zhou, Enhua H; da Motta-Leal-Filho, Joaquim Maurício; Dariolli, Rafael; Krieger, José Eduardo; Alencar, Adriano Mesquita; Costa Pereira, Alexandre

    2012-01-01

    One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.

  13. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chang Hyun Byon

    2016-10-01

    Full Text Available Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS, which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2 exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.

  14. Leptin Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by Angiotensin II through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Amaia Rodríguez

    2010-01-01

    Full Text Available Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang II-induced proliferation of aortic vascular smooth muscle cells (VSMCs from 10-week-old male Wistar and spontaneously hypertensive rats (SHR, and the possible role of nitric oxide (NO. Methods. NO and NO synthase (NOS activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.

  15. Warfarin accelerated vascular calcification and worsened cardiac dysfunction in remnant kidney mice

    Directory of Open Access Journals (Sweden)

    Ming-Tsun Tsai

    2018-04-01

    Full Text Available Background: Vascular calcification is highly prevalent in end-stage renal disease (ESRD and is a significant risk factor for future cardiovascular events and death. Warfarin use results in dysfunction of matrix Gla protein, an inhibitor of vascular calcification. However, the effect of warfarin on vascular calcification in patients with ESRD is still not well characterized. Thus we investigated whether arterial calcification can be accelerated by warfarin treatment both in vitro and in vivo using a mouse remnant kidney model. Methods: Human aortic smooth muscle cells (HASMC were cultured in medium supplemented with warfarin and phosphate to investigate the potential role of this drug in osteoblast transdifferentiation. For in vivo study, adult male C57BL/6 mice underwent 5/6 nephrectomy were treated with active vitamin D3 plus warfarin to determine the extent of vascular calcification and parameters of cardiovascular function. Results: We found that the expressions of Runx2 and osteocalcin in HASMC were markedly enhanced in the culture medium containing warfarin and high phosphate concentration. Warfarin induced calcification of cultured HASMC in the presence of high phosphate levels, and this effect is inhibited by vitamin K2. Severe aortic calcification and reduced left ventricular ejection fractions were also noted in 5/6 nephrectomy mice treated with warfarin and active vitamin D3. Conclusion: Warfarin treatment contributes to the accelerated vascular calcification in animal models of advanced chronic kidney disease. Clinicians should therefore be aware of the profound risk of warfarin use on vascular calcification and cardiac dysfunction in patients with ESRD and atrial fibrillation. Keywords: Left ventricular dysfunction, Uremia, Vascular calcification, Warfarin

  16. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Zong-Zhuang Li

    2012-01-01

    Full Text Available Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs, although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs. In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.

  17. Prevalence of blood type A and risk of vascular complications following transcatheter aortic valve implantation.

    Science.gov (United States)

    Rofe, M-T; Shacham, Y; Steinvi, A; Barak, L; Hareuveni, M; Banai, S; Keren, G; Finkelstein, A; Shmilovich, H

    2016-05-01

    To assess the prevalence of blood type A among patients referred for transcatheter aortic valve implantation (TAVI) and whether it is related to vascular complications. Vascular complications following TAVI are associated with adverse outcomes. Various blood types, particularly type A, have been shown to be more prevalent in cardiovascular diseases and to be related to prognosis. The prevalence of various blood types in a cohort of 491 consecutive patients who underwent TAVI was compared with a control group of 6500 consecutive hospitalised patients. The prevalence and predictors of vascular complications and bleeding events were evaluated in the blood type A group and were compared with non-type A patients. The mean age of TAVI patients was 83 ± 6 years, and 40 % were males. Patients were divided into two groups: blood type A (n = 220) and non-type A (n = 271). Type A was significantly more prevalent in the TAVI group than in the control group (45 vs. 38 %, p = 0.023). Compared with the non-type A group, patients with blood type A had more major and fatal bleeding (14.5 vs. 8.1 %, p = 0.027) and more vascular complications (any vascular complication: 24.5 vs. 15.9 % p = 0.016; major vascular complications: 12.3 vs. 7 % p = 0.047). In a multivariable analysis, blood type A emerged as a significant and independent predictor for vascular complications and bleeding events. Blood type A is significantly more prevalent in TAVI patients than in the general population and is related to higher rates of vascular and bleeding complications.

  18. Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome.

    Science.gov (United States)

    Wanga, Shaynah; Hibender, Stijntje; Ridwan, Yanto; van Roomen, Cindy; Vos, Mariska; van der Made, Ingeborg; van Vliet, Nicole; Franken, Romy; van Riel, Luigi Amjg; Groenink, Maarten; Zwinderman, Aeilko H; Mulder, Barbara Jm; de Vries, Carlie Jm; Essers, Jeroen; de Waard, Vivian

    2017-11-01

    Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1 C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation and

  19. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Czech Academy of Sciences Publication Activity Database

    Pařízek, Martin; Kasálková-Slepičková, N.; Bačáková, Lucie; Švindrych, Zdeněk; Slepička, P.; Bačáková, Markéta; Lisá, Věra; Švorčík, V.

    2013-01-01

    Roč. 2013, č. 2013 (2013), s. 371430 ISSN 2314-6133 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : biotechnology * tissue replacements * vascular smooth muscle cells * adhesion * modification Subject RIV: JJ - Other Materials

  20. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    International Nuclear Information System (INIS)

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-01-01

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  1. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  2. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm.

    Science.gov (United States)

    Jiménez-Altayó, Francesc; Meirelles, Thayna; Crosas-Molist, Eva; Sorolla, M Alba; Del Blanco, Darya Gorbenko; López-Luque, Judit; Mas-Stachurska, Aleksandra; Siegert, Ana-Maria; Bonorino, Fabio; Barberà, Laura; García, Carolina; Condom, Enric; Sitges, Marta; Rodríguez-Pascual, Fernando; Laurindo, Francisco; Schröder, Katrin; Ros, Joaquim; Fabregat, Isabel; Egea, Gustavo

    2018-04-01

    Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1 C1039G/+ -Nox4 -/- ). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1 C1039G/+ -Nox4 -/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1 C1039G/+ -Nox4 -/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H 2 O 2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Phosphodiesterase 1 regulation is a key mechanism in vascular aging

    DEFF Research Database (Denmark)

    Niño, Paula K Bautista; Durik, Matej; Danser, A H Jan

    2015-01-01

    Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role...... in human age-related vascular disease. To test our hypothesis, we combined experiments in mice with genomic instability resulting from the defective nucleotide excision repair gene ERCC1 (Ercc1(d/-) mice), human VSMC cultures and population genome-wide association studies (GWAS). Aortic rings of Ercc1(d...... in lungs was higher in Ercc1(d/-) mice. No differences in activity or levels of cGMP-dependent protein kinase 1 or sGC were observed in Ercc1(d/-) mice compared with WT. Senescent human VSMC showed elevated PDE1A and PDE1C and PDE5 mRNA levels (11.6-, 9- and 2.3-fold respectively), which associated...

  4. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    Science.gov (United States)

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Graft infections after surgical aortic reconstructions

    NARCIS (Netherlands)

    Berger, P.

    2015-01-01

    Prosthetic vascular grafts are frequently used to reconstruct (part) of the aorta. Every surgical procedure caries a certain risk for infection and when a prosthetic aortic graft is implanted, this may lead to an aortic graft infection (AGI). Endovascular techniques have gradually replaced open

  6. Effects of gamma rays on rat vascular smooth muscle fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ghassan, A [Radio-Biology and Health Dept. Syrian Atomic Energy Commission, (Syrian Arab Republic)

    1995-10-01

    Modifications of the Vasomotoricity induced by gamma rays have been investigated. Vascular smooth muscle fibres (VSMF) of rat portal vein have been used in this study. Irradiation procedures using a {sup 60} Co source have been carried out as follows: - Whole body irradiation. - Irradiation of isolated portal vein and isolated VSMF. Our results show that : 1-irradiation reduces the functional competition between Mg{sup 2+} and Ca{sup 2+}, thus hyper magnetic Krebs solutions have a negligible effect on irradiated VSMF. 2- irradiation activates Ca{sup 2+} influx into the VSMF. Thus the effect of hypocalcemic solutions on irradiated VSMF is minor compared with control. 3- Hyperpotassic solutions provoke titanic contractions with high amplitude on the irradiated VSMF compared with control. 5 figs.

  7. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    Science.gov (United States)

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sayo Koike

    2016-09-01

    Full Text Available Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD. To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs stimulated calcium deposition in vascular smooth muscle cells (VSMCs through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5 was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA. Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(PH oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(PH oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.

  9. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.

    Science.gov (United States)

    Liu, Chia-Chi; Karimi Galougahi, Keyvan; Weisbrod, Robert M; Hansen, Thomas; Ravaie, Ramtin; Nunez, Andrea; Liu, Yi B; Fry, Natasha; Garcia, Alvaro; Hamilton, Elisha J; Sweadner, Kathleen J; Cohen, Richard A; Figtree, Gemma A

    2013-12-01

    Glutathionylation of the Na(+)-K(+) pump's β1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na(+)-K(+) pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific β-subunit isoform expression and receptor-coupled pathways. As Na(+)-K(+) pump activity is an important determinant of vascular tone through effects on [Ca(2+)]i, we have examined the role of oxidative regulation of the Na(+)-K(+) pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. β1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na(+)-K(+)ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K(+)-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na(+)-K(+) ATPase and decrease in K(+)-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of β1-subunit. Knock-out of FXYD1 dramatically decreased K(+)-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased β1-subunit glutathionylation, and enhanced K(+)-induced vasorelaxation. Ang II inhibits the Na(+)-K(+) pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump's β1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na(+)-K(+) pump and may have an

  10. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation.

    Directory of Open Access Journals (Sweden)

    Diana Klein

    Full Text Available Here, we identify CD44(+CD90(+CD73(+CD34(-CD45(- cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs. VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.

  11. Treatment strategy for ruptured abdominal aortic aneurysms.

    Science.gov (United States)

    Davidovic, L

    2014-07-01

    Rupture is the most serious and lethal complication of the abdominal aortic aneurysm. Despite all improvements during the past 50 years, ruptured abdominal aortic aneurysms are still associated with very high mortality. Namely, including patients who die before reaching the hospital, the mortality rate due to abdominal aortic aneurysm rupture is 90%. On the other hand, during the last twenty years, the number of abdominal aortic aneurysms significantly increased. One of the reasons is the fact that in majority of countries the general population is older nowadays. Due to this, the number of degenerative AAA is increasing. This is also the case for patients with abdominal aortic aneurysm rupture. Age must not be the reason of a treatment refusal. Optimal therapeutic option ought to be found. The following article is based on literature analysis including current guidelines but also on my Clinics significant experience. Furthermore, this article show cases options for vascular medicine in undeveloped countries that can not apply endovascular procedures at a sufficient level and to a sufficient extent. At this moment the following is evident. Thirty-day-mortality after repair of ruptured abdominal aortic aneurysms is significantly lower in high-volume hospitals. Due to different reasons all ruptured abdominal aortic aneurysms are not suitable for EVAR. Open repair of ruptured abdominal aortic aneurysm should be performed by experienced open vascular surgeons. This could also be said for the treatment of endovascular complications that require open surgical conversion. There is no ideal procedure for the treatment of AAA. Each has its own advantages and disadvantages, its own limits and complications, as well as indications and contraindications. Future reductions in mortality of ruptured abdominal aortic aneurysms will depend on implementation of population-based screening; on strategies to prevent postoperative organ injury and also on new medical technology

  12. Molecular and cellular mechanisms of aortic stenosis.

    Science.gov (United States)

    Yetkin, Ertan; Waltenberger, Johannes

    2009-06-12

    Calcific aortic stenosis is the most common cause of aortic valve replacement in developed countries, and this condition increases in prevalence with advancing age. The fibrotic thickening and calcification are common eventual endpoint in both non-rheumatic calcific and rheumatic aortic stenoses. New observations in human aortic valves support the hypothesis that degenerative valvular aortic stenosis is the result of active bone formation in the aortic valve, which may be mediated through a process of osteoblast-like differentiation in these tissues. Additionally histopathologic evidence suggests that early lesions in aortic valves are not just a disease process secondary to aging, but an active cellular process that follows the classical "response to injury hypothesis" similar to the situation in atherosclerosis. Although there are similarities with the risk factor and as well as with the process of atherogenesis, not all the patients with coronary artery disease or atherosclerosis have calcific aortic stenosis. This review mainly focuses on the potential vascular and molecular mechanisms involved in the pathogenesis of aortic valve stenosis. Namely extracellular matrix remodeling, angiogenesis, inflammation, and eventually osteoblast-like differentiation resulting in bone formation have been shown to play a role in the pathogenesis of calcific aortic stenosis. Several mediators related to underlying mechanisms, including growth factors especially transforming growth factor-beta1 and vascular endothelial growth factors, angiogenesis, cathepsin enzymes, adhesion molecules, bone regulatory proteins and matrix metalloproteinases have been demonstrated, however the target to be attacked is not defined yet.

  13. Sphingosine-1-phosphate regulates RGS2 and RGS16 mRNA expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; Hajji, Najat; van Loenen, Pieter B.; Michel, Martin C.; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2009-01-01

    Regulator of G protein signalling (RGS) protein expression is altered under growth promoting conditions in vascular smooth muscle cells (VSMCs). Since sphingosine-1-phosphate (S1P) is an important growth stimulatory factor, we investigated whether stimulation of VSMCs with S1P results in alterations

  14. Reinforced aortic root reconstruction for acute type A aortic dissection involving the aortic root

    Directory of Open Access Journals (Sweden)

    Han Qing-qi

    2013-06-01

    Full Text Available OBJECTIVE: There are debates regarding the optimal approach for AAAD involving the aortic root. We described a modified reinforced aortic root reconstruction approach for treating AAAD involving the aortic root. METHODS: A total of 161 patients with AAAD involving the aortic root were treated by our modified reinforced aortic root reconstruction approach from January 1998 to December 2008. Key features of our modified approach were placement of an autologous pericardial patch in the false lumen, lining of the sinotubular junction lumen with a polyester vascular ring, and wrapping of the vessel with Teflon strips. Outcome measures included post-operative mortality, survival, complications, and level of aortic regurgitation. RESULTS: A total of 161 patients were included in the study (mean age: 43.3 1 15.5 years. The mean duration of follow-up was 5.1 1 2.96 years (2-12 years. A total of 10 (6.2% and 11 (6.8% patients died during hospitalization and during follow-up, respectively. Thirty-one (19.3% patients experienced postoperative complications. The 1-, 3-, 5-, and 10-year survival rates were 99.3%, 98%, 93.8%, and 75.5%, respectively. There were no instances of recurrent aortic dissection, aortic aneurysm, or pseudoaneurysm during the entire study period. The severity of aortic regurgitation dramatically decreased immediately after surgery (from 28.6% to 0% grade 3-4 and thereafter slightly increased (from 0% to 7.2% at 5 years and 9.1% at 10 years. CONCLUSION: This modified reinforced aortic root reconstruction was feasible, safe and durable/effective, as indicated by its low mortality, low postoperative complications and high survival rate.

  15. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    OpenAIRE

    López López, José Ramón; Fernández Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván Viguera, Aida; Köhler, Ralf; Pérez García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández Fernández, José Manuel

    2015-01-01

    Producción Científica Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced...

  16. CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Castellot John J

    2003-11-01

    Full Text Available Abstract Background Vascular smooth muscle cell (VSMC hyperplasia plays an important role in both chronic and acute vascular pathologies including atherosclerosis and restenosis. Considerable work has focused on the mechanisms regulating VSMC proliferation and motility. Earlier work in our lab revealed a novel growth arrest-specific (gas gene induced in VSMC exposed to the antiproliferative agent heparin. This gene is a member of the CCN family and has been given the name CCN5. The objective of the present study is to elucidate the function of CCN5 protein and to explore its mechanism of action in VSMC. Results Using RNA interference (RNAi, we first demonstrate that CCN5 is required for the antiproliferative effect of heparin in VSMC. We also use this gene knockdown approach to show that CCN5 is an important negative regulator of motility. To explore the mechanism of action of CCN5 on VSMC motility, we use RNAi to demonstrate that knock down of CCN5 up regulates expression of matrix metalloproteinase-2 (MMP-2, an important stimulator of motility in VSMC. In addition, forced expression of CCN5 via adenovirus results in reduced MMP-2 activity, this also corroborates the gene knock down results. Finally, we show that loss of CCN5 expression in VSMC causes changes in VSMC morphology and cytoskeletal organization, including a reduction in the amount and macromolecular assembly of smooth muscle cell α-actin. Conclusions This work provides important new insights into the regulation of smooth muscle cell proliferation and motility by CCN5 and may aid the development of therapies for vascular diseases.

  17. Transfemoral Aortic Valve Implantation with the New Edwards Sapien 3 Valve for Treatment of Severe Aortic Stenosis-Impact of Valve Size in a Single Center Experience.

    Directory of Open Access Journals (Sweden)

    Jochen Wöhrle

    Full Text Available The third generation Edwards Sapien 3 (Edwards Lifesciences Inc., Irvine, California system was optimized to reduce residual aortic regurgitation and vascular complications.235 patients with severe symptomatic aortic stenosis were prospectively enrolled. Transcatheter aortic valve implantations (TAVI were performed without general anesthesia by transfemoral approach. Patients were followed for 30 days. Patients received 23mm (N = 77, 26mm (N = 91 or 29mm (N = 67 valve based on pre-procedural 256 multislice computer tomography. Mean oversizing did not differ between the 3 valves. There was no residual moderate or severe aortic regurgitation. Rate of mild aortic regurgitation and regurgitation index did not differ between groups. There was no switch to general anesthesia or conversion to surgery. Rate of major vascular complication was 3.0% with no difference between valve and delivery sheath sizes. Within 30 days rates of all cause mortality (2.6% and stroke (2.1% were low.In patients with severe aortic stenosis transfemoral TAVI with the Edwards Sapien 3 valve without general anesthesia was associated with a high rate of device success, no moderate or severe residual aortic regurgitation, low rates of major vascular complication, mortality and stroke within 30 days with no difference between the 3 valve sizes.ClinicalTrials.gov NCT02162069.

  18. Na,K-pump modulates intercellular communication in vascular wall

    DEFF Research Database (Denmark)

    Matchkov, Vladimir

    were used as a model for electrical coupling of SMCs by measuring membrane capacitance (Cm). SMCs were uncoupled (evaluated by inhibition of vasomotion and desynchronization of calcium transients in vascular wall, or by reduction to half of Cm measured in paired A7r5 cells) when the Na......  Ouabain, a specific inhibitor of the Na,K-pump, has previously been shown to interfere with intercellular communication. Here we test the hypothesis that the communication between vascular smooth muscle cells (SMCs) is regulated through an interaction between the Na,K-pump and the Na......,Ca-exchanger leading to an increase in the intracellular calcium concentration in discrete areas near the plasma membrane. The intracellular calcium concentration in individual SMCs was imaged in cultured rat aortic SMCs (A7r5) and simultaneously with isometric force in rat mesenteric small arteries. Paired A7r5 cells...

  19. Brief report: biomarkers of aortic vascular prosthetic graft infection in a porcine model with Staphylococcus aureus

    DEFF Research Database (Denmark)

    Langerhuus, S. N.; Tønnesen, E. K.; Jensen, K. H.

    2010-01-01

    Aortic vascular prosthetic graft infection (AVPGI) with Staphylococcus aureus is a feared post-operative complication. This study was conducted to evaluate the clinical signs and potential biomarkers of infection in a porcine AVPGI model. The biomarkers evaluated were: C-reactive protein (CRP......), fibrinogen, white blood cells (WBC), major histocompatibility complex II (MHC II) density, lymphocyte CD4:CD8 ratio and tumour necrosis factor-alpha (TNF-α) in vitro responsiveness. Sixteen pigs were included in the study, and randomly assigned into four groups (n = 4): “SHAM” pigs had their infra...

  20. Magnesium prevents phosphate-induced vascular calcification via TRPM7 and Pit-1 in an aortic tissue culture model.

    Science.gov (United States)

    Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Masumoto, Asuka; Nakashima, Yuri; Ito, Teppei; Mima, Toru; Negi, Shigeo; Kimura-Suda, Hiromi; Shigematsu, Takashi

    2017-06-01

    Previous clinical and experimental studies have indicated that magnesium may prevent vascular calcification (VC), but mechanistic characterization has not been reported. This study investigated the influence of increasing magnesium concentrations on VC in a rat aortic tissue culture model. Aortic segments from male Sprague-Dawley rats were incubated in serum-supplemented high-phosphate medium for 10 days. The magnesium concentration in this medium was increased to demonstrate its role in preventing VC, which was assessed by imaging and spectroscopy. The mineral composition of the calcification was analyzed using Fourier transform infrared (FTIR) spectroscopic imaging, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) mapping. Magnesium supplementation of high-phosphate medium dose-dependently suppressed VC (quantified as aortic calcium content), and almost ablated it at 2.4 mm magnesium. The FTIR images and SEM-EDX maps indicated that the distribution of phosphate (as hydroxyapatite), phosphorus and Mg corresponded with calcium content in the aortic ring and VC. The inhibitory effect of magnesium supplementation on VC was partially reduced by 2-aminoethoxy-diphenylborate, an inhibitor of TRPM7. Furthermore, phosphate transporter-1 (Pit-1) protein expression was increased in tissues cultured in HP medium and was gradually-and dose dependently-decreased by magnesium. We conclude that a mechanism involving TRPM7 and Pit-1 underpins the magnesium-mediated reversal of high-phosphate-associated VC.

  1. AP-1 Oligodeoxynucleotides Reduce Aortic Elastolysis in a Murine Model of Marfan Syndrome.

    Science.gov (United States)

    Arif, Rawa; Zaradzki, Marcin; Remes, Anca; Seppelt, Philipp; Kunze, Reiner; Schröder, Hannes; Schwill, Simon; Ensminger, Stephan M; Robinson, Peter N; Karck, Matthias; Müller, Oliver J; Hecker, Markus; Wagner, Andreas H; Kallenbach, Klaus

    2017-12-15

    Marfan syndrome is characterized by high expression of matrix metalloproteinases (MMPs) in aortic smooth muscle cells (AoSMCs) associated with medial elastolysis and aortic root aneurysm. We aimed to reduce aortic elastolysis through decrease of MMP expression with decoy oligodeoxynucleotides (dODNs) neutralizing the transcription factor activating factor-1 (AP-1). AP-1 abundance in nuclear extracts as well as MMP-2 and MMP-9 expression were significantly increased in isolated mAoSMC of mgR/mgR Marfan mice compared to wild-type cells. Exposure to AP-1 neutralizing dODNs resulted in a significant reduction of basal and interleukin-1β-stimulated MMP expression and activity in mAoSMCs. Moreover, increased migration and formation of superoxide radical anions was substantially decreased in mAoSMCs by AP-1 dODN treatment. Aortic grafts from donor Marfan mice were treated with AP-1- dODN ex vivo and implanted as infrarenal aortic interposition grafts in mgR/mgR mice. Pretreatment of aortic grafts with AP-1 dODN led to reduced elastolysis, macrophage infiltration, and MMP activity. Permeability of the endothelial monolayer was increased for dODN in mgR/mgR aortae with observed loss of tight junction proteins ZO-1 and occludin, enabling dODN to reach the tunica media. Targeting AP-1 activity offers a new potential strategy to treat the vascular phenotype associated with Marfan syndrome. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Effect of lovastatin on rabbit vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Pei Zhuguo

    2003-01-01

    Objective: To investigate the effect of lovastatin on binding activity of nuclear factor activator protein-1 (AP-1) to NF-κB and the expression of matrix metalloproteinase-9 (MMP-9) in rabbit vascular smooth muscle cells (VSMCs). Methods: The oligonucleotide corresponding to the consensus NF-κB element or the consensus AP-1 element was labeled by [γ- 32 P]-ATP. AP-1 and NF-κB binding activity was detected by electrophoretic mobility shift assay (EMSA), expression of MMP-9 was detected by zymography. Results: Lovastatin inhibited the expression of MMP-9 in a dose-dependent manner, this effect was reversed by mevalonate and GGPP but not by squalene; lovastatin significantly decreased AP-1 and NF-κB binding activity. Conclusion: Lovastatin decreased AP-1 and NF-κB binding activity and inhibited MMP-9 expression in rabbit VSMCs by the way of inhibiting prenylation of protein but not by cholestrol-lowering, and this might be the mechanism of its arteriosclerostic plaque stabilizing effects

  3. Toll-Like Receptor 9-Dependent AMPKα Activation Occurs via TAK1 and Contributes to RhoA/ROCK Signaling and Actin Polymerization in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    McCarthy, Cameron G; Wenceslau, Camilla F; Ogbi, Safia; Szasz, Theodora; Webb, R Clinton

    2018-04-01

    Traditionally, Toll-like receptor 9 (TLR9) signals through an MyD88-dependent cascade that results in proinflammatory gene transcription. Recently, it was reported that TLR9 also participates in a stress tolerance signaling cascade in nonimmune cells. In this noncanonical pathway, TLR9 binds to and inhibits sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase 2 (SERCA2), modulating intracellular calcium handling, and subsequently resulting in the activation of 5'-AMP-activated protein kinase α (AMPK α ). We have previously reported that TLR9 causes increased contraction in isolated arteries; however, the mechanisms underlying this vascular dysfunction need to be further clarified. Therefore, we hypothesized that noncanonical TLR9 signaling was also present in vascular smooth muscle cells (VSMCs) and that it mediates enhanced contractile responses through SERCA2 inhibition. To test these hypotheses, aortic microsomes, aortic VSMCs, and isolated arteries from male Sprague-Dawley rats were incubated with vehicle or TLR9 agonist (ODN2395). Despite clear AMPK α activation after treatment with ODN2395, SERCA2 activity was unaffected. Alternatively, ODN2395 caused the phosphorylation of AMPK α via transforming growth factor β -activated kinase 1 (TAK1), a kinase involved in TLR9 inflammatory signaling. Downstream, we hypothesized that that TLR9 activation of AMPK α may be important in mediating actin cytoskeleton reorganization. ODN2395 significantly increased the filamentous-to-globular actin ratio, as well as indices of RhoA/Rho-associated protein kinase (ROCK) activation, with the latter being prevented by AMPK α inhibition. In conclusion, AMPK α phosphorylation after TLR9 activation in VSMCs appears to be an extension of traditional inflammatory signaling via TAK1, as opposed to SERCA2 inhibition and the noncanonical pathway. Nonetheless, TLR9-AMPK α signaling can mediate VSMC function via RhoA/ROCK activation and actin polymerization. Copyright © 2018 by The

  4. Contact-mediated and humoral communication between vascular endothelial and smooth muscle cells in vitro

    International Nuclear Information System (INIS)

    Davies, P.F.

    1986-01-01

    Vascular endothelial cells (EC) and smooth muscle cells (SMC) co-exist in close apposition to each other in all blood vessels except capillaries. Investigations of the metabolic interactions that may occur between these cells are essential to an understanding of vascular homeostasis and the pathogenesis of atherosclerosis. The authors have developed two in vitro models of co-temporal vascular cell communication. The first facilitates reversible microcarrier-mediated gap junctional communication between EC and SMC monolayers. When either EC or SMC were prelabelled with 3 H-uridine, intracellular nucleotide rapidly transferred across the region of heterocellular attachment to the complementary cell population. Cytoplasmic continuity between EC and SMC allowed metabolic cooperation via ions and small molecules (<1.5 KD). Thus, vascular reactivity, particularly in the microcirculation where myoendothelial gap junctions have been observed, may involve cytoplasmic second messengers transported from EC to SMC. In the second model, humoral communication was established between separated cultures of EC and SMC which shared the same culture medium. Endothelial-specific stimulation of SMC growth and lipoprotein metabolism via soluble factors was demonstrated. Two mechanisms of stimulation of SMC lipoprotein metabolism were identified; one endothelial derived mitogen-dependent, the other mitogen-independent which was mediated via low molecular weight endothelial cell products

  5. Novel Mechanism of Plasma Prekallikrein (PK) Activation by Vascular Smooth Muscle Cells: Evidence of the presence of PK Activator

    OpenAIRE

    Keum, Joo-Seob; Jaffa, Miran A; Luttrell, Louis M; Jaffa, Ayad A.

    2014-01-01

    The contribution of plasma prekallikrein (PK) to vascular remodeling is becoming increasingly recognized. Plasma PK is activated when the zymogen PK is digested to an active enzyme by activated factor XII (FXII). Here, we present our findings that vascular smooth muscle cells (VSMC) activate plasma PK in the absence of FXII. Extracted plasma membrane and cytosolic fractions of VSMCs activate PK, but the rate of PK activation was greater by the membrane fraction. FXII neutralizing antibody did...

  6. Atherogenic ω-6 Lipids Modulate PPAR- EGR-1 Crosstalk in Vascular Cells

    Directory of Open Access Journals (Sweden)

    Jia Fei

    2011-01-01

    Full Text Available Atherogenic ω-6 lipids are physiological ligands of peroxisome proliferator-activated receptors (PPARs and elicit pro- and antiatherogenic responses in vascular cells. The objective of this study was to investigate if ω-6 lipids modulated the early growth response-1 (Egr-1/PPAR crosstalk thereby altering vascular function. Rat aortic smooth muscle cells (RASMCs were exposed to ω-6 lipids, linoleic acid (LA, or its oxidized form, 13-HPODE (OxLA in the presence or absence of a PPARα antagonist (MK886 or PPARγ antagonist (GW9662 or PPAR-specific siRNA. Our results demonstrate that ω-6 lipids, induced Egr-1 and monocyte chemotactic protein-1 (MCP-1 mRNA and protein levels at the acute phase (1–4 hrs when PPARα was downregulated and at subacute phase (4–12 hrs by modulating PPARγ, thus resulting in altered monocyte adhesion to RASMCs. We provide novel insights into the mechanism of action of ω-6 lipids on Egr-1/PPAR interactions in vascular cells and their potential in altering vascular function.

  7. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Hiromasa [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Nomiyama, Takashi, E-mail: tnomiyama@fukuoka-u.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Kawamori, Ryuzo [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Beta Cell Biology and Regeneration, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Fujitani, Yoshio; Hirose, Takahisa [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Watada, Hirotaka, E-mail: hwatada@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan)

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  8. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    International Nuclear Information System (INIS)

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-01-01

    Research highlights: → Exendin-4 reduces neointimal formation after vascular injury in a mouse model. → Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. → Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. → Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  9. Impact of chocolate liquor on vascular lesions in apoE-knockout mice.

    Science.gov (United States)

    Yazdekhasti, Narges; Brandsch, Corinna; Hirche, Frank; Kühn, Julia; Schloesser, Anke; Esatbeyoglu, Tuba; Huebbe, Patricia; Wolffram, Siegfried; Rimbach, Gerald; Stangl, Gabriele I

    2017-10-15

    Cocoa polyphenols are thought to reduce the risk of cardiovascular diseases. Thus, cocoa-containing foods may have significant health benefits. Here, we studied the impact of chocolate liquor on vascular lesion development and plaque composition in a mouse model of atherosclerosis. Apolipoprotein E (apoE)-knockout mice were assigned to two groups and fed a Western diet that contained 250 g/kg of either chocolate liquor or a polyphenol-free isoenergetic control paste for 16 weeks. In addition to fat, protein, and fibers, the chocolate liquor contained 2 g/kg of polyphenols. Compared with the control group, mice fed the chocolate liquor had larger plaque areas in the descending aorta and aortic root, which were attributed to a higher mass of vascular smooth muscle cells (VSMCs) and collagen. Vascular lipid deposits and calcification areas did not differ between the two groups. The aortic tissue level of interleukin-6 (IL-6) mRNA was 5-fold higher in the mice fed chocolate liquor than in the control mice. Chocolate-fed mice exhibited an increased hepatic saturated to polyunsaturated fatty acid ratio than the controls. Although the chocolate liquor contained 14 µg/kg of vitamin D 2 , the chocolate liquor-fed mice did not have measurable 25-hydroxyvitamin D 2 in the serum. These mice even showed a 25% reduction in the level of 25-hydroxyvitamin D 3 compared with the control mice. Overall, present data may contribute to our understanding how chocolate constituents can impact vascular lesion development. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    Science.gov (United States)

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.

  11. Decreased aortic growth and middle aortic syndrome in patients with neuroblastoma after radiation therapy

    International Nuclear Information System (INIS)

    Sutton, Elizabeth J.; Tong, Ricky T.; Gillis, Amy M.; Haas-Kogan, Daphne A.; Henning, Tobias D.; Boddington, Sophie; Sha, Vinil; Gooding, Charles; Coakley, Fergus V.; Daldrup-Link, Heike; Weinberg, Vivian A.; Matthay, Katherine

    2009-01-01

    Long-term CT follow-up studies are required in pediatric patients who have received intraoperative radiation therapy (IORT) and external beam radiation therapy (EBRT) to assess vascular toxicities and to determine the exact complication rate. To analyze with CT the effects of radiation therapy (RT) on the growth of the aorta in neuroblastoma patients. Abdominal CT scans of 31 patients with intraabdominal neuroblastoma (stage II-IV), treated with RT (20 IORT±EBRT, 11 EBRT alone), were analyzed retrospectively. The diameter of the abdominal aorta was measured before and after RT. These data were compared to normal and predicted normal aortic diameters of children, according to the model of Fitzgerald, Donaldson and Poznanski (aortic diameter in centimeters = 0.844+0.0599 x age in years), and to the diameters of a control group of children who had not undergone RT. Statistical analyses for the primary aims were performed using the chi-squared test, t-test, Mann-Whitney test, nonparametric Wilcoxon matched-pairs test and analysis of variance for repeated measures. Clinical files and imaging studies were evaluated for signs of late vascular complications of neuroblastoma patients who had received RT. The mean diameter before and after RT and the growth of the aorta were significantly lower than expected in patients with neuroblastoma (P<0.05 for each) and when compared to the growth in a control group with normal and nonirradiated aortas. Among the patients who had received RT, there was no difference due to the type of RT. Seven patients from the IORT±EBRT group developed vascular complications, which included hypertension (five), middle aortic syndrome (two), death due to mesenteric ischemia (one) and critical aortic stenosis, which required aortic bypass surgery (two). Patients with neuroblastoma who had received RT showed impaired growth of the abdominal aorta. Significant long-term vascular complications occurred in seven patients who received IORT±EBRT. Thus

  12. Technetium-99m labeled antisense probes uptake in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zhang, Y.X.; Qin, G.M.; An, R.; Cao, G.X.; Cao, W.; Gao, Z.R.

    2002-01-01

    In the arterial wall, smooth muscle cells (SMC) normally exist in a quiescent, differentiated state, representing the contractile phenotype. During the development of atherosclerosis SMC change towards the synthetic phenotype going along with proliferation, chemotactic response and increased monocyte binding. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. The atherosclerotic plaques contained 3-4 fold more c-myc mRNA than those in the normal aortic arteries, while increased Bax and Bak coupled with lack/paucity of Bcl-2 and Bcl-xL are associated with SMC apoptosis in advanced lesions. Methods: 1 Oligonucleotide Conjugation: A solution of single stranded amine-derivatized DNA (100-1000μg) was prepared at a concentration of 2 mg/ml in 0.25M sodium bicarbonate, 1 M sodium chloride, 1mM EDTA, pH8.5. Cell uptake studies: 99m Tc- MAG 3 -DNA radioactivity incorporation into porcine coronary smooth muscle cells in the log and plateau phases, respectively, was determined after different times of incubation at 37. The influence of extracellular 99m Tc- MAG 3 -DNA concentration on SMC uptake was also analyzed. [Results] Essentially complete conjugation was achieved by reverse-phase Sep-Pak C18 chromatography analysis. The MAG 3 -DNA was labeled with 99m Tc at room temperature and neutral pH, with a mean labeling efficiency of 80.11%(s.d=2.96%,n=4). The labeled antisense DNA still remained the ability to hybridize with its complementary DNA. After labeling, the stability of the DNA in saline or serum was retained as determined by reverse-phase Sep-Pak C18 chromatography analysis, except a shift at 30 min in serum incubation that suggesting a short time serum protein binding. 99m Tc-MAG 3 -c-myc uptake plateaued at 60 min and was directly proportional to the

  13. A proposal for standardizing computed tomography reports on abdominal aortic aneurysms

    International Nuclear Information System (INIS)

    Torlai, Fabiola Goda; Meirelles, Gustavo S. Portes; Miranda Junior, Fausto; Fonseca, Jose Honorio A.P. da; Ajzen, Sergio; D'Ippolito, Giuseppe

    2006-01-01

    Objective: to propose a model to standardize computed tomography reports on abdominal aortic aneurysms. Materials and methods: interviews were carried out with members of the Vascular Surgery Division of our institution, in the period between April and October 2004, aiming at developing a standardized model of computed tomography reports on abdominal aortic aneurysms. Based on this model, a questionnaire was elaborated and sent to other nine surgeons, all of them experienced in the field of abdominal aortic surgery. The questionnaires response rate was 55.5% (5/9). Results: the most frequently mentioned parameters of interest for evaluation of abdominal aortic aneurysms were: maximum diameter of proximal aortic neck, proximal aortic neck length to lower renal arteries, shape of proximal aortic neck, maximum diameter of the aneurysm and diameter of the common iliac arteries. These data allowed the development of a proposal for a model to standardize computed tomography reports. Conclusion: a model for standardized tomographic analysis of abdominal aortic aneurysms has met vascular surgeons' needs for following-up patients and planning their treatment. (author)

  14. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  15. Atypical initial presentation of Takayasu arteritis as isolated supra-valvular aortic stenosis.

    Science.gov (United States)

    Kim, Do Yeon; Kim, Hwan Wook

    2016-01-19

    Among the vascular involvements of Takayasu arteritis, a supra-valvular aortic stenosis has been reported very rarely. We report a case of surgically corrected, supra-valvular aortic stenosis caused by Takayasu arteritis. A 32-year-old female was diagnosed with supra-valvular aortic stenosis by transthoracic echocardiography for the evaluation of cardiac murmur with constitutional symptoms. Under the impression of non-familial sporadic type of supra-valvular aortic stenosis, surgical correction was performed. However, after 1 year from the operation, we could know the cause of her disease through the findings of computed tomographic aortography that Takayasu arteritis was suspected. Takayasu arteritis should be considered in adult female patients presenting supra-valvular aortic stenosis with constitutional symptoms, even if no typical features of vascular involvement.

  16. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Usefulness of abdominal aortic calcification for screening of peripheral vascular disease

    International Nuclear Information System (INIS)

    Park, Chul Hi; Kim, Jeong Ho; Choi, Soo Jin; Kim, Hyung Sik; Jin, Wook; Yang, Dal Mo

    2006-01-01

    We wanted to evaluate the value of abdominal aortic calcification (AAC), as detected on CT, as a predictor of atherosclerotic stenotic disease of the lower extremity arteries. One hundred three patients who had CT angiography performed for the evaluation of peripheral vascular disease were enrolled in this retrospective study. The volume (mm 3 ) of the AAC was measured on CT. Each lower extremity was divided into 8 segments. The extent of stenosis of the lower extremity artery was manifested as the sum of the stenosis scores for 16 segments (total stenosis score: TSS). The significant stenosis scores (SSS-50 and SSS-75) were defined as the sum of scores for the lower extremity artery segments that had significant stenosis of more than 50% and 75%, respectively. AAC was correlated to the TSS, SSS-50 and SSS-75 with using Spearman's correlation coefficient. The diagnostic performance of AAC for stenosis of a lower extremity artery of more than 50% and 75%, respectively, was evaluated by using the receiver operating characteristic (ROC) curve. The Spearman's correlation coefficients were 0.728 (AAC vs. TSS), 0.662 (AAC vs. SSS-50), and 0.602 (AAC vs. SSS-75), respectively. For significant stenosis more than 50% and 75%, the areas under the ROC curve were 0.898 and 0.866, respectively. The cutoff value, sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 1030 mm 3 , 87%, 88%, 89%. 86% and 87% for stenosis more than 50% and 1030 mm 3 , 87%, 80%, 79%, 88% and 84% for stenosis more than 75%, respectively. Abdominal aortic calcification detected on CT may be a useful predictor of atherosclerotic stenotic disease of lower extremity arteries

  18. Effects of x-irradiation on growth of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Dzoga, K.F.; Dimitrievich, G.S.; Sutton, H.G.; Griem, M.L.

    1984-01-01

    Effects of x-irradiation doses ranging from 0-2000 rads on vascular smooth muscle cells were measured. Explant cultures were from the medial layers of aortas from New Zealand rabbits. X-irradiation was delivered to narrow mediastinal port using a 250 kV Maxitron at a rate of 80 rads/min. and a S-C distance of 60 cm. Explantation was done either immediately following radiation or five days later. Two parameters were used to determine post-irradiation growth potential of these cells: number of outgrowing cells per seeded explant and size and number of cells/culture. Results were expressed as fraction of control. Irradiation immediately before explantation reduced number of cells/ explant 10% for 250 rads and over 50% for 500 rads. Doses of 1000 rads and over resulted in reductions of over 70% in number of growing explants and culture size. When five days were allowed to elapse between x-irradiation and explantation the same parameters were not significantly affected for doses of 500 rads or less. Doses of 1000 rads resulted in a reduction in number of cells of 40% and 2000 rads of over 80%. These results suggest the presence of a population of vascular repair cells five days following irradiation treatment. The nature of these cells is discussed

  19. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-01-01

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca 2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate

  20. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  1. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas

    2007-01-01

    The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved in the transformat......The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved...... in the transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL......) and TNF-related apoptosis-inducing ligand (TRAIL) in HVSMC. All three growth factors decreased OPG protein production significantly; these results were paralleled by reduced OPG mRNA expression. TRAIL mRNA levels were also decreased. RANKL mRNA expression declined when treated with TGF-beta1 but were...

  2. A role for mitochondrial oxidants in stress-induced premature senescence of human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Yogita Mistry

    2013-01-01

    Full Text Available Mitochondria are a major source of cellular oxidants and have been implicated in aging and associated pathologies, notably cardiovascular diseases. Vascular cell senescence is observed in experimental and human cardiovascular pathologies. Our previous data highlighted a role for angiotensin II in the induction of telomere-dependent and -independent premature senescence of human vascular smooth muscle cells and suggested this was due to production of superoxide by NADPH oxidase. However, since a role for mitochondrial oxidants was not ruled out we hypothesise that angiotensin II mediates senescence by mitochondrial superoxide generation and suggest that inhibition of superoxide may prevent vascular smooth muscle cell aging in vitro. Cellular senescence was induced using a stress-induced premature senescence protocol consisting of three successive once-daily exposure of cells to 1×10−8 mol/L angiotensin II and was dependent upon the type-1 angiotensin II receptor. Angiotensin stimulated NADPH-dependent superoxide production as estimated using lucigenin chemiluminescence in cell lysates and this was attenuated by the mitochondrial electron transport chain inhibitor, rotenone. Angiotensin also resulted in an increase in mitoSOX fluorescence indicating stimulation of mitochondrial superoxide. Significantly, the induction of senescence by angiotensin II was abrogated by rotenone and by the mitochondria-targeted superoxide dismutase mimetic, mitoTEMPO. These data suggest that mitochondrial superoxide is necessary for the induction of stress-induced premature senescence by angiotensin II and taken together with other data suggest that mitochondrial cross-talk with NADPH oxidases, via as yet unidentified signalling pathways, is likely to play a key role.

  3. Ultrastructural characteristics of the vascular wall components of ruptured atherosclerotic abdominal aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Tanasković Irena

    2013-01-01

    Full Text Available The aim of this study was to determine the ultrastructural characteristics of cell populations and extracellular matrix components in the wall of ruptured atherosclerotic abdominal aortic aneurysm (AAA. We analyzed 20 samples of ruptured AAA. For orientation to the light microscopy, we used routine histochemical techniques by standard procedures. For ultrastructural analysis, we applied transmission electron microscopy (TEM. Our results have shown that ruptured AAA is characterized by the remains of an advanced atherosclerotic lesion in the intima followed by a complete absence of endothelial cells, the disruption of basal membrane and disruption of internal elastic lamina. On plaque margins as well as in the inner media we observed smooth muscle cells (SMCs that posses a euchromatic nucleus, a well-developed granulated endoplasmic reticulum around the nucleus and reduced myofilaments. The remains of the ruptured lipid core were acellular in all samples; however, on the lateral sides of ruptured plaque we observed a presence of two types of foam cells (FCs, spindle- and star-shaped. Fusiform FCs possess a well-differentiated basal lamina, caveolae and electron dense bodies, followed by a small number of lipid droplets in the cytoplasm. Star-shaped FCs contain a large number of lipid droplets and do not possess basal lamina. On the inner margins of the plaque, we observed a large number of cells undergoing apoptosis and necrosis, extracellular lipid droplets as well as a large number of lymphocytes. The media was thinned out with disorganized elastic lamellas, while the adventitia exhibited leukocyte infiltration. The presented results suggest that atherosclerotic plaque in ruptured AAA contains vascular SMC synthetic phenotype and two different types of FCs: some were derived from monocyte/macrophage lineage, while others were derived from SMCs of synthetic phenotype. The striking plaque hypocellularity was the result of apoptosis and necrosis

  4. Application of thoracic endovascular aortic repair (TEVAR) in treating dwarfism with Stanford B aortic dissection

    Science.gov (United States)

    Qiu, Jian; Cai, Wenwu; Shu, Chang; Li, Ming; Xiong, Qinggen; Li, Quanming; Li, Xin

    2018-01-01

    Abstract Rationale: To apply thoracic endovascular aortic repair (TEVAR) to treat dwarfism complicated with Stanford B aortic dissection. Patient concerns: In this report, we presented a 63-year-old male patient of dwarfism complicated with Stanford B aortic dissection successfully treated with TEVAR. Diagnoses: He was diagnosed with dwarfism complicated with Stanford B aortic dissection. Interventions: After conservative treatment, the male patient underwent TEVAR at 1 week after hospitalization. After operation, he presented with numbness and weakness of his bilateral lower extremities, and these symptoms were significantly mitigated after effective treatment. At 1- and 3-week after TEVAR, the aorta status was maintained stable and restored. Outcomes: The patient obtained favorable clinical prognosis and was smoothly discharged. During subsequent follow-up, he remained physically stable. Lessons: TEVAR is probably an option for treating dwarfism complicated with Stanford B aortic dissection, which remains to be validated by subsequent studies with larger sample size. PMID:29703033

  5. Differentiation and Application of Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Maguire, Eithne Margaret; Xiao, Qingzhong; Xu, Qingbo

    2017-11-01

    Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease. © 2017 American Heart Association, Inc.

  6. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-01-01

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A 2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy

  7. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  8. Vascular smooth muscle responsiveness to nitric oxide is reduced in healthy adults with increased adiposity

    OpenAIRE

    Christou, Demetra D.; Pierce, Gary L.; Walker, Ashley E.; Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Meade, Thomas H.; English, Mark; Seals, Douglas R.

    2012-01-01

    Vascular smooth muscle responsiveness to nitric oxide, as assessed by nitroglycerin-induced dilation (NID), is impaired in clinical cardiovascular disease, but its relation to adiposity is unknown. We determined the relation of NID to total and abdominal adiposity in healthy adults varying widely in adiposity. In 224 men and women [age, 18–79 years; body mass index (BMI), 16.4–42.2 kg/m2], we measured NID (brachial artery dilation to 0.4 mg sublingual nitroglycerin), total body adiposity [BMI...

  9. Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis

    NARCIS (Netherlands)

    Beauchamp, Nicholas J.; van Achterberg, Tanja A. E.; Engelse, Marten A.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Migration and proliferation of vascular smooth muscle cells (SMCs) are key events in atherosclerosis. However, little is known about alterations in gene expression upon transition of the quiescent, contractile SMC to the proliferative SMC. We performed serial analysis of gene expression (SAGE) of

  10. Tyk2 mediates effects of urokinase on human vascular smooth muscle cell growth

    International Nuclear Information System (INIS)

    Patecki, Margret; Schaewen, Markus von; Tkachuk, Sergey; Jerke, Uwe; Dietz, Rainer; Dumler, Inna; Kusch, Angelika

    2007-01-01

    The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury

  11. Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity.

    Science.gov (United States)

    Recoquillon, Sylvain; Carusio, Nunzia; Lagrue-Lakhal, Anne-Hélène; Tual-Chalot, Simon; Filippelli, Amelia; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2015-10-01

    During sepsis, endothelial barrier dysfunction contributes to cardiovascular failure, mainly through the release of oxidative metabolites by penetrant leukocytes. We reported the non-muscular isoform of myosin light chain kinase (nmMLCK) playing a pivotal role in endotoxin shock injury associated with oxidative and nitrative stresses, and vascular hyporeactivity. The present study was aimed at understanding the molecular mechanism of lipopolysaccharide (LPS)-induced vascular alterations as well as studying a probable functional association of nmMLCK with nuclear factor κ-light-chain enhancer of activated B cells (NF-κB). Aortic rings from mice were exposed in vitro to LPS and, then, vascular reactivity was measured. Human aortic endothelial cells (HAoECs) were incubated with LPS, and interaction of nmMLCK with NF-κB was analysed. We provide evidence that nmMLCK deletion prevents vascular hyporeactivity induced by in vitro LPS treatment but not endothelial dysfunction in the aorta. Deletion of nmMLCK inhibits LPS-induced NF-κB activation and increases nitric oxide (NO) release via induction of inducible NO synthase (iNOS) within the vascular wall. Also, removal of endothelium prevented both NF-κB and iNOS expression in aortic rings. Among the proinflammatory factors released by LPS-treated endothelial cells, interleukin-6 accounts for the induction of iNOS on smooth muscle cells in response to LPS. Of particular interest is the demonstration that, in HAoECs, LPS-induced NF-κB activation occurs via increased MLCK activity sensitive to the MLCK inhibitor, ML-7, and physical interactions between nmMLCK and NF-κB. We report for the first time on NF-κB as a novel partner of nmMLCK within endothelial cells. The present study demonstrates a pivotal role of nmMLCK in vascular inflammatory pathologies. © 2015 Authors; published by Portland Press Limited.

  12. A "blind" vascular ring in association with congenital cystic adenomatoid malformation: A case report.

    Science.gov (United States)

    Xia, Bo; Hong, Chun; Tang, Jing; Liu, Cuifen; Yu, Gang

    2017-12-01

    The occurrence of congenital cystic adenomatoid malformation (CCAM) and vascular ring (VR) is extremely rare. We present a case of left CCAM with VR consisting of a left aortic arch and right descending aorta with left tracheal compression causing atelectasis. A high-risk male neonate with the diagnosis of left CCAM was diagnosed at 20 weeks gestational age by antenatal ultrasound. Chest CT revealed multiple cysts in the left inferior lung. Cardiac CT showed VR consisting of a left aortic arch and right descending aorta with left tracheal compression causing atelectasis. left inferior lobectomy was performed. Cardiac CT showed VR consisting of a left aortic arch and right descending aorta with left tracheal compression causing atelectasis. Descending aorta transposition was performed. The patient recovered smoothly and remained asymptomatic during the 12-months of postoperative follow-up period. We report this rare case of CCAM with VR consisting of left aortic arch and right descending aorta with left tracheal compression causing atelectasis. From the findings of this report, early surgical treatment is recommended. Although the prognosis after surgery remained good, second surgery can be avoided if VR was detected early. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  13. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy

    Science.gov (United States)

    Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.

    2011-01-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018

  14. S1P receptor signalling and RGS proteins; expression and function in vascular smooth muscle cells and transfected CHO cells

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; van Loenen, Pieter B.; Hajji, Najat; Michel, Martin C.; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2009-01-01

    Sphingosine-1-phosphate (S1P) signalling via G protein-coupled receptors is important for the regulation of cell function and differentiation. Specific Regulators of G protein Signalling (RGS) proteins modulate the function of these receptors in many cell types including vascular smooth muscle cells

  15. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    International Nuclear Information System (INIS)

    Yu, S.C.; Becker, C.G.

    1986-01-01

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized 125 I-labeled rutin-bovine serum albumin ([ 125 I]R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10 7 cells/ml) in phosphate-buffered saline and incubated with [ 125 I]R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of [ 125 I]R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC

  16. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy.

    Science.gov (United States)

    Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo

    2018-03-12

    The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    Science.gov (United States)

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  18. Tungstate-targeting of BKαβ1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Fernández-Mariño

    Full Text Available Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51% the tungstate-produced reduction of platelet-derived growth factor (PDGF-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.

  19. Graft infections after surgical aortic reconstructions

    OpenAIRE

    Berger, P.

    2015-01-01

    Prosthetic vascular grafts are frequently used to reconstruct (part) of the aorta. Every surgical procedure caries a certain risk for infection and when a prosthetic aortic graft is implanted, this may lead to an aortic graft infection (AGI). Endovascular techniques have gradually replaced open surgical reconstructions as first line of treatment for aorto-iliac diseases. Nowadays, open reconstructions are primarily reserved for patients unsuitable for endovascular reconstructions or for redo ...

  20. Sex, pregnancy and aortic disease in Marfan syndrome.

    Science.gov (United States)

    Renard, Marjolijn; Muiño-Mosquera, Laura; Manalo, Elise C; Tufa, Sara; Carlson, Eric J; Keene, Douglas R; De Backer, Julie; Sakai, Lynn Y

    2017-01-01

    Sex-related differences as well as the adverse effect of pregnancy on aortic disease outcome are well-established phenomena in humans with Marfan syndrome (MFS). The underlying mechanisms of these observations are largely unknown. In an initial (pilot) step we aimed to confirm the differences between male and female MFS patients as well as between females with and without previous pregnancy. We then sought to evaluate whether these findings are recapitulated in a pre-clinical model and performed in-depth cardiovascular phenotyping of mutant male and both nulliparous and multiparous female Marfan mice. The effect of 17β-estradiol on fibrillin-1 protein synthesis was compared in vitro using human aortic smooth muscle cells and fibroblasts. Our small retrospective study of aortic dimensions in a cohort of 10 men and 20 women with MFS (10 pregnant and 10 non-pregnant) confirmed that aortic root growth was significantly increased in the pregnant group compared to the non-pregnant group (0.64mm/year vs. 0.12mm/year, p = 0.018). Male MFS patients had significantly larger aortic root diameters compared to the non-pregnant and pregnant females at baseline and follow-up (p = 0.002 and p = 0.007, respectively), but no significant increase in aortic root growth was observed compared to the females after follow-up (p = 0.559 and p = 0.352). In the GT-8/+ MFS mouse model, multiparous female Marfan mice showed increased aortic diameters when compared to nulliparous females. Aortic dilatation in multiparous females was comparable to Marfan male mice. Moreover, increased aortic diameters were associated with more severe fragmentation of the elastic lamellae. In addition, 17β-estradiol was found to promote fibrillin-1 production by human aortic smooth muscle cells. Pregnancy-related changes influence aortic disease severity in otherwise protected female MFS mice and patients. There may be a role for estrogen in the female sex protective effect.

  1. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    Science.gov (United States)

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  2. Selective Inhibitory Effect of Epigallocatechin-3-gallate on Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jong-Chul Park

    2010-11-01

    Full Text Available In order to prevent restenosis after angioplasty or stenting, one of the most popular targets is suppression of the abnormal growth and excess migration of vascular smooth muscle cells (VSMCs with drugs. However, the drugs also adversely affect vascular endothelial cells (VECs, leading to the induction of late thrombosis. We have investigated the effect of epigallocatechin-3-gallate (EGCG on the proliferation and migration of VECs and VSMCs. Both cells showed dose-dependent decrease of viability in response to EGCG while they have different IC50 values of EGCG (VECs, 150 mM and VSMCs, 1050 mM. Incubating both cells with EGCG resulted in significant reduction in cell proliferation irrespective of cell type. The proliferation of VECs were greater affected than that of VSMCs at the same concentrations of EGCG. EGCG exerted differential migration-inhibitory activity in VECs vs. VSMCs. The migration of VECs was not attenuated by 200 mM EGCG, but that of VSMCs was significantly inhibited at the same concentration of EGCG. It is suggested that that EGCG can be effectively used as an efficient drug for vascular diseases or stents due to its selective activity, completely suppressing the proliferation and migration of VSMCs, but not adversely affecting VECs migration in blood vessels.

  3. Evaluation of intra-aortic CT angiography performances for the visualisation of spinal vascular malformations' angioarchitecture

    International Nuclear Information System (INIS)

    Clarencon, Frederic; Gabrieli, Joseph; Chiras, Jacques; Di Maria, Federico; Sourour, Nader-Antoine; Shotar, Eimad; Cormier, Evelyne; Fahed, Robert; Nouet, Aurelien; Cornu, Philippe

    2016-01-01

    To evaluate the performances of the CT-angiography by direct intra-aortic contrast media injection (IA-CTA) for spinal vascular malformations (SVMs)' imaging. Thirteen patients (8 males, 5 females, mean age: 56 y) with suspected SVM underwent IA-CTAs by direct intra-aortic iodinated contrast media injection (5 cc/s; 100 cc) via an arterial femoral or humeral access. Two independent observers evaluated the angioarchitecture of the SVMs and the visualisation of both the Adamkiewicz artery and the anterior spinal artery. Then a consensus was obtained between the 2 reviewers; the results of the IA-CTA were finally compared with those of the full spinal DSA evaluated in consensus. The IA-CTA was feasible in all cases and depicted the SVM in all except one case (92 %). Interrater agreement was good for the location of the SVMs' level. Intermodality (IA-CTA/DSA) agreement was excellent for the level and side of the shunt point, as well as for the SVM subtype evaluation. In 77 % of the cases, the Adamkiewicz artery was satisfactorily seen at the same time on IA-CTA. IA-CTA is a new technique that seems helpful to reach a better understanding of SMVs and may help to tailor more precisely their treatment. (orig.)

  4. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    International Nuclear Information System (INIS)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-01-01

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease

  5. An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies.

    Directory of Open Access Journals (Sweden)

    Graziela S Ceravolo

    Full Text Available The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R contributes to vascular hypertrophy in angiotensin II (ANG II-induced hypertension, through a mechanism involving reactive oxygen species (ROS generation and extracellular signal-regulated kinase (ERK1/2 activation. Male Wistar rats were infused with vehicle (control rats, 400 ng/Kg/min ANG II (ANG II rats or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg(9-Leu(8-bradykinin (ANGII+DAL rats, via osmotic mini-pumps (14 days or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats. After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg 184 ± 5.9 vs 115 ± 2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE: 21.8 ± 2.7 vs 6.0 ± 1.8] and ERK1/2 phosphorylation (% of control: 218.3 ± 29.4 vs 100 ± 0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17 ± 3.1 and ERK1/2 phosphorylation (137 ± 20.7% in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC stimulated with low concentrations (0.1 nM of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM, B1R antagonist (10 µM and Tiron (superoxide anion scavenger, 10 mM. These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth

  6. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang; Cui, Qinghua; Qin, Xiaomei

    2013-01-01

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders

  7. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Cui, Qinghua [Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Qin, Xiaomei, E-mail: xmqin@bjmu.edu.cn [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China)

    2013-08-09

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders.

  8. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  9. Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Salabei, Joshua K. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202 (United States); Balakumaran, Arun [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Frey, Justin C. [Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54702 (United States); Boor, Paul J. [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Treinen-Moslen, Mary [Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555‐0609 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Conklin, Daniel J., E-mail: dj.conklin@louisville.edu [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); Division of Cardiovascular Medicine, University of Louisville, Louisville, KY 40202 (United States); Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54702 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States)

    2012-08-01

    Calcium channel blockers (CCBs) are important in the management of hypertension and limit restenosis. Although CCB efficacy could derive from decreased blood pressure, other mechanisms independent of CCB activity also can contribute to antiproliferative action. To understand mechanisms of CCB-mediated antiproliferation, we studied two structurally dissimilar CCBs, diltiazem and verapamil, in cultured rat vascular smooth muscle cells (VSMC). To elucidate CCB-independent effects, pure stereoisomers of verapamil (R-verapamil, inactive VR; S-verapamil, active, VS) were used. The effects of CCB exposure on cell viability (MTT reduction), cell proliferation ({sup 3}H-thymidine incorporation), VSMC morphology by light and transmission electron microscopy (TEM) and autophagy (LC3I/II, ATG5) were measured. In general, verapamil, VR or VS treatment alone (80 μM) appreciably enhanced MTT absorbance although higher concentrations (VR or VS) slightly decreased MTT absorbance. Diltiazem (140 μM) markedly decreased MTT absorbance (40%) at 120 h. VR or VS treatment inhibited {sup 3}H-thymidine incorporation (24 h) and induced cytological alterations (i.e., karyokinesis, enhanced perinuclear MTT deposition, accumulated perinuclear “vacuoles”). TEM revealed perinuclear “vacuoles” to be aggregates of highly laminated and electron-dense vesicles resembling autophagosomes and lysosomes, respectively. Increased autophagosome activity was confirmed by a concentration-dependent increase in LC3-II formation by Western blotting and by increased perinuclear LC3-GFP{sup +} puncta in verapamil-treated VSMC. Verapamil stereoisomers appeared to decrease perinuclear mitochondrial density. These observations indicate that antiproliferative effects of verapamil stereoisomers are produced by enhanced mitochondrial damage and upregulated autophagy in VSMC. These effects are independent of CCB activity indicating a distinct mechanism of action that could be targeted for more efficacious anti

  10. Application of thoracic endovascular aortic repair (TEVAR) in treating dwarfism with Stanford B aortic dissection: A case report.

    Science.gov (United States)

    Qiu, Jian; Cai, Wenwu; Shu, Chang; Li, Ming; Xiong, Qinggen; Li, Quanming; Li, Xin

    2018-04-01

    To apply thoracic endovascular aortic repair (TEVAR) to treat dwarfism complicated with Stanford B aortic dissection. In this report, we presented a 63-year-old male patient of dwarfism complicated with Stanford B aortic dissection successfully treated with TEVAR. He was diagnosed with dwarfism complicated with Stanford B aortic dissection. After conservative treatment, the male patient underwent TEVAR at 1 week after hospitalization. After operation, he presented with numbness and weakness of his bilateral lower extremities, and these symptoms were significantly mitigated after effective treatment. At 1- and 3-week after TEVAR, the aorta status was maintained stable and restored. The patient obtained favorable clinical prognosis and was smoothly discharged. During subsequent follow-up, he remained physically stable. TEVAR is probably an option for treating dwarfism complicated with Stanford B aortic dissection, which remains to be validated by subsequent studies with larger sample size.

  11. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat.

    Science.gov (United States)

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino

    2015-05-15

    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  12. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    International Nuclear Information System (INIS)

    Fukuda, Kazuki; Matsumura, Takeshi; Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko; Nakao, Saya; Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji; Kawada, Teruo; Nishikawa, Takeshi; Araki, Eiichi

    2015-01-01

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe −/− mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe −/− mice. In conclusion, statins mediate anti-atherogenic effects through PPAR

  13. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    Science.gov (United States)

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  14. Blood groups and acute aortic dissection type III.

    Science.gov (United States)

    Fatic, Nikola; Nikolic, Aleksandar; Vukmirovic, Mihailo; Radojevic, Nemanja; Zornic, Nenad; Banzic, Igor; Ilic, Nikola; Kostic, Dusan; Pajovic, Bogdan

    2017-04-01

    Acute aortic type III dissection is one of the most catastrophic events, with in-hospital mortality ranging between 10% and 12%. The majority of patients are treated medically, but complicated dissections, which represent 15% to 20% of cases, require surgical or thoracic endovascular aortic repair (TEVAR). For the best outcomes adequate blood transfusion support is required. Interest in the relationship between blood type and vascular disease has been established. The aim of our study is to evaluate distribution of blood groups among patients with acute aortic type III dissection and to identify any kind of relationship between blood type and patient's survival. From January 2005 to December 2014, 115 patients with acute aortic type III dissection were enrolled at the Clinic of Vascular and Endovascular Surgery in Belgrade, Serbia and retrospectively analyzed. Patients were separated into two groups. The examination group consisted of patients with a lethal outcome, and the control group consisted of patients who survived. The analysis of the blood groups and RhD typing between groups did not reveal a statistically significant difference ( p = 0.220). Our results indicated no difference between different blood groups and RhD typing with respect to in-hospital mortality of patients with acute aortic dissection type III.

  15. Endovascular repair of early rupture of Dacron aortic graft--two case reports.

    LENUS (Irish Health Repository)

    Sultan, Sherif

    2005-01-01

    Complications after open aortic surgery pose a challenge both to the vascular surgeon and the patient because of aging population, widespread use of cardiac revascularization, and improved survival after aortic surgery. The perioperative mortality rate for redo elective aortic surgery ranges from 5% to 29% and increases to 70-100% in emergency situation. Endovascular treatment of the postaortic open surgery (PAOS) patient has fewer complications and a lower mortality rate in comparison with redo open surgical repair. Two cases of ruptured abdominal aortic aneurysm (AAA) were managed with the conventional open surgical repair. Subsequently, spiral contrast computer tomography scans showed reperfusion of the AAA sac remnant mimicking a type III endoleak. These graft-related complications presented as vascular emergencies, and in both cases endovascular aneurysm repair (EVAR) procedure was performed successfully by aortouniiliac (AUI) stent graft and femorofemoral crossover bypass. These 2 patients add further merit to the cases reported in the English literature. This highlights the crucial importance of endovascular grafts in the management of such complex vascular problems.

  16. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Majesky, M.W.; Benditt, E.P.; Schwartz, S.M.

    1988-01-01

    Cultured arterial smooth muscle cells (SMC) can produce platelet-derived growth factor (PDGF)-like molecules. This property raises the possibility that SMC-derived PDGFs function as autocrine/paracrine regulators in the formation and maintenance of the artery wall. In this study the authors have asked if levels of mRNAs directing synthesis of PDFG are modulated in aortic SMC during postnatal development. The authors report here that genes encoding PDGF A- and B-chain precursors are expressed at similar low levels in intact aortas from newborn and adult rats. Marked differences in regulation of transcript abundance of these genes were revealed when aortic SMC were grown in cell culture. PDGF B-chain transcripts accumulated in passaged newborn rat SMC but not adult rat SMC, whereas PDGF A-chain RNA was found in comparable amounts in SMC from both age groups. Similarly, SMC from newborn rats secreted at least 60-fold more PDGF-like activity into conditioned medium than did adult rat SMC. These results show that PDGF A- and B-chain genes are transcribed in the normal rat aorta and provide evidence for age-related change in the control of PDGF B-chain gene expression in aortic SMC. Independent regulation of transcript levels in cultured SMC leaves open the possibility that PDGFs of different composition (AA, AB, BB) play different roles in normal function of the artery wall

  17. Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration

    DEFF Research Database (Denmark)

    Ström, A.; Olin, A. I.; Aspberg, A.

    2006-01-01

    /hyaluronan complexes, an ECM network that has been suggested to be important during tissue repair. In this study we have analysed the presence of fibulin-2 in two different models of murine vascular lesions. We have also examined how the fibulin-2/versican network influences SMC migration. Methods: Presence of fibulin......Objective: The vascular extracellular matrix (ECM) can affect smooth muscle cell (SMC) adhesion, migration and proliferation-events that are important during the atherosclerotic process. Fibulin-2 is a member of the ECM protein family of fibulins and has been found to cross-link versican...... and is upregulated during SMC phenotypic modulation in cell culture. Moreover, treatments with peptides that block the interaction between versican and fibulin-2 inhibit SMC migration in vitro. Conclusions: Fibulin-2 can be produced by SMC as a response to injury and may participate in the ECM organisation...

  18. Experimental study on effect of dexamethasone to the in-stent restenosis after vascular intervention

    International Nuclear Information System (INIS)

    Wang Jianbo; Yang Jianyong; Chen Wei; Zhuang Wenquan; Li Jiaping; Zhang Longjuan

    2007-01-01

    Objective: To evaluate the effect of dexamethasone to the cultured rat thoracic aortic smooth muscle cells (SMC) in vitro, and explore the role on it's prevention and cure for the in-stent restenosis after vascular intervention. Methods: The rat thoracic aortic SMC were harvested and cultured for six to ten passages. The cultured SMC were synchronized and then restimutated to enter the cell cycle, and treated with incremental concentrations of dexamethasone or without dexamethasone as control. The proliferative assay was performed with MTT method in the different time points after treatment. RT-PCR was performed to assay the level of proliferating cell nuclear antigen (PCNA) mRNA. Results: 1. Dexamethasone progressively inhibited rat aortic SMC proliferation in a concentration-dependent fashion. The A value was statistically significant for different concentrations (F=36.02, P -6 and 10 -5 mol/L (P=0.065) or between 10 -11 mol/L and control group (P 0.567). 2. RT-PCR suggested dexamethasone significantly decreased rat aortic SMC PCNA mRNA transcription in a concentration-dependent fashion. Statistical analysis indicated F=15.407 and P -9 or 10 -11 mol/L groups by post hoc analysis. Conclusions: Dexamethasone inhibits rat aortic SMC proliferation in a concentration- dependent fashion. The data suggest that effective action concentration is 10 -7 mol/L with persistent time up to 96 hours or more. Dexamethasone may play the inhibit role to SMC at lower concentration with prolonging action time. (authors)

  19. Polysaccharide from Fuzi protects against Ox-LDL-induced calcification of human vascular smooth muscle cells by increasing autophagic activity

    Science.gov (United States)

    Liao, Lizhen; Zhuang, Xiaodong; Li, Weidong; Su, Qibiao; Zhao, Jie; Liu, Ying

    2018-01-01

    Polysaccharide from Fuzi (FPS) is a water-soluble polysaccharide isolated from the traditional Chinese herbal medicine Fuzi. It has been demonstrated to protect hepatocytes against ischemia-reperfusion injury through its potent antioxidant effects, and to attenuate starvation-induced cytotoxicity in H9c2 cells by increasing autophagic activity. In the present study, Alizarin Red S staining was used to detect mineral deposition and reverse transcription-quantitative polymerase chain reaction was used to detect the core binding factor α1 and smooth muscle 22α mRNA expression. To analyze autophagic activity, western blotting was used to detect microtubule-associated protein 1A/1B light chain 3 and nucleoporin P62 expression. In addition, green fluorescent protein-LC3 dots-per-cell was observed by fluorescence microscopy. It was demonstrated that oxidized low-density lipoprotein (Ox-LDL) could increase the calcification of human vascular smooth muscle cells (VSMCs) in a concentration-dependent manner, and that FPS treatment had a significant protective effect against Ox-LDL-induced calcification of human VSMCs. Furthermore, FPS treatment alleviated the Ox-LDL-induced downregulation of autophagic activity, and the protective effect of FPS on Ox-LDL-induced calcification was attenuated by the autophagy inhibitor 3-methyladenine. In conclusion, the present study demonstrated for the first time to the best of the authors' knowledge that FPS can protect against Ox-LDL-induced vascular calcification in human VSMCs, and that this likely occurs via the activation of autophagy. This supports the hypothesis that autophagy may be an endogenous protective mechanism counteracting vascular calcification, and that FPS may be used as a potential therapeutic for vascular calcification. PMID:29393437

  20. Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells.

    Science.gov (United States)

    Goupille, Olivier; Saint Cloment, Cécile; Lopes, Miguel; Montarras, Didier; Robert, Benoît

    2008-08-01

    Using an nlacZ reporter gene inserted at the Msx1 and Msx2 loci, we could analyze the expression of these homeogenes in the adult mouse. We observed that Msx genes are prominently expressed in a subset of blood vessels. The Msx2nlacZ allele is mainly expressed in a restricted population of mural cells in peripheral arteries and veins. Msx1nlacZ is expressed to a lesser extent by vascular smooth muscle cells of peripheral arteries, but is highly expressed in arterioles and capillaries, making Msx1 a novel marker for a subpopulation of pericytes. Expression is set up early in developing vessels and maintained throughout life. In addition, expression of both genes is observed in a few endothelial cells of the aorta at fetal stages, and only Msx2 continues to be expressed in this layer at the adult stage. These results suggest major functions for Msx genes in vascular mural cell formation and remodeling. Copyright (c) 2008 Wiley-Liss, Inc.

  1. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca²⁺-sensitive K⁺ current in miniature swine with LV hypertrophy.

    Science.gov (United States)

    Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K

    2011-10-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.

  2. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    Science.gov (United States)

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  3. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  4. Angular (Gothic) aortic arch leads to enhanced systolic wave reflection, central aortic stiffness, and increased left ventricular mass late after aortic coarctation repair: evaluation with magnetic resonance flow mapping.

    Science.gov (United States)

    Ou, Phalla; Celermajer, David S; Raisky, Olivier; Jolivet, Odile; Buyens, Fanny; Herment, Alain; Sidi, Daniel; Bonnet, Damien; Mousseaux, Elie

    2008-01-01

    We sought to investigate the mechanism whereby a particular deformity of the aortic arch, an angulated Gothic shape, might lead to hypertension late after anatomically successful repair of aortic coarctation. Fifty-five normotensive patients with anatomically successful repair of aortic coarctation and either a Gothic (angulated) or a Romanesque (smooth and rounded) arch were studied with magnetic resonance angiography and flow mapping in both the ascending and descending aortas. Systolic waveforms, central aortic stiffness, and pulse velocity were measured. We hypothesized that arch angulation would result in enhanced systolic wave reflection with loss of energy across the aortic arch, as well as increased central aortic stiffness. Twenty patients were found to have a Gothic, and 35 a Romanesque, arch. Patients with a Gothic arch showed markedly augmented systolic wave reflection (12 +/- 6 vs 5 +/- 0.3 mL, P Gothic arch (5.6 +/- 1.1 vs 4.1 +/- 1 m/s, P Gothic aortic arch is associated with increased systolic wave reflection, as well as increased central aortic stiffness and left ventricular mass index. These findings explain (at least in part) the association between this pattern of arch geometry and late hypertension at rest and on exercise in subjects after coarctation repair.

  5. Effect of agmatine on experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  6. Evaluation of intra-aortic CT angiography performances for the visualisation of spinal vascular malformations' angioarchitecture

    Energy Technology Data Exchange (ETDEWEB)

    Clarencon, Frederic; Gabrieli, Joseph; Chiras, Jacques [Pitie-Salpetriere Hospital, Department of Interventional Neuroradiology, Paris (France); Paris VI University, Pierre et Marie Curie University, Paris (France); Di Maria, Federico; Sourour, Nader-Antoine; Shotar, Eimad; Cormier, Evelyne; Fahed, Robert [Pitie-Salpetriere Hospital, Department of Interventional Neuroradiology, Paris (France); Nouet, Aurelien [Pitie-Salpetriere Hospital, Department of Neurosurgery, Paris (France); Cornu, Philippe [Paris VI University, Pierre et Marie Curie University, Paris (France); Pitie-Salpetriere Hospital, Department of Neurosurgery, Paris (France)

    2016-10-15

    To evaluate the performances of the CT-angiography by direct intra-aortic contrast media injection (IA-CTA) for spinal vascular malformations (SVMs)' imaging. Thirteen patients (8 males, 5 females, mean age: 56 y) with suspected SVM underwent IA-CTAs by direct intra-aortic iodinated contrast media injection (5 cc/s; 100 cc) via an arterial femoral or humeral access. Two independent observers evaluated the angioarchitecture of the SVMs and the visualisation of both the Adamkiewicz artery and the anterior spinal artery. Then a consensus was obtained between the 2 reviewers; the results of the IA-CTA were finally compared with those of the full spinal DSA evaluated in consensus. The IA-CTA was feasible in all cases and depicted the SVM in all except one case (92 %). Interrater agreement was good for the location of the SVMs' level. Intermodality (IA-CTA/DSA) agreement was excellent for the level and side of the shunt point, as well as for the SVM subtype evaluation. In 77 % of the cases, the Adamkiewicz artery was satisfactorily seen at the same time on IA-CTA. IA-CTA is a new technique that seems helpful to reach a better understanding of SMVs and may help to tailor more precisely their treatment. (orig.)

  7. Tributyltin contributes in reducing the vascular reactivity to phenylephrine in isolated aortic rings from female rats.

    Science.gov (United States)

    Rodrigues, Samya Mere L; Ximenes, Carolina F; de Batista, Priscila R; Simões, Fabiana V; Coser, Pedro Henrique P; Sena, Gabriela C; Podratz, Priscila L; de Souza, Leticia N G; Vassallo, Dalton V; Graceli, Jones B; Stefanon, Ivanita

    2014-03-21

    Organotin compounds such as tributyltin (TBT) are used as antifouling paints by shipping companies. TBT inhibits the aromatase responsible for the transformation of testosterone into estrogen. Our hypothesis is that TBT modulates the vascular reactivity of female rats. Female Wistar rats were treated daily (Control; CONT) or TBT (100 ng/kg) for 15 days. Rings from thoracic aortas were incubated with phenylephrine (PHE, 10(-10)-10(-4) M) in the presence and absence of endothelium, and in the presence of N(G)-Nitro-L-Arginine Methyl Ester (L-NAME), tetraethylammonium (TEA) and apocynin. TBT decreased plasma levels of estrogen and the vascular response to PHE. In the TBT group, the vascular reactivity was increased in the absence of endothelium, L-NAME and TEA. The decrease in PHE reactivity during incubation with apocynin was more evident in the TBT group. The sensitivity to acetylcholine (ACh) and sodium nitroprusside (SNP) was reduced in the TBT group. TBT increased collagen, reduced α1-smooth muscle actin. Female rats treated with TBT for 15 days showed morphology alteration of the aorta and decreased their vascular reactivity, probably due to mechanisms dependent on nitric oxide (NO) bioavailability, K(+) channels and an increase in oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    International Nuclear Information System (INIS)

    Guo Yanhong; Chen Kuanghueih; Gao Wei; Li Qian; Chen Li; Wang Guisong; Tang Jian

    2007-01-01

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE -/- mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% and 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury

  9. Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes

    DEFF Research Database (Denmark)

    Andreasen, Ditte; Friis, Ulla G; Uhrenholt, Torben R

    2006-01-01

    Voltage-dependent Ca2+ channels Cav1.2 (L type) and Cav2.1 (P/Q type) are expressed in vascular smooth muscle cells (VSMCs) and are important for the contraction of renal resistance vessels. In the present study we examined whether native renal VSMCs coexpress L-, P-, and Q-type Ca2+ currents...... microscopy revealed expression of both channels in all of the smooth muscle cells. Whole-cell patch clamp on single preglomerular VSMCs from mice showed L-, P-, and Q-type currents. Blockade of the L-type currents by calciseptine (20 nmol/L) inhibited 35.6+/-3.9% of the voltage-dependent Ca2+ current......-type and P-type channels inhibited 58.0+/-11.8%, and simultaneous inhibition of L-, P-, and Q-type channels led to blockade (88.7+/-5.6%) of the Ca2+ current. We conclude that aortic and renal preglomerular smooth muscle cells express L-, P-, and Q-type voltage-dependent Ca2+ channels in the rat and mouse....

  10. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    Science.gov (United States)

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  12. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  13. Assessment of ventriculo-vascular properties in repaired coarctation using cardiac magnetic resonance-derived aortic, left atrial and left ventricular strain

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Quanliang [University of Nebraska College of Medicine and Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Central South University, Department of Radiology, Second Xiangya Hospital, Changsha, Hunan Province (China); Sarikouch, Samir; Beerbaum, Philipp [Hannover Medical School, Hannover (Germany); Patel, Shivani; Danford, David A.; Kutty, Shelby [University of Nebraska College of Medicine and Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Schuster, Andreas [Department of Cardiology and Pneumonology, Georg-August-University and German Center for Cardiovascular Research (DZHK, Partner Site), Goettingen (Germany); Steinmetz, Michael [Department of Pediatric Cardiology, Georg-August-University and German Center for Cardiovascular Research (DZHK, Partner Site), Goettingen (Germany); Ou, Phalla [University Paris Diderot, Department of Radiology, Hospital Bichat, APHP, Paris (France)

    2017-01-15

    In patients with repaired coarctation of aorta (CoA), we assessed ventriculo-vascular characteristics using CMR-derived aortic area strain (AAS), left atrial (LA) and left ventricular (LV) longitudinal and circumferential strain (LS, CS). Seventy-five subjects including 50 with repaired CoA divided into hypertensive (n = 25), normotensive (n = 25) and 25 controls were studied. AAS was measured at 3 levels: ascending aorta, proximal descending and descending aorta. LA and LV LS were measured using CMR-feature tracking. LA and LV end-diastolic volumes, ejection fraction (EF) and mass were measured. Mean patient age was 19.7 ± 6.7 and controls 23 ± 15 (years). All strains (LA, LV, ascending and descending aortic) were lower in CoA subgroups compared to controls except the AAS at diaphragm, which was not different. Comparisons between hypertensive and normotensive CoA showed no differences in LV mass, LV volumetric indices, and LA and LV strain indices; however, ascending AAS was lower in hypertensive subgroup (p = 0.02). Ascending AAS was correlated with LV mass (r = -0.4, p = 0.005), LVEF (r = -0.4, p = 0.004), systolic blood pressure (r = -0.5, p = 0.0001) and LVLS (r = 0.5, p = 0.001). Ascending AAS correlated with LV mass, EF and LVLS. In hypertensive CoA, ascending AAS was reduced compared to normotensive CoA and controls, indicating vascular remodelling differences influenced by ongoing hypertension. (orig.)

  14. Safety and efficacy of using the Viabahn endoprosthesis for percutaneous treatment of vascular access complications after transfemoral aortic valve implantation

    DEFF Research Database (Denmark)

    De Backer, Ole; Arnous, Samer; Sandholt, Benjamin

    2015-01-01

    Vascular access complications (VACs) remain one of the biggest challenges when performing transcatheter aortic valve implantation (TAVI). This study aimed to investigate the short- and medium-term safety and efficacy of the Viabahn endoprosthesis (Gore, Flagstaff, AZ) when used to treat TAVI......-induced vascular injury. Over a 40-month period, 354 patients underwent true percutaneous transfemoral (TF)-TAVI using a CoreValve and Prostar-XL closure system; this was our study population. A VAC leading to acute intervention occurred in 72 patients (20.3%) - of these, 18 were managed by balloon angioplasty, 48...... were treated by Viabahn stenting (technical success rate 98%), and 6 needed surgical intervention. Overall, this approach resulted in a major VAC rate of 3.1% (n = 11) in our study cohort. Length of hospitalization and 30-day mortality rates were comparable in patients with a VAC treated by Viabahn...

  15. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation

    International Nuclear Information System (INIS)

    Nanao-Hamai, Michiko; Son, Bo-Kyung; Hashizume, Tsuyoshi; Ogawa, Sumito; Akishita, Masahiro

    2016-01-01

    Vascular calcification is one of the major complications of cardiovascular disease and is an independent risk factor for myocardial infarction and cardiac death. Postmenopausal women have a higher prevalence of vascular calcification compared with premenopausal women, suggesting protective effects of estrogen (E2). However, the underlying mechanisms of its beneficial effects remain unclear. In the present study, we examined the inhibitory effects of E2 on vascular smooth muscle cell (VSMC) calcification, and found that growth arrest-specific gene 6 (Gas6), a crucial molecule in vascular calcification, is transactivated by estrogen receptor α (ERα) in response to E2. In human aortic smooth muscle cells, physiological levels of E2 inhibited inorganic phosphate (Pi)-induced calcification in a concentration-dependent manner. This inhibitory effect was significantly abolished by MPP, an ERα-selective antagonist, and ERα siRNA, but not by PHTPP, an ERβ-selective antagonist, and ERβ siRNA, implicating an ERα-dependent action. Apoptosis, an essential process for Pi-induced VSMC calcification, was inhibited by E2 in a concentration-dependent manner and further, MPP abolished this inhibition. Mechanistically, E2 restored the inhibited expression of Gas6 and phospho-Akt in Pi-induced apoptosis through ERα. Furthermore, E2 significantly activated Gas6 transcription, and MPP abrogated this E2-dependent Gas6 transactivation. E2-BSA failed to activate Gas6 transcription and to inhibit Ca deposition in VSMC, suggesting beneficial actions of genomic signaling by E2/nuclear ERα. Taken together, these results indicate that E2 exerts inhibitory effects on VSMC apoptosis and calcification through ERα-mediated Gas6 transactivation. These findings indicate a potential therapeutic strategy for the prevention of vascular calcification, especially in postmenopausal women. - Highlights: • E2 inhibits Pi-induced calcification in vascular smooth muscles cells. • E2 inhibits Pi

  16. The vascular surgery workforce: a survey of consultant vascular surgeons in the UK, 2014.

    Science.gov (United States)

    Harkin, D W; Beard, J D; Shearman, C P; Wyatt, M G

    2015-04-01

    The purpose of this study was to describe the demographics, training, and practice characteristics of consultant vascular surgeons across the UK to provide an assessment of current, and inform future prediction of workforce needs. A questionnaire was developed using a modified Delphi process to generate questionnaire items. The questionnaire was emailed to all consultant vascular surgeons (n = 450) in the UK who were members of the Vascular Society of Great Britain & Ireland. 352 consultant vascular surgeons from 95 hospital trusts across the UK completed the survey (78% response rate). The mean age was 50.6 years old, the majority (62%) were mid-career, but 24% were above the age of 55. Currently, 92% are men and only 8% women. 93% work full-time, with 60% working >50 hours, and 21% working >60 hours per week. The average team was 5 to 6 (range 2-10) vascular surgeons, with 23% working in a large team of ≥8. 17% still work in small teams of ≤3. Over 90% of consultant vascular surgeons perform the major index vascular surgery procedures (aneurysm repair, carotid endarterectomy, infra-inguinal bypass, amputation). While 84% perform standard endovascular abdominal aortic aneurysm repair (EVAR), <50% perform more complex endovascular aortic therapy. The majority of vascular surgeons "like their job" (85%) and are "satisfied" (69%) with their job. 34% of consultant vascular surgeons indicated they were "extremely likely" to retire within the next 10 years. This study provides the first detailed analysis of the new specialty of vascular surgery as practiced in the UK. There is a need to plan for a significant expansion in the consultant vascular surgeon workforce in the UK over the next 10 years to maintain the status quo. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B; Jones, Karrie L; Cohn, Dianne; Bruemmer, Dennis

    2011-04-01

    Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.

  18. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    Science.gov (United States)

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascular smooth muscle cells and is induced by interferon γ

    International Nuclear Information System (INIS)

    Wagsaeter, Dick; Olofsson, Peder S.; Norgren, Lars; Stenberg, Bjoern; Sirsjoe, Allan

    2004-01-01

    Atherosclerosis is an inflammatory disease that is characterised by the involvement of chemokines that are important for the recruitment of leukocytes and scavenger receptors that mediate foam cell formation. Several cytokines are involved in the regulation of chemokines and scavenger receptors in atherosclerosis. CXCL16 is a chemokine and scavenger receptor and found in macrophages in human atherosclerotic lesions. Using double-labelled immunohistochemistry, we identified that smooth muscle cells in human lesions express CXCL16. We then analysed the effects of IFN-γ, TNF-α, IL-12, IL-15, IL-18, and LPS on CXCL16 expression in cultured aortic smooth muscle cells. IFN-γ was the most potent CXCL16 inducer and increased mRNA, soluble form, membrane form, and total cellular levels of CXCL16. The IFN-γ induction of CXCL16 was also associated with increased uptake of oxLDL into these cells. Taken together, smooth muscle cells express CXCL16 in atherosclerotic lesions, which may play a role in the attraction of T cells to atherosclerotic lesions and contribute to the cellular internalisation of modified LDL

  20. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    Energy Technology Data Exchange (ETDEWEB)

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T. (Biosciences Division); ( XSD); ( PSC-USR); (Univ. of Illinois at Chicago); (Univ. of Minnesota)

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  1. New aspects of vascular remodelling: the involvement of all vascular cell types.

    Science.gov (United States)

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  2. Three-dimensional Ultrasound in the Management of Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Lowe, C B; Ghulam, Q; Bredahl, K

    2016-01-01

    Three-dimensional (3D) ultrasound is an evolving modality that may have numerous applications in the management of abdominal aortic aneurysms. Many vascular specialists will not be familiar with the different ways in which 3D vascular ultrasound data can be acquired nor how potential applications...

  3. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification.

    Science.gov (United States)

    Mokas, Sophie; Larivière, Richard; Lamalice, Laurent; Gobeil, Stéphane; Cornfield, David N; Agharazii, Mohsen; Richard, Darren E

    2016-09-01

    Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    OpenAIRE

    Yazawa, H.; Hirasawa, A.; Horie, K.; Saita, Y.; Iida, E.; Honda, K.; Tsujimoto, G.

    1996-01-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenep...

  5. Constituents of Mediterranean Spices Counteracting Vascular Smooth Muscle Cell Proliferation: Identification and Characterization of Rosmarinic Acid Methyl Ester as a Novel Inhibitor

    Czech Academy of Sciences Publication Activity Database

    Liu, R.; Heiss, E.H.; Waltenberger, B.; Blažević, T.; Schachner, B.; Jiang, B.; Kryštof, Vladimír; Liu, W.; Schwaiger, S.; Peña-Rodríguez, L. M.; Breuss, J.; Stuppner, H.; Dirsch, V.M.; Atanasov, A. G.

    2018-01-01

    Roč. 62, č. 7 (2018), č. článku 1700860. ISSN 1613-4125 Institutional support: RVO:61389030 Keywords : Mediterranean spices * neointima formation * rosmarinic acid * rosmarinic acid methyl ester * vascular smooth muscle cells Subject RIV: CE - Biochemistry OBOR OECD: Biochemical research methods Impact factor: 4.323, year: 2016

  6. A case of complete double aortic arch visualized by transthoracic echocardiography.

    Science.gov (United States)

    Saito, Naka; Kato, Shingo; Saito, Noritaka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Kosuge, Masami; Kimura, Kazuo

    2017-08-01

    A case of double aortic arch that was well visualized using transthoracic echocardiography is reported. A 38-year-old man underwent transthoracic echocardiography for the evaluation of dyspnea. A suprasternal view of transthoracic echocardiography showed the ascending aorta bifurcate to left and right aortic arches, with blood flow from the ascending aorta to bilateral aortic arches. The diagnosis of right side-dominant double aortic arch was made, and the patient's symptom was conceivably related to compression of the trachea due to a vascular ring. This report indicates the potential usefulness of transthoracic echocardiography for noninvasive detection of double aortic arch in adults. © 2017, Wiley Periodicals, Inc.

  7. Tribbles 3: A potential player in diabetic aortic remodelling.

    Science.gov (United States)

    Ti, Yun; Xie, Guo-lu; Wang, Zhi-hao; Ding, Wen-yuan; Zhang, Yun; Zhong, Ming; Zhang, Wei

    2016-01-01

    Tribbles 3, whose expression is up-regulated by insulin resistance, was confirmed to be involved in diabetic cardiomyopathy in our previous study. However, it is not known whether Tribbles 3 has a role on conduit arteries such as the aorta in diabetes. Type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated the characteristics of diabetic rats by serial ultrasonography and histopathologic analyses of aortic wall architecture. Diabetic rats displayed increased aortic medial thickness, excessive collagen deposition, diminished elastic fibres and reduced vascular compliance together with Tribbles 3 overexpression. To further investigate the role of Tribbles 3 in aortic remodelling, we used Tribbles 3 gene silencing in vivo 12 weeks after onset of diabetes. Silence of Tribbles 3 significantly reversed pathological aortic remodelling without blood pressure modification. In Tribbles 3-small interfering RNA group, medial thickness and perivascular fibrosis were markedly decreased; moreover, there were prominent reductions in collagen content and collagen/elastin ratio, resulting in an improved arterial compliance. Additionally, with Tribbles 3 silencing, the diminished phosphorylation of PI3K/Akt was restored, and increased activation of MKK4/JNK was decreased. Silence of Tribbles 3 is potent in mediating reversal of aortic remodelling, implicating that Tribbles 3 is proposed to be a potential therapeutic target for vascular complication in diabetes. © The Author(s) 2015.

  8. Aortography following subdiaphragmal aortic biopsy

    International Nuclear Information System (INIS)

    Schimmler, J.

    1982-01-01

    A juxtaposition of the subdiaphragmal and infrarenal translumbar aortic biopsy sites showed decisive advantages in favour of the higher site: a more stable position because of better anatomic fixation and rarer incidence of vascular alterations, a wider vascular lumen. Disadvantages lie in the fact that the large visceral arteries (especially Tr. coeliacus) branch off nearly and in the close anatomic relationship to large abdominal organs and the thoracal region. Evaluation of the radiographical image of the vascular tree after subdiaphragmal aortic biopsy showed an average 82% of the vessels to the area of the Knees to be assessable (renal arteries approximately 93%, popliteal arteries approximately 70%). Beyong, the method proved unsatisfactory: 52% of the vessels could not, or not safety, be evaluated. A relatively broad spectrum of indications by comparison with transfemoral catheter aortography had no influence on the rate of complications with reference to either method. A comparison of the topographic conditions shows the need for even more scrupulons observation of the technique in subdiaphragmal biopsy than in the infrarenal one. To sum up the results obtained, subdiaphregmal translumbar aortography is to be preferred to the infrarenal one where transfemoral catheter aortography is contra-indicated, within the limits mentioned. (orig.) [de

  9. Hypertrophy of cultured bovine aortic endothelium following irradiation

    International Nuclear Information System (INIS)

    Rosen, E.M.; Vinter, D.W.; Goldberg, I.D.

    1989-01-01

    The vascular endothelium is a vital multifunctional tissue which covers the entire luminal surface of the circulatory system. Loss of continuity of the endothelial lining normally results in cell migration and proliferation to make up for cell loss and to ensure that exposure of the thrombogenic subendothelium to platelets and clotting factors is minimized. We showed that ionizing radiation (400-3000 cGy) causes dose-dependent cell loss from confluent monolayer cultures of bovine aortic endothelium, which cannot immediately be compensated by cell proliferation. Within 24 h, the remaining attached cells undergo substantial somatic hypertrophy (evidenced by increased protein content, cell volume, and attachment area) but remain diploid. If cell loss is not excessive, monolayer continuity is restored within several days. Although reduced protein degradation may contribute, most of the protein accumulation is due to synthesis of new protein. Unlike endothelium, irradiation of smooth muscle cultures causes neither cell loss nor increased protein synthesis. Hypertrophy of irradiated endothelial cells appears to be a consequence of a proliferative stimulus (cell loss) in a population of cells which is unable to divide. It can be modulated by replating irradiated cells at different densities. We suggest that endothelial hypertrophy is an early vascular homeostatic response before clonal proliferation of surviving cells or repopulation by cells from outside of the irradiated field can compensate for cell loss

  10. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kang, Shin-il [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Yoo, Kyu-dong [Hazardous Substances Analysis Division, Gwangju Regional Food and Drug Administration, Gwangju (Korea, Republic of); Lee, Mi-Yea [Department of Nursing Kyungbok University, Pocheon (Korea, Republic of); Yoo, Hwan-Soo; Hong, Jin-Tae [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Shin, Hwa-Sup [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Yun, Yeo-Pyo, E-mail: ypyun@chungbuk.ac.kr [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of)

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  11. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    International Nuclear Information System (INIS)

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway

  12. Hypertrophic osteoarthropathy of one leg - a sign of aortic graft infection

    Energy Technology Data Exchange (ETDEWEB)

    Spruijt, S.; Krijgsman, A.A. [Department of Orthopaedic and Trauma Surgery, Elkerliek Hospital, Helmond (Netherlands); Broek, J.A.C. van den [Department of Radiology, Elkerliek Hospital, Helmond (Netherlands); Tutein Nolthenius-Puylaert, M.C.B.J.E. [Department of Pathology, Elkerliek Hospital, Helmond (Netherlands)

    1999-04-01

    We report a rare case of hypertrophic osteoarthropathy (HOA) confined to the right leg secondary to aortic graft infection. The development of HOA exclusively localized to areas distal to a vascular prosthesis may be the presenting manifestation of graft infection and a crucial diagnostic clue in the early detection of vascular graft infection. HOA is diagnosed by its characteristic radiographic and scintigraphic pattern. Most prosthetic, especially aortic, graft infections are uniformly fatal if not treated by aggressive surgical and antibiotic therapy. Recognition of this uncommon association may facilitate an early diagnosis, which usually requires immediate surgical therapy. (orig.) With 6 figs., 28 refs.

  13. Hypertrophic osteoarthropathy of one leg - a sign of aortic graft infection

    International Nuclear Information System (INIS)

    Spruijt, S.; Krijgsman, A.A.; Broek, J.A.C. van den; Tutein Nolthenius-Puylaert, M.C.B.J.E.

    1999-01-01

    We report a rare case of hypertrophic osteoarthropathy (HOA) confined to the right leg secondary to aortic graft infection. The development of HOA exclusively localized to areas distal to a vascular prosthesis may be the presenting manifestation of graft infection and a crucial diagnostic clue in the early detection of vascular graft infection. HOA is diagnosed by its characteristic radiographic and scintigraphic pattern. Most prosthetic, especially aortic, graft infections are uniformly fatal if not treated by aggressive surgical and antibiotic therapy. Recognition of this uncommon association may facilitate an early diagnosis, which usually requires immediate surgical therapy. (orig.)

  14. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    Science.gov (United States)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  16. Segmental Aortic Stiffness in Children and Young Adults With Connective Tissue Disorders: Relationships With Age, Aortic Size, Rate of Dilation, and Surgical Root Replacement.

    Science.gov (United States)

    Prakash, Ashwin; Adlakha, Himanshu; Rabideau, Nicole; Hass, Cara J; Morris, Shaine A; Geva, Tal; Gauvreau, Kimberlee; Singh, Michael N; Lacro, Ronald V

    2015-08-18

    Aortic diameter is an imperfect predictor of aortic complications in connective tissue disorders (CTDs). Novel indicators of vascular phenotype severity such as aortic stiffness and vertebral tortuosity index have been proposed. We assessed the relation between aortic stiffness by cardiac MRI, surgical root replacement, and rates of aortic root dilation in children and young adults with CTDs. Retrospective analysis of cardiac MRI data on children and young adults with a CTD was performed to derive aortic stiffness measures (strain, distensibility, and β-stiffness index) at the aortic root, ascending aorta, and descending aorta. Vertebral tortuosity index was calculated as previously described. Rate of aortic root dilation before cardiac MRI was calculated as change in echocardiographic aortic root diameter z score per year. In 83 CTD patients (median age, 24 years; range, 1-55; 17% age; 60% male), ascending aorta distensibility was reduced in comparison with published normative values: median z score, -1.93 (range, -8.7 to 1.3; Pyoung adults with CTDs. © 2015 American Heart Association, Inc.

  17. Application of a vascular graft material (Solcograft-P) in experimental surgery.

    Science.gov (United States)

    Nemes, A; Acsády, G; Fraefel, W; Lichti, H; Monos, E; Oertli, R; Somogyi, E; Sótonyi, P

    1985-09-01

    The implantation and post-implantation behaviour of a Solcograft-P vascular prosthesis in the aortic, aorto-iliac, carotid and vena caval positions in dogs was studied up to 100 d post-surgery in order to assess the suitability of this vascular material for use in man. Solcograft-P is prepared from the carotid arteries of calves by crosslinking the collagen stroma using adipyl dichloride. During the postoperative follow-up period of 3 month, 100% of the aortal grafts, 80% of the aorto-iliac bypasses, 60% of the vena caval grafts and 35% of the carotid implants remained patent. The biochemical properties of the Solcograft-P are better than those of Solcograft, its predecessor. The intimal lining was consistently smooth and homogeneous in grafts of biological origin, and no aneurysm was observed. Infection and early thrombosis occured no more frequently than with other grafts. The new Solcograft-P, crosslinked via ester and amide groups, seems to represent a real improvement over Solcograft. Our results suggest that Solcograft-P should prove valuable in various cases of reconstructive vascular surgery of the lower limb, especially when the autologous vena saphena magna is not available, and its mechanical properties may well prove suitable for both arterial and venous replacement.

  18. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kazuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Nakao, Saya [Department of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto (Japan); Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Kawada, Teruo [Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2015-01-30

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects

  19. Risk stratification for the development of respiratory adverse events following vascular surgery using the Society of Vascular Surgery's Vascular Quality Initiative.

    Science.gov (United States)

    Genovese, Elizabeth A; Fish, Larry; Chaer, Rabih A; Makaroun, Michel S; Baril, Donald T

    2017-02-01

    Postoperative respiratory adverse events (RAEs) are associated with high rates of morbidity and mortality in general surgery, however, little is known about these complications in the vascular surgery population, a frail subset with multiple comorbidities. The objective of this study was to describe the contemporary incidence of RAEs in vascular surgery patients, the risk factors for this complication, and the overall impact of RAEs on patient outcomes. The Vascular Quality Initiative was queried (2003-2014) for patients who underwent endovascular abdominal aortic repair, open abdominal aortic aneurysm repair, thoracic endovascular aortic repair, suprainguinal bypass, or infrainguinal bypass. A mixed-effects logistic regression model determined the independent risk factors for RAEs. Using a random 85% of the cohort, a risk prediction score for RAEs was created, and the score was validated using the remaining 15% of the cohort, comparing the predicted to the actual incidence of RAE and determining the area under the receiver operating characteristic curve. The independent risk of in-hospital mortality and discharge to a nursing facility associated with RAEs was determined using a mixed-effects logistic regression to control for baseline patient characteristics, operative variables, and other postoperative adverse events. The cohort consisted of 52,562 patients, with a 5.4% incidence of RAEs. The highest rates of RAEs were seen in current smokers (6.1%), recent acute myocardial infarction (10.1%), symptomatic congestive heart failure (9.9%), chronic obstructive pulmonary disease requiring oxygen therapy (11.0%), urgent and emergent procedures (6.4% and 25.9%, respectively), open abdominal aortic aneurysm repairs (17.6%), in situ suprainguinal bypasses (9.68%), and thoracic endovascular aortic repairs (9.6%). The variables included in the risk prediction score were age, body mass index, smoking status, congestive heart failure severity, chronic obstructive pulmonary

  20. Effects of ouabain on vascular reactivity

    Directory of Open Access Journals (Sweden)

    Vassallo D.V.

    1997-04-01

    Full Text Available Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension

  1. Adiponectin attenuates angiotensin II-induced vascular smooth muscle cell remodeling through nitric oxide and the RhoA/ROCK pathway.

    Directory of Open Access Journals (Sweden)

    Wared eNour-Eldine

    2016-04-01

    Full Text Available INTRODUCTION: Adiponectin (APN, an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II.METHODS AND RESULTS: Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO, the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor (SNAP, or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 hr Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22phox mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47phox expression. CONCLUSIONS: Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.

  2. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.

    Science.gov (United States)

    OBJECTIVE: Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and i...

  3. Vascular graft infections with Mycoplasma

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J

    1995-01-01

    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis...... that the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  4. Endovascular stent-graft exclusion of aortic dissection combined with renal failure

    International Nuclear Information System (INIS)

    Feng Xiang; Jing Zaiping; Yuan Weijie; Bao Junmin; Zhao Zhiqing; Zhao Jun; Lu Qingsheng

    2003-01-01

    Objective: To investigate the indications and peri-operative management of endovascular graft exclusion of aortic dissection combined with renal failure. Methods: Endovascular graft exclusion for Stanford B type thoracic aortic dissection had been preformed on 136 patients including two complicated with renal failure. Hemodialysis was preformed before operation with the fluid infusion controlled during the operation and bed-side hemodialysis after the operation for the latter. Results: All the 2 cases with renal failure complication were successfully carried out, and the peri-operative metabolism and circulation were kept on smoothly. Conclusions: Under good peri-operative management, patients having aortic dissection combined with renal failure could receive the endovascular graft exclusion of aortic dissection safely

  5. NADPH oxidase 1 deficiency alters caveolin phosphorylation and angiotensin II-receptor localization in vascular smooth muscle.

    Science.gov (United States)

    Basset, Olivier; Deffert, Christine; Foti, Michelangelo; Bedard, Karen; Jaquet, Vincent; Ogier-Denis, Eric; Krause, Karl-Heinz

    2009-10-01

    The superoxide-generating NADPH oxidase NOX1 is thought to be involved in signaling by the angiotensin II-receptor AT1R. However, underlying signaling steps are poorly understood. In this study, we investigated the effect of AngII on aortic smooth muscle from wild-type and NOX1-deficient mice. NOX1-deficient cells showed decreased basal ROS generation and did not produce ROS in response to AngII. Unexpectedly, AngII-dependent Ca(2+) signaling was markedly decreased in NOX1-deficient cells. Immunostaining demonstrated that AT1R was localized on the plasma membrane in wild-type, but intracellularly in NOX1-deficient cells. Immunohistochemistry and immunoblotting showed a decreased expression of AT1R in the aorta of NOX1-deficient mice. To investigate the basis of the abnormal AT1R targeting, we studied caveolin expression and phosphorylation. The amounts of total caveolin and of caveolae were not different in NOX1-deficient mice, but a marked decrease occurred in the phosphorylated form of caveolin. Exogenous H(2)O(2) or transfection of a NOX1 plasmid restored AngII responses in NOX1-deficient cells. Based on these findings, we propose that NOX1-derived reactive oxygen species regulate cell-surface expression of AT1R through mechanisms including caveolin phosphorylation. The lack cell-surface AT1R expression in smooth muscle could be involved in the decreased blood pressure in NOX1-deficient mice.

  6. Role of blood and vascular smooth muscle in the vasoactivity of nitrite

    Science.gov (United States)

    Liu, Taiming; Schroeder, Hobe J.; Barcelo, Lisa; Bragg, Shannon L.; Terry, Michael H.; Wilson, Sean M.; Power, Gordon G.

    2014-01-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. PMID:25108012

  7. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Takahashi, Yoichiro; Watanabe, Hiroyuki; Murakami, Manabu; Ono, Kyoichi; Munehisa, Yoshiko; Koyama, Takashi; Nobori, Kiyoshi; Iijima, Toshihiko; Ito, Hiroshi

    2007-01-01

    We investigated the functional role of STIM1, a Ca 2+ sensor in the endoplasmic reticulum (ER) that regulates store-operated Ca 2+ entry (SOCE), in vascular smooth muscle cells (VSMCs). STIM1 was mainly localized at the ER and plasma membrane. The knockdown of STIM1 expression by small interfering (si) RNA drastically decreased SOCE. In contrast, an EF-hand mutant of STIM1, STIM1 E87A , produced a marked increase in SOCE, which was abolished by co-transfection with siRNA to transient receptor potential canonical 1 (TRPC1). In addition, transfection with siRNA against STIM1 suppressed phosphorylation of cAMP-responsive element binding protein (CREB) and cell growth. These results suggest that STIM1 is an essential component of SOCE and that it is involved in VSMC proliferation

  8. 3,3'Diindolylmethane suppresses vascular smooth muscle cell phenotypic modulation and inhibits neointima formation after carotid injury.

    Directory of Open Access Journals (Sweden)

    Hongjing Guan

    Full Text Available 3,3'Diindolylmethane (DIM, a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms.DIM dose-dependently inhibited the platelet-derived growth factor (PDGF-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK 4/6 as well as an increase in p27(Kip1 levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK3β, extracellular signal-regulated kinase1/2 (ERK1/2, and signal transducers and activators of transcription 3 (STAT3. Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration.These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly mediated by the inhibition of PDGF-Rβ and the

  9. The relevance of aortic endograft prosthetic infection

    NARCIS (Netherlands)

    Cernohorsky, Paul; Reijnen, Michel M. P. J.; Tielliu, Ignace F. J.; van Sterkenburg, Steven M. M.; van den Dungen, Jan J. A. M.; Zeebregts, Clark J.

    Background: Vascular prosthetic graft infection is a severe complication after open aortic aneurysm repair. Reports of infected endografts are scarce. General treatment consensus with infected graft material is that it should be removed completely. The objective of this study was to describe the

  10. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Tong Luo

    Full Text Available The 3D geometry of individual vascular smooth muscle cells (VSMCs, which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation.A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell's initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9 μm, 4.6±0.6 μm and 6.2±1.8 μm (mean±SD. In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle was found to be 8±7.6° with median as 5.7°.A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.

  11. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2018-06-01

    Full Text Available Reactive oxygen species (ROS generated by up-regulated NADPH oxidase (Nox contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA, a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression. Keywords: NADPH oxidase, Epigenetics, HDAC, Histone acetylation, Diabetes

  12. Inhibition of Proliferation of Vascular Smooth Muscle Cells by Cucurbitanes from Momordica charantia.

    Science.gov (United States)

    Tuan, Nguyen Quoc; Lee, Do-Hyung; Oh, Joonseok; Kim, Chung Sub; Heo, Kyung-Sun; Myung, Chang-Seon; Na, MinKyun

    2017-07-28

    The cucurbitaceous plant Momordica charantia L., named "bitter melon", inhabits Asia, Africa, and South America and has been used as a traditional medicine. The atypical proliferation of vascular smooth muscle cells (VSMCs) plays an important role in triggering the pathogenesis of cardiovascular diseases. Platelet-derived growth factor (PDGF) is regarded as the most powerful growth factor in promoting the intimal accumulation of VSMCs. The current study features the identification of six new cucurbitane-type triterpenoids (1-6) from the fruits of M.  charantia, utilizing diverse chromatographic and spectroscopic techniques. In particular, the 2D structure of 1 was confirmed utilizing the long-range HSQMBC NMR pulse, capable of measuring heteronuclear long-range correlations ( 4-6 J CH ). The cucurbitanes were also assessed for their inhibitory activity against PDGF-induced VSMC proliferation. This current study may constitute a basis for developing those chemotypes into sensible pharmacophores alleviating cardiovascular disorders.

  13. Microparticle Shedding by Erythrocytes, Monocytes and Vascular Smooth Muscular Cells Is Reduced by Aspirin in Diabetic Patients.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Suades, Rosa; Padró, Teresa; Vilahur, Gemma; Peña, Esther; Ybarra, Juan; Pou, Jose M; Badimon, Lina

    2016-07-01

    Diabetes mellitus is associated with an enhanced risk for cardiovascular disease and its prevalence is increasing. Diabetes induces metabolic stress on blood and vascular cells, promoting platelet activation and vascular dysfunction. The level of vascular cell activation can be measured by the number and phenotype of microparticles found in the circulation. The aim of this study was to investigate the effect of a platelet-inhibitory dose of aspirin on the number and type of microparticles shed to the circulation. Forty-three diabetic patients were enrolled in the study and received a daily dose of 100mg of aspirin for 10 days to cover the average platelet life-span in the circulation. Before and after the intervention period, circulating microparticles were characterized and quantified by flow cytometry. Type 1 diabetic patients had about twice the number of tissue factor-positive circulating microparticles (derived both from platelets and monocytes) and endothelial-derived E-selectin positive microparticles than type 2 diabetic patients. Aspirin therapy significantly inhibited platelets since cyclooxygenase 1 derived thromboxane generation levels were reduced by 99%. Microparticles derived from erythrocytes, activated monocytes, and smooth muscle cells were significantly reduced after 10 days of aspirin administration. These results indicate that: a) vascular and blood cells in type 1 diabetic patients are exposed to more sustained stress shown by their specific microparticle origin and levels; b) aspirin therapy inhibits vascular wall cell activation and microparticle shedding, and c) the effects of aspirin are similar in type 1 and 2 diabetes. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Acute aortic syndromes: definition, prognosis and treatment options.

    Science.gov (United States)

    Carpenter, S W; Kodolitsch, Y V; Debus, E S; Wipper, S; Tsilimparis, N; Larena-Avellaneda, A; Diener, H; Kölbel, T

    2014-04-01

    Acute aortic syndromes (AAS) are life-threatening vascular conditions of the thoracic aorta presenting with acute pain as the leading symptom in most cases. The incidence is approximately 3-5/100,000 in western countries with increase during the past decades. Clinical suspicion for AAS requires immediate confirmation with advanced imaging modalities. Initial management of AAS addresses avoidance of progression by immediate medical therapy to reduce aortic shear stress. Proximal symptomatic lesions with involvement of the ascending aorta are surgically treated in the acute setting, whereas acute uncomplicated distal dissection should be treated by medical therapy in the acute period, followed by surveillance and repeated imaging studies. Acute complicated distal dissection requires urgent invasive treatment and thoracic endovascular aortic repair has become the treatment modality of choice because of favorable outcomes compared to open surgical repair. Intramural hematoma, penetrating aortic ulcers, and traumatic aortic injuries of the descending aorta harbor specific challenges compared to aortic dissection and treatment strategies are not as uniformly defined as in aortic dissection. Moreover these lesions have a different prognosis. Once the acute period of aortic syndrome has been survived, a lifelong medical treatment and close surveillance with repeated imaging studies is essential to detect impending complications which might need invasive treatment within the short-, mid- or long-term.

  15. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFα-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    International Nuclear Information System (INIS)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNFα)-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNFα-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNFα hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  16. Prevalence, predictors, and prognostic implications of residual impairment of functional capacity after transcatheter aortic valve implantation

    NARCIS (Netherlands)

    M. Abdelghani (Mohammad); R. Cavalcante (Rafael); Y. Miyazaki (Yosuke); R.J. de Winter (Robbert); R. Sarmento-Leite (Rogerio); J.A. Mangione (José A.); A.C. Abizaid (Alexandre); P.A. Lemos Neto (Pedro); P.W.J.C. Serruys (Patrick); F.S. De Brito Jr. (Fabio)

    2017-01-01

    markdownabstractBackground: Patients with degenerative aortic stenosis (AS) referred for transcatheter aortic valve implantation (TAVI) typically have advanced cardiac and vascular adverse remodeling and multiple comorbidities and, therefore, might not recover a normal functional capacity after

  17. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells.

    Science.gov (United States)

    Kucukgul, Can; Ozler, S Burce; Inci, Ilyas; Karakas, Ezgi; Irmak, Ster; Gozuacik, Devrim; Taralp, Alpay; Koc, Bahattin

    2015-04-01

    Cardiovascular diseases are the leading cause of deaths throughout the world. Vascular diseases are mostly treated with autografts and blood vessel transplantations. However, traditional grafting methods have several problems including lack of suitable harvest sites, additional surgical costs for harvesting procedure, pain, infection, lack of donors, and even no substitutes at all. Recently, tissue engineering and regenerative medicine approaches are used to regenerate damaged or diseased tissues. Most of the tissue engineering investigations have been based on the cell seeding into scaffolds by providing a suitable environment for cell attachment, proliferation, and differentiation. Because of the challenges such as difficulties in seeding cells spatially, rejection, and inflammation of biomaterials used, the recent tissue engineering studies focus on scaffold-free techniques. In this paper, the development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold-free biomimetic macrovascular structures. Computer model mimicking a real human aorta is generated using imaging techniques and the proposed computational algorithms. An optimized three-dimensional bioprinting path planning are developed with the proposed self-supported model. Mouse embryonic fibroblast (MEF) cell aggregates and support structures (hydrogels) are 3D bioprinted layer-by-layer according to the proposed self-supported method to form an aortic tissue construct. © 2014 Wiley Periodicals, Inc.

  18. Effect of Oxysterol-Induced Apoptosis of Vascular Smooth Muscle Cells on Experimental Hypercholesterolemia

    Science.gov (United States)

    Perales, Sonia; Alejandre, M. José; Palomino-Morales, Rogelio; Torres, Carolina; Iglesias, Jose; Linares, Ana

    2009-01-01

    Smooth muscle cells (SMCs) undergo changes related to proliferation and apoptosis in the physiological remodeling of vessels and in diseases such as atherosclerosis and restenosis. Recent studies also have demonstrated the vascular cell proliferation and programmed cell death contribute to changes in vascular architecture in normal development and in disease. The present study was designed to investigate the apoptotic pathways induced by 25-hydroxycholesterol in SMCs cultures, using an in vivo/in vitro cell model in which SMCs were isolated and culture from chicken exposed to an atherogenic cholesterol-rich diet (SMC-Ch) and/or an antiatherogenic fish oil-rich diet (SMC-Ch-FO). Cells were exposed in vitro to 25-hydroxycholesterol to study levels of apoptosis and apoptotic proteins Bcl-2, Bcl-XL and Bax and the expression of bcl-2 and bcl-xL, genes. The quantitative real-time reverse transcriptase-polymerase chain reaction and the Immunoblotting western blot analysis showed that 25-hydroxycholesterol produces apoptosis in SMCs, mediated by a high increase in Bax protein and Bax gene expression. These changes were more marked in SMC-Ch than in SMC-Ch-FO, indicating that dietary cholesterol produces changes in SMCs that make them more susceptible to 25-hydroxycholesterol-mediated apoptosis. Our results suggest that the replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of cholesterol-induced changes in the apoptotic pathways induced by 25-hydroxycholesterol in SMCs cultures, making SMCs more resistant to apoptosis. PMID:19727411

  19. Effect of Oxysterol-Induced Apoptosis of Vascular Smooth Muscle Cells on Experimental Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Sonia Perales

    2009-01-01

    Full Text Available Smooth muscle cells (SMCs undergo changes related to proliferation and apoptosis in the physiological remodeling of vessels and in diseases such as atherosclerosis and restenosis. Recent studies also have demonstrated the vascular cell proliferation and programmed cell death contribute to changes in vascular architecture in normal development and in disease. The present study was designed to investigate the apoptotic pathways induced by 25-hydroxycholesterol in SMCs cultures, using an in vivo/in vitro cell model in which SMCs were isolated and culture from chicken exposed to an atherogenic cholesterol-rich diet (SMC-Ch and/or an antiatherogenic fish oil-rich diet (SMC-Ch-FO. Cells were exposed in vitro to 25-hydroxycholesterol to study levels of apoptosis and apoptotic proteins Bcl-2, Bcl-XL and Bax and the expression of bcl-2 and bcl-xL, genes. The quantitative real-time reverse transcriptase-polymerase chain reaction and the Immunoblotting western blot analysis showed that 25-hydroxycholesterol produces apoptosis in SMCs, mediated by a high increase in Bax protein and Bax gene expression. These changes were more marked in SMC-Ch than in SMC-Ch-FO, indicating that dietary cholesterol produces changes in SMCs that make them more susceptible to 25-hydroxycholesterol-mediated apoptosis. Our results suggest that the replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of cholesterol-induced changes in the apoptotic pathways induced by 25-hydroxycholesterol in SMCs cultures, making SMCs more resistant to apoptosis.

  20. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    Science.gov (United States)

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  1. Recurrent Pneumonia due to Double Aortic Arch

    Directory of Open Access Journals (Sweden)

    I. Sedighi

    2012-04-01

    Full Text Available Introduction: Pneumonia is one of the most common infections during childhood. In children with recurrent bacterial pneumonia complete evaluation for underlying factors is necessary. The most common underlying diseases include: antibody deficiencies , cystic fibrosis , tracheoesophageal fistula and increased pulmonary blood flow. Vascular ring and its pressure effect is a less common cause of stridor and recurrent pneumonia. Congenital abnormalities in aortic arch and main branches which form vascular ring around esophagus and trachea with variable pressure effect cause respiratory symptoms such as stridor , wheezing and recurrent pneumoniaCase Report: A 2 year old boy was admitted in our hospital with respiratory distress and cough . Chest x-Ray demonstrated right lobar pneumonia. He had history of stridor and wheezing from neonatal period and hospitalization due to pneumonia for four times. The patient received appropriate antibiotics. Despite fever and respiratory distress improvement, wheezing continued. Review of his medical documents showed fixed pressure effect on posterior aspect of esophagus in barium swallow. In CT angiography we confirmed double aortic arch.Conclusion: Double aortic arch is one of the causes of persistant respiratory symptom and recurrent pneumonia in children for which fluoroscopic barium swallow is the first non-invasive diagnostic method.(Sci J Hamadan Univ Med Sci 2012;19(1:70-74

  2. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels

    Science.gov (United States)

    Duan, Bin; Hockaday, Laura A.; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Heart valve disease is a serious and growing public health problem for which prosthetic replacement is most commonly indicated. Current prosthetic devices are inadequate for younger adults and growing children. Tissue engineered living aortic valve conduits have potential for remodeling, regeneration, and growth, but fabricating natural anatomical complexity with cellular heterogeneity remain challenging. In the current study, we implement 3D bioprinting to fabricate living alginate/gelatin hydrogel valve conduits with anatomical architecture and direct incorporation of dual cell types in a regionally constrained manner. Encapsulated aortic root sinus smooth muscle cells (SMC) and aortic valve leaflet interstitial cells (VIC) were viable within alginate/gelatin hydrogel discs over 7 days in culture. Acellular 3D printed hydrogels exhibited reduced modulus, ultimate strength, and peak strain reducing slightly over 7-day culture, while the tensile biomechanics of cell-laden hydrogels were maintained. Aortic valve conduits were successfully bioprinted with direct encapsulation of SMC in the valve root and VIC in the leaflets. Both cell types were viable (81.4±3.4% for SMC and 83.2±4.0% for VIC) within 3D printed tissues. Encapsulated SMC expressed elevated alpha-smooth muscle actin when printed in stiff matrix, while VIC expressed elevated vimentin in soft matrix. These results demonstrate that anatomically complex, heterogeneously encapsulated aortic valve hydrogel conduits can be fabricated with 3D bioprinting. PMID:23015540

  3. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  4. Prevalence, predictors, and prognostic implications of residual impairment of functional capacity after transcatheter aortic valve implantation

    NARCIS (Netherlands)

    Abdelghani, Mohammad; Cavalcante, Rafael; Miyazaki, Yosuke; de Winter, Robbert J.; Sarmento-Leite, Rogério; Mangione, José A.; Abizaid, Alexandre; Lemos, Pedro A.; Serruys, Patrick W.; de Brito, Fabio S.

    2017-01-01

    Background Patients with degenerative aortic stenosis (AS) referred for transcatheter aortic valve implantation (TAVI) typically have advanced cardiac and vascular adverse remodeling and multiple comorbidities and, therefore, might not recover a normal functional capacity after valve replacement. We

  5. Cellular function and signaling pathways of vascular smooth muscle cells modulated by sphingosine 1-phosphate

    Directory of Open Access Journals (Sweden)

    Takuji Machida

    2016-12-01

    Full Text Available Sphingosine 1-phosphate (S1P plays important roles in cardiovascular pathophysiology. S1P1 and/or S1P3, rather than S1P2 receptors, seem to be predominantly expressed in vascular endothelial cells, while S1P2 and/or S1P3, rather than S1P1 receptors, seem to be predominantly expressed in vascular smooth muscle cells (VSMCs. S1P has multiple actions, such as proliferation, inhibition or stimulation of migration, and vasoconstriction or release of vasoactive mediators. S1P induces an increase of the intracellular Ca2+ concentration in many cell types, including VSMCs. Activation of S1P3 seems to play an important role in Ca2+ mobilization. S1P induces cyclooxygenase-2 expression in VSMCs via both S1P2 and S1P3 receptors. S1P2 receptor activation in VSMCs inhibits inducible nitric oxide synthase (iNOS expression. At the local site of vascular injury, vasoactive mediators such as prostaglandins and NO produced by VSMCs are considered primarily as a defensive and compensatory mechanism for the lack of endothelial function to prevent further pathology. Therefore, selective S1P2 receptor antagonists may have the potential to be therapeutic agents, in view of their antagonism of iNOS inhibition by S1P. Further progress in studies of the precise mechanisms of S1P may provide useful knowledge for the development of new S1P-related drugs for the treatment of cardiovascular diseases.

  6. Nuclear import mechanism for myocardin family members and their correlation with vascular smooth muscle cell phenotype.

    Science.gov (United States)

    Nakamura, Seiji; Hayashi, Ken'ichiro; Iwasaki, Kazuhiro; Fujioka, Tomoaki; Egusa, Hiroshi; Yatani, Hirofumi; Sobue, Kenji

    2010-11-26

    Myocardin (Mycd), which is essential for the differentiation of the smooth muscle cell lineage, is constitutively located in the nucleus, although its family members, myocardin-related transcription factors A and B (MRTF-A/B), mostly reside in the cytoplasm and translocate to the nucleus in response to Rho signaling. The mechanism for their nuclear import is unclear. Here we investigated the mechanism for the nuclear import of Mycd family members and demonstrated any correlation between such mechanism and the phenotype of vascular smooth muscle cells (VSMCs). In cultured VSMCs, the knockdown of importin β1 inhibited the nuclear import of Mycd and MRTF-A/B. Their NH(2)-terminal basic domain was identified as a binding site for importin α/β1 by in vitro analyses. However, Mycd had a higher affinity for importin α/β1 than did MRTF-A/B, even in the absence of G-actin, and Mycd affinity for importin α1/β1 was stronger than for any other importin α/β1 heterodimers. The binding of Mycd to importin α/β1 was insensitive to G-actin, whereas that of MRTF-A/B was differently inhibited by G-actin. In dedifferentiated VSMCs, the levels of importins α1 and β1 were reduced concomitant with down-regulation of Mycd, serum response factor, and smooth muscle cell markers. By contrast, in differentiated VSMCs, their expressions were up-regulated. Thus, the nuclear import of Mycd family members in VSMCs depends on importin α/β1, and their relative affinities for importin α/β1 heterodimers determine Mycd nuclear import. The expression of Mycd nuclear import machineries is related to the expression levels of VSMC phenotype-dependent smooth muscle cell markers.

  7. Vascular Smooth Muscle Cells From Hypertensive Patient-Derived Induced Pluripotent Stem Cells to Advance Hypertension Pharmacogenomics.

    Science.gov (United States)

    Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro

    2015-12-01

    Studies in hypertension (HTN) pharmacogenomics seek to identify genetic sources of variable antihypertensive drug response. Genetic association studies have detected single-nucleotide polymorphisms (SNPs) that link to drug responses; however, to understand mechanisms underlying how genetic traits alter drug responses, a biological interface is needed. Patient-derived induced pluripotent stem cells (iPSCs) provide a potential source for studying otherwise inaccessible tissues that may be important to antihypertensive drug response. The present study established multiple iPSC lines from an HTN pharmacogenomics cohort. We demonstrated that established HTN iPSCs can robustly and reproducibly differentiate into functional vascular smooth muscle cells (VSMCs), a cell type most relevant to vasculature tone control. Moreover, a sensitive traction force microscopy assay demonstrated that iPSC-derived VSMCs show a quantitative contractile response on physiological stimulus of endothelin-1. Furthermore, the inflammatory chemokine tumor necrosis factor α induced a typical VSMC response in iPSC-derived VSMCs. These studies pave the way for a large research initiative to decode biological significance of identified SNPs in hypertension pharmacogenomics. Treatment of hypertension remains suboptimal, and a pharmacogenomics approach seeks to identify genetic biomarkers that could be used to guide treatment decisions; however, it is important to understand the biological underpinnings of genetic associations. Mouse models do not accurately recapitulate individual patient responses based on their genetics, and hypertension-relevant cells are difficult to obtain from patients. Induced pluripotent stem cell (iPSC) technology provides a great interface to bring patient cells with their genomic data into the laboratory and to study hypertensive responses. As an initial step, the present study established an iPSC bank from patients with primary hypertension and demonstrated an effective

  8. Reversal of sodium pump inhibitor induced vascular smooth muscle contraction with digibind. Stoichiometry and its implications.

    Science.gov (United States)

    Krep, H H; Graves, S W; Price, D A; Lazarus, M; Ensign, A; Soszynski, P A; Hollenberg, N K

    1996-01-01

    The possibility that a circulating sodium pump inhibitor contributes to the pathogenesis of volume-dependent hypertension via an action on vascular smooth muscle (VSM) is supported by multiple lines of investigation, but remains controversial. We had two goals in this study. The first was to compare the pattern of contractile response of rabbit aorta induced by two candidates, ouabain and a labile sodium pump inhibitor that we have identified in the peritoneal dialysate of volume-expanded hypertensive patients with chronic renal failure. Our second goal was to examine the ability of Digibind, a Fab fragment of antisera directed against digoxin, to reverse VSM contraction induced by both agents. Ouabain induced a concentration-dependent contraction, which was delayed in onset, was gradual, and reached a stable plateau after many hours. The labile sodium pump inhibitor induced a qualitatively similar series of responses. Digibind rapidly reversed the contractile responses to both sodium pump inhibitors, with a rate of relaxation that matched that induced by physical removal of the pump inhibitor from the bath. For ouabain, the Digibind:ouabain stoichiometry was highly predictable. When Digibind was present in a molar concentration equivalent to that of ouabain, or less, it had no effect. When the Digibind concentration was twice that of ouabain, complete relaxation occurred. Although the concentration:VSM response relationship for ouabain was steep, the concentration:effect interaction with Digibind was even more steep. The molar concentration of Digibind required to reverse the effects of the labile endogenous inhibitor from peritoneal dialysate was consistently lower than that for ouabain, which is compatible with either greater potency of the labile factor in VSM or greater affinity for Digibind. These findings are compatible with a role for one or more endogenous sodium pump inhibitors as the determinant of vascular smooth muscle tone in the volume

  9. [Modern aortic surgery in Marfan syndrome--2011].

    Science.gov (United States)

    Kallenbach, K; Schwill, S; Karck, M

    2011-09-01

    Marfan syndrome is a hereditary disease with a prevalence of 2-3 in 10,000 births, leading to a fibrillin connective tissue disorder with manifestations in the skeleton, eye, skin, dura mater and in particular the cardiovascular system. Since other syndromes demonstrate similar vascular manifestations, but therapy may differ significantly, diagnosis should be established using the revised Ghent nosology in combination with genotypic analysis in specialized Marfan centres. The formation of aortic root aneurysms with the subsequent risk of acute aortic dissection type A (AADA) or aortic rupture limits life expectancy in patients with Marfan syndrome. Therefore, prophylactic replacement of the aortic root needs to be performed before the catastrophic event of AADA can occur. The goal of surgery is the complete resection of pathological aortic tissue. This can be achieved with excellent results by using a (mechanically) valved conduit that replaces both the aortic valve and the aortic root (Bentall operation). However, the need for lifelong anticoagulation with Coumadin can be avoided using the aortic valve sparing reimplantation technique according to David. The long-term durability of the reconstructed valve is favourable, and further technical improvements may improve longevity. Although results of prospective randomised long-term studies comparing surgical techniques are lacking, the David operation has become the surgical method of choice for aortic root aneurysms, not only at the Heidelberg Marfan Centre. Replacement of the aneurysmal dilated aortic arch is performed under moderate hypothermic circulatory arrest combined with antegrade cerebral perfusion using a heart-lung machine, which we also use in thoracic or thoracoabdominal aneurysms. Close post-operative follow-up in a Marfan centre is pivotal for the early detection of pathological changes on the diseased aorta.

  10. Pre- and Postoperative Imaging of the Aortic Root

    Science.gov (United States)

    Chan, Frandics P.; Mitchell, R. Scott; Miller, D. Craig; Fleischmann, Dominik

    2016-01-01

    Three-dimensional datasets acquired using computed tomography and magnetic resonance imaging are ideally suited for characterization of the aortic root. These modalities offer different advantages and limitations, which must be weighed according to the clinical context. This article provides an overview of current aortic root imaging, highlighting normal anatomy, pathologic conditions, imaging techniques, measurement thresholds, relevant surgical procedures, postoperative complications and potential imaging pitfalls. Patients with a range of clinical conditions are predisposed to aortic root disease, including Marfan syndrome, bicuspid aortic valve, vascular Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Various surgical techniques may be used to repair the aortic root, including placement of a composite valve graft, such as the Bentall and Cabrol procedures; placement of an aortic root graft with preservation of the native valve, such as the Yacoub and David techniques; and implantation of a biologic graft, such as a homograft, autograft, or xenograft. Potential imaging pitfalls in the postoperative period include mimickers of pathologic processes such as felt pledgets, graft folds, and nonabsorbable hemostatic agents. Postoperative complications that may be encountered include pseudoaneurysms, infection, and dehiscence. Radiologists should be familiar with normal aortic root anatomy, surgical procedures, and postoperative complications, to accurately interpret pre- and postoperative imaging performed for evaluation of the aortic root. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26761529

  11. Expression profile and protein translation of TMEM16A in murine smooth muscle

    DEFF Research Database (Denmark)

    Davis, Alison J; Forrest, Abigail S; Jepps, Thomas Andrew

    2010-01-01

    Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) chan...

  12. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  13. Comparison of vasodilator drug prazosin with digoxin in aortic regurgitation.

    Science.gov (United States)

    Hockings, B E; Cope, G D; Clarke, G M; Taylor, R R

    1980-01-01

    Intravenous administration of the vasodilator sodium nitroprusside has beneficial haemodynamic effects in subjects with severe aortic regurgitation while acute digitalisation can produce unwanted effects associated with an increase in systemic vascular resistance. This study compares the haemodynamic effects of the vasodilator prazosin and digoxin in eight patients with isolated severe aortic regurgitation. Prazosin 5 mg orally resulted in a 12 +/- 3 (SE) per cent increase in cardiac index (thermodilution), maintained over four to six hours, while digoxin 0.75 mg intravenously did not change the cardiac index. Prazosin reduced mean arterial pressure by 9 +/- 3 mmHg and systemic vascular resistance by 18 +/- 4 per cent while digoxin resulted in a 6 +/- 2 per cent increase in the latter. Mean pulmonary capillary wedge pressure fell 3 mmHg with prazosin. In this group of patients with severe aortic regurgitation but without severe cardiac failure, the changes with either drug, studied in doses conventionally used, were small but those with prazosin were directionally more desirable than those resulting from digoxin. PMID:7378215

  14. Right cervical aortic arch with aberrant left subclavian artery.

    Science.gov (United States)

    Tjang, Yanto S; Aramendi, José I; Crespo, Alejandro; Hamzeh, Gadah; Voces, Roberto; Rodríguez, Miguel A

    2008-08-01

    The combination of right cervical aortic arch, aberrant retroesophageal left subclavian artery originating from a Kommerell's diverticulum, and a ligamentum arteriosum, constitutes a rare form of vascular ring. Two patients aged 21 days and 54 years, who were diagnosed by multislice 3-dimensional computed tomography and magnetic resonance imaging, underwent surgical division of a vascular ring. The adult required resection of a Kommerell's aneurysm and subclavian artery reimplantation.

  15. Vascular ring presenting as dysphagia in an adult woman: a case report.

    Science.gov (United States)

    Powell, B L

    2017-01-01

    A 48-year-old woman was seen in a surgical outpatient clinic with a 2 year history of progressive dysphagia with occasional regurgitation, partially controlled with a proton pump inhibitor. Primary investigations of pH testing and gastroscopy were normal, although a barium swallow study revealed significant hold-up at the aortic arch impression and a posterior right-sided oesophageal impression suggestive of a right-sided aortic arch. A follow-up computed tomography angiogram discovered a vascular ring encircling the trachea and oesophagus, formed by a right-sided aortic arch with aberrant aortic branches, and a Kommerell's diverticulum. It was deemed that the patient's symptoms were related to this vascular ring. The patient underwent stage-one surgery - an extra-anatomic bypass of the double aortic arch and right subclavian artery - and 4 months later a stent graft insertion over the origin of the diverticulum with the aim of complete symptomatic relief. This case presents a common symptom familiar to any clinician (dysphagia), which has been caused by a rare pathology. It is even more unusual that this should present itself in adulthood.

  16. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer

    International Nuclear Information System (INIS)

    Larson, D.M.; Sheridan, J.D.

    1985-01-01

    Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In continuing studies on intercellular communication in vessel wall cells, the authors have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, the authors have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, they have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of ''myo-endothelial'' junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature

  17. Inhibition of MAPK and PKC pathways by 60Co γ-radiation in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Jia Guanghong; Ma Yexin; Xiao Jianming

    2002-01-01

    Objective: To investigate the signal transduction pathways inhibited by 60 Co γ-radiation in cultured vascular smooth muscle cells (VSMC). Methods: The cultured VSMC were irradiated with 60 Co γ-radiation of 3.5, 7.0 and 14 Gy respectively. VSMC proliferation was measured by 3 H-TdR incorporation, while PKC, MAPK activities were determined by radioactivity assay. Results: Proliferation of VSMC was inhibited by 7.0, 14 Gy 60 Co γ-irradiation and the activities of PKC, MAPK were decreased significantly. Conclusion: Inhibitory effect of 7.0, 14 Gy 60 Co γ-irradiation on proliferation of VSMC might be resulted from decrease of the activity of PKC, MAPK

  18. Cardiac and vascular changes in elderly atherosclerotic mice: the influence of gender

    Directory of Open Access Journals (Sweden)

    Pereira Thiago MC

    2010-08-01

    Full Text Available Abstract Background Although advanced age is considered a risk factor for several diseases, the impact of gender on age-associated cardiovascular diseases, such as atherosclerotic processes and valvular diseases, remains not completely clarified. The present study was designed to assess aortic valve morphology and function and vascular damage in elderly using the apolipoprotein E knockout (ApoE KO mouse. Our hypothesis was that advanced age-related cardiovascular changes are aggravated in atherosclerotic male mice. Methods The grade (0 to 4 of aortic regurgitation was evaluated through angiography. In addition, vascular lipid deposition and senescence were evaluated through histochemical analyses in aged male and female ApoE KO mice, and the results were compared to wild-type C57BL/6J (C57 mice. Results Aortic regurgitation was observed in 92% of the male ApoE KO mice and 100% of the male C57 mice. Comparatively, in age-matched female ApoE KO and C57 mice, aortic regurgitation was observed in a proportion of 58% and 53%, respectively. Histological analysis of the aorta showed an outward (positive remodeling in ApoE KO mice (female: 1.86 ± 0.15; male: 1.89 ± 0.68 using C57 groups as reference values. Histochemical evaluation of the aorta showed lipid deposition and vascular senescence only in the ApoE KO group, which were more pronounced in male mice. Conclusion The data show that male gender contributes to the progression of aortic regurgitation and that hypercholesterolemia and male gender additively contribute to the occurrence of lipid deposition and vascular senescence in elderly mice.

  19. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    Science.gov (United States)

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  20. Bone marrow stromal and vascular smooth muscle cells have chemosensory capacity via bitter taste receptor expression.

    Directory of Open Access Journals (Sweden)

    Troy C Lund

    Full Text Available The ability of cells to detect changes in the microenvironment is important in cell signaling and responsiveness to environmental fluctuations. Our interest is in understanding how human bone marrow stromal-derived cells (MSC and their relatives, vascular smooth muscle cells (VSMC, interact with their environment through novel receptors. We found, through a proteomics screen, that MSC express the bitter taste receptor, TAS2R46, a protein more typically localized to the taste bud. Expression was also confirmed in VSMCs. A prototypical bitter compound that binds to the bitter taste receptor class, denatonium, increased intracellular calcium release and decreased cAMP levels as well as increased the extracellular release of ATP in human MSC. Denatonium also bound and activated rodent VSMC with a change in morphology upon compound exposure. Finally, rodents given denatonium in vivo had a significant drop in blood pressure indicating a vasodilator response. This is the first description of chemosensory detection by MSC and VSMCs via a taste receptor. These data open a new avenue of research into discovering novel compounds that operate through taste receptors expressed by cells in the marrow and vascular microenvironments.

  1. Vascular mechanism of action of endothelin-1: Effect of Ca2+ antagonists

    International Nuclear Information System (INIS)

    Chabrier, P.E.; Auguet, M.; Roubert, P.; Lonchampt, M.O.; Gillard, V.; Guillon, J.M.; Delaflotte, S.; Braquet, P.

    1989-01-01

    The vasoconstrictive properties of the endothelium-derived peptide, endothelin-1 (ET-1), were investigated on rat isolated aorta and on cultured rat aortic smooth muscle cells. In rat isolated aorta, endothelin-1 induced a slow and sustained contraction in a Ca2+-free medium; after calcium readmission, an additional sustained contraction was elicited. In vascular smooth muscle cells, endothelin-1 provoked a dose-dependent Ca2+ influx that was not inhibited by calcium entry blockers (nifedipine, D 600, or diltiazem). In these cells, [ 125 I]-endothelin-1 bound to a specific, saturable, and high affinity recognition site (Kd about 10(-9) M and Bmax = 52 +/- 2 fmol/10(6) cells). The binding was not reversible and not affected by calcium antagonists. These data do not support the hypothesis that endothelin-1 acts as an endogenous agonist of the voltage-dependent Ca2+ channels. The action of endothelin-1 can be separated into two components: one dependent on Ca2+ influx but insensitive to calcium antagonists and another independent of extracellular Ca2+. The irreversible binding of endothelin-1 may reflect an internalization of the ligand inside the cell membrane, leading to multiple contractile events

  2. Morphometric changes in the aortic arch with advancing age in fetal to mature thoroughbred horses.

    Science.gov (United States)

    Endoh, Chihiro; Matsuda, Kazuya; Okamoto, Minoru; Tsunoda, Nobuo; Taniyama, Hiroyuki

    2017-03-28

    Aortic rupture is a well recognized cause of sudden death in thoroughbred horses. Some microscopic lesions, such as those caused by cystic medial necrosis and medionecrosis, can lead to aortic rupture. However, these microscopic lesions are also observed in normal horses. On the other hand, a previous study of aortic rupture suggested that underlying elastin and collagen deposition disorders might be associated with aortic rupture. Therefore, the purpose of this study was to compare the structural components of the tunica media of the aortic arch, which is composed of elastin, collagen, smooth muscle cells and mucopolysaccharides (MPS), in fetal to mature thoroughbred horses. The percentage area of elastin was greatest in the young horses and subsequently decreased with aging. The percentage area of collagen increased with aging, and the elderly horses (aged ≥20) exhibited significantly higher percentage areas of collagen than the young horses. The percentage area of smooth muscle cells did not change with age. The percentage area of MPS was inversely proportional to the percentage area of elastin. The fetuses exhibited a markedly larger percentage area of MPS than the mature horses. We concluded that the medial changes seen in the aortic arch, which included a reduction in the amount of elastin and increases in the amounts of collagen and MPS, were age-related variations.

  3. Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE-/- mice as well as smooth muscle cells.

    Science.gov (United States)

    Wang, Zhaojun; Wang, Zhongqun; Zhu, Jie; Long, Xinguang; Yan, Jinchuan

    2018-02-01

    Background and objectives Vascular calcification is a common complication in atherosclerosis. Accumulating evidence showed that Toll-like receptors (TLRs) mediate pro-inflammatory and atherosclerosis. Recent studies demonstrated that vascular calcification is one of the detrimental effects of vitamin K (Vit K) antagonists. However, the effects of Vit K on the expression of TLR2 and 4 and intimal calcification in artery remained unidentified. Methods and results Eighteen ApoE -/- mice were randomly divided into model group, Vit K-treated group, and control group. The mice of model and Vit K-treated group were fed with high-fat diet, while control group mice were fed with normal diet. Mice of Vit K-treated group were administered orally with vitamin K2 (40 mg.kg -1 .day -1 ) for 12 weeks. Twelve weeks later the aortic sections of mice were acquired and stained with hematoxylin and eosin and von Kossa, respectively. Calcium content and activity of alkaline phosphatase (ALP) at aortic tissues were measured. The expression levels of TLR2 and TLR4 in aorta sections were detected by immunohistochemisty and RT-PCR, respectively. The effects of Vit K on cellular calcification were further studied in A7r5 SMCs. Results demonstrated that high-fat diet induced typical atherosclerosis with intimal calcification in ApoE -/- mice, while in Vit K-treated group atherosclerosis and calcium deposits were not serious; Vit K2 also inhibited cellular calcification in A7r5 SMCs. Quantitative analysis showed that calcium and ALP activity at aortic tissues in the Vit K-treated mice were significantly lower than that of the model group ( P < 0.01); Compared to the control group, the expression levels of TLR2 and TLR4 in the model group were significantly higher ( P < 0.05), while in Vit K-treated group the levels of TLR2 and 4 were significantly lower than that in the model group. Furthermore, the content of calcium was positively related to the expression levels of TLR2 and TLR4

  4. Inflammatory aortic arch syndrome: contrast-enhanced, three-dimensional MR - angiography in stenotic lesions

    International Nuclear Information System (INIS)

    Both, M.; Mueller-Huelsbeck, S.; Biederer, J.; Heller, M.; Reuter, M.

    2004-01-01

    Purpose: To determine the value of contrast-enhanced, three-dimensional MR angiography for the evaluation of stenotic and occlusive vascular lesions in inflammatory aortic arch syndrome. Materials and Methods: 14 patients with inflammatory aortic arch syndrome (giant cell arteritis: n = 8, Takayasu arteritis: n = 4, ankylosing spondylitis: n = 1 sarcoidosis: n = 1) underwent MR angiography of the aortic arch and the supra-aortic vessels (n = 15,2 patients were examined twice) and of the abdominal aorta (n = 2). MRA was performed using a 3D-FLASH sequence (TR/TE 4.6/1.8 ms, flip angle 30 ) on a 1.5T system. MRA imaging was compared with the findings of DSA, which served as gold standard. Results: In a total of 467 examined vascular territories, DSA revealed 50 stenoses and 35 occlusions. All lesions were detected by MRA. In 23 segments, the degree of stenosis was overestimated by MRA. Sensitivity and specificity of MRA were 100% and 94,3%, positive and negative predictive values were 73.6 and 100%, and the accuracy was 95,1%. Conclusions: Despite a tendency to overestimate stenoses, contrast-enhanced three-dimensional MR angiography is a valid, non-invasive technique in the assessment of inflammatory aortic arch syndrome. (orig.) [de

  5. Lipid Metabolism in Vascular Smooth Muscle Cells Infuenced by HCMV Infection

    Directory of Open Access Journals (Sweden)

    Lingfang Li

    2016-10-01

    Full Text Available Background: The present study was designed to observe the infection of human cytomegalovirus (HCMV to human vascular smooth muscle cells (VSMCs, and the effect of viral infection on lipid metabolism in VSMCs. Methods: The cytopathic effects were observed by inverted microscopy and viral infection were examined by electron microscopy and RT-PCR. The lipid metabolism related gene profiling of VSMCs after HCMV infection was assayed by cDNA assay and the abnormal expression of genes were validated by quantitative RT-PCR. The content of cholesterol in VSMCs after HCMV infection was assayed by cholesterol detection kit. Results: VSMCs showed obvious cytopathic effects after HCMV infection. Intact viral particles could be detected in VSMCs using electron microscope. By use of RT-PCR technology, IE gene of HCMV could be amplified from VSMCs. The expression of cell lipid metabolism related gene profiling showed obvious disorders. The expression levels of HMG-CoA synthase and HMG-CoA reductase after infection increased significantly. The cellular cholesterol content (µmol/106 cells was significantly higher than that of mock infected group at 72h post infection. Conclusion: HCMV can infect VSMCs and the infection can affect cellular lipid metabolism related gene expression, which get involved in the occurrence and development of atherosclerosis (AS.

  6. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    International Nuclear Information System (INIS)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91 st day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E max of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic

  7. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com

    2014-10-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic

  8. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    Science.gov (United States)

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  9. A Case of an Aortic Abscess around the Elephant Trunk.

    Science.gov (United States)

    Fujii, Takeshiro; Kawasaki, Muneyasu; Katayanagi, Tomoyuki; Okuma, Shinnosuke; Masuhara, Hiroshi; Shiono, Noritsugu; Watanabe, Yoshinori

    2015-01-01

    A 52-year-old male patient with a history of total arch replacement using the elephant trunk technique for acute aortic dissection 4 years before visited our hospital with the chief complaint of persistent fever. Chest computed tomography (CT) suggested prosthetic vascular graft infection, which was treated surgically after chemotherapy. The first surgery consisted of debridement of an abscess around the vascular graft and in the aorta around the elephant trunk, and thoracic descending aorta replacement and vacuum-assisted closure (VAC) in view of the risk of bleeding from the peripheral region of the elephant trunk. One week later, omental filling was performed as the second step. This is a very rare case of aortic abscess around the elephant trunk that could successfully be managed by graft-conserving treatment.

  10. Aortic-Brachial Pulse Wave Velocity Ratio: A Measure of Arterial Stiffness Gradient Not Affected by Mean Arterial Pressure.

    Science.gov (United States)

    Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen

    2018-03-01

    Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient

  11. Vascular effects of 3-carbomethoxypyridine on rabbit aortic smooth ...

    African Journals Online (AJOL)

    treatment of stomach colic, dysmenorrhea and threatened abortion (Agbakwuru et al, 1988; Mesia et al, 2005). There are reports showing that the leaves have anti-malarial activity (Mesia et al, 2005). Also, aqueous extracts of the leaves have been shown to reduce gastric ulcer in experimental animals Aguwa and Mittal ...

  12. Current Role of Imaging in Diagnosing Aortic Graft Infections

    NARCIS (Netherlands)

    Bruggink, Janneke L. M.; Slart, Riemer H. J. A.; Pol, Jillis A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2011-01-01

    Vascular prosthetic graft infection is a rare but serious complication after aortic graft replacement, with high morbidity and mortality rates. Therefore, adequate diagnostics are needed to detect and treat these infections as early as possible. Several imaging modalities provide different

  13. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Clinical applications of robotic technology in vascular and endovascular surgery.

    Science.gov (United States)

    Antoniou, George A; Riga, Celia V; Mayer, Erik K; Cheshire, Nicholas J W; Bicknell, Colin D

    2011-02-01

    Emerging robotic technologies are increasingly being used by surgical disciplines to facilitate and improve performance of minimally invasive surgery. Robot-assisted intervention has recently been introduced into the field of vascular surgery to potentially enhance laparoscopic vascular and endovascular capabilities. The objective of this study was to review the current status of clinical robotic applications in vascular surgery. A systematic literature search was performed in order to identify all published clinical studies related to robotic implementation in vascular intervention. Web-based search engines were searched using the keywords "surgical robotics," "robotic surgery," "robotics," "computer assisted surgery," and "vascular surgery" or "endovascular" for articles published between January 1990 and November 2009. An evaluation and critical overview of these studies is reported. In addition, an analysis and discussion of supporting evidence for robotic computer-enhanced telemanipulation systems in relation to their applications in laparoscopic vascular and endovascular surgery was undertaken. Seventeen articles reporting on clinical applications of robotics in laparoscopic vascular and endovascular surgery were detected. They were either case reports or retrospective patient series and prospective studies reporting laparoscopic vascular and endovascular treatments for patients using robotic technology. Minimal comparative clinical evidence to evaluate the advantages of robot-assisted vascular procedures was identified. Robot-assisted laparoscopic aortic procedures have been reported by several studies with satisfactory results. Furthermore, the use of robotic technology as a sole modality for abdominal aortic aneurysm repair and expansion of its applications to splenic and renal artery aneurysm reconstruction have been described. Robotically steerable endovascular catheter systems have potential advantages over conventional catheterization systems

  15. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luo, Di-xian; Xia, Cheng-lai; Li, Jun-mu; Xiong, Yan; Yuan, Hao-yu; TANG, Zhen-Wang; Zeng, Yixin; Liao, Duan-fang

    2010-01-01

    Research highlights: → Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. → Static pressure induces SREBP-1 activation. → Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. → Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. → Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 ± 2.8 mg/g, 31.8 ± 0.7 mg/g, 92.3 ± 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 ± 9.4 mg/g, 235.9 ± 3.0 mg/g, 386.7 ± 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static

  16. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Di-xian, E-mail: luodixian_2@163.com [Department of Pharmacology, School of Pharmaceutics, Central South University, Changsha 410083, Hunan (China); Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); First People' s Hospital of Chenzhou City, Chenzhou 423000, Hunan (China); Xia, Cheng-lai [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Department of Pharmacy, Third Affiliated Hospital Medical College of Guangzhou, Guangzhou 510150, Guangdong (China); Li, Jun-mu [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Xiong, Yan [Department of Pharmacology, School of Pharmaceutics, Central South University, Changsha 410083, Hunan (China); Yuan, Hao-yu [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Lusong Center for Disease Control and Prevention, Zhuzhou 412000, Hunan (China); TANG, Zhen-Wang; Zeng, Yixin [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Liao, Duan-fang, E-mail: dfliao66@yahoo.com.cn [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Department of Traditional Chinese Diagnostics, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 420108, Hunan (China)

    2010-12-03

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were

  17. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  18. Supra-aortic interventions for endovascular exclusion of the entire aortic arch.

    Science.gov (United States)

    Andrási, Terézia B; Grossmann, Marius; Zenker, Dieter; Danner, Bernhard C; Schöndube, Friedrich A

    2017-07-01

    ) but not with mortality (R 2  = .10; P = .214). Because early mortality was significantly higher in patients receiving endovascular treatment for proximal aortic disease, endovascular-based approaches proved to be feasible alternatives to hybrid surgical procedures, especially when they were performed for aneurysms located in the distal aortic arch. Whereas cerebral ischemia accompanies both surgical and endovascular involvement of the supra-aortic vessels, endoleaks and aneurysm growth remain hallmarks of endovascular supra-aortic repair. Because surgical revision had no impact on mortality, complete surgical debranching may become the option of choice for patients with good life expectancy suffering from proximal aortic arch disease, whereas total endovascular procedures could be particularly advantageous in patients with short life expectancy and distal aortic arch disease. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    Science.gov (United States)

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification.

  20. PHYSICAL CONTACT BETWEEN HUMAN VASCULAR ENDOTHELIAL AND SMOOTH MUSCLE CELLS MODULATES CYTOSOLIC AND NUCLEAR CALCIUM HOMEOSTASIS.

    Science.gov (United States)

    Hassan, Ghada S; Jacques, Danielle; D'Orleans-Juste, Pedro; Magder, Sheldon; Bkaily, Ghassan

    2018-05-14

    The interaction between vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) plays an important role in the modulation of vascular tone. There is however no information on whether direct physical communication regulates the intracellular calcium levels of human VECs (hVECs) and/or hVSMCs . Thus, the objective of the study is to verify whether co-culture of hVECs and hVSMCs modulates cytosolic ([Ca2+]c) and nuclear calcium ([Ca2+]n) levels via physical contact and/or factors released by both cell types. Quantitative 3D confocal microscopy for [Ca2+]c and [Ca2+]n measurement was performed in cultured hVECs or hVSMCs or in co-culture of hVECs-hVSMCs. Our results show that: 1) physical contact between hVECs-hVECs or hVSMCs-hVSMCs does not affect [Ca2+]c and [Ca2+]n in these two cell types; 2) physical contact between hVECs and hVSMCs induces a significant increase only of [Ca2+]n of hVECs without affecting the level of [Ca2+]c and [Ca2+]n of hVSMCs; and 3) preconditioned culture medium of hVECs or hVSMCs does not affect [Ca2+]c and [Ca2+]n of both types of cells. We concluded that physical contact between hVECs and hVSMCs only modulates [Ca2+]n in hVECs. The increase of [Ca2+]n in hVECs may modulate nuclear functions that are calcium dependent.

  1. Vascular geometry as a risk factor for non-penetrating traumatic injuries of the aortic arch.

    Directory of Open Access Journals (Sweden)

    Andreas Schicho

    Full Text Available To assess biomechanical factors in aortic arch geometry contributing to the development of non-penetrating aortic arch injury (NAAI in multiply injured patients with an Injury Severity Score (ISS ≥ 16.230 consecutive multiply injured trauma patients with an ISS ≥ 16 admitted to our Level-I trauma center during a consecutive 24-month period were prospectively included of whom 13 presented with NAAI (5.7%. Standardized whole-body CT in a 2x128-detector-row scanner included a head-and-neck CTA. Aortic arch diameters, width, height, angles and thoracic width and height were measured in individuals with NAAI and ISS-, sex-, age-, and trauma mechanism-matched controls.There was no difference between groups regarding sex, age, ISS, and aortic diameters. The aortic arch angle in individuals with NAAI (71.3° ± 14.9° was larger than in healthy control (60.7° ± 8.6°; p*<0.05. In patients with NAAI, the distance between ascendent and descendent aorta was larger (5.2 cm ± 1.9 cm than in control (2.8 ± 0.5 cm; ***p<0.001. The aortic arch is higher above tracheal bifurcation in NAAI (3.6 cm ± 0.6 cm than in matched control (2.4 cm ± 0.3 cm; ***p<0.001. Accordingly, the area under the aortic arch, calculated as half of an eliptic shape, is significantly larger in patients with NAAI (15.0 cm2 ± 6.5 cm2 when compared to age- and sex-matched controls without NAAI (5.5 cm2 ± 1.3 cm2; ***p<0.001.Besides the magnitude of deceleration and direction of impact, width and height of the aortic arch are the 3rd and 4th factor directly contributing to the risk of developing traumatic NAAI in severely injured patients.

  2. Will Transcatheter Aortic Valve Replacement (TAVR be the Primary Therapy for Aortic Stenosis?

    Directory of Open Access Journals (Sweden)

    Jose F. Condado, MD, MS

    2016-05-01

    Full Text Available Transcatheter aortic valve replacement (TAVR is increasingly used for the treatment of high or very high surgical risk patients with severe aortic stenosis (AS or failing surgical bioprosthesis (valve-in-valve, VIV-TAVR. In TAVR, the collapsed transcatheter heart valve (THV is introduced using the delivery system inserted from the femoral artery (preferred or other alternative accesses (transapical, transaortic, transcarotid, subclavian/transinnominate or transcaval. The delivery system is then advanced until coaxially aligned with the aortic annulus, where the THV is deployed. This procedure can be associated with complications such as access site injury (vascular complication, paravalvar leak, cerebrovascular events and conduction disturbances. However, the rapid acceptance and successes observed with TAVR have been made possible through careful patient selection, preprocedural planning (i.e. MDCT annular sizing, THV technology (i.e. new generation valves, and procedural techniques (i.e. minimalist TF-TAVR and alternative percutaneous access options, as well as a decrease in complications as TAVR experience grows. Though the results or ongoing clinical trials evaluating TAVR in intermediate surgical risk patients are pending, it is likely that TAVR will soon be approved for lower risk patients as well.

  3. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1α expression

    International Nuclear Information System (INIS)

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-01-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.

  4. Vascular Rupture Caused by a Molding Balloon during Endovascular Aneurysm Repair: Case Report

    International Nuclear Information System (INIS)

    Lee, Hee Young; Do, Young Soo; Park, Hong Suk; Park, Kwang Bo; Kim, Young Wook; Kim, Dong Ik

    2011-01-01

    Endovascular aneurysm repair (EVAR) has been accepted as an alternative to traditional open surgery in selected patients. Despite the minimally invasiveness of this treatment, several complications may occur during or after EVAR. Complications include endoleak, aortic dissection, distal embolism, or iatrogenic injury to the access artery. However, there are few reports on the vascular rupture caused by a molding balloon during EVAR. We report two cases of infrarenal abdominal aortic aneurysms complicated by procedure-related aortic or iliac artery rupture by the molding balloon during EVAR. In our cases, we observed suddenly abrupt increase of the diameter of the endograft during balloon inflation, because we inflated the balloon rapidly. In conclusion, careful attention must be paid during inflation of the molding balloon to prevent vascular rupture.

  5. Valve-sparing aortic root replacement†.

    Science.gov (United States)

    Koolbergen, David R; Manshanden, Johan S J; Bouma, Berto J; Blom, Nico A; Mulder, Barbara J M; de Mol, Bas A J M; Hazekamp, Mark G

    2015-02-01

    To evaluate our results of valve-sparing aortic root replacement and associated (multiple) valve repair. From September 2003 to September 2013, 97 patients had valve-sparing aortic root replacement procedures. Patient records and preoperative, postoperative and recent echocardiograms were reviewed. Median age was 40.3 (range: 13.4-68.6) years and 67 (69.1%) were male. Seven (7.2%) patients were younger than 18 years, the youngest being 13.4 years. Fifty-four (55.7%) had Marfan syndrome, 2 (2.1%) other fibrous tissue diseases, 15 (15.5%) bicuspid aortic valve and 3 (3.1%) had earlier Fallot repair. The reimplantation technique was used in all, with a straight vascular prosthesis in 11 (26-34 mm) and the Valsalva prosthesis in 86 (26-32 mm). Concomitant aortic valve repair was performed in 43 (44.3%), mitral valve repair in 10 (10.3%), tricuspid valve repair in 5 (5.2%) and aortic arch replacement in 3 (3.1%). Mean follow-up was 4.2 ± 2.4 years. Follow-up was complete in all. One 14-year old patient died 1.3 years post-surgery presumably of ventricular arrhythmia. One patient underwent reoperation for aneurysm of the proximal right coronary artery after 4.9 years and 4 patients required aortic valve replacement, 3 of which because of endocarditis after 0.1, 0.8 and 1.3 years and 1 because of cusp prolapse after 3.8 years. No thrombo-embolic complications occurred. Mortality, root reoperation and aortic regurgitation were absent in 88.0 ± 0.5% at 5-year follow-up. Results of valve-sparing root replacement are good, even in association with a high incidence of concomitant valve repair. Valve-sparing aortic root replacement can be performed at a very young age as long as an adult size prosthesis can be implanted. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Perez-Vizcaino, Francisco; Bishop-Bailley, David; Lodi, Federica; Duarte, Juan; Cogolludo, Angel; Moreno, Laura; Bosca, Lisardo; Mitchell, Jane A.; Warner, Timothy D.

    2006-01-01

    Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries. The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPARγ, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin

  7. Inhibition of NF-κB activity in rabbit vascular smooth muscle cells by lovastatin

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Lan Xiaoli

    2003-01-01

    Nuclear factor NF-κB is believed to play an important role in regulating the production of matrix metalloproteinase (MMPs), which induce atherosclerosis, restenosis and plaque rupture. We incubated rabbit vascular smooth muscle cells (RVSMCs) with 5 μmol/L lovastatin in the presence of IL-1-α and PDGF BB (20 μg/L, respectively) to study whether lovastatin inhibited NF-κB binding activity induced by IL-1 and PDGF. The NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-1 and MMP-3 were measured by western blotting; and MMP-9 was detected by zymography. The result showed that lovastatin strongly reduced NF-κB activity upregulated by IL-1 combined with PDGF, and lovastatin also dose-dependently inhibited the expression of MMP-1, -3 and -9 induced by IL-1 and PDGF. It suggested that the beneficial effects of statins may extend to mechanisms beyond cholesterol reduction

  8. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model.

    Directory of Open Access Journals (Sweden)

    Kelly E Beazley

    Full Text Available Cartilaginous metaplasia of vascular smooth muscle (VSM is characteristic for arterial calcification in diabetes and uremia and in the background of genetic alterations in matrix Gla protein (MGP. A better understanding of the molecular details of this process is critical for the development of novel therapeutic approaches to VSM transformation and arterial calcification.This study aimed to identify the effects of bioflavonoid quercetin on chondrogenic transformation and calcification of VSM in the MGP-null mouse model and upon TGF-β3 stimulation in vitro, and to characterize the associated alterations in cell signaling.Molecular analysis revealed activation of β-catenin signaling in cartilaginous metaplasia in Mgp-/- aortae in vivo and during chondrogenic transformation of VSMCs in vitro. Quercetin intercepted chondrogenic transformation of VSM and blocked activation of β-catenin both in vivo and in vitro. Although dietary quercetin drastically attenuated calcifying cartilaginous metaplasia in Mgp-/- animals, approximately one-half of total vascular calcium mineral remained as depositions along elastic lamellae.Quercetin is potent in preventing VSM chondrogenic transformation caused by diverse stimuli. Combined with the demonstrated efficiency of dietary quercetin in preventing ectopic chondrogenesis in the MGP-null vasculature, these findings indicate a potentially broad therapeutic applicability of this safe for human consumption bioflavonoid in the therapy of cardiovascular conditions linked to cartilaginous metaplasia of VSM. Elastocalcinosis is a major component of MGP-null vascular disease and is controlled by a mechanism different from chondrogenic transformation of VSM and not sensitive to quercetin.

  9. Impaired LRP6-TCF7L2 Activity Enhances Smooth Muscle Cell Plasticity and Causes Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Roshni Srivastava

    2015-10-01

    Full Text Available Mutations in Wnt-signaling coreceptor LRP6 have been linked to coronary artery disease (CAD by unknown mechanisms. Here, we show that reduced LRP6 activity in LRP6R611C mice promotes loss of vascular smooth muscle cell (VSMC differentiation, leading to aortic medial hyperplasia. Carotid injury augmented these effects and led to partial to total vascular obstruction. LRP6R611C mice on high-fat diet displayed dramatic obstructive CAD and exhibited an accelerated atherosclerotic burden on LDLR knockout background. Mechanistically, impaired LRP6 activity leads to enhanced non-canonical Wnt signaling, culminating in diminished TCF7L2 and increased Sp1-dependent activation of PDGF signaling. Wnt3a administration to LRP6R611C mice improved LRP6 activity, led to TCF7L2-dependent VSMC differentiation, and rescued post-carotid-injury neointima formation. These findings demonstrate the critical role of intact Wnt signaling in the vessel wall, establish a causal link between impaired LRP6/TCF7L2 activities and arterial disease, and identify Wnt signaling as a therapeutic target against CAD.

  10. Synthesis and Protective Effects of Kaempferol-3'-sulfonate on Hydrogen Peroxide-induced injury in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Yang, Xinbin; Wang, Qin; Wang, Chunmei; Qin, Xiaolin; Huang, Yu; Zeng, Renquan

    2016-06-01

    A novel water-soluble sulfated derivative, kaempferol-3'-sulfonate acid sodium (KS) with the composition of [C15 H9 O9 SNa]·2.5H2 O, was synthesized and characterized by elemental analysis, IR, (1) H NMR, (13) C NMR, and HRMS. Its protective effects on human vascular smooth muscle cells injured by hydrogen peroxide were evaluated by CCK-8 method, flow cytometry, and Western blotting. The experimental results indicated that the KS can significantly increase cell viability and reduce apoptosis on H2 O2 -injured VSMCs, as well as reverse the effects of H2 O2 on Bcl-2, Bad, and caspase-3 expressions. In addition, LDH leakage, MDA levels, and SOD and GSH activities were also measured with spectrophotometry. The results indicated that the KS acted as antioxidant preventing LDH leakage and MDA production, while increasing intracellular SOD and GSH activities. These findings revealed that KS might potentially serve as an effective antioxidant agent for prevention and treatment of vascular disease caused by H2 O2 -injured VSMCs. © 2015 John Wiley & Sons A/S.

  11. Extra-Thoracic Supra-aortic Bypass Surgery Is Safe in Thoracic Endovascular Aortic Repair and Arterial Occlusive Disease Treatment.

    Science.gov (United States)

    Gombert, Alexander; van Issum, Lea; Barbati, Mohammad E; Grommes, Jochen; Keszei, Andras; Kotelis, Drosos; Jalaie, Houman; Greiner, Andreas; Jacobs, Michael J; Kalder, Johannes

    2018-04-20

    The safety and feasibility of supra-aortic debranching as part of endovascular aortic surgery or as a treatment option for arterial occlusive disease (AOD) remains controversial. The aim of this study was to assess the clinical outcome of this surgery. This single centre, retrospective study included 107 patients (mean age 69.2 years, 38.4% women) who underwent supra-aortic bypass surgery (carotid-subclavian bypass, carotid-carotid bypass, and carotid-carotid-subclavian bypass) because of thoracic or thoraco-abdominal endovascular aortic repair (57%; 61/107) or as AOD treatment (42.9%; 46/107) between January 2006 and January 2015. Mortality, morbidity with a focus on neurological complications, and patency rate were assessed. Twenty-six of 107 (14.2%) of the debranching patients were treated under emergency conditions because of acute type B dissection or symptomatic aneurysm. Follow up, conducted by imaging interpretation and telephone interviews, continued till March 2017 (mean 42.1, 0-125, months). The in hospital mortality rate was 10.2% (11/107), all of these cases from the debranching group and related to emergency procedures (p supra-aortic bypass surgery involves low complication rates and high mid-term bypass patency rates. It is a safe and feasible treatment option in the form of debranching in combination with endovascular aortic aneurysm repair and in AOD. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.

  12. Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Hopp, L.; Khalil, F.; Tamura, H.; Kino, M.; Searle, B.M.; Tokushige, A.; Aviv, A.

    1986-01-01

    The binding of ouabain and K + to the Na + pump were analyzed in serially passed cultured vascular smooth muscle cells (VSMCs) originating from spontaneously hypertensive (SH) Wistar-Kyoto (WKY), and American Wistar (W) rats. The techniques have utilized analyses of displacement of [ 3 H]ouabain by both unlabeled ouabain and K + from specific binding sites on the VSMCs. The authors have found that 1) each of the VSMC preparations from the three rat strains appeared to demonstrate one population of specific ouabain receptors (Na + pumps); 2) the number of Na + pump units of both the SH and WKY rats was significantly lower than the number of Na + pump units of W rat VSMCs; 3) the equilibrium dissociation constant values (μM) for ouabain in VSMCs of SH and WKY rats were similar but were significantly higher than that of VSMCs derived from W rats; and 4) among the VSMCs originating from the three rat strains, the apparent equilibrium dissociation constant value for K + (mM) was the lowest in those of the SH rat compared with VSMCs of the WKY rat and W rat. Previous studies have demonstrated increased passive Na + and K + transport rate constants of SH rat VSMCs compared with either W or WKY rat cells. These findings suggest the possibility of higher permeabilities of the SH cells. They propose that the combined effect of a low number of Na + pump units with higher permeabilities to Na + and K + predisposes VSMCs of the SH rat to disturbances in their cellular ionic regulation. These genetic defects, if they occur in vivo, may lead to an increase in the vascular tone

  13. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

    Directory of Open Access Journals (Sweden)

    Fernanda A Andrade

    Full Text Available AIMS: C-type natriuretic peptide (CNP and nitric oxide (NO are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3 contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS: Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS: CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE: These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.

  14. Relation of murine thoracic aortic structural and cellular changes with aging to passive and active mechanical properties.

    Science.gov (United States)

    Wheeler, Jason B; Mukherjee, Rupak; Stroud, Robert E; Jones, Jeffrey A; Ikonomidis, John S

    2015-02-25

    Maintenance of the structure and mechanical properties of the thoracic aorta contributes to aortic function and is dependent on the composition of the extracellular matrix and the cellular content within the aortic wall. Age-related alterations in the aorta include changes in cellular content and composition of the extracellular matrix; however, the precise roles of these age-related changes in altering aortic mechanical function are not well understood. Thoracic aortic rings from the descending segment were harvested from C57BL/6 mice aged 6 and 21 months. Thoracic aortic diameter and wall thickness were higher in the old mice. Cellular density was reduced in the medial layer of aortas from the old mice; concomitantly, collagen content was higher in old mice, but elastin content was similar between young and old mice. Stress relaxation, an index of compliance, was reduced in aortas from old mice and correlated with collagen fraction. Contractility of the aortic rings following potassium stimulation was reduced in old versus young mice. Furthermore, collagen gel contraction by aortic smooth muscle cells was reduced with age. These results demonstrate that numerous age-related structural changes occurred in the thoracic aorta and were related to alterations in mechanical properties. Aortic contractility decreased with age, likely because of a reduction in medial cell number in addition to a smooth muscle contractile deficit. Together, these unique findings provide evidence that the age-related changes in structure and mechanical function coalesce to provide an aortic substrate that may be predisposed to aortopathies. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Unusual Congenital Aortic Anomaly with Rare Common Celiamesenteric Trunk Variation: MR Angiography and Digital Substraction Angiography Findings

    International Nuclear Information System (INIS)

    Tosun, Ozgur; Sanlidilek, Umman; Cetin, Huseyin; Ozdemir, Ozcan; Kurt, Aydin; Sakarya, Mehmet Emin; Tas, Ismet

    2007-01-01

    Magnetic resonance angiography and digital substraction angiography (DSA) findings in a case with a rare congenital thoracoabdominal aortic hypoplasia and common celiamesenteric trunk variation with occlusion of infrarenal abdominal aorta are described here. To our knowledge, this aortic anomaly has not been previously described in the English literature. DSA is the optimum imaging modality for determination of aortic hypoplasia, associated vascular malformations, collateral vessels, and direction of flow within vessels

  16. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    Science.gov (United States)

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  17. Management of aortic graft infections - the present strategy and future perspectives.

    Science.gov (United States)

    Treska, V; Certik, B; Molacek, J

    2016-01-01

    Aortic graft infections (AGI) are serious complications of open and endovascular types of surgery with an incidence rate of 0.6-3 %. AGI are associated with 30-60 % perioperative mortality and 40-60 % morbidity rate with limb amputation rates between 10 % and 40 %. The economic cost of AGI is substantial. At the time of aortic reconstruction, almost 90 % of patients have one or more predisposing factors for AGI. The diagnosis is based on clinical symptomatology, laboratory markers, microbial cultures, and imaging modalities. The general principle of surgical treatment lies in the removal of infected graft, debridement of infected periprosthetic tissues, and vascular reconstruction by in situ or extra-anatomic bypass with long-term antibiotic therapy. The conservative treatment is used only for selected patients with endograft infection. This review summarizes the current knowledge about the incidence, predisposing factors, etiology, diagnosis, treatment options, and prevention of aortic vascular graft and endograft infections. With the growing number of endovascular procedures we can expect more cases of infected aortic endografts in patients with severe comorbidities in the near future, where the recent radical surgical approach (graft excision, debridement, and new revascularization) cannot be used. Therefore the less invasive, sophisticated and individualized treatment strategies will have to be used in search of the best therapeutic approach to each specific patient (Fig. 4, Ref. 82).

  18. Dietary fatty acids on aortic root calcification in mice with metabolic syndrome.

    Science.gov (United States)

    Naranjo, Maria C; Bermudez, Beatriz; Garcia, Indara; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Montserrat-de la Paz, Sergio

    2017-04-19

    Metabolic syndrome (MetS) is associated with obesity, dyslipidemia, type 2 diabetes, and chronic low-grade inflammation. The aim of this study was to determine the role of high-fat low-cholesterol diets (HFLCDs) rich in SFAs (HFLCD-SFAs), MUFAs (HFLCD-MUFAs) or MUFAs plus omega-3 long-chain PUFAs (HFLCD-PUFAs) on vascular calcification by the modulation of the RANKL/RANK/OPG system in the aortic roots of Lep ob/ob LDLR -/- mice. Animals fed with HFLCD-SFAs had increased weight and a greater atheroma plaque size, calcification, and RANKL/CATHK expression in the aortic root than mice on MUFA-enriched diets, with an increasing OPG expression in the aortic roots of the latter. Our study demonstrates that compared to dietary SFAs, MUFAs from olive oil protect against atherosclerosis by interfering with vascular calcification via the RANKL/RANK/OPG system in the setting of MetS. These findings open opportunities for developing novel nutritional strategies with olive oil as the most important dietary source of MUFAs (notably oleic acid) to prevent cardiovascular complications in MetS.

  19. The mechanism of inhibitory effect of γ-ray irradiation on rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zhuang Yongzhi; Wang Junjie; Zhang Zhanchun; Jia Tingzhen

    2001-01-01

    Objective: To investigate the inhibitory effect of γ-ray irradiation on rat vascular smooth muscle cells (VSMCs). Methods: Dose-survival curve of VSMCs was figured by colony formation. The effect of γ-ray irradiation on viability and proliferation of VSMCs was observed by 3 H incorporation. Flow cytometry and DNA Ladder were used to detect the apoptosis effect of γ-ray irradiation on VSMCs. Results: The values of D 0 , D q , D 37 and N for VSMCs were 1.95 Gy, 1.76 Gy, 3.71 Gy and 2.47, respectively. The inhibitory effect of γ-ray irradiation on VSMCs proliferation was dose-dependent, being stronger along with increase of dose. VSMCs did not undergo apoptosis within 48 hours after γ-ray irradiation. Conclusion: γ-ray irradiation could inhibit the proliferation of VSMCs, the main mechanism of which is the killing effect and inhibition of mitosis of VSMCs

  20. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension.

    Science.gov (United States)

    Stenmark, Kurt R; Frid, Maria G; Graham, Brian B; Tuder, Rubin M

    2018-03-15

    Pulmonary hypertension (PH) is the end result of interaction between pulmonary vascular tone and a complex series of cellular and molecular events termed 'vascular remodelling'. The remodelling process, which can involve the entirety of pulmonary arterial vasculature, almost universally involves medial thickening, driven by increased numbers and hypertrophy of its principal cellular constituent, smooth muscle cells (SMCs). It is noted, however that SMCs comprise heterogeneous populations of cells, which can exhibit markedly different proliferative, inflammatory, and extracellular matrix production changes during remodelling. We further consider that these functional changes in SMCs of different phenotype and their role in PH are dynamic and may undergo significant changes over time (which we will refer to as cellular plasticity); no single property can account for the complexity of the contribution of SMC to pulmonary vascular remodelling. Thus, the approaches used to pharmacologically manipulate PH by targeting the SMC phenotype(s) must take into account processes that underlie dominant phenotypes that drive the disease. We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed 'SMCs' may arise from many origins, including endothelial cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential

  1. Open and endovascular aneurysm repair in the Society for Vascular Surgery Vascular Quality Initiative.

    Science.gov (United States)

    Spangler, Emily L; Beck, Adam W

    2017-12-01

    The Society for Vascular Surgery Vascular Quality Initiative is a patient safety organization and a collection of procedure-based registries that can be utilized for quality improvement initiatives and clinical outcomes research. The Vascular Quality Initiative consists of voluntary participation by centers to collect data prospectively on all consecutive cases within specific registries which physicians and centers elect to participate. The data capture extends from preoperative demographics and risk factors (including indications for operation), through the perioperative period, to outcomes data at up to 1-year of follow-up. Additionally, longer-term follow-up can be achieved by matching with Medicare claims data, providing long-term longitudinal follow-up for a majority of patients within the Vascular Quality Initiative registries. We present the unique characteristics of the Vascular Quality Initiative registries and highlight important insights gained specific to open and endovascular abdominal aortic aneurysm repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor

    Directory of Open Access Journals (Sweden)

    Zhibo Chen

    2018-04-01

    Full Text Available Background/Aims: Increasing evidence links microRNAs to the pathogenesis of peripheral vascular disease. We recently found microRNA-125b (miR-125b to be one of the most significantly down‑regulated microRNAs in human arteries with arteriosclerosis obliterans (ASO of the lower extremities. However, its function in the process of ASO remains unclear. This study aimed to investigate the expression, regulatory mechanisms, and functions of miR-125b in the process of ASO. Methods: Using the tissue explants adherent method, vascular smooth muscle cells (VSMCs were prepared for this study. A rat carotid artery balloon injury model was constructed to simulate the development of vascular neointima, and a lentiviral transduction system was used to overexpress serum response factor (SRF or miR-125b. Quantitative real‑time PCR (qRT‑PCR was used to detect the expression levels of miR‑125b and SRF mRNA. Western blotting was performed to determine the expression levels of SRF and Ki67. In situ hybridization analysis was used to analyze the location and expression levels of miR-125b. CCK-8 and EdU assays were used to assess cell proliferation, and transwell and wound closure assays were performed to measure cell migration. Flow cytometry was used to evaluate cell apoptosis, and a dual-luciferase reporter assay was conducted to examine the effects of miR‑125b on SRF. Immunohistochemistry and immunofluorescence analyses were performed to analyze the location and expression levels of SRF and Ki67. Results: miR-125b expression was decreased in ASO arteries and platelet-derived growth factor (PDGF-BB-stimulated VSMCs. miR-125b suppressed VSMC proliferation and migration but promoted VSMC apoptosis. SRF was determined to be a direct target of miR-125b. Exogenous miR-125b expression modulated SRF expression and inhibited vascular neointimal formation in balloon-injured rat carotid arteries. Conclusions: These findings demonstrate a specific role of the mi

  3. Principles for Management of Intraoperative Acute Type A Aortic Dissection.

    Science.gov (United States)

    Gukop, Philemon; Chandrasekaran, Vankatachalam

    2015-12-01

    Intraoperative Type A aortic dissection is a rare pathology with incidence of 0.06-0.32%. It is associated with a high mortality between 30-50%. Some associated risk factors, including hypertension, enlarged aorta, peripheral vascular disease, advanced age, atheroma, and high arterial pressure on cardiopulmonary bypass, have been identified. Modification of these risk factors could reduce the incidence of this event. Prompt diagnosis and management, with the aid of intraoperative trans-esophageal echocardiography and/or epi-aortic ultrasound has been shown to reduce the mortality to 17%. We illustrate the principles of management of this pathology with the case of a 62-year-old female who developed acute Type A aortic dissection while undergoing minimally invasive mitral valve repair.

  4. Increased galectin-3 levels are associated with abdominal aortic aneurysm progression and inhibition of galectin-3 decreases elastase-induced AAA development.

    Science.gov (United States)

    Fernandez-García, Carlos-Ernesto; Tarin, Carlos; Roldan-Montero, Raquel; Martinez-Lopez, Diego; Torres-Fonseca, Monica; Lindhot, Jes S; Vega de Ceniga, Melina; Egido, Jesus; Lopez-Andres, Natalia; Blanco-Colio, Luis-Miguel; Martín-Ventura, Jose-Luis

    2017-11-15

    Abdominal aortic aneurysm (AAA) evolution is unpredictable and no specific treatment exists for AAA, except surgery to prevent aortic rupture. Galectin-3 has been previously associated with CVD, but its potential role in AAA has not been addressed. Galectin-3 levels were increased in the plasma of AAA patients ( n =225) compared with the control group ( n =100). In addition, galectin-3 concentrations were associated with the need for surgical repair, independently of potential confounding factors. Galectin-3 mRNA and protein expression were increased in human AAA samples compared with healthy aortas. Experimental AAA in mice was induced via aortic elastase perfusion. Mice were treated intravenously with the galectin-3 inhibitor modified citrus pectin (MCP, 10 mg/kg, every other day) or saline. Similar to humans, galectin-3 serum and aortic mRNA levels were also increased in elastase-induced AAA mice compared with control mice. Mice treated with MCP showed decreased aortic dilation, as well as elastin degradation, vascular smooth muscle cell (VSMC) loss, and macrophage content at day 14 postelastase perfusion compared with control mice. The underlying mechanism(s) of the protective effect of MCP was associated with a decrease in galectin-3 and cytokine (mainly CCL5) mRNA and protein expression. Interestingly, galectin-3 induced CCL5 expression by a mechanism involving STAT3 activation in VSMC. Accordingly, MCP treatment decreased STAT3 phosphorylation in elastase-induced AAA. In conclusion, increased galectin-3 levels are associated with AAA progression, while galectin-3 inhibition decreased experimental AAA development. Our data suggest the potential role of galectin-3 as a therapeutic target in AAA. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Modelling and numerical simulation of the in vivo mechanical response of the ascending aortic aneurysm in Marfan syndrome.

    Science.gov (United States)

    García-Herrera, Claudio M; Celentano, Diego J; Herrera, Emilio A

    2017-03-01

    Marfan syndrome (MFS) is a genetic disorder that affects connective tissue, impairing cardiovascular structures and function, such as heart valves and aorta. Thus, patients with Marfan disease have a higher risk of developing circulatory problems associated with mitral and aortic valves prolapse, manifested as dilated aorta and aortic aneurysm. However, little is known about the biomechanical characteristics of these structures affected with MFS. This study presents the modelling and simulation of the mechanical response of human ascending aortic aneurysms in MFS under in vivo conditions with intraluminal pressures within normotensive and hypertensive ranges. We obtained ascending aortic segments from five adults with MFS subjected to a vascular prosthesis implantation replacing an aortic aneurysm. We characterised the arterial samples via ex vivo tensile test measurements that enable fitting the material parameters of a hyperelastic isotropic constitutive model. Then, these material parameters were used in a numerical simulation of an ascending aortic aneurysm subjected to in vivo normotensive and hypertensive conditions. In addition, we assessed different constraints related to the movement of the aortic root. Overall, our results provide not only a realistic description of the mechanical behaviour of the vessel, but also useful data about stress/stretch-based criteria to predict vascular rupture. This knowledge may be included in the clinical assessment to determine risk and indicate surgical intervention.

  6. Association of left subclavian artery coverage without revascularization and spinal cord ischemia in patients undergoing thoracic endovascular aortic repair: A Vascular Quality Initiative® analysis.

    Science.gov (United States)

    Teixeira, Pedro Gr; Woo, Karen; Beck, Adam W; Scali, Salvatore T; Weaver, Fred A

    2017-12-01

    Objectives Investigate the impact of left subclavian artery coverage without revascularization on spinal cord ischemia development in patients undergoing thoracic endovascular aortic repair. Methods The Vascular Quality Initiative thoracic endovascular aortic repair module (April 2011-July 2014) was analyzed. Patients undergoing left subclavian artery coverage were divided into two groups according to revascularization status. The association between left subclavian artery revascularization with the primary outcome of spinal cord ischemia and the secondary outcome of stroke was assessed with multivariable analysis adjusting for between-group baseline differences. Results The left subclavian artery was covered in 508 (24.6%) of the 2063 thoracic endovascular aortic repairs performed. Among patients with left subclavian artery coverage, 58.9% underwent revascularization. Spinal cord ischemia incidence was 12.1% in the group without revascularization compared to 8.5% in the group undergoing left subclavian artery revascularization (odds ratio (95%CI): 1.48(0.82-2.68), P = 0.189). Multivariable analysis adjustment identified an independent association between left subclavian artery coverage without revascularization and the incidence of spinal cord ischemia (adjusted odds ratio (95%CI): 2.29(1.03-5.14), P = 0.043). Although the incidence of stroke was also higher for the group with a covered and nonrevascularized left subclavian artery (12.1% versus 8.5%), this difference was not statistically significant after multivariable analysis (adjusted odds ratio (95%CI): 1.55(0.74-3.26), P = 0.244). Conclusion For patients undergoing left subclavian artery coverage during thoracic endovascular aortic repair, the addition of a revascularization procedure was associated with a significantly lower incidence of spinal cord ischemia.

  7. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Liu, Yan; Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui; Wen, Jin-kun

    2013-01-01

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs

  8. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology (China); The Third Hospital of Hebei Medical University, Shijazhuang (China); Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui [Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology (China); Wen, Jin-kun, E-mail: wjk@hebmu.edu.cn [Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology (China)

    2013-06-28

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.

  9. Quantification of abdominal aortic deformation after EVAR

    Science.gov (United States)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  10. Percutaneous closure of paravalvular leaks after transcatheter aortic valve implantation with Edwards SAPIEN prosthesis: a report of two cases.

    Science.gov (United States)

    Estévez-Loureiro, Rodrigo; Salgado-Fernández, Jorge; Vázquez-González, Nicolás

    2013-02-01

    Significant periprosthetic aortic regurgitation after transcatheter aortic valve implantation with Edwards SAPIEN prosthesis has become a major concern of this technique given its association with impaired survival. We report the successful closure of such defects using vascular occlusion devices with significant improvement in clinical status of patients.

  11. Aortic Graft Infection Secondary to Iatrogenic Transcolonic Graft Malposition.

    Science.gov (United States)

    Blank, Jacqueline J; Rothstein, Abby E; Lee, Cheong Jun; Malinowski, Michael J; Lewis, Brian D; Ridolfi, Timothy J; Otterson, Mary F

    2018-01-01

    Aortic graft infections are a rare but devastating complication of aortic revascularization. Often infections occur due to contamination at the time of surgery. Iatrogenic misplacement of the limbs of an aortobifemoral graft is exceedingly rare, and principles of evaluation and treatment are not well defined. We report 2 cases of aortobifemoral bypass graft malposition through the colon. Case 1 is a 54-year-old male who underwent aortobifemoral bypass grafting for acute limb ischemia. He had previously undergone a partial sigmoid colectomy for diverticulitis. Approximately 6 months after vascular surgery, he presented with an occult graft infection. Preoperative imaging and intraoperative findings were consistent with graft placement through the sigmoid colon. Case 2 is a 60-year-old male who underwent aortobifemoral bypass grafting due to a nonhealing wound after toe amputation. His postoperative course was complicated by pneumonia, bacteremia thought to be secondary to the pneumonia, general malaise, and persistent fevers. Approximately 10 weeks after the vascular surgery, he presented with imaging and intraoperative findings of graft malposition through the cecum. Aortic graft infection is usually caused by surgical contamination and presents as an indolent infection. Case 1 presented as such; Case 2 presented more acutely. Both grafts were iatrogenically misplaced through the colon at the index operation. The patients underwent extra-anatomic bypass and graft explantation and subsequently recovered.

  12. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists.

    Directory of Open Access Journals (Sweden)

    Zhongkui Hong

    Full Text Available In vascular smooth muscle cells (VSMCs integrin-mediated adhesion to extracellular matrix (ECM proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction. AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1 mg\\ml. Results showed that the vasoconstrictor angiotensin II (ANG-II; 10-6 significantly increased (p<0.05 VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10-4 significantly decreased (p<0.05 VSMC E-modulus and adhesion probability by approximately -33% and -17%, respectively. Similarly, the NO donor (PANOate, 10-6 M, a potent vasodilator, also significantly decreased (p<0.05 the VSMC E-modulus and COL-I adhesion probability by -38% and -35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.

  13. colour-flow ultrasound in the detection of penetrating vascular

    African Journals Online (AJOL)

    VASCULAR INJURIES OF THE NECK. Peter Corr ... in patients with penetrating neck injuries. 5 IIfr Mal ... study of the aortic arch, carotid and vertebral artery was performed as .... that may require endovascular treatment, for example vertebral.

  14. Synthetic smooth muscle in the outer blood plexus of the rhinarium skin of Lemur catta L.

    Science.gov (United States)

    Elofsson, Rolf; Kröger, Ronald H H

    2017-01-01

    The skin of the lemur nose tip (rhinarium) has arterioles in the outer vascular plexus that are endowed with an unusual coat of smooth muscle cells. Comparison with the arterioles of the same area in a number of unrelated mammalians shows that the lemur pattern is unique. The vascular smooth muscle cells belong to the synthetic type. The function of synthetic smooth muscles around the terminal vessels in the lemur rhinarium is unclear but may have additional functions beyond regulation of vessel diameter.

  15. Preoperative evaluation of the abdominal aortic aneurysm using spiral CT

    International Nuclear Information System (INIS)

    Chisuwa, Hisanao; Nishimaki, Keiji; Arai, Masayuki; Honda, Haruyasu; Urata, Koichi; Miyagawa, Yusuke; Makuuchi, Masatoshi; Shimizu, Mikio; Okamoto, Kohei.

    1995-01-01

    Six patients with abdominal aortic aneurysm (AAA) were studied with three-dimensionally reconstructed CT angiography (3D-CTA) in order to evaluate its usefulness as a diagnostic tool for vascular surgery patients. Images of the intravenously contrasted abdominal aorta were obtained with spiral scan during a single breath hold. The images of the abdominal aorta and its major branches were three-dimensionally reconstructed with a shaded surface display mode. The three-dimensional image reconstruction was successful in all the six cases and performed without difficulties. Shaded surface display presented a deficit to depict the aortic wall with mural thrombus. However, multidirectional display of the abdominal aorta and its branches facilitated interpretation of the anatomical details of the lesions and planning of surgical repair. 3D-CTA is an alternative to conventional aortography for preoperative diagnosis of AAA. Moreover it was shown to be noninvasive, easy to proceed. It presented good angiographical resolution that can be used as a precise diagnostic tool in vascular surgery. (author)

  16. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    International Nuclear Information System (INIS)

    Soltis, E.E.; Field, F.P.

    1986-01-01

    The Na + -K + pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive 86 Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na + -K + pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive 86 Rb uptake was significantly greater at 3, 10, and 20 minutes of 86 Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of 86 Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive 86 Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na + -K + pump activity in vascular smooth muscle from DOCA-salt hypertensive rats

  17. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways.

    Science.gov (United States)

    Cersosimo, Eugenio; Xu, Xiaojing; Musi, Nicolas

    2012-02-15

    To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.

  18. Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection.

    Science.gov (United States)

    Cikach, Frank S; Koch, Christopher D; Mead, Timothy J; Galatioto, Josephine; Willard, Belinda B; Emerton, Kelly B; Eagleton, Matthew J; Blackstone, Eugene H; Ramirez, Francesco; Roselli, Eric E; Apte, Suneel S

    2018-03-08

    Proteoglycan accumulation is a hallmark of medial degeneration in thoracic aortic aneurysm and dissection (TAAD). Here, we defined the aortic proteoglycanome using mass spectrometry, and based on the findings, investigated the large aggregating proteoglycans aggrecan and versican in human ascending TAAD and a mouse model of severe Marfan syndrome. The aortic proteoglycanome comprises 20 proteoglycans including aggrecan and versican. Antibodies against these proteoglycans intensely stained medial degeneration lesions in TAAD, contrasting with modest intralamellar staining in controls. Aggrecan, but not versican, was increased in longitudinal analysis of Fbn1mgR/mgR aortas. TAAD and Fbn1mgR/mgR aortas had increased aggrecan and versican mRNAs, and reduced expression of a key proteoglycanase gene, ADAMTS5, was seen in TAAD. Fbn1mgR/mgR mice with ascending aortic dissection and/or rupture had dramatically increased aggrecan staining compared with mice without these complications. Thus, aggrecan and versican accumulation in ascending TAAD occurs via increased synthesis and/or reduced proteolytic turnover, and correlates with aortic dissection/rupture in Fbn1mgR/mgR mice. Tissue swelling imposed by aggrecan and versican is proposed to be profoundly deleterious to aortic wall mechanics and smooth muscle cell homeostasis, predisposing to type-A dissections. These proteoglycans provide potential biomarkers for refined risk stratification and timing of elective aortic aneurysm repair.

  19. Oesophageal foreign body and a double aortic arch: rare dual pathology.

    Science.gov (United States)

    O'Connor, T E; Cooney, T

    2009-12-01

    We report the rare case of an oesophageal foreign body which lodged above the site of oesophageal compression by a double aortic arch. Case report and a review of the literature surrounding the classification, embryology, diagnosis and management of vascular rings and slings. An eight-month-old male infant presented with symptoms of tracheal compression following ingestion of an oesophageal foreign body. Following removal of the oesophageal foreign body, the infant's symptoms improved initially. However, subsequent recurrence of respiratory symptoms lead to a repeat bronchoscopy and the diagnosis of a coexisting double aortic arch, causing tracheal and oesophageal compression. To our knowledge, this is only the second reported case of a double aortic arch being diagnosed in a patient following removal of an oesophageal foreign body.

  20. Abdominal aortic calcification in dialysis patients: results of the CORD study

    DEFF Research Database (Denmark)

    Honkanen, Eero; Kauppila, Leena; Wikström, Björn

    2008-01-01

    BACKGROUND: Patients with chronic kidney disease stage 5 have a high prevalence of vascular calcification, but the specific anatomical distribution and severity of abdominal aortic calcification (AAC), in contrast to coronary calcification, is less well documented. AAC may be recorded using plain...

  1. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  2. Vascular nanomedicine: Site specific delivery of elastin stabilizing therapeutics to damaged arteries

    Science.gov (United States)

    Sinha, Aditi

    Elastin, a structural protein in the extra-cellular matrix, plays a critical role in the normal functioning of blood vessels. Apart from performing its primary function of providing resilience to arteries, it also plays major role in regulating cell-cell and cell-matrix interactions, response to injury, and morphogenesis. Medial arterial calcification (MAC) and abdominal aortic aneurysm (AAA) are two diseases where the structural and functional integrity of elastin is severely compromised. Although the clinical presentation of MAC and AAA differ, they have one common underlying causative mechanism---pathological degradation of elastin. Hence prevention of elastin degradation in the early stages of MAC and AAA can mitigate, partially if not wholly, the fatal consequences of both the diseases. The work presented here is motivated by the overwhelming statistics of people afflicted by elastin associated cardiovascular diseases and the unavailability of cure for the same. Overall goal of our research is to understand role of elastin degradation in cardiovascular diseases and to develop a targeted vascular drug delivery system that is minimally invasive, biodegradable, and non-toxic, that prevents elastin from degradation. Our hope is that such treatment will also help regenerate elastin, thereby providing a multi-fold treatment option for elasto-degenerative vascular diseases. For this purpose, we have first confirmed the combined role of degraded elastin and hyperglycemia in the pathogenesis of MAC. We have shown that in the absence of degraded elastin and TGF-beta1 (abundantly present in diabetic arteries) vascular smooth muscle cells maintain their homeostatic state, regardless of environmental glucose concentrations. However simultaneous exposure to glucose, elastin peptides and TGF-beta1 causes the pathological transgenesis of vascular cells to osteoblast-like cells. We show that plant derived polyphenols bind to vascular elastin with great affinity resulting in

  3. Mechanism of kolaviron-induced relaxation of rabbit aortic smooth ...

    African Journals Online (AJOL)

    (KV) and the exert mechanisms of action on VSM of rabbit aorta have not been reported. The present study examines the vascular effect of kolaviron on VSM of rabbit aorta and the possible mechanism of its vasorelaxant effect. MATERIALS AND METHODS. Extraction of Kolaviron (KV). Garcinia Kola seeds were obtained ...

  4. Duplo arco aórtico: a quebra do silêncio Double aortic arch: the break of silence

    Directory of Open Access Journals (Sweden)

    Ana Rita Abrão

    2011-03-01

    Full Text Available Anéis vasculares representam 1-2% dos casos das cardiopatias congênitas. Relatamos um caso raro de duplo arco aórtico. Mulher, 60 anos, procurou atendimento na clínica médica apresentando 1 ano de história de disfagia, 6 meses de dispneia e 2 meses de dor torácica esporádica. Raio X de tórax revelou: hiperinsuflação pulmonar difusa, alargamento mediastinal, coração com volume e configurações normais, arco aórtico à direita e alterações degenerativas vertebrais. Tomografia computadorizada do tórax: arco aórtico duplo circundando e comprimindo a traqueia e o esôfago. Arco direito mais calibroso, emergindo dele o tronco braquiocefálico. Do arco esquerdo emergem a artéria carótida comum e a subclávia esquerda. Diagnóstico: anel vascular traqueoesofagiano decorrente do duplo arco aórtico, sendo o arco direito dominante. No presente caso, optou-se por seguimento clínico da paciente, levando-se em conta a intensidade dos sintomas apresentados.Vascular rings represent 1 to 2% of cases of congenital heart disease. We report a rare case of double aortic arch. A 60-year-old woman was admitted to the hospital presenting a one-year history of dysphagia, six months of dyspnea and two months of sporadic chest pain. Radiograph of the chest revealed diffuse pulmonary hyper inflation, widening of the mediastinum, heart of normal size and shape, a right-sized aortic arch, and degenerative changes of the thoracic spine. Computed tomography of the chest showed a double aortic arch encircling and compressing the trachea and the esophagus. The right aortic arch had a larger caliber, with brachiocephalic trunk arising from it. The left common carotid artery and the left subclavian artery arose from the left aortic arch. Diagnosis: tracheoesophageal vascular ring due to double aortic arch, with dominant right arch. In this case, we chose to follow the patient medically, taking into consideration the mildness of the symptoms.

  5. A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Louise; Chayer, Boris; Qin Zhao [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital (CRCHUM), Quebec H2L 2W5 (Canada); Soulez, Gilles [Department of Radiology, University of Montreal Hospital (CHUM), Quebec H2L 2M1 (Canada); Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Quebec H3T 1J4 (Canada); Institute of Biomedical Engineering, University of Montreal, Quebec H3T 1J4 (Canada); Roy, David [Institute of Biomedical Engineering, University of Montreal, Quebec H3T 1J4 (Canada); Cloutier, Guy [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital (CRCHUM), Quebec H2L 2W5 (Canada); Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Quebec H3T 1J4 (Canada); Institute of Biomedical Engineering, University of Montreal, Quebec H3T 1J4 (Canada)

    2013-06-15

    Purpose: With the continuous development of new stent grafts and implantation techniques, it has now become technically feasible to treat abdominal aortic aneurysms (AAA) with challenging anatomy using endovascular repair with standard, fenestrated, or branched stent-grafts. In vitro experimentations are very useful to improve stent-graft design and conformability or imaging guidance for stent-graft delivery or follow-up. Vascular replicas also help to better understand the limitation of endovascular approaches in challenging anatomy and possibly improve surgical planning or training by practicing high risk clinical procedures in the laboratory to improve outcomes in the operating room. Most AAA phantoms available have a very basic anatomy, which is not representative of the clinical reality. This paper presents a method of fabrication of a realistic AAA phantom with a visible thrombus, as well as some mechanical properties characterizing such phantom. Methods: A realistic AAA geometry replica of a real patient anatomy taken from a multidetector computed tomography (CT) scan was manufactured. To demonstrate the multimodality imaging capability of this new phantom with a thrombus visible in magnetic resonance (MR) angiography, CT angiography (CTA), digital subtraction angiography (DSA), and ultrasound, image acquisitions with all these modalities were performed by using standard clinical protocols. Potential use of this phantom for stent deployment was also tested. A rheometer allowed defining hyperelastic and viscoelastic properties of phantom materials. Results: MR imaging measurements of SNR and CNR values on T1 and T2-weighted sequences and MR angiography indicated reasonable agreement with published values of AAA thrombus and abdominal components in vivo. X-ray absorption also lay within normal ranges of AAA patients and was representative of findings observed on CTA, fluoroscopy, and DSA. Ultrasound propagation speeds for developed materials were also in

  6. A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus

    International Nuclear Information System (INIS)

    Allard, Louise; Chayer, Boris; Qin Zhao; Soulez, Gilles; Roy, David; Cloutier, Guy

    2013-01-01

    Purpose: With the continuous development of new stent grafts and implantation techniques, it has now become technically feasible to treat abdominal aortic aneurysms (AAA) with challenging anatomy using endovascular repair with standard, fenestrated, or branched stent-grafts. In vitro experimentations are very useful to improve stent-graft design and conformability or imaging guidance for stent-graft delivery or follow-up. Vascular replicas also help to better understand the limitation of endovascular approaches in challenging anatomy and possibly improve surgical planning or training by practicing high risk clinical procedures in the laboratory to improve outcomes in the operating room. Most AAA phantoms available have a very basic anatomy, which is not representative of the clinical reality. This paper presents a method of fabrication of a realistic AAA phantom with a visible thrombus, as well as some mechanical properties characterizing such phantom. Methods: A realistic AAA geometry replica of a real patient anatomy taken from a multidetector computed tomography (CT) scan was manufactured. To demonstrate the multimodality imaging capability of this new phantom with a thrombus visible in magnetic resonance (MR) angiography, CT angiography (CTA), digital subtraction angiography (DSA), and ultrasound, image acquisitions with all these modalities were performed by using standard clinical protocols. Potential use of this phantom for stent deployment was also tested. A rheometer allowed defining hyperelastic and viscoelastic properties of phantom materials. Results: MR imaging measurements of SNR and CNR values on T1 and T2-weighted sequences and MR angiography indicated reasonable agreement with published values of AAA thrombus and abdominal components in vivo. X-ray absorption also lay within normal ranges of AAA patients and was representative of findings observed on CTA, fluoroscopy, and DSA. Ultrasound propagation speeds for developed materials were also in

  7. Impact of Aortic Insufficiency on Ascending Aortic Dilatation and Adverse Aortic Events After Isolated Aortic Valve Replacement in Patients With a Bicuspid Aortic Valve.

    Science.gov (United States)

    Wang, Yongshi; Wu, Boting; Li, Jun; Dong, Lili; Wang, Chunsheng; Shu, Xianhong

    2016-05-01

    Aberrant flow pattern and congenital fragility bestows bicuspid aortic valve (BAV) with a propensity toward ascending aorta dilatation, aneurysm, and dissection. Whether isolated aortic valve replacement (AVR) can prevent further dilatation in BAV ascending aorta and what indicates concurrent aortic intervention in the case of valve operation remain controversial. From June 2006 to January 2009, patients with a BAV who underwent isolated AVR were consecutively included and categorized into aortic insufficiency (BAV-AI, n = 84) and aortic stenosis (n = 112) groups, and another population of patients with a tricuspid aortic valve with aortic insufficiency (n = 149) was also recruited during the same period for comparison of annual aortic dilatation rate and adverse aortic events after isolated AVR. With a median follow-up period of 72 months (interquartile range, 66 to 78 months), ascending aorta dilatation rates were faster in the BAV-AI group than the BAV plus aortic stenosis and tricuspid aortic valve with aortic insufficiency groups (both p regression analysis identified aortic insufficiency (hazard ratio, 3.7; 95% confidence interval, 1.2 to 11.1; p = 0.019) as an independent risk factor for adverse aortic events among patients with BAV in general, whereas preoperative ascending aortic diameter larger than 45 mm (hazard ratio, 13.8; 95% confidence interval, 3.0 to 63.3; p = 0.001) served as a prognostic indicator in the BAV-AI group. An aggressive policy of preventive aortic interventions seemed appropriate in patients with BAV-AI during AVR, and BAV phenotype presenting as either insufficiency or stenosis should be taken into consideration when contemplating optimal surgical strategies for BAV aortopathy. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Biomarkers of drug-induced vascular injury

    International Nuclear Information System (INIS)

    Brott, D.; Gould, S.; Jones, H.; Schofield, J.; Prior, H.; Valentin, J.P; Bjurstrom, S.; Kenne, K.; Schuppe-Koistinen, I.; Katein, A.; Foster-Brown, L.; Betton, G.; Richardson, R.; Evans, G.; Louden, C.

    2005-01-01

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  9. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  10. Cyclic GMP alters Ca exchange in vascular smooth muscle

    International Nuclear Information System (INIS)

    Magliola, L.; Bailey, B.; Jones, A.W.

    1986-01-01

    Contraction and 42 K efflux from vascular smooth muscle stimulated either by norepinephrine (NE) or by K-depolarization is dependent on an increase in cytosolic Ca concentration. The purpose of this study was to determine if cyclic GMP (cGMP) inhibited these processes and if inhibition was secondary to the action of cGMP on Ca movements. Basal cGMP content of rat aorta was 1.2 fmol/mg wet wt. Sodium nitroprusside (NP) increased cGMP ∼2-fold at 1 nM and ∼750-fold at 1 μM with no effect on cAMP levels. A 5 min pretreatment with NP (1 μM) completely prevented tension development induced by 3 μM NE. The same concentration of NP also inhibited NE-stimulated 42 K and 45 Ca efflux > 90 and > 80%, respectively. Removal of NP in the continued presence of NE (3 μM) caused recovery of the 42 K efflux response to ∼75% of control with a half-time of ∼2.5 min. NP (1 μM) also caused a rapid relaxation of aorta contracted with 3 μM NE and a loss of the 42 K efflux response with half-times of 2-3 min. In contrast, 100 μM NP produced only a 50% inhibition of contraction induced by high K (55 mM). Also, NP (1 μM) inhibited K-stimulated 42 K efflux only ∼25%. These results demonstrate both a concentration- and a time-dependent relationship between increases in cGMP induced by NP and decreases in NE-stimulated contraction, 42 K and 45 Ca effluxes. They also indicate that the sensitivity of NE-induced contraction and 42 K efflux to NP is greater than that induced by high K. These studies suggest that cGMP modulates the control sites for Ca exchange in the plasma membrane and sarcoplasmic reticulum

  11. The high-riding superior aortic recess of the pericardium: MRI visualization in a child

    International Nuclear Information System (INIS)

    Cohen, Mervyn; Johnson, Tiffanie; Hoyer, Mark

    2005-01-01

    We report a 4-year-old child with a high-riding superior aortic recess of the pericardium, initially misdiagnosed as a possible vascular malformation. The anatomy of the pericardial recesses is reviewed. (orig.)

  12. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Allen, J.C.; Navran, S.S.; Seidel, C.L.; Dennison, D.K.; Amann, J.M.; Jemelka, S.K.

    1989-01-01

    Enzymatically dispersed cells from canine saphenous vein and femoral artery were grown in fetal calf serum and studied at day 0 (freshly dispersed) through confluence in primary culture. Intracellular Na levels (Nai), but not intracellular K (Ki), were increased after 24 h in culture and then decreased to a steady state by 4 days. Na+ pump site number [( 3 H] ouabain binding) increased through day 3 and remained elevated. Nai was still elevated at 2 days when the Na+ pump site number began to increase. Total pump turnover (maximum ouabain-inhibited 86 Rb uptake) reflected the increase in Na+ pump site number. These key events precede the observed increases in both protein production and cellular proliferation. If the same cells are maintained in defined medium, without fetal calf serum, Nai, Ki, and the number of [ 3 H]ouabain binding sites do not change with time. These data are consistent with the suggestion that the initial mitogenic response of vascular smooth muscle cells to fetal calf serum involves an increased Na+ influx, and a Nai accumulation, caused by low Na+ pump density. The synthesis of new pump sites effects a decrease in the accumulated Nai, which may be related to cell proliferation

  13. Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor-γ: Therapeutic Implications for Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Florence Gizard

    2008-01-01

    Full Text Available Proliferation of vascular smooth muscle cells (SMCs is a critical process for the development of atherosclerosis and complications of procedures used to treat atherosclerotic diseases, including postangioplasty restenosis, vein graft failure, and transplant vasculopathy. Peroxisome proliferator-activated receptor (PPAR γ is a member of the nuclear hormone receptor superfamily and the molecular target for the thiazolidinediones (TZD, used clinically to treat insulin resistance in patients with type 2 diabetes. In addition to their efficacy to improve insulin sensitivity, TZD exert a broad spectrum of pleiotropic beneficial effects on vascular gene expression programs. In SMCs, PPARγ is prominently upregulated during neointima formation and suppresses the proliferative response to injury of the arterial wall. Among the molecular target genes regulated by PPARγ in SMCs are genes encoding proteins involved in the regulation of cell-cycle progression, cellular senescence, and apoptosis. This inhibition of SMC proliferation is likely to contribute to the prevention of atherosclerosis and postangioplasty restenosis observed in animal models and proof-of-concept clinical studies. This review will summarize the transcriptional target genes regulated by PPARγ in SMCs and outline the therapeutic implications of PPARγ activation for the treatment and prevention of atherosclerosis and its complications.

  14. Hsc70 regulates cell surface ASIC2 expression and vascular smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; McKey, Susan E; Drummond, Heather A

    2008-05-01

    Recent studies suggest members of the degenerin (DEG)/epithelial Na(+) channel (ENaC)/acid-sensing ion channel (ASIC) protein family play an important role in vascular smooth muscle cell (VSMC) migration. In a previous investigation, we found suppression of a certain DEG/ENaC/ASIC member, ASIC2, increased VSMC chemotactic migration, raising the possibility that ASIC2 may play an inhibitory role. Because ASIC2 protein was retained in the cytoplasm, we reasoned increasing surface expression of ASIC2 might unmask the inhibitory role of ASIC2 in VSMC migration so we could test the hypothesis that ASIC2 inhibits VSMC migration. Therefore, we used the chemical chaperone glycerol to enhance ASIC2 expression. Glycerol 1) increased cytoplasm ASIC2 expression, 2) permitted detection of ASIC2 at the cell surface, and 3) inhibited platelet-derived growth factor (PDGF)-bb mediated VSMC migration. Furthermore, ASIC2 silencing completely abolished the inhibitory effect of glycerol on migration, suggesting upregulation of ASIC2 is responsible for glycerol-induced inhibition of VSMC migration. Because other investigators have shown that glycerol regulates ENaC/ASIC via interactions with a certain heat shock protein, heat shock protein 70 (Hsc70), we wanted to determine the importance of Hsc70 on ASIC2 expression in VSMCs. We found that Hsc70 silencing increases ASIC2 cell surface expression and inhibits VSMC migration, which is abolished by cosilencing ASIC2. These data demonstrate that Hsc70 inhibits ASIC2 expression, and, when the inhibitory effect of Hsc70 is removed, ASIC2 expression increases, resulting in reduced VSMC migration. Because VSMC migration contributes to vasculogenesis and remodeling following vascular injury, our findings raise the possibility that ASIC2-Hsc70 interactions may play a role in these processes.

  15. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  16. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  17. Access to Posthospitalization Acute Care Facilities is Associated with Payer Status for Open Abdominal Aortic Repair and Open Lower Extremity Revascularization in the Vascular Quality Initiative.

    Science.gov (United States)

    Ulloa, Jesus G; Woo, Karen; Tseng, Chi-Hong; Maggard-Gibbons, Melinda; Rigberg, David

    2017-07-01

    Uninsured patients may not have access to postacute care facilities that play an important role in clinical recovery, and functional outcomes after vascular surgery. We sought to determine whether discharge disposition is associated with insurance status. We retrospectively reviewed data from the Vascular Quality Initiative ® for patients who underwent open abdominal aortic repair, infrainguinal bypass, or suprainguinal bypass (SB) between January 2012 and July 2015. Mixed-effects logistic regression analysis with clustering at the surgeon and facility level was used to calculate 95% confidence intervals for discharge disposition to home, skilled nursing facility (SNF) or rehabilitation (Rehab) facility by payer status (Medicare, Medicaid, Commercial, Military/Veterans Affairs, Non-US Insurance, or Self-pay), with adjustment for patient, operative, and postoperative characteristics. The study cohort comprised 18,478 procedures (open abdominal aortic repair = 2,817; infrainguinal bypass = 11,572; suprainguinal bypass = 4,089) after we excluded procedures with missing data and in-hospital deaths. Twenty-four percent of the cohort was discharged to an SNF or Rehab site. On univariate analysis, the odds ratio (OR) of discharge home was 4.38 (95% CI: 3.33-5.77) for self-pay as compared to Medicare. On mixed-effects analysis, the adjusted odds of discharge home for self-pay as compared to Medicare remained high (OR = 3.09; 95% CI: 2.23-4.26), after adjustment for age, gender, race/ethnicity, preoperative ambulatory status, number of comorbidities, case urgency, total operative time, presence of a postoperative complication, procedure type, and length of stay. Adjusted odds for discharge to SNF (OR = 0.26; 95% CI: 0.15-0.46) and Rehab (OR = 0.50; 95% CI: 0.35-0.72) were lowest for self-pay status. Access to postacute care facilities is associated with insurance status. Self-pay (uninsured) patients are less likely to have access to discharge services that may

  18. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    OpenAIRE

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene ex...

  19. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    Science.gov (United States)

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  20. Management of an elderly patient with respiratory failure due to double aortic arch

    Directory of Open Access Journals (Sweden)

    Changwan Ryu

    2016-01-01

    Full Text Available Vascular rings are congenital malformations of the aortic arch. A double aortic arch (DAA, the most common type of vascular ring, results from the failure of the fourth embryonic branchial arch to regress, leading to an ascending aorta that divides into a left and right arch that fuse together to completely encircle the trachea and esophagus. The subsequent DAA causes compressive effects on the trachea and esophagus that typically manifests in infancy or early childhood. Adult presentations, particularly in the elderly, are exceedingly rare. Historically such patients have a long-standing history of dyspnea on exertion and dysphagia, with many assumed to have obstructive lung or intrinsic cardiac disease. We describe a case of an elderly woman who presented with respiratory failure due to DAA. In her case, surgery was not feasible and we describe our experience with airway stenting.

  1. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    International Nuclear Information System (INIS)

    Eto, Hideyuki; Miyata, Masaaki; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-01-01

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 μg/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury

  2. Hydroxysafflor yellow A suppresses oxidized low density lipoprotein induced proliferation of vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Lin Sheng

    2012-06-01

    Full Text Available To investigate the relationship between the suppression of Hydroxysafflor yellow A (HSYA on the oxidized low density lipoprotein (ox-LDL induced proliferation of vascular smooth muscle cells (VSMCs and the mRNA and protein expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2 and mitogen activated protein kinase phospholipase-1 (MAKP-1, VSMCs were treated with HSYA at 10 ?mol/L and/or ox-LDL at 35 mg/L for 48 h. MTT assay was done to measure cell survival rate, flow cytometry to detect cell cycle, reverse transcription PCR and Western blot to detect the expression of ERK1/2 and MAKP-1. When compared to cells treated with ox-LDL alone, the survival rate of cells treated with two reagents was reduced and the proportion of cells in G0/G1 phase significantly increased, with increased MKP-1 expression. The study suggests HSYA can inhibit VSMC proliferation via increasing MKP-1 expression, reducing p-ERK1/2 activity and suppressing cell cycle.

  3. Acute effects of gamma irradiation on vascular arterial tone

    International Nuclear Information System (INIS)

    Bourlier, V.; Diserbo, M.; Multon, E.; Verdetti, J.; Fatome, M.

    1995-01-01

    In rat aortic rings, we showed an increase in arterial tone during irradiation. This effect is acute reversible. This effect is only observed on pre-contracted rings and needs the integrity of vascular endothelium. The molecular mechanism of this effect is discussed. (author)

  4. Identification of type IV collagen exposure as a molecular imaging target for early detection of thoracic aortic dissection

    Science.gov (United States)

    Xu, Ke; Xu, Chen; Zhang, Yanzhenzi; Qi, Feiran; Yu, Bingran; Li, Ping; Jia, Lixin; Li, Yulin; Xu, Fu-jian; Du, Jie

    2018-01-01

    Thoracic aortic dissection (TAD) is an aggressive and life-threatening vascular disease and there is no effective means of early diagnosis of dissection. Type IV collagen (Col-IV) is a major component of the sub-endothelial basement membrane, which is initially exposed followed by endothelial injury as early-stage event of TAD. So, we want to build a noninvasive diagnostic method to detect early dissection by identifying the exposed Col-IV via MRI. Methods: Col-IV-targeted magnetic resonance/ fluorescence dual probe (Col-IV-DOTA-Gd-rhodamine B; CDR) was synthesized by amide reaction and coordination reaction. Flow cytometry analysis was used to evaluate the cell viability of SMC treated with CDR and fluorescence assays were used to assess the Col-IV targeting ability of CDR in vitro. We then examined the sensitivity and specificity of CDR at different stages of TAD via MRI and bioluminescence imaging in vivo. Results: The localization of Col-IV (under the intima) was observed by histology images. CDR bound specifically to Col-IV-expressing vascular smooth muscle cells and BAPN-induced dissected aorta. The CDR signal was co-detected by magnetic resonance imaging (MRI) and bioluminescence imaging as early as 2 weeks after BAPN administration (pre-dissection stage). The ability to detect rupture of dissected aorta was indicated by a strong normalized signal enhancement (NSE) in vivo. Moreover, NSE was negatively correlated with the time of dissection rupture after BAPN administration (r2 = 0.8482). Conclusion: As confirmed by in vivo studies, the CDR can identify the exposed Col-IV in degenerated aorta to monitor the progress of aortic dissection from the early stage to the rupture via MRI. Thus, CDR-enhanced MRI proposes a potential method for dissection screening, and for monitoring disease progression and therapeutic response. PMID:29290819

  5. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

    DEFF Research Database (Denmark)

    Schlosser, Anders; Pilecki, Bartosz; Hemstra, Line E.

    2016-01-01

    in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS: We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular...... kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular...

  6. Contemporary vascular smartphone medical applications.

    Science.gov (United States)

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W

    2013-08-01

    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Regulation of GPCR-mediated smooth muscle contraction : implications for asthma and pulmonary hypertension

    NARCIS (Netherlands)

    Wright, D B; Tripathi, S; Sikarwar, A; Santosh, K T; Perez-Zoghbi, J; Ojo, O O; Irechukwu, N; Ward, J P T; Schaafsma, D

    Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as

  8. Vascular manifestations of syndromic aortopathies: role of current and emerging imaging techniques

    International Nuclear Information System (INIS)

    Westerland, O.; Frigiola, A.; Robert, L.; Shaw, A.; Blakeway, L.; Katsanos, K.; Kiesewetter, C.; Chung, N.; Karunanithy, N.

    2015-01-01

    Patients with connective tissue diseases such as Marfan's syndrome, Loeys–Dietz syndrome, and vascular Ehlers–Danlos syndrome comprise a small but important group of patients who present early with acute aortic syndrome comprising aneurysmal dilation, rupture, or aortic dissection. Cardiovascular pathologies are an important yet treatable cause of morbidity and mortality in these patients. Imaging plays an important role in initial diagnosis, surveillance, and identification of complications. Furthermore, these patients are prone to developing complications in other vascular territories. Effective screening and surveillance will allow early diagnosis and elective treatment thus reducing the morbidity and mortality associated with presentation with acute complications. In this article, we will provide an overview of the role of magnetic resonance and computed tomography angiography in the management of syndromic aortopathies.

  9. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  10. Descending aortic injury by a thoracic pedicle screw during posterior reconstructive surgery: a case report.

    Science.gov (United States)

    Watanabe, Kei; Yamazaki, Akiyoshi; Hirano, Toru; Izumi, Tomohiro; Sano, Atsuki; Morita, Osamu; Kikuchi, Ren; Ito, Takui

    2010-09-15

    Case report. To describe an iatrogenic aortic injury by pedicle screw instrumentation during posterior reconstructive surgery of spinal deformity. Iatrogenic major vascular injuries during anterior instrumentation procedures have been reported by several authors, but there have been few reports regarding iatrogenic major vascular injuries during posterior instrumentation procedures. A 57-year-old woman with thoracolumbar kyphosis due to osteoporotic T12 vertebral fracture underwent posterior correction and fusion (T10-L2), using segmental pedicle screw construct concomitant with T12 pedicle subtraction osteotomy. Postoperative routine plain radiographs and computed tomography myelography demonstrated a misplaced left T10 pedicle screw, which was in contact with the posteromedial aspect of the thoracic aorta, and suspected penetration of the aortic wall. The patient underwent removal of the pedicle screw, and repair of the penetrated aortic wall through a simultaneous anterior-posterior approach. The patient tolerated the procedure well without neurologic sequelae, and was discharged several days after removal of a left tube thoracostomy. Plain radiographs demonstrated solid fusion at the osteotomy site and no loosening of hardware. Preoperative neurologic symptoms improved completely at 18-months follow-up. Use of pedicle screw instrumentation has the potential to cause major vascular injury during posterior spinal surgery, and measures to prevent this complication must be taken. Timely diagnosis and treatment are essential to prevent both early and delayed complications and death.

  11. GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension.

    Science.gov (United States)

    Liu, Liu; Kashyap, Shreya; Murphy, Brennah; Hutson, Dillion D; Budish, Rebecca A; Trimmer, Emma H; Zimmerman, Margaret A; Trask, Aaron J; Miller, Kristin S; Chappell, Mark C; Lindsey, Sarah H

    2016-04-15

    The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;PTreatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage. Copyright © 2016 the American Physiological Society.

  12. Preliminary investigations on the effects of a Strongylus vulgaris larval extract, mononuclear factors and platelet factors on equine smooth muscle cells in vitro.

    Science.gov (United States)

    Morgan, S J; Storts, R W; Stromberg, P C; Sowa, B A; Lay, J C

    1989-01-01

    Factors involved in the proliferation of equine vascular smooth muscle cells were studied in vitro. The most prominent proliferative responses in cultured vascular smooth muscle cells were induced by Strongylus vulgaris larval antigen extract (LAE) and platelet-derived factors. Less significant proliferative responses were obtained with conditioned media from S. vulgaris LAE stimulated and from unstimulated equine mononuclear leukocytes. Additionally, vascular smooth muscle cells exposed to S. vulgaris LAE developed numerous perinuclear vacuoles and were more spindle-shaped than control or smooth muscle cells exposed to other factors. Equine mononuclear leukocytes exposed to LAE developed prominent morphological changes, including enlargement, clumping and increased numbers of mitotic figures.

  13. Molecular basis for interaction of Na+/K+-ATPase with other transporters in membrane microdomains of vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Hansen, Anne Kirstine; Matchkov, Vladimir; Bouzinova, Elena

    2008-01-01

    Ouabain, a specific inhibitor of the Na+/K+-pump, has previously been shown to interfere with intercellular communication. We have recently demonstrated a mechanism of this action of ouabain (1). We have showed that gap junctions between vascular smooth muscle cells (SMCs) are regulated through...... an interaction between the Na+/K+-pump and the Na+/Ca2+-exchanger leading to an increase in the intracellular calcium concentration in discrete areas near the plasma membrane. This regulation suggests a close association of the proteins in microdomains. We have also suggested that this Na...

  14. Vascular ultrasound.

    Science.gov (United States)

    Pilcher, D B; Ricci, M A

    1998-04-01

    Surgeon-interpreted diagnostic ultrasound has become the preferred screening test and often the definitive test for the diagnosis of arterial stenosis, aneurysm, and venous thrombosis. As a modality for surveillance, its noninvasive quality makes it particularly appealing as the test of choice to screen patients for abdominal aortic aneurysms or to perform follow-up examinations on those patients with a carotid endartectomy or in situ bypass grafts. The increasing reliance on intraoperative duplex imaging of vascular procedures demands that the surgeon learn the skills to perform the studies without a technologist or radiologist to interpret the examination.

  15. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats

    DEFF Research Database (Denmark)

    Liu, Daoyan; Yang, Dachun; He, Hongbo

    2009-01-01

    We tested the hypothesis that transient receptor potential canonical type 3 (TRPC3) channels are increased in vascular smooth muscle cells and aortic tissue from spontaneously hypertensive rats (SHR) compared with normotensive Wistar Kyoto rats. Expression of TRPC3 was analyzed by immunohistochem...

  16. Vascular rings in Bucaramanga 1999-2002: clinical Series and revision of the literature

    International Nuclear Information System (INIS)

    L M, Sosa Avila; J, Niederbacher; O, Fernandez; A, Duran

    2003-01-01

    They are denominated vascular rings to the group of early anomalies of the embryologic development of the aortic arches that they cause a spectrum of clinical manifestations for the compression of the air way and of the digestive tract. The authors report 8 cases presented among 1999-2002, with an average of age of 10 months at the moment of the diagnosis, 6 arches aortic right and two with double aortic arch. The strider from the birth and the syndrome appearance bronchia-obstructive during the first month was presented in all the cases and the digestive manifestations as dysphagia they accompanied to the cases of double aortic arch. The thorax x-ray allowed valuing the aortic arch it forms the shepherd's aortic crook and of the right the artery right subclavian in 62.5%, and the echography in 100% of the cases; the x-ray of digestive roads evidenced fixed notch in 71% of the cases. The echocardiogram allowed evaluating the origin of the glasses anomalous of the shepherd's crook in 62.5%. It was carried out surgical treatment in 87,5% of the cases, with complications pos-surgical in 1/7 consistent in chylethorax, and subcutaneous emphysema. The authors recommend evaluating for vascular ring to everything recently born with strider and rough obstruction by means of thorax x-ray, x-ray of digestive roads and echocardiogram. In selected cases it would be practiced endoscopy of the air way and the aortogram or the magnetic resonance of the thorax and their vessel for confirmation of the definitive diagnosis

  17. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  18. Hearts and minds: linking vascular rigidity and aerobic fitness with cognitive aging.

    Science.gov (United States)

    Gauthier, Claudine Joëlle; Lefort, Muriel; Mekary, Saïd; Desjardins-Crépeau, Laurence; Skimminge, Arnold; Iversen, Pernille; Madjar, Cécile; Desjardins, Michèle; Lesage, Frédéric; Garde, Ellen; Frouin, Frédérique; Bherer, Louis; Hoge, Richard D

    2015-01-01

    Human aging is accompanied by both vascular and cognitive changes. Although arteries throughout the body are known to become stiffer with age, this vessel hardening is believed to start at the level of the aorta and progress to other organs, including the brain. Progression of this vascular impairment may contribute to cognitive changes that arise with a similar time course during aging. Conversely, it has been proposed that regular exercise plays a protective role, attenuating the impact of age on vascular and metabolic physiology. Here, the impact of vascular degradation in the absence of disease was investigated within 2 groups of healthy younger and older adults. Age-related changes in executive function, elasticity of the aortic arch, cardiorespiratory fitness, and cerebrovascular reactivity were quantified, as well as the association between these parameters within the older group. In the cohort studied, older adults exhibited a decline in executive functions, measured as a slower performance in a modified Stroop task (1247.90 ± 204.50 vs. 898.20 ± 211.10 ms on the inhibition and/or switching component, respectively) than younger adults. Older participants also showed higher aortic pulse wave velocity (8.98 ± 3.56 vs. 3.95 ± 0.82 m/s, respectively) and lower VO₂ max (29.04 ± 6.92 vs. 42.32 ± 7.31 mL O2/kg/min, respectively) than younger adults. Within the older group, faster performance of the modified Stroop task was associated with preserved aortic elasticity (lower aortic pulse wave velocity; p = 0.046) and higher cardiorespiratory fitness (VO₂ max; p = 0.036). Furthermore, VO₂ max was found to be negatively associated with blood oxygenation level dependent cerebrovascular reactivity to CO₂ in frontal regions involved in the task (p = 0.038) but positively associated with cerebrovascular reactivity in periventricular watershed regions and within the postcentral gyrus. Overall, the results of this study support the hypothesis that cognitive

  19. Bone Morphogenetic Proteins 2/4 Are Upregulated during the Early Development of Vascular Calcification in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Xiao Wei

    2018-01-01

    Full Text Available Vascular calcification is a main cause of increased cardiovascular morbidity and mortality in chronic kidney disease (CKD patients. This study aimed to investigate the role of the bone morphogenetic protein (BMP signaling pathway in the early development of vascular calcification in CKD. A CKD vascular calcification rat model was established by providing rats with a 1.8% high-phosphorus diet and an intragastric administration of 2.5% adenine suspension. The kidney and aortic pathologies were analyzed. Blood biochemical indicators, serum BMP-2 and BMP-4 levels, and aortic calcium content were determined. The expression levels of BMP-2, BMP-4, bone morphogenetic protein receptor-IA (BMPR-IA, and matrix Gla protein (MGP in aorta were examined by quantitative real-time polymerase chain reaction and immunohistochemistry. Compared with the normal control (Nor rats, the CKD rats exhibited a significantly decreased body weight and an increased kidney weight as well as abnormal renal function and calcium-phosphorus metabolism. Aortic von Kossa and Alizarin red staining showed massive granular deposition and formation of calcified nodules in aorta at 8 weeks. The aortic calcium content was significantly increased, which was positively correlated with the serum BMP-2 (r=0.929; P<0.01 and serum BMP-4 (r=0.702; P<0.01 levels in CKD rats. The rat aortic BMP-2 mRNA level in the CKD rats was persistently increased, and the BMP-4 mRNA level was prominently increased at the 4th week, declining thereafter. Strong staining of BMP-2, BMP-4, BMPR-IA, and MGP proteins was observed in the tunica media of the aorta from the 4th week after model induction. In conclusion, activation of the BMP signaling pathway is involved in the early development of vascular calcification in CKD. Therefore, elevated serum BMP-2 and BMP-4 levels may serve as serum markers for CKD vascular calcification.

  20. Acute Aortic Arch Perforation During Transcatheter Aortic Valve Replacement in Bicuspid Aortic Stenosis and a Gothic Aortic Arch.

    Science.gov (United States)

    Millan-Iturbe, Oscar; Sawaya, Fadi J; Bieliauskas, Gintautas; Chow, Danny H F; De Backer, Ole; Søndergaard, Lars

    2017-09-01

    Transcatheter aortic valve replacement (TAVR) has evolved from a novel technology to an established therapy for high/intermediate-risk patients with severe symptomatic aortic stenosis (AS). Although TAVR is used to treat bicuspid severe AS, the large randomized trials typically excluded bicuspid AS because of its unique anatomic features. This case report describes an acute aortic perforation during delivery of a transcatheter heart valve to treat a severe bicuspid AS with a "gothic aortic arch"; more careful evaluation of the preprocedural multislice computed tomographic scan would have unveiled a sharply angulated aortic arch. This life-threatening complication was successfully treated by thoracic endovascular aortic repair. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  1. Initial experience of two national centers in transcatheter aortic prosthesis implantation.

    Science.gov (United States)

    Lluberas, Sebastián; Abizaid, Alexandre; Siqueira, Dimytri; Ramos, Auristela; Costa, J Ribamar; Arrais, Magaly; Kambara, Antônio; Bihan, David Le; Sousa, Amanda; Sousa, J Eduardo

    2014-04-01

    Transcatheter aortic valve implantation is an effective alternative to surgical treatment of severe aortic stenosis in patients who are inoperable or at high surgical risk. To report the immediate and follow-up clinical and echocardiographic results of the initial experience of transcatheter aortic valve implantation. From 2009 June to 2013 February, 112 patients underwent transcatheter aortic valve implantation. Mean age was 82.5 ± 6.5 years, and the logistic EuroSCORE was 23.6 ± 13.5. Procedural success was 84%. After the intervention, a reduction in the mean systolic gradient was observed (pre: 54.7 ± 15.3 vs. post: 11.7 ± 4.0 mmHg; p < 0.01). Cerebrovascular accidents occurred in 3.6%, vascular complications in 19% and permanent pacemaker was required by 13% of the patients. Thirty-day mortality and at follow-up of 16 ± 11 months was 14% and 8.9% respectively. The presence of chronic obstructive pulmonary disease was the only predictor of mortality at 30 days and at follow-up. During follow up, aortic valve area and mean systolic gradient did not change significantly. Transcatheter aortic valve implantation is an effective and safe procedure for the treatment of aortic stenosis in high-surgical risk or inoperable patients. The presence of chronic obstructive pulmonary disease was the only independent predictor of mortality identified both in the first month post-intervention and at follow-up.

  2. Vascular training and endovascular practice in Europe

    DEFF Research Database (Denmark)

    Liapis, C.D.; Avgerinos, E.D.; Sillesen, H.

    2009-01-01

    specialties was distributed to a VS educator within 14 European countries. European Vascular and Endovascular Monitor (EVEM) data also were processed to correlate endovascular practice with training models. RESULTS: Fourteen questionnaires were gathered. Vascular training in Europe appears in 3 models: 1....... Mono-specialty (independence): 7 countries, 2. Subspecialty: 5 countries, 3. An existing specialty within general surgery: 2 countries. Independent compared to non-independent certification shortens overall training length (5.9 vs 7.9 years, p=0.006), while increasing overall training devoted......% respectively. Countries with independent vascular certification, despite their lower average endovascular index (procedures per 100,000 population), reported a higher growth rate of aortic endovascular procedures (VS independent 132% vs VS non-independent 87%), within a four-year period (2003-2007). Peripheral...

  3. Establishment of artery smooth muscle cell proliferation model after subarachnoid hemorrhage in rats

    Directory of Open Access Journals (Sweden)

    Yu-jie CHEN

    2011-12-01

    Full Text Available Objective The current paper aims to simulate the effects of hemolytic products on intracranial vascular smooth muscle cell after subarachnoid hemorrhage(SAH,and probe into the molecular mechanism and strategy for the prevention and cure of vascular proliferation after SAH.Methods Thirty Sprague-Dawley rats were randomly divided into three groups,including sham-operated,24 h after SAH,and 72 h after SAH groups.The artificial hemorrhage model around the common carotid artery was established for the latter two groups.The animals were put to death after 24 h and 72 h to take the common carotid artery,and to measure the expression level of PCNA,SM-α-actin protein,and mRNA in the smooth muscle cell.Results The PCNA mRNA expression was significantly up-regulated in the 24-h group(P < 0.01.The expression in the 72-h group was lower than that of the 24-h group(P < 0.01,whereas it was still remarkably higher than that of the sham group(P < 0.01.The SM-α-actin mRNA expression in the smooth muscle cell in the 24-h and 72-h groups decreased compared with that of the Sham group(P < 0.05,whereas the 72-h group was significantly lower than that of the 24-h group(P < 0.05.The protein expression of PCNA and SM-α-actin showed a similar trend.Conclusion The current experiment simulates better effects of the hemolytic products on vascular smooth muscle cell after SAH.It also shows that artificial hemorrhage around the common carotid artery could stimulate vascular smooth muscle cell to change from contractile phenotype into synthetic phenotype,and improve it to proliferate.

  4. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression

    Directory of Open Access Journals (Sweden)

    Ming-Horng Tsai

    2017-08-01

    Full Text Available Ang II has been involved in the pathogenesis of cardiovascular diseases, and matrix metalloproteinase-9 (MMP-9 induced migration of human aortic smooth muscle cells (HASMCs is the most common and basic pathological feature. Carbon monoxide (CO, a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory effects in various tissues and organ systems. In the present study, we aimed to investigate the effects and underlying mechanisms of carbon monoxide releasing molecule-2 (CORM-2 on Ang II-induced MMP-9 expression and cell migration of HASMCs. Ang II significantly up-regulated MMP-9 expression and cell migration of HASMCs, which was inhibited by transfection with siRNA of p47phox, Nox2, Nox4, p65, angiotensin II type 1 receptor (AT1R and pretreatment with the inhibitors of NADPH oxidase, ROS, and NF-κB. In addition, Ang II also induced NADPH oxidase/ROS generation and p47phox translocation from the cytosol to the membrane. Moreover, Ang II-induced oxidative stress and MMP-9-dependent cell migration were inhibited by pretreatment with CORM-2. Finally, we observed that Ang II induced IL-6 release in HASMCs via AT1R, but not AT2R, which could further caused MMP-9 secretion and cell migration. Pretreatment with CORM-2 reduced Ang II-induced IL-6 release. In conclusion, CORM-2 inhibits Ang II-induced HASMCs migration through inactivation of suppression of NADPH oxidase/ROS generation, NF-κB inactivation and IL-6/MMP-9 expression. Thus, application of CO, especially CORM-2, is a potential countermeasure to reverse the pathological changes of various cardiovascular diseases. Further effects aimed at identifying novel antioxidant and anti-inflammatory substances protective for heart and blood vessels that targeting CO and establishment of well-designed in vivo models properly evaluating the efficacy of these agents are needed. Keywords: Angiotensin II, Carbon monoxide, Human aortic smooth muscle cell, Inflammation, Matrix metallopeptidase

  5. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade.

    Science.gov (United States)

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Jayakumar, Thanasekaran; Lin, Kuan-Hung; Chou, Duen-Suey; Lu, Wan-Jung; Hsu, Ming-Jen; Sheu, Joen-Rong

    2014-07-10

    The abnormal growth of vascular smooth muscle cells (VSMCs) is considered a critical pathogenic process in inflammatory vascular diseases. We have previously demonstrated that protein phosphatase 2 A (PP2A)-mediated NF-κB dephosphorylation contributes to the anti-inflammatory properties of andrographolide, a novel NF-κB inhibitor. In this study, we investigated whether andrographolide causes apoptosis, and characterized its apoptotic mechanisms in rat VSMCs. Andrographolide activated the p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation. Phosphorylated p53 subsequently transactivated the expression of Bax, a pro-apoptotic protein. Transfection with pp2a small interfering RNA (siRNA) suppressed andrographolide-induced p38MAPK activation, p53 phosphorylation, and caspase 3 activation. Andrographolide also activated the Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1), and induced PP2A dephosphorylation, both of which were inhibited by the SHP-1 inhibitor sodium stibogluconate (SSG) or shp-1 siRNA. SSG or shp-1 siRNA prevented andrographolide-induced apoptosis. These results suggest that andrographolide activates the PP2A-p38MAPK-p53-Bax cascade, causing mitochondrial dysfunction and VSMC death through an SHP-1-dependent mechanism.

  6. The role of L-type calcium channels in the vascular effect of Trigonella foenum-graecum L. in diabetic rats

    Directory of Open Access Journals (Sweden)

    Mehrdad Roghani

    2006-03-01

    Full Text Available Some ion channels like voltage-operated calcium channels (VOCC within the plasma membrane of vascular muscle cells from the walls of resistance arteries and arterioles play a central role in the regulation of vascular tone. On the basis of reports about the beneficial attenuating effect of fenugreek (Trigonella foenum-graecum L.; TFG on the contractile reactivity of aortic rings of diabetic rats, this study was carried out to evaluate the possible involvement of L-type voltage-operated calcium channels in the vascular effect of this medicinal plant. For this purpose, male Wistar rats were made diabetic using streptozotocin (STZ, 60 mg/Kg, i.p. The extract-treated control and diabetic rats received aqueous leaf extract of TFG (200 mg/Kg, i.p. every other day for two months. At the end of the study, contractile response of isolated aortic rings to KCl and noreadrenaline (NA was determined in the absence and presence of the calcium channel blocker nifedipine. The results showed that aortic rings from diabetic rats are more responsive to the effect of KCl and NA than those of controls, TFG extract treatment could attenuate the enhanced contractile response of aortic rings of diabetic rats, and nifedipine pretreatment could partially neutralize the beneficial effect of this extract. It is concluded that TFG extract attenuates the enhanced vascular reactivity in chronic diabetic rats and voltage-operated calcium channels are in part responsible for this effect of TFG extract.

  7. Perioperative management of endovascular abdominal aortic aneurysm repair

    International Nuclear Information System (INIS)

    Wang Haofu; Wang Yuwei; Li Jun; Zhao Zonggang; Qi Sen

    2010-01-01

    Objective: To summarize the clinical experience of perioperative management in performing endovascular abdominal aortic aneurysm repair (EVAR). Methods: EVAR was performed in 22 patients with abdominal aortic aneurysm. The clinical data were retrospectively analyzed. Before treatment the functions of main organs were evaluated and certain measures were adopted in order to protect them. Useful parameters, including the length, diameter, angle and configuration of the proximal and distal aneurysmal neck, the relationship of the aneurysm to aortic branches, the distance from the lowest renal artery to the bifurcation of abdominal aorta, and the quality of access vessels (such as diameter, tortuosity and calcification degree) were determined and assessed with CTA. According to the parameters thus obtained, the suitable stent-graft with ideal diameter and length was selected, and the optimal surgery pattern was employed. Local anesthesia was employed in 20 patients, among them the local anesthesia had to be changed to general anesthesia in one. Epidural anesthesia was carried out in one patient through the surgically-reconstructed iliac artery access,and general anesthesia was employed in one patient who had Stanford type A aortic dissection. The lowest renal artery must be accurately localized before deployment of stent-graft was started. At least one patent internal iliac artery should be reserved when bilateral internal iliac arteries needed to be covered, to be covered by stages or to be reconstructed. After stent-graft placement, angiography must be performed to find out if there was any endoleak and, if any, to determine the type of endoleak and to deal with it properly. Two cases had proximal type I endoleak, so balloon dilation was employed in one and cuff implantation in another one. Distal type I endoleak occurred in one case, but, unfortunately, the iliac artery ruptured when balloon dilation was employed, therefore the patient had to receive vascular repair

  8. Progenitor cells in pulmonary vascular remodeling

    Science.gov (United States)

    Yeager, Michael E.; Frid, Maria G.; Stenmark, Kurt R.

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow–derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow–derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  9. Automatic aortic root segmentation in CTA whole-body dataset

    Science.gov (United States)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  10. Essential Roles of Raf/Extracellular Signal-regulated Kinase/Mitogen-activated Protein Kinase Pathway, YY1, and Ca2+ Influx in Growth Arrest of Human Vascular Smooth Muscle Cells by Bilirubin*

    Science.gov (United States)

    Stoeckius, Marlon; Erat, Anna; Fujikawa, Tatsuya; Hiromura, Makoto; Koulova, Anna; Otterbein, Leo; Bianchi, Cesario; Tobiasch, Edda; Dagon, Yossi; Sellke, Frank W.; Usheva, Anny

    2012-01-01

    The biological effects of bilirubin, still poorly understood, are concentration-dependent ranging from cell protection to toxicity. Here we present data that at high nontoxic physiological concentrations, bilirubin inhibits growth of proliferating human coronary artery smooth muscle cells by three events. It impairs the activation of Raf/ERK/MAPK pathway and the cellular Raf and cyclin D1 content that results in retinoblastoma protein hypophosphorylation on amino acids S608 and S780. These events impede the release of YY1 to the nuclei and its availability to regulate the expression of genes and to support cellular proliferation. Moreover, altered calcium influx and calpain II protease activation leads to proteolytical degradation of transcription factor YY1. We conclude that in the serum-stimulated human vascular smooth muscle primary cell cultures, bilirubin favors growth arrest, and we propose that this activity is regulated by its interaction with the Raf/ERK/MAPK pathway, effect on cyclin D1 and Raf content, altered retinoblastoma protein profile of hypophosphorylation, calcium influx, and YY1 proteolysis. We propose that these activities together culminate in diminished 5 S and 45 S ribosomal RNA synthesis and cell growth arrest. The observations provide important mechanistic insight into the molecular mechanisms underlying the transition of human vascular smooth muscle cells from proliferative to contractile phenotype and the role of bilirubin in this transition. PMID:22262839

  11. Preliminary Evidence for Aortopathy and an X-Linked Parent-of-Origin Effect on Aortic Valve Malformation in a Mouse Model of Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Robert B. Hinton

    2015-07-01

    Full Text Available Turner syndrome (TS, most frequently caused by X-monosomy (45,X, is characterized in part by cardiovascular abnormalities, including aortopathy and bicuspid aortic valve (BAV. There is a need for animal models that recapitulate the cardiovascular manifestations of TS. Extracellular matrix (ECM organization and morphometrics of the aortic valve and proximal aorta were examined in adult 39,XO mice (where the parental origin of the single X was paternal (39,XPO or maternal (39,XMO and 40,XX controls. Aortic valve morphology was normal (tricuspid in all of the 39,XPO and 40,XX mice studied, but abnormal (bicuspid or quadricuspid in 15% of 39,XMO mice. Smooth muscle cell orientation in the ascending aorta was abnormal in all 39,XPO and 39,XMO mice examined, but smooth muscle actin was decreased in 39,XMO mice only. Aortic dilation was present with reduced penetrance in 39,XO mice. The 39,XO mouse demonstrates aortopathy and an X-linked parent-of-origin effect on aortic valve malformation, and the candidate gene FAM9B is polymorphically expressed in control and diseased human aortic valves. The 39,XO mouse model may be valuable for examining the mechanisms underlying the cardiovascular findings in TS, and suggest there are important genetic modifiers on the X chromosome that modulate risk for nonsyndromic BAV and aortopathy.

  12. Angiogenin activates phospholipase C and elicits a rapid incorporation of fatty acid into cholesterol esters in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moore, F.; Riordan, J.F.

    1990-01-01

    Angiogenin activates the phosphoinositide-specific phospholipase C (PLC) in cultured rat aortic smooth muscle cells to yield a transient (30 s) peak of 1,2-diacylglycerol (DG) and inositol trisphosphate. Within 1 min, the DG level falls below that of the control and remains so for at least 20 min. A transient increase in monoacylglycerol indicates that depletion of DG may be the consequence of hydrolysis by DG lipase. In addition to these changes in second messengers, a rapid increase in incorporating of radiolabeled tracer into cellular cholesterol esters is observed. Stimulated cholesterol ester labeling is inhibited by preincubation with either the DG lipase inhibitor RHC 80267 or the acyl coenzyme A:cholesterol acyltransferase inhibitor Sandoz 58035. Cells prelabeled with [ 3 H]arachidonate show a sustained increase in labeling of cholesterol esters following exposure to angiogenin. In contrast, cells prelabeled with [ 3 H]oleate show only a transient elevation that returns to the basal level by 5 min. This suggests initial cholesterol esterification by oleate followed by arachidonate that is released by stimulation of the PLC/DG lipase pathway

  13. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Science.gov (United States)

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  14. Vascular complications following therapeutic and diagnostic cardiac catheterisation by the femoral artery

    DEFF Research Database (Denmark)

    Bitsch, M; Liisberg-Larsen, Ole Christian; Schroeder, T V

    1994-01-01

    Twenty-one of 6327 (0.33%) patients undergoing cardiac catheterisation via the femoral artery had an acute vascular complication requiring surgical intervention. The complication rate was 0.1% after coronary angiography, 2% after PTCA and 6% after aortic ballon dilatation. The size of the cathete...... and evaluation of vascular injuries following diagnostic and therapeutic invasive interventions could have a self limitating effect on the complication rate....

  15. Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Leon J. Schurgers

    2018-04-01

    Full Text Available The ageing population continues to suffer from its primary killer, cardiovascular disease (CVD. Despite recent advances in interventional medicinal and surgical therapies towards the end of the 20th century, the epidemic of cardiovascular disease has not been halted. Yet, rather than receding globally, the burden of CVD has risen to become a top cause of morbidity and mortality worldwide. Most CVD arises from thrombotic rupture of an atherosclerotic plaque, the pathologic thickening of coronary and carotid artery segments and subsequent distal ischemia in heart or brain. In fact, one-fifth of deaths are directly attributable to thrombotic rupture of a vulnerable plaque. Atherosclerotic lesion formation is caused by a concert of interactions between circulating leukocytes and platelets, interacting with the endothelial barrier, signalling into the arterial wall by the release of cytokines and extracellular vesicles (EVs. Both platelet- and cell-derived EVs represent a novel mechanism of cellular communication, particularly by the transport and transfer of cargo and by reprogramming of the recipient cell. These interactions result in phenotypic switching of vascular smooth muscle cells (VSMCs causing migration and proliferation, and subsequent secretion of EVs. Loss of VSMCs attracts perivascular Mesenchymal Stem Cells (MSCs from the adventitia, which are a source of VSMCs and contribute to repair after vascular injury. However, continuous stress stimuli eventually switch phenotype of cells into osteochondrogenic VSMCs facilitating vascular calcification. Although Virchow’s triad is over 100 years old, it is a reality that is accurate today. It can be briefly summarised as changes in the composition of blood (platelet EVs, alterations in the vessel wall (VSMC phenotypic switching, MSC infiltration and EV release and disruption of blood flow (atherothrombosis. In this paper, we review the latest relevant advances in the identification of

  16. [Doppler ultrasound evaluation of aortic insufficiency using half-pressure time. Absence of arterial rigidity influence].

    Science.gov (United States)

    Kalotka-Bratek, H; Drobinski, G; Klimczak, K; Busquet, P; Fraysse, J B; Bejean-Lebuisson, A; Grosgogeat, Y

    1989-02-01

    In 20 patients with pure aortic regurgitation we studied the relationship between the severity of regurgitation, as assessed haemodynamically by the percentage of leakage (%L), and the half-pressure (T 1/2 P) and half-velocity (T 1/2 V) times, as obtained from doppler aortic blood velocity curves, taking into account the rigidity of the systemic vascular circuit characterized by the pressure wave propagation velocity (PWPV). The systemic arterial circuit was supple in 14 patients (PWPV less than 7.5 m/sec) and rigid in 6 patients (PWPV greater than 7.5 m/sec). The regression slopes between %L and T 1/2 P and between %L and T 1/2 V were calculated with their confidence limits in the 14 patients with supple arteries. The 6 patients with rigid arteries fitted into this nomogram, thus demonstrating that systemic arterial rigidity makes no difference in the relationship between %L and doppler indices. The half-velocity and half-pressure times measured by doppler ultrasound were acquired from a velocity signal directly determined by the aortic regurgitation, without any detectable effect of vascular circuit rigidity. Being equivalent by nature to the signal decrease time constant, they are independent of the absolute protodiastolic value of diastolic pressure gradient or blood flow velocity. For this reason these two doppler parameters are reliable to evaluate the severity of aortic regurgitation.

  17. Coexistence of pheochromocytoma with uncommon vascular lesions

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2012-01-01

    Full Text Available Background: Pheochromocytoma/paragangliomas have been described to be associated with rare vascular abnormalities like renal artery stenosis. Coexistence of physiologically significant renal artery lesions is a compounding factor that alters management and prognosis of pheochromocytoma patients. Apart from individual case reports, data on such association in Indian population is not available. The aim of this study is to find the nature and prevalence of associated vascular abnormalities. Materials and Methods: From 1990 to 2010, a total of 50 patients were diagnosed with pheochromocytoma/paragangliomas. Hospital charts of these patients were reviewed retrospectively to identify those with unusual vascular abnormalities. Available literature was also reviewed. Results: Of the 50 patients with pheochromocytoma, 7 (14% had coexisting vascular lesions including renal artery stenosis in 4, aortoarteritis in 1, aortic aneurysm in 1 and inferior vena cava thrombosis in 1. Pheochromocytoma was adrenal in 42 and extra adrenal in 8. Laparoscopic adrenalectomy was done in the patients. One patient with renal artery stenosis due to intimal fibrosis was subjected to percutaneous balloon angioplasty; the other three improved after adrenalectomy and lysis of fibrous adhesive bands. The patient with aortoarteritos was treated with oral steroids. Inferior vena cava thrombosis was reversed with anticoagulants. The patient with abdominal aortic aneurysm was advised for annual follow-up on account of its size of 4.5 cm and asymptomatic presentation. Conclusion: There are multiple mechanisms that can lead to renal artery stenosis and other vascular abnormalities in a case of pheochromocytoma. A high index of suspicion is necessary to enable both entities to be diagnosed preoperatively and allow proper planning of surgical therapy. Incomplete diagnosis may lead to persistent hypertension postoperatively in a case of associated renal artery stenosis.

  18. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice

    Directory of Open Access Journals (Sweden)

    Chan-Jung Liang

    2014-01-01

    Full Text Available The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi polysaccharides (EORPs, which is effective against immunological disorders, on interleukin- (IL- 1β expression by human aortic smooth muscle cells (HASMCs and the underlying mechanism. The lipopolysaccharide- (LPS- induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF- κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/− mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses.

  19. Abdominal aortic calcifications predict survival in peritoneal dialysis patients

    DEFF Research Database (Denmark)

    Mäkelä, Satu M; Asola, Markku; Hadimeri, Henrik

    2018-01-01

    BACKGROUND: Peripheral arterial disease and vascular calcifications contribute significantly to the outcome of dialysis patients. The aim of this study was to evaluate the prognostic role of severity of abdominal aortic calcifications and peripheral arterial disease on outcome of peritoneal...... dialysis (PD) patients using methods easily available in everyday clinical practice. METHODS: We enrolled 249 PD patients (mean age 61 years, 67% male) in this prospective, observational, multicenter study from 2009 to 2013. The abdominal aortic calcification score (AACS) was assessed using lateral lumbar.......9) in 17%, and high (> 1.3) in 34% of patients. Altogether 91 patients (37%) died during the median follow-up of 46 months. Only 2 patients (5%) with AACS 0 died compared with 50% of the patients with AACS ≥ 7 (p

  20. Midterm outcome of valve-sparing aortic root replacement in inherited connective tissue disorders.

    Science.gov (United States)

    Tanaka, Hiroshi; Ogino, Hitoshi; Matsuda, Hitoshi; Minatoya, Kenji; Sasaki, Hiroaki; Iba, Yutaka

    2011-11-01

    This study determined the midterm outcome of valve-sparing aortic root replacement for patients with inherited connective tissue disorders. From 1993 to 2008, 94 patients underwent valve-sparing aortic root replacement. Sixty patients (64%), average age 33 years (range, 15 to 61 years), had inherited connective tissue disorders: Marfan syndrome, 54 (92%); Loeys-Dietz syndrome, 5 (8%); and smooth muscle α-actin (ACTA2) mutation in 1. Median preoperative sinus diameter was 52 mm (range, 42 to 76 mm), and moderate/severe aortic regurgitation was present in 14 (23%). Seven (12%, 1993 to 1999) underwent remodeling procedures, and 53 had reimplantation procedures. Cusp repair was performed in 4. Median follow-up was 55 months (range, 1 to 149 months). There were 15 patients in the early term (1993 to 2000) and 45 in the late term (2001 to 2008). Four late deaths occurred (cardiac, 3; aortic, 1), with 10-year survival of 86%. Rates of freedom from aortic valve replacement at 5 and 10 years were 85% and 58% in remodeling and 96% and 58% in reimplantation. Risk factors for reoperations were postprocedure intraoperative aortic insufficiency greater than mild (p = 0.046), remodeling procedure (p = 0.016), and early term (p = 0.0002). One patient (2%) with none/trivial postprocedure aortic insufficiency required aortic valve replacement. Freedom from reoperation in patients with none/trivial postprocedure aortic insufficiency at 5 and 10 years was 100% and 67%. Meticulous control of aortic insufficiency during operation would bring favorable midterm durability in valve-sparing aortic root replacement using a reimplantation technique, even in patients with inherited connective tissue disorders. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  2. Poly(ADP-ribose polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

    Directory of Open Access Journals (Sweden)

    Dan Huang

    Full Text Available BACKGROUND: Transforming growth factor type-β (TGF-β/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose polymerase 1 (PARP1, a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs. METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB or N-(6-oxo-5,6-dihydrophenanthridin-2-yl-2-(N,N-dimethylaminoacetami (PJ34, or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosylation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosylation enhanced Smad-Smad binding element (SBE complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.

  3. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    Energy Technology Data Exchange (ETDEWEB)

    López-Canales, J.S. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico); Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C. [Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico)

    2015-03-27

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca{sup 2+}-activated K{sup +} channels were involved in this effect.

  4. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    International Nuclear Information System (INIS)

    López-Canales, J.S.; Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C.; López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C.

    2015-01-01

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca 2+ -activated K + channels were involved in this effect

  5. LPS Promotes Vascular Smooth Muscle Cells Proliferation Through the TLR4/Rac1/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Qianran Yin

    2017-12-01

    Full Text Available Background/Aims: Lipopolysaccharide (LPS is a potent activator of vascular smooth muscle cells (VSMCs proliferation, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4 and Ras-related C3 botulinum toxin substrate 1 (Rac1 expression using small interfering RNA (siRNA in order to investigate the effects and possible mechanisms of LPS-induced VSMCs proliferation. Methods: VSMCs proliferation was monitored by 5-ethynyl-2’-deoxyuridine staining, and Rac1 activity was measured via Glutathione S-transferase pull-down assay. mRNAs encoding proliferating cell nuclear antigen (PCNA, smooth muscle 22α (SM22α, myosin heavy chain (MYH and transient receptor potential channel 1 (TRPC1 were detected by qRT-PCR. The expression of total Akt, p-Akt (308, p-Akt (473, SM22α, MYH and TRPC1 protein was analysed by Western blot. Results: Treatment with TLR4 siRNA (siTLR4 or Rac1 siRNA (siRac1 significantly decreased LPS-induced VSMCs proliferation. Moreover, LPS-induced activation of Rac1 through TLR4 was observed. Western blot analysis revealed that transfection with siTLR4 or siRac1 inhibited LPS-induced Akt phosphorylation. We discovered that LPS stimulated VSMCs proliferation via phenotypic modulation and that this effect was partially inhibited by pre-treatment with siTLR4 or siRac1. Further, TLR4 and Rac1 are involved in LPS-induced activation of TRPC1. Conclusion: This study suggests that LPS exerts an effect on VSMCs proliferation and that the TLR4/Rac1/Akt signalling pathway mediates this effect.

  6. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    Science.gov (United States)

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Right circumflex retro-oesophageal aortic arch with coarctation of a high-positioned right arch

    International Nuclear Information System (INIS)

    Ahn, Kyung-Sik; Yong, Hwan Seok; Woo, Ok Hee; Kang, Eun-Young; Lee, Joo-Won

    2007-01-01

    We present a rare case of right circumflex retro-oesophageal aortic arch with coarctation of a high-positioned right arch. A 7-month-old boy presented with a cardiac murmur. Cardiac situs was normal and there was no evidence of an intracardiac shunt or patent ductus arteriosus. MR aortography revealed a right aortic arch that was high-positioned, tortuous and narrowed. This right aortic arch crossed the midline behind the oesophagus and continued as a left-sided descending aorta. The left common carotid and subclavian arteries arose from a large branching vascular structure that derived from the top of the left-sided descending aorta. The right common carotid artery arose from the ascending aorta. The proximal portion of the right common carotid artery showed very severe stenosis and poststenotic dilatation. The right subclavian artery originated distal to the narrowed and tortuous segment of the aortic arch. (orig.)

  8. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  9. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aortae.

    Science.gov (United States)

    Honda, H; Iwata, T; Mochizuki, T; Kogo, H

    2000-06-01

    Hyperthyroidism was induced by subcutaneous injections of L-thyroxine (T(4)) (500 mg/kg/day) for 3 days in order to study whether adrenergic and muscarinic receptor-mediated vascular responses alter at an early stage of the disease. T(4) treatment was sufficient to induce a significant degree of thyroid weight loss, tachycardia, cardiac hypertrophy, and an elevation in serum T(4) levels. The tension of aortic ring preparations isolated from rats was measured isometrically to investigate the influence of acute hyperthyroidism. The contractions induced by norepinephrine (NE) were significantly suppressed in aortic rings from rats treated with T(4) compared with control rats. N(G)-nitro-L-arginine (L-NOARG), an inhibitor of nitric oxide synthase (NOS), significantly enhanced NE-induced contraction in aortic rings from both control and T(4)-treated rats, and the enhancement was greater in rats treated with T(4) than control rats. The relaxations induced by either acetylcholine (ACh) or sodium nitroprusside (SNP) were also significantly enhanced by T(4) treatment. L-NOARG abolished the relaxation induced by ACh in aortic rings from both control and T(4)-treated rats. L-NOARG shifted SNP-induced relaxation curves of aortic rings from those of control rats to the left, but not with rats treated with T(4). T(4) treatment showed no influence on the amount of endothelial NOS (eNOS) protein. These results suggest that vascular responses alter at an early stage of hyperthyroidism and that it may be due to a modification in the NO system which is independent from the amount of eNOS protein.

  10. Inferior vena cava leiomyosarcoma: vascular reconstruction is not ...

    African Journals Online (AJOL)

    ... vena cava is a rare and aggressive tumor, arising from the smooth muscle cells in the vessel wall. A large complete surgical resection is the essential treatment. The need of vascular reconstruction is not always mandatory. It's above all to understand the place of the reconstruction with artificial vascular patch prosthetics of ...

  11. Increased NBCn1 expression, Na+/HCO3 co-transport and intracellular pH in human vascular smooth muscle cells with a risk allele for hypertension

    DEFF Research Database (Denmark)

    Ng, Fu Liang; Boedtkjer, Ebbe; Witkowska, Katarzyna

    2017-01-01

    cultures of vascular smooth muscle and endothelial cells. In both cell types, we found genotype-dependent differences for rs13082711 in DNA-nuclear protein interactions, where the risk allele is associated with increased SLC4A7 expression level, NBCn1 availability and function as reflected in elevated...

  12. Early Manifestation of Supravalvular Aortic and Pulmonary Artery Stenosis in a Patient with Williams Syndrome

    Directory of Open Access Journals (Sweden)

    Jong Uk Lee

    2016-04-01

    Full Text Available Williams syndrome (WS is a developmental disorder characterized by vascular abnormalities such as thickening of the vascular media layer in medium- and large-sized arteries. Supravalvular aortic stenosis (SVAS and peripheral pulmonary artery stenosis (PPAS are common vascular abnormalities in WS. The natural course of SVAS and PPAS is variable, and the timing of surgery or intervention is determined according to the progression of vascular stenosis. In our patient, SVAS and PPAS showed rapid concurrent progression within two weeks after birth. We report the early manifestation of SVAS and PPAS in the neonatal period and describe the surgical treatment for stenosis relief.

  13. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  14. Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats.

    Science.gov (United States)

    Si, Lislivia Yiang-Nee; Kamisah, Yusof; Ramalingam, Anand; Lim, Yi Cheng; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-07-01

    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) C max = 234.5 ± 3.9%, Endo-(-) C max = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) C max = 264.5 ± 6.9%, Endo-(-) C max = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) R max = 73.2 ± 2.1%, Endo-(-) R max = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) R max = 57.8 ± 1.7%, Endo-(-) R max = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.

  15. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels

    DEFF Research Database (Denmark)

    Chen, Xiaoping; Yang, Dachun; Ma, Shuangtao

    2010-01-01

    Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor pot...

  16. A Typical Immune T/B Subset Profile Characterizes Bicuspid Aortic Valve: In an Old Status?

    Directory of Open Access Journals (Sweden)

    Carmela R. Balistreri

    2018-01-01

    Full Text Available Bicuspid valve disease is associated with the development of thoracic aortic aneurysm. The molecular mechanisms underlying this association still need to be clarified. Here, we evaluated the circulating levels of T and B lymphocyte subsets associated with the development of vascular diseases in patients with bicuspid aortic valve or tricuspid aortic valve with and without thoracic aortic aneurysm. We unveiled that the circulating levels of the MAIT, CD4+IL−17A+, and NKT T cell subsets were significantly reduced in bicuspid valve disease cases, when compared to tricuspid aortic valve cases in either the presence or the absence of thoracic aortic aneurysm. Among patients with tricuspid aortic valve, these cells were higher in those also affected by thoracic aortic aneurysm. Similar data were obtained by examining CD19+ B cells, naïve B cells (IgD+CD27−, memory unswitched B cells (IgD+CD27+, memory switched B cells (IgD−CD27+, and double-negative B cells (DN (IgD−CD27−. These cells resulted to be lower in subjects with bicuspid valve disease with respect to patients with tricuspid aortic valve. In whole, our data indicate that patients with bicuspid valve disease show a quantitative reduction of T and B lymphocyte cell subsets. Future studies are encouraged to understand the molecular mechanisms underlying this observation and its pathophysiological significance.

  17. Suprarenal Abdominal Aortic Coarctation Diagnosed During Pregnancy

    Directory of Open Access Journals (Sweden)

    Sh Hajsadeghi

    2010-12-01

    Full Text Available Coarctation of the abdominal aorta is an extremely rare vascular defect inwhich congenital or acquired etiologies have been described. This case concernsa 30-year-old pregnant woman with 15-years history of uncontrolled hypertensionand lower limb claudication presented with worsened hypertension during herfirst pregnancy. Magnetic resonance angiography study of aorta revealed astenosis in abdominal aorta about 12mm from the origin of celiac axisaccompanied by left sided aortic arch and right aberrant subclavian artery. Thiscase highlights the importance of a throughout physical examination in patientspresented with hypertension and it emphasizes considering the coarctation of theabdominal aorta during the diagnostic workup of hypertension, especially inyoung patients. In such cases magnetic resonance angiography of the aorta is auseful tool to reach a definitive diagnosis especially in pregnant women.Also to our knowledge, this patient is the first one found to have aortic archmalformation combined with an abdominal coarctation.

  18. Abdominal aortic aneurysm in a premature neonate with disseminated candidiasis: Ultrasound and angiography

    Energy Technology Data Exchange (ETDEWEB)

    Khoss, A.E.; Ponhold, W.; Pollak, A.; Schlemmer, M.; Weninger, M.

    1985-09-01

    When using ultrasound for detection of kidney enlargement, we found an acute abdominal aortic aneurysm secondary to aortitis arising from umbilical artery catheterisation in a premature neonate with systemic candidiasis. Aortography was performed to provide vascular details such as involvement of celiac, renal, iliac and femoral arteries.

  19. Retro-aortic, left inferior renal capsular vein

    Directory of Open Access Journals (Sweden)

    Umberto G Rossi

    2015-01-01

    Full Text Available In our case report, abdominal multi-detector computed tomography was used for the pre-operative anatomy evaluation in a living kidney donor. The early phase of the test revealed normal kidneys in the donor. The vascular phase detected a venous variant on the left side: An inferior renal capsular vein, which had a loop and a retro-aortic course. This preoperative knowledge was crucial for the laparoscopic nephrectomy as a surgical procedure for harvesting kidney from the living donor.

  20. Resveratrol Increases Serum BDNF Concentrations and Reduces Vascular Smooth Muscle Cells Contractility via a NOS-3-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Michał Wiciński

    2017-01-01

    Full Text Available Resveratrol is a polyphenol that presents both antineuroinflammatory properties and the ability to interact with NOS-3, what contributes to vasorelaxation. Brain-derived neurotrophic factor (BNDF, a molecule associated with neuroprotection in many neurodegenerative disorders, is considered as an important element of maintaining stable cerebral blood flow. Vascular smooth muscle cells (VSMCs are considered to be an important element in the pathogenesis of neurodegeneration and a potential preventative target by agents which reduce the contractility of the vessels. Our main objectives were to define the relationship between serum and long-term oral resveratrol administration in the rat model, as well as to assess the effect of resveratrol on phenylephrine- (PHE- induced contraction of vascular smooth muscle cells (VSMCs. Moreover, we attempt to define the dependence of contraction mechanisms on endothelial NO synthase. Experiments were performed on Wistar rats (n=17 pretreated with resveratrol (4 weeks; 10 mg/kg p.o. or placebo. Serum BDNF levels were quantified after 2 and 4 weeks of treatment with ELISA. Contraction force was measured on isolated and perfused tail arteries as the increase of perfusion pressure with a constant flow. Values of serum BNDF in week 0 were 1.18±0.12 ng/mL (treated and 1.17±0.13 ng/mL (control (p = ns. After 2 weeks of treatment, BDNF in the treatment group was higher than in controls, 1.52±0.23 ng/mL and 1.24±0.13 ng/mL, respectively. (p=0.02 Following 4 weeks of treatment, BDNF values were higher in the resveratrol group compared to control 1.64±0.31 ng/mL and 1.32±0.26 ng/mL, respectively (p=0.031. EC50 values obtained for PHE in resveratrol pretreated arteries were significantly higher than controls (5.33±1.7 × 10−7 M/L versus 4.53±1.2 × 10−8 M/L, p<0.05. These results show a significant increase in BDNF concentration in the resveratrol pretreated group. The reactivity of resistant

  1. Oxygen mediates vascular smooth muscle relaxation in hypoxia.

    Directory of Open Access Journals (Sweden)

    Jessica Dada

    Full Text Available The activation of soluble guanylate cyclase (sGC by nitric oxide (NO and other ligands has been extensively investigated for many years. In the present study we considered the effect of molecular oxygen (O2 on sGC both as a direct ligand and its affect on other ligands by measuring cyclic guanosine monophosphate (cGMP production, as an index of activity, as well as investigating smooth muscle relaxation under hypoxic conditions. Our isolated enzyme studies confirm the function of sGC is impaired under hypoxic conditions and produces cGMP in the presence of O2, importantly in the absence of NO. We also show that while O2 could partially affect the magnitude of sGC stimulation by NO when the latter was present in excess, activation by the NO independent, haem-dependent sGC stimulator 3-(5'-hydroxymethyl-2'-furyl-1-benzylindazole (YC-1 was unaffected. Our in vitro investigation of smooth muscle relaxation confirmed that O2 alone in the form of a buffer bolus (equilibrated at 95% O2/5% CO2 had the ability to dilate vessels under hypoxic conditions and that this was dependent upon sGC and independent of eNOS. Our studies confirm that O2 can be a direct and important mediator of vasodilation through an increase in cGMP production. In the wider context, these observations are key to understanding the relative roles of O2 versus NO-induced sGC activation.

  2. Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration

    Directory of Open Access Journals (Sweden)

    Weissmann Norbert

    2005-11-01

    Full Text Available Abstract Background The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH in rats. Methods CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii the anti-remodeling effect of long-term inhalation of tolafentrine (iii the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated. Results Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks, cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers, after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery

  3. 45Ca distribution and transport in saponin skinned vascular smooth muscle

    International Nuclear Information System (INIS)

    Stout, M.A.; Diecke, F.P.

    1983-01-01

    45 Ca distribution and transport were studied in chemically skinned strips of caudal artery from Kyoto Wistar rats. Sarcolemmal membranes were made hyperpermeable by exposure for 60 min to solutions containing 0.1 mg/ml of saponin. Skinned helical strips responded with graded contractions to changes in ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid buffered free Ca solutions (10(-7) to 10(-5) M) and were sensitive to the Mg-ATP concentration. Tissues loaded in the presence of 10(-7) M Ca contracted in response to 10 mM caffeine. These experiments indicate the strips are skinned and possess a functional regulatory and contractile system and an intact Ca sequestering system. 45 Ca distributes in three compartments in skinned caudal artery strips. The Ca contents of two components are linear functions of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration and desaturate at rapid rates. They correspond to the extracellular and cytoplasmic spaces. A significantly smaller component releases Ca at comparatively slower rates. 45 Ca uptake by the slow component consists of an ATP-dependent and an ATP-independent fraction. The 45 Ca content of the ATP-dependent fraction is a function of the free Ca concentration and is independent of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration. Its content was enhanced by oxalate and was abolished by Triton X-100 skinning solutions. The ATP-independent component was not affected by Triton X-100 skinning and may represent Ca binding to cytoplasmic molecules and structures. The sequestered Ca was released with caffeine or Ca but not by epinephrine. The observations indicate that the sarcoplasmic reticulum and mitochondria of vascular smooth muscle strips skinned with saponin retain their functional integrity after saponin skinning

  4. PDZK1 prevents neointima formation via suppression of breakpoint cluster region kinase in vascular smooth muscle.

    Directory of Open Access Journals (Sweden)

    Wan Ru Lee

    Full Text Available Scavenger receptor class B, type I (SR-BI and its adaptor protein PDZK1 mediate responses to HDL cholesterol in endothelium. Whether the receptor-adaptor protein tandem serves functions in other vascular cell types is unknown. The current work determined the roles of SR-BI and PDZK1 in vascular smooth muscle (VSM. To evaluate possible VSM functions of SR-BI and PDZK1 in vivo, neointima formation was assessed 21 days post-ligation in the carotid arteries of wild-type, SR-BI-/- or PDZK1-/- mice. Whereas neointima development was negligible in wild-type and SR-BI-/-, there was marked neointima formation in PDZK1-/- mice. PDZK1 expression was demonstrated in primary mouse VSM cells, and compared to wild-type cells, PDZK1-/- VSM displayed exaggerated proliferation and migration in response to platelet derived growth factor (PDGF. Tandem affinity purification-mass spectrometry revealed that PDZK1 interacts with breakpoint cluster region kinase (Bcr, which contains a C-terminal PDZ binding sequence and is known to enhance responses to PDGF in VSM. PDZK1 interaction with Bcr in VSM was demonstrated by pull-down and by coimmunoprecipitation, and the augmented proliferative response to PDGF in PDZK1-/- VSM was abrogated by Bcr depletion. Furthermore, compared with wild-type Bcr overexpression, the introduction of a Bcr mutant incapable of PDZK1 binding into VSM cells yielded an exaggerated proliferative response to PDGF. Thus, PDZK1 has novel SR-BI-independent function in VSM that affords protection from neointima formation, and this involves PDZK1 suppression of VSM cell proliferation via an inhibitory interaction with Bcr.

  5. Increased NBCn1 expression, Na+/ HCO 3 ? co-transport and intracellular pH in human vascular smooth muscle cells with a risk allele for hypertension

    OpenAIRE

    Ng, Fu Liang; Boedtkjer, Ebbe; Witkowska, Kate; Ren, Meixia; Zhang, Ruoxin; Tucker, Arthur; Aalkj?r, Christian; Caulfield, Mark J.; Ye, Shu

    2017-01-01

    Abstract Genome-wide association studies have revealed an association between variation at the SLC4A7 locus and blood pressure. SLC4A7 encodes the electroneutral Na+/ HCO 3 ? co-transporter NBCn1 which regulates intracellular pH (pH i ). We conducted a functional study of variants at this locus in primary cultures of vascular smooth muscle and endothelial cells. In both cell types, we found genotype-dependent differences for rs13082711 in DNA-nuclear protein interactions, where the risk allel...

  6. Aortic insufficiency

    Science.gov (United States)

    ... page, please enable JavaScript. Aortic insufficiency is a heart valve disease in which the aortic valve does not close ... aortic insufficiency Images Aortic insufficiency References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  7. Allergic Lung Inflammation Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice

    DEFF Research Database (Denmark)

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang

    2016-01-01

    sensitization and challenge in mice led to the development of allergic lung inflammation (ALI). Subcutaneous infusion of angiotensin II into mice produced AAA. Simultaneous production of ALI in AAA mice doubled abdominal aortic diameter and increased macrophage and mast cell content, arterial media smooth...... and reduced lesion inflammation, plasma IgE, and bronchioalveolar inflammation. Pre-establishment of ALI also increased AAA lesion size, lesion accumulation of macrophages and mast cells, media smooth muscle cell loss, and plasma IgE, reduced plasma interleukin-5, interleukin-13, and transforming growth...... factor-β, and increased bronchioalveolar inflammation. Consequent production of ALI also doubled lesion size of pre-established AAA and increased lesion mast cell and T-cell accumulation, media smooth muscle cell loss, lesion cell proliferation and apoptosis, plasma IgE, and bronchioalveolar inflammation...

  8. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  9. Abdominal aortic aneurysm in a premature neonate with disseminated candidiasis: Ultrasound and angiography

    International Nuclear Information System (INIS)

    Khoss, A.E.; Ponhold, W.; Pollak, A.; Schlemmer, M.; Weninger, M.

    1985-01-01

    When using ultrasound for detection of kidney enlargement, we found an acute abdominal aortic aneurysm secondary to aortitis arising from umbilical artery catheterisation in a premature neonate with systemic candidiasis. Aortography was performed to provide vascular details such as involvement of celiac, renal, iliac and femoral arteries. (orig.)

  10. Chronic high-sodium diet increases aortic wall endothelin-1 expression in a blood pressure-independent fashion in rats.

    Science.gov (United States)

    Tsai, Yu-Hwai; Ohkita, Mamoru; Gariepy, Cheryl E

    2006-06-01

    Vascular endothelin (ET)-1 is upregulated in several forms of salt-induced hypertension. It is unclear to what extent these effects are primary or secondary to endothelial damage. We hypothesized that a high-sodium diet (HNa) increases vascular ET-1 production independent of arterial blood pressure changes. We investigated the effect of chronic HNa with and without ET(A) blockade on circulating and aortic ET-1 protein levels as well as aortic expression of ET-1 and ET(A) messenger RNA (mRNA) in inbred Wistar-Kyoto (WKY) and congenic ET(B)-deficient rats. Comparing WKY rats fed a low-sodium diet (LNa) with those fed HNa for 3 weeks, aortic wall ET-1 protein is significantly increased in response to HNa (331 +/- 43 pg/g tissue for LNa vs. 557 +/- 34 pg/gm tissue for HNa). HNa also increased aortic wall ET-1 mRNA levels by 40%, as determined by quantitative reverse transcriptase polymerase chain reaction. We then compared rats chronically treated with the ET(A)-selective antagonist, ABT-627, while receiving either LNa or HNa. There were no differences in arterial blood pressure (mean arterial pressure 89 +/- 1 mm Hg for WKY on LNa; 90 +/- 3 for WKY on HNa; 91 +/- 2 for ET(B)-deficient/ABT-627-treated on HNa) or heart rate. However, aortic wall ET-1 protein levels were 4-fold higher in the HNa group. Further, HNa increased aortic wall ET-1 mRNA (approximately 1.5- to 3-fold) and ET(A) mRNA (approximately 2- to 7-fold), independent of activation of ET(B). Therefore, the expression of ET-1 mRNA by the aortic wall is increased in response to chronic high dietary sodium in WKY rats in the absence of changes in arterial blood pressure.

  11. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    International Nuclear Information System (INIS)

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M.

    2006-01-01

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol

  12. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-01-01

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-κB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis

  13. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1.

    Science.gov (United States)

    Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie

    2018-05-01

    Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.

  14. Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yana Dautova

    Full Text Available Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥ 1 µM reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms.

  15. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    International Nuclear Information System (INIS)

    Qiao, Yong; Tang, Chengchun; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-01-01

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K"+ channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  16. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-09-02

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  17. PET/CT and vascular disease: Current concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti Filho, Jose Leite Gondim; Souza Leao Lima, Ronaldo de [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil); Souza Machado Neto, Luiz de [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Kayat Bittencourt, Leonardo, E-mail: lkayat@terra.com.br [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil); Cortes Domingues, Romeu [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Fonseca, Lea Mirian Barbosa da [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil)

    2011-10-15

    Since its introduction in 2001, positron emission tomography associated to computed tomography (PET/CT) has been established as a standard tool in cancer evaluation. Being a multimodality imaging method, it combines in a single session the sensitivity granted by PET for detection of molecular targets within the picomolar range, with an underlying submilimetric resolution inherent to CT, that can precisely localize the PET findings. In this last decade, there have been new insights regarding the pathophysiology of atherosclerosis, particularly about plaque rupture and vascular remodeling. This has increased the interest for research on PET/CT in vascular diseases as a potential new diagnostic tool, since some PET molecular targets could identify diseases before the manifestation of gross anatomic features. In this review, we will describe the current applications of PET/CT in vascular diseases, emphasizing its usefulness in the settings of vasculitis, aneurysms, vascular graft infection, aortic dissection, and atherosclerosis/plaque vulnerability. Although not being properly peripheral vascular conditions, ischemic cardiovascular disease and cerebrovascular disease will be briefly addressed as well, due to their widespread prevalence and importance.

  18. Vascular complications of prosthetic inter-vertebral discs.

    Science.gov (United States)

    Daly, Kevin J; Ross, E Raymond S; Norris, Heather; McCollum, Charles N

    2006-10-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had eroded into the bifurcation of the inferior vena cava and the left common iliac vein. In three cases the aortic bifurcation was also involved. The fibrosis was so severe that dissecting out the arteries and veins to provide access to the relevant disc proved impossible. Formal division of the left common iliac vein and artery with subsequent repair was our solution. Anterior inter-vertebral disc displacement was associated with severe vascular injury. Preventing anterior disc displacement is essential in disc design. In the event of anterior displacement, disc removal should be planned with a Vascular Surgeon.

  19. Platelet-derived growth factor regulates K-Cl cotransport in vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2003-03-01

    Platelet-derived growth factor (PDGF), a potent serum mitogen for vascular smooth muscle cells (VSMCs), plays an important role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, is involved in ion homeostasis. VSMCs possess K-Cl COT activity and the KCC1 and KCC3 isoforms. Here, we report on the effect of PDGF on K-Cl COT activity and mRNA expression in primary cultures of rat VSMCs. K-Cl COT was determined as the Cl-dependent Rb influx and mRNA expression by semiquantitative RT-PCR. Twenty four-hour serum deprivation inhibited basal K-Cl COT activity. Addition of PDGF increased total protein content and K-Cl COT activity in a time-dependent manner. PDGF activated K-Cl COT in a dose-dependent manner, both acutely (10 min) and chronically (12 h). AG-1296, a selective inhibitor of the PDGF receptor tyrosine kinase, abolished these effects. Actinomycin D and cycloheximide had no effect on the acute PDGF activation of K-Cl COT, suggesting posttranslational regulation by the drug. Furthermore, PDGF increased KCC1 and decreased KCC3 mRNA expression in a time-dependent manner. These results indicate that chronic activation of K-Cl COT activity by PDGF may involve regulation of the two KCC mRNA isoforms, with KCC1 playing a dominant role in the mechanism of PDGF-mediated activation.

  20. Early results of valve-sparing ascending aortic replacement in type A aortic dissection and aortic insufficiency

    Directory of Open Access Journals (Sweden)

    М. Л. Гордеев

    2016-08-01

    Full Text Available Aim: The study was designed to investigate predictors of effective valve-sparing ascending aortic replacement in patients with Stanford type A aortic dissection combined with aortic insufficiency and to analyze efficacy and safety of this kind of surgery.Methods: From January 2010 to December 2015, 49 patients with Stanford type A aortic dissection combined with aortic insufficiency underwent ascending aortic replacement. All patients were divided into 3 groups: valve-sparing procedures (group 1, n = 11, combined aortic valve and supracoronary ascending aortic replacement (group 2, n = 12, and Bentall procedure (group 3, n = 26. We assessed the initial status of patients, incidence of complications and efficacy of valve-sparing ascending aortic replacement.Results: The hospital mortality rate was 8.2% (4/49 patients. The amount of surgical correction correlated with the initial diameter of the aorta at the level of the sinuses of Valsalva. During the hospital period, none of patients from group 1 developed aortic insufficiency exceeding Grade 2 and the vast majority of patients had trivial aortic regurgitation. The parameters of cardiopulmonary bypass, cross-clamp time and circulatory arrest time did not correlate with the initial size of the ascending aorta and aortic valve blood flow impairment, neither did they influence significantly the incidence and severity of neurological complications. The baseline size of the ascending aorta and degree of aortic regurgitation did not impact the course of the early hospital period.Conclusions: Supracoronary ascending aortic replacement combined with aortic valve repair in ascending aortic dissection and aortic regurgitation is effective and safe. The initial size of the ascending aorta and aortic arch do not influence immediate results. The diameter of the aorta at the level of the sinuses of Valsalva and the condition of aortic valve leaflets could be considered as the limiting factors. Further long