WorldWideScience

Sample records for aon-induced dystrophin exon

  1. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Debra A O'Leary

    Full Text Available One therapeutic approach to Duchenne Muscular Dystrophy (DMD recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD, by employing antisense oligonucleotides (AONs targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened approximately 10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2 were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.

  2. Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert Jan B

    2011-04-01

    Full Text Available Abstract Background Myostatin is a potent muscle growth inhibitor that belongs to the Transforming Growth Factor-β (TGF-β family. Mutations leading to non functional myostatin have been associated with hypermuscularity in several organisms. By contrast, Duchenne muscular dystrophy (DMD is characterized by a loss of muscle fibers and impaired regeneration. In this study, we aim to knockdown myostatin by means of exon skipping, a technique which has been successfully applied to reframe the genetic defect of dystrophin gene in DMD patients. Methods We targeted myostatin exon 2 using antisense oligonucleotides (AON in healthy and DMD-derived myotubes cultures. We assessed the exon skipping level, transcriptional expression of myostatin and its target genes, and combined myostatin and several dystrophin AONs. These AONs were also applied in the mdx mice models via intramuscular injections. Results Myostatin AON induced exon 2 skipping in cell cultures and to a lower extent in the mdx mice. It was accompanied by decrease in myostatin mRNA and enhanced MYOG and MYF5 expression. Furthermore, combination of myostatin and dystrophin AONs induced simultaneous skipping of both genes. Conclusions We conclude that two AONs can be used to target two different genes, MSTN and DMD, in a straightforward manner. Targeting multiple ligands of TGF-beta family will be more promising as adjuvant therapies for DMD.

  3. Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

    OpenAIRE

    Bo Wu; Ehsan Benrashid; Peijuan Lu; Caryn Cloer; Allen Zillmer; Mona Shaban; Qi Long Lu

    2011-01-01

    Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD/...

  4. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.

    Directory of Open Access Journals (Sweden)

    Zhi Yon Charles Toh

    Full Text Available Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.

  5. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.

    Science.gov (United States)

    Toh, Zhi Yon Charles; Thandar Aung-Htut, May; Pinniger, Gavin; Adams, Abbie M; Krishnaswarmy, Sudarsan; Wong, Brenda L; Fletcher, Sue; Wilton, Steve D

    2016-01-01

    Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes. PMID:26745801

  6. Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries

    Directory of Open Access Journals (Sweden)

    Fletcher Sue

    2007-07-01

    Full Text Available Abstract Background Antisense oligonucleotides (AOs can interfere with exon recognition and intron removal during pre-mRNA processing, and induce excision of a targeted exon from the mature gene transcript. AOs have been used in vitro and in vivo to redirect dystrophin pre-mRNA processing in human and animal cells. Targeted exon skipping of selected exons in the dystrophin gene transcript can remove nonsense or frame-shifting mutations that would otherwise have lead to Duchenne Muscular Dystrophy, the most common childhood form of muscle wasting. Results Although many dystrophin exons can be excised using a single AO, several exons require two motifs to be masked for efficient or specific exon skipping. Some AOs were inactive when applied individually, yet pronounced exon excision was induced in transfected cells when the AOs were used in select combinations, clearly indicating synergistic rather than cumulative effects on splicing. The necessity for AO cocktails to induce efficient exon removal was observed with 2 different chemistries, 2'-O-methyl modified bases on a phosphorothioate backbone and phosphorodiamidate morpholino oligomers. Similarly, other trends in exon skipping, as a consequence of 2'-O-methyl AO action, such as removal of additional flanking exons or variations in exon skipping efficiency with overlapping AOs, were also seen when the corresponding sequences were prepared as phosphorodiamidate morpholino oligomers. Conclusion The combination of 2 AOs, directed at appropriate motifs in target exons was found to induce very efficient targeted exon skipping during processing of the dystrophin pre-mRNA. This combinatorial effect is clearly synergistic and is not influenced by the chemistry of the AOs used to induce exon excision. A hierarchy in exon skipping efficiency, observed with overlapping AOs composed of 2'-O-methyl modified bases, was also observed when these same sequences were evaluated as phosphorodiamidate morpholino

  7. Guanine Analogues Enhance Antisense Oligonucleotide-induced Exon Skipping in Dystrophin Gene In Vitro and In Vivo

    OpenAIRE

    Hu, Yihong; Wu, Bo; Zillmer, Allen; Lu, Peijuan; Benrashid, Ehsan; Wang, Mingxing; Doran, Timothy; Shaban, Mona; Wu, Xiaohua; Long Lu, Qi

    2010-01-01

    Exon skipping has demonstrated great potential for treating Duchenne muscular dystrophy (DMD) and other diseases. We have developed a drug-screening system using C2C12 myoblasts expressing a reporter green fluorescent phosphate (GFP), with its reading frame disrupted by the insertion of a targeted dystrophin exon. A library of 2,000 compounds (Spectrum collection; Microsource Discovery System) was screened to identify drugs capable of skipping targeted dystrophin exons or enhancing the exon-s...

  8. Targeted skipping of human dystrophin exons in transgenic mouse model systemically for antisense drug development.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    Full Text Available Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs. However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD mouse, a transgenic model carrying the full-length human dystrophin gene, and achieved for the first time more than 70% efficiency of targeted human dystrophin exon skipping in vivo systemically. We also established a GFP-reporter myoblast culture to screen AOs targeting human dystrophin exon 50. Antisense efficiency for most AOs is consistent between the reporter cells, human myoblasts and in the hDMD mice in vivo. However, variation in efficiency was also clearly observed. A combination of in vitro cell culture and a Vivo-Morpholino based evaluation in vivo systemically in the hDMD mice therefore may represent a prudent approach for selecting AO drug and to meet the regulatory requirement.

  9. Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice

    OpenAIRE

    Han, Gang; Gu, Ben; Cao, Limin; Gao, Xianjun; Wang, Qingsong; Seow, Yiqi; Zhang, Ning; Matthew J A Wood; Yin, HaiFang

    2016-01-01

    Carbohydrate-based infusion solutions are widely used in the clinic. Here we show that co-administration of phosphorodiamidate morpholino oligomers (PMOs) with glucose enhances exon-skipping activity in Duchenne muscular dystrophy (DMD) mdx mice. We identify a glucose–fructose (GF) formulation that potentiates PMO activity, completely corrects aberrant Dmd transcripts, restores dystrophin levels in skeletal muscles and achieves functional rescue without detectable toxicity. This activity is a...

  10. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    OpenAIRE

    Yin, HaiFang; Boisguerin, Prisca; Moulton, Hong M.; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew JA

    2013-01-01

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was ...

  11. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    Science.gov (United States)

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies. PMID:26159373

  12. Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice.

    Science.gov (United States)

    Han, Gang; Gu, Ben; Cao, Limin; Gao, Xianjun; Wang, Qingsong; Seow, Yiqi; Zhang, Ning; Wood, Matthew J A; Yin, HaiFang

    2016-01-01

    Carbohydrate-based infusion solutions are widely used in the clinic. Here we show that co-administration of phosphorodiamidate morpholino oligomers (PMOs) with glucose enhances exon-skipping activity in Duchenne muscular dystrophy (DMD) mdx mice. We identify a glucose-fructose (GF) formulation that potentiates PMO activity, completely corrects aberrant Dmd transcripts, restores dystrophin levels in skeletal muscles and achieves functional rescue without detectable toxicity. This activity is attributed to enhancement of GF-mediated PMO uptake in the muscle. We demonstrate that PMO cellular uptake is energy dependent, and that ATP from GF metabolism contributes to enhanced cellular uptake of PMO in the muscle. Collectively, we show that GF potentiates PMO activity by replenishing cellular energy stores under energy-deficient conditions in mdx mice. Our findings provide mechanistic insight into hexose-mediated oligonucleotide delivery and have important implications for the development of DMD exon-skipping therapy. PMID:26964641

  13. Categorization of 77 dystrophin exons into 5 groups by a decision tree using indexes of splicing regulatory factors as decision markers

    Directory of Open Access Journals (Sweden)

    Malueka Rusdy

    2012-03-01

    Full Text Available Abstract Background Duchenne muscular dystrophy, a fatal muscle-wasting disease, is characterized by dystrophin deficiency caused by mutations in the dystrophin gene. Skipping of a target dystrophin exon during splicing with antisense oligonucleotides is attracting much attention as the most plausible way to express dystrophin in DMD. Antisense oligonucleotides have been designed against splicing regulatory sequences such as splicing enhancer sequences of target exons. Recently, we reported that a chemical kinase inhibitor specifically enhances the skipping of mutated dystrophin exon 31, indicating the existence of exon-specific splicing regulatory systems. However, the basis for such individual regulatory systems is largely unknown. Here, we categorized the dystrophin exons in terms of their splicing regulatory factors. Results Using a computer-based machine learning system, we first constructed a decision tree separating 77 authentic from 14 known cryptic exons using 25 indexes of splicing regulatory factors as decision markers. We evaluated the classification accuracy of a novel cryptic exon (exon 11a identified in this study. However, the tree mislabeled exon 11a as a true exon. Therefore, we re-constructed the decision tree to separate all 15 cryptic exons. The revised decision tree categorized the 77 authentic exons into five groups. Furthermore, all nine disease-associated novel exons were successfully categorized as exons, validating the decision tree. One group, consisting of 30 exons, was characterized by a high density of exonic splicing enhancer sequences. This suggests that AOs targeting splicing enhancer sequences would efficiently induce skipping of exons belonging to this group. Conclusions The decision tree categorized the 77 authentic exons into five groups. Our classification may help to establish the strategy for exon skipping therapy for Duchenne muscular dystrophy.

  14. Monoclonal antibodies against the muscle-specific N-terminus of dystrophin: Characterization of dystrophin in a muscular dystrophy patient with a frameshift deletion of Exons 3-7

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, L. T.; Man, N. thi; Morris, G.E. (North East Wales Institute, Clwyd (United Kingdom)); Love, D.R.; Davies, K.E. (Institute of Molecular Medicine, John Radcliffe Hospital, Oxford (United Kingdom)); Helliwell, T.R. (Liverpool Univ. (United Kingdom))

    1993-07-01

    The first three exons of the human muscle dystrophin gene were expressed as a [beta]-galactosidase fusion protein. 1-his protein was then used to prepare two monoclonal antibodies (mAbs) which react with native dystrophin on frozen muscle sections and with denatured dystrophin on western blots but which do not cross-react with the distrophin-related protein, utrophin. Both mAbs recognized dystrophin in muscular dystrophy (MD) patients with deletions of exon 3, and further mapping with 11 overlapping synthetic peptides showed that they both recognize an epitope encoded by the muscle-specific exon 1. Neither mAb recognizes the brain dystrophin isoform, confirming the prediction from mRNA data that this has a different N-terminus. One Becker MD patient with a frameshift deletion of exons 3-7 is shown to produce dystrophin which reacts with the N-terminal mAbs, as well as with mAbs which bind on the C-terminal side of the deletion. The data suggest that transcription begins at the normal muscle dystrophin promoter and that the normal reading frame is restored after the deletion. A number of mechanisms have been proposed for restoration of the reading frame after deletion of exons 3-7, but those which predict dystrophin with an abnormal N-terminus do not appear to be major mechanisms in this patient. 27 refs., 6 figs.

  15. A case of Becker muscular dystrophy resulting from the skipping of four contiguous exons (71-74) of the dystrophin gene during mRNA maturation.

    Science.gov (United States)

    Patria, S Y; Alimsardjono, H; Nishio, H; Takeshima, Y; Nakamura, H; Matsuo, M

    1996-07-01

    The mutations in one-third of both Duchenne and Becker muscular dystrophy patients remain unknown because they do not involve gross rearrangements of the dystrophin gene. Here we report the first example of multiple exon skipping during the splicing of dystrophin mRNA precursor encoded by an apparently normal dystrophin gene. A 9-year-old Japanese boy exhibiting excessive fatigue and high serum creatine kinase activity was examined for dystrophinopathy. An immunohistochemical study of muscle tissue biopsy disclosed faint and discontinuous staining of the N-terminal and rod domains of dystrophin but no staining at all of the C-terminal domain of dystrophin. The dystrophin transcript from muscle tissue was analyzed by the reverse transcriptase polymerase chain reaction. An amplified product encompassing exons 67-79 of dystrophin cDNA was found to be smaller than that of the wild-type product. Sequence analysis of this fragment showed that the 3' end of exon 70 was directly connected to the 5' end of exon 75 and, thus, that exons 71-74 were completely absent. As a result, a truncated dystrophin protein lacking 110 amino acids from the C-terminal domain should result from translation of this truncated mRNA, and the patient was diagnosed as having Becker muscular dystrophy at the molecular level. Genomic DNA was analyzed to identify the cause of the disappearance of these exons. Every exon-encompassing region could be amplified from genomic DNA, indicating that the dystrophin gene is intact. Furthermore, sequencing of these amplified products did not disclose any particular nucleotide change that could be responsible for the multiple exon skipping observed. Considering that exons 71-74 are spliced out alternatively in some tissue-specific isoforms, to suppose that the alternative splicing machinery is present in the muscle tissue of the index case and that it is activated by an undetermined mechanism is reasonable. These results illustrate a novel genetic anomaly that

  16. Becker Muscular Dystrophy (BMD) caused by duplication of exons 3-6 of the dystrophin gene presenting as dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, A.C.; Allingham-Hawkins, D.J.; Becker, L. [Univ. of Toronto, Ontario (Canada)] [and others

    1994-09-01

    X-linked dilated cardiomyopathy (XLCM) is a progressive myocardial disease presenting with congestive heart failure in teenage males without clinical signs of skeletal myopathy. Tight linkage of XLCM to the DMD locus has been demonstrated; it has been suggested that, at least in some families, XLCM is a {open_quotes}dystrophinopathy.{close_quotes} We report a 14-year-old boy who presented with acute heart failure due to dilated cardiomyopathy. He had no history of muscle weakness, but physical examination revealed pseudohypertrophy of the calf muscles. He subsequently received a heart transplantation. Family history was negative. Serum CK level at the time of diagnosis was 10,416. Myocardial biopsy showed no evidence of carditis. Dystrophin staining of cardiac and skeletal muscle with anti-sera to COOH and NH{sub 2}termini showed a patchy distribution of positivity suggestive of Becker muscular dystrophy. Analysis of 18 of the 79 dystrophin exons detected a duplication that included exons 3-6. The proband`s mother has an elevated serum CK and was confirmed to be a carrier of the same duplication. A mutation in the muscle promotor region of the dystrophin gene has been implicated in the etiology of SLCM. However, Towbin et al. (1991) argued that other 5{prime} mutations in the dystrophin gene could cause selective cardiomyopathy. The findings in our patient support the latter hypothesis. This suggests that there are multiple regions in the dystrophin gene which, when disrupted, can cause isolated dilated cardiomyopathy.

  17. Deletion of exon 26 of the dystrophin gene is associated with a mild Becker muscular dystrophy phenotype

    OpenAIRE

    Witting, Nanna; Duno, Morten; Vissing, John

    2011-01-01

    With the possible introduction of exon skipping therapy in Duchenne muscular dystrophy, it has become increasingly important to know the role of each exon of the dystrophin gene to protein expression, and thus the phenotype. In this report, we present two related men with an unusually mild BMD associated with an exon 26 deletion. The proband, a 23-year-old man, had slightly delayed motor milestones, walking 1½ years old. He had no complaints of muscle weakness, but had muscle pain. Clinical e...

  18. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    Science.gov (United States)

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  19. Deletion of exon 26 of the dystrophin gene is associated with a mild Becker muscular dystrophy phenotype

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, Morten; Vissing, John

    2011-01-01

    With the possible introduction of exon skipping therapy in Duchenne muscular dystrophy, it has become increasingly important to know the role of each exon of the dystrophin gene to protein expression, and thus the phenotype. In this report, we present two related men with an unusually mild BMD...... skipping therapy for Duchenne muscular dystrophy. This report also shows that BMD may present with a normal CK....... calf hypertrophy was noted. Creatine kinase was normal or raised maximally to 500 U/l. The muscle biopsy was myopathic with increased fiber size variation and many internal nuclei, but no dystrophy. No comorbidity was found. In both cases, western blot showed a reduced dystrophin band. Genetic...

  20. Screening the dystrophin gene suggests a high rate of polymorphism in general but no exonic deletions in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Lindor, N.M.; Sobell, J.L.; Thibodeau, S.N. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-03-15

    The dystrophin gene, located at chromosome Xp21, was evaluated as a candidate gene in chronic schizophrenia in response to the report of a large family in which schizophrenia cosegregated with Becker muscular dystrophy. Genomic DNA from 94 men with chronic schizophrenia was evaluated by Southern blot analysis using cDNA probes that span exons 1-59. No exonic deletions were identified. An unexpectedly high rate of polymorphism was calculated in this study and two novel polymorphisms were found, demonstrating the usefulness of the candidate gene approach even when results of the original study are negative. 41 refs., 1 fig., 4 tabs.

  1. Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice

    Directory of Open Access Journals (Sweden)

    Sirsi Shashank R

    2008-04-01

    Full Text Available Abstract Background Exon skipping oligonucleotides (ESOs of 2'O-Methyl (2'OMe and morpholino chemistry have been shown to restore dystrophin expression in muscle fibers from the mdx mouse, and are currently being tested in phase I clinical trials for Duchenne Muscular Dystrophy (DMD. However, ESOs remain limited in their effectiveness because of an inadequate delivery profile. Synthetic cationic copolymers of poly(ethylene imine (PEI and poly(ethylene glycol (PEG are regarded as effective agents for enhanced delivery of nucleic acids in various applications. Results We examined whether PEG-PEI copolymers can facilitate ESO-mediated dystrophin expression after intramuscular injections into tibialis anterior (TA muscles of mdx mice. We utilized a set of PEG-PEI copolymers containing 2 kDa PEI and either 550 Da or 5 kDa PEG, both of which bind 2'OMe ESOs with high affinity and form stable nanoparticulates with a relatively low surface charge. Three weekly intramuscular injections of 5 μg of ESO complexed with PEI2K-PEG550 copolymers resulted in about 500 dystrophin-positive fibers and about 12% of normal levels of dystrophin expression at 3 weeks after the initial injection, which is significantly greater than for injections of ESO alone, which are known to be almost completely ineffective. In an effort to enhance biocompatibility and cellular uptake, the PEI2K-PEG550 and PEI2K-PEG5K copolymers were functionalized by covalent conjugation with nanogold (NG or adsorbtion of colloidal gold (CG, respectively. Surprisingly, using the same injection and dosing regimen, we found no significant difference in dystrophin expression by Western blot between the NG-PEI2K-PEG550, CG-PEI2K-PEG5K, and non-functionalized PEI2K-PEG550 copolymers. Dose-response experiments using the CG-PEI2K-PEG5K copolymer with total ESO ranging from 3–60 μg yielded a maximum of about 15% dystrophin expression. Further improvements in dystrophin expression up to 20% of normal

  2. Effective exon skipping and dystrophin restoration by 2'-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Lu Yang

    Full Text Available Antisense oligonucleotide (AO-mediated exon-skipping therapy is one of the most promising therapeutic strategies for Duchenne Muscular Dystrophy (DMD and several AO chemistries have been rigorously investigated. In this report, we focused on the effect of 2'-O-methoxyethyl oligonucleotides (MOE on exon skipping in cultured mdx myoblasts and mice. Efficient dose-dependent skipping of targeted exon 23 was achieved in myoblasts with MOE AOs of different lengths and backbone chemistries. Furthermore, we established that 25-mer MOE phosphorothioate (PS AOs provided the greatest exon-skipping efficacy. When compared with 2'O methyl phosphorothioate (2'OmePS AOs, 25-mer MOE (PS AOs also showed higher exon-skipping activity in vitro and in mdx mice after intramuscular injections. Characterization of uptake in vitro corroborated with exon-skipping results, suggesting that increased uptake of 25-mer MOE PS AOs might partly contribute to the difference in exon-skipping activity observed in vitro and in mdx mice. Our findings demonstrate the substantial potential for MOE PS AOs as an alternative option for the treatment of DMD.

  3. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    OpenAIRE

    Shiga, N.; Takeshima, Y; Sakamoto, H; Inoue, K.; Y. Yokota; Yokoyama, M.; Matsuo, M.

    1997-01-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resu...

  4. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter

    Energy Technology Data Exchange (ETDEWEB)

    Yanagawa, H.; Nishio, H.; Takeshima, Y. [Kobe Univ. School of Medicine (Japan)] [and others

    1994-09-01

    The dystrophin gene, which is muted in patients with Duchenne and Becker muscular dystrophies, is the largest known human gene. Five alternative promoters have been characterized until now. Here we show that a novel dystrophin isoform with a different first exon can be produced through transcription initiation at a previously-unidentified alternative promoter. The case study presented is that of patient with Duchenne muscular dystrophy who had a deletion extending from 5{prime} end of the dystrophin gene to exon 2, including all promoters previously mapped in the 5{prime} part of the gene. Transcripts from lymphoblastoid cells were found to contain sequences corresponding to exon 3, indicating the presence of new promoter upstream of this exon. The nucleotide sequence of amplified cDNA corresponding to the 5{prime} end of the new transcript indicated that the 5{prime} end of exon 3 was extended by 9 codons, only the last (most 3{prime}) of which codes for methionine. The genomic nucleotide sequence upstream from the new exon, as determined using inverse polymerase chain reaction, revealed the presence of sequences similar to a TATA box, an octamer motif and an MEF-2 element. The identified promoter/exon did not map to intron 2, as might have been expected, but to a position more than 500 kb upstream of the most 5{prime} of the previously-identified promoters, thereby adding 500 kb to the dystrophin gene. The sequence of part of the new promoter region is very similar to that of certain medium reiteration frequency repetitive sequences. These findings may help us understand the molecular evolution of the dystrophin gene.

  5. Early cardiac failure in a child with Becker muscular dystrophy is due to an abnormally low amount of dystrophin transcript lacking exon 13.

    Science.gov (United States)

    Ishigaki, C; Patria, S Y; Nishio, H; Yoshioka, A; Matsuo, M

    1997-12-01

    Two Japanese brothers with Becker muscular dystrophy were shown by polymerase chain reaction (PCR) and cDNA sequence analysis to produce a dystrophin gene transcript lacking a single exon: that is, number 13. Despite having the same deletion mutation, the brothers showed clearly different clinical phenotypes: the younger brother developed cardiac failure at the age of nine, while the elder brother was asymptomatic. As alternative splicing was not responsible for this clinical difference, the amount of dystrophin transcript was examined by using reverse transcription semi-nested and parallel PCR. The results showed that the amount of the dystrophin transcript in the younger brother was 20% of that of the elder brother. This finding suggested that lesser amount of dystrophin transcript in the younger brother was responsible for the early onset of cardiac failure. This would represent a novel molecular mechanism for dystrophinopathy.

  6. Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice.

    Science.gov (United States)

    Echigoya, Yusuke; Aoki, Yoshitsugu; Miskew, Bailey; Panesar, Dharminder; Touznik, Aleksander; Nagata, Tetsuya; Tanihata, Jun; Nakamura, Akinori; Nagaraju, Kanneboyina; Yokota, Toshifumi

    2015-01-01

    Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45-55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges. Previously, we described the feasibility of exons 45-55 skipping with a cocktail of Vivo-Morpholinos in vivo; however, the long-term efficacy and safety of Vivo-Morpholinos remains to be determined. In this study, we examined the efficacy and toxicity of exons 45-55 skipping by intravenous injections of 6 mg/kg 10-Vivo-Morpholino cocktail (0.6 mg/kg each vPMO) every 2 weeks for 18 weeks to dystrophic exon-52 knockout (mdx52) mice. Systemic skipping of the entire exons 45-55 region was induced, and the Western blot analysis exhibited the restoration of 5-27% of normal levels of dystrophin protein in skeletal muscles, accompanied by improvements in histopathology and muscle strength. No obvious immune response and renal and hepatic toxicity were detected at the end-point of the treatment. We demonstrate our new regimen with the 10-Vivo-Morpholino cocktail is effective and safe for long-term repeated systemic administration in the dystrophic mouse model. PMID:25647512

  7. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    Science.gov (United States)

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-11-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  8. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping.

    Directory of Open Access Journals (Sweden)

    Gemma L Walmsley

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD, which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion "hot spot" is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD "hot spot". METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD. The dogs harbour a missense mutation in the 5' donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. CONCLUSIONS/SIGNIFICANCE: Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD.

  9. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    Science.gov (United States)

    Hagiwara, Y; Nishio, H; Kitoh, Y; Takeshima, Y; Narita, N; Wada, H; Yokoyama, M; Nakamura, H; Matsuo, M

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. PMID:8279470

  10. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi (Kobe Univ. School of Medicine (Japan))

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  11. Screening Duchenne and Becker muscular dystrophy patients for deletions in 30 exons of the dystrophin gene by three-multiplex PCR

    Energy Technology Data Exchange (ETDEWEB)

    Risch, N. (Yale Univ., New Haven, CT (United States))

    1992-09-01

    Deletion mutations of the dystrophin gene may cause either the severe Duchenne muscular dystrophy (DMD) or the milder, allelic Becker muscular dystrophy (BMD) and are clustered in two high-frequency-deletion regions (HFDRs) located, respectively, 500 kb and 1,200 kb downstream from the 5[prime] end of the gene. Three PCR reactions described allowed the analysis of a total of 30 exons and led, to the identification of three additional deletions involving the following exons: (a) 42 only, (b) 28-42, and (c) 16 only, none of which were detected with the two original multiplex reactions. Therefore, the three modified multiplexes detected 95 of the 96 deletions identified among the 152 patients studied so far by using Southern analysis and cDNA probes. The only deletion that remained undetected with this system involves exons 22-25 and generates the junction fragment described elsewhere. The percentage of deletion mutations among DMS/BMD patients amounts to 63%, which is in agreement with similar estimates from other laboratories. When field-inversion gel electrophoresis is coupled to Southern analysis, the detection rate of deletion and duplication mutations reaches 65%.

  12. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    OpenAIRE

    Hagiwara, Y; Nishio, H; Kitoh, Y; Takeshima, Y; Narita, N; Wada, H; Yokoyama, M.; Nakamura, H; Matsuo, M.

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipp...

  13. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    Science.gov (United States)

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  14. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    Full Text Available Antisense oligonucleotides (AONs mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency of 94% of 176 previously reported AONs. Four novel insights are inferred: (1 the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2 engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3 the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4 engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.

  15. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of Exon 51 during dystrophin Pre-mRNA splicing in human muscle

    OpenAIRE

    Arechavala-Gomeza, V.; Graham, I R; Popplewell, L. J.; Adams, A.M.; Aartsma-Rus, A.; Kinali, M.; Morgan, J E; van Deutekom, J C; Wilton, S D; Dickson, G.; Muntoni, F.

    2007-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in the absence of functional protein. In the majority of cases these are out-of-frame deletions that disrupt the reading frame. Several attempts have been made to restore the dystrophin mRNA reading frame by modulation of pre-mRNA splicing with antisense oligonucleotides (AOs), demonstrating success in cultured cells, muscle explants, and animal models. We are preparing for a phase I/IIa clinical trial...

  16. Dystrophin knockdown mice suggest that early, transient dystrophin expression might be enough to prevent later pathology

    OpenAIRE

    Duan, Dongsheng

    2008-01-01

    A key issue in Duchenne muscular dystrophy (DMD) gene therapy is whether we need to keep a functional dystrophin expression throughout the entire life span of the patients. Answer to this question will have significant impact on a number of therapeutic approaches, such as oligonucleotide-mediated exon skipping and protein therapy. A recent study by Ghahramani Seno et al provided a clue to this important question (1). The authors applied AAV-mediated RNAi to knockdown dystrophin expression in ...

  17. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy.

    OpenAIRE

    Cacchiarelli, Davide; Incitti, Tania; Martone, Julie; Cesana, Marcella; Cazzella, Valentina; Santini, Tiziana; Sthandier, Olga; Bozzoni, Irene

    2011-01-01

    Duchenne muscular dystrophy (DMD)--which is caused by mutations in the dystrophin gene-is one of the most severe myopathies. Among therapeutic strategies, exon skipping allows the rescue of dystrophin synthesis through the production of a shorter but functional messenger RNA. Here, we report the identification of a microRNA--miR-31--that represses dystrophin expression by targeting its 3' untranslated region. In human DMD myoblasts treated with exon skipping, we demonstrate that miR-31 inhibi...

  18. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    OpenAIRE

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, th...

  19. Cloning and sequencing of junction fragment with exons 45-54 deletion of dystrophin gene%dystrophin基因第45~54外显子缺失连接片段的克隆和测序

    Institute of Scientific and Technical Information of China (English)

    钟敏; 潘速跃; 陆兵勋; 李伟

    2006-01-01

    目的通过对dystrophin基因第45~54外显子缺失后连接片段的克隆和测序分析,探讨dystrophin基因缺失的发生机理.方法先以外显子PCR反应检测证实1例杜氏肌营养不良症(Duchenne muscular dystrophy, DMD)患者第45~54外显子缺失,然后在第44和第54内含子上用PCR步移方法寻找断裂位点,最后用靠近断裂位点处设计的引物,以PCR法直接扩增dystrophin基因的缺失连接片段并测序,测序结果和正常内含子序列作对比分析.结果对扩增连接片段的PCR产物测序获得2716 bp有效序列,本例基因缺失片段长达402 kb.5'端断裂点位于第44内含子长散在元件(long interspersed elements, LINE)L1序列内,邻近基质附着区(matrix attachment region, MAR),3'端断裂位点在第54内含子较可能形成MAR的一个次级区域内,附近有拓扑异构酶Ⅱ识别位点,断裂点两旁存在6 bp的回文序列.连接片段通过4 bp的微小同源序列AGAG连接断裂点两端.结论由L1重复序列、断裂点附近拓扑异构酶Ⅱ酶切位点、MARs以及微小同源序列的非同源末端连接修复等综合因素引起的非同源基因重组可能是导致此一大片段基因缺失的重要原因.%Objective To study the mechanisms of dystrophin gene deletion, the junction fragment with exons 45-54 deletion were cloned and sequenced. Methods A Duchenne muscular dystrophy (DMD) patient with exons 45-54 deletion has been substantiated by PCR amplification of the exons. Then we used a PCR-based genome-walking method for localizing the breakpoints in introns 44 and 54. At last, the deletion-junction fragment was directly amplified by PCR approach with forward and reverse primers annealing to a DNA sequence as close as possible to the breakpoints in introns 45 and 54. The sequencing result of the deletion-junction fragment was compared with the normal intronic sequences. Results A total of 2716 bp sequence containing the junction fragment was obtained. The

  20. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    OpenAIRE

    Malerba, Alberto; Kang, Jagjeet K; Mcclorey, Graham; Saleh, Amer F.; Popplewell, Linda; Gait, Michael J.; Wood, Matthew JA; Dickson, George

    2012-01-01

    The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD). In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstra...

  1. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    Energy Technology Data Exchange (ETDEWEB)

    Muntoni, F.; Davies, K.; Dubowitz, V. [Royal Postgraduate Medical School, London (United Kingdom)] [and others

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  2. Disease-proportional proteasomal degradation of missense dystrophins.

    Science.gov (United States)

    Talsness, Dana M; Belanto, Joseph J; Ervasti, James M

    2015-10-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  3. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  4. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E. [Wales Institute, Clwyd (United Kingdom)] [and others

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groups of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.

  5. A quantitative ELISA for dystrophin.

    Science.gov (United States)

    Morris, G E; Ellis, J M; Nguyen, T M

    1993-05-01

    A novel approach to the quantitation of the muscular dystrophy protein, dystrophin, in muscle extracts is described. The two-site ELISA uses two monoclonal antibodies against dystrophin epitopes which lie close together in the rod domain of the dystrophin molecule in order to minimize the effects of dystrophin degradation. Dystrophin is assayed in its native form by extracting with non-ionic detergents and avoiding the use of SDS. PMID:8486926

  6. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD).

    Science.gov (United States)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense oligonucleotides (2'-O-methyl phosphorothioate (2OME-PS), phosphorodiamidate morpholino oligomer (PMO)) and peptide nucleic acid (PNA). PMID:21686247

  7. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    DEFF Research Database (Denmark)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most...... promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense...

  8. HEK293 cells express dystrophin Dp71 with nucleus-specific localization of Dp71ab.

    Science.gov (United States)

    Nishida, Atsushi; Yasuno, Sato; Takeuchi, Atsuko; Awano, Hiroyuki; Lee, Tomoko; Niba, Emma Tabe Eko; Fujimoto, Takahiro; Itoh, Kyoko; Takeshima, Yasuhiro; Nishio, Hisahide; Matsuo, Masafumi

    2016-09-01

    The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells.

  9. Analysis of dystrophin gene deletions by multiplex PCR in eastern India

    Directory of Open Access Journals (Sweden)

    Basak Jayasri

    2006-01-01

    Full Text Available The most common genetic neuromuscular disease of childhood, Duchenne and Becker muscular dystrophy (DMD/BMD is caused by deletion, duplication or point mutation of the dystrophin gene located at Xp 21.2. In the present study DNA from seventy unrelated patients clinically diagnosed as having DMD/BMD referred from different parts of West Bengal, a few other states and Bangladesh are analyzed using the multiplex polymerase chain reaction (m-PCR to screen for exon deletions and its distribution within the dystrophin gene. Out of seventy patients forty six (63% showed large intragenic deletion in the dystrophin gene. About 79% of these deletions are located in the hot spot region i.e., between exon 42 to 53. This is the first report of frequency and distribution of deletion in dystrophin gene in eastern Indian DMD/BMD population.

  10. Biodistribution and Molecular Studies on Orally Administered Nanoparticle-AON Complexes Encapsulated with Alginate Aiming at Inducing Dystrophin Rescue in mdx Mice

    Directory of Open Access Journals (Sweden)

    Maria Sofia Falzarano

    2013-01-01

    Full Text Available We have previously demonstrated that intraperitoneal injections of 2′-O-methyl-phosphorothioate (2′OMePS antisense oligoribonucleotides adsorbed onto a cationic core-shell nanoparticles (NPs, termed ZM2, provoke dystrophin restoration in the muscles of mdx mice. The aim of the present work was to evaluate the oral route as an alternative way of administration for ZM2-antisense oligoribonucleotides complexes. The biodistribution and elimination of nanoparticles were evaluated after single and multiple oral doses of IR-dye conjugated nanoparticles. Labeled nanoparticles were tracked in vivo as well as in tissue cryosections, urines and feces by Odyssey infrared imaging system, and revealed a permanence in the intestine and abdominal lymph nodes for 72 hours to 7 days before being eliminated. We subsequently tested alginate-free and alginate-encapsulated ZM2-antisense oligoribonucleotides (AON complexes orally administered 2 and 3 times per week, respectively, in mdx mice for a total of 12 weeks. Treatment with alginate ZM2-AON induced a slight dystrophin rescue in diaphragm and intestine smooth muscles, while no dystrophin was detected in alginate-free ZM2-AON treated mice. These data encourage further experiments on oral administration testing of NP and AON complexes, possibly translatable in oligoribonucleotides-mediated molecular therapies.

  11. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alyson A. Fiorillo

    2015-09-01

    Full Text Available The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31. microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  12. Exon skipping and Duchenne muscular dystrophy: Hope, hype and how feasible?

    Directory of Open Access Journals (Sweden)

    Wilton Steve

    2008-01-01

    Full Text Available Duchenne muscular dystrophy (DMD, the most common and serious form of childhood muscle wasting is generally caused by protein-truncating mutations in the large DMD gene. Specific removal of an exon from a defective DMD gene transcript has the potential to allow synthesis of a semi-functional dystrophin, thereby reducing the severity and presumably progression of muscle wasting. The efficacy of this treatment will vary greatly between the different mutations that preclude the synthesis of a functional dystrophin. Restoration of the reading frame from a large multi-exon genomic deletion, typically greater than 36 exons, may lead to synthesis of a protein with only partial function and limited clinical benefit, whereas excising a nonsense mutation in a redundant exon should generate a near normal dystrophin. A clinical trial has recently confirmed proof-of-principle that exclusion of Exon 51 from human dystrophin mRNAs, carrying frame-shifting deletions adjacent to this exon, results in dystrophin expression. No major side-effects after local administration of the antisense oligomer were reported. Additional trials are underway, targeting the same exon but using an oligomer of different backbone chemistry. If functional dystrophin synthesis is demonstrated, and safety issues are addressed, subsequent trials will involve systemic delivery. Great challenges are ahead, some technical; establishing an effective delivery regimen, some ethical; choosing subsequent targets for therapy, and others of an administrative and regulatory nature.

  13. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. (Penn State College of Medicine, Hershey, PA (United States)); Shokeir, M. (Univ. Hospital, Saskatchewan (Canada))

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  14. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  15. A Japanese boy with myalgia and cramps has a novel in-frame deletion of the dystrophin gene.

    Science.gov (United States)

    Ishigaki, C; Patria, S Y; Nishio, H; Yabe, M; Matsuo, M

    1996-05-01

    We report a Japanese Becker muscular dystrophy (BMD) patient with occasional myalgia and cramps during normal activity that developed at the age of 28 months. His family history was negative for neuromuscular diseases. Muscle biopsy analyses, including dystrophin immunostaining, disclosed no clinically relevant findings. The diagnosis of BMD was initially made at the age of 10 years, when indications of persistent high serum levels of CK prompted us to screen deletions in the dystrophin gene by amplification of 19 deletion-prone exons from the genomic DNA by the polymerase chain reaction (PCR). Among the exons examined, exons 13 and 17 were deleted. To clarify the size of the deletion, the dystrophin transcript was analyzed by reverse transcription PCR. The determined nucleotide sequence of the amplified product encompassing exons 10 to 20 disclosed that the entire segment corresponding to exons 13 to 18 (810 bp) was absent, a deletion that would be expected to cause the production of a dystrophin protein lacking 270 amino acids from the rod domain. This result indicates that occasional myalgia and cramps could be early clinical manifestations of mild BMD, especially in patients who have a deletion in the rod domain, and that deletion screening of the dystrophin gene might be the only reliable method to diagnose such cases.

  16. Analysis of Dystrophin Gene Deletions by Multiplex PCR in Moroccan Patients

    Directory of Open Access Journals (Sweden)

    Aziza Sbiti

    2002-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD and BMD are X-linked diseases resulting from a defect in the dystrophin gene located on Xp21. DMD is the most frequent neuromuscular disease in humans (1/3500 male newborn. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. We have analyzed DNA from 72 Moroccan patients with DMD/BMD using the multiplex polymerase chain reaction (PCR to screen for exon deletions within the dystrophin gene, and to estimate the frequency of these abnormalities. We found dystrophin gene deletions in 37 cases. Therefore the frequency in Moroccan DMD/BMD patients is about 51.3%. All deletions were clustered in the two known hot-spots regions, and in 81% of cases deletions were detected in the region from exon 43 to exon 52. These findings are comparable to those reported in other studies. It is important to note that in our population, we can first search for deletions of DMD gene in the most frequently deleted exons determined by this study. This may facilitate the molecular diagnosis of DMD and BMD in our country.

  17. Molecular Diagnosis of Duchenne/Becker Muscular Dystrophy: Analysis of Exons Deletion and Carrier Detection

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Akbari

    2010-01-01

    Full Text Available Objective: Duchenne and Becker Muscular Dystrophy (DMD and BMD are X-linked conditionsresulting from a defect in the dystrophin gene located at Xp21.2. DMD is the mostfrequent neuromuscular disease in humans (1/3500 male newborns. In approximately65% of DMD and BMD patients, deletions in the dystrophin gene have been identified asthe molecular determinant. The frequency and distribution of dystrophin gene deletions inDMD/BMD patients from different populations are different.The aim of this study was to delineate various types of deleted exons and their frequencyin affected male patients and identification of carrier females by linkage analysis.Materials and Methods: In this study 100 unrelated patients with DMD/BMD were studiedfor intragenic deletions in 28 exons and the promoter region of the dystrophin geneusing multiplex PCR. We also performed linkage analysis within the dystrophin gene utilizing8 short tandem repeat markers.Results: Fifty-two (52% patients showed intragenic deletions. A total of 81% of the deletionswere located at the distal hot spot region (44-55 exons and 19% of the deletionswere located at the proximal region (exon 2-19. The most frequent deleted exons were47(16%, 48 and 46 (11%.Most of the STR markers showed heterozygosity in the families studied. The linkageanalysis was useful for detecting carrier status.Conclusion: The present study suggests that intragenic dystrophin gene deletions occurwith the same frequency in Iranian patients compared with other ethnic groups.

  18. Dystrophin-Deficient Cardiomyopathy.

    Science.gov (United States)

    Kamdar, Forum; Garry, Daniel J

    2016-05-31

    Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the structural cytoskeletal Dystrophin gene. Dystrophinopathies include Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy, as well as DMD and BMD female carriers. The primary presenting symptom in most dystrophinopathies is skeletal muscle weakness. However, cardiac muscle is also a subtype of striated muscle and is similarly affected in many of the muscular dystrophies. Cardiomyopathies associated with dystrophinopathies are an increasingly recognized manifestation of these neuromuscular disorders and contribute significantly to their morbidity and mortality. Recent studies suggest that these patient populations would benefit from cardiovascular therapies, annual cardiovascular imaging studies, and close follow-up with cardiovascular specialists. Moreover, patients with DMD and BMD who develop end-stage heart failure may benefit from the use of advanced therapies. This review focuses on the pathophysiology, cardiac involvement, and treatment of cardiomyopathy in the dystrophic patient. PMID:27230049

  19. Is the human dystrophin gene's intron structure related to its intron instability?

    Institute of Scientific and Technical Information of China (English)

    盛文利; 陈江瑛; 朱良付; 刘焯霖

    2003-01-01

    Objective To study the human dystrophin gene molecular deletion mechanism, we analyzed breakpoint regions within junction fragments of deletion-type patients and investigated whether the dystrophin gene's intron structure might be related to intron instability.Methods Junction fragments corresponding to exon 46 and 51 deletions were cloned. The breakpoint regions were sequenced, and the features of introns with available Genebank sequences were analyzed.Results An analysis of junction fragment sequences corresponding to exon 46 and 51 deletions showed that all 5' and 3' breakpoints are located within repeat sequences. No small insertions, small deletions, or point mutations are located near the breakpoint junctions. By analyzing the secondary structure of the junction fragments, we demonstrated that all junction fragment breakpoints are located in non-matching regions of single-stranded hairpin loops. A high concentration of repetitive elements is found to be a key feature of many dystrophin introns. In total, 34.8% of the overall dystrophin intron sequences is composed of repeat sequences.Conclusion Repeat elements in many dystrophin gene introns are the key to their structural bases and reflect intron instability. As a result of the primary DNA sequences, single-stranded hairpin loops form, increasing the instability of the gene, and forming the base for breaks in the DNA. The formation of the single-stranded hairpins can result in reattachment of two different breakpoints, producing a deletion.

  20. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y. [Tel Aviv Univ. (Israel)

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  1. [Exon-skipping therapy for Duchenne muscular dystrophy].

    Science.gov (United States)

    Takeda, Shin'ichi

    2011-11-01

    Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin at the sarcolemma. Exon skipping by antisense oligonucleotides is a novel method to restore the reading frame of the mutated DMD gene, and rescue dystrophin expression. We recently reported that systemic delivery of Morpholino antisense oligonucleotides targeting exon 6 and 8 of the canine DMD gene, efficiently recovered functional dystrophin at the sarcolamma of dystrophic dogs, and improved phenotypes of affected dogs without serious side effects (Ann Neurol. 65: 667-676, 2009). To optimize therapeutic antisense Morpholinos for more frequent mutations of the DMD gene, we designed antisense Morpholinos targeting exon 51 of the mouse DMD gene, and injected them separately or in combination into the muscles of mdx52 mice, in which exon 52 has been deleted by a gene targeting technique. We also tried systemic delivery of antisense Morpholino to skip exon 51 in mdx 52 mice and found the amelioration of the phenotypes (Mol Ther, 2010). Clinical trials of exon 51 skipping for DMD patients is now going in our country and application of antisense strategy to other hereditary neuromuscular diseases is largely expected. PMID:22277414

  2. Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients.

    NARCIS (Netherlands)

    Helderman-van den Enden, A.T.; Straathof, C.S.; Aartsma-Rus, A.; Dunnen, J.T. den; Verbist, B.M.; Bakker, E.; Verschuuren, J.J.; Ginjaar, H.B.

    2010-01-01

    Theoretically, 13% of patients with Duchenne muscular dystrophy may benefit from antisense-mediated skipping of exon 51 to restore the reading frame, which results in the production of a shortened dystrophin protein. We give a detailed description with longitudinal follow up of three patients with B

  3. Assessment of the structural and functional impact of in-frame mutations of the DMD gene, using the tools included in the eDystrophin online database

    Directory of Open Access Journals (Sweden)

    Nicolas Aurélie

    2012-07-01

    Full Text Available Abstract Background Dystrophin is a large essential protein of skeletal and heart muscle. It is a filamentous scaffolding protein with numerous binding domains. Mutations in the DMD gene, which encodes dystrophin, mostly result in the deletion of one or several exons and cause Duchenne (DMD and Becker (BMD muscular dystrophies. The most common DMD mutations are frameshift mutations resulting in an absence of dystrophin from tissues. In-frame DMD mutations are less frequent and result in a protein with partial wild-type dystrophin function. The aim of this study was to highlight structural and functional modifications of dystrophin caused by in-frame mutations. Methods and results We developed a dedicated database for dystrophin, the eDystrophin database. It contains 209 different non frame-shifting mutations found in 945 patients from a French cohort and previous studies. Bioinformatics tools provide models of the three-dimensional structure of the protein at deletion sites, making it possible to determine whether the mutated protein retains the typical filamentous structure of dystrophin. An analysis of the structure of mutated dystrophin molecules showed that hybrid repeats were reconstituted at the deletion site in some cases. These hybrid repeats harbored the typical triple coiled-coil structure of native repeats, which may be correlated with better function in muscle cells. Conclusion This new database focuses on the dystrophin protein and its modification due to in-frame deletions in BMD patients. The observation of hybrid repeat reconstitution in some cases provides insight into phenotype-genotype correlations in dystrophin diseases and possible strategies for gene therapy. The eDystrophin database is freely available: http://edystrophin.genouest.org/.

  4. Antisense Oligonucleotide-Mediated Exon Skipping for Duchenne Muscular Dystrophy: Progress and Challenges.

    OpenAIRE

    Arechavala-Gomeza, V.; Anthony, K.; Morgan, J; Muntoni, F.

    2012-01-01

    Duchenne muscular dystrophy (DMD) is the most common childhood neuromuscular disorder. It is caused by mutations in the DMD gene that disrupt the open reading frame (ORF) preventing the production of functional dystrophin protein. The loss of dystrophin ultimately leads to the degeneration of muscle fibres, progressive weakness and premature death. Antisense oligonucleotides (AOs) targeted to splicing elements within DMD pre-mRNA can induce the skipping of targeted exons, restoring the ORF an...

  5. Becker muscular dystrophy in Indian patients: Analysis of dystrophin gene deletion patterns

    Directory of Open Access Journals (Sweden)

    Dastur Rashna

    2008-01-01

    Full Text Available Background: Becker muscular dystrophy (BMD is caused by mutations in the dystrophin gene with variable phenotypes. Becker muscular dystrophy patients have low levels of nearly full-length dystrophin and carry in-frame mutations, which allow partial functioning of the protein. Aim: To study the deletion patterns of BMD and to correlate the same with reading frame rule and different phenotypes. Setting: A tertiary care teaching hospital. Design: This is a prospective hospital-based study. Materials and Methods: Thirty-two exons spanning different "hot spot" regions using Multiplex PCR techniques were studied in 347 patients. Two hundred and twenty-two showed deletions in one or more of the 32 exons. Out of these, 46 diagnosed as BMD patients were analyzed. Results: Forty-six BMD patients showed deletions in both regions of the dystrophin gene. Out of these 89.1% (41/46 were in-frame deletions. Deletions starting with Exon 45 were found in 76.1% (35/46 of the cases. Mutations in the majority of cases i.e. 39/46 (84.8% were seen in 3′ downstream region (Exon 45-55, distal rod domain. Few, i.e. 5/46 (10.8% showed deletions in 5′ upstream region (Exons 3-20, N-terminus and proximal rod domain of the gene, while in 2/46 (4.4% large mutations (>40 bp spanning both regions (Exons 3-55 were detected. Conclusion: This significant gene deletion analysis has been carried out for BMD patients particularly from Western India using 32 exons.

  6. Enhanced Exon-skipping Induced by U7 snRNA Carrying a Splicing Silencer Sequence: Promising Tool for DMD Therapy

    OpenAIRE

    Goyenvalle, Aurélie; Babbs, Arran; van Ommen, Gert-Jan B.; Garcia, Luis; Davies, Kay E.

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotide...

  7. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy.

    Science.gov (United States)

    Miskew Nichols, Bailey; Aoki, Yoshitsugu; Kuraoka, Mutsuki; Lee, Joshua J A; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  8. Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient.

    Directory of Open Access Journals (Sweden)

    Takashi Saito

    Full Text Available BACKGROUND: Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD. We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. METHODOLOGY/PRINCIPAL FINDINGS: We converted fibroblasts of CXMD(J and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. CONCLUSION/SIGNIFICANCE: Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.

  9. Alternative splicing of dystrophin mRNA complicates carrier determination: report of a DMD family.

    OpenAIRE

    Lenk, U; Demuth, S.; Kräft, U; Hanke, R; Speer, A

    1993-01-01

    Carrier determination is important for genetic counselling in DMD/BMD families. The detection of altered PCR amplified dystrophin mRNA fragments owing to deletions, insertions, or point mutations has increased the possibilities of carrier determination. However, problems may occur because of alternative splicing events. Here we present a family with a DMD patient characterised by a deletion of exons 45 to 54. At the mRNA level we detected a corresponding altered fragment which served for carr...

  10. Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method.

    Science.gov (United States)

    Iyombe-Engembe, Jean-Paul; Ouellet, Dominique L; Barbeau, Xavier; Rousseau, Joël; Chapdelaine, Pierre; Lagüe, Patrick; Tremblay, Jacques P

    2016-01-01

    The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides. PMID:26812655

  11. Screening of Dystrophin Gene Deletions in Egyptian Patients with DMD/BMD Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Laila K. Effat

    2000-01-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are allelic disorders caused by mutations within the dystrophin gene. Our study has identified 100 Egyptian families collected from the Human Genetics Clinic, National Research Center, Cairo. All cases were subjected to complete clinical evaluation pedigree analysis, electromyography studies, estimation of serum creatine phosphokinase enzyme (CPK levels and DNA analysis. Multiplex PCR using 18 pairs of specific primers were used for screening of deletion mutations within the dystrophin gene. A frequency of 55% among the families. Sixty per cent of detected deletions involved multiple exons spanning the major or the minor hot spot of the dystrophin gene. The remainder 40% which mainly involved exon 45. Comparing these findings with frequencies of other countries it was found that our figures fall within the reported range of 40%– for deletions. The distribution of deletions in our study and other different studies was variable and specific ethnic differences do not apparently account for specific deletions. In addition this study concluded that employment of the 18 exon analysis is a cost effective and a highly accurate (97% to launch a nationwide program.

  12. Single Cell Analysis of Dystrophin and SRY Gene by Using Whole Genome Amplification

    Institute of Scientific and Technical Information of China (English)

    徐晨明; 金帆; 黄荷凤; 陶冶; 叶英辉

    2001-01-01

    Objective To develop a reliable and sensitive method for detection of sex and multiloci of Duchenne muscular dystrophy (DMD) gene in single cell Materials & methods Whole genome of single cell were amplified by using 15-base random primers (primer extension preamplification, PEP), then a small aliquot of PEP product were analyzed by using locus-specific nest PCR amplification. The procedure was evaluated by detection dystrophin exons 8, 17, 19, 44, 45, 48 and human testis-determining gene (SRY)in single lymphocytes from known sources and single blastomeres from the couples with no family history of DMD.Results The amplification efficiency rate of six dystrophin exons from single lymphocytes and single blastomeres were 97. 2% (175/180) and 100% (60/60) respectively.Results of SRY showed that 100% (15/15) amplification in single male-derived lymphocytes and 0% (0/15) amplification in single female-derived lymphocytes. Conclusion The technique of single cell PEP-nest PCR for dystrophin exons 8, 17,19, 44, 45, 48 and SRY is highly specifc. PEP-nest PCR is suitable for Preimplantation genetic diagnosis (PGD) of DMD at single cell level.

  13. Therapeutic effects of exon skipping and losartan on skeletal muscle of mdx mice.

    Science.gov (United States)

    Lee, Eun-Joo; Kim, Ah-Young; Lee, Eun-Mi; Lee, Myeong-Mi; Min, Chang-Woo; Kang, Kyung-Ku; Park, Jin-Kyu; Hwang, Meeyul; Kwon, Soon-Hak; Tremblay, Jacques P; Jeong, Kyu-Shik

    2014-08-01

    Various attempts have been made to find treatments for Duchenne muscular dystrophy (DMD) patients. Exon skipping is one of the promising technologies for DMD treatment by restoring dystropin protein, which is one of the muscle components. It is well known that losartan, an angiotensin II type1 receptor blocker, promotes muscle regeneration and differentiation by lowering the level of transforming growth factor-beta1 signaling. In this study, we illustrated the combined effects of exon skipping and losartan on skeletal muscle of mdx mice. We supplied mdx mice with losartan for 2 weeks before exon skipping treatment. The losartan with the exon skipping group showed less expression of myf5 than the losartan treated group. Also the losartan with exon skipping group recovered normal muscle architecture, in contrast to the losartan group which still showed many central nuclei. However, the exon skipping efficiency and the restoration of dystrophin protein were lower in the losartan with exon skipping group compared to the exon skipping group. We reveal that losartan promotes muscle regeneration and shortens the time taken to restore normal muscle structure when combined with exon skipping. However, combined treatment of exon skipping and losartan decreases the restoration of dystrophin protein meaning decrease of exon skipping efficiency.

  14. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.

    Science.gov (United States)

    Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M

    2015-11-01

    Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations. PMID:26457733

  15. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Elisabeth Le Rumeur

    2015-07-01

    Full Text Available Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable diseases, Duchenne (DMD and Becker (BMD muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects.

  16. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    Science.gov (United States)

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.

  17. Intellectual Ability in the Duchenne Muscular Dystrophy and Dystrophin Gene Mutation Location

    Directory of Open Access Journals (Sweden)

    Rasic Milic V.

    2014-12-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation- dependent probe amplification (MLPA, polymerase chain reaction (PCR] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale. In 37 patients with an estimated full scale intelligence quotient (FSIQ, six (16.22% had borderline intelligence (70exons 30 and 45. However, FSIQ was statistically significantly associated with mutation location when we assumed their functional consequence on dystrophin isoforms and when mutations in the 5’-untranslated region (5’UTR of Dp140 (exons 45-50 were assigned to affect only Dp427 and Dp260. Mutations affecting Dp140 and Dp71/Dp40 have been associated with more frequent and more severe cognitive impairment. Finally, the same classification of mutations explained the greater proportion of FSIQ variability associated with cumulative loss of dystrophin isoforms. In conclusion, cumulative loss of dystrophin isoforms increases the risk of intellectual impairment in DMD and characterizing the genotype can define necessity of early cognitive interventions in DMD patients.

  18. Intellectual Ability in the Duchenne Muscular Dystrophy and Dystrophin Gene Mutation Location

    Science.gov (United States)

    Milic Rasic, V; Vojinovic, D; Pesovic, J; Mijalkovic, G; Lukic, V; Mladenovic, J; Kosac, A; Novakovic, I; Maksimovic, N; Romac, S; Todorovic, S; Savic Pavicevic, D

    2014-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD) gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation-dependent probe amplification (MLPA), polymerase chain reaction (PCR)] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale). In 37 patients with an estimated full scale intelligence quotient (FSIQ), six (16.22%) had borderline intelligence (70exons 30 and 45. However, FSIQ was statistically significantly associated with mutation location when we assumed their functional consequence on dystrophin isoforms and when mutations in the 5′-untranslated region (5′UTR) of Dp140 (exons 45–50) were assigned to affect only Dp427 and Dp260. Mutations affecting Dp140 and Dp71/Dp40 have been associated with more frequent and more severe cognitive impairment. Finally, the same classification of mutations explained the greater proportion of FSIQ variability associated with cumulative loss of dystrophin isoforms. In conclusion, cumulative loss of dystrophin isoforms increases the risk of intellectual impairment in DMD and characterizing the genotype can define necessity of early cognitive interventions in DMD patients. PMID:25937795

  19. [Exon skipping therapy for Duchenne muscular dystrophy by using antisense Morpholino].

    Science.gov (United States)

    Takeda, Shin'ichi

    2009-11-01

    Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin protein at the sarcolemma. Exon skipping by antisense oligonucleotides is a novel method to restore the reading frame of the mutated DMD gene, and rescue dystrophin production. We recently reported that systemic delivery of Morpholino antisense oligonucleotides targeting exon 6 and 8 of the canine DMD gene, efficiently recovered functional dystrophin proteins at the sarcolamma of dystrophic dogs, and improved performance of affected dogs without serious side effects (Yokota et al., Ann Neurol. 65 (6): 667-676, 2009). To optimize therapeutic antisense Morpholinos for more frequent mutations of the DMD gene, we designed antisense Morpholinos targeting exon 51 of the mouse DMD gene, and injected them separately or in combination into the muscles of mdx52 mice, in which exon 52 has been deleted by a gene targeting technique (Araki et al., 1997). We also tried systemic delivery of antisense Morpholino to skip exon 51 in mdx52 mice. It is important to verify the effectiveness and side effects of antisense Morpholino in experimental animal models such as dystrophic dogs or mdx52 mice, before clinical trials in DMD patients. PMID:20030230

  20. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran

    OpenAIRE

    Barzegar, Mohammad; Parinaz HABIBI; Mortaza Mortaza BONYADY; TOPCHIZADEH, Vahideh; Shadi SHIVA

    2015-01-01

    How to Cite This Article: Barzegar M, Habibi P, Bonyady M, Topchizadeh V, Shiva Sh. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran. Iran J Child Neurol. 2015 Winter; 9(1): 42-48.AbstractObjectiveDuchene and Becker Muscular Dystrophy (DMD/ BMD) are x-linked disorders that both are the result of heterogeneous mutations in the dystrophin gene. The frequency and distribution of dystrophin gene deletions in DMD/ BMD patients show different patterns among different popula...

  1. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic......, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest...

  2. A defect in dystrophin causes a novel porcine stress syndrome

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2012-06-01

    Full Text Available Abstract Background Losses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility. Results We repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG were monitored during isoflurane anesthesia challenge (3% for 3 min. Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (DMD, was significantly associated with the syndrome. An arginine to tryptophan (R1958W polymorphism in exon 41 of DMD was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration. Conclusions A novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within DMD that results in less dystrophin protein and cardiac

  3. CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice.

    Science.gov (United States)

    Xu, Li; Park, Ki Ho; Zhao, Lixia; Xu, Jing; El Refaey, Mona; Gao, Yandi; Zhu, Hua; Ma, Jianjie; Han, Renzhi

    2016-03-01

    Duchenne muscular dystrophy (DMD) is a degenerative muscle disease caused by genetic mutations that lead to the disruption of dystrophin in muscle fibers. There is no curative treatment for this devastating disease. Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) has emerged as a powerful tool for genetic manipulation and potential therapy. Here we demonstrate that CRIPSR-mediated genome editing efficiently excised a 23-kb genomic region on the X-chromosome covering the mutant exon 23 in a mouse model of DMD, and restored dystrophin expression and the dystrophin-glycoprotein complex at the sarcolemma of skeletal muscles in live mdx mice. Electroporation-mediated transfection of the Cas9/gRNA constructs in the skeletal muscles of mdx mice normalized the calcium sparks in response to osmotic shock. Adenovirus-mediated transduction of Cas9/gRNA greatly reduced the Evans blue dye uptake of skeletal muscles at rest and after downhill treadmill running. This study provides proof evidence for permanent gene correction in DMD. PMID:26449883

  4. Orphan drug development in muscular dystrophy: update on two large clinical trials of dystrophin rescue therapies.

    Science.gov (United States)

    Hoffman, Eric P; Connor, Edward M

    2013-11-01

    Duchenne muscular dystrophy is a relatively common 'rare disorder,' with an incidence of about 1/5,000 males worldwide. The responsible gene and deficient protein (dystrophin) were identified in 1987, an early success of human molecular genetics and emerging genome projects. A rational approach to therapeutics is to replace dystrophin in patient muscle, thus addressing the primary biochemical defect. Fast forward 25 years, and two phase 2b/3 trials have been carried out with agents designed to induce de novo dystrophin production in DMD patient's muscle; ataluren (stop codon read through) with 174 patients, and drisapersen (exon skipping) with 186 patients. Both used a six minute walk test as the primary outcome measure. Neither drisapersen nor high dose ataluren showed any significant improvement in this outcome, whereas low dose ataluren is reported to show some possible improvement. Experience with ataluren and drisapersen has been disappointing and this is a good time to ask: What can we learn from these programs and how can this inform further drug development in DMD? At the times these two trials were started, there was a lack of existing data and infrastructure regarding both clinical and biochemical outcome measures. The recent publications of more extensive natural history data in multiple DMD cohorts, and ongoing efforts to define reliable and sensitive dystrophin assays are important. If the drisapersen and ataluren programs were instead begun today, new progress in biochemical and clinical endpoints may have triggered a re-design, with better de-risking in phase 2 studies prior to resource-intensive phase 3 trials. PMID:24229740

  5. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle.

    Science.gov (United States)

    Brolin, Camilla; Shiraishi, Takehiko; Hojman, Pernille; Krag, Thomas O; Nielsen, Peter E; Gehl, Julie

    2015-01-01

    Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue. PMID:26623939

  6. Novel Cationic Carotenoid Lipids as Delivery Vectors of Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Vassilia Partali

    2012-01-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a common, inherited, incurable, fatal muscle wasting disease caused by deletions that disrupt the reading frame of the DMD gene such that no functional dystrophin protein is produced. Antisense oligonucleotide (AO-directed exon skipping restores the reading frame of the DMD gene, and truncated, yet functional dystrophin protein is expressed. The aim of this study was to assess the efficiency of two novel rigid, cationic carotenoid lipids, C30-20 and C20-20, in the delivery of a phosphorodiamidate morpholino (PMO AO, specifically designed for the targeted skipping of exon 45 of DMD mRNA in normal human skeletal muscle primary cells (hSkMCs. The cationic carotenoid lipid/PMO-AO lipoplexes yielded significant exon 45 skipping relative to a known commercial lipid, 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC.

  7. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Richard S Finkel

    Full Text Available BACKGROUND: Approximately 13% of boys with Duchenne muscular dystrophy (DMD have a nonsense mutation in the dystrophin gene, resulting in a premature stop codon in the corresponding mRNA and failure to generate a functional protein. Ataluren (PTC124 enables ribosomal readthrough of premature stop codons, leading to production of full-length, functional proteins. METHODS: This Phase 2a open-label, sequential dose-ranging trial recruited 38 boys with nonsense mutation DMD. The first cohort (n = 6 received ataluren three times per day at morning, midday, and evening doses of 4, 4, and 8 mg/kg; the second cohort (n = 20 was dosed at 10, 10, 20 mg/kg; and the third cohort (n = 12 was dosed at 20, 20, 40 mg/kg. Treatment duration was 28 days. Change in full-length dystrophin expression, as assessed by immunostaining in pre- and post-treatment muscle biopsy specimens, was the primary endpoint. FINDINGS: Twenty three of 38 (61% subjects demonstrated increases in post-treatment dystrophin expression in a quantitative analysis assessing the ratio of dystrophin/spectrin. A qualitative analysis also showed positive changes in dystrophin expression. Expression was not associated with nonsense mutation type or exon location. Ataluren trough plasma concentrations active in the mdx mouse model were consistently achieved at the mid- and high- dose levels in participants. Ataluren was generally well tolerated. INTERPRETATION: Ataluren showed activity and safety in this short-term study, supporting evaluation of ataluren 10, 10, 20 mg/kg and 20, 20, 40 mg/kg in a Phase 2b, double-blind, long-term study in nonsense mutation DMD. TRIAL REGISTRATION: ClinicalTrials.gov NCT00264888.

  8. Exon skipping and Duchenne muscular dystrophy: Hope, hype and how feasible?

    OpenAIRE

    Wilton Steve; Fletcher Susan

    2008-01-01

    Duchenne muscular dystrophy (DMD), the most common and serious form of childhood muscle wasting is generally caused by protein-truncating mutations in the large DMD gene. Specific removal of an exon from a defective DMD gene transcript has the potential to allow synthesis of a semi-functional dystrophin, thereby reducing the severity and presumably progression of muscle wasting. The efficacy of this treatment will vary greatly between the different mutations that preclude the synthesis of a f...

  9. Dystrophin protects the sarcolemma from stresses developed during muscle contraction.

    OpenAIRE

    Petrof, B. J.; Shrager, J B; Stedman, H H; Kelly, A M; Sweeney, H L

    1993-01-01

    The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficient muscle fibers of the mdx mouse exhibit an increased susceptibility to contraction-induced sarcole...

  10. Chemical and mechanistic toxicology evaluation of exon skipping phosphorodiamidate morpholino oligomers in mdx mice.

    Science.gov (United States)

    Sazani, Peter; Ness, Kirk P Van; Weller, Doreen L; Poage, Duane; Nelson, Keith; Shrewsbury, And Stephen B

    2011-05-01

    AVI-4658 is a phosphorodiamidate morpholino oligomer (PMO) designed to induce skipping of dystrophin exon 51 and restore its expression in patients with Duchenne muscular dystrophy (DMD). Preclinically, restoration of dystrophin in the dystrophic mdx mouse model requires skipping of exon 23, achieved with the mouse-specific PMO, AVI-4225. Herein, we report the potential toxicological consequences of exon skipping and dystrophin restoration in mdx mice using AVI-4225. We also evaluated the toxicological effects of AVI-4658 in both mdx and wild-type mice. In both studies, animals were dosed once weekly for 12 weeks up to the maximum feasible dose of 960 mg/kg per injection. Both AVI-4658 and AVI-4225 were well-tolerated at all doses. Findings in AVI-4225-treated animals were generally limited to mild renal tubular basophilia/vacuolation, without any significant changes in renal function and with evidence of reversing. No toxicity associated with the mechanism of action of AVI-4225 in a dystrophic animal was observed.

  11. Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9

    Directory of Open Access Journals (Sweden)

    Hongmei Lisa Li

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases.

  12. Dystrophin: The dead calm of a dogma.

    Science.gov (United States)

    Górecki, Dariusz C

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease leading to severe disability and death of young men. Current interventions are palliative as no treatment improves the long-term outcome. Therefore, new therapeutic modalities with translational potential are urgently needed and abnormalities downstream from the absence of dystrophin are realistic targets. It has been shown that DMD mutations alter extracellular ATP (eATP) signaling via P2RX7 purinoceptor upregulation, which leads to autophagic death of dystrophic muscle cells. Furthermore, the eATP-P2RX7 axis contributes to DMD pathology by stimulating harmful inflammatory responses. We demonstrated recently that genetic ablation or pharmacological inhibition of P2RX7 in the mdx mouse model of DMD produced functional attenuation of both muscle and non-muscle symptoms, establishing this receptor as an attractive therapeutic target. Central to the argument presented here, this purinergic phenotype affects dystrophic myoblasts. Muscle cells were believed not to be affected at this stage of differentiation, as they do not produce detectable dystrophin protein. Our findings contradict the central hypothesis stating that aberrant dystrophin expression is inconsequential in myoblasts and the DMD pathology results from effects such as sarcolemma fragility, due to the absence of dystrophin, in differentiated myofibres. However, we discuss here the evidence that, already in myogenic cells, DMD mutations produce a plethora of abnormalities, including in cell proliferation, differentiation, energy metabolism, Ca(2+) homeostasis and death, leading to impaired muscle regeneration. We hope that this discussion may bring to light further results that will help re-evaluating the established belief. Clearly, understanding how DMD mutations alter such a range of functions in myogenic cells is vital for developing effective therapies. PMID:27141413

  13. Dystrophin delivery in dystrophin-deficient DMDmdx skeletal muscle by isogenic muscle-derived stem cell transplantation.

    Science.gov (United States)

    Ikezawa, Makoto; Cao, Baohong; Qu, Zhuqing; Peng, Hairong; Xiao, Xiao; Pruchnic, Ryan; Kimura, Shigemi; Miike, Teruhisa; Huard, Johnny

    2003-11-01

    Duchenne's muscular dystrophy (DMD) is a lethal muscle disease caused by a lack of dystrophin expression at the sarcolemma of muscle fibers. We investigated retroviral vector delivery of dystrophin in dystrophin-deficient DMD(mdx) (hereafter referred to as mdx) mice via an ex vivo approach using mdx muscle-derived stem cells (MDSCs). We generated a retrovirus carrying a functional human mini-dystrophin (RetroDys3999) and used it to stably transduce mdx MDSCs obtained by the preplate technique (MD3999). These MD3999 cells expressed dystrophin and continued to express stem cell markers, including CD34 and Sca-1. MD3999 cells injected into mdx mouse skeletal muscle were able to deliver dystrophin. Though a relatively low number of dystrophin-positive myofibers was generated within the gastrocnemius muscle, these fibers persisted for up to 24 weeks postinjection. The injection of cells from additional MDSC/Dys3999 clones into mdx skeletal muscle resulted in varying numbers of dystrophin-positive myofibers, suggesting a differential regenerating capacity among the clones. At 2 and 4 weeks postinjection, the infiltration of CD4- and CD8-positive lymphocytes and a variety of cytokines was detected within the injected site. These data suggest that the transplantation of retrovirally transduced mdx MDSCs can enable persistent dystrophin restoration in mdx skeletal muscle; however, the differential regenerating capacity observed among the MDSC/Dys3999 clones and the postinjection immune response are potential challenges facing this technology. PMID:14577915

  14. Sensitivity and Frequencies of Dystrophin Gene Mutations in Thai DMD/BMD Patients As Detected by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Thanyachai Sura

    2008-01-01

    Full Text Available Background: Duchenne muscular dystrophy (DMD, a lethal X-linked disease affecting 1 in 3500 male births, and its more benign variant, Becker muscular dystrophy (BMD, are caused by mutations in the dystrophin gene. Because of its large size, analysing the whole gene is impractical. Methods have been developed to detect the commonest mutations i.e. the deletions of the exons. Although these tests are highly specific, their sensitivity is inherently limited by the prevalence of deletions, which differs among different populations.

  15. Laryngeal Muscles Are Spared in the Dystrophin Deficient "mdx" Mouse

    Science.gov (United States)

    Thomas, Lisa B.; Joseph, Gayle L.; Adkins, Tracey D.; Andrade, Francisco H.; Stemple, Joseph C.

    2008-01-01

    Purpose: "Duchenne muscular dystrophy (DMD)" is caused by the loss of the cytoskeletal protein, dystrophin. The disease leads to severe and progressive skeletal muscle wasting. Interestingly, the disease spares some muscles. The purpose of the study was to determine the effects of dystrophin deficiency on 2 intrinsic laryngeal muscles, the…

  16. Dystrophin insufficiency causes selective muscle histopathology and loss of dystrophin-glycoprotein complex assembly in pig skeletal muscle

    Science.gov (United States)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker muscular dystrophy (BMD) is caused by a dystrophin insufficiency or expression of a partially functional protein product. Both of these dystrophinopathies are most commonly studied using the mdx mouse and a golden r...

  17. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Thibaut Larcher

    Full Text Available A few animal models of Duchenne muscular dystrophy (DMD are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  18. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  19. Quantitative analysis of the dystrophin gene by real-time PCR

    Directory of Open Access Journals (Sweden)

    Maksimovic Nela

    2012-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD/BMD are severe X-linked neuromuscular disorders caused by mutations in the dystrophin gene. Our aim was to optimize a quantitative real-time PCR method based on SYBR® Green I chemistry for routine diagnostics of DMD/BMD deletion carriers. Twenty female relatives of DMD/BMD patients with previously detected partial gene deletions were studied. The relative quantity of the target exons was calculated by a comparative threshold cycle method (ΔΔCt. The carrier status of all subjects was successfully determined. The gene dosage ratio for non-carriers was 1.07±0.20, and for carriers 0.56±0.11. This assay proved to be simple, rapid, reliable and cost-effective.

  20. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle

    DEFF Research Database (Denmark)

    Hjortkjær, Camilla Brolin; Shiraishi, Takehiko; Hojman, Pernille;

    2015-01-01

    and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice...... switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find...... that electroporation can enhance PNA antisense effects in muscle tissue....

  1. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants

    Indian Academy of Sciences (India)

    MARYAM HAGHSHENAS; MOHAMMAD TAGHI AKBARI; SHOHREH ZARE KARIZI; FARAVAREH KHORDADPOOR DEILAMANI; SHAHRIAR NAFISSI; ZIVAR SALEHI

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progres-sive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletionsor duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to eval-uate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show anylarge deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependentprobe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50–79. Also exon 44 wassequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed fournonsense, one frameshift and two splice site mutations as well as two missense variants

  2. Proteasome Inhibitor (MG-132) Treatment of mdx Mice Rescues the Expression and Membrane Localization of Dystrophin and Dystrophin-Associated Proteins

    OpenAIRE

    Bonuccelli, Gloria; Sotgia, Federica; Schubert, William; Park, David S.; Frank, Philippe G.; Woodman, Scott E.; Insabato, Luigi; Cammer, Michael; Minetti, Carlo; Lisanti, Michael P.

    2003-01-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we ...

  3. Differential expression of dystrophin, utrophin, and dystrophin-associated proteins in human muscle culture.

    Science.gov (United States)

    Radojevic, V; Lin, S; Burgunder, J M

    2000-06-01

    The dystrophin-associated protein complex (DAP) plays an important role in sarcolemmal function. Mutations of DAP elements lead to diverse forms of muscular dystrophies, among them Duchenne muscular dystrophy, one of the most severe neuromuscular diseases. Strategies in gene therapy are being assessed to restore DAP stability. However, the relationship between DAP elements and time-course of the DAP formation are still not known in detail. In order to better understand the relationship among DAP proteins, we therefore studied their expression during development in human muscle culture in comparison with developmentally regulated muscle proteins. Desmin immunoreactivity (IR) was detected by 3 days in vitro (DIV3), IR for developmental heavy-chain myosin, vimentin, utrophin, and beta-dystroglycan, as well as alpha-, beta-, and gamma-sarcoglycan, a day later. delta-Sarcoglycan was found by DIV7; dystrophin could be detected only by DIV11. In general, DAP proteins were first located in the perinuclear region, later diffusely in the cytoplasm, and finally exclusively at the membrane. This sequence of events during muscle development gives further support to our suggestion that utrophin could be a precursor of dystrophin during development and regeneration. These data also suggest that utrophin alone is sufficient to anchor the complex, which is important when utrophin replacement strategies are being investigated for the treatment of dystrophinopathies. In this study we demonstrated the establishment of a culture technique that should allow the close study of DAP expression in diseased muscle, including its use after gene modulatory strategies. PMID:10928275

  4. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad BARZEGAR

    2015-01-01

    Full Text Available How to Cite This Article: Barzegar M, Habibi P, Bonyady M, Topchizadeh V, Shiva Sh. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran. Iran J Child Neurol. 2015 Winter; 9(1: 42-48.AbstractObjectiveDuchene and Becker Muscular Dystrophy (DMD/ BMD are x-linked disorders that both are the result of heterogeneous mutations in the dystrophin gene. The frequency and distribution of dystrophin gene deletions in DMD/ BMD patients show different patterns among different populations. This study investigates the deletion rate, type, and distribution of this gene in the Azeri Turk population of North West Iran.Materials &MethodsIn this study, 110 patients with DMD/ BMD were studied for intragenic deletions in 24 exons and promoter regions of dystrophin genes by using multiplex PCR.ResultsDeletions were detected in 63 (57.3% patients, and around 83% localized in the mid-distal hotspot of the gene (on exons 44–52, 21 cases (33.3 % with singleexon deletions, and 42 cases (66.6% with multi-exonic deletions. The most frequent deleted exons were exon 50 (15 % and exon 49 (14%. No deletion was detected in exon 3.ConclusionThis study suggests that the frequency and pattern of dystrophin gene deletions in DMD/ BMD in the Azeri Turk population of North West Iran occur in the same pattern when compared with other ethnic groups.ReferencesEmery AE. Clinical and molecular studies in Duchenne muscular dystrophy. Prog Clin Biol Res 1989; 306:15-28.Moser H. Duchenne muscular dystrophy: pathogenic aspects and genetic prevention. Hum Genet 1984; 66(1:17-40.Emery AE. Population Frequencies of inherited neuromuscular diseases: a world survey Neuromuscul Disord 1991; I (I:19-29.Bushby KM, Thmabyayah M, Gardner M D. Prevalence and incidence of Becker muscular dystrophy. Lancet 1991; 337(8748:1022-1024.Koenig M, Hoffman EP, Bertelosn CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD DNA and

  5. Prednisolone treatment does not interfere with 2'-O-methyl phosphorothioate antisense-mediated exon skipping in Duchenne muscular dystrophy.

    Science.gov (United States)

    Verhaart, Ingrid E C; Heemskerk, Hans; Karnaoukh, Tatyana G; Kolfschoten, Ingrid G M; Vroon, Anne; van Ommen, Gert-Jan B; van Deutekom, Judith C T; Aartsma-Rus, Annemieke

    2012-03-01

    In Duchenne muscular dystrophy (DMD), dystrophin deficiency leading to progressive muscular degeneration is caused by frame-shifting mutations in the DMD gene. Antisense oligonucleotides (AONs) aim to restore the reading frame by skipping of a specific exon(s), thereby allowing the production of a shorter, but semifunctional protein, as is found in the mostly more mildly affected patients with Becker muscular dystrophy. AONs are currently being investigated in phase 3 placebo-controlled clinical trials. Most of the participating patients are treated symptomatically with corticosteroids (mainly predniso[lo]ne) to stabilize the muscle fibers, which might affect the uptake and/or efficiency of AONs. Therefore the effect of prednisolone on 2'-O-methyl phosphorothioate AON efficacy in patient-derived cultured muscle cells and the mdx mouse model (after local and systemic AON treatment) was assessed in this study. Both in vitro and in vivo skip efficiency and biomarker expression were comparable between saline- and prednisolone-cotreated cells and mice. After systemic exon 23-specific AON (23AON) treatment for 8 weeks, dystrophin was detectable in all treated mice. Western blot analyses indicated slightly higher dystrophin levels in prednisolone-treated mice, which might be explained by better muscle condition and consequently more target dystrophin pre-mRNA. In addition, fibrotic and regeneration biomarkers were normalized to some extent in prednisolone- and/or 23AON-treated mice. Overall these results show that the use of prednisone forms no barrier to participation in clinical trials with AONs. PMID:22017442

  6. Characterization of a Dmd EGFP reporter mouse as a tool to investigate dystrophin expression

    OpenAIRE

    Petkova, Mina V.; Morales-Gonzales, Susanne; Relizani, Karima; Gill, Esther; Seifert, Franziska; Radke, Josefine; Stenzel, Werner; Garcia, Luis; Amthor, Helge; Schuelke, Markus

    2016-01-01

    Background Dystrophin is a rod-shaped cytoplasmic protein that provides sarcolemmal stability as a structural link between the cytoskeleton and the extracellular matrix via the dystrophin-associated protein complex (DAPC). Mutations in the dystrophin-encoding DMD gene cause X-linked dystrophinopathies with variable phenotypes, the most severe being Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting and fibrosis. However, dystrophin deficiency does not only impair th...

  7. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin

    OpenAIRE

    DelloRusso, Christiana; Scott, Jeannine M.; Hartigan-O'Connor, Dennis; Salvatori, Giovanni; Barjot, Catherine; Robinson, Ann S.; Robert W Crawford; Brooks, Susan V; Jeffrey S. Chamberlain

    2002-01-01

    Duchenne muscular dystrophy is a lethal X-linked recessive disorder caused by mutations in the dystrophin gene. Delivery of functionally effective levels of dystrophin to immunocompetent, adult mdx (dystrophin-deficient) mice has been challenging because of the size of the gene, immune responses against viral vectors, and inefficient infection of mature muscle. Here we show that high titer stocks of three different gutted adenoviral vectors carrying full-length, muscle-specific, dystrophin ex...

  8. Dystrophin insufficiency causes a Becker muscular dystrophy-like phenotype in swine

    Science.gov (United States)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker MD is caused by a dystrophin insufficiency or expression of a partially functional dystrophin protein. Deficiencies in existing mouse and dog models necessitate the development of a novel large animal model. Our pu...

  9. Metabolic and Signaling Alterations in Dystrophin-Deficient Hearts Precede Overt Cardiomyopathy

    Science.gov (United States)

    The cytoskeletal protein dystrophin has been implicated in hereditary and acquired forms of cardiomyopathy. However, much remains to be learned about the role of dystrophin in the heart. We hypothesized that the dystrophin-deficient heart displays early alterations in energy metabolism that precede ...

  10. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization

    Directory of Open Access Journals (Sweden)

    Graham Ian R

    2010-06-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology. Results Using RNA interference (RNAi to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1, or cardiomyopathy (Obscurin, Tcap. In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro. Conclusion Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage

  11. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.

  12. Deficiency of syntrophin, dystroglycan, and merosin in a female infant with a congenital muscular dystrophy phenotype lacking cysteine-rich and C-terminal domains of dystrophin.

    Science.gov (United States)

    Tachi, N; Ohya, K; Chiba, S; Matsuo, M; Patria, S Y; Matsumura, K

    1997-08-01

    Primary deficiency of merosin is the cause of the classic form of congenital muscular dystrophy (CMD) accompanied by brain white matter abnormalities. We report a female infant with dystrophinopathy who was deficient in merosin in skeletal muscle. The patient had a phenotype of typical CMD and white matter abnormalities on brain MRI. Merosin was greatly reduced in the biopsied skeletal muscle. However, the expression of dystroglycan and syntrophin was also greatly reduced, and the immunoreactivity for the antibodies against the cysteine-rich/C-terminal domains of dystrophin was absent in the sarcolemma. Reverse transcriptase polymerase chain reaction analysis of the dystrophin gene revealed a complete lack of exons 71 through 74. In skeletal muscle, only the mutant gene was expressed. These results suggest that the patient is a symptomatic Duchenne muscular dystrophy carrier with skewed X-inactivation. This patient illustrates for the first time that a dystrophin abnormality can cause a secondary deficiency of merosin in dystrophinopathy. The reduction of merosin may account for the clinical phenotype of CMD and correlate with the white matter abnormalities in our patient.

  13. Deletion analysis of the dystrophin gene in Duchenne and Becker muscular dystrophy patients: Use in carrier diagnosis

    Directory of Open Access Journals (Sweden)

    Kumari D

    2003-04-01

    Full Text Available The dystrophin gene was analyzed in 8 Duchenne muscular dystrophy (DMD and 10 Becker muscular dystrophy (BMD unrelated families (22 subjects: 18 index cases and 4 sibs for the presence of deletions by multiplex polymerase chain reaction (mPCR; 27 exons and Southern hybridization using 8 cDMD probes. Deletions were identified in 5 DMD and 7 BMD patients (6 index cases and 1 sib. The concordance between the clinical phenotype and 'reading frame hypothesis' was observed in 11/12 patients (92%. The female relatives of DMD/BMD patients with identifiable deletions were examined by quantitative mPCR. Carriers were identified in 7 families. We also describe a variation in the HindIII pattern with cDNA probe 8 and 11-14. Molecular characterization of the dystrophin gene in this study has been helpful in advising the patients concerning the inheritance of the condition, and carrier diagnosis of female relatives, and should also prove useful for prenatal diagnosis.

  14. Evolutionary history of exon shuffling.

    Science.gov (United States)

    França, Gustavo S; Cancherini, Douglas V; de Souza, Sandro J

    2012-06-01

    Exon shuffling has been characterized as one of the major evolutionary forces shaping both the genome and the proteome of eukaryotes. This mechanism was particularly important in the creation of multidomain proteins during animal evolution, bringing a number of functional genetic novelties. Here, genome information from a variety of eukaryotic species was used to address several issues related to the evolutionary history of exon shuffling. By comparing all protein sequences within each species, we were able to characterize exon shuffling signatures throughout metazoans. Intron phase (the position of the intron regarding the codon) and exon symmetry (the pattern of flanking introns for a given exon or block of adjacent exons) were features used to evaluate exon shuffling. We confirmed previous observations that exon shuffling mediated by phase 1 introns (1-1 exon shuffling) is the predominant kind in multicellular animals. Evidence is provided that such pattern was achieved since the early steps of animal evolution, supported by a detectable presence of 1-1 shuffling units in Trichoplax adhaerens and a considerable prevalence of them in Nematostella vectensis. In contrast, Monosiga brevicollis, one of the closest relatives of metazoans, and Arabidopsis thaliana, showed no evidence of 1-1 exon or domain shuffling above what it would be expected by chance. Instead, exon shuffling events are less abundant and predominantly mediated by phase 0 introns (0-0 exon shuffling) in those non-metazoan species. Moreover, an intermediate pattern of 1-1 and 0-0 exon shuffling was observed for the placozoan T. adhaerens, a primitive animal. Finally, characterization of flanking intron phases around domain borders allowed us to identify a common set of symmetric 1-1 domains that have been shuffled throughout the metazoan lineage.

  15. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    Science.gov (United States)

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  16. Potent Dystrophin knock-Down in Vitro and in Vivo Using RNAi Technonlogy and Expression Signature of Myotubes with Dystrophin knocked Down: Attempts at Unravelling the Mystery

    OpenAIRE

    MM Ghahramani Seno; IR Graham; Laing, K.; M Pohlschmidt; Athanasopoulos, T; Crompton; Dickson, G.

    2005-01-01

    Duchenne Muscular Dystrophy (DMD) is one of a group of genetically heterogeneous muscular dystrophies that are characterized by progressive weakness and wasting of skeletal muscle. Loss of myofibres occurs in response to a deficiency of dystrophin, a protein which is believed to be responsible for myofibre maintenance and integrity. Dystrophin forms a link between the cytoskeleton and the membrane-spanning dystrophin-associated glycoprotein complex (DAPC), indicative of a structural role for ...

  17. Dystrophin, utrophin and {beta}-dystroglycan expression in skeletal muscle from patients with Becker muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Kawajiri, Masakazu; Mitsui, Takao; Kawai, Hisaomi [Univ. of Tokushima (Japan)] [and others

    1996-08-01

    The precise localization and semiquantitative correlation of dystrophin, utrophin and {beta}-dystroglycan expression on the sarcolemma of skeletal muscle cells obtained from patients with Becker muscular dystrophy (BMD) was studied using three types of double immunofluorescence. Staining intensity was measured using a confocal laser microscope. Each of these proteins was identified at the same locus on the sarcolemma. The staining intensities of dystrophin and utrophin were approximately reciprocal at sarcolemmal sites where dystrophin expression was obviously observed. The staining intensity of {beta}-dystroglycan was strong in areas where dystrophin staining was also strong and utrophin expression was weak. Quantitative analysis revealed that the staining intensity of {beta}-dystroglycan minus that of dystrophin approximated the staining intensity of utrophin, indicating that the sum of dystrophin and utrophin expression corresponds to that of {beta}-dystroglycan. These results suggest that utrophin may compensate for dystrophin deficiency found in BMD by binding to {beta}-dystroglycan. 35 refs., 3 figs., 1 tab.

  18. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein.

    Science.gov (United States)

    Ameziane-Le Hir, Sarah; Paboeuf, Gilles; Tascon, Christophe; Hubert, Jean-François; Le Rumeur, Elisabeth; Vié, Véronique; Raguénès-Nicol, Céline

    2016-07-26

    Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe. PMID:27367833

  19. Ocular and neurodevelopmental features of Duchenne muscular dystrophy: a signature of dystrophin function in the central nervous system.

    Science.gov (United States)

    Ricotti, Valeria; Jägle, Herbert; Theodorou, Maria; Moore, Anthony T; Muntoni, Francesco; Thompson, Dorothy A

    2016-04-01

    Multiple isoforms of dystrophin (Dp427, Dp260, Dp140, Dp71) are expressed differentially in the central nervous system (CNS) including the retinal layers. Disruption of these protein products is responsible for cognitive dysfunction, electroretinogram (ERG) abnormalities and behavioural disorders in Duchenne muscular dystrophy (DMD). We studied the ocular characteristics and neuropsychiatric profile of 16 DMD boys. The ISCEV standard, full-field flash ERGs were assessed. Intellectual ability and behavioural disturbances were measured. All genotypes were associated with mildly abnormal photopic ERG a:b-wave amplitude ratios. In addition, we identified the following genotype/phenotype correlations: boys with mutations upstream of exon 30 (ie, isolated Dp427 altered expression) showed normal scotopic a:b ratios, abnormal photopic oscillatory potential OP2 and normal scotopic OP2. Conversely, all boys with DMD mutations downstream of exon 30 showed profoundly 'negative' scotopic ERGs (a:b ratios >1). In these patients, the involvement of Dp260 isoform resulted in the absence of slow rod pathway signalling in15 Hz scotopic flicker ERGs. These boys had abnormal scotopic OP2 and normal photopic OP2. Finally, children with mutations also affecting Dp71 were associated with more pronounced electronegative ERGs. When correlating ERGs to neurodevelopmental outcome, we found a positive correlation between negative scotopic ERGs and neurodevelopmental disturbances, and the most severe findings were in boys with Dp71 disruption. These findings suggest a strong association between DMD mutations affecting different DMD isoforms with characteristically abnormal scotopic ERGs and severe neurodevelopmental problems. The role of the ERG as a potential biomarker for dystrophin function in the CNS and response to novel genetic therapies warrants further exploration. PMID:26081639

  20. Dystrophin analysis in the diagnosis of muscular dystrophy.

    OpenAIRE

    Norman, A M; Hughes, H E; Gardner-Medwin, D; Nicholson, L V

    1989-01-01

    We present a family in which the differential diagnosis between X linked Duchenne muscular dystrophy and autosomal recessive Duchenne-like muscular dystrophy was resolved in favour of the latter by analysis of dystrophin, which is the protein product of the Duchenne muscular dystrophy locus.

  1. Role of dystrophins and utrophins in platelet adhesion process.

    Science.gov (United States)

    Cerecedo, Doris; Mondragón, Ricardo; Cisneros, Bulmaro; Martínez-Pérez, Francisco; Martínez-Rojas, Dalila; Rendón, Alvaro

    2006-07-01

    Platelets are crucial at the site of vascular injury, adhering to the sub-endothelial matrix through receptors on their surface, leading to cell activation and aggregation to form a haemostatic plug. Platelets display focal adhesions as well as stress fibres to contract and facilitate expulsion of growth and pro-coagulant factors contained in the granules and to constrict the clot. The interaction of F-actin with different actin-binding proteins determines the properties and composition of the focal adhesions. Recently, we demonstrated the presence of dystrophin-associated protein complex corresponding to short dystrophin isoforms (Dp71d and Dp71) and the uthophin gene family (Up400 and Up71), which promote shape change, adhesion, aggregation, and granule centralisation. To elucidate participation of both complexes during the platelet adhesion process, their potential association with integrin beta-1 fraction and the focal adhesion system (alpha-actinin, vinculin and talin) was evaluated by immunofluorescence and immunoprecipitation assays. It was shown that the short dystrophin-associated protein complex participated in stress fibre assembly and in centralisation of cytoplasmic granules, while the utrophin-associated protein complex assembled and regulated focal adhesions. The simultaneous presence of dystrophin and utrophin complexes indicates complementary structural and signalling mechanisms to the actin network, improving the platelet haemostatic role.

  2. The dystrophin gene and cognitive function in the general population

    NARCIS (Netherlands)

    D. Vojinovic (Dina); H.H.H. Adams (Hieab); S. van der Lee (Sven); C.A. Ibrahim-Verbaas (Carla); R.W.W. Brouwer; M.C.G.N. van den hout (Mirjam); E. Oole (Edwin); J. van Rooij (Jeroen); A.G. Uitterlinden (André); A. Hofman (Albert); W.F.J. van IJcken (Wilfred); A. Aartsma-Rus (Annemieke); G.-J.B. Van Ommen (Gert-Jan B.); M.A. Ikram (Arfan); C.M. van Duijn (Cornelia M.); N. Amin (Najaf)

    2015-01-01

    textabstractThe aim of our study is to investigate whether single-nucleotide dystrophin gene (DMD) variants associate with variability in cognitive functions in healthy populations. The study included 1240 participants from the Erasmus Rucphen family (ERF) study and 1464 individuals from the Rotterd

  3. Potent Dystrophin knock-Down in Vitro and in Vivo Using RNAi Technonlogy and Expression Signature of Myotubes with Dystrophin knocked Down: Attempts at Unravelling the Mystery

    Directory of Open Access Journals (Sweden)

    MM Ghahramani Seno

    2005-10-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is one of a group of genetically heterogeneous muscular dystrophies that are characterized by progressive weakness and wasting of skeletal muscle. Loss of myofibres occurs in response to a deficiency of dystrophin, a protein which is believed to be responsible for myofibre maintenance and integrity. Dystrophin forms a link between the cytoskeleton and the membrane-spanning dystrophin-associated glycoprotein complex (DAPC, indicative of a structural role for dystrophin. The application of gene therapy protocols for DMD still presents many daunting challenges due partly to intrinsic features of the dystrophin gene. Hence, improvement in the understanding of the underlying primary molecular events leading to a dystrophic pathology might pave the way for the discovery of new starting points. Here we present a strategy to use RNAi technology to study the events occurring in muscle cell development due to dystrophin deficiency. RNAi has been proven to be a powerful technology to study molecular effects due to knockdown of single genes. We have used a series of siRNAs to target and knock down the expression of dystrophin in primary cultures of mouse muscle, and subsequently used transcriptomic array analysis to identify genes whose expression were affected in response to dystrophin deficiency. The data obtained from this experiment, which include some very interesting potential new targets, are currently being analysed. We have also developed a recombinant adeno-associated virus (rAAV vector expressing an shRNA targeting dystrophin. The use of such rAAV-shDNA vectors enables us to target dystrophin in vivo to obtain a better and potentially curative insight into the pathophysiology of DMD.

  4. Dystrophin Distribution and Expression in Human and Experimental Temporal Lobe Epilepsy

    Science.gov (United States)

    Hendriksen, Ruben G. F.; Schipper, Sandra; Hoogland, Govert; Schijns, Olaf E. M. G.; Dings, Jim T. A.; Aalbers, Marlien W.; Vles, Johan S. H.

    2016-01-01

    Objective: Dystrophin is part of a protein complex that connects the cytoskeleton to the extracellular matrix. In addition to its role in muscle tissue, it functions as an anchoring protein within the central nervous system such as in hippocampus and cerebellum. Its presence in the latter regions is illustrated by the cognitive problems seen in Duchenne Muscular Dystrophy (DMD). Since epilepsy is also supposed to constitute a comorbidity of DMD, it is hypothesized that dystrophin plays a role in neuronal excitability. Here, we aimed to study brain dystrophin distribution and expression in both, human and experimental temporal lobe epilepsy (TLE). Method: Regional and cellular dystrophin distribution was evaluated in both human and rat hippocampi and in rat cerebellar tissue by immunofluorescent colocalization with neuronal (NeuN and calbindin) and glial (GFAP) markers. In addition, hippocampal dystrophin levels were estimated by Western blot analysis in biopsies from TLE patients, post-mortem controls, amygdala kindled (AK)-, and control rats. Results: Dystrophin was expressed in all hippocampal pyramidal subfields and in the molecular-, Purkinje-, and granular cell layer of the cerebellum. In these regions it colocalized with GFAP, suggesting expression in astrocytes such as Bergmann glia (BG) and velate protoplasmic astrocytes. In rat hippocampus and cerebellum there were neither differences in dystrophin positive cell types, nor in the regional dystrophin distribution between AK and control animals. Quantitatively, hippocampal full-length dystrophin (Dp427) levels were about 60% higher in human TLE patients than in post-mortem controls (p < 0.05), whereas the level of the shorter Dp71 isoform did not differ. In contrast, AK animals showed similar dystrophin levels as controls. Conclusion: Dystrophin is ubiquitously expressed by astrocytes in the human and rat hippocampus and in the rat cerebellum. Hippocampal full-length dystrophin (Dp427) levels are upregulated

  5. Dystrophin Distribution and Expression in Human and Experimental Temporal Lobe Epilepsy

    Science.gov (United States)

    Hendriksen, Ruben G. F.; Schipper, Sandra; Hoogland, Govert; Schijns, Olaf E. M. G.; Dings, Jim T. A.; Aalbers, Marlien W.; Vles, Johan S. H.

    2016-01-01

    Objective: Dystrophin is part of a protein complex that connects the cytoskeleton to the extracellular matrix. In addition to its role in muscle tissue, it functions as an anchoring protein within the central nervous system such as in hippocampus and cerebellum. Its presence in the latter regions is illustrated by the cognitive problems seen in Duchenne Muscular Dystrophy (DMD). Since epilepsy is also supposed to constitute a comorbidity of DMD, it is hypothesized that dystrophin plays a role in neuronal excitability. Here, we aimed to study brain dystrophin distribution and expression in both, human and experimental temporal lobe epilepsy (TLE). Method: Regional and cellular dystrophin distribution was evaluated in both human and rat hippocampi and in rat cerebellar tissue by immunofluorescent colocalization with neuronal (NeuN and calbindin) and glial (GFAP) markers. In addition, hippocampal dystrophin levels were estimated by Western blot analysis in biopsies from TLE patients, post-mortem controls, amygdala kindled (AK)-, and control rats. Results: Dystrophin was expressed in all hippocampal pyramidal subfields and in the molecular-, Purkinje-, and granular cell layer of the cerebellum. In these regions it colocalized with GFAP, suggesting expression in astrocytes such as Bergmann glia (BG) and velate protoplasmic astrocytes. In rat hippocampus and cerebellum there were neither differences in dystrophin positive cell types, nor in the regional dystrophin distribution between AK and control animals. Quantitatively, hippocampal full-length dystrophin (Dp427) levels were about 60% higher in human TLE patients than in post-mortem controls (p < 0.05), whereas the level of the shorter Dp71 isoform did not differ. In contrast, AK animals showed similar dystrophin levels as controls. Conclusion: Dystrophin is ubiquitously expressed by astrocytes in the human and rat hippocampus and in the rat cerebellum. Hippocampal full-length dystrophin (Dp427) levels are upregulated

  6. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins.

    Directory of Open Access Journals (Sweden)

    Eric K Johnson

    Full Text Available Mutations affecting the expression of dystrophin result in progressive loss of skeletal muscle function and cardiomyopathy leading to early mortality. Interestingly, clinical studies revealed no correlation in disease severity or age of onset between cardiac and skeletal muscles, suggesting that dystrophin may play overlapping yet different roles in these two striated muscles. Since dystrophin serves as a structural and signaling scaffold, functional differences likely arise from tissue-specific protein interactions. To test this, we optimized a proteomics-based approach to purify, identify and compare the interactome of dystrophin between cardiac and skeletal muscles from as little as 50 mg of starting material. We found selective tissue-specific differences in the protein associations of cardiac and skeletal muscle full length dystrophin to syntrophins and dystrobrevins that couple dystrophin to signaling pathways. Importantly, we identified novel cardiac-specific interactions of dystrophin with proteins known to regulate cardiac contraction and to be involved in cardiac disease. Our approach overcomes a major challenge in the muscular dystrophy field of rapidly and consistently identifying bona fide dystrophin-interacting proteins in tissues. In addition, our findings support the existence of cardiac-specific functions of dystrophin and may guide studies into early triggers of cardiac disease in Duchenne and Becker muscular dystrophies.

  7. Evolutionary study of vertebrate and invertebrate members of the dystrophin and utrophin gene family

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.G.; Nicholson, L.; Bobrow, M. [Paediatric Research Unit, London (United Kingdom)] [and others

    1994-09-01

    Vertebrates express two members of the dystrophin gene family. The prototype, dystrophin, is expressed in muscle and neural tissue, and is defective in the human disorders Duchenne and Becker muscular dystrophy (DMD, BMD). The dystrophin homologue utrophin is more generally expressed but has not yet been associated with a genetic disorder. The function of neither protein is clear. A comparison of human utrophin with the known dystrophins (human, mouse, chicken, Torpedo) suggests that dystrophin and utrophin diverged before the vertebrate radiation. We have used reverse-transcript PCR (RT-PCR) directed by degenerate primers to characterize dystrophin and utrophin transcripts from a range of vertebrate and invertebrate animals. Our results suggest that the duplication leading to distinct dystrophin and utrophin genes occurred close to the point of divergence of urochordates from the cephalochordate-vertebrate lineage. This divergence may have occurred to fulfill a novel role which arose at this point, or may reflect a need for separate regulation of the neuromuscular and other functions of the ancient dystrophin. Our data include sequences of the first non-human utrophins to be characterized, and show these to be substantially more divergent than their cognate dystrophins. In addition, our results provide a large body of information regarding the tolerance of amino acid positions in the cysteine-rich and C-terminal domains to substitution. This will aid the interpretations of DMD and BMD missense mutations in these regions.

  8. Monoclonal antibody evidence for structural similarities between the central rod regions of actinin and dystrophin.

    Science.gov (United States)

    Nguyen, T M; Ellis, J M; Ginjaar, I B; van Paassen, M M; van Ommen, G J; Moorman, A F; Cartwright, A J; Morris, G E

    1990-10-15

    A monoclonal antibody, MANDYS141, binds to both dystrophin and actinin on Western blots (SDS-denatured), but only to actinin in frozen sections of human muscle (native conformation). It differs from a polyclonal cross-reacting antiserum in that it binds to several muscle isoforms of actinin (smooth, fast and slow) from man, mouse and chicken and recognises a quite different part of the proposed triple-helical region of dystrophin (amino acids 1750-2248). The results suggest that structural homologies between actinin and dystrophin occur more than once in their central helical regions and provide experimental support for an actinin-like central rod model for dystrophin. PMID:1699800

  9. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Meng, Jinhong; Counsell, John R; Reza, Mojgan; Laval, Steven H; Danos, Olivier; Thrasher, Adrian; Lochmüller, Hanns; Muntoni, Francesco; Morgan, Jennifer E

    2016-01-01

    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-of-concept study, using stem cells derived from skeletal muscle of a DMD patient (mdcs) transplanted into an immunodeficient mouse model of DMD, we report that two novel dystrophin constructs, C1 (ΔR3-R13) and C2 (ΔH2-R23), can be lentivirally transduced into mdcs and produce dystrophin. These dystrophin proteins were functional in vivo, as members of the dystrophin glycoprotein complex were restored in muscle fibres containing donor-derived dystrophin. In muscle fibres derived from cells that had been transduced with construct C1, the largest dystrophin construct packaged into a lentiviral system, nNOS was restored. The combination of autologous stem cells and a lentivirus expressing a novel dystrophin construct which optimally restores proteins of the dystrophin glycoprotein complex may have therapeutic application for all DMD patients, regardless of their dystrophin mutation. PMID:26813695

  10. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization

    OpenAIRE

    Graham Ian R; Athanasopoulos Takis; Trollet Capucine; Ghahramani Seno Mohammad M; Hu Pingzhao; Dickson George

    2010-01-01

    Abstract Background Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matche...

  11. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Yusuke Echigoya

    Full Text Available The use of antisense 'splice-switching' oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD, for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1 the binding energetics of the oligonucleotide to the RNA, and (2 the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted and/or 2'O Methyl RNA oligonucleotides (76% correctly predicted. Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R² 0.89 and 53 (R² 0.89, one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each

  12. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.

    Science.gov (United States)

    Echigoya, Yusuke; Mouly, Vincent; Garcia, Luis; Yokota, Toshifumi; Duddy, William

    2015-01-01

    The use of antisense 'splice-switching' oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many) into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted) and/or 2'O Methyl RNA oligonucleotides (76% correctly predicted). Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R² 0.89) and 53 (R² 0.89), one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each position of

  13. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Jinhong Meng; John R. Counsell; Mojgan Reza; Steven H. Laval; Olivier Danos; Adrian Thrasher; Hanns Lochmüller; Francesco Muntoni; Morgan, Jennifer E

    2016-01-01

    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-o...

  14. Genetic correction of dystrophin deficiency and skeletal muscle remodeling in adult MDX mouse via transplantation of retroviral producer cells.

    OpenAIRE

    Fassati, A.; Wells, D. J.; Sgro Serpente, P A; Walsh, F S; Brown, S.C.; Strong, P N; Dickson, G.

    1997-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotically inactivated and tran...

  15. Genetic Correction of Dystrophin Deficiency and Skeletal Muscle Remodeling in Adult MDX Mouse via Transplantation of Retroviral Producer Cells

    OpenAIRE

    Dickson, George; Fassati, Ariberto; Wells, Dominic; Walsh, Frank; Brown, Susan; Strong, Peter

    1997-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotica...

  16. Expression of recombinant dystrophin and its localization to the cell membrane.

    Science.gov (United States)

    Lee, C C; Pearlman, J A; Chamberlain, J S; Caskey, C T

    1991-01-24

    Duchenne's muscular dystrophy (DMD) is an X-linked progressive myopathy caused by a defect in the DMD gene locus. The gene corresponding to the DMD locus produces a 14-kilobase (kb) messenger RNA that codes for a large cytoskeletal membrane protein, dystrophin. DMD and Becker's muscular dystrophy are the consequences of dystrophin mutations. The exact biological function of dystrophin remains unknown but it has been demonstrated that it is localized to the cytoplasmic face of the cell membrane and has direct interaction with several other membrane proteins. We report here the synthesis of a 14-kb full-length complementary DNA for the mouse muscle dystrophin mRNA and the expression of this cDNA in COS cells. The recombinant dystrophin is indistinguishable from mouse muscle dystrophin by western blot analysis with anti-dystrophin antibodies and was shown by an immunofluorescent technique to be localized in the cell membrane. Our successful construction of a functional full-length cDNA opens opportunities for the study of structure and function of dystrophin and provides an opportunity to initiate gene therapy studies. PMID:1824797

  17. The influence of low dystrophin levels on disease pathology in mouse models for Duchenne Muscular Dystrophy

    NARCIS (Netherlands)

    Putten, Maaike van

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disorder, caused by mutations in the DMD gene that prevent synthesis of dystrophin. Fibers that lack dystrophin are sensitive to exercise-induced damage, resulting in progressive muscle wasting, loss of ambulation and premature de

  18. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  19. Carrier detection of duchenne and becker muscular dystrophy using muscle dystrophin immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Acary S. Bulle Oliveira

    1992-12-01

    Full Text Available To ascertain whether dystrophin immunohistochemistry could improve DMD/ BMD carrier detection, we analyzed 14 muscle biopsies from 13 DMD and one BMD probable and possible carriers. All women were also evaluated using conventional methods, including genetic analysis, clinical and neurological evaluation, serum CK levels, KMG, and muscle biopsy. In 6 cases, there was a mosaic of dystrophin-positive and dystrophin-deficient fibers that allowed to make the diagnosis of a carrier state. Comparing dystrophin immunohistochemistry to the traditional methods, it was noted that this method is less sensitive than serum CK measuremens, but is more sensitive than EMG and muscle biopsy. The use of dystrophin immunohistochemistry in addition to CK, EMG and muscle biopsy improved the accuracy of carrier detection. This method is also helpful to distinguish manifesting DMD carriers from patients with other neuromuscular diseases like limb-girdle muscular dystrophy and spinal muscular atrophy.

  20. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  1. Evaluation of multiplex ligation-dependent probe amplification analysis versus multiplex polymerase chain reaction assays in the detection of dystrophin gene rearrangements in an Iranian population subset

    Directory of Open Access Journals (Sweden)

    Nayereh Nouri

    2014-01-01

    Full Text Available Background: The Duchenne muscular dystrophy (DMD gene is located in the short arm of the X chromosome (Xp21. It spans 2.4 Mb of the human genomic DNA and is composed of 79 exons. Mutations in the Dystrophin gene result in DMD and Becker muscular dystrophy. In this study, the efficiency of multiplex ligation-dependent probe amplification (MLPA over multiplex polymerase chain reaction (PCR assays in an Iranian population was investigated. Materials and Methods: Multiplex PCR assays and MLPA analysis were carried out in 74 patients affected with DMD. Results: Multiplex PCR detected deletions in 51% of the patients with DMD. MLPA analysis could determine all the deletions detected by the multiplex PCR. Additionally, MLPA was able to identify one more deletion and duplication in patients without detectable mutations by multiplex PCR. Moreover, MLPA precisely determined the exact size of the deletions. Conclusion: Although MLPA analysis is more sensitive for detection of deletions and duplications in the dystrophin gene, multiplex PCR might be used for the initial analysis of the boys affected with DMD in the Iranian population as it was able to detect 95% of the rearrangements in patients with DMD.

  2. Restoring Dystrophin Expression in Duchenne Muscular Dystrophy Muscle: Progress in Exon Skipping and Stop Codon Read Through

    OpenAIRE

    Hoffman, Eric P; Bronson, Abby; Levin, Arthur A.; Takeda, Shin'ichi; Yokota, Toshifumi; Baudy, Andreas R.; Connor, Edward M.

    2011-01-01

    The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenge...

  3. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Griffin, J L; Sang, E; Evens, T; Davies, K; Clarke, K

    2002-10-23

    Metabolic profiles from (1)H nuclear magnetic resonance spectroscopy have been used to describe both one and two protein systems in four mouse models related to Duchenne muscular dystrophy using the pattern recognition technique partial least squares. Robust statistical models were built for extracts and intact cardiac tissue, distinguishing mice according to expression of dystrophin. Using metabolic profiles of diaphragm, models were built describing dystrophin and utrophin, a dystrophin related protein, expression. Increased utrophin expression counteracted some of the deficits associated with dystrophic tissue. This suggests the method may be ideal for following treatment regimes such as gene therapy. PMID:12387876

  4. Screening for mutations in the muscle promoter region and for exonic deletions in a series of 115 DMD and BMD patients.

    OpenAIRE

    Vitiello, L.; Mostacciuolo, M. L.; Oliviero, S; Schiavon, F; Nicoletti, L.; Angelini, C.; Danieli, G A

    1992-01-01

    Mutations in the muscle promoter region and exonic deletions were screened in a series of 115 unrelated DMD and BMD patients from north-east Italy. No gross mutations of the promoter region were found. In three cases in which dystrophin of normal size was expressed at low levels, the analysis of DNA sequences of the promoter region failed to detect abnormalities. The majority of deletions in coding sequences, detected by cDNA probes, occur in the deletion hot spot identified by the probe P20....

  5. Multiplex ligation-dependent probe amplification for rapid detection of deletions and duplications in the dystrophin gene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked disorders caused by mutations in the dystrophin gene. The majority of recognized mutations are copy number changes of individual exons. The objective of the present study was to assess the multiplex ligation-dependent probe amplification (MLPA) effects of detection of gene mutations. Methods: Samples of 20 control males and 80 males and their mothers referred to our diagnostic facility on the clinical suspicion of DMD or BMD were tested by MLPA and multiplex PCR. Results: The mean DQs for all peak of 20 control male samples was 1.02 (range from 0.83 to 1.21) by MLPA. Deletions or duplications were identified in 6 out of 31 families that had been previously tested as negative by multiplex PCR. One case of complex rearrangement involving a duplication of two regions: dupEX3-9 and dupEX 17-41 were found by MLPA. Conclusions: MLPA is a highly sensitive method and rapid alternative to multiplex PCR for detection of DMD and BMD.

  6. Platelet adhesion: structural and functional diversity of short dystrophin and utrophins in the formation of dystrophin-associated-protein complexes related to actin dynamics.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Rojas, Dalila; Chávez, Oscar; Martínez-Pérez, Francisco; García-Sierra, Francisco; Rendon, Alvaro; Mornet, Dominique; Mondragón, Ricardo

    2005-12-01

    Platelets are dynamic cell fragments that modify their shape during activation. Utrophin and dystrophins are minor actin-binding proteins present in muscle and non-muscle cytoskeleton. In the present study, we characterised the pattern of Dp71 isoforms and utrophin gene products by immunoblot in human platelets. Two new dystrophin isoforms were found, Dp71f and Dp71 d, as well as the Up71 isoform and the dystrophin-associated proteins, alpha and beta -dystrobrevins. Distribution of Dp71d/Dp71delta110m, Up400/Up71 and dystrophin-associated proteins in relation to the actin cytoskeleton was evaluated by confocal microscopy in both resting and platelets adhered on glass. Formation of two dystrophin-associated protein complexes (Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC) was demonstrated by co-immunoprecipitation and their distribution in relation to the actin cytoskeleton was characterised during platelet adhesion. The Dp71d/Dp71delta100m approximately DAPC is maintained mainly at the granulomere and is associated with dynamic structures during activation by adhesion to thrombin-coated surfaces. Participation of both Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC in the biological roles of the platelets is discussed.

  7. Expression of truncated dystrophin cDNAs mediated by a lentiviral vector

    OpenAIRE

    Shunchang Sun; Haitao Chen; Weidong Chen; Jingbo He; Yunsheng Peng

    2008-01-01

    Background: The success of Duchenne muscular dystrophy gene therapy requires promising tools for gene delivery and mini-gene cassettes that can express therapeutic levels of a functional protein. Aims: To explore the expression feasibility of truncated dystrophin cDNAs mediated by a lentiviral vector derived from feline immunodeficiency virus. Materials and Methods: Three truncated dystrophin cDNAs were constructed by PCR cloning, then these cDNAs were inserted into lentiviral vectors. R...

  8. Dystrophin and Dysferlin Double Mutant Mice: A Novel Model For Rhabdomyosarcoma

    OpenAIRE

    Hosur, Vishnu; Kavirayani, Anoop; Riefler, Jennifer; Carney, Lisa M.B.; Lyons, Bonnie; Gott, Bruce; Gregory A Cox; Shultz, Leonard D.

    2012-01-01

    While researchers are yet to establish a link a between muscular dystrophy (MD) and sarcomas in human patients, literature suggests that MD genes dystrophin and dysferlin act as tumor suppressor genes in mouse models of MD. For instance, dystrophin deficient mdx and dysferlin deficient A/J mice, models of human Duchenne Muscular Dystrophy and Limb Girdle Muscular Dystrophy type 2B, respectively, develop mixed sarcomas with variable penetrance and latency. To further establish the correlation ...

  9. Truncated dystrophins reduce muscle stiffness in the extensor digitorum longus muscle of mdx mice

    OpenAIRE

    Hakim, Chady H.; Duan, Dongsheng

    2012-01-01

    Muscle stiffness is a major clinical feature in Duchenne muscular dystrophy (DMD). DMD is the most common lethal inherited muscle-wasting disease in boys, and it is caused by the lack of the dystrophin protein. We recently showed that the extensor digitorum longus (EDL) muscle of mdx mice (a DMD mouse model) exhibits disease-associated muscle stiffness. Truncated micro- and mini-dystrophins are the leading candidates for DMD gene therapy. Unfortunately, it has never been clear whether these t...

  10. Lack of Dystrophin Affects Bronchial Epithelium in mdx Mice.

    Science.gov (United States)

    Morici, Giuseppe; Rappa, Francesca; Cappello, Francesco; Pace, Elisabetta; Pace, Andrea; Mudò, Giuseppa; Crescimanno, Grazia; Belluardo, Natale; Bonsignore, Maria R

    2016-10-01

    Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r = -0.66, P = 0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients. J. Cell. Physiol. 231: 2218-2223, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868633

  11. Dystrophin hydrophobic regions in the pathogenesis of Duchenne and Becker muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Yingyin Liang

    2015-05-01

    Full Text Available The aim of our study was to determine the role of dystrophin hydrophobic regions in the pathogenesis of Duchenne (DMD and Becker (BMD muscular dystrophies, by the Kyte-Doolittle scale mean hydrophobicity profile and 3D molecular models. A total of 1038 cases diagnosed with DMD or BMD with the in-frame mutation were collected in our hospital and the Leiden DMD information database in the period 2002-2013. Correlation between clinical types and genotypes were determined on the basis of these two sources. In addition, the Kyte-Doolittle scale mean hydrophobicity of dystrophin was analyzed using BioEdit software and the models of the hydrophobic domains of dystrophin were constructed. The presence of four hydrophobic regions is confirmed. They include the calponin homology CH2 domain on the actin-binding domain (ABD, spectrin-type repeat 16, hinge III and the EF Hand domain. The severe symptoms of DMD usually develop as a result of the mutational disruption in the hydrophobic regions I, II and IV of dystrophin – those that bind associated proteins of the dystrophin-glycoprotein complex (DGC. On the other hand, when the hydrophobic region III is deleted, the connection of the ordered repeat domains of the central rod domain remains intact, resulting in the less severe clinical presentation. We conclude that mutational changes in the structure of hydrophobic regions of dystrophin play an important role in the pathogenesis of DMD.

  12. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries.

    Directory of Open Access Journals (Sweden)

    Muralidharan Muthu

    Full Text Available Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1 from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.

  13. Expression of truncated dystrophin cDNAs mediated by a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Shunchang Sun

    2008-01-01

    Full Text Available Background: The success of Duchenne muscular dystrophy gene therapy requires promising tools for gene delivery and mini-gene cassettes that can express therapeutic levels of a functional protein. Aims: To explore the expression feasibility of truncated dystrophin cDNAs mediated by a lentiviral vector derived from feline immunodeficiency virus. Materials and Methods: Three truncated dystrophin cDNAs were constructed by PCR cloning, then these cDNAs were inserted into lentiviral vectors. Recombinant lentiviruses were generated by transient transfection of lentiviral vector constructs into 293Ad 5+ cells. Cultured myoblasts were then infected with recombinant lentiviruses. Expression of truncated dystrophin cDNAs was detected by Western blot analysis. Results: Mediated by lentiviral vectors, three cDNAs constructed by PCR cloning expressed relative truncated dystrophins in cultured myoblasts. Conclusions: Truncated dystrophin cDNAs can express themselves successfully mediated by feline immunodeficiency virus vectors. It offers the possibility of an approach utilizing truncated dystrophin cDNAs and lentiviral vectors toward gene therapy of Duchenne muscular dystrophy.

  14. Origins and Impacts of New Mammalian Exons

    Directory of Open Access Journals (Sweden)

    Jason J. Merkin

    2015-03-01

    Full Text Available Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species- and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5′ UTRs and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues in which the exon was included. Increased expression correlated with the level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Altogether, these findings suggest that increased splicing at the 5′ ends of genes enhances expression and that changes in 5′ end splicing alter gene expression between tissues and between species.

  15. Identification of deletions and duplications of the dystrophin gene in Duchenne muscular dystrophy patients from Henan by MLPA%河南省杜氏肌营养不良患者dystrophin基因突变的MLPA检测

    Institute of Scientific and Technical Information of China (English)

    王凤羽; 孙伟伟; 李聪敏; 常明秀; 丰慧根; 马林先

    2011-01-01

    目的:探讨多重连接依赖式探针扩增技术(MLPA)在杜氏肌营养不良(DMD)患者基因诊断中的应用价值,了解河南省DMD患者dystrophin基因突变热点.方法:采用MLPA检测48例河南省DMD患者及13例缺失型患者母亲dystrophin基因突变.结果:48例DMD患者中,有31例(64.6%)检测出dystrophin基因外显子缺失,4例(8.3%)检测出外显子重复.河南省DMD患者dystrophin基因缺失/重复热点区域为第46~53外显子和第8~18外显子.13例患者母亲有11人检测出杂合突变,突变类型与患者相同,余2人未检测出突变.河南省DMD患者基因外显子缺失、重复分布与北京相似(x2=0.256,P=0.880),但与香港和台湾地区有着较大差异(x2分别为11.470和11.303,P分别为0.003和0.004).结论:MLPA在DMD患者及携带者基因诊断中有很高的应用价值.河南省DMD患者dystrophin基因的突变热点与国内其他地区有差异.%Aim: To evaluate the efficacy of multiplex ligation-dependent probe amplification technique ( MLPA) in gene diagnosis of Duchenne muscular dystrophy(DMD) patients,and comprehend frequency of deletion and duplication of every exon in dystrophin gene in Henan DMD patients. Methods: Applying MLPA,deletions and duplications of dystrophin gene in 48 Henan DMD patients and 13 mothers of DMD patients with deletion were detected. Results:In 48 patients, exon deletion was detected in 31 patients(64. 6% ) and exon duplication was detected in 4 patients(8. 3% ) . The mutational hot spot regions of deletion and duplication was ejcons 46 ~S3 and exons 8 - 18 in dystrophin gene in the 48 Henan DMD patients. Heterozygous mutations which were similar to their children were detected in 11 out of 13 mothers. The frequency of deletion and duplication of dystrophin gene in Henan DMD patients was similar to those from Beijing (x2 = 0. 256, P - 0.880) , but different from those from Hong Kong and Taiwan(x2 =11.470 and 11. 303,P =0. 003 and 0. 004). Conclusion

  16. Predicting mutually exclusive spliced exons based on exon length, splice site and reading frame conservation, and exon sequence homology

    Directory of Open Access Journals (Sweden)

    Hammesfahr Björn

    2011-06-01

    Full Text Available Abstract Background Alternative splicing of pre-mature RNA is an important process eukaryotes utilize to increase their repertoire of different protein products. Several types of different alternative splice forms exist including exon skipping, differential splicing of exons at their 3'- or 5'-end, intron retention, and mutually exclusive splicing. The latter term is used for clusters of internal exons that are spliced in a mutually exclusive manner. Results We have implemented an extension to the WebScipio software to search for mutually exclusive exons. Here, the search is based on the precondition that mutually exclusive exons encode regions of the same structural part of the protein product. This precondition provides restrictions to the search for candidate exons concerning their length, splice site conservation and reading frame preservation, and overall homology. Mutually exclusive exons that are not homologous and not of about the same length will not be found. Using the new algorithm, mutually exclusive exons in several example genes, a dynein heavy chain, a muscle myosin heavy chain, and Dscam were correctly identified. In addition, the algorithm was applied to the whole Drosophila melanogaster X chromosome and the results were compared to the Flybase annotation and an ab initio prediction. Clusters of mutually exclusive exons might be subsequent to each other and might encode dozens of exons. Conclusions This is the first implementation of an automatic search for mutually exclusive exons in eukaryotes. Exons are predicted and reconstructed in the same run providing the complete gene structure for the protein query of interest. WebScipio offers high quality gene structure figures with the clusters of mutually exclusive exons colour-coded, and several analysis tools for further manual inspection. The genome scale analysis of all genes of the Drosophila melanogaster X chromosome showed that WebScipio is able to find all but two of the 28

  17. Exon circularization in mammalian nuclear extracts.

    Science.gov (United States)

    Pasman, Z; Been, M D; Garcia-Blanco, M A

    1996-06-01

    Correct ligation of exons in pre-mRNA splicing requires splice site juxtaposition (splice site pairing), usually involving a 5' splice site and a downstream 3' splice site. Splicing of a 5' splice site to an upstream 3' splice site, however, is predicted to result in a circular RNA. This mode of splice site pairing across the axon has been hypothesized to account for rare RNAs containing scrambled exons (Nigro JM et al., 1991, Celt 64:607-613; Cocquerelle C et al., 1992, EMBO J 11:1 095-1098). Additionally, this mode of splice site pairing has been postulated to explain the formation of SRY circular transcripts in mouse testis (Capel B et al., 1993, Celt 73:1019- 1030). Here we show that splice site pairing across the exon can result in exon circularization in vitro. These results indicate that spliceosome-mediated axon circularization indeed can account for the formation of scrambled exons and circular RNAs. Exon circularization efficiency decreased dramatically as the length of the exon was increased from 95 nt to 274 nt. Circularization of this longer exon was restored, however, when intronic complementary sequences were included in the RNA substrate. These complementary sequences could form a stem that served to bring the splice sites into proximity and thereby promote splice site pairing. Therefore, the splicing of this structured RNA recapitulated SRY-like exon circularization in vitro.

  18. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available BACKGROUND: The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice. METHODS AND FINDINGS: Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT. CONCLUSIONS: These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  19. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Baptiste Legrand

    Full Text Available Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD. It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.

  20. ExonMiner: Web service for analysis of GeneChip Exon array data

    OpenAIRE

    Imoto Seiya; Saito Ayumu; Nagasaki Masao; Yoshida Ryo; Numata Kazuyuki; Miyano Satoru

    2008-01-01

    Abstract Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal...

  1. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy.

    OpenAIRE

    Beggs, A H; Neumann, P E; Arahata, K; Arikawa, E; Nonaka, I; Anderson, M S; Kunkel, L. M.

    1992-01-01

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain th...

  2. ExonMiner: Web service for analysis of GeneChip Exon array data

    Directory of Open Access Journals (Sweden)

    Imoto Seiya

    2008-11-01

    Full Text Available Abstract Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal computer. Results We have developed ExonMiner that is the first all-in-one web service for analysis of exon array data to detect transcripts that have significantly different splicing patterns in two cells, e.g. normal and cancer cells. ExonMiner can perform the following analyses: (1 data normalization, (2 statistical analysis based on two-way ANOVA, (3 finding transcripts with significantly different splice patterns, (4 efficient visualization based on heatmaps and barplots, and (5 meta-analysis to detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers. Conclusion ExonMiner is well suited for analysis of exon array data and does not require any installation of software except for internet browsers. What all users need to do is to access the ExonMiner URL http://ae.hgc.jp/exonminer. Users can analyze full dataset of exon array data within hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants as biomarkers.

  3. ExonMiner: Web service for analysis of GeneChip Exon array data

    Science.gov (United States)

    Numata, Kazuyuki; Yoshida, Ryo; Nagasaki, Masao; Saito, Ayumu; Imoto, Seiya; Miyano, Satoru

    2008-01-01

    Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal computer. Results We have developed ExonMiner that is the first all-in-one web service for analysis of exon array data to detect transcripts that have significantly different splicing patterns in two cells, e.g. normal and cancer cells. ExonMiner can perform the following analyses: (1) data normalization, (2) statistical analysis based on two-way ANOVA, (3) finding transcripts with significantly different splice patterns, (4) efficient visualization based on heatmaps and barplots, and (5) meta-analysis to detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers. Conclusion ExonMiner is well suited for analysis of exon array data and does not require any installation of software except for internet browsers. What all users need to do is to access the ExonMiner URL . Users can analyze full dataset of exon array data within hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants as biomarkers. PMID:19036125

  4. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    Directory of Open Access Journals (Sweden)

    James Lohan

    2005-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex.

  5. Parental source effect of inherited mutations in the dystrophin gene of mice and men

    Energy Technology Data Exchange (ETDEWEB)

    Kress, W.; Grimm, T.; Mueller, C.R. [Institute of Human Genetics, Wuerburg (Germany); Bittner, R. [Institute of Anatomy, Wein (Australia)

    1994-09-01

    Skewed X-inactivation has been suspected the genetic cause for some manifesting female carriers of BMD and DMD. To test whether a parental source effect on the protein expression of the dystrophin gene exists, we have set up backcrosses of mdx mice to wild type strains, enabling us to study the effect of the well-defined origin of the mutation on the dystrophin expression. In skeletal muscle sections the immunohistological staining patterns of dystrophin antibodies were showing a significant difference in the proportion of dystrophin positive versus negative fibers, suggesting a lower expression of paternally inherited mdx mutations. These data are in concordance with the pyruvate kinase (PK) levels in the serum: PK levels were much higher when the mutation was of maternal origin as compared to PK levels in paternally derived mutations. In order to test this {open_quotes}paternal source effect{close_quotes} in humans, we checked obligatory carriers of Becker muscular dystrophy (BMD) for the origin of their mutations. Creatin kinase (CK) levels in 21 carriers with maternally derived mutations were compared to CK values from 8 heterozygotes with mutations of paternal origin: CK (mat) = 140.3 IU/1 versus CK (pat) = 48.6 IU/I. The difference is statistically significant at the 5% level. These observations suggest either a differential X-inactivation or an imprinting of the dystrophin gene in mice and men.

  6. An exonic splicing silencer in the testes-specific DNA ligase III β exon

    OpenAIRE

    Chew, Shern L; Baginsky, Lysa; Eperon, Ian C.

    2000-01-01

    Alternative pre-mRNA splicing of two terminal exons (α and β) regulates the expression of the human DNA ligase III gene. In most tissues, the α exon is expressed. In testes and during spermatogenesis, the β exon is used instead. The α exon encodes the interaction domain with a scaffold DNA repair protein, XRCC1, while the β exon-encoded C-terminal does not. Sequence elements regulating the alternative splicing pattern were mapped by in vitro splicing assays in HeLa nuclear extracts. Deletion ...

  7. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy.

    Science.gov (United States)

    Nakamura, Akinori; Fueki, Noboru; Shiba, Naoko; Motoki, Hirohiko; Miyazaki, Daigo; Nishizawa, Hitomi; Echigoya, Yusuke; Yokota, Toshifumi; Aoki, Yoshitsugu; Takeda, Shin'ichi

    2016-07-01

    Few cases of dystrophinopathy show an asymptomatic phenotype with mutations in the 5' (exons 3-7) hot spot in the Duchenne muscular dystrophy (DMD) gene. Our patient showed increased serum creatine kinase levels at 12 years of age. A muscle biopsy at 15 years of age led to a diagnosis of Becker muscular dystrophy. The patient showed a slight decrease in cardiac function at the age of 21 years and was administered a β-blocker, but there was no muscle involvement even at the age of 27 years. A deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene was detected, and dystrophin protein expression was ∼15% that of control level. We propose that in-frame deletion of exons 3-9 may produce a functional protein, and that multiexon skipping therapy targeting these exons may be feasible for severe dystrophic patients with a mutation in the 5' hot spot of the DMD gene. PMID:27009627

  8. Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides

    OpenAIRE

    Rando, Thomas A.; Disatnik, Marie-Helene; Zhou, Lucy Z.-H.

    2000-01-01

    Chimeric RNA/DNA oligonucleotides (“chimeraplasts”) have been shown to induce single base alterations in genomic DNA both in vitro and in vivo. The mdx mouse strain has a point mutation in the dystrophin gene, the consequence of which is a muscular dystrophy resulting from deficiency of the dystrophin protein in skeletal muscle. To test the feasibility of chimeraplast-mediated gene therapy for muscular dystrophies, we used a chimeraplast (designated “MDX1”) designed to correct the point mutat...

  9. Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion

    DEFF Research Database (Denmark)

    Duguez, S.; Duddy, W.; Johnston, H.;

    2013-01-01

    of dystrophin leads to a general dysregulation of vesicle trafficking. We hypothesize that disturbance of the export of proteins through vesicles occurs before, and then concurrently with, the myonecrotic cascade and contributes chronically to the pathophysiology of DMD, thereby presenting us with a range...

  10. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.

    Directory of Open Access Journals (Sweden)

    Glen B Banks

    2010-05-01

    Full Text Available Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophin(DeltaR4-R23/DeltaCT with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophin(DeltaR4-R23/DeltaCT led to small myofibers (12% smaller than wild-type, Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophin(DeltaR4-R23/DeltaCT with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid alpha-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.

  11. Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity.

    Science.gov (United States)

    van den Bergen, J C; Wokke, B H A; Hulsker, M A; Verschuuren, J J G M; Aartsma-Rus, A M

    2015-03-01

    Becker muscular dystrophy is characterized by a variable disease course. Many factors have been implicated to contribute to this diversity, among which the expression of several components of the dystrophin associated glycoprotein complex. Together with dystrophin, most of these proteins anchor the muscle fiber cytoskeleton to the extracellular matrix, thus protecting the muscle from contraction induced injury, while nNOS is primarily involved in inducing vasodilation during muscle contraction, enabling adequate muscle oxygenation. In the current study, we investigated the role of three components of the dystrophin associated glycoprotein complex (beta-dystroglycan, gamma-sarcoglycan and nNOS) and the dystrophin homologue utrophin on disease severity in Becker patients. Strength measurements, data about disease course and fresh muscle biopsies of the anterior tibial muscle were obtained from 24 Becker patients aged 19 to 66. The designation of Becker muscular dystrophy in this study was based on the mutation and not on the clinical severity. Contrary to previous studies, we were unable to find a relationship between expression of nNOS, beta-dystroglycan and gamma-sarcoglycan at the sarcolemma and disease severity, as measured by muscle strength in five muscle groups and age at reaching several disease milestones. Unexpectedly, we found an inverse correlation between utrophin expression at the sarcolemma and age at reaching disease milestones.

  12. Dystrophin gene mutation location and the risk of cognitive impairment in Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Peter J Taylor

    Full Text Available BACKGROUND: A significant component of the variation in cognitive disability that is observed in Duchenne muscular dystrophy (DMD is known to be under genetic regulation. In this study we report correlations between standardised measures of intelligence and mutational class, mutation size, mutation location and the involvement of dystrophin isoforms. METHODS AND RESULTS: Sixty two male subjects were recruited as part of a study of the cognitive spectrum in boys with DMD conducted at the Sydney Children's Hospital (SCH. All 62 children received neuropsychological testing from a single clinical psychologist and had a defined dystrophin gene (DMD mutation; including DMD gene deletions, duplications and DNA point mutations. Full Scale Intelligence Quotients (FSIQ in unrelated subjects with the same mutation were found to be highly correlated (r = 0.83, p = 0.0008, in contrast to results in previous publications. In 58 cases (94% it was possible to definitively assign a mutation as affecting one or more dystrophin isoforms. A strong association between the risk of cognitive disability and the involvement of groups of DMD isoforms was found. In particular, improvements in the correlation of FSIQ with mutation location were identified when a new classification system for mutations affecting the Dp140 isoform was implemented. SIGNIFICANCE: These data represent one of the largest studies of FSIQ and mutational data in DMD patients and is among the first to report on a DMD cohort which has had both comprehensive mutational analysis and FSIQ testing through a single referral centre. The correlation between FSIQ results with the location of the dystrophin gene mutation suggests that the risk of cognitive deficit is a result of the cumulative loss of central nervous system (CNS expressed dystrophin isoforms, and that correct classification of isoform involvement results in improved estimates of risk.

  13. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons

    Institute of Scientific and Technical Information of China (English)

    Zhenxun Wang; Deblina Chatterjee; Hyun Yong Jeon; Martin Akerman; Matthew G. Vander Heiden; Lewis C. Cantley; Adrian R. Krainer

    2012-01-01

    Alternative splicing of the pyruvate kinase M gene (PK-M) can generate the M2 isoform and promote aerobic glycolysis and tumor growth.However,the cancer-specific alternative splicing regulation of PK-M is not completely understood.Here,we demonstrate that PK-M is regulated by reciprocal affects on the mutually exclusive exons 9 and 10,such that exon 9 is repressed and exon 10 is activated in cancer cells.Strikingly,exonic,rather than intronic,cis-elements are key determinants ef PK-M splicing isoform ratios.Using a systematic sub-exonic duplication approach,we identify a potent exonlc splicing enhancer in exon 10,which differs from its homologous counterpart in exon 9 by only two nucleotides.We identify SRSF3 as one of the cognate factors,and show that this serine/arginine-rich protein activates exon 10 and mediates changes in glucose metabolism.These findings provide mechanistic insights into the complex regulation of alternative splicing of a key regulator of the Warburg effect,and also have implications for other genes with a similar pattern of alternative splicing.

  14. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    OpenAIRE

    Yue, Yongping; Wasala, Nalinda B.; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin...

  15. Optimization of Peptide Nucleic Acid Antisense Oligonucleotides for Local and Systemic Dystrophin Splice Correction in the mdx Mouse

    OpenAIRE

    Yin, Haifang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J.; Wood, Matthew JA

    2010-01-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and ...

  16. Faster exon assembly by sparse spliced alignment

    CERN Document Server

    Tiskin, Alexander

    2007-01-01

    Assembling a gene from candidate exons is an important problem in computational biology. Among the most successful approaches to this problem is \\emph{spliced alignment}, proposed by Gelfand et al., which scores different candidate exon chains within a DNA sequence of length $m$ by comparing them to a known related gene sequence of length n, $m = \\Theta(n)$. Gelfand et al.\\ gave an algorithm for spliced alignment running in time O(n^3). Kent et al.\\ considered sparse spliced alignment, where the number of candidate exons is O(n), and proposed an algorithm for this problem running in time O(n^{2.5}). We improve on this result, by proposing an algorithm for sparse spliced alignment running in time O(n^{2.25}). Our approach is based on a new framework of \\emph{quasi-local string comparison}.

  17. Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice

    Directory of Open Access Journals (Sweden)

    Wang M

    2015-09-01

    Full Text Available Mingxing Wang, Bo Wu, Jason D Tucker, Peijuan Lu, Qilong Lu Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA Abstract: In this study, we investigated a series of cationic polyelectrolytes (PEs with different size and composition for their potential to improve delivery of an antisense phosphorodiamidate morpholino oligomer (PMO both in vitro and in vivo. The results showed that the poly(diallyldimethylammonium chloride (PDDAC polymer series, especially PE-3 and PE-4, improves the delivery efficiency of PMO, comparable with Endoporter-mediated PMO delivery in vitro. The enhanced PMO delivery and targeting to dystrophin exon 23 was further observed in mdx mice, up to fourfold with the PE-4, compared with PMO alone. The cytotoxicity of the PEs was lower than that of Endoporter and polyethylenimine 25,000 Da in vitro, and was not clearly detected in muscle in vivo under the tested concentrations. Together, these results demonstrate that optimization of PE molecular size, composition, and distribution of cationic charge are key factors to achieve enhanced PMO exon-skipping efficiency. The increased efficiency and lower toxicity show this PDDAC series to be capable gene/antisense oligonucleotide delivery-enhancing agents for treating muscular dystrophy and other diseases. Keywords: cationic polyelectrolytes, antisense delivery, exon-skipping, PMO, muscular dystrophy

  18. Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment

    OpenAIRE

    Betts, Corinne; Saleh, Amer F.; Arzumanov, Andrey A; Hammond, Suzan M.; Godfrey, Caroline; Coursindel, Thibault; Gait, Michael J.; Wood, Matthew JA

    2012-01-01

    Antisense oligonucleotides (AOs) are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD). AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semifunctional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We hav...

  19. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies

    OpenAIRE

    Janghra, N.; Morgan, J E; Sewry, C.A.; Wilson, F. X.; Davies, K. E.; Muntoni, F.; Tinsley, J.

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology...

  20. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview.

    Science.gov (United States)

    Duan, Dongsheng

    2016-03-01

    After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD. PMID:27003751

  1. Duchenne muscular dystrophy diagnosed by dystrophin gene deletion test: A case report

    Directory of Open Access Journals (Sweden)

    Rathod Kishor G, Dawre Rahul M, Kamble Milind B,Tambe Saleem H

    2014-04-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked recessive disease affecting 1 in 3600—6000 live male births. A muscle biopsy is not necessary if a genetic diagnosis is secured first, particularly as some families might view the procedure as traumatic. DMD occurs as a result of mutations (mainly deletions in the dystrophin gene (DMD; locus Xp21.2. Mutations lead to an absence of or defect in the protein dystrophin, which results in progressive muscle degeneration leading to loss of independent ambulation. Ninety percent of out frame mutations result in DMD, while 90% of in-frame mutations result in BMD. Electron microscopy is not required to confirm DMD. Genetic testing is mandatory irrespective of biopsy results. But the muscle biopsy is not required if the diagnosis is secured first by genetic testing.

  2. In silico analyses of dystrophin Dp40 cellular distribution, nuclear export signals and structure modeling

    Directory of Open Access Journals (Sweden)

    Alejandro Martínez-Herrera

    2015-09-01

    Full Text Available Dystrophin Dp40 is the shortest protein encoded by the DMD (Duchenne muscular dystrophy gene. This protein is unique since it lacks the C-terminal end of dystrophins. In this data article, we describe the subcellular localization, nuclear export signals and the three-dimensional structure modeling of putative Dp40 proteins using bioinformatics tools. The Dp40 wild type protein was predicted as a cytoplasmic protein while the Dp40n4 was predicted to be nuclear. Changes L93P and L170P are involved in the nuclear localization of Dp40n4 protein. A close analysis of Dp40 protein scored that amino acids 93LEQEHNNLV101 and 168LLLHDSIQI176 could function as NES sequences and the scores are lost in Dp40n4. In addition, the changes L93/170P modify the tertiary structure of putative Dp40 mutants. The analysis showed that changes of residues 93 and 170 from leucine to proline allow the nuclear localization of Dp40 proteins. The data described here are related to the research article entitled “EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40” (J. Aragón et al. Neurosci. Lett. 600 (2015 115–120 [1].

  3. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9.

    Science.gov (United States)

    Chen, Yongchang; Zheng, Yinghui; Kang, Yu; Yang, Weili; Niu, Yuyu; Guo, Xiangyu; Tu, Zhuchi; Si, Chenyang; Wang, Hong; Xing, Ruxiao; Pu, Xiuqiong; Yang, Shang-Hsun; Li, Shihua; Ji, Weizhi; Li, Xiao-Jiang

    2015-07-01

    CRISPR/Cas9 has been used to genetically modify genomes in a variety of species, including non-human primates. Unfortunately, this new technology does cause mosaic mutations, and we do not yet know whether such mutations can functionally disrupt the targeted gene or cause the pathology seen in human disease. Addressing these issues is necessary if we are to generate large animal models of human diseases using CRISPR/Cas9. Here we used CRISPR/Cas9 to target the monkey dystrophin gene to create mutations that lead to Duchenne muscular dystrophy (DMD), a recessive X-linked form of muscular dystrophy. Examination of the relative targeting rate revealed that Crispr/Cas9 targeting could lead to mosaic mutations in up to 87% of the dystrophin alleles in monkey muscle. Moreover, CRISPR/Cas9 induced mutations in both male and female monkeys, with the markedly depleted dystrophin and muscle degeneration seen in early DMD. Our findings indicate that CRISPR/Cas9 can efficiently generate monkey models of human diseases, regardless of inheritance patterns. The presence of degenerated muscle cells in newborn Cas9-targeted monkeys suggests that therapeutic interventions at the early disease stage may be effective at alleviating the myopathy.

  4. Identification of an exonic splicing silencer in exon 6A of the human VEGF gene

    Directory of Open Access Journals (Sweden)

    Crystal Ronald G

    2009-11-01

    Full Text Available Abstract Background The different isoforms of vascular endothelial growth factor (VEGF play diverse roles in vascular growth, structure and function. Alternative splicing of the VEGF gene results in the expression of three abundant isoforms: VEGF121, VEGF165 and VEGF189. The mRNA for VEGF189 contains the alternatively spliced exon 6A whereas the mRNA for VEGF165 lacks this exon. The objective of this study was to identify the cis elements that control utilization of exon 6A. A reporter minigene was constructed (pGFP-E6A containing the coding sequence for GFP whose translation was dependent on faithful splicing for removal of the VEGF exon 6A. To identify cis-acting splicing elements, sequential deletions were made across exon 6A in the pGFP-E6A plasmid. Results A candidate cis-acting exonic splicing silencer (ESS comprising nucleotides 22-30 of exon 6A sequence was identified corresponding to the a silencer consensus sequence of AAGGGG. The function of this sequence as an ESS was confirmed in vivo both in the context of the reporter minigene as a plasmid and in the context of a longer minigene with VEGF exon 6A in its native context in an adenoviral gene transfer vector. Further mutagenesis studies resulted in the identification of the second G residue of the putative ESS as the most critical for function. Conclusion This work establishes the identity of cis sequences that regulate alternative VEGF splicing and dictate the relative expression levels of VEGF isoforms.

  5. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cação-Benedini, L.O.; Ribeiro, P.G. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Prado, C.M.; Chesca, D.L. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mattiello-Sverzut, A.C. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Medicina e Reabilitação do Aparelho Locomotor, Departamento de Biomecânica, Ribeirão Preto, SP, Brasil, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  6. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    Directory of Open Access Journals (Sweden)

    L.O. Cação-Benedini

    2014-06-01

    Full Text Available Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68 and Western blot analysis (dystrophin/laminin. Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days, an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  7. Tau exon 10 alternative splicing and tauopathies

    OpenAIRE

    Liu Fei; Gong Cheng-Xin

    2008-01-01

    Abstract Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary degeneration in several neurodegenerative disorders that collectively called tauopathies. Six isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively). Approximate...

  8. The "alternative" choice of constitutive exons throughout evolution.

    Directory of Open Access Journals (Sweden)

    Galit Lev-Maor

    2007-11-01

    Full Text Available Alternative cassette exons are known to originate from two processes-exonization of intronic sequences and exon shuffling. Herein, we suggest an additional mechanism by which constitutively spliced exons become alternative cassette exons during evolution. We compiled a dataset of orthologous exons from human and mouse that are constitutively spliced in one species but alternatively spliced in the other. Examination of these exons suggests that the common ancestors were constitutively spliced. We show that relaxation of the 5' splice site during evolution is one of the molecular mechanisms by which exons shift from constitutive to alternative splicing. This shift is associated with the fixation of exonic splicing regulatory sequences (ESRs that are essential for exon definition and control the inclusion level only after the transition to alternative splicing. The effect of each ESR on splicing and the combinatorial effects between two ESRs are conserved from fish to human. Our results uncover an evolutionary pathway that increases transcriptome diversity by shifting exons from constitutive to alternative splicing.

  9. A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Chantal Beekman

    Full Text Available Duchenne muscular dystrophy (DMD is characterized by the absence or reduced levels of dystrophin expression on the inner surface of the sarcolemmal membrane of muscle fibers. Clinical development of therapeutic approaches aiming to increase dystrophin levels requires sensitive and reproducible measurement of differences in dystrophin expression in muscle biopsies of treated patients with DMD. This, however, poses a technical challenge due to intra- and inter-donor variance in the occurrence of revertant fibers and low trace dystrophin expression throughout the biopsies. We have developed an immunofluorescence and semi-automated image analysis method that measures the sarcolemmal dystrophin intensity per individual fiber for the entire fiber population in a muscle biopsy. Cross-sections of muscle co-stained for dystrophin and spectrin have been imaged by confocal microscopy, and image analysis was performed using Definiens software. Dystrophin intensity has been measured in the sarcolemmal mask of spectrin for each individual muscle fiber and multiple membrane intensity parameters (mean, maximum, quantiles per fiber were calculated. A histogram can depict the distribution of dystrophin intensities for the fiber population in the biopsy. This method was tested by measuring dystrophin in DMD, Becker muscular dystrophy, and healthy muscle samples. Analysis of duplicate or quadruplicate sections of DMD biopsies on the same or multiple days, by different operators, or using different antibodies, was shown to be objective and reproducible (inter-assay precision, CV 2-17% and intra-assay precision, CV 2-10%. Moreover, the method was sufficiently sensitive to detect consistently small differences in dystrophin between two biopsies from a patient with DMD before and after treatment with an investigational compound.

  10. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study

    OpenAIRE

    Cirak, S.; Arechavala-Gomeza, V.; Guglieri, M; Feng, L; Torelli, S.; Anthony, K; Abbs, S; Garralda, M E; Bourke, J; Wells, D J; Dickson, G; Wood, M. J. A.; Wilton, S D; Straub, V.; Kole, R

    2011-01-01

    Summary Background We report clinical safety and biochemical efficacy from a dose-ranging study of intravenously administered AVI-4658 phosphorodiamidate morpholino oligomer (PMO) in patients with Duchenne muscular dystrophy. Method We undertook an open-label, phase 2, dose-escalation study (0·5, 1·0, 2·0, 4·0, 10·0, and 20·0 mg/kg bodyweight) in ambulant patients with Duchenne muscular dystrophy aged 5–15 years with amenable deletions in DMD. Participants had a muscle biopsy before starting ...

  11. Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes.

    Science.gov (United States)

    Sabourin, Jessica; Harisseh, Rania; Harnois, Thomas; Magaud, Christophe; Bourmeyster, Nicolas; Déliot, Nadine; Constantin, Bruno

    2012-12-01

    In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCβ are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.

  12. Characteristics of transposable element exonization within human and mouse.

    Directory of Open Access Journals (Sweden)

    Noa Sela

    Full Text Available Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.

  13. Exon Deletions of Parkin Gene in Patients with Parkinson Disease

    Institute of Scientific and Technical Information of China (English)

    王涛; 梁直厚; 孙圣刚; 曹学兵; 彭海; 刘红进; 童萼塘

    2004-01-01

    Summary: Mutations in the parkin gene have recently been identified in familial and isolated patients with early-onset Parkinson disease (PD) and that subregions between exon 2 and 4 of the parkin gene are hot spots of deletive mutations. To study the distribution of deletions in the parkin gene among variant subset patients with PD in China, and to explore the role of parkin gene in the pathogenesis of PD, 63 patients were divided into early onset and later onset groups. Exons 1-12 were amplified by PCR, templated by the genomic DNA of patients, and then the deletion distribution detected by agarose electrophoresis. Four patients were found to be carrier of exon deletions in 63 patients with PD. The location of the deletion was on exon 2 (1 case), exon 3 (2 cases) and exon 4 (1 case). All patients were belong to the group of early onset PD. The results showed that parkin gene deletion on exon 2, exon 3 and exon 4 found in Chinese population contributes partly to early onset PD.

  14. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  15. Membrane Sealant Poloxamer P188 Protects Against Isoproterenol Induced Cardiomyopathy in Dystrophin Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sali Arpana

    2011-05-01

    Full Text Available Abstract Background Cardiomyopathy in Duchenne muscular dystrophy (DMD is an increasing cause of death in patients. The absence of dystrophin leads to loss of membrane integrity, cell death and fibrosis in cardiac muscle. Treatment of cardiomyocyte membrane instability could help prevent cardiomyopathy. Methods Three month old female mdx mice were exposed to the β1 receptor agonist isoproterenol subcutaneously and treated with the non-ionic tri-block copolymer Poloxamer P188 (P188 (460 mg/kg/dose i.p. daily. Cardiac function was assessed using high frequency echocardiography. Tissue was evaluated with Evans Blue Dye (EBD and picrosirius red staining. Results BL10 control mice tolerated 30 mg/kg/day of isoproterenol for 4 weeks while death occurred in mdx mice at 30, 15, 10, 5 and 1 mg/kg/day within 24 hours. Mdx mice tolerated a low dose of 0.5 mg/kg/day. Isoproterenol exposed mdx mice showed significantly increased heart rates (p Conclusions This model suggests that chronic intermittent intraperitoneal P188 treatment can prevent isoproterenol induced cardiomyopathy in dystrophin deficient mdx mice.

  16. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts.

    Science.gov (United States)

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K

    2016-01-29

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  17. Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery

    Directory of Open Access Journals (Sweden)

    Xuan Guan

    2014-03-01

    Full Text Available The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD. Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs. USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.

  18. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

    Directory of Open Access Journals (Sweden)

    Bailey Nichols

    2015-07-01

    Full Text Available Dystrophin-glycoprotein complex (DGC is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin of a muscle fiber to the extracellular matrix (ECM. Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies, and limb-girdle muscular dystrophies (sarcoglycanopathies, are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS, which is localized at the muscle membrane by DGC members (dystrophin and syntrophins, plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain.

  19. Current understanding of dystrophin-related muscular dystrophy and therapeutic challenges ahead

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guang-qian; XIE Hui-qi; ZHANG Su-zhen; YANG Zhi-ming

    2006-01-01

    Objective To review the recent research progress in dystrophin-related muscular dystrophy includes X-linked hereditary Duchenne and Becker muscular dystrophies (DMD and BMD).Data sources Information included in this article was identified by searches of PUBMED and other online resources using the key terms DMD, dystrophin, mutations, animal models, pathophysiology, gene expression, stem cells, gene therapy, cell therapy, and pharmacological.Study selection Mainly original milestone articles and timely reviews written by major pioneer investigators of the field were selected.Results The key issues related to the genetic basis and pathophysiological factors of the diseases were critically addressed. The availabilities and advantages of various animal models for the diseases were described. Major molecular and cellular therapeutic approaches were also discussed, many of which have indeed exhibited some success in pre-clinical studies but at the same time encountered a number of technical hurdles, including the efficient and systemic delivery of a functional gene and myogenic precursor/stem cells to repair genetic defects.Conclusions Further understanding of pathophysiological mechanisms at molecular levels and regenerative properites of myogenic precursor/stem cells will promote the development of multiple therapeutic strategies. The combined use of multiple strategies may represent the major challenge as well as the greatest hope for the therapy of these diseases in coming years.

  20. mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration.

    Science.gov (United States)

    Roberts, Thomas C; Blomberg, K Emelie M; Smith, C I Edvard; El Andaloussi, Samir; Wood, Matthew J A

    2016-03-01

    Duchenne muscular dystrophy (DMD) is a pediatric, X-linked, progressive muscle-wasting disorder caused by loss of function mutations affecting the gene encoding the dystrophin protein. While the primary genetic insult in DMD is well described, many details of the molecular and cellular pathologies that follow dystrophin loss are incompletely understood. To investigate gene expression in dystrophic muscle we have applied mRNA and microRNA (miRNA) microarray technology to the mdx mouse model of DMD. This study was designed to generate a complete description of gene expression changes associated with dystrophic pathology and the response to an experimental therapy which restores dystrophin protein function. These datasets have enabled (1) the determination of gene expression changes associated with dystrophic pathology, (2) identification of differentially expressed genes that are restored towards wild-type levels after therapeutic dystrophin rescue, (3) investigation of the correlation between mRNA and protein expression (determined by parallel mass spectrometry proteomics analysis), and (4) prediction of pathology associated miRNA-target interactions. Here we describe in detail how the data were generated including the basic analysis as contained in the manuscript published in Human Molecular Genetics with PMID 26385637. The data have been deposited in the Gene Expression Omnibus (GEO) with the accession number GSE64420. PMID:26981371

  1. mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration

    Directory of Open Access Journals (Sweden)

    Thomas C. Roberts

    2016-03-01

    Full Text Available Duchenne muscular dystrophy (DMD is a pediatric, X-linked, progressive muscle-wasting disorder caused by loss of function mutations affecting the gene encoding the dystrophin protein. While the primary genetic insult in DMD is well described, many details of the molecular and cellular pathologies that follow dystrophin loss are incompletely understood. To investigate gene expression in dystrophic muscle we have applied mRNA and microRNA (miRNA microarray technology to the mdx mouse model of DMD. This study was designed to generate a complete description of gene expression changes associated with dystrophic pathology and the response to an experimental therapy which restores dystrophin protein function. These datasets have enabled (1 the determination of gene expression changes associated with dystrophic pathology, (2 identification of differentially expressed genes that are restored towards wild-type levels after therapeutic dystrophin rescue, (3 investigation of the correlation between mRNA and protein expression (determined by parallel mass spectrometry proteomics analysis, and (4 prediction of pathology associated miRNA-target interactions. Here we describe in detail how the data were generated including the basic analysis as contained in the manuscript published in Human Molecular Genetics with PMID 26385637. The data have been deposited in the Gene Expression Omnibus (GEO with the accession number GSE64420.

  2. Expression of the dystrophin-glycoprotein complex is a marker for human airway smooth muscle phenotype maturation

    NARCIS (Netherlands)

    Sharma, Pawan; Tran, Thai; Stelmack, Gerald L; McNeill, Karol; Gosens, Reinoud; Mutawe, Mark M; Unruh, Helmut; Gerthoffer, William T; Halayko, Andrew J

    2008-01-01

    Airway smooth muscle (ASM) cells may contribute to asthma pathogenesis through their capacity to switch between a synthetic/proliferative and a contractile phenotype. The multimeric dystrophin-glycoprotein complex (DGC) spans the sarcolemma, linking the actin cytoskeleton and extracellular matrix. T

  3. Bortezomib (PS-341 treatment decreases inflammation and partially rescues the expression of the dystrophin-glycoprotein complex in GRMD dogs.

    Directory of Open Access Journals (Sweden)

    Karla P C Araujo

    Full Text Available Golden retriever muscular dystrophy (GRMD is a genetic myopathy corresponding to Duchenne muscular dystrophy (DMD in humans. Muscle atrophy is known to be associated with degradation of the dystrophin-glycoprotein complex (DGC via the ubiquitin-proteasome pathway. In the present study, we investigated the effect of bortezomib treatment on the muscle fibers of GRMD dogs. Five GRMD dogs were examined; two were treated (TD- Treated dogs with the proteasome inhibitor bortezomib, and three were control dogs (CD. Dogs were treated with bortezomib using the same treatment regimen used for multiple myeloma. Pharmacodynamics were evaluated by measuring the inhibition of 20S proteasome activity in whole blood after treatment and comparing it to that in CD. We performed immunohistochemical studies on muscle biopsy specimens to evaluate the rescue of dystrophin and dystrophin-associated proteins in the muscles of GRMD dogs treated with bortezomib. Skeletal tissue from TD had lower levels of connective tissue deposition and inflammatory cell infiltration than CD as determined by histology, collagen morphometry and ultrastructural analysis. The CD showed higher expression of phospho-NFκB and TGF-β1, suggesting a more pronounced activation of anti-apoptotic factors and inflammatory molecules and greater connective tissue deposition, respectively. Immunohistochemical analysis demonstrated that dystrophin was not present in the sarcoplasmic membrane of either group. However, bortezomib-TD showed higher expression of α- and β-dystroglycan, indicating an improved disease histopathology phenotype. Significant inhibition of 20S proteasome activity was observed 1 hour after bortezomib administration in the last cycle when the dose was higher. Proteasome inhibitors may thus improve the appearance of GRMD muscle fibers, lessen connective tissue deposition and reduce the infiltration of inflammatory cells. In addition, proteasome inhibitors may rescue some

  4. Exon Expression and Alternatively Spliced Genes in Tourette Syndrome

    NARCIS (Netherlands)

    Tian, Yingfang; Liao, Isaac H.; Zhan, Xinhua; Gunther, Joan R.; Ander, Bradley P.; Liu, Dazhi; Lit, Lisa; Jickling, Glen C.; Corbett, Blythe A.; Bos-Veneman, Netty G. P.; Hoekstra, Pieter J.; Sharp, Frank R.

    2011-01-01

    Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of i

  5. Genetic algorithms with exons and introns for the satisfiability problem

    OpenAIRE

    Popov, V.

    2013-01-01

    In this paper we propose a new model of genetic algorithms. This model uses notions of exons and introns. We consider the satisfiability problem as a testbed for a genetic algorithm with exons and introns. © 2013 Lhachmi El Badri et al.

  6. Immunohistochemical alterations of dystrophin in congenital muscular dystrophy Alterações imuno-hístoquímicas da distrofina na distrofia muscular congênita

    OpenAIRE

    Lineu Cesar Werneck; Eduardo Bonilla

    1995-01-01

    The dystrophin distribution in the plasma muscle membrane using immunohystochemistry was studied in 22 children with congenital muscular dystrophy. The dystrophin was detected by immunofluorescence in muscle biopsy through a polyclonal antibody. All the cases had patchy interruptions of the fluorescence in the plasma membrane. A large patchy interruption of the sarcolemma was found in 17 cases, small interruption in 12, and a combination of large and small patchy discontinuity in 7. Small gap...

  7. Successful Regional Delivery and Long-term Expression of a Dystrophin Gene in Canine Muscular Dystrophy: A Preclinical Model for Human Therapies

    OpenAIRE

    Wang, Zejing; Storb, Rainer; Halbert, Christine L.; Banks, Glen B.; Butts, Tiffany M.; Finn, Eric E.; Allen, James M.; Miller, A. Dusty; Jeffrey S. Chamberlain; Tapscott, Stephen J.

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle disease caused by mutations in the dystrophin gene. Adeno-associated viral (AAV) vector-mediated gene replacement strategies hold promise as a treatment. Studies in animal models and human trials suggested that immune responses to AAV capsid proteins and transgene products prevented efficient gene therapy. In this study, we used widespread intramuscular (i.m.) injection to deliver AAV6-canine micro-dystrophin (c-µdys) throughout a ...

  8. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix

    International Nuclear Information System (INIS)

    The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation

  9. Restriction Factors Against Recombinant Adeno-associated Virus Vectormediated Gene Transfer in Dystrophin-deficient Muscles.

    Science.gov (United States)

    Dupont, Jean-Baptiste

    2016-01-01

    Despite the unprecedented beneficial effects of rAAV gene therapy in animal models of Duchenne muscular dystrophy (DMD), the need to inject large amounts of vector in vivo to improve phenotype raises obvious biosafety concerns. While rAAV vectors generally exhibit a good safety profile, specific pathological phenotypes such as those observed in dystrophin-deficient muscles may promote immunotoxic/genotoxic effects. Increasing the therapeutic index of rAAV in DMD muscles by reducing the effective dose could be a pivotal means of ensuring efficient clinical translation. This requires a comprehensive understanding of the rAAV transduction process, which is almost always studied in non-pathological tissues or in vitro. In this review, we focus on the molecular fate of rAAV after injection, and how the individual stages of transduction could be affected in the context of DMD. PMID:27121109

  10. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available BACKGROUND: In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology. METHODOLOGY/PRINCIPAL FINDINGS: We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions. CONCLUSIONS/SIGNIFICANCE: Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings

  11. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  12. New Dystrophin/Dystroglycan interactors control neuron behavior in Drosophila eye

    Directory of Open Access Journals (Sweden)

    Rishko Valentyna M

    2011-09-01

    Full Text Available Abstract Background The Dystrophin Glycoprotein Complex (DGC is a large multi-component complex that is well known for its function in muscle tissue. When the main components of the DGC, Dystrophin (Dys and Dystroglycan (Dg are affected cognitive impairment and mental retardation in addition to muscle degeneration can occur. Previously we performed an array of genetic screens using a Drosophila model for muscular dystrophy in order to find novel DGC interactors aiming to elucidate the signaling role(s in which the complex is involved. Since the function of the DGC in the brain and nervous system has not been fully defined, we have here continued to analyze the DGC modifiers' function in the developing Drosophila brain and eye. Results Given that disruption of Dys and Dg leads to improper photoreceptor axon projections into the lamina and eye neuron elongation defects during development, we have determined the function of previously screened components and their genetic interaction with the DGC in this tissue. Our study first found that mutations in chif, CG34400, Nrk, Lis1, capt and Cam cause improper axon path-finding and loss of SP2353, Grh, Nrk, capt, CG34400, vimar, Lis1 and Cam cause shortened rhabdomere lengths. We determined that Nrk, mbl, capt and Cam genetically interact with Dys and/or Dg in these processes. It is notable that most of the neuronal DGC interacting components encountered are involved in regulation of actin dynamics. Conclusions Our data indicate possible DGC involvement in the process of cytoskeletal remodeling in neurons. The identification of new components that interact with the DGC not only helps to dissect the mechanism of axon guidance and eye neuron differentiation but also provides a great opportunity for understanding the signaling mechanisms by which the cell surface receptor Dg communicates via Dys with the actin cytoskeleton.

  13. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. (Harvard Medical School, Boston, MA (United States)); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya (National Inst. of Neuroscience, Tokyo (Japan))

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  14. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy

    OpenAIRE

    Bostick, Brian; Shin, Jin-Hong; Yue, Yongping; Wasala, Nalinda B.; Lai, Yi; Duan, Dongsheng

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by the absence of the sarcolemmal protein dystrophin. Dilated cardiomyopathy leading to heart failure is a significant source of morbidity and mortality in DMD. We recently demonstrated amelioration of DMD heart disease in 16 to 20-m-old dystrophin-null mdx mice using adeno-associated virus (AAV) mediated micro-dystrophin gene therapy. DMD patients show severe heart disease near the end of their life expectancy. Similarly, md...

  15. Sequence Analysis of Hoxc8 Exon-1 and Exon-2 of Multi-Vertebrae Mongolia Sheep%多脊椎蒙古羊Hoxc8 exon-1和exon-2的序列分析

    Institute of Scientific and Technical Information of China (English)

    陈琦; 赵静; 张立岭; 马月辉

    2011-01-01

    参考牛的Hoxc8基因序列设计引物,扩增正常蒙古羊(胸椎数13)和多脊椎蒙古羊(胸椎数14)Hoxc8的exon-1和exon-2基因,对得到的序列进行生物信息学分析。结果表明,经序列比对二者的DNA序列,除两侧个别碱基有差异外,中间序列完全一致。蒙古羊Hoxc8的exon-1和exon-2序列分别与其他物种进行同源性比对,蒙古羊Hoxc8 exon-1与人、小鼠、大鼠、犬的同源性达到96%以上,与斑马鱼的同源性为75.8%;exon-2与大猩猩、犬、人、小鼠、大鼠的同源性达到91%以上,与斑马鱼的同源性%In our study,according to the Hoxc8 sequence of cow,the specific primers were designed,and the sequences of Hoxc8 exon-1(432 bp)and exon-2(273 bp)of normal and multi-thoracic vertebrae mongolia sheep were obtained(Genebank accession number: EU817489 and FJ905472).Alignment results of them indicated that the sequences were conformity except a little difference in two sides of sequences.Hoxc8 exon-1 and exon-2 were aligned with other species and the results showed that compared with other mammals(human,dog,mouse,rat and chimpanzee),the homology were above 96%(exon-1) and 91%(exon-2);compared with zebra fish,the homology were 75.8% and 74%.

  16. C-Terminal-Truncated Microdystrophin Recruits Dystrobrevin and Syntrophin to the Dystrophin-Associated Glycoprotein Complex and Reduces Muscular Dystrophy in Symptomatic Utrophin/Dystrophin Double-Knockout Mice

    OpenAIRE

    Yue, Yongping; LIU, MINGJU; Duan, Dongsheng

    2006-01-01

    C-terminal-truncated (ΔC) microdystrophin is being developed for Duchenne muscular dystrophy gene therapy. Encouraging results have been achieved in the mdx mouse model. Unfortunately, mdx mice do not display the same phenotype as human patients. Evaluating ΔC microdystrophin in a symptomatic model will be of significant relevance to human trials. Utrophin/dystrophin double-knockout (u-dko) mice were developed to model severe dystrophic changes in human patients. In this study we evaluated th...

  17. Bortezomib (PS-341) Treatment Decreases Inflammation and Partially Rescues the Expression of the Dystrophin-Glycoprotein Complex in GRMD Dogs

    OpenAIRE

    Karla P C Araujo; Gloria Bonuccelli; Duarte, Caio N.; Gaiad, Thais P; Moreira, Dayson F; David Feder; Belizario, José E.; Maria A. Miglino; Lisanti, Michael P.; Carlos E. Ambrosio

    2013-01-01

    Golden retriever muscular dystrophy (GRMD) is a genetic myopathy corresponding to Duchenne muscular dystrophy (DMD) in humans. Muscle atrophy is known to be associated with degradation of the dystrophin-glycoprotein complex (DGC) via the ubiquitin-proteasome pathway. In the present study, we investigated the effect of bortezomib treatment on the muscle fibers of GRMD dogs. Five GRMD dogs were examined; two were treated (TD- Treated dogs) with the proteasome inhibitor bortezomib, and three wer...

  18. Dystrophin Delivery to Muscles of mdx Mice Using Lentiviral Vectors Leads to Myogenic Progenitor Targeting and Stable Gene Expression

    OpenAIRE

    Kimura, En; Li, Sheng; Gregorevic, Paul; Fall, Brent M; Jeffrey S. Chamberlain

    2009-01-01

    To explore whether stable transduction of myogenic stem cells using lentiviral vectors could be of benefit for treating dystrophic muscles, we generated vectors expressing a functional microdystrophin/enhanced green fluorescence protein fusion (µDys/eGFP) gene. Lentiviral vector injection into neonatal mdx4cv muscles resulted in widespread and stable expression of dystrophin for at least 2 years. This expression resulted in a significant amelioration of muscle pathophysiology as assessed by a...

  19. The Effects of Glucocorticoid and Voluntary Exercise Treatment on the Development of Thoracolumbar Kyphosis in Dystrophin-Deficient Mice

    OpenAIRE

    Brereton, Daniel; Plochocki, Jeffrey; An, Daniel; Costas, Jeffrey; Simons, Erin

    2012-01-01

    The development of spinal curvature deformities is a hallmark of muscular dystrophy. While glucocorticoid treatment has been shown to prolong muscle function in dystrophic mice, its effects on the development of dystrophinopathic spinal deformation are poorly understood. In this study, we test the effects of glucocorticoid treatment on the onset of thoracolumbar kyphosis in the dystrophin-deficient mdx mouse using voluntary running exercise to exacerbate muscle fibrosis. We measure the kyphot...

  20. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    OpenAIRE

    Mei Li; Anders Arner

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of exten...

  1. Sparing of the Dystrophin-Deficient Cranial Sartorius Muscle Is Associated with Classical and Novel Hypertrophy Pathways in GRMD Dogs

    OpenAIRE

    Nghiem, Peter P.; Eric P Hoffman; Mittal, Priya; Kristy J Brown; Scott J Schatzberg; Ghimbovschi, Svetlana; Wang, Zuyi; Kornegay, Joe N

    2013-01-01

    Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be det...

  2. Origin of introns by 'intronization' of exonic sequences

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David;

    2008-01-01

    The mechanisms of spliceosomal intron creation have proved elusive. Here we describe a new mechanism: the recruitment of internal exonic sequences ('intronization') in Caenorhabditis species. The numbers of intronization events and introns gained by other mechanisms are similar, suggesting...

  3. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  4. Short Exon Detection via Wavelet Transform Modulus Maxima.

    Science.gov (United States)

    Zhang, Xiaolei; Shen, Zhiwei; Zhang, Guishan; Shen, Yuanyu; Chen, Miaomiao; Zhao, Jiaxiang; Wu, Renhua

    2016-01-01

    The detection of short exons is a challenging open problem in the field of bioinformatics. Due to the fact that the weakness of existing model-independent methods lies in their inability to reliably detect small exons, a model-independent method based on the singularity detection with wavelet transform modulus maxima has been developed for detecting short coding sequences (exons) in eukaryotic DNA sequences. In the analysis of our method, the local maxima can capture and characterize singularities of short exons, which helps to yield significant patterns that are rarely observed with the traditional methods. In order to get some information about singularities on the differences between the exon signal and the background noise, the noise level is estimated by filtering the genomic sequence through a notch filter. Meanwhile, a fast method based on a piecewise cubic Hermite interpolating polynomial is applied to reconstruct the wavelet coefficients for improving the computational efficiency. In addition, the output measure of a paired-numerical representation calculated in both forward and reverse directions is used to incorporate a useful DNA structural property. The performances of our approach and other techniques are evaluated on two benchmark data sets. Experimental results demonstrate that the proposed method outperforms all assessed model-independent methods for detecting short exons in terms of evaluation metrics. PMID:27635656

  5. Advances of treatment for Duchenne muscular dystrophy with exon skipping%外显子跳跃治疗Duchenne型肌营养不良症的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨娟; 张成

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a lethal muscular disorder caused by mutations in the dystrophin gene for which no mutation-targeted therapy has been available so far. However, a new method named exon-skipping mediated by antisense oligonucleotides has considerable potential for DMD therapy. In this review, the principle, basic research and clinical research of exon-skipping are mainly summarized.%Duchenne型肌营养不良症是一种致死性肌肉疾病,抗肌萎缩蛋白基因缺陷是导致本病的原因,目前本病尚无特效的疗法.反义寡核苷酸(antisense oligonucleotides,AOs)诱导的外显子跳跃作为一种新的治疗手段具有良好的应用前景.本文主要从外显子跳跃治疗的原理、基础研究及临床研究进行综述.

  6. Detection of deletion in the dystrophin gene of a patient with quadriceps myopathy.

    Directory of Open Access Journals (Sweden)

    Kumari D

    2000-01-01

    Full Text Available A 43 year old male presented with slowly progressive weakness of limbs and hypertrophy of triceps, brachioradialis and calf muscles for four years. There was thinning of quadriceps muscles in both thighs. Histological study was compatible with Becker muscular dystrophy (BMD. Genomic DNA analysis showed a deletion of the Hind III fragments, spanning exons 45-47. A junction fragment of 11.0 kb was observed along with a deletion of a 3.4 kb PstI fragment containing exon 51 in the patient, and in one of his two sisters. The clinical and laboratory characteristics in this patient are in keeping with what has been described ′quadriceps myopathy′ and fall within the phenotypic variants of BMD as has been shown by others.

  7. Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Sandra Murphy

    2015-06-01

    Full Text Available In skeletal muscle, the dystrophin-glycoprotein complex forms a membrane-associated assembly of relatively low abundance, making its detailed proteomic characterization in normal versus dystrophic tissues technically challenging. To overcome this analytical problem, we have enriched the muscle membrane fraction by a minimal differential centrifugation step followed by the comprehensive label-free mass spectrometric analysis of microsomal membrane preparations. This organelle proteomic approach successfully identified dystrophin and its binding partners in normal versus dystrophic hind limb muscles. The introduction of a simple pre-fractionation step enabled the simultaneous proteomic comparison of the reduction in the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of dystrophinopathy in a single analytical run. The proteomic screening of the microsomal fraction from dystrophic hind limb muscle identified the full-length dystrophin isoform Dp427 as the most drastically reduced protein in dystrophinopathy, demonstrating the remarkable analytical power of comparative muscle proteomics. Secondary pathoproteomic expression patterns were established for 281 proteins, including dystrophin-associated proteins and components involved in metabolism, signalling, contraction, ion-regulation, protein folding, the extracellular matrix and the cytoskeleton. Key findings were verified by immunoblotting. Increased levels of the sarcolemmal Na+/K+-ATPase in dystrophic leg muscles were also confirmed by immunofluorescence microscopy. Thus, the reduction of sample complexity in organelle-focused proteomics can be advantageous for the profiling of supramolecular protein complexes in highly intricate systems, such as skeletal muscle tissue.

  8. Longitudinal ambulatory measurements of gait abnormality in dystrophin-deficient dogs

    Directory of Open Access Journals (Sweden)

    Voit Thomas

    2011-04-01

    Full Text Available Abstract Background This study aimed to measure the gait abnormalities in GRMD (Golden retriever muscular dystrophy dogs during growth and disease progression using an ambulatory gait analyzer (3D-accelerometers as a possible tool to assess the effects of a therapeutic intervention. Methods Six healthy and twelve GRMD dogs were evaluated twice monthly, from the age of two to nine months. The evolution of each gait variable previously shown to be modified in control and dystrophin-deficient adults was assessed using two-ways variance analysis (age, clinical status with repeated measurements. A principal component analysis (PCA was applied to perfect multivariate data interpretation. Results Speed, stride length, total power and force significantly already decreased (p Conclusion The gait variables measured by the accelerometers were sensitive to early detect and follow the gait disorders and mirrored the heterogeneity of clinical presentations, giving sense to monitor gait in GRMD dogs during progression of the disease and pre-clinical therapeutic trials.

  9. The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hongkyun Kim

    2009-12-01

    Full Text Available Genetic defects in the dystrophin-associated protein complex (DAPC are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle.

  10. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model

    Directory of Open Access Journals (Sweden)

    Jahnke Vanessa E

    2012-08-01

    Full Text Available Abstract Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR, separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.

  11. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    Science.gov (United States)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  12. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chunli Zhao

    Full Text Available A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.

  13. Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex.

    Directory of Open Access Journals (Sweden)

    Mariya M Kucherenko

    Full Text Available The Dystroglycan-Dystrophin (Dg-Dys complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-beta and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.

  14. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  15. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    Science.gov (United States)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions. PMID:25152393

  16. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Science.gov (United States)

    Zhao, Chunli; Farruggio, Alfonso P; Bjornson, Christopher R R; Chavez, Christopher L; Geisinger, Jonathan M; Neal, Tawny L; Karow, Marisa; Calos, Michele P

    2014-01-01

    A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies. PMID:24781921

  17. Delayed cardiomyopathy in dystrophin deficient mdx mice relies on intrinsic glutathione resource.

    Science.gov (United States)

    Khouzami, Lara; Bourin, Marie-Claude; Christov, Christo; Damy, Thibaud; Escoubet, Brigitte; Caramelle, Philippe; Perier, Magali; Wahbi, Karim; Meune, Christophe; Pavoine, Catherine; Pecker, Françoise

    2010-09-01

    Oxidative stress contributes to the pathogenesis of Duchenne muscular dystrophy (DMD). Although they have been a model for DMD, mdx mice exhibit slowly developing cardiomyopathy. We hypothesized that disease process was delayed owing to the development of an adaptive mechanism against oxidative stress, involving glutathione synthesis. At 15 to 20 weeks of age, mdx mice displayed a 33% increase in blood glutathione levels compared with age-matched C57BL/6 mice. In contrast, cardiac glutathione content was similar in mdx and C57BL/6 mice as a result of the balanced increased expression of glutamate cysteine ligase catalytic and regulatory subunits ensuring glutathione synthesis in the mdx mouse heart, as well as increased glutathione peroxidase-1 using glutathione. Oral administration from 10 weeks of age of the glutamate cysteine ligase inhibitor, l-buthionine(S,R)-sulfoximine (BSO, 5 mmol/L), led to a 33% and 50% drop in blood and cardiac glutathione, respectively, in 15- to 20-week-old mdx mice. Moreover, 20-week-old BSO-treated mdx mice displayed left ventricular hypertrophy associated with diastolic dysfunction, discontinuities in beta-dystroglycan expression, micronecrosis and microangiopathic injuries. Examination of the glutathione status in four DMD patients showed that three displayed systemic glutathione deficiency as well. In conclusion, low glutathione resource hastens the onset of cardiomyopathy linked to a defect in dystrophin in mdx mice. This is relevant to the glutathione deficiency that DMD patients may suffer.

  18. Recombinant Exon-Encoded Resilins for Elastomeric Biomaterials

    Science.gov (United States)

    Qin, Guokui; Rivkin, Amit; Lapidot, Shaul; Hu, Xiao; Arinus, Shira B.; Dgany, Or; Shoseyov, Oded; Kaplan, David L.

    2011-01-01

    Resilin is an elastomeric protein found in specialized regions of the cuticle of most insects, providing outstanding material properties including high resilience and fatigue lifetime for insect flight and jumping needs. Two exons (1 and 3) from the resilin gene in Drosophila melanogaster were cloned and the encoded proteins expressed as soluble products in Escherichia coli. A heat and salt precipitation method was used for efficient purification of the recombinant proteins. The proteins were solution cast from water and formed into rubber-like biomaterials via horseradish peroxidase-mediated cross-linking. Comparative studies of the two proteins expressed from the two different exons were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichrosim (CD) for structural features. Little structural organization was found, suggesting structural order was not induced by the enzyme-mediateed dityrosine cross-links. Atomic Force Microscopy (AFM) was used to study the elastomeric properties of the uncross-linked and cross-linked proteins. The protein from exon 1 exhibited 90% resilience in comparison to 63% for the protein from exon 3, and therefore may be the more critical domain for functional materials to mimic native resilin. Further, the cross-linking of the recombinant exon 1 via the citrate-modified photo-Fenton reaction was explored as an alternative dityrosine mediated polymerization method and resulted in both highly elastic and adhesive materials. The citrate-modified photo-Fenton system may be suitable for in-vivo applications of resilin biomaterials. PMID:21963157

  19. Intron Retention and TE Exonization Events in ZRANB2

    Directory of Open Access Journals (Sweden)

    Sang-Je Park

    2012-01-01

    Full Text Available The Zinc finger, RAN-binding domain-containing protein 2 (ZRANB2, contains arginine/serine-rich (RS domains that mediate its function in the regulation of alternative splicing. The ZRANB2 gene contains 2 LINE elements (L3b, Plat_L3 between the 9th and 10th exons. We identified the exonization event of a LINE element (Plat_L3. Using genomic PCR, RT-PCR amplification, and sequencing of primate DNA and RNA samples, we analyzed the evolutionary features of ZRANB2 transcripts. The results indicated that 2 of the LINE elements were integrated in human and all of the tested primate samples (hominoids: 3 species; Old World monkey: 8 species; New World monkey: 6 species; prosimian: 1 species. Human, rhesus monkey, crab-eating monkey, African-green monkey, and marmoset harbor the exon derived from LINE element (Plat_L3. RT-PCR amplification revealed the long transcripts and their differential expression patterns. Intriguingly, these long transcripts were abundantly expressed in Old World monkey lineages (rhesus, crab-eating, and African-green monkeys and were expressed via intron retention (IR. Thus, the ZRANB2 gene produces 3 transcript variants in which the Cterminus varies by transposable elements (TEs exonization and IR mechanisms. Therefore, ZRANB2 is valuable for investigating the evolutionary mechanisms of TE exonization and IR during primate evolution.

  20. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  1. Ameliorating pathogenesis by removing an exon containing a missense mutation: a potential exon-skipping therapy for laminopathies.

    Science.gov (United States)

    Scharner, J; Figeac, N; Ellis, J A; Zammit, P S

    2015-06-01

    Exon skipping, as a therapy to restore a reading frame or switch protein isoforms, is under clinical trial. We hypothesised that removing an in-frame exon containing a mutation could also improve pathogenic phenotypes. Our model is laminopathies: incurable tissue-specific degenerative diseases associated with LMNA mutations. LMNA encodes A-type lamins, that together with B-type lamins, form the nuclear lamina. Lamins contain an alpha-helical central rod domain composed of multiple heptad repeats. Eliminating LMNA exon 3 or 5 removes six heptad repeats, so shortens, but should not otherwise significantly alter, the alpha-helix. Human Lamin A or Lamin C with a deletion corresponding to amino acids encoded by exon 5 (Lamin A/C-Δ5) localised normally in murine lmna-null cells, rescuing both nuclear shape and endogenous Lamin B1/emerin distribution. However, Lamin A carrying pathogenic mutations in exon 3 or 5, or Lamin A/C-Δ3, did not. Furthermore, Lamin A/C-Δ5 was not deleterious to wild-type cells, unlike the other Lamin A mutants including Lamin A/C-Δ3. Thus Lamin A/C-Δ5 function as effectively as wild-type Lamin A/C and better than mutant versions. Antisense oligonucleotides skipped LMNA exon 5 in human cells, demonstrating the possibility of treating certain laminopathies with this approach. This proof-of-concept is the first to report the therapeutic potential of exon skipping for diseases arising from missense mutations. PMID:25832542

  2. Development and Application of an Ultrasensitive Hybridization-Based ELISA Method for the Determination of Peptide-Conjugated Phosphorodiamidate Morpholino Oligonucleotides.

    Science.gov (United States)

    Burki, Umar; Keane, Jonathan; Blain, Alison; O'Donovan, Liz; Gait, Michael John; Laval, Steven H; Straub, Volker

    2015-10-01

    Antisense oligonucleotide (AON)-induced exon skipping is one of the most promising strategies for treating Duchenne muscular dystrophy (DMD) and other rare monogenic conditions. Phosphorodiamidate morpholino oligonucleotides (PMOs) and 2'-O-methyl phosphorothioate (2'OMe) are two of the most advanced AONs in development. The next generation of peptide-conjugated PMO (P-PMO) is also showing great promise, but to advance these therapies it is essential to determine the pharmacokinetic and biodistribution (PK/BD) profile using a suitable method to detect AON levels in blood and tissue samples. An enzyme-linked immunosorbent assay (ELISA)-based method, which shows greater sensitivity than the liquid chromatography-mass spectrometry method, is the method of choice for 2'OMe detection in preclinical and clinical studies. However, no such assay has been developed for PMO/P-PMO detection, and we have, therefore, developed an ultrasensitive hybridization-based ELISA for this purpose. The assay has a linear detection range of 5-250 pM (R(2)>0.99) in mouse serum and tissue lysates. The sensitivity was sufficient for determining the 24-h PK/BD profile of PMO and P-PMO injected at standard doses (12.5 mg/kg) in mdx mice, the dystrophin-deficient mouse model for DMD. The assay demonstrated an accuracy approaching 100% with precision values under 12%. This provides a powerful cost-effective assay for the purpose of accelerating the development of these emerging therapeutic agents. PMID:26176274

  3. Polymorphism of exon 3 of the HLA-G gene

    DEFF Research Database (Denmark)

    Hviid, T V; Meldgaard, M; Sørensen, Steen;

    1997-01-01

    HLA-G is a non-classical MHC class I gene with a limited tissue distribution. The most pronounced expression is detected in the cytotrophoblast of first trimester placenta. It is possible to detect mRNA for HLA-G in preimplantation blastocysts where expression is correlated with a high cleavage...... rate of embryos. HLA-G seems to play an important role in the feto-maternal relationship. The polymorphism of the HLA-G locus is not fully clarified. One study has shown extensive nucleotide sequence variation in the exon 3 (alpha-2 domain) in healthy African Americans. A few studies in other...... populations have only revealed a limited polymorphism. We investigated the polymorphism of the exon 3 of HLA-G by means of Polymerase Chain Reaction (PCR)-Single Strand Conformation Polymorphism (SSCP)- and DNA sequencing analysis in a Danish population. We detected four single-base substitutions in exon 3...

  4. Dystrophin is required for the normal function of the cardio-protective K(ATP channel in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Graciotti

    Full Text Available Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx, which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC. In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

  5. Distribution of dystrophin- and utrophin-associated protein complexes (DAPC/UAPC) in human hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Teniente-De Alba, Carmen; Martínez-Vieyra, Ivette; Vivanco-Calixto, Raúl; Galván, Iván J; Cisneros, Bulmaro; Cerecedo, Doris

    2011-10-01

    Hematopoietic stem cells (HSC) are defined by their cardinal properties, such as sustained proliferation, multilineage differentiation, and self-renewal, which give rise to a hierarchy of progenitor populations with more restricted potential lineage, ultimately leading to the production of all types of mature blood cells. HSC are anchored by cell adhesion molecules to their specific microenvironment, thus regulating their cell cycle, while cell migration is essentially required for seeding the HSC of the fetal bone marrow (BM) during development as well as in adult BM homeostasis. The dystrophin-associated protein complex (DAPC) is a large group of membrane-associated proteins linking the cytoskeleton to the extracellular matrix and exhibiting scaffolding, adhesion, and signaling roles in muscle and non-muscle cells including mature blood cells. Because adhesion and migration are mechanisms that influence the fate of the HSC, we explored the presence and the feasible role of DAPC. In this study, we characterized the pattern expression by immunoblot technique and, by confocal microscopy analysis, the cellular distribution of dystrophin and utrophin gene products, and the dystrophin-associated proteins (α-, β-dystroglycan, α-syntrophin, α-dystrobrevin) in relation to actin filaments in freshly isolated CD34+ cells from umbilical cord blood. Immunoprecipitation assays demonstrated the presence of Dp71d/Dp71Δ110m ∼DAPC and Up400/Up140∼DAPC. The subcellular distribution of the two DAPC in actin-based structures suggests their dynamic participation in adhesion and cell migration. In addition, the particular protein pattern expression found in hematopoietic stem/progenitor cells might be indicative of their feasible participation during differentiation.

  6. Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9

    OpenAIRE

    Hongmei Lisa Li; Naoko Fujimoto; Noriko Sasakawa; Saya Shirai; Tokiko Ohkame; Tetsushi Sakuma; Michihiro Tanaka; Naoki Amano; Akira Watanabe; Hidetoshi Sakurai; Takashi Yamamoto; Shinya Yamanaka; Akitsu Hotta

    2014-01-01

    Summary Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed thr...

  7. Gene Therapy of mdx Mice With Large Truncated Dystrophins Generated by Recombination Using rAAV6

    OpenAIRE

    Odom, Guy L.; Gregorevic, Paul; Allen, James M.; Jeffrey S. Chamberlain

    2010-01-01

    Recombinant adeno-associated viral (rAAV) vector-mediated gene transfer represents a promising approach for many diseases. However, the applicability of rAAV vectors has long been hindered by the small (~4.8 kb) DNA packaging capacity. This limitation can hamper the packaging and delivery of critical regulatory elements and/or larger coding sequences, such as the ~14-kb dystrophin complementary DNA (cDNA) that is of interest for gene therapy of Duchenne muscular dystrophy (DMD). Here, we have...

  8. Effects of Dantrolene Therapy on Disease Phenotype in Dystrophin Deficient mdx Mice.

    Science.gov (United States)

    Quinn, James L; Huynh, Tony; Uaesoontrachoon, Kitipong; Tatem, Kathleen; Phadke, Aditi; Van der Meulen, Jack H; Yu, Qing; Nagaraju, Kannaboyina

    2013-01-01

    Dystrophin deficiency causes contraction-induced injury and damage to the muscle fiber, resulting in sustained increase in intracellular calcium levels, activation of calcium-dependent proteases and cell death. It is known that the Ryanodine receptor (RyR1) on the sarcoplasmic reticular (SR) membrane controls calcium release. Dantrolene, an FDA approved skeletal muscle relaxant, inhibits the release of calcium from the SR during excitation-contraction and suppresses uncontrolled calcium release by directly acting on the RyR complex to limit its activation. This study examines whether Dantrolene can reduce the disease phenotype in the mdx mouse model of muscular dystrophy. We treated mdx mice (4 weeks old) with daily intraperitoneal injections of 40mg/kg of Dantrolene for 6 weeks and measured functional (grip strength, in vitro force contractions), behavioral (open field digiscan), imagining (optical imaging for inflammation), histological (H&E), and molecular (protein and RNA) endpoints in a blinded fashion. We found that treatment with Dantrolene resulted in decreased grip strength and open field behavioral activity in mdx mice. There was no significant difference in inflammation either by optical imaging analysis of cathepsin activity or histological (H&E) analysis. In vitro force contraction measures showed no changes in EDL muscle-specific force, lengthening-contraction force deficit, or fatigue resistance. We found Dantrolene treatment significantly reduces serum CK levels. Further, Dantrolene-treated mice showed decreased SERCA1 but not RyR1 expression in skeletal muscle. These results suggest that Dantrolene treatment alone has no significant beneficial effects at the tested doses in young mdx mice. PMID:24270550

  9. Widespread establishment and regulatory impact of Alu exons in human genes.

    Science.gov (United States)

    Shen, Shihao; Lin, Lan; Cai, James J; Jiang, Peng; Kenkel, Elizabeth J; Stroik, Mallory R; Sato, Seiko; Davidson, Beverly L; Xing, Yi

    2011-02-15

    The Alu element has been a major source of new exons during primate evolution. Thousands of human genes contain spliced exons derived from Alu elements. However, identifying Alu exons that have acquired genuine biological functions remains a major challenge. We investigated the creation and establishment of Alu exons in human genes, using transcriptome profiles of human tissues generated by high-throughput RNA sequencing (RNA-Seq) combined with extensive RT-PCR analysis. More than 25% of Alu exons analyzed by RNA-Seq have estimated transcript inclusion levels of at least 50% in the human cerebellum, indicating widespread establishment of Alu exons in human genes. Genes encoding zinc finger transcription factors have significantly higher levels of Alu exonization. Importantly, Alu exons with high splicing activities are strongly enriched in the 5'-UTR, and two-thirds (10/15) of 5'-UTR Alu exons tested by luciferase reporter assays significantly alter mRNA translational efficiency. Mutational analysis reveals the specific molecular mechanisms by which newly created 5'-UTR Alu exons modulate translational efficiency, such as the creation or elongation of upstream ORFs that repress the translation of the primary ORFs. This study presents genomic evidence that a major functional consequence of Alu exonization is the lineage-specific evolution of translational regulation. Moreover, the preferential creation and establishment of Alu exons in zinc finger genes suggest that Alu exonization may have globally affected the evolution of primate and human transcriptomes by regulating the protein production of master transcriptional regulators in specific lineages.

  10. Polymorphism of exon 3 of the HLA-G gene

    DEFF Research Database (Denmark)

    Hviid, T V; Meldgaard, Michael; Sørensen, S;

    1997-01-01

    rate of embryos. HLA-G seems to play an important role in the feto-maternal relationship. The polymorphism of the HLA-G locus is not fully clarified. One study has shown extensive nucleotide sequence variation in the exon 3 (alpha-2 domain) in healthy African Americans. A few studies in other...... populations have only revealed a limited polymorphism. We investigated the polymorphism of the exon 3 of HLA-G by means of Polymerase Chain Reaction (PCR)-Single Strand Conformation Polymorphism (SSCP)- and DNA sequencing analysis in a Danish population. We detected four single-base substitutions in exon 3...... compared to the sequence of HLA-6.0 (G*01011); one of these has not been reported before. We also found a deletion of the first base of codon 130 or the third of codon 129 in a heterozygous individual. This study, together with previous results, suggests that the polymorphism of exon 3 of the HLA-G gene...

  11. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko;

    2011-01-01

    BACKGROUND: Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene. ME...

  12. Systematic analysis of alternative first exons in plant genomes

    Directory of Open Access Journals (Sweden)

    Zeng Changqing

    2007-10-01

    Full Text Available Abstract Background Alternative splicing (AS contributes significantly to protein diversity, by selectively using different combinations of exons of the same gene under certain circumstances. One particular type of AS is the use of alternative first exons (AFEs, which can have consequences far beyond the fine-tuning of protein functions. For example, AFEs may change the N-termini of proteins and thereby direct them to different cellular compartments. When alternative first exons are distant, they are usually associated with alternative promoters, thereby conferring an extra level of gene expression regulation. However, only few studies have examined the patterns of AFEs, and these analyses were mainly focused on mammalian genomes. Recent studies have shown that AFEs exist in the rice genome, and are regulated in a tissue-specific manner. Our current understanding of AFEs in plants is still limited, including important issues such as their regulation, contribution to protein diversity, and evolutionary conservation. Results We systematically identified 1,378 and 645 AFE-containing clusters in rice and Arabidopsis, respectively. From our data sets, we identified two types of AFEs according to their genomic organisation. In genes with type I AFEs, the first exons are mutually exclusive, while most of the downstream exons are shared among alternative transcripts. Conversely, in genes with type II AFEs, the first exon of one gene structure is an internal exon of an alternative gene structure. The functionality analysis indicated about half and ~19% of the AFEs in Arabidopsis and rice could alter N-terminal protein sequences, and ~5% of the functional alteration in type II AFEs involved protein domain addition/deletion in both genomes. Expression analysis indicated that 20~66% of rice AFE clusters were tissue- and/or development- specifically transcribed, which is consistent with previous observations; however, a much smaller percentage of Arabidopsis

  13. 免疫组织化学dystrophin染色诊断Duchenne型肌营养不良症的研究%Diagnosis of Duchenne muscular dystrophy through dystrophin expression detection by immunohistochemistry

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 沈定国

    2008-01-01

    目的 探讨Duchenne型肌营养不良症(DMD)肌萎缩蛋白(dystrophin)表达规律和临床意义.方法 收集我院7例DMD患者作为试验组,7例非DMD患者为对照组.使用抗dystrophin杆状结构域单抗、免疫组织化学染色,观察肌膜dystrophin表达.结果 7例DMD患者肌细胞膜dystrophin阴性,7例非DMD患者dystrophin染色阳性.结论 证实DMD患者肌细胞膜dystrophin表达阴性,揭示dystrophin缺失是其发病机制,可以作为确诊DMD手段,对临床诊断DMD有实际意义.%Objective To study dystrophin expression in Duchenne muscular dystrophy (DMD) and non-DMD patients. Methods With immunohistochemistry method, using monoclonal antibody of dystrophin, expression of dystrophin was analyzed in 7 DMD patients (experimental group)and 7 non-DMD patients (control group). Results In 7 non-DMD patients, uniform and continuous dystrophin expression was found along the sarolemma, while not in 7 DMD patients. Conclusions Dystrophin expression in myocyte membrane is negative in DMD patients, which indicates that dystrophin loss may be involved in the pathogenesis of DMD. It can be used as a "gold standard" in diagnosing DMD.

  14. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  15. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    Science.gov (United States)

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  16. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM. This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  17. Three-dimensional regulation of radial glial functions by Lis1-Nde1 and dystrophin glycoprotein complexes.

    Directory of Open Access Journals (Sweden)

    Ashley S Pawlisz

    2011-10-01

    Full Text Available Radial glial cells (RGCs are distinctive neural stem cells with an extraordinary slender bipolar morphology and dual functions as precursors and migration scaffolds for cortical neurons. Here we show a novel mechanism by which the Lis1-Nde1 complex maintains RGC functions through stabilizing the dystrophin/dystroglycan glycoprotein complex (DGC. A direct interaction between Nde1 and utrophin/dystrophin allows for the assembly of a multi-protein complex that links the cytoskeleton to the extracellular matrix of RGCs to stabilize their lateral membrane, cell-cell adhesion, and radial morphology. Lis1-Nde1 mutations destabilized the DGC and resulted in deformed, disjointed RGCs and disrupted basal lamina. Besides impaired RGC self-renewal and neuronal migration arrests, Lis1-Nde1 deficiencies also led to neuronal over-migration. Additional to phenotypic resemblances of Lis1-Nde1 with DGC, strong synergistic interactions were found between Nde1 and dystroglycan in RGCs. As functional insufficiencies of LIS1, NDE1, and dystroglycan all cause lissencephaly syndromes, our data demonstrated that a three-dimensional regulation of RGC's cytoarchitecture by the Lis1-Nde1-DGC complex determines the number and spatial organization of cortical neurons as well as the size and shape of the cerebral cortex.

  18. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  19. Origin and evolution of new exons in the rodent zinc finger protein 39 gene

    Institute of Scientific and Technical Information of China (English)

    PENG Lixin; ZHENG Hongkun; LI Xin; YANG Shuang; CHEN Hong; WANG Wen

    2005-01-01

    The origin of new structures and functions is an important process in evolution. In the past decades, we have obtained some preliminary knowledge of the origin and evolution of new genes. However, as the basic unit of genes, the origin and evolution of exons remain unclear. Because young exons retain the footprints of origination, they can be good materials for studying origin and evolution of new exons. In this paper, we report two young exons in a zinc finger protein gene of rodents. Since they are unique sequences in mouse and rat genome and no homologous sequences were found in the orthologous genes of human and pig, the young exons might originate after the divergence of primates and rodents through exonization of intronic sequences. Strong positive selection was detected in the new exons between mouse and rat, suggesting that these exons have undergone significant functional divergence after the separation of the two species. On the other hand, population genetics data of mouse demonstrate that the new exons have been subject to functional constraint, indicating an important function of the new exons in mouse. Functional analyses suggest that these new exons encode a nuclear localization signal peptide, which may mediate new ways of nuclear protein transport. To our knowledge, this is the first example of the origin and evolution of young exons.

  20. Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition

    Directory of Open Access Journals (Sweden)

    Maayan Amit

    2012-05-01

    Full Text Available During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus “marking” them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.

  1. Multiplex amplification of large sets of human exons.

    Science.gov (United States)

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  2. Evaluating the protein coding potential of exonized transposable element sequences

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2007-11-01

    Full Text Available Abstract Background Transposable element (TE sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently

  3. Widespread evolutionary conservation of alternatively spliced exons in caenorhabditis

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob L; Penny, David;

    2007-01-01

    Alternative splicing (AS) contributes to increased transcriptome and proteome diversity in various eukaryotic lineages. Previous studies showed low levels of conservation of alternatively spliced (cassette) exons within mammals and within dipterans. We report a strikingly different pattern...... patterns of splicing. The functionality of the vast majority of cassette exons is underscored by various other features. We suggest that differences in conservation between lineages reflect differences in levels of functionality and further suggest that these differences are due to differences in intron...... length and the strength of consensus boundaries across lineages. Finally, we demonstrate an inverse relationship between AS and gene duplication, suggesting that the latter may be primarily responsible for the emergence of new functional transcripts in nematodes. Udgivelsesdato: 2008-Feb...

  4. Detecting differential usage of exons from RNA-seq data

    OpenAIRE

    Anders, Simon; Reyes, Alejandro; Huber, Wolfgang

    2012-01-01

    RNA-seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression. Understanding the regulation of these processes requires sensitive and specific detection of differential isoform abundance in comparisons between conditions, cell types, or tissues. We present DEXSeq, a statistical method to test for differential exon usage in RNA-seq data. DEXSeq uses generalized linear models and offers reliable control of false discoveries by taking biologic...

  5. A simple physical model predicts small exon length variations.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available One of the most common splice variations are small exon length variations caused by the use of alternative donor or acceptor splice sites that are in very close proximity on the pre-mRNA. Among these, three-nucleotide variations at so-called NAGNAG tandem acceptor sites have recently attracted considerable attention, and it has been suggested that these variations are regulated and serve to fine-tune protein forms by the addition or removal of a single amino acid. In this paper we first show that in-frame exon length variations are generally overrepresented and that this overrepresentation can be quantitatively explained by the effect of nonsense-mediated decay. Our analysis allows us to estimate that about 50% of frame-shifted coding transcripts are targeted by nonsense-mediated decay. Second, we show that a simple physical model that assumes that the splicing machinery stochastically binds to nearby splice sites in proportion to the affinities of the sites correctly predicts the relative abundances of different small length variations at both boundaries. Finally, using the same simple physical model, we show that for NAGNAG sites, the difference in affinities of the neighboring sites for the splicing machinery accurately predicts whether splicing will occur only at the first site, splicing will occur only at the second site, or three-nucleotide splice variants are likely to occur. Our analysis thus suggests that small exon length variations are the result of stochastic binding of the spliceosome at neighboring splice sites. Small exon length variations occur when there are nearby alternative splice sites that have similar affinity for the splicing machinery.

  6. An Exon-Capture System for the Entire Class Ophiuroidea.

    Science.gov (United States)

    Hugall, Andrew F; O'Hara, Timothy D; Hunjan, Sumitha; Nilsen, Roger; Moussalli, Adnan

    2016-01-01

    Exon-capture studies have typically been restricted to relatively shallow phylogenetic scales due primarily to hybridization constraints. Here, we present an exon-capture system for an entire class of marine invertebrates, the Ophiuroidea, built upon a phylogenetically diverse transcriptome foundation. The system captures approximately 90% of the 1,552 exon target, across all major lineages of the quarter-billion-year-old extant crown group. Key features of our system are 1) basing the target on an alignment of orthologous genes determined from 52 transcriptomes spanning the phylogenetic diversity and trimmed to remove anything difficult to capture, map, or align; 2) use of multiple artificial representatives based on ancestral state reconstructions rather than exemplars to improve capture and mapping of the target; 3) mapping reads to a multi-reference alignment; and 4) using patterns of site polymorphism to distinguish among paralogy, polyploidy, allelic differences, and sample contamination. The resulting data give a well-resolved tree (currently standing at 417 samples, 275,352 sites, 91% data-complete) that will transform our understanding of ophiuroid evolution and biogeography.

  7. Variants affecting exon skipping contribute to complex traits.

    Directory of Open Access Journals (Sweden)

    Younghee Lee

    Full Text Available DNA variants that affect alternative splicing and the relative quantities of different gene transcripts have been shown to be risk alleles for some Mendelian diseases. However, for complex traits characterized by a low odds ratio for any single contributing variant, very few studies have investigated the contribution of splicing variants. The overarching goal of this study is to discover and characterize the role that variants affecting alternative splicing may play in the genetic etiology of complex traits, which include a significant number of the common human diseases. Specifically, we hypothesize that single nucleotide polymorphisms (SNPs in splicing regulatory elements can be characterized in silico to identify variants affecting splicing, and that these variants may contribute to the etiology of complex diseases as well as the inter-individual variability in the ratios of alternative transcripts. We leverage high-throughput expression profiling to 1 experimentally validate our in silico predictions of skipped exons and 2 characterize the molecular role of intronic genetic variations in alternative splicing events in the context of complex human traits and diseases. We propose that intronic SNPs play a role as genetic regulators within splicing regulatory elements and show that their associated exon skipping events can affect protein domains and structure. We find that SNPs we would predict to affect exon skipping are enriched among the set of SNPs reported to be associated with complex human traits.

  8. Translational and regulatory challenges for exon skipping therapies.

    Science.gov (United States)

    Aartsma-Rus, Annemieke; Ferlini, Alessandra; Goemans, Nathalie; Pasmooij, Anna M G; Wells, Dominic J; Bushby, Katerine; Vroom, Elizabeth; Balabanov, Pavel

    2014-10-01

    Several translational challenges are currently impeding the therapeutic development of antisense-mediated exon skipping approaches for rare diseases. Some of these are inherent to developing therapies for rare diseases, such as small patient numbers and limited information on natural history and interpretation of appropriate clinical outcome measures. Others are inherent to the antisense oligonucleotide (AON)-mediated exon skipping approach, which employs small modified DNA or RNA molecules to manipulate the splicing process. This is a new approach and only limited information is available on long-term safety and toxicity for most AON chemistries. Furthermore, AONs often act in a mutation-specific manner, in which case multiple AONs have to be developed for a single disease. A workshop focusing on preclinical development, trial design, outcome measures, and different forms of marketing authorization was organized by the regulatory models and biochemical outcome measures working groups of Cooperation of Science and Technology Action: "Networking towards clinical application of antisense-mediated exon skipping for rare diseases." The workshop included participants from patient organizations, academia, and members of staff from the European Medicine Agency and Medicine Evaluation Board (the Netherlands). This statement article contains the key outcomes of this meeting. PMID:25184444

  9. Exon-intron organization and sequence comparison of human and murine T11 (CD2) genes

    International Nuclear Information System (INIS)

    Genomic DNA clones containing the human and murine genes coding for the 50-kDa T11 (CD2) T-cell surface glycoprotein were characterized. The human T11 gene is ≅ 12 kilobases long and comprised of five exons. A leader exon (L) contains the 5'-untranslated region and most of the nucleotides defining the signal peptide [amino acids (aa) -24 to -5]. Two exons encode the extracellular segment; exon Ex1 is 321 base pairs (bp) long and codes for four residues of the leader peptide and aa 1-103 of the mature protein, and exon Ex2 is 231 bp long and encodes aa 104-180. Exon TM is 123 bp long and codes for the single transmembrane region of the molecule (aa 181-221). Exon C is a large 765-bp exon encoding virtually the entire cytoplasmic domain (aa 222-327) and the 3'-untranslated region. The murine region T11 gene has a similar organization with exon-intron boundaries essentially identical to the human gene. Substantial conservation of nucleotide sequences between species in both 5'- and 3'-gene flanking regions equivalent to that among homologous exons suggests that murine and human genes may be regulated in a similar fashion. The probable relationship of the individual T11 exons to functional and structural protein domains is discussed

  10. Rodent-specific alternative exons are more frequent in rapidly evolving genes and in paralogs

    Directory of Open Access Journals (Sweden)

    Mironov Andrey A

    2009-06-01

    Full Text Available Abstract Background Alternative splicing is an important mechanism for generating functional and evolutionary diversity of proteins in eukaryotes. Here, we studied the frequency and functionality of recently gained, rodent-specific alternative exons. Results We projected the data about alternative splicing of mouse genes to the rat, human, and dog genomes, and identified exons conserved in the rat genome, but missing in more distant genomes. We estimated the frequency of rodent-specific exons while controlling for possible residual conservation of spurious exons. The frequency of rodent-specific exons is higher among predominantly skipped exons and exons disrupting the reading frame. Separation of all genes by the rate of sequence evolution and by gene families has demonstrated that rodent-specific cassette exons are more frequent in rapidly evolving genes and in rodent-specific paralogs. Conclusion Thus we demonstrated that recently gained exons tend to occur in fast-evolving genes, and their inclusion rate tends to be lower than that of older exons. This agrees with the theory that gain of alternative exons is one of the major mechanisms of gene evolution.

  11. Motor physical therapy affects muscle collagen type I and decreases gait speed in dystrophin-deficient dogs.

    Directory of Open Access Journals (Sweden)

    Thaís P Gaiad

    Full Text Available Golden Retriever Muscular Dystrophy (GRMD is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD maintained their routine of activities of daily living. At t0 (pre and t1 (post-physical therapy, collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy, mediolateral (Fz and craniocaudal (Fx ground reaction forces (GRF were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000. The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function.

  12. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  13. Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy.

    Science.gov (United States)

    Kimura, En; Han, Jay J; Li, Sheng; Fall, Brent; Ra, Jennifer; Haraguchi, Miki; Tapscott, Stephen J; Chamberlain, Jeffrey S

    2008-08-15

    Duchenne muscular dystrophy (DMD) is characterized in skeletal muscle by cycles of myofiber necrosis and regeneration leading to loss of muscle fibers and replacement with fibrotic connective and adipose tissue. The ongoing activation and recruitment of muscle satellite cells for myofiber regeneration results in loss of regenerative capacity in part due to proliferative senescence. We explored a method whereby new myoblasts could be generated in dystrophic muscles by transplantation of primary fibroblasts engineered to express a micro-dystrophin/enhanced green fluorescent protein (muDys/eGFP) fusion gene together with a tamoxifen-inducible form of the myogenic regulator MyoD [MyoD-ER(T)]. Fibroblasts isolated from mdx(4cv) mice, a mouse model for DMD, were efficiently transduced with lentiviral vectors expressing muDys/eGFP and MyoD-ER(T) and underwent myogenic conversion when exposed to tamoxifen. These cells could also be induced to differentiate into muDys/eGFP-expressing myocytes and myotubes. Transplantation of transduced mdx(4cv) fibroblasts into mdx(4cv) muscles enabled tamoxifen-dependent regeneration of myofibers that express muDys. This lineage control method therefore allows replenishment of myogenic stem cells using autologous fibroblasts carrying an exogenous dystrophin gene. This strategy carries several potential advantages over conventional myoblast transplantation methods including: (i) the relative simplicity of culturing fibroblasts compared with myoblasts, (ii) a readily available cell source and ease of expansion and (iii) the ability to induce MyoD gene expression in vivo via administration of a medication. Our study provides a proof of concept for a novel gene/stem cell therapy technique and opens another potential therapeutic approach for degenerative muscle disorders. PMID:18511457

  14. Increased frequency of co-existing JAK2 exon-12 or MPL exon-10 mutations in patients with low JAK2(V617F) allelic burden.

    Science.gov (United States)

    Nussenzveig, Roberto H; Pham, Ha T; Perkins, Sherrie L; Prchal, Josef T; Agarwal, Archana M; Salama, Mohamed E

    2016-01-01

    The frequency of co-existing JAK2(V617F)/MPL and JAK2(V617F)/JAK2 exon-12 mutations has not been previously investigated in MPNs. Poor survival was reported in primary myelofibrosis with low JAK2(V617F) allelic burden. However, mutational status of JAK2 exon-12 or MPL were not reported in these patients. This study developed a cost-effective multiplex high resolution melt assay that screens for mutations in JAK2 gene exons-12 and -14 ((V617F)) and MPL gene exon-10. Co-existing mutations with JAK2(V617F) were detected in 2.9% (6/208; two JAK2 exon-12 and four MPL exon-10) patient specimens with known JAK2(V617F) (allelic-burden range: 0.1-96.8%). Co-existing mutations were detected in specimens with < 12% JAK2(V617F) allelic burden. Current WHO guidelines do not recommend further testing once JAK2(V617F) mutation is detected in MPNs. The findings, however, indicate that quantification of JAK2(V617F) allele burden may be clinically relevant in MPNs and in those with low allelic burden additional testing for JAK2 exon-12 and MPL exon-10 mutation should be pursued.

  15. A founder synonymous COL7A1 mutation in three Danish families with dominant dystrophic epidermolysis bullosa pruriginosa identifies exonic regulatory sequences required for exon 87 splicing

    DEFF Research Database (Denmark)

    Covaciu, C; Grosso, F; Pisaneschi, E;

    2011-01-01

    shoulders. DEB-Pr is caused by either dominant (DDEB-Pr) or recessive mutations in the COL7A1 gene encoding type VII collagen (COLVII). The full spectrum of COL7A1 mutations in DEB-Pr remains elusive and the genotype-phenotype correlation is largely incomplete. Here, we report and functionally characterize...... a previously unrecognized translationally silent exonic COL7A1 mutation that results in skipping of exon 87 and is associated with DDEB-Pr phenotypes in several members of three apparently unrelated Danish families. A haplotype segregation study suggested a common ancestor in these kindred. Functional splicing...... analysis of the mutant exon by a COL7A1 minigene construct and computational prediction for splicing regulatory cis-sequences prove that the mutation alters the activity of an exonic splicing enhancer (ESE) critical for exon inclusion. These findings substantiate for the first time the involvement...

  16. Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins

    DEFF Research Database (Denmark)

    Moghadaszadeh, Behzad; Albrechtsen, Reidar; Guo, Ling T;

    2003-01-01

    the expression and redistribution of several components of the muscle cell-adhesion complexes. First, we analyzed transgenic mice that overexpress ADAM12 and found mild myopathic changes and accelerated regeneration following acute injury. We then analyzed changes in gene-expression profiles in mdx/ADAM12...... in humans. More specifically ADAM12 appeared to prevent muscle cell necrosis in the mdx mice as evidenced by morphological analysis and by the reduced levels of serum creatine kinase. In the present study we demonstrated that ADAM12 may compensate for the dystrophin deficiency in mdx mice by increasing......, and suggested that significant changes in mdx/ADAM12 muscle might occur post-transcriptionally. Indeed, by immunostaining and immunoblotting we found an approximately 2-fold increase in expression, and distinct extrasynaptic localization, of alpha 7B integrin and utrophin, the functional homolog of dystrophin...

  17. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  18. Evidence for a novel exon in the coding region of the adenomatous polyposis coli (APC) gene

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ling; St. Denis, K.A.; Bapat, B. [Univ. of Toronto (Canada)

    1995-08-10

    Germline mutations of the tumor suppressor gene APC cause familial adenomatous polyposis. Somatic APC alterations are involved in several sporadic neoplasma, including colorectal, duodenal, gastric, and esophageal carcinoma. The APC mRNA is encoded by 15 exons. Additional transcripts have been reported, due to alternative splicing of coding as well as noncoding regions. Two mRNA isoforms occur due to a deletion of exon 7 or a partial deletion of exon 9. We have identified a novel exon, flanked by APC exons 10 and 11, which is expressed as an alternatively transcribed product of the gene. Further, we have shown that the novel exon consists of a heptad repeat motif and is conserved across species. 18 refs., 2 figs.

  19. TALE-directed local modulation of H3K9 methylation shapes exon recognition

    Science.gov (United States)

    Bieberstein, Nicole I.; Kozáková, Eva; Huranová, Martina; Thakur, Prasoon K.; Krchňáková, Zuzana; Krausová, Michaela; Oesterreich, Fernando Carrillo; Staněk, David

    2016-01-01

    In search for the function of local chromatin environment on pre-mRNA processing we established a new tool, which allows for the modification of chromatin using a targeted approach. Using Transcription Activator-Like Effector domains fused to histone modifying enzymes (TALE-HME), we show locally restricted alteration of histone methylation modulates the splicing of target exons. We provide evidence that a local increase in H3K9 di- and trimethylation promotes inclusion of the target alternative exon, while demethylation by JMJD2D leads to exon skipping. We further demonstrate that H3K9me3 is localized on internal exons genome-wide suggesting a general role in splicing. Consistently, targeting of the H3K9 demethylase to a weak constitutive exon reduced co-transcriptional splicing. Together our data show H3K9 methylation within the gene body is a factor influencing recognition of both constitutive and alternative exons. PMID:27439481

  20. TALE-directed local modulation of H3K9 methylation shapes exon recognition.

    Science.gov (United States)

    Bieberstein, Nicole I; Kozáková, Eva; Huranová, Martina; Thakur, Prasoon K; Krchňáková, Zuzana; Krausová, Michaela; Carrillo Oesterreich, Fernando; Staněk, David

    2016-01-01

    In search for the function of local chromatin environment on pre-mRNA processing we established a new tool, which allows for the modification of chromatin using a targeted approach. Using Transcription Activator-Like Effector domains fused to histone modifying enzymes (TALE-HME), we show locally restricted alteration of histone methylation modulates the splicing of target exons. We provide evidence that a local increase in H3K9 di- and trimethylation promotes inclusion of the target alternative exon, while demethylation by JMJD2D leads to exon skipping. We further demonstrate that H3K9me3 is localized on internal exons genome-wide suggesting a general role in splicing. Consistently, targeting of the H3K9 demethylase to a weak constitutive exon reduced co-transcriptional splicing. Together our data show H3K9 methylation within the gene body is a factor influencing recognition of both constitutive and alternative exons. PMID:27439481

  1. TALE-directed local modulation of H3K9 methylation shapes exon recognition.

    Science.gov (United States)

    Bieberstein, Nicole I; Kozáková, Eva; Huranová, Martina; Thakur, Prasoon K; Krchňáková, Zuzana; Krausová, Michaela; Carrillo Oesterreich, Fernando; Staněk, David

    2016-07-21

    In search for the function of local chromatin environment on pre-mRNA processing we established a new tool, which allows for the modification of chromatin using a targeted approach. Using Transcription Activator-Like Effector domains fused to histone modifying enzymes (TALE-HME), we show locally restricted alteration of histone methylation modulates the splicing of target exons. We provide evidence that a local increase in H3K9 di- and trimethylation promotes inclusion of the target alternative exon, while demethylation by JMJD2D leads to exon skipping. We further demonstrate that H3K9me3 is localized on internal exons genome-wide suggesting a general role in splicing. Consistently, targeting of the H3K9 demethylase to a weak constitutive exon reduced co-transcriptional splicing. Together our data show H3K9 methylation within the gene body is a factor influencing recognition of both constitutive and alternative exons.

  2. 14例非缺失型假性肥大型肌营养不良患者的分子鉴定%Mutation screening of the dystrophin gene in 14 Chinese Duchenne/Becker muscular dystrophy patients without gross ddetions

    Institute of Scientific and Technical Information of China (English)

    薛晋杰; 朱海燕; 邬玲仟; 梁德生; 潘乾; 龙志高; 戴和平; 夏昆; 夏家辉

    2008-01-01

    目的 对非缺失型假性肥大型肌营养不良(Duchenne/Becker muscular dystrophy,DMD/BMD)患者及其家族成员进行基因诊断,以提供准确的遗传咨询和产前诊断.方法 应用变性高效液相色谱技术(denaturing high performance liquid chromatography,DHPLC)对14例DMD患者的DMD基因79个外显子及5'-非翻译区和3'-非翻译区部分片段(共86个片段)进行检测,对检测到异源双峰的PCR产物进行测序.结果 14例患者中共检出7种致病点突变(其中2种末见报道),14种已报道的多态改变和7种未报道的序列变异;其中5例患者的母亲为致病基因携带者.结论 DHPLC技术可以对非缺失型DMD患者进行有效的基因诊断,并对家族女性成员进行携带者检测.%Objective To search for the dystrophin gene mutations of Duchenne muscular dystrophy (DMD) patients without gross deletions,in order to offer accurate genetic counseling and prenatal diagnosis for those families.Methods All 79 exons of the dystrophin gene as well as its 5'-UTR and 3'-UTR of 14 Chinese DMD/Beeker muscular dystrphy (BMD) patients without detectable gross deletions were screened by denaturing high performance liquid chromatography (DHPLC) and heteroduplex fragments were identified by subsequent sequencing.Results Seven causative point mutations,including two novel ones,were detected in 7 patients.Fourteen known polymorphisms and 7 unknown intronic variations were also detected.Five mothers of the patients were obligate carriers.Conclusion DHPLE is an efficient way of identifying point mutations and the female carriers in DMD families.

  3. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    International Nuclear Information System (INIS)

    Highlights: → hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. → Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. → hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  4. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  5. Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: A scheme for the progression of cardiac dysfunction

    OpenAIRE

    Toyo-Oka, Teruhiko; Kawada, Tomie; Nakata, Jumi; Xie, Han; Urabe, Masashi; Masui, Fujiko; Ebisawa, Takashi; Tezuka, Asaki; Iwasawa, Kuniaki; Nakajima, Toshiaki; Uehara, Yoshio; Kumagai, Hiroyuki; Kostin, Sawa; Schaper, Jutta; Nakazawa, Mikio

    2004-01-01

    Advanced heart failure (HF) is the leading cause of death in developed countries. The mechanism underlying the progression of cardiac dysfunction needs to be clarified to establish approaches to prevention or treatment. Here, using TO-2 hamsters with hereditary dilated cardiomyopathy, we show age-dependent cleavage and translocation of myocardial dystrophin (Dys) from the sarcolemma (SL) to the myoplasm, increased SL permeability in situ, and a close relationship between the loss of Dys and h...

  6. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene

    Directory of Open Access Journals (Sweden)

    Shomron Noam

    2007-11-01

    Full Text Available Abstract Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.

  7. Context-dependent splicing regulation: Exon definition, co-occurring motif pairs and tissue specificity

    OpenAIRE

    Ke, Shengdong; CHASIN, LAWRENCE A.

    2011-01-01

    Splicing is a crucial process in gene expression in higher organisms because: (1) most vertebrate genes contain introns; and (2) alternative splicing is primarily responsible for increasing proteomic complexity and functional diversity. Intron definition, the coordination across an intron, is a mandatory step in the splicing process. However, exon definition, the coordination across an exon, is also thought to be required for the splicing of most vertebrate exons. Recent investigations of exo...

  8. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice.

    Science.gov (United States)

    Heller, Kristin N; Montgomery, Chrystal L; Shontz, Kimberly M; Clark, K Reed; Mendell, Jerry R; Rodino-Klapac, Louise R

    2015-10-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD. PMID:26076707

  9. Exon capture optimization in amphibians with large genomes.

    Science.gov (United States)

    McCartney-Melstad, Evan; Mount, Genevieve G; Shaffer, H Bradley

    2016-09-01

    Gathering genomic-scale data efficiently is challenging for nonmodel species with large, complex genomes. Transcriptome sequencing is accessible for organisms with large genomes, and sequence capture probes can be designed from such mRNA sequences to enrich and sequence exonic regions. Maximizing enrichment efficiency is important to reduce sequencing costs, but relatively few data exist for exon capture experiments in nonmodel organisms with large genomes. Here, we conducted a replicated factorial experiment to explore the effects of several modifications to standard protocols that might increase sequence capture efficiency for amphibians and other taxa with large, complex genomes. Increasing the amounts of c0 t-1 repetitive sequence blocker and individual input DNA used in target enrichment reactions reduced the rates of PCR duplication. This reduction led to an increase in the percentage of unique reads mapping to target sequences, essentially doubling overall efficiency of the target capture from 10.4% to nearly 19.9% and rendering target capture experiments more efficient and affordable. Our results indicate that target capture protocols can be modified to efficiently screen vertebrates with large genomes, including amphibians. PMID:27223337

  10. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.

  11. Exon dosage analysis of parkin gene in Chinese sporadic Parkinson's disease.

    Science.gov (United States)

    Guo, Ji-Feng; Dong, Xiao-Li; Xu, Qian; Li, Nan; Yan, Xin-Xiang; Xia, Kun; Tang, Bei-Sha

    2015-09-14

    Parkin gene mutations are by far the most common mutations in both familial Parkinson's disease (PD) and sporadic PD. Approximately, 50% of parkin mutations is exon dosage mutations (i.e., deletions and duplications of entire exons). Here, we first established a MLPA assay for quick detection of parkin exon rearrangements. Then, we studied parkin exon dosage mutations in 755 Chinese sporadic PDdisease patients using the established MLPA assay. We found that there were 25 (3.3%) patients with exon dosage alterations including deletions and duplications, 20 (11.4%) patients with exon rearrangements in 178 early-onset patients, and 5 (0.86%) patients with exon rearrangement mutations in 579 later-onset patients. The percentage of individuals with parkin dosage mutations is more than 33% when the age at onset is less than 30 years old, but less than 7% when the age at onset is more than 30. In these mutations, deletion is the main mutational style, especially in exon 2-5. Our results indicated that exon dosage mutations in parkin gene might be the main cause for sporadic PD, especially in EOP. PMID:26240990

  12. Mutations in Tau Gene Exon 10 Associated with FTDP-17 Alter the Activity of an Exonic Splicing Enhancer to Interact with Tra2β*

    OpenAIRE

    Jiang, Zhihong; Tang, Hao; Havlioglu, Necat; Zhang, Xiaochun; Stamm, Stefan; Yan, Riqiang; Jane Y Wu

    2003-01-01

    Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. Th...

  13. Dystrophin基因51号外显子缺失连接片段的克隆和测序%Cloning and Sequencing of Junction Fragment with Exon 51 Deletion of Dystrophin Gene

    Institute of Scientific and Technical Information of China (English)

    潘速跃; 张成; 刘焯霖; 陈国俊; 卢锡林

    2002-01-01

    为了解Dystrophin基因缺失断裂点和连接片段的序列特点,以分析Dystrophin基因缺失的分子机制,利用巢式反向PCR克隆了1名51号外显子缺失DMD(Duchenne Muscular Dystrophy, DMD)患者的缺失连接片段,通过测序,确定5′和3′断裂点及连接片段的序列.对5′、3′断裂点和连接片段进行重复序列、TOPOI、TOPOII酶切位点等分析.结果共测得50号内含子1?614bp,确定该患者Dystrophin基因的5′断裂点位于THE1(Transposon-like Human Element, THE)内,3′断裂点位于L2序列内.连接片段有3bp的连接同源序列cta,局部无小的缺失、插入和碱基置换.本研究首次在50号内含子内发现一THE1序列,再次发现Dystrophin基因的缺失断裂点位于THE1结构内.反向PCR操作简单、耗时短,可以推扩应用于缺失连接片段的克隆;THE1可能与部分Dystrophin基因的缺失有关;Dystrophin基因缺失大多与同源重组无关,非同源末端连接可能参与了Dystrophin基因缺失的形成.

  14. The effects of multiple features of alternatively spliced exons on the KA/KS ratio test

    Directory of Open Access Journals (Sweden)

    Chen Feng-Chi

    2006-05-01

    Full Text Available Abstract Background The evolution of alternatively spliced exons (ASEs is of primary interest because these exons are suggested to be a major source of functional diversity of proteins. Many exon features have been suggested to affect the evolution of ASEs. However, previous studies have relied on the KA/KS ratio test without taking into consideration information sufficiency (i.e., exon length > 75 bp, cross-species divergence > 5% of the studied exons, leading to potentially biased interpretations. Furthermore, which exon feature dominates the results of the KA/KS ratio test and whether multiple exon features have additive effects have remained unexplored. Results In this study, we collect two different datasets for analysis – the ASE dataset (which includes lineage-specific ASEs and conserved ASEs and the ACE dataset (which includes only conserved ASEs. We first show that information sufficiency can significantly affect the interpretation of relationship between exons features and the KA/KS ratio test results. After discarding exons with insufficient information, we use a Boolean method to analyze the relationship between test results and four exon features (namely length, protein domain overlapping, inclusion level, and exonic splicing enhancer (ESE frequency for the ASE dataset. We demonstrate that length and protein domain overlapping are dominant factors, and they have similar impacts on test results of ASEs. In addition, despite the weak impacts of inclusion level and ESE motif frequency when considered individually, combination of these two factors still have minor additive effects on test results. However, the ACE dataset shows a slightly different result in that inclusion level has a marginally significant effect on test results. Lineage-specific ASEs may have contributed to the difference. Overall, in both ASEs and ACEs, protein domain overlapping is the most dominant exon feature while ESE frequency is the weakest one in affecting

  15. Position-dependent correlations between DNA methylation and the evolutionary rates of mammalian coding exons

    Science.gov (United States)

    Chuang, Trees-Juen; Chen, Feng-Chi; Chen, Yen-Zho

    2012-01-01

    DNA cytosine methylation is a central epigenetic marker that is usually mutagenic and may increase the level of sequence divergence. However, methylated genes have been reported to evolve more slowly than unmethylated genes. Hence, there is a controversy on whether DNA methylation is correlated with increased or decreased protein evolutionary rates. We hypothesize that this controversy has resulted from the differential correlations between DNA methylation and the evolutionary rates of coding exons in different genic positions. To test this hypothesis, we compare human–mouse and human–macaque exonic evolutionary rates against experimentally determined single-base resolution DNA methylation data derived from multiple human cell types. We show that DNA methylation is significantly related to within-gene variations in evolutionary rates. First, DNA methylation level is more strongly correlated with C-to-T mutations at CpG dinucleotides in the first coding exons than in the internal and last exons, although it is positively correlated with the synonymous substitution rate in all exon positions. Second, for the first exons, DNA methylation level is negatively correlated with exonic expression level, but positively correlated with both nonsynonymous substitution rate and the sample specificity of DNA methylation level. For the internal and last exons, however, we observe the opposite correlations. Our results imply that DNA methylation level is differentially correlated with the biological (and evolutionary) features of coding exons in different genic positions. The first exons appear more prone to the mutagenic effects, whereas the other exons are more influenced by the regulatory effects of DNA methylation. PMID:23019368

  16. TAT gene mutation analysis in three Palestinian kindreds with oculocutaneous tyrosinaemia type II; characterization of a silent exonic transversion that causes complete missplicing by exon 11 skipping

    DEFF Research Database (Denmark)

    Maydan, G; Andresen, Brage Storstein; Madsen, Pia Pinholt;

    2006-01-01

    Deficiency of the hepatic cytosolic enzyme tyrosine aminotransferase (TAT) causes marked hypertyrosinaemia leading to painful palmoplantar hyperkeratoses, pseudodendritic keratitis and variable mental retardation (oculocutaneous tyrosinaemia type II or Richner-Hanhart syndrome). Parents may......, we sought TAT gene mutations in 9 tyrosinaemia II patients from three consanguineous Palestinian kindreds. In two kindreds (7 patients), the only potential abnormality identified after sequencing all 12 exons and exon-intron boundaries was homozygosity for a silent, single-nucleotide transversion c...... the effect of c.1224G > T on exon 11 splicing. Transfection experiments with wild-type and c.1224G > T mutant minigene constructs demonstrated that c.1224G > T results in complete exon 11 skipping, illustrating the utility of this approach for confirming a putative splicing defect when cDNA is unavailable...

  17. Naturally occuring nucleosome positioning signals in human exons and introns

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves;

    1996-01-01

    of roughly ten nucleotides. The periodic pattern is also present in intron sequences, although the strength per nucleotide is weaker. Using two independent profile methods based on triplet bendability parameters from DNase I experiments and nucleosome positioning data, we show that the pattern in multiple...... alignments of internal exon and intron sequences corresponds to a periodic "in phase" bending potential towards the major groove of the DNA. The nucleosome positioning data show that the consensus triplets (and their complements) have a preference for locations on a bent double helix where the major groove...... faces inward and is compressed. The in-phase triplets are located adjacent to GCC/GGC triplets known to have the strongest bias in their positioning on the nucleosome. Analysis of mRNA sequences encoding proteins with known tertiary structure exclude the possibility that the pattern is a consequence...

  18. JAK2 exon 12 mutations in patients with Philadelphia(Ph) chromosome-negative myeloproliferative neoplasms

    Institute of Scientific and Technical Information of China (English)

    王婕妤

    2012-01-01

    Objective To investigate JAK2 exon 12 mutations in patients with Philadelphia (Ph) chromosome-negative myeloproliferative neoplasms (MPN) and the clinical characteristics of patients with JAK2 exon 12 mutants. Methods Allele-specific PCR(AS-PCR) was applied to identify JAK2 V617F mutation.

  19. The role of exon shuffling in shaping protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    França Gustavo S

    2010-12-01

    Full Text Available Abstract Background Physical protein-protein interaction (PPI is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks. Results We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains, self-interacting (able to interact with another copy of themselves and abundant in the genomes presents a stronger signal for exon shuffling. Conclusions Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.

  20. The Role of Nanobiotechnology in the Study of Dystrophin and B-Dystroglycan in Membrane Stability of Aging Skeletal Muscles

    Science.gov (United States)

    Vaseashta, Ashok

    2005-03-01

    Duchene muscular dystrophy (DMD) is one of nine types of muscular dystrophy, a group of genetic degenerative diseases, primarily affecting voluntary muscles, caused by absence of dystrophin. New experiments on mice with DMD has shown that gene therapy can reverse some symptoms of the disease. The ultimate goal of gene therapy for muscle diseases is improvement of strength and function, which will require treatment in multiple muscles simultaneously. A major limitation to gene therapy until now has been that no one had found a method by which a new gene could be delivered to all the muscles of an adult animal. Recent utilization of nanotechnology to life sciences has shown exciting promises in a wide range of disciplines, showing advances in the ability to manipulate, fabricate and alter tiny subjects at the nanometer scale. In the present investigation, we have employed such techniques to study single motors such as myosin and kinesin, as well elastic proteins viz. titin and nebulin, muscle filaments, cytoskeletal filaments, and receptors in cellular membranes and cellular organelles viz. myofibril, ribosome, and chromatin. Application of AFM to images and measures the elastic properties of single monomeric and oligomeric protein, genetically engineered titin, and nebulin molecules will be presented.

  1. Absence of Dystrophin Related Protein-2 disrupts Cajal bands in a patient with Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Brennan, Kathryn M; Bai, Yunhong; Pisciotta, Chiara; Wang, Suola; Feely, Shawna M E; Hoegger, Mark; Gutmann, Laurie; Moore, Steven A; Gonzalez, Michael; Sherman, Diane L; Brophy, Peter J; Züchner, Stephan; Shy, Michael E

    2015-10-01

    Using exome sequencing in an individual with Charcot-Marie-Tooth disease (CMT) we have identified a mutation in the X-linked dystrophin-related protein 2 (DRP2) gene. A 60-year-old gentleman presented to our clinic and underwent clinical, electrophysiological and skin biopsy studies. The patient had clinical features of a length dependent sensorimotor neuropathy with an age of onset of 50 years. Neurophysiology revealed prolonged latencies with intermediate conduction velocities but no conduction block or temporal dispersion. A panel of 23 disease causing genes was sequenced and ultimately was uninformative. Whole exome sequencing revealed a stop mutation in DRP2, c.805C>T (Q269*). DRP2 interacts with periaxin and dystroglycan to form the periaxin-DRP2-dystroglycan complex which plays a role in the maintenance of the well-characterized Cajal bands of myelinating Schwann cells. Skin biopsies from our patient revealed a lack of DRP2 in myelinated dermal nerves by immunofluorescence. Furthermore electron microscopy failed to identify Cajal bands in the patient's dermal myelinated axons in keeping with ultrastructural pathology seen in the Drp2 knockout mouse. Both the electrophysiologic and dermal nerve twig pathology support the interpretation that this patient's DRP2 mutation causes characteristic morphological abnormalities recapitulating the Drp2 knockout model and potentially represents a novel genetic cause of CMT.

  2. Fourier Power Spectrum Analysis of Exons for the Period-3 Behavior

    Institute of Scientific and Technical Information of China (English)

    Yuan Xin TIAN; Chao CHEN; Xiao Yong ZOU; Jian Ding QIU; Pei Xiang CAI; Jin Yuan MO

    2005-01-01

    The period-3 behaviors of 105 exons from 20 genes in human were studied by Fourier power spectrum. The results indicated that not all exons show the period-3 behavior. The exons were adjusted in order to make them accord with the order of the protein translated, and we found that the period-3 character is relation to the length of exons and the bases distribution in the three codon position. Furthermore, as long as the exons with period-3 behavior accord with the order of protein translated, they would exhibit the synonymous codons usage preference, and the codons with g/c at the third position are used in higher frequency. The results are significant to the gene prediction and the research on the introns.

  3. CoNVaDING: Single Exon Variation Detection in Targeted NGS Data.

    Science.gov (United States)

    Johansson, Lennart F; van Dijk, Freerk; de Boer, Eddy N; van Dijk-Bos, Krista K; Jongbloed, Jan D H; van der Hout, Annemieke H; Westers, Helga; Sinke, Richard J; Swertz, Morris A; Sijmons, Rolf H; Sikkema-Raddatz, Birgit

    2016-05-01

    We have developed a tool for detecting single exon copy-number variations (CNVs) in targeted next-generation sequencing data: CoNVaDING (Copy Number Variation Detection In Next-generation sequencing Gene panels). CoNVaDING includes a stringent quality control (QC) metric, that excludes or flags low-quality exons. Since this QC shows exactly which exons can be reliably analyzed and which exons are in need of an alternative analysis method, CoNVaDING is not only useful for CNV detection in a research setting, but also in clinical diagnostics. During the validation phase, CoNVaDING detected all known CNVs in high-quality targets in 320 samples analyzed, giving 100% sensitivity and 99.998% specificity for 308,574 exons. CoNVaDING outperforms existing tools by exhibiting a higher sensitivity and specificity and by precisely identifying low-quality samples and regions. PMID:26864275

  4. CoNVaDING: Single Exon Variation Detection in Targeted NGS Data.

    Science.gov (United States)

    Johansson, Lennart F; van Dijk, Freerk; de Boer, Eddy N; van Dijk-Bos, Krista K; Jongbloed, Jan D H; van der Hout, Annemieke H; Westers, Helga; Sinke, Richard J; Swertz, Morris A; Sijmons, Rolf H; Sikkema-Raddatz, Birgit

    2016-05-01

    We have developed a tool for detecting single exon copy-number variations (CNVs) in targeted next-generation sequencing data: CoNVaDING (Copy Number Variation Detection In Next-generation sequencing Gene panels). CoNVaDING includes a stringent quality control (QC) metric, that excludes or flags low-quality exons. Since this QC shows exactly which exons can be reliably analyzed and which exons are in need of an alternative analysis method, CoNVaDING is not only useful for CNV detection in a research setting, but also in clinical diagnostics. During the validation phase, CoNVaDING detected all known CNVs in high-quality targets in 320 samples analyzed, giving 100% sensitivity and 99.998% specificity for 308,574 exons. CoNVaDING outperforms existing tools by exhibiting a higher sensitivity and specificity and by precisely identifying low-quality samples and regions.

  5. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse

    Directory of Open Access Journals (Sweden)

    Zhang Xuegong

    2008-04-01

    Full Text Available Abstract Background Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Results Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1 The vast majority of positively-correlated pairs are old, (2 most of the weakly-correlated pairs are relatively young, and (3 negatively-correlated pairs are a mixture of old and young events. Conclusion We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.

  6. The proximal first exon architecture of the murine ghrelin gene is highly similar to its human orthologue

    Directory of Open Access Journals (Sweden)

    Seim Inge

    2009-05-01

    Full Text Available Abstract Background The murine ghrelin gene (Ghrl, originally sequenced from stomach tissue, contains five exons and a single transcription start site in a short, 19 bp first exon (exon 0. We recently isolated several novel first exons of the human ghrelin gene and found evidence of a complex transcriptional repertoire. In this report, we examined the 5' exons of the murine ghrelin orthologue in a range of tissues using 5' RACE. Findings 5' RACE revealed two transcription start sites (TSSs in exon 0 and four TSSs in intron 0, which correspond to 5' extensions of exon 1. Using quantitative, real-time RT-PCR (qRT-PCR, we demonstrated that extended exon 1 containing Ghrl transcripts are largely confined to the spleen, adrenal gland, stomach, and skin. Conclusion We demonstrate that multiple transcription start sites are present in exon 0 and an extended exon 1 of the murine ghrelin gene, similar to the proximal first exon organisation of its human orthologue. The identification of several transcription start sites in intron 0 of mouse ghrelin (resulting in an extension of exon 1 raises the possibility that developmental-, cell- and tissue-specific Ghrl mRNA species are created by employing alternative promoters and further studies of the murine ghrelin gene are warranted.

  7. Evolutionary constraint helps unmask a splicing regulatory region in BRCA1 exon 11.

    Directory of Open Access Journals (Sweden)

    Michela Raponi

    Full Text Available BACKGROUND: Alternative splicing across exon 11 produces several BRCA1 isoforms. Their proportion varies during the cell cycle, between tissues and in cancer suggesting functional importance of BRCA1 splicing regulation around this exon. Although the regulatory elements driving exon 11 splicing have never been identified, a selective constraint against synonymous substitutions (silent nucleotide variations that do not alter the amino acid residue sequence in a critical region of BRCA1 exon 11 has been reported to be associated with the necessity to maintain regulatory sequences. METHODOLOGY/PRINCIPAL FINDINGS: Here we have designed a specific minigene to investigate the possibility that this bias in synonymous codon usage reflects the need to preserve the BRCA1 alternative splicing program. We report that in-frame deletions and translationally silent nucleotide substitutions in the critical region affect splicing regulation of BRCA1 exon 11. CONCLUSIONS/SIGNIFICANCE: Using a hybrid minigene approach, we have experimentally validated the hypothesis that the need to maintain correct alternative splicing is a selective pressure against translationally silent sequence variations in the critical region of BRCA1 exon 11. Identification of the trans-acting factors involved in regulating exon 11 alternative splicing will be important in understanding BRCA1-associated tumorigenesis.

  8. Tracking the evolution of alternatively spliced exons within the Dscam family

    Directory of Open Access Journals (Sweden)

    Vision Todd J

    2006-02-01

    Full Text Available Abstract Background The Dscam gene in the fruit fly, Drosophila melanogaster, contains twenty-four exons, four of which are composed of tandem arrays that each undergo mutually exclusive alternative splicing (4, 6, 9 and 17, potentially generating 38,016 protein isoforms. This degree of transcript diversity has not been found in mammalian homologs of Dscam. We examined the molecular evolution of exons within this gene family to locate the point of divergence for this alternative splicing pattern. Results Using the fruit fly Dscam exons 4, 6, 9 and 17 as seed sequences, we iteratively searched sixteen genomes for homologs, and then performed phylogenetic analyses of the resulting sequences to examine their evolutionary history. We found homologs in the nematode, arthropod and vertebrate genomes, including homologs in several vertebrates where Dscam had not been previously annotated. Among these, only the arthropods contain homologs arranged in tandem arrays indicative of mutually exclusive splicing. We found no homologs to these exons within the Arabidopsis, yeast, tunicate or sea urchin genomes but homologs to several constitutive exons from fly Dscam were present within tunicate and sea urchin. Comparing the rate of turnover within the tandem arrays of the insect taxa (fruit fly, mosquito and honeybee, we found the variants within exons 4 and 17 are well conserved in number and spatial arrangement despite 248–283 million years of divergence. In contrast, the variants within exons 6 and 9 have undergone considerable turnover since these taxa diverged, as indicated by deeply branching taxon-specific lineages. Conclusion Our results suggest that at least one Dscam exon array may be an ancient duplication that predates the divergence of deuterostomes from protostomes but that there is no evidence for the presence of arrays in the common ancestor of vertebrates. The different patterns of conservation and turnover among the Dscam exon arrays

  9. The expression of the human steroid sulfatase-encoding gene is driven by alternative first exons.

    Science.gov (United States)

    Dalla Valle, Luisa; Toffolo, Vania; Nardi, Alessia; Fiore, Cristina; Armanini, Decio; Belvedere, Paola; Colombo, Lorenzo

    2007-10-01

    We have analyzed steroid sulfatase (STS) gene transcription in 10 human tissues: ovary, adrenal cortex, uterus, thyroid, liver, pancreas, colon, mammary gland, dermal papilla of the hair follicle, and peripheral mononuclear leukocytes. Overall, six different promoters were found to drive STS expression, giving rise to transcripts with unique first exons that were labeled 0a, 0b, 0c, 1a, 1c, and 1d, of which the last two and 0c are newly reported. All of them, except exon 1d, vary in length owing to the occurrence of multiple transcriptional start sites. While placental exon 1a is partially coding, the other five first exons are all untranslated. Three of these (0a, 0b, and 0c) are spliced to the common partially coding exon 1b, whereas the other two (1c and 1d) are spliced to the coding exon 2, which occurs in all transcripts. Whatever the ATG actually used, the differences are restricted to the signal peptide which is post-transcriptionally cleaved. Transcripts with exons 0a and 0b have the broadest tissue distribution, occurring, in 6 out of the 12 tissues so far investigated, while the other first exons are restricted to one or two tissues. The proximal promoter of each first exon was devoid of TATA box or initiator element and lacked consensus elements for transcription factors related to steroidogenesis, suggesting that regulatory sequences are probably placed at greater distance. In conclusion, the regulation of STS transcription appears to be more complex than previously thought, suggesting that this enzyme plays a substantial role in intercellular integration. PMID:17601726

  10. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress

    OpenAIRE

    Aline Barbosa Macedo; Luis Henrique Rapucci Moraes; Daniela Sayuri Mizobuti; Aline Reis Fogaça; Fernanda Dos Santos Rapucci Moraes; Tulio de Almeida Hermes; Adriana Pertille; Elaine Minatel

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (un...

  11. Transfer of the Full-Length Dystrophin-Coding Sequence into Muscle Cells by a Dual High-Capacity Hybrid Viral Vector with Site-Specific Integration Ability

    OpenAIRE

    Gonçalves, Manuel A. F. V.; van Nierop, Gijsbert P.; Tijssen, Marloes R.; Lefesvre, Pierre; Knaän-Shanzer, Shoshan; van der Velde, Ietje; van Bekkum, Dirk W; Valerio, Dinko; de Vries, Antoine A. F.

    2005-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, making it a potential target for gene therapy. There is, however, a scarcity of vectors that can accommodate the 14-kb DMD cDNA and permanently genetically correct muscle tissue in vivo or proliferating myogenic progenitors in vitro for use in autologous transplantation. Here, a dual high-capacity adenovirus-adeno-associated virus (hcAd/AAV) vector with two full-length human dystrophin-coding sequences flanked by AAV in...

  12. Normal photoresponses and altered b-wave responses to APB in the mdxCv3 mouse isolated retina ERG supports role for dystrophin in synaptic transmission

    OpenAIRE

    GREEN, DANIEL G.; Guo, Hao; PILLERS, DE-ANN M.

    2004-01-01

    The mdxCv3 mouse is a model for Duchenne muscular dystrophy (DMD). DMD is an X-linked disorder with defective expression of the protein dystrophin, and which is associated with a reduced b-wave and has other electroretinogram (ERG) abnormalities. To assess potential causes for the abnormalities, we recorded ERGs from pieces of isolated C57BL/6J and mdxCv3 mouse retinas, including measurements of transretinal and intraretinal potentials. The ERGs from the isolated mdxCv3 retina differ from tho...

  13. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion.

    Science.gov (United States)

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-10-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.

  14. A new mutant transcript generated in Znf230 exon 2 knockout mice reveals a potential exon structure in the targeting vector sequence

    Institute of Scientific and Technical Information of China (English)

    Yunqiang Liu; Dachang Tao; Sunkai Ma; Ying Kuang; Dan Su; Hao Zhang; Yuan Yang

    2013-01-01

    Testis gene Znf230 may play a role in mammalian spermatogenesis according to previous reports.Deleting 5' important exons to block the formation of protein was a routine way in gene-knockout experiments.To investigate the physiological function of Znf230 gene,the mutant mice with disrupted exon 2 of Znf230 were generated in this study.Results showed that,mutant Znf230 mice were fertile and showed normal body,genitourinary organs,testes weights,and spermatid number but the litter size of the offspring reduced with unclear reasons.Hematoxylin and eosin staining showed that the testicular tissue of mutant mice was intact.Reverse transcriptase polymerase chain reaction analysis showed that two novel mutant transcripts appeared in the mutant mice:the short one including exon-1 and exon-3 to-6,the long one unexpectedly containing a partial sequence from the pPNT vector acting as a new exon 2.Bioinformatic analysis of the long transcript revealed that it might code a 24-kDa N-terminal mutant protein with the same 182 amino acids as that of the wild-type Znf230 in the C-terminus,indicating that the potential functional region of C3HC4-type RING finger was intact in mutant protein.Western blot and immunohistochemistry analyses also implied that this N-terminal mutation of Znf230 might not disrupt the possible role that wild-type Znf230 played in spermatogenesis.In summary,a potential exon structure in the targeting vector sequence involved in the expression of targeting Znf230 gene and disturbed the strategy of this gene-targeting experiment.

  15. Inclusion of the Central Exon of Parvovirus B19 Precursor mRNA Is Determined by Multiple Splicing Enhancers in both the Exon and the Downstream Intron ▿

    OpenAIRE

    Guan, Wuxiang; Cheng, Fang; Huang, Qinfeng; Kleiboeker, Steve; Qiu, Jianming

    2010-01-01

    Alternative splicing of the precursor mRNA (pre-mRNA) of human parvovirus B19 (B19V) plays a key role in posttranscriptional regulation of B19V gene expression. We report that the central exon of the B19V pre-mRNA is defined by three GAA motif-containing exonic splicing enhancers and a G/GU-rich intronic splicing enhancer that lies adjacent to the second donor site. Moreover, targeting of morpholino antisense oligonucleotides to the two splicing enhancers surrounding the second donor site led...

  16. Functional evaluation of targeted exon deletion reveals prospect for dystrophic epidermolysis bullosa therapy

    NARCIS (Netherlands)

    Bornert, Olivier; Kühl, Tobias; Bremer, Jeroen; Van Den Akker, Peter C; Pasmooij, Anna M G; Nyström, Alexander

    2016-01-01

    Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB) - a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therap

  17. Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene.

    Science.gov (United States)

    Grinev, Vasily V; Migas, Alexandr A; Kirsanava, Aksana D; Mishkova, Olga A; Siomava, Natalia; Ramanouskaya, Tatiana V; Vaitsiankova, Alina V; Ilyushonak, Ilia M; Nazarov, Petr V; Vallar, Laurent; Aleinikova, Olga V

    2015-11-01

    The t(8;21) translocation is the most widespread genetic defect found in human acute myeloid leukemia. This translocation results in the RUNX1-RUNX1T1 fusion gene that produces a wide variety of alternative transcripts and influences the course of the disease. The rules of combinatorics and splicing of exons in the RUNX1-RUNX1T1 transcripts are not known. To address this issue, we developed an exon graph model of the fusion gene organization and evaluated its local exon combinatorics by the exon combinatorial index (ECI). Here we show that the local exon combinatorics of the RUNX1-RUNX1T1 gene follows a power-law behavior and (i) the vast majority of exons has a low ECI, (ii) only a small part is represented by "exons-hubs" of splicing with very high ECI values, and (iii) it is scale-free and very sensitive to targeted skipping of "exons-hubs". Stochasticity of the splicing machinery and preferred usage of exons in alternative splicing can explain such behavior of the system. Stochasticity may explain up to 12% of the ECI variance and results in a number of non-coding and unproductive transcripts that can be considered as a noise. Half-life of these transcripts is increased due to the deregulation of some key genes of the nonsense-mediated decay system in leukemia cells. On the other hand, preferred usage of exons may explain up to 75% of the ECI variability. Our analysis revealed a set of splicing-related cis-regulatory motifs that can explain "attractiveness" of exons in alternative splicing but only when they are considered together. Cis-regulatory motifs are guides for splicing trans-factors and we observed a leukemia-specific profile of expression of the splicing genes in t(8;21)-positive blasts. Altogether, our results show that alternative splicing of the RUNX1-RUNX1T1 transcripts follows strict rules and that the power-law component of the fusion gene organization confers a high flexibility to this process.

  18. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis

    OpenAIRE

    Bang, So-Young; Na, Young-Ji; Kim, Kwangwoo; Joo, Young Bin; Park, YoungHo; Lee, Jaemoon; Lee, Sun-Young; Ansari, Adnan A; Jung, Junghee; Rhee, Hwanseok; Lee, Jong-Young; Han, Bok-Ghee; Ahn, Sung-Min; Won, Sungho; Lee, Hye-Soon

    2014-01-01

    Introduction Although it has been suggested that rare coding variants could explain the substantial missing heritability, very few sequencing studies have been performed in rheumatoid arthritis (RA). We aimed to identify novel functional variants with rare to low frequency using targeted exon sequencing of RA in Korea. Methods We analyzed targeted exon sequencing data of 398 genes selected from a multifaceted approach in Korean RA patients (n = 1,217) and controls (n = 717). We conducted a si...

  19. Evolutionary connections between coding and splicing regulatory regions in the fibronectin EDA exon.

    Science.gov (United States)

    Zago, Paola; Buratti, Emanuele; Stuani, Cristiana; Baralle, Francisco E

    2011-08-01

    Research on exonic coding sequences has demonstrated that many substitutions at the amino acid level may also reflect profound changes at the level of splicing regulatory regions. These results have revealed that, for many alternatively spliced exons, there is considerable pressure to strike a balance between two different and sometimes conflicting forces: the drive to improve the quality and production efficiency of proteins and the maintenance of proper exon recognition by the splicing machinery. Up to now, the systems used to investigate these connections have mostly focused on short alternatively spliced exons that contain a high density of splicing regulatory elements. Although this is obviously a desirable feature in order to maximize the chances of spotting connections, it also complicates the process of drawing straightforward evolutionary pathways between different species (because of the numerous alternative pathways through which the same end point can be achieved). The alternatively spliced fibronectin extra domain A exon (also referred to as EDI or EIIIA) does not have these limitations, as its inclusion is already known to depend on a single exonic splicing enhancer element within its sequence. In this study, we have compared the rat and human fibronectin EDA exons with regard to RNA structure, exonic splicing enhancer strengths, and SR protein occupancy. The results gained from these analyses have then been used to perform an accurate evaluation of EDA sequences observed in a wide range of animal species. This comparison strongly suggests the existence of an evolutionary connection between changes at the nucleotide levels and the need to maintain efficient EDA recognition in different species. PMID:21663748

  20. iNOS ablation does not improve specific force of the extensor digitorum longus muscle in dystrophin-deficient mdx4cv mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Nitrosative stress compromises force generation in Duchenne muscular dystrophy (DMD. Both inducible nitric oxide synthase (iNOS and delocalized neuronal NOS (nNOS have been implicated. We recently demonstrated that genetic elimination of nNOS significantly enhanced specific muscle forces of the extensor digitorum longus (EDL muscle of dystrophin-null mdx4cv mice (Li D et al J. Path. 223:88-98, 2011. To determine the contribution of iNOS, we generated iNOS deficient mdx4cv mice. Genetic elimination of iNOS did not alter muscle histopathology. Further, the EDL muscle of iNOS/dystrophin DKO mice yielded specific twitch and tetanic forces similar to those of mdx4cv mice. Additional studies suggest iNOS ablation did not augment nNOS expression neither did it result in appreciable change of nitrosative stress markers in muscle. Our results suggest that iNOS may play a minor role in mediating nitrosative stress-associated force reduction in DMD.

  1. The shortest isoform of dystrophin (Dp40) interacts with a group of presynaptic proteins to form a presumptive novel complex in the mouse brain.

    Science.gov (United States)

    Tozawa, Takenori; Itoh, Kyoko; Yaoi, Takeshi; Tando, So; Umekage, Masafumi; Dai, Hongmei; Hosoi, Hajime; Fushiki, Shinji

    2012-04-01

    Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD. PMID:22258561

  2. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot

    Science.gov (United States)

    Suzuki, Hitoshi; Aoki, Yoshitsugu; Kameyama, Toshiki; Saito, Takashi; Masuda, Satoru; Tanihata, Jun; Nagata, Tetsuya; Mayeda, Akila; Takeda, Shin’ichi; Tsukahara, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscular disorder. It was reported that multiple exon skipping (MES), targeting exon 45–55 of the DMD gene, might improve patients’ symptoms because patients who have a genomic deletion of all these exons showed very mild symptoms. Thus, exon 45–55 skipping treatments for DMD have been proposed as a potential clinical cure. Herein, we detected the expression of endogenous exons 44–56 connected mRNA transcript of the DMD using total RNAs derived from human normal skeletal muscle by reverse transcription polymerase chain reaction (RT-PCR), and identified a total of eight types of MES products around the hotspot. Surprisingly, the 5′ splice sites of recently reported post-transcriptional introns (remaining introns after co-transcriptional splicing) act as splicing donor sites for MESs. We also tested exon combinations to generate DMD circular RNAs (circRNAs) and determined the preferential splice sites of back-splicing, which are involved not only in circRNA generation, but also in MESs. Our results fit the current circRNA-generation model, suggesting that upstream post-transcriptional introns trigger MES and generate circRNA because its existence is critical for the intra-intronic interaction or for extremely distal splicing. PMID:27754374

  3. Molecular characterization of exon 3 of caprine myostatin gene in Marwari goat

    Science.gov (United States)

    Khichar, Jai Prakash; Gahlot, Gyan Chand; Agrawal, Vijay Kumar; Kiran; Dewna, Ajay Singh; Prakash; Ashraf, Mohammad

    2016-01-01

    Aim: To estimate genetic variability in exon 3 of caprine myostatin gene in Marwari goats. Materials and Methods: A total of 120 blood samples from unrelated Marwari goats were randomly collected from different villages of Bikaner (Rajasthan), India. Genomic DNA was extracted from whole blood using blood DNA isolation kit (Himedia Ltd.) as per manufacturer’s protocol. The quality of extracted genomic DNA was checked on 0.8% agarose gel. Specifically designed a primer set for caprine myostatin (MSTN) gene (Genebank accession no. DQ167575) was used to amplify the exon 3 region of MSTN gene in Marwari goat. The genetic variability in exon 3 of MSTN gene in Marwari goat was assessed on 8% polyacrylamide gel electrophoresis to detect single strand conformation polymorphism (SSCP) pattern. Results: The exon 3 of MSTN gene in Marwari goat showed two types of conformation patterns on 8% polyacrylamide gel. One of the patterns showed only two bands and was considered as genotype AA, whereas another pattern having an extra band was designated as genotype AB. The frequencies of AA and AB genotype for exon 3 region of MSTN gene were calculated as 0.90 and 0.10, respectively. Conclusion: Low level of polymorphism was observed at exon 3 region of MSTN gene in Marwari goat through SSCP analysis. This information could be utilized in future breeding plan to exploit the unique characteristics of Marwari goat of Rajasthan. PMID:27397994

  4. A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Chicoine Louis G

    2007-09-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an X-linked recessive disorder with monogenic mutations setting the stage for successful gene therapy treatment. We have completed a study that directly deals with the following key issues that can be directly adapted to a gene therapy clinical trial using rAAV considering the following criteria: 1 A regional vascular delivery approach that will protect the patient from widespread dissemination of virus; 2 an approach to potentially facilitate safe passage of the virus for efficient skeletal muscle transduction; 3 the use of viral doses to accommodate current limitations imposed by vector production methods; 4 and at the same time, achieve a clinically meaningful outcome by transducing multiple muscles in the lower limb to prolong ambulation. Methods The capacity of AAV1, AAV6 or AAV8 to cross the vascular endothelial barrier carrying a micro-dystrophin cDNA was compared under identical conditions with delivery through a catheter placed in the femoral artery of the mdx mouse. Transduction efficiency was assessed by immuno-staining using an antibody (Manex1a that recognizes the N-terminus of micro-dystrophin. The degree of physiologic correction was assessed by measuring tetanic force and protection from eccentric contraction in the extensor digitorum longus muscle (EDL. The vascular delivery paradigm found successful in the mouse was carried to the non-human primate to test its potential translation to boys with DMD. Results Regional vascular delivery resulted in transduction by rAAV8.micro-dystrophin reaching 94.5 ± 0.9 (1 month, 91.3 ± 3.1 (2 months, and 89.6 ± 1.6% (3 months. rAAV6.micro-dystrophin treated animals demonstrated 87.7 ± 6.8 (1 month, 78.9 ± 7.4 (2 months, and 81.2 ± 6.2% (3 months transduction. In striking contrast, rAAV1 demonstrated very low transduction efficiency [0.9 ± 0.3 (1 month, 2.1 ± 0.8 (2 months, and 2.1 ± 0.7% (3 months] by vascular delivery. Micro-dystrophin

  5. Canine and human gastrointestinal stromal tumors display similar mutations in c-KIT exon 11

    International Nuclear Information System (INIS)

    Gastrointestinal stromal tumors (GISTs) are common mesenchymal neoplasms in the gastrointestinal tract of humans and dogs. Little is known about the pathogenesis of these tumors. This study evaluated the role of c-KIT in canine GISTs; specifically, we investigated activating mutations in exons 8, 9, 11, 13, and 17 of c-KIT and exons 12, 14, and 18 of platelet-derived growth factor receptor, alpha polypeptide (PDGFRA), all of which have been implicated in human GISTs. Seventeen canine GISTs all confirmed to be positive for KIT immunostaining were studied. Exons 8, 9, 11, 13 and 17 of c-KIT and exons 12, 14, and 18 of PDGFRA, were amplified from DNA isolated from formalin-fixed paraffin-embedded samples. Of these seventeen cases, six amplicons of exon 11 of c-KIT showed aberrant bands on gel electrophoresis. Sequencing of these amplicons revealed heterozygous in-frame deletions in six cases. The mutations include two different but overlapping six base pair deletions. Exons 8, 9, 13, and 17 of c-KIT and exons 12, 14, and 18 of PDGFRA had no abnormalities detected by electrophoresis and sequencing did not reveal any mutations, other than synonymous single nucleotide polymorphisms (SNPs) found in exon 11 of c-KIT and exons 12 and 14 of PDGFRA. The deletion mutations detected in canine GISTs are similar to those previously found in the juxtamembrane domain of c-KIT in canine cutaneous mast cell tumors in our laboratory as well as to those reported in human GISTs. Interestingly, none of the other c-KIT or PDGFRA exons showed any abnormalities in our cases. This finding underlines the critical importance of c-KIT in the pathophysiology of canine GISTs. The expression of KIT and the identification of these activating mutations in c-KIT implicate KIT in the pathogenesis of these tumors. Our results indicate that mutations in c-KIT may be of prognostic significance and that targeting KIT may be a rational approach to treatment of these malignant tumors. This study further

  6. Systematic dissection of coding exons at single nucleotide resolution supports an additional role in cell-specific transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Ramon Y Birnbaum

    2014-10-01

    Full Text Available In addition to their protein coding function, exons can also serve as transcriptional enhancers. Mutations in these exonic-enhancers (eExons could alter both protein function and transcription. However, the functional consequence of eExon mutations is not well known. Here, using massively parallel reporter assays, we dissect the enhancer activity of three liver eExons (SORL1 exon 17, TRAF3IP2 exon 2, PPARG exon 6 at single nucleotide resolution in the mouse liver. We find that both synonymous and non-synonymous mutations have similar effects on enhancer activity and many of the deleterious mutation clusters overlap known liver-associated transcription factor binding sites. Carrying a similar massively parallel reporter assay in HeLa cells with these three eExons found differences in their mutation profiles compared to the liver, suggesting that enhancers could have distinct operating profiles in different tissues. Our results demonstrate that eExon mutations could lead to multiple phenotypes by disrupting both the protein sequence and enhancer activity and that enhancers can have distinct mutation profiles in different cell types.

  7. Population genetics of duplicated alternatively spliced exons of the Dscam gene in Daphnia and Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniela Brites

    Full Text Available In insects and crustaceans, the Down syndrome cell adhesion molecule (Dscam occurs in many different isoforms. These are produced by mutually exclusive alternative splicing of dozens of tandem duplicated exons coding for parts or whole immunoglobulin (Ig domains of the Dscam protein. This diversity plays a role in the development of the nervous system and also in the immune system. Structural analysis of the protein suggested candidate epitopes where binding to pathogens could occur. These epitopes are coded by regions of the duplicated exons and are therefore diverse within individuals. Here we apply molecular population genetics and molecular evolution analyses using Daphnia magna and several Drosophila species to investigate the potential role of natural selection in the divergence between orthologs of these duplicated exons among species, as well as between paralogous exons within species. We found no evidence for a role of positive selection in the divergence of these paralogous exons. However, the power of this test was low, and the fact that no signs of gene conversion between paralogous exons were found suggests that paralog diversity may nonetheless be maintained by selection. The analysis of orthologous exons in Drosophila and in Daphnia revealed an excess of non-synonymous polymorphisms in the epitopes putatively involved in pathogen binding. This may be a sign of balancing selection. Indeed, in Dr. melanogaster the same derived non-synonymous alleles segregate in several populations around the world. Yet other hallmarks of balancing selection were not found. Hence, we cannot rule out that the excess of non-synonymous polymorphisms is caused by segregating slightly deleterious alleles, thus potentially indicating reduced selective constraints in the putative pathogen binding epitopes of Dscam.

  8. Development of Therapeutic Chimeric Uricase by Exon Replacement/Restoration and Site-Directed Mutagenesis.

    Science.gov (United States)

    Xie, Guangrong; Yang, Weizhen; Chen, Jing; Li, Miaomiao; Jiang, Nan; Zhao, Baixue; Chen, Si; Wang, Min; Chen, Jianhua

    2016-01-01

    The activity of urate oxidase was lost during hominoid evolution, resulting in high susceptibility to hyperuricemia and gout in humans. In order to develop a more "human-like" uricase for therapeutic use, exon replacement/restoration and site-directed mutagenesis were performed to obtain porcine-human uricase with higher homology to deduced human uricase (dHU) and increased uricolytic activity. In an exon replacement study, substitution of exon 6 in wild porcine uricase (wPU) gene with corresponding exon in dhu totally abolished its activity. Substitutions of exon 5, 3, and 1-2 led to 85%, 60%, and 45% loss of activity, respectively. However, replacement of exon 4 and 7-8 did not significantly change the enzyme activity. When exon 5, 6, and 3 in dhu were replaced by their counterparts in wpu, the resulting chimera H1-2P₃H₄P5-6H7-8 was active, but only about 28% of wPU. Multiple sequence alignment and homology modeling predicted that mutations of E24D and E83G in H1-2P₃H₄P5-6H7-8 were favorable for further increase of its activity. After site-directed mutagenesis, H1-2P₃H₄P5-6H7-8 (E24D & E83G) with increased homology (91.45%) with dHU and higher activity and catalytic efficiency than the FDA-approved porcine-baboon chimera (PBC) was obtained. It showed optimum activity at pH 8.5 and 35 °C and was stable in a pH range of 6.5-11.0 and temperature range of 20-40 °C. PMID:27213357

  9. A Brassica exon array for whole-transcript gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Christopher G Love

    Full Text Available Affymetrix GeneChip® arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip® arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip® arrays whose probes are localised primarily in 3' exons. Plant whole-transcript (WT GeneChip® arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip® Brassica Exon 1.0 ST Array is a 5 µM feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5, with ≤98% sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18, and categorisation by Gene Ontologies (GO based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

  10. Immunohistochemical alterations of dystrophin in congenital muscular dystrophy Alterações imuno-hístoquímicas da distrofina na distrofia muscular congênita

    Directory of Open Access Journals (Sweden)

    Lineu Cesar Werneck

    1995-09-01

    Full Text Available The dystrophin distribution in the plasma muscle membrane using immunohystochemistry was studied in 22 children with congenital muscular dystrophy. The dystrophin was detected by immunofluorescence in muscle biopsy through a polyclonal antibody. All the cases had patchy interruptions of the fluorescence in the plasma membrane. A large patchy interruption of the sarcolemma was found in 17 cases, small interruption in 12, and a combination of large and small patchy discontinuity in 7. Small gaps around the fiber like a rosary were found in 15 cases. The frequency of these abnormalities ranged cases from: all fibers in 5 cases, frequent in 8, occasional in 5, and rare in 4. Five cases had total absence of immunofluorescence. These results suggest that the dystrophin expression is abnormal in this group of children and that this type of abnormalities can not be differentiated from early Becker muscular dystrophy nor childhood autosomal recessive muscular dystrophy through immunohystochemistry alone.Foi estudada a distribuição da distrofina na membrana plasmática das fibras musculares em 22 crianças com distrofia muscular congênita, através de técnicas de imuno-histoquímica. A distrofina foi identificada nas biópsias musculares processadas a fresco, por técnicas de imunofluorescência utilizando anticorpos policlonais. Todos os casos tinham interrupções da imunofluorescência na membrana plasmática. Em 17 elas eram grandes, em 12 eram pequenas e em 7 eram de ambos os tipos. Fibras com interrupções pequenas e constantes, como um rosário, foram vistas em 15 casos. Essas anormalidades estavam presentes em todas as fibras em 5 casos, eram frequentes em 8, ocasionais em 5 e raras em 4. Cinco casos mostraram fibras sem distrofina. Esses dados sugerem que a expressão da distrofina é anormal nesse grupo de crianças. Essas anormalidades podem também ser encontradas em casos precoces de distrofia muscular de Becker e distrofia autoss

  11. Characterization of the contradictory chromatin signatures at the 3' exons of zinc finger genes.

    Directory of Open Access Journals (Sweden)

    Kimberly R Blahnik

    Full Text Available The H3K9me3 histone modification is often found at promoter regions, where it functions to repress transcription. However, we have previously shown that 3' exons of zinc finger genes (ZNFs are marked by high levels of H3K9me3. We have now further investigated this unusual location for H3K9me3 in ZNF genes. Neither bioinformatic nor experimental approaches support the hypothesis that the 3' exons of ZNFs are promoters. We further characterized the histone modifications at the 3' ZNF exons and found that these regions also contain H3K36me3, a mark of transcriptional elongation. A genome-wide analysis of ChIP-seq data revealed that ZNFs constitute the majority of genes that have high levels of both H3K9me3 and H3K36me3. These results suggested the possibility that the ZNF genes may be imprinted, with one allele transcribed and one allele repressed. To test the hypothesis that the contradictory modifications are due to imprinting, we used a SNP analysis of RNA-seq data to demonstrate that both alleles of certain ZNF genes having H3K9me3 and H3K36me3 are transcribed. We next analyzed isolated ZNF 3' exons using stably integrated episomes. We found that although the H3K36me3 mark was lost when the 3' ZNF exon was removed from its natural genomic location, the isolated ZNF 3' exons retained the H3K9me3 mark. Thus, the H3K9me3 mark at ZNF 3' exons does not impede transcription and it is regulated independently of the H3K36me3 mark. Finally, we demonstrate a strong relationship between the number of tandemly repeated domains in the 3' exons and the H3K9me3 mark. We suggest that the H3K9me3 at ZNF 3' exons may function to protect the genome from inappropriate recombination rather than to regulate transcription.

  12. iGEMS: an integrated model for identification of alternative exon usage events.

    Science.gov (United States)

    Sood, Sanjana; Szkop, Krzysztof J; Nakhuda, Asif; Gallagher, Iain J; Murie, Carl; Brogan, Robert J; Kaprio, Jaakko; Kainulainen, Heikki; Atherton, Philip J; Kujala, Urho M; Gustafsson, Thomas; Larsson, Ola; Timmons, James A

    2016-06-20

    DNA microarrays and RNAseq are complementary methods for studying RNA molecules. Current computational methods to determine alternative exon usage (AEU) using such data require impractical visual inspection and still yield high false-positive rates. Integrated Gene and Exon Model of Splicing (iGEMS) adapts a gene-level residuals model with a gene size adjusted false discovery rate and exon-level analysis to circumvent these limitations. iGEMS was applied to two new DNA microarray datasets, including the high coverage Human Transcriptome Arrays 2.0 and performance was validated using RT-qPCR. First, AEU was studied in adipocytes treated with (n = 9) or without (n = 8) the anti-diabetes drug, rosiglitazone. iGEMS identified 555 genes with AEU, and robust verification by RT-qPCR (∼90%). Second, in a three-way human tissue comparison (muscle, adipose and blood, n = 41) iGEMS identified 4421 genes with at least one AEU event, with excellent RT-qPCR verification (95%, n = 22). Importantly, iGEMS identified a variety of AEU events, including 3'UTR extension, as well as exon inclusion/exclusion impacting on protein kinase and extracellular matrix domains. In conclusion, iGEMS is a robust method for identification of AEU while the variety of exon usage between human tissues is 5-10 times more prevalent than reported by the Genotype-Tissue Expression consortium using RNA sequencing. PMID:27095197

  13. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    Energy Technology Data Exchange (ETDEWEB)

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  14. Mutations of p53 gene exons 4-8 in human esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Ya Li; Jin-Tian Tang; Li-Qun Jia; Pei-Wen Li

    2005-01-01

    AIM: To characterize the tumor suppressor gene p53 mutations in exon 4, esophageal cancer and adjacent noncancerous tissues.METHODS: We performed p53 (exons 4-8) gene mutation analysis on 24 surgically resected human esophageal cancer specimens by PCR, single-strand conformation polymorphism, and DNA sequencing. RESULTS: p53 gene mutations were detected in 9 of 22 (40.9%) esophageal cancer specimens and 10 of 17 (58.8%) adjacent non-cancerous tissues. Eight of sixteen (50.0%) point mutations detected were G-A transitions and 9 of 18 (50.0%) p53 gene mutations occurred in exon 4 in esophageal cancer specimens. Only 1 of 11 mutations detected was G-A transition and 4 of 11 (36.4%) p53 gene mutations occurred in exon 4 in adjacent non-cancerous tissues.CONCLUSION: Mutation of p53 gene in exon 4 may play an important role in development of esophageal cancer. The observation of p53 gene mutation in adjacent noncancerous tissues suggests that p53 gene mutation may be an early event in esophageal carcinogenesis. Some clinical factors, including age, sex, pre-operation therapy and location of tumors, do not influence p53 gene mutation rates.

  15. STUDY OF ECK GENE EXON-3 FROM HUMAN NORMAL TISSUE AND BREAST CANCER CELL LINE

    Institute of Scientific and Technical Information of China (English)

    李瑶琛; 孔令洪; 王一理; 司履生

    2003-01-01

    Objective To establish a method cloning the exon 3 of eck gene from normal tissue and ZR-75-1 cell line (a human breast cancer cell line)and study whether these genes exist mutant. Methods Designed a pair of specific primers and amplified the exon 3 of eck gene fragment from the extracted genomic DNA derived from normal epithelial cells from skin tissue and ZR-75-1 cell line respectively by PCR technique. Transformed the E.coil. JM109 with recombinant plamids constructed by inserting the amplified fragments into medium vector pUCm-T and sequenced these amplified fragments after primary screening of endonuclease restriction digestion and PCR amplification. Results ① Obtained the genomic DNA of human normal epithelial cells and ZR-75-1 cell line respectively. ② Obtained the amplified fragments of human exon 3 of eck gene through PCR technique. ③ Obtained the cloning vectors of exon 3 of eck gene of human normal epithelial cells and ZR-75-1 cell line respectively. ④ ZR-75-1 cell line exists mutation of nucleotides. Conclusion Successfully established the method of cloning the human exon 3 of eck gene and found some mutations in the detected samples. This study lays a foundation for further studying the function of eck gene in tumorgenesis.

  16. Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis

    Directory of Open Access Journals (Sweden)

    Whistler Toni

    2010-09-01

    Full Text Available Abstract Background The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' in vitro transcription expression arrays in our laboratory. One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays. Results Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for

  17. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

    OpenAIRE

    Bi Ke; Vanderpool Dan; Singhal Sonal; Linderoth Tyler; Moritz Craig; Good Jeffrey M

    2012-01-01

    Abstract Background To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. Results We selectively targeted 11,975 exons (~4 Mb) on custom capture a...

  18. Abnormal Methylation Status of the GNAS Exon 1A Region in Pseudohypohyperparathyroidism Combined With Turner Syndrome.

    Science.gov (United States)

    Zhu, Jie; Wang, Dong; Ren, An; Xing, Yan; Zhang, Dongliang; Wei, Jun; Yu, Ning; Xing, Xuenong; Ye, Shandong

    2015-12-01

    Pseudohypohyperparathyroidism (PHHP) is a rare type of pseudohypoparathyroidism (PHP), which seems to have a normal skeletal response to parathyroid hormone but shows renal resistance. Almost all patients with PHHP have PHP Ib, a subtype of PHP that is usually caused by GNAS methylation defects, often in exon 1A. Some features of Albright hereditary osteodystrophy can occasionally be found in patients with PHHP, but these features are also common in Turner syndrome. The authors report on an extremely rare case of a patient with PHHP and Turner syndrome, a 47-year-old woman who sought medical attention for hypocalcemia and elevated parathyroid hormone. She had no family history of hypocalcemia and no STX16 gene deletions. She had a mosaic karyotype of 46, X, del(X)(p11.4)/45, XO. Pyrosequencing was performed to determine the GNAS exon 1A methylation. The degree of methylation found in exon 1A of the patient was lower than her unaffected relatives.

  19. Exon-primed intron-crossing (EPIC markers as a tool for ant phylogeography

    Directory of Open Access Journals (Sweden)

    Patrícia R. Ströher

    2013-12-01

    Full Text Available Exon-primed intron-crossing (EPIC markers as a tool for ant phylogeography. Due to their local abundance, diversity of adaptations and worldwide distribution, ants are a classic example of adaptive radiation. Despite this evolutionary and ecological importance, phylogeographical studies on ants have relied largely on mitochondrial markers. In this study we design and test exon-primed intron-crossing (EPIC markers, which can be widely used to uncover ant intraspecific variation. Candidate markers were obtained through screening the available ant genomes for unlinked conserved exonic regions interspersed with introns. A subset of 15 markers was tested in vitro and showed successful amplification in several phylogenetically distant ant species. These markers represent an important step forward in ant phylogeography and population genetics, allowing for more extensive characterization of variation in ant nuclear DNA without the need to develop species-specific markers.

  20. Exonal deletion of SLC24A4 causes hypomaturation amelogenesis imperfecta.

    Science.gov (United States)

    Seymen, F; Lee, K-E; Tran Le, C G; Yildirim, M; Gencay, K; Lee, Z H; Kim, J-W

    2014-04-01

    Amelogenesis imperfecta is a heterogeneous group of genetic conditions affecting enamel formation. Recently, mutations in solute carrier family 24 member 4 (SLC24A4) have been identified to cause autosomal recessive hypomaturation amelogenesis imperfecta. We recruited a consanguineous family with hypomaturation amelogenesis imperfecta with generalized brown discoloration. Sequencing of the candidate genes identified a 10-kb deletion, including exons 15, 16, and most of the last exon of the SLC24A4 gene. Interestingly, this deletion was caused by homologous recombination between two 354-bp-long homologous sequences located in intron 14 and the 3' UTR. This is the first report of exonal deletion in SLC24A4 providing confirmatory evidence that the function of SLC24A4 in calcium transport has a crucial role in the maturation stage of amelogenesis.

  1. Computational analysis and prediction for exons of PAC579 genomic sequence

    Institute of Scientific and Technical Information of China (English)

    黄弋; 覃文新; 万大方; 赵新泰; 顾健人

    2001-01-01

    To isolate the novel genes related to human hepatocellular carcinoma (HCC), we sequenced P1-derived artificial chromosome PAC579 (D17S926 locus) mapped in the minimum LOH (loss of heterozygosity) deletion region of chromosome 17p13.3 in HCC, Four novel genes mapped in this genomic sequence area were isolated and cloned by wet-lab experiments, and the exons of these genes were located. 0-60 kb of this genomic sequence including the genes of interest was scanned with five different computational exon prediction programs as well as four splice site recognition programs. After analyzing and comparing the computationally predicted results with the wet-lab experiment results, some potential exons were predicted in the genomic sequence by using these programs.

  2. Role of the intracellular receptor domain of gp130 (exon 17) in human inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Christoph J. Auernhammer; Thomas Ochsenkühn; Kathrin Zitzmann; Fabian Schnitzler; Julia Seiderer; Peter Lohse; George Vlotides; Dieter Engelhardt; Michael Sackmann; Burkhard G(o)ke

    2005-01-01

    AIM: To study the role of the intracellular receptor domain of gp130 in human inflammatory bowel disease (IBD).METHODS: We amplified and sequenced the complete exon 17 of the human gp130 gene in 146 patients with IBD. According to clinical and histopathological signs,the 146 patients with IBD were classified as having Crohn's disease (n = 73) or ulcerative colitis (n = 63),or as indeterminate status (n = 10).RESULTS: No mutations in exon 17 of the gp130 gene could be detected in any of the 146 patients with IBD examined.CONCLUSION: There is no evidence that mutations in exon 17 of the gp130 gene are involved in the pathogenesis of human IBD.

  3. Evidence for association of multi-exon skipping events with tumors

    Institute of Scientific and Technical Information of China (English)

    Jianning BI; Tao PENG; Yanda LI

    2008-01-01

    Alternative splicing(AS)has been shown to be frequently present in human tumors.Specifically,it has been observed in some experimental studies that multi-exon skipping(MES)events often appear in tumorous tissues.Prompted by this observation,we conducted a genomewide analysis of MES events to investigate their association with tumors.The results show that MES events are more likely associated with tumors than single-exon skipping (SES) and the degree of association increases with the number of skipped exons.Furthermore,MES events are found to be less conserved than their SES counterparts,which provides additional evidence for our results because disease-associated AS events should be eliminated during evolution.Interestingly,these differences still existed even after comparison Of MES and SES events with similarlength skipped regions.These results demonstrate that MES events mav be associated with tumors and suggest that MES isoforms might be useful in cancer diagnosis.

  4. Molecular evolution of the leptin exon 3 in some species of the family Canidae

    Directory of Open Access Journals (Sweden)

    Switonski Marek

    2003-09-01

    Full Text Available Abstract The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris – 16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides, the red fox (Vulpes vulpes and the arctic fox (Alopex lagopus were studied with the use of single strand conformation polymorphism (SSCP, restriction fragment length polymorphism (RFLP and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical.

  5. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  6. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  7. Characterization of major histocompatibility complex (MHC DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor.

    Directory of Open Access Journals (Sweden)

    Sarrah Castillo

    Full Text Available The major histocompatibility complex (MHC presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor. Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250 bp and DRB exon 2 (228 bp. MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4-15.8% divergence and translated into 1 to 21 (1.3-27.6% divergence amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005, indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.

  8. Neonatal Marfan syndrome caused by an exon 25 mutation of the fibrillin-1 gene.

    Science.gov (United States)

    Elçioglu, N H; Akalin, F; Elçioglu, M; Comeglio, P; Child, A H

    2004-01-01

    Neonatal Marfan syndrome caused by an exon 25 mutation of the Fibrillin-1 gene: We describe a male infant with severe arachnodactyly, hypermobility of the fingers, flexion contractures of elbows, wrists, hips, and knees, microretrognathia, crumpled ears, rockerbottom feet, loose redundant skin, and lens dislocations. Cardiac valve insufficiency and aortic dilatation resulted in cardiac failure, decompensated with digitalisation and death occurred at the age of 4 months. This case represents the severe end of the clinical spectrum of Marfan syndrome, namely neonatal Marfan syndrome. Molecular diagnostic analyses confirmed a de novo exon 25 mutation in the FBN1 gene. PMID:15287423

  9. Whole-Exome Enrichment with the Agilent SureSelect Human All Exon Platform

    OpenAIRE

    Chen, Rui; Im, Hogune; Snyder, Michael

    2015-01-01

    There are multiple platforms available for whole-exome enrichment and sequencing (WES). This protocol is based on the Agilent SureSelect Human All Exon platform, which targets ~50 Mb of the human exonic regions. The SureSelect system uses ~120-base RNA probes to capture known coding DNA sequences (CDS) from the NCBI Consensus CDS Database as well as other major RNA coding sequence databases, such as Sanger miRBase. The protocol can be performed at the benchside without the need for automation...

  10. High frequency of JAK2 exon 12 mutations in Korean patients with polycythaemia vera: novel mutations and clinical significance.

    Science.gov (United States)

    Park, Chang-Hun; Lee, Ki-O; Jang, Jun-Ho; Jung, Chul Won; Kim, Jong-Won; Kim, Sun-Hee; Kim, Hee-Jin

    2016-08-01

    Gain-of-function mutations in JAK2 are the molecular hallmarks of polycythaemia vera (PV), one of the myeloproliferative neoplasms. Most (∼95%) patients harbour V617F mutation in exon 15, while the rest have small insertion/deletion mutations in exon 12. We investigated JAK2 mutations in 42 Korean patients with PV. V617F was detected by sequencing and allele-specific PCR. When V617F was negative, sequencing and fragment length analyses were performed to detect exon 12 mutations. As a result, all patients had JAK2 mutations: 37 (88%) harboured V617F, and 5 (12%) had exon 12 mutations. Two patients had novel exon 12 mutations (H538_R541delinsLII and F537_K539delinsVL). Genotype-phenotype correlations demonstrated lower white blood cell and platelet counts in exon 12 mutations than V617F. The frequency of JAK2 exon 12 mutations was higher than expected in Korean patients with PV. Molecular genetic testing for JAK2 exon 12 mutations is mandatory for diagnosis and genotype-phenotype correlations in patients with erythrocytosis and suspected PV. PMID:27198504

  11. Mucopolysaccharidosis IVA: Four new exonic mutations in patients with N-acetylgalactosamine-6-sulfate sulfatase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi [Gifu Univ. (Japan)] [and others

    1996-05-01

    We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resulted in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.

  12. Refinement of antisense oligonucleotide mediated exon skipping as therapy for Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Heemskerk, Johannes Antonius

    2011-01-01

    In recent years, modulation of mRNA has emerged as a promising therapeutic tool. For instance, in the field of neuromuscular disorders therapeutic strategies are being developed for several diseases, including antisense oligonucleotide (AON) mediated exon skipping for Duchenne Muscular Dystrophy (DM

  13. Genome-wide analysis of antisense transcription with Affymetrix exon array

    Directory of Open Access Journals (Sweden)

    Jung Yong-chul

    2008-01-01

    Full Text Available Abstract Background A large number of natural antisense transcripts have been identified in human and mouse genomes. Study of their potential functions clearly requires cost-efficient method for expression analysis. Results Here we show that Affymetrix Exon arrays, which were designed to detect conventional transcripts in the sense orientation, can be used to monitor antisense expression across all exonic loci in mammalian genomes. Through modification of the cDNA synthesis protocol, we labeled single-strand cDNA in the reverse orientation as in the standard protocol, thus enabling the detection of antisense transcripts using the same array. Applying this technique to human Jurkat cells, we identified antisense transcription at 2,088 exonic loci of 1,516 UniGene clusters. Many of these antisense transcripts were not observed previously and some were validated by orientation-specific RT-PCR. Conclusion Our results suggest that with a modified protocol Affymetrix human, mouse and rat Exon arrays can be used as a routine method for genome-wide analysis of antisense transcription in these genomes.

  14. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  15. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome

    DEFF Research Database (Denmark)

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander;

    2015-01-01

    mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within...

  16. MOLECULAR ANALYSIS OF RADIATION-INDUCED MUTATION IN EXON 7/8 OF RAT HPRT GENE

    Institute of Scientific and Technical Information of China (English)

    任晓庆; 黄定九; 黄钢; 王利民

    2003-01-01

    Objective To investigate the relationship between the radiation dose and the HPRT gene locus mutation in rat smooth muscle cells, and provide the molecular basis for prevention of restenosis after percutaneous transluminal coronary angioplasty (PTCA).MethodsThe smooth muscle cells cultured in vitro were irradiated by radionuclide 188Re in different doses. HPRT gene mutation colonies were selected and isolated by 6 thioguanine. Analysis of mutation in exon 7/8 of HPRT gene were accomplished by polymerase chain reaction and single strand conformation polymorphism.ResultsThe HPRT gene mutation frequency of rat smooth muscle cells that were irradiated by radionuclide 188Re ranged from 5.5×10-6 to 13×10-6. Of 91 HPRT gene mutation colonies, 13(14.3%) contained exon 7/8 deletion and 15(16.5%) had point mutation. The exon 7/8 mutation frequency was 30.8%. There were significant relationships between radiation dose and mutation frequency of HPRT gene and exon 7/8.ConclusionThe DNA damage and gene mutation induced by radiation has positive relationship with radiation dose, and is a basis of proliferation inhibition and apoptosis of smooth muscle cells.

  17. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor

    Science.gov (United States)

    Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation.We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcri...

  18. Loss of Endocan tumorigenic properties after alternative splicing of exon 2

    International Nuclear Information System (INIS)

    Endocan was originally described as a dermatan sulfate proteoglycan found freely circulating in the blood. Endocan expression confers tumorigenic properties to epithelial cell lines or accelerate the growth of already tumorigenic cells. This molecule is the product of a single gene composed of 3 exons. Previous data showed that endocan mRNA is subject to alternative splicing with possible generation of two protein products. In the present study we identified, and functionally characterized, the alternative spliced product of the endocan gene: the exon 2-deleted endocan, called endocanΔ2. Stable, endocanΔ2-overexpressing cell lines were generated to investigate the biological activities of this new alternatively spliced product of endocan gene. Tumorigenesis was studied by inoculating endocan and endocanΔ2 expressing cell lines subcutaneously in SCID mice. Biochemical properties of endocan and endocanΔ2 were studied after production of recombinant proteins in various cell lines of human and murine origin. Our results showed that the exon 2 deletion impairs synthesis of the glycan chain, known to be involved in the pro-tumoral effect of endocan. EndocanΔ2 did not promote tumor formation by 293 cells implanted in the skin of severe combined immunodeficient (SCID) mice. Our results emphasize the key role of the polypeptide sequence encoded by the exon 2 of endocan gene in tumorigenesis, and suggest that this sequence could be a target for future therapies against cancer

  19. Integrated exon level expression analysis of driver genes explain their role in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Mohammad Azhar Aziz

    Full Text Available Integrated analysis of genomic and transcriptomic level changes holds promise for a better understanding of colorectal cancer (CRC biology. There is a pertinent need to explain the functional effect of genome level changes by integrating the information at the transcript level. Using high resolution cytogenetics array, we had earlier identified driver genes by 'Genomic Identification of Significant Targets In Cancer (GISTIC' analysis of paired tumour-normal samples from colorectal cancer patients. In this study, we analyze these driver genes at three levels using exon array data--gene, exon and network. Gene level analysis revealed a small subset to experience differential expression. These results were reinforced by carrying out separate differential expression analyses (SAM and LIMMA. ATP8B1 was found to be the novel gene associated with CRC that shows changes at cytogenetic, gene and exon levels. Splice index of 29 exons corresponding to 13 genes was found to be significantly altered in tumour samples. Driver genes were used to construct regulatory networks for tumour and normal groups. There were rearrangements in transcription factor genes suggesting the presence of regulatory switching. The regulatory pattern of AHR gene was found to have the most significant alteration. Our results integrate data with focus on driver genes resulting in highly enriched novel molecules that need further studies to establish their role in CRC.

  20. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.

    Directory of Open Access Journals (Sweden)

    Bankanidhi Sahoo

    Full Text Available Expansion of the polyglutamine (polyQ track of the Huntingtin (HTT protein above 36 is associated with a sharply enhanced risk of Huntington's disease (HD. Although there is general agreement that HTT toxicity resides primarily in N-terminal fragments such as the HTT exon1 protein, there is no consensus on the nature of the physical states of HTT exon1 that are induced by polyQ expansion, nor on which of these states might be responsible for toxicity. One hypothesis is that polyQ expansion induces an alternative, toxic conformation in the HTT exon1 monomer. Alternative hypotheses posit that the toxic species is one of several possible aggregated states. Defining the nature of the toxic species is particularly challenging because of facile interconversion between physical states as well as challenges to identifying these states, especially in vivo. Here we describe the use of fluorescence correlation spectroscopy (FCS to characterize the detailed time and repeat length dependent self-association of HTT exon1-like fragments both with chemically synthesized peptides in vitro and with cell-produced proteins in extracts and in living cells. We find that, in vitro, mutant HTT exon1 peptides engage in polyQ repeat length dependent dimer and tetramer formation, followed by time dependent formation of diffusible spherical and fibrillar oligomers and finally by larger, sedimentable amyloid fibrils. For expanded polyQ HTT exon1 expressed in PC12 cells, monomers are absent, with tetramers being the smallest molecular form detected, followed in the incubation time course by small, diffusible aggregates at 6-9 hours and larger, sedimentable aggregates that begin to build up at 12 hrs. In these cell cultures, significant nuclear DNA damage appears by 6 hours, followed at later times by caspase 3 induction, mitochondrial dysfunction, and cell death. Our data thus defines limits on the sizes and concentrations of different physical states of HTT exon1 along the

  1. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells

    International Nuclear Information System (INIS)

    The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cells (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells

  2. Exon organization and novel alternative splicing of Ank3 in mouse heart.

    Directory of Open Access Journals (Sweden)

    Gokay Yamankurt

    Full Text Available Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%, while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack β-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.

  3. Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection.

    Directory of Open Access Journals (Sweden)

    Akihide Takeuchi

    Full Text Available Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of "splice code". So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this "balance" model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2 gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the "switch-like" mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved "splice code," in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions.

  4. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    Science.gov (United States)

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  5. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.

    Directory of Open Access Journals (Sweden)

    Federico Abascal

    2015-06-01

    Full Text Available Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved--all the homologous exons we identified evolved over 460 million years ago--and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles.

  6. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: Members of the nuclear DAPC associate with the nuclear matrix

    International Nuclear Information System (INIS)

    Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, β-sarcoglycan, β-dystroglycan, α- and β-syntrophin, α1- and β-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, β-dystroglycan, nNOS, β-sarcoglycan, α/β syntrophin, α1-dystrobrevin and β-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, β-dystroglycan and β-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture

  7. Risk Profiles and Penetrance Estimations in Multiple Endocrine Neoplasia Type 2A Caused by Germline RET Mutations Located in Exon 10

    NARCIS (Netherlands)

    Frank-Raue, Karin; Rybicki, Lisa A.; Erlic, Zoran; Schweizer, Heiko; Winter, Aurelia; Milos, Ioana; Toledo, Sergio P. A.; Toledo, Rodrigo A.; Tavares, Marcos R.; Alevizaki, Maria; Mian, Caterina; Siggelkow, Heide; Huefner, Michael; Wohllk, Nelson; Opocher, Giuseppe; Dvorakova, Sarka; Bendlova, Bela; Czetwertynska, Malgorzata; Skasko, Elzbieta; Barontini, Marta; Sanso, Gabriela; Vorlaender, Christian; Maia, Ana Luiza; Patocs, Attila; Links, Thera P.; de Groot, Jan Willem; Kerstens, Michiel N.; Valk, Gerlof D.; Miehle, Konstanze; Musholt, Thomas J.; Biarnes, Josefina; Damjanovic, Svetozar; Muresan, Mihaela; Wuester, Christian; Fassnacht, Martin; Peczkowska, Mariola; Fauth, Christine; Golcher, Henriette; Walter, Martin A.; Pichl, Josef; Raue, Friedhelm; Eng, Charis; Neumann, Hartmut P. H.

    2011-01-01

    Multiple endocrine neoplasia type 2 is characterized by germline mutations in RET. For exon 10, comprehensive molecular and corresponding phenotypic data are scarce. The International RET Exon 10 Consortium, comprising 27 centers from 15 countries, analyzed patients with RET exon 10 mutations for cl

  8. [Change in gastrocnemius dystrophin and metabolic enzymes and increase in high-speed exhaustive time induced by hypoxic training in rats].

    Science.gov (United States)

    Xu, Yu-Ming; Li, Jun-Ping; Wang, Rui-Yuan

    2012-08-25

    The aim of the present study was to explore the changes and roles of dystrophin and membrane permeability in hypoxic training. Seventy-two 8-week-old Sprague Dawley (SD) rats were randomly divided into 4 groups, normoxic non-train (NC), normoxic train (NT), hypoxic non-train (HC), and hypoxic train (HT) groups. The rats of each group were randomly divided into three subgroups, non-exhaustive, low-speed exhaustive test and high-speed exhaustive test subgroups. Rats in hypoxia groups lived and were trained in a condition of 12.7% oxygen concentration (equal to the 4 300 m altitude). NT and HT groups received 4 weeks of training exercise. Then the rats in all non-exhaustive subgroups were sacrificed, and gastrocnemii were sampled for the measurements of lactate dehydrogenase (LDH), succinatedehydrogenase (SDH), malate dehydrogenase (MDH) activities. Moreover, serum LDH activity was analyzed. Low-speed exhaustive test and high-speed exhaustive test subgroups received exhaustive tests with 20 (71% VO2max) and 30 m/min speed (86% VO2max), respectively, and their exhaustive times were recorded. The results showed that, compared with normoxic groups, the weights in hypoxia groups exhibited slower increase. The level of dystrophin in HT group without exhaustion test didn't change significantly. The muscle MDH activities were markedly affected by the different oxygen concentration, training and their interaction (P exhaustion time were markedly affected by the different test speed, training and their interaction (P exhaustive time of HT high-speed exhaustive test subgroup was more than NT high-speed exhaustive test subgroup in 30 m/min exhaustion test. Compared with NT high-speed exhaustive test subgroup, HT high-speed exhaustive test subgroup had an earlier fatigue in the test, but had a rapid recovery. These results suggested that hypoxic training can effectively increase the rats' high-speed exhaustive time. The mechanism may be related to an increase in serum LDH caused

  9. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing

    Directory of Open Access Journals (Sweden)

    Corti Stefania

    2011-03-01

    Full Text Available Abstract Background Duchenne and Becker Muscular dystrophies (DMD/BMD are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements. Methods We selected 47 patients (41 families; 35 DMD, 6 BMD without deletions and duplications in DMD gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis. This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis. Results We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients, followed by TAG (n = 7 and TAA (n = 4. We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the DMD gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65. Conclusion The analysis of our patients' sample, carrying point mutations or complex rearrangements in DMD gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects

  10. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, E.A.; Cho, M.; Milewicz, D.M. [Univ. of Texas-Houston Medical School, Houston, TX (United States)] [and others

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  11. ExSurv: A Web Resource for Prognostic Analyses of Exons Across Human Cancers Using Clinical Transcriptomes.

    Science.gov (United States)

    Hashemikhabir, Seyedsasan; Budak, Gungor; Janga, Sarath Chandra

    2016-01-01

    Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients' clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing - a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis. PMID:27528797

  12. Deletion and Mutation of WWOX Exons 6-8 in Human Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To examine the deletion and point mutation of WWOX (WW domain containing oxidoreductase) exons 6-8 in human non-small cell lung cancer and their possible relationship with pathological stages, tumor tissues and the corresponding normal tissues were obtained from 44 Chinese patients who had undergone surgery for non-small cell lung cancer. RNA was extracted from each sample and deletion and mutation of WWOX exons 6-8 were analyzed by RT-PCR and DNA sequencing. Our results showed that 28 of 44 (63.6 %) lung cancer samples showed loss of WWOX exons 6-8 transcript and the deletion was detected in only 3 of 44 (6.8 %) corresponding adjacent normal tissues (P<0.05). The transcript sequencing analyses of the 16 lung cancer samples without transcript loss of WWOX exons 6-8 revealed no difference from the sequence of GenBank. Moreover, the deletion of WWOX exons 6-8 was significantly higher in the smokers when compared with the non-smokers. It is also higher in the men and squamous carcinomas than in women and adenocarcinomas (P<0.05). The deletion, however, was not found to be associated with pathological stages of the tumors. Our study documented a high incidence of deletion of WWOX exons 6-8 in non-small cell lung cancer in Chinese patients and suggested that the frequent loss of WWOX exons 6-8 might play an important role in the tumorigenesis of non-small cell lung cancer in Chinese. WWOX exons 6-8 may serves as a candidate molecular target of smoking carcinogenesis, and point mutation is not a predominant way of alteration of WWOX exons 6-8.

  13. ExSurv: A Web Resource for Prognostic Analyses of Exons Across Human Cancers Using Clinical Transcriptomes

    Science.gov (United States)

    Hashemikhabir, Seyedsasan; Budak, Gungor; Janga, Sarath Chandra

    2016-01-01

    Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients’ clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing – a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis. PMID:27528797

  14. A highly sensitive quantitative real-time pcr assay for determination of mutant jak2 exon 12 allele burden

    DEFF Research Database (Denmark)

    Kjær, L.; Riley, C.H.; Westman, M.;

    2012-01-01

    present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel...... tool for quantitative monitoring of the mutant allele burden and accordingly also for determining the impact of treatment with interferon-α-2, shown to induce molecular remission in JAK2V617F-positive patients, which may be a future treatment option for JAK2 exon 12-positive patients as well. © 2012...

  15. Identification and characterization of seven new exon 11-associated splice variants of the rat mu opioid receptor gene, OPRM1

    Directory of Open Access Journals (Sweden)

    Pasternak Gavril W

    2011-01-01

    Full Text Available Abstract Background The mouse mu opioid receptor (OPRM1 gene undergoes extensive alternative splicing at both the 3'- and 5'-ends of the gene. Previously, several C-terminal variants generated through 3' splicing have been identified in the rat OPRM1 gene. In both mice and humans 5' splicing generates a number of exon 11-containing variants. Studies in an exon 11 knockout mouse suggest the functional importance of these exon 11-associated variants in mediating the analgesic actions of a subset of mu opioids, including morphine-6β-glucuronide (M6G and heroin, but not others such as morphine and methadone. We now have examined 5' splicing in the rat. Results The current studies identified in the rat a homologous exon 11 and seven exon 11-associated variants, suggesting conservation of exon 11 and its associated variants among mouse, rat and human. RT-PCR revealed marked differences in the expression of these variants across several brain regions, implying region-specific mRNA processing of the exon 11-associated variants. Of the seven rat exon 11-associated variants, four encoded the identical protein as found in rMOR-1, two predicted 6 TM variants, and one, rMOR-1H2, generated a novel N-terminal variant in which a stretch of an additional 50 amino acids was present at the N-terminus of the previously established rMOR-1 sequence. When expressed in CHO cells, the presence of the additional 50 amino acids in rMOR-1H2 significantly altered agonist-induced G protein activation with little effect on opioid binding. Conclusion The identification of the rat exon 11 and its associated variants further demonstrated conservation of 5' splicing in OPRM1 genes among rodents and humans. The functional relevance of these exon 11 associated variants was suggested by the region-specific expression of their mRNAs and the influence of the N-terminal sequence on agonist-induced G protein coupling in the novel N-terminal variant, rMOR-1H2. The importance of the exon

  16. BRCA1 Exon 11, a CERES (Composite Regulatory Element of Splicing Element Involved in Splice Regulation

    Directory of Open Access Journals (Sweden)

    Claudia Tammaro

    2014-07-01

    Full Text Available Unclassified variants (UV of BRCA1 can affect normal pre-mRNA splicing. Here, we investigate the UV c.693G>A, a “silent” change in BRCA1 exon 11, which we have found induces aberrant splicing in patient carriers and in vitro. Using a minigene assay, we show that the UV c.693G>A has a strong effect on the splicing isoform ratio of BRCA1. Systematic site-directed mutagenesis of the area surrounding the nucleotide position c.693G>A induced variable changes in the level of exon 11 inclusion/exclusion in the mRNA, pointing to the presence of a complex regulatory element with overlapping enhancer and silencer functions. Accordingly, protein binding analysis in the region detected several splicing regulatory factors involved, including SRSF1, SRSF6 and SRSF9, suggesting that this sequence represents a composite regulatory element of splicing (CERES.

  17. Exonization of active mouse L1s: a driver of transcriptome evolution?

    Directory of Open Access Journals (Sweden)

    Badge Richard

    2007-10-01

    Full Text Available Abstract Background Long interspersed nuclear elements (LINE-1s, L1s have been recently implicated in the regulation of mammalian transcriptomes. Results Here, we show that members of the three active mouse L1 subfamilies (A, GF and TF contain, in addition to those on their sense strands, conserved functional splice sites on their antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in the light of the strong antisense orientation bias of intronic L1s, implying that the toleration of antisense insertions results in an increased potential for exonization. Conclusion In a genome-wide analysis, we have uncovered evidence suggesting that the mobility of the large number of retrotransposition-competent mouse L1s (~2400 potentially active L1s in NCBIm35 has significant potential to shape the mouse transcriptome by continuously generating insertions into transcriptional units.

  18. Exons 16 and 17 of the amyloid precursor protein gene in familial inclusion body myopathy.

    Science.gov (United States)

    Sivakumar, K; Cervenáková, L; Dalakas, M C; Leon-Monzon, M; Isaacson, S H; Nagle, J W; Vasconcelos, O; Goldfarb, L G

    1995-08-01

    Accumulation of beta-amyloid protein (A beta) occurs in some muscle fibers of patients with inclusion body myopathy and resembles the type of amyloid deposits seen in the affected tissues of patients with Alzheimer's disease and cerebrovascular amyloidosis. Because mutations in exons 16 and 17 of the beta-amyloid precursor protein (beta APP) gene on chromosome 21 have been identified in patients with early-onset familial Alzheimer's disease and Dutch-type cerebrovascular amyloidosis, we searched for mutations of the same region in patients with familial inclusion body myopathy. Sequencing of both alleles in 8 patients from four unrelated families did not reveal any mutations in these exons. The amyloid deposition in familial forms of inclusion body myopathy may be either due to errors in other gene loci, or it is secondary reflecting altered beta APP metabolism or myocyte degeneration and cell membrane degradation.

  19. Screening of BRCA1 sequence variants within exon 11 by heteroduplex analysis

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2013-03-01

    Full Text Available Germ-line mutations of either BRCA1 or BRCA2 represents the major hereditary risk to breast and ovariancancer. Screening for mutations in these genes is now standard practice in molecular diagnosis, opening the way tooncogenetic counselling and follow-up. Because mutations in both BRCA1 and BRCA2 are distributed throughout theloci, accepted clinical protocols involve screening their entire coding regions. Systematic Sanger sequencing is time andmoney consuming. Therefore, a lot of pre-screening techniques evolved over time in order to identify anomalousamplicons prior to sequencing. Because BRCA mutations are always heterozygous, heteroduplex analysis proved to be asuitable pre-screening step. We previously implemented mismatch specific endonuclease heteroduplex analysis forBRCA1 exon7. Here we show the utility of the same method for mutations and SNPs found in BRCA1 exon 11

  20. Alternative splicing in colon, bladder, and prostate cancer identified by exon-array analysis

    DEFF Research Database (Denmark)

    Thorsen, Kasper; Sørensen, Karina D.; Brems-Eskildsen, Anne Sofie;

    2008-01-01

    Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages......, and 18 candidate tumor-specific splicing alterations in colon, bladder, and prostate, respectively, were selected for RT-PCR validation on an independent set of 81 normal and tumor tissue samples. In total, seven genes with tumor-specific splice variants were identified (ACTN1, CALD1, COL6A3, LRRFIP2...... from colon, urinary bladder, and prostate. We identified 2069 candidate alternative splicing events between normal tissue samples from colon, bladder, and prostate and selected 15 splicing events for RT-PCR validation, 10 of which were successfully validated by RT-PCR and sequencing. Furthermore 23, 19...

  1. LACKING EXON5 OF VARIANT ESTROGEN RECEPTOR IN HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Zhang Lei; Gong Ping; Sun Sulian; Dong Zhiwei

    1998-01-01

    Methods: The target sequence of ER RNA covering exon4~6(1082~1520bp) was amplified in 7 clinical human breast cancer tissues by reverse transcription and polymerase chain reaction (RT-PCR) techniques.Results: PCR products were transferred to nitrocellulose membranes and hybridized using a [r-32P]-ATP labeled ER 29 oligonulceotide probe representing the antisense strand of the ER Cdna sequence 1271~1299. Specific bands were found at 438 and 300 base pairs in two tumors. The 300 base pair of PCR product was recovered from ER+/PR+ and ER+/PR- tumor, respectively.Conclusion: Dideoxy sequence analysis revealed that they contained the variant ER completely missing exon 5.

  2. Exon2 of HIV-2 Tat contributes to transactivation of the HIV-2 LTR by increasing binding affinity to HIV-2 TAR RNA.

    OpenAIRE

    Rhim, H; Rice, A P

    1994-01-01

    Human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) express related Tat proteins that are encoded in two exons. Tat proteins bind directly to the TAR RNA element contained in the 5' ends of viral transcripts and thereby stimulate transcription through an as yet unidentified mechanism. We have investigated the functional significance of exon2 of the HIV-2 Tat protein by examining properties of proteins consisting of exon1 alone or exon1 + 2. In transactivation assays in vivo, exon2 mo...

  3. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene

    DEFF Research Database (Denmark)

    Durkin, M E; Wewer, U M; Chung, A E

    1995-01-01

    Entactin is a widespread basement membrane protein of 150 kDa that binds to type IV collagen and laminin. The complete exon-intron structure of the mouse entactin gene has been determined from lambda genomic DNA clones. The gene spans at least 65 kb and contains 20 exons. The exon organization...... of the mouse entactin gene closely corresponds to the organization of the polypeptide into distinct structural and functional domains. The two amino-terminal globular domains are encoded by three exons each. Single exons encode the two protease-sensitive, O-glycosylated linking regions. The six EGF...

  4. Transcriptional enhancers in protein-coding exons of vertebrate developmental genes.

    Directory of Open Access Journals (Sweden)

    Deborah I Ritter

    Full Text Available Many conserved noncoding sequences function as transcriptional enhancers that regulate gene expression. Here, we report that protein-coding DNA also frequently contains enhancers functioning at the transcriptional level. We tested the enhancer activity of 31 protein-coding exons, which we chose based on strong sequence conservation between zebrafish and human, and occurrence in developmental genes, using a Tol2 transposable GFP reporter assay in zebrafish. For each exon we measured GFP expression in hundreds of embryos in 10 anatomies via a novel system that implements the voice-recognition capabilities of a cellular phone. We find that 24/31 (77% exons drive GFP expression compared to a minimal promoter control, and 14/24 are anatomy-specific (expression in four anatomies or less. GFP expression driven by these coding enhancers frequently overlaps the anatomies where the host gene is expressed (60%, suggesting self-regulation. Highly conserved coding sequences and highly conserved noncoding sequences do not significantly differ in enhancer activity (coding: 24/31 vs. noncoding: 105/147 or tissue-specificity (coding: 14/24 vs. noncoding: 50/105. Furthermore, coding and noncoding enhancers display similar levels of the enhancer-related histone modification H3K4me1 (coding: 9/24 vs noncoding: 34/81. Meanwhile, coding enhancers are over three times as likely to contain an H3K4me1 mark as other exons of the host gene. Our work suggests that developmental transcriptional enhancers do not discriminate between coding and noncoding DNA and reveals widespread dual functions in protein-coding DNA.

  5. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales.

    Science.gov (United States)

    Gu, Wanjun; Gurguis, Christopher I; Zhou, Jin J; Zhu, Yihua; Ko, Eun-A; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-10-01

    Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016

  6. Selective Blockade of Periostin Exon 17 Preserves Cardiac Performance in Acute Myocardial Infarction.

    Science.gov (United States)

    Taniyama, Yoshiaki; Katsuragi, Naruto; Sanada, Fumihiro; Azuma, Junya; Iekushi, Kazuma; Koibuchi, Nobutaka; Okayama, Keita; Ikeda-Iwabu, Yuka; Muratsu, Jun; Otsu, Rei; Rakugi, Hiromi; Morishita, Ryuichi

    2016-02-01

    We previously reported that overexpression of full-length periostin, Pn-1, resulted in ventricular dilation with enhanced interstitial collagen deposition in a rat model. However, other reports have documented that the short-form splice variants Pn-2 (lacking exon 17) and Pn-4 (lacking exons 17 and 21) promoted cardiac repair by angiogenesis and prevented cardiac rupture after acute myocardial infarction. The apparently differing findings from those reports prompted us to use a neutralizing antibody to selectively inhibit Pn-1 by blockade of exon 17 in a rat acute myocardial infarction model. Administration of Pn neutralizing antibody resulted in a significant decrease in the infarcted and fibrotic areas of the myocardium, which prevented ventricular wall thinning and dilatation. The inhibition of fibrosis by Pn neutralizing antibody was associated with a significant decrease in gene expression of fibrotic markers, including collagen I, collagen III, and transforming growth factor-β1. Importantly, the number of α-smooth muscle actin-positive myofibroblasts was significantly reduced in the hearts of animals treated with Pn neutralizing antibody, whereas cardiomyocyte proliferation and angiogenesis were comparable in the IgG and neutralizing antibody groups. Moreover, the level of Pn-1 expression was significantly correlated with the severity of myocardial infarction. In addition, Pn-1, but not Pn-2 or Pn-4, inhibited fibroblast and myocyte attachment, which might account for the cell slippage observed during cardiac remodeling. Collectively, these results indicate that therapeutics that specifically inhibit Pn exon-17, via a neutralizing antibody or drug, without suppressing other periostin variants might offer a new class of medication for the treatment of acute myocardial infarction patients.

  7. Identification of novel exons and transcribed regions by chimpanzee transcriptome sequencing

    OpenAIRE

    Wetterbom, Anna; Ameur, Adam; Feuk, Lars; Gyllensten, Ulf; Cavelier, Lucia

    2010-01-01

    Background We profile the chimpanzee transcriptome by using deep sequencing of cDNA from brain and liver, aiming to quantify expression of known genes and to identify novel transcribed regions. Results Using stringent criteria for transcription, we identify 12,843 expressed genes, with a majority being found in both tissues. We further identify 9,826 novel transcribed regions that are not overlapping with annotated exons, mRNAs or ESTs. Over 80% of the novel transcribed regions map within or ...

  8. Application of a novel strategy of engineering conditional alleles to a single exon gene, Sox2.

    Directory of Open Access Journals (Sweden)

    Nikolaos Mandalos

    Full Text Available BACKGROUND: The Conditional by Inversion (COIN method for engineering conditional alleles relies on an invertible optimized gene trap-like element, the COIN module, for imparting conditionality. The COIN module contains an optimized 3' splice site-polyadenylation signal pair, but is inserted antisense to the target gene and therefore does not alter transcription, until it is inverted by Cre recombinase. In order to make COIN applicable to all protein-coding genes, the COIN module has been engineered within an artificial intron, enabling insertion into an exon. METHODOLOGY/PRINCIPAL FINDINGS: Therefore, theoretically, the COIN method should be applicable to single exon genes, and to test this idea we engineered a COIN allele of Sox2. This single exon gene presents additional design challenges, in that its proximal promoter and coding region are entirely contained within a CpG island, and are also spanned by an overlapping transcript, Sox2Ot, which contains mmu-miR1897. Here, we show that despite disruption of the CpG island by the COIN module intron, the COIN allele of Sox2 (Sox2(COIN is phenotypically wild type, and also does not interfere with expression of Sox2Ot and miR1897. Furthermore, the inverted COIN allele of Sox2, Sox2(INV is functionally null, as homozygotes recapitulate the phenotype of Sox2(βgeo/βgeo mice, a well-characterized Sox2 null. Lastly, the benefit of the eGFP marker embedded in the COIN allele is demonstrated as it mirrors the expression pattern of Sox2. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the applicability of the COIN technology as a method of choice for targeting single exon genes.

  9. Divergence of exonic splicing elements after gene duplication and the impact on gene structures

    OpenAIRE

    Zhang, Zhenguo; Zhou, Li; Wang, Ping; Liu, Yang; Chen, Xianfeng; Hu, Landian; Kong, Xiangyin

    2009-01-01

    Background The origin of new genes and their contribution to functional novelty has been the subject of considerable interest. There has been much progress in understanding the mechanisms by which new genes originate. Here we examine a novel way that new gene structures could originate, namely through the evolution of new alternative splicing isoforms after gene duplication. Results We studied the divergence of exonic splicing enhancers and silencers after gene duplication and the contributio...

  10. Next-generation sequencing discloses a nonsense mutation in the dystrophin gene from long preserved dried umbilical cord and low-level somatic mosaicism in the proband mother.

    Science.gov (United States)

    Taniguchi-Ikeda, Mariko; Takeshima, Yasuhiro; Lee, Tomoko; Nishiyama, Masahiro; Awano, Hiroyuki; Yagi, Mariko; Unzaki, Ai; Nozu, Kandai; Nishio, Hisahide; Matsuo, Masafumi; Kurahashi, Hiroki; Toda, Tatsushi; Morioka, Ichiro; Iijima, Kazumoto

    2016-04-01

    Duchene muscular dystrophy (DMD) is a progressive muscle wasting disease, caused by mutations in the dystrophin (DMD) on the X chromosome. One-third of patients are estimated to have de novo mutations. To provide in-depth genetic counseling, the comprehensive identification of mutations is mandatory. However, many DMD patients did not undergo genetic diagnosis because detailed genetic diagnosis was not available or their mutational types were difficult to identify. Here we report the genetic testing of a sporadic DMD boy, who died >20 years previously. Dried umbilical cord preserved for 38 years was the only available source of genomic DNA. Although the genomic DNA was severely degraded, multiplex ligation-dependent probe amplification analysis was performed but no gross mutations found. Sanger sequencing was attempted but not conclusive. Next-generation sequencing (NGS) was performed by controlling the tagmentation during library preparation. A nonsense mutation in DMD (p.Arg2095*) was clearly identified in the proband. Consequently, the identical mutation was detected as an 11% mosaic mutation from his healthy mother. Finally, the proband's sister was diagnosed as a non-carrier of the mutation. Thus using NGS we have identified a pathogenic DMD mutation from degraded DNA and low-level somatic mosaicism, which would have been overlooked using Sanger sequencing. PMID:26740235

  11. Detection of clinically relevant exonic copy-number changes by array CGH.

    Science.gov (United States)

    Boone, Philip M; Bacino, Carlos A; Shaw, Chad A; Eng, Patricia A; Hixson, Patricia M; Pursley, Amber N; Kang, Sung-Hae L; Yang, Yaping; Wiszniewska, Joanna; Nowakowska, Beata A; del Gaudio, Daniela; Xia, Zhilian; Simpson-Patel, Gayle; Immken, LaDonna L; Gibson, James B; Tsai, Anne C-H; Bowers, Jennifer A; Reimschisel, Tyler E; Schaaf, Christian P; Potocki, Lorraine; Scaglia, Fernando; Gambin, Tomasz; Sykulski, Maciej; Bartnik, Magdalena; Derwinska, Katarzyna; Wisniowiecka-Kowalnik, Barbara; Lalani, Seema R; Probst, Frank J; Bi, Weimin; Beaudet, Arthur L; Patel, Ankita; Lupski, James R; Cheung, Sau Wai; Stankiewicz, Pawel

    2010-12-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications--those including genomic intervals of a size smaller than a gene--have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes.

  12. Abnormal Methylation Status of the GNAS Exon 1A Region in Pseudohypohyperparathyroidism Combined With Turner Syndrome.

    Science.gov (United States)

    Zhu, Jie; Wang, Dong; Ren, An; Xing, Yan; Zhang, Dongliang; Wei, Jun; Yu, Ning; Xing, Xuenong; Ye, Shandong

    2015-12-01

    Pseudohypohyperparathyroidism (PHHP) is a rare type of pseudohypoparathyroidism (PHP), which seems to have a normal skeletal response to parathyroid hormone but shows renal resistance. Almost all patients with PHHP have PHP Ib, a subtype of PHP that is usually caused by GNAS methylation defects, often in exon 1A. Some features of Albright hereditary osteodystrophy can occasionally be found in patients with PHHP, but these features are also common in Turner syndrome. The authors report on an extremely rare case of a patient with PHHP and Turner syndrome, a 47-year-old woman who sought medical attention for hypocalcemia and elevated parathyroid hormone. She had no family history of hypocalcemia and no STX16 gene deletions. She had a mosaic karyotype of 46, X, del(X)(p11.4)/45, XO. Pyrosequencing was performed to determine the GNAS exon 1A methylation. The degree of methylation found in exon 1A of the patient was lower than her unaffected relatives. PMID:26488942

  13. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.

    Science.gov (United States)

    Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.

  14. Two-exon skipping within MLPH is associated with coat color dilution in rabbits.

    Directory of Open Access Journals (Sweden)

    Stefanie Lehner

    Full Text Available Coat color dilution turns black coat color to blue and red color to cream and is a characteristic in many mammalian species. Matings among Netherland Dwarf, Loh, and Lionhead Dwarf rabbits over two generations gave evidence for a monogenic autosomal recessive inheritance of coat colour dilution. Histological analyses showed non-uniformly distributed, large, agglomerating melanin granules in the hair bulbs of coat color diluted rabbits. We sequenced the cDNA of MLPH in two dilute and one black rabbit for polymorphism detection. In both color diluted rabbits, skipping of exons 3 and 4 was present resulting in altered amino acids at p.QGL[37-39]QWA and a premature stop codon at p.K40*. Sequencing of genomic DNA revealed a c.111-5C>A splice acceptor mutation within the polypyrimidine tract of intron 2 within MLPH. This mutation presumably causes skipping of exons 3 and 4. In 14/15 dilute rabbits, the c.111-5C>A mutation was homozygous and in a further dilute rabbit, heterozygous and in combination with a homozygous frame shift mutation within exon 6 (c.585delG. In conclusion, our results demonstrated a colour dilution associated MLPH splice variant causing a strongly truncated protein (p.Q37QfsX4. An involvement of further MLPH-associated mutations needs further investigations.

  15. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain

    Directory of Open Access Journals (Sweden)

    Jill A. Dembowski

    2012-01-01

    Full Text Available Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5 splice site and negative regulation by several splicing factors, including SC35 (SRSF2 and ASF/SF2 (SRSF1, drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide.

  16. MED12 exon 2 mutations in phyllodes tumors of the breast

    International Nuclear Information System (INIS)

    Exon 2 of MED12, a subunit of the transcriptional mediator complex, has been frequently mutated in uterine leiomyomas and breast fibroadenomas; however, it has been rarely mutated in other tumors. Although the mutations were also found in uterine leiomyosarcomas, the frequency was significantly lower than in uterine leiomyomas. Here, we examined the MED12 mutation in phyllodes tumors, another biphasic tumor with epithelial and stromal components related to breast fibroadenomas. Mutations in MED12 exon 2 were analyzed in nine fibroadenomas and eleven phyllodes tumors via Sanger sequencing. A panel of cancer- and sarcoma-related genes was also analyzed using Ion Torrent next-generation sequencing. Six mutations in fibroadenomas, including those previously reported (6/9, 67%), and five mutations in phyllodes tumors (5/11, 45%) were observed. Three mutations in the phyllodes tumors were missense mutations at Gly44, which is common in uterine leiomyomas and breast fibroadenomas. In addition, two deletion mutations (in-frame c.133-144del12 and loss of splice acceptor c.100-68-137del106) were observed in the phyllodes tumors. No other recurrent mutation was observed with next-generation sequencing. Frequent mutations in MED12 exon 2 in the phyllodes tumors suggest that it may share genetic etiology with uterine leiomyoma, a subgroup of uterine leiomyosarcomas and breast fibroadenoma

  17. Plug-and-Play Genetic Access to Drosophila Cell Types Using Exchangeable Exon Cassettes

    Science.gov (United States)

    Diao, Fengqiu; Ironfield, Holly; Luan, Haojiang; Diao, Feici; Shropshire, William C.; Ewer, John; Marr, Elizabeth; Potter, Christopher J.; Landgraf, Matthias; White, Benjamin H.

    2015-01-01

    Summary Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here we introduce a simple, versatile method for achieving cell type-specific expression of transgenes that leverages the untapped potential of “coding introns” (i.e. introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted “plug-and-play” cassettes (called “Trojan exons”) that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system. PMID:25732830

  18. Characterization of Exon 2 and Intron 2 of Leptin Gene in Native Anatolian Goat Breeds

    Directory of Open Access Journals (Sweden)

    Özge BAKIRCIOĞLU

    2016-07-01

    Full Text Available Studies performed on farm animals like cattle and pig have shown that there has been a relationship between leptin gene (LEP and carcass meat quality, milk production and content, and economic parameters such as reproduction and food consumption. There has been scarce research conducted related to leptin gene of sheep and especially goat. The aim of the study is to reveal the genetic structures of goats living in Turkey through nucleotide sequence analysis in targeted zones of LEP gene Exon 2 and Intron 2 of Anatolian Black, Kilis and Angora goat breeds which are commonly fed in Anatolia. According to the sequence analysis results of each three breeds, Anatolian Black goat breed have the highest haplotype number with nucleotide and haplotype diversity both in exon 2 and intron 2. There was only one haplotype found in both exon 2 and intron 2 in Angora goat breed. There was no nucleotide diversity found in individuals belonging to Angora goat breed. Taking the regions analyzed for LEP gene into consideration, it is seen that Anatolian Black goat breed has the highest genetic diversity among other goat breeds fed in Anatolia. Future studies upon the LEP gene in goats should take into account of increasing the sample size and of base in order to obtain more useful information for better understanding the gene structure.

  19. Absence of regulated splicing of fibronectin EDA exon reduces atherosclerosis in mice

    Science.gov (United States)

    Babaev, Vladimir R.; Porro, Fabiola; Linton, MacRae F.; Fazio, Sergio; Baralle, Francisco E.; Muro, Andrés F.

    2008-01-01

    Atherosclerotic lesions are characterized by a profound alteration in the architecture of the arterial intima, with a marked increase of fibronectin (FN) and the appearance of the alternatively spliced FN variant containing the Extra Domain A (EDA). To analyze the role of FN isoforms in atherosclerotic lesion formation we utilized mouse strains devoid of EDA-exon regulated splicing, which constitutively include (EDA+/+) or exclude (EDA−/−) the exon. Both mutant mice had a 40% reduction in atherosclerotic lesions after the atherogenic-diet treatment (Mean±SE, μm2; 22969±2185; 13660±1533; 14260±2501 for EDAwt/wt, EDA+/+ and EDA−/−, respectively; p≤0.01 ANOVA test) associated to a lower capacity of macrophages to uptake modified LDL and undergo foam-cell formation. Lesions in control mice were more numerous and bigger, with augmented and deeper macrophage infiltration, and increased FN expression in the sub-endothelial area. Previous experiments have shown that apoE−/−EDA−/− mice have a decreased number and size of atherosclerotic lesions and, on this basis, it has been proposed that the EDA domain has a pro-atherogenic role. Our data with the EDA+/+ mice rules out this hypothesis and suggest that regulated splicing of the EDA exon of the FN gene is involved in progression of atherosclerosis, highlighting the importance of alternative splicing in regulating cellular processes. PMID:17897651

  20. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  1. Han Chinese patients with dopa-responsive dystonia exhibit a low frequency of exonic deletion in the GCH1 gene.

    Science.gov (United States)

    Shi, W T; Cai, C Y; Li, M S; Ling, C; Li, W D

    2015-01-01

    We identified three novel mutations of the GTP cyclohydrolase 1 (GCH1) gene in patients with familial dopa-responsive dystonia (DRD), but were unable to identify meaningful sporadic mutations in patients with no obvious family DRD background. To investigate whether GCH1 regional deletions account for the etiology of DRD, we screened for heterozygous exonic deletions in DRD families and in patients with sporadic DRD. Multiple ligation-dependent probe amplification analysis and quantitative real-time polymerase chain reaction amplification was performed in all members of our DRD cohort and in controls to detect exonic deletions in GCH1, tyrosine hydroxylase, and the epsilon-sarcoglycan-encoding (SGCE) genes. Using these techniques, we detected a GCH1 exon 1 heterozygous deletion in 1 of 10 patients with sporadic DRD. Therefore, we concluded that exonic deletion in the GCH1 gene only accounted for the etiology in a small percentage of patients with sporadic DRD in our Han Chinese cohort. PMID:26400349

  2. Enzyme activity analysis of CYP2C18 with exon 5 skipped

    Institute of Scientific and Technical Information of China (English)

    Jian ZHU-GE; Ying-nian YU

    2004-01-01

    AIM: To study the enzyme activity of CYP2C18 variant with exon 5 skipped. METHODS: A full length CYP2C18 cDNA X1 and an exon 5 skipped variant CYP2C18 X2 were separately subcloned into mammalian expression vector pREP9 to transfect HepG2 cells. The expression of CYP2C 18 mRNA in transgenic cells and human liver tissues were determined by RT-PCR. The enzyme activity of CYP2C18 to oxidate tolbutamide in postmitochondrial supernate (S9) fraction was determined by HPLC. The cytotoxicity of ifosfamide to transgenic cells was evaluated by MTT test. RESULTS: HepG2-CYP2C18 X1 cells showed strong expression of the full length CYP2C18 mRNA.On the other hand, HepG2-CYP2C 18 X2 cells had only infinitesimal expression of the exon-skipped CYP2C 18 as well as the full length CYP2C 18, while non-transfected HepG2 cell only demonstrated an infinitesimal expression of the full length CYP2C 18. The expression of CYP2C 18 exons 2 to 7 was also analyzed by RT-PCR in 7 extratumoral liver tissues. Among them, 3 samples expressed only wild type mRNA, whereas 4 samples expressed both wild type and alternative splicing products. The tolbutamide hydroxylase activity of CYP2C 18 was tested, and it was shown that HepG2-2C18 X1 cells had higher enzyme activity than those of HepG2-2C18 X2 and HepG2 cells. The relative survival of HepG2-CYP2C 18 X1 cells was lower than that of HepG2 cells with 1, 2, and 4 mmol/L ifosfamide treatments. In contrast, the relative survival of HepG2-CYP2C 18 X2 cell was the same as that of HepG2 cell in 0.5 and 1 mmol/L of ifosfamide, but lower than that of HepG2 cell in 2 and 4 mmol/L of ifosfamide. CONCLUSION:CYP2C 18 X 1 could metabolize tolbutamide and ifosfamide efficiently. The exon 5-skipped CYP2C 18 X2 could not metabolize tolbutamide, and could not metabolize ifosfamide effectively at low concentrations.

  3. Novel exons and splice variants in the human antibody heavy chain identified by single cell and single molecule sequencing.

    Directory of Open Access Journals (Sweden)

    Christopher Vollmers

    Full Text Available Antibody heavy chains contain a variable and a constant region. The constant region of the antibody heavy chain is encoded by multiple groups of exons which define the isotype and therefore many functional characteristics of the antibody. We performed both single B cell RNAseq and long read single molecule sequencing of antibody heavy chain transcripts and were able to identify novel exons for IGHA1 and IGHA2 as well as novel isoforms for IGHM antibody heavy chain.

  4. Triple-layer dissection of the lung adenocarcinoma transcriptome: regulation at the gene, transcript, and exon levels.

    Science.gov (United States)

    Hsu, Min-Kung; Wu, I-Ching; Cheng, Ching-Chia; Su, Jen-Liang; Hsieh, Chang-Huain; Lin, Yeong-Shin; Chen, Feng-Chi

    2015-10-01

    Lung adenocarcinoma is one of the most deadly human diseases. However, the molecular mechanisms underlying this disease, particularly RNA splicing, have remained underexplored. Here, we report a triple-level (gene-, transcript-, and exon-level) analysis of lung adenocarcinoma transcriptomes from 77 paired tumor and normal tissues, as well as an analysis pipeline to overcome genetic variability for accurate differentiation between tumor and normal tissues. We report three major results. First, more than 5,000 differentially expressed transcripts/exonic regions occur repeatedly in lung adenocarcinoma patients. These transcripts/exonic regions are enriched in nicotine metabolism and ribosomal functions in addition to the pathways enriched for differentially expressed genes (cell cycle, extracellular matrix receptor interaction, and axon guidance). Second, classification models based on rationally selected transcripts or exonic regions can reach accuracies of 0.93 to 1.00 in differentiating tumor from normal tissues. Of the 28 selected exonic regions, 26 regions correspond to alternative exons located in such regulators as tumor suppressor (GDF10), signal receptor (LYVE1), vascular-specific regulator (RASIP1), ubiquitination mediator (RNF5), and transcriptional repressor (TRIM27). Third, classification systems based on 13 to 14 differentially expressed genes yield accuracies near 100%. Genes selected by both detection methods include C16orf59, DAP3, ETV4, GABARAPL1, PPAR, RADIL, RSPO1, SERTM1, SRPK1, ST6GALNAC6, and TNXB. Our findings imply a multilayered lung adenocarcinoma regulome in which transcript-/exon-level regulation may be dissociated from gene-level regulation. Our described method may be used to identify potentially important genes/transcripts/exonic regions for the tumorigenesis of lung adenocarcinoma and to construct accurate tumor vs. normal classification systems for this disease.

  5. Sequence of DNA flanking the exons of the HEXA gene, and identification of mutations in Tay-Sachs disease.

    OpenAIRE

    Triggs-Raine, B L; Akerman, B R; Clarke, J T; Gravel, R A

    1991-01-01

    The rapid identification of mutations causing Tay-Sachs disease requires the capacity to readily screen the regions of the HEXA gene most likely to be affected by mutation. We have sequenced the portions of the introns flanking each of the 14 HEXA exons in order to specify oligonucleotide primers for the PCR-dependent amplification of each exon and splice-junction sequence. The amplified products were analyzed, by electrophoresis in nondenaturing polyacrylamide gels, for the presence of eithe...

  6. Novel Exons and Splice Variants in the Human Antibody Heavy Chain Identified by Single Cell and Single Molecule Sequencing

    Science.gov (United States)

    Vollmers, Christopher; Penland, Lolita; Kanbar, Jad N.; Quake, Stephen R.

    2015-01-01

    Antibody heavy chains contain a variable and a constant region. The constant region of the antibody heavy chain is encoded by multiple groups of exons which define the isotype and therefore many functional characteristics of the antibody. We performed both single B cell RNAseq and long read single molecule sequencing of antibody heavy chain transcripts and were able to identify novel exons for IGHA1 and IGHA2 as well as novel isoforms for IGHM antibody heavy chain. PMID:25611855

  7. Concomitant partial exon skipping by a unique missense mutation of RPS6KA3 causes Coffin-Lowry syndrome.

    Science.gov (United States)

    Labonne, Jonathan D J; Chung, Min Ji; Jones, Julie R; Anand, Priya; Wenzel, Wolfgang; Iacoboni, Daniela; Layman, Lawrence C; Kim, Hyung-Goo

    2016-01-01

    Coffin-Lowry syndrome (CLS) is an X-linked semi-dominant disorder characterized by diverse phenotypes including intellectual disability, facial and digital anomalies. Loss-of-function mutations in the Ribosomal Protein S6 Kinase Polypeptide 3 (RPS6KA3) gene have been shown to be responsible for CLS. Among the large number of mutations, however, no exonic mutation causing exon skipping has been described. Here, we report a male patient with CLS having a novel mutation at the 3' end of an exon at a splice donor junction. Interestingly, this nucleotide change causes both a novel missense mutation and partial exon skipping leading to a truncated transcript. These two transcripts were identified by cDNA sequencing of RT-PCR products. In the carrier mother, we found only wildtype transcripts suggesting skewed X-inactivation. Methylation studies confirmed X-inactivation was skewed moderately, but not completely, which is consistent with her mild phenotype. Western blot showed that the mutant RSK2 protein in the patient is expressed at similar levels relative to his mother. Protein modeling demonstrated that the missense mutation is damaging and may alter binding to ATP molecules. This is the first report of exon skipping from an exonic mutation of RPS6KA3, demonstrating that a missense mutation and concomitant disruption of normal splicing contribute to the manifestation of CLS. PMID:26297997

  8. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector

    International Nuclear Information System (INIS)

    A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4+ and CD8+ T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4+ and CD8+ T cell subsets

  9. A comparative study of N-glycolylneuraminic acid (Neu5Gc and cytotoxic T cell (CT carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Paul T Martin

    Full Text Available The expression of N-glycolylneuraminic acid (Neu5Gc and the cytotoxic T cell (CT carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95% in muscle from normal golden retriever crosses (GR, n = 3 and from golden retriever with muscular dystrophy (GRMD, n = 5 dogs at multiple ages (3, 6 and 13 months when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8⁺ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3, Becker (BMD, n = 3 and Duchenne (DMD, n = 3 muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans.

  10. Identification and evolutionary analysis of novel exons and alternative splicing events using cross-species EST-to-genome comparisons in human, mouse and rat

    Directory of Open Access Journals (Sweden)

    Ho Jar-Yi

    2006-03-01

    Full Text Available Abstract Background Alternative splicing (AS is important for evolution and major biological functions in complex organisms. However, the extent of AS in mammals other than human and mouse is largely unknown, making it difficult to study AS evolution in mammals and its biomedical implications. Results Here we describe a cross-species EST-to-genome comparison algorithm (ENACE that can identify novel exons for EST-scanty species and distinguish conserved and lineage-specific exons. The identified exons represent not only novel exons but also evolutionarily meaningful AS events that are not previously annotated. A genome-wide AS analysis in human, mouse and rat using ENACE reveals a total of 758 novel cassette-on exons and 167 novel retained introns that have no EST evidence from the same species. RT-PCR-sequencing experiments validated ~50 ~80% of the tested exons, indicating high presence of exons predicted by ENACE. ENACE is particularly powerful when applied to closely related species. In addition, our analysis shows that the ENACE-identified AS exons tend not to pass the nonsynonymous-to-synonymous substitution ratio test and not to contain protein domain, implying that such exons may be under positive selection or relaxed negative selection. These AS exons may contribute to considerable inter-species functional divergence. Our analysis further indicates that a large number of exons may have been gained or lost during mammalian evolution. Moreover, a functional analysis shows that inter-species divergence of AS events may be substantial in protein carriers and receptor proteins in mammals. These exons may be of interest to studies of AS evolution. The ENACE programs and sequences of the ENACE-identified AS events are available for download. Conclusion ENACE can identify potential novel cassette exons and retained introns between closely related species using a comparative approach. It can also provide information regarding lineage- or species

  11. Knockdown of dystrophin Dp71 impairs PC12 cells cycle: localization in the spindle and cytokinesis structures implies a role for Dp71 in cell division.

    Directory of Open Access Journals (Sweden)

    Marcela Villarreal-Silva

    Full Text Available The function of dystrophin Dp71 in neuronal cells remains to be established. Previously, we revealed the involvement of this protein in both nerve growth factor (NGF-induced neuronal differentiation and cell adhesion by isolation and characterization of PC12 neuronal cells with depleted levels of Dp71. In this work, a novel phenotype of Dp71-knockdown cells was characterized, which is their delayed growth rate. Cell cycle analyses revealed an altered behavior of Dp71-depleted cells, which consists of a delay in G0/G1 transition and an increase in apoptosis during nocodazole-induced mitotic arrest. Dp71 associates with lamin B1 and β-dystroglycan, proteins involved in aspects of the cell division cycle; therefore, we compared the distribution of Dp71 with that of lamin B1 and β-dystroglycan in PC12 cells at mitosis and cytokinesis by means of immunofluorescence and confocal microscopy analysis. All of these three proteins exhibited a similar immunostaining pattern, localized at mitotic spindle, cleavage furrow, and midbody. It is noteworthy that a drastic decreased staining in mitotic spindle, cleavage furrow, and midbody was observed for both lamin B1 and β-dystroglycan in Dp71-depleted cells. Furthermore, we demonstrated the interaction of Dp71 with lamin B1 in PC12 cells by immunoprecipitation and pull-down assays, and importantly, we revealed that knockdown of Dp71 expression caused a marked reduction in lamin B1 levels and altered localization of the nuclear envelope protein emerin. Our data indicate that Dp71 is a component of the mitotic spindle and cytokinesis multi-protein apparatuses that might modulate the cell division cycle by affecting lamin B1 and β-dystroglycan levels.

  12. Study on genetic variability in MHC-DRB1 second exon in Makuie sheep breed population

    Directory of Open Access Journals (Sweden)

    Ashrafi Fereshteh

    2014-01-01

    Full Text Available In the present study polymorphism of the exon 2 of MHC (Major Histocompatibility Complex gene in Makuie sheep breed was studied. Genomic DNA from blood samples of 90 sheep was extracted and a 279 bp MHC exon 2 fragment was amplified using polymerase chain reaction (PCR. PCR products were subjected to enzymatic digestion using RsaI endonuclease. Digested PCR products were electrophoresed on 2% agarose gel. The results showed the existence of 10 alleles: A, B, E, F, I, M, O, P, Q and V for the exon 2 of the MHC gene, with the frequencies of 0.4756, 0.0976, 0.0183, 0.0366, 0.0549, 0.0122, 0.1098, 0.0915, 0.0854 and 0.0183, respectively. Eighteen genotypes: AA, AB, AE, FF, AM, BO, EO, IO, OM, AP, BP, OP, PP, AQ, OQ, PQ, QQ and AV with the frequencies of 0.317, 0.1585, 0.0121, 0.0365, 0.0121, 0.0243, 0.0243, 0.1097, 0.0121, 0.0487, 0.0121, 0.0365, 0.0365, 0.0487, 0.0121, 0.0121, 0.0487 and 0.0365, respectively were identified in the population under study. Effective number of alleles and heterozygosity for the examined region were 3.7231 and 0.7314, respectively. Chi-square test showed that the examined sheep population was not in Hardy-Weinberg equilibrium in the examined region.

  13. Mutation Scanning in Wheat by Exon Capture and Next-Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Robert King

    Full Text Available Targeted Induced Local Lesions in Genomes (TILLING is a reverse genetics approach to identify novel sequence variation in genomes, with the aims of investigating gene function and/or developing useful alleles for breeding. Despite recent advances in wheat genomics, most current TILLING methods are low to medium in throughput, being based on PCR amplification of the target genes. We performed a pilot-scale evaluation of TILLING in wheat by next-generation sequencing through exon capture. An oligonucleotide-based enrichment array covering ~2 Mbp of wheat coding sequence was used to carry out exon capture and sequencing on three mutagenised lines of wheat containing previously-identified mutations in the TaGA20ox1 homoeologous genes. After testing different mapping algorithms and settings, candidate SNPs were identified by mapping to the IWGSC wheat Chromosome Survey Sequences. Where sequence data for all three homoeologues were found in the reference, mutant calls were unambiguous; however, where the reference lacked one or two of the homoeologues, captured reads from these genes were mis-mapped to other homoeologues, resulting either in dilution of the variant allele frequency or assignment of mutations to the wrong homoeologue. Competitive PCR assays were used to validate the putative SNPs and estimate cut-off levels for SNP filtering. At least 464 high-confidence SNPs were detected across the three mutagenized lines, including the three known alleles in TaGA20ox1, indicating a mutation rate of ~35 SNPs per Mb, similar to that estimated by PCR-based TILLING. This demonstrates the feasibility of using exon capture for genome re-sequencing as a method of mutation detection in polyploid wheat, but accurate mutation calling will require an improved genomic reference with more comprehensive coverage of homoeologues.

  14. Normal phenotype in conditional androgen receptor (AR) exon 3-floxed neomycin-negative male mice.

    Science.gov (United States)

    Rana, Kesha; Clarke, Michele V; Zajac, Jeffrey D; Davey, Rachel A; MacLean, Helen E

    2014-01-01

    Androgens (testosterone and dihydrotestosterone) acting via the androgen receptor (AR) are required for male sexual differentiation, and also regulate the development of many other tissues including muscle, fat and bone. We previously generated an AR(lox) mouse line with exon 3 of the AR gene targeted by loxP sites. The deletion of exon 3 is in-frame, so only the DNA binding-dependent actions of the AR are deleted, but non-DNA binding-dependent actions are retained. This line also contained an antibiotic resistance selection cassette, neomycin (neo) in intron 3, which was also flanked by loxP sites. Hemizygous AR(lox) male mice demonstrated a phenotype of hyperandrogenization, with increased mass of androgen-dependent tissues. We hypothesized that this hyperandrogenization was likely to be due to the presence of the neo cassette. In this study, we have generated an AR(lox) neo-negative mouse line, using the EIIa-cre deleter mouse line to remove the neo cassette. Hemizygous AR(lox) neo-negative male mice have a normal phenotype, with normal body mass and normal mass of androgen-dependent tissues including the testis, seminal vesicles, kidney, spleen, heart and retroperitoneal fat. This neo-negative exon 3-targeted mouse line is the only floxed AR mouse line available to study the DNA binding-dependent actions of the AR in a tissue-specific manner, and is suitable for investigation in all tissues. This study demonstrates the importance of removing the selection cassette, which can potentially alter the phenotype of floxed mouse lines even in the absence of detectable effects on target gene expression.

  15. Mutations in a novel, cryptic exon of the luteinizing hormone/chorionic gonadotropin receptor gene cause male pseudohermaphroditism.

    Directory of Open Access Journals (Sweden)

    Nina Kossack

    2008-04-01

    Full Text Available BACKGROUND: Male pseudohermaphroditism, or Leydig cell hypoplasia (LCH, is an autosomal recessive disorder in individuals with a 46,XY karyotype, characterized by a predominantly female phenotype, a blind-ending vagina, absence of breast development, primary amenorrhea, and the presence of testicular structures. It is caused by mutations in the luteinizing hormone/chorionic gonadotropin receptor gene (LHCGR, which impair either LH/CG binding or signal transduction. However, molecular analysis has revealed that the LHCGR is apparently normal in about 50% of patients with the full clinical phenotype of LCH. We therefore searched the LHCGR for novel genomic elements causative for LCH. METHODS AND FINDINGS: In the present study we have identified a novel, primate-specific bona fide exon (exon 6A within the LHCGR gene. It displays composite characteristics of an internal/terminal exon and possesses stop codons triggering nonsense-mediated mRNA decay (NMD in LHCGR. Transcripts including exon 6A are physiologically highly expressed in human testes and granulosa cells, and result in an intracellular, truncated LHCGR protein of 209 amino acids. We sequenced exon 6A in 16 patients with unexplained LCH and detected mutations in three patients. Functional studies revealed a dramatic increase in the expression of the mutated internal exon 6A transcripts, indicating aberrant NMD. These altered ratios of LHCGR transcripts result in the generation of predominantly nonfunctional LHCGR isoforms, thereby preventing proper expression and functioning. CONCLUSIONS: The identification and characterization of this novel exon not only identifies a new regulatory element within the genomic organization of LHCGR, but also points toward a complex network of receptor regulation, including events at the transcriptional level. These findings add to the molecular diagnostic tools for LCH and extend our understanding of the endocrine regulation of sexual differentiation.

  16. Exon sequence requirements for excision in vivo of the bacterial group II intron RmInt1

    Directory of Open Access Journals (Sweden)

    Toro Nicolás

    2011-05-01

    Full Text Available Abstract Background Group II intron splicing proceeds through two sequential transesterification reactions in which the 5' and 3'-exons are joined together and the lariat intron is released. The intron-encoded protein (IEP assists the splicing of the intron in vivo and remains bound to the excised intron lariat RNA in a ribonucleoprotein particle (RNP that promotes intron mobility. Exon recognition occurs through base-pairing interactions between two guide sequences on the ribozyme domain dI known as EBS1 and EBS2 and two stretches of sequence known as IBS1 and IBS2 on the 5' exon, whereas the 3' exon is recognized through interaction with the sequence immediately upstream from EBS1 [(δ-δ' interaction (subgroup IIA] or with a nucleotide [(EBS3-IBS3 interaction (subgroup IIB and IIC] located in the coordination-loop of dI. The δ nucleotide is involved in base pairing with another intron residue (δ' in subgroup IIB introns and this interaction facilitates base pairing between the 5' exon and the intron. Results In this study, we investigated nucleotide requirements in the distal 5'- and 3' exon regions, EBS-IBS interactions and δ-δ' pairing for excision of the group IIB intron RmInt1 in vivo. We found that the EBS1-IBS1 interaction was required and sufficient for RmInt1 excision. In addition, we provide evidence for the occurrence of canonical δ-δ' pairing and its importance for the intron excision in vivo. Conclusions The excision in vivo of the RmInt1 intron is a favored process, with very few constraints for sequence recognition in both the 5' and 3'-exons. Our results contribute to understand how group II introns spread in nature, and might facilitate the use of RmInt1 in gene targeting.

  17. Sequences and polymorphisms of exons 3 and 4 in porcine UCP2 gene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Uncoupling proteins are mitochondrial membrane transporters, which regulate metabolic pathways of energy balance, and are associated with biological traits of animal body weight, resting metabolic rates and energy conversion. In this study, a region of the exons 3 and 4 of pig UCP2 gene was cloned and analyzed, and a new single nucleotide polymorphic site was detected by PCR-SSCP in five pig breeds. This newfound polymorphism results from a T to G substitution at the position of nucleotide 272, which is located in intron3.

  18. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy

    OpenAIRE

    Taniguchi-Ikeda, Mariko; Kobayashi, Kazuhiro; Kanagawa, Motoi; Yu, Chih-Chieh; Mori, Kouhei; Oda, Tetsuya; Kuga, Atsushi; Kurahashi, Hiroki; Akman, Hasan O.; DiMauro, Salvatore; Kaji, Ryuji; Yokota, Toshifumi; Takeda, Shin’ichi; Toda, Tatsushi

    2011-01-01

    Fukuyama muscular dystrophy (FCMD; MIM253800), one of the most common autosomal recessive disorders in Japan, was the first human disease found to result from ancestral insertion of a SINE-VNTR-Alu (SVA) retrotransposon into a causative gene 1-3 . In FCMD, the SVA insertion occurs in the 3′-untranslated region (UTR) of the fukutin gene. The pathogenic mechanism for FCMD is unknown, and no effective clinical treatments exist. Here we show that aberrant mRNA splicing, induced by SVA exon-trappi...

  19. Wilson's disease caused by alternative splicing and Alu exonization due to a homozygous 3039-bp deletion spanning from intron 1 to exon 2 of the ATP7B gene.

    Science.gov (United States)

    Mameli, Eva; Lepori, Maria Barbara; Chiappe, Francesca; Ranucci, Giusy; Di Dato, Fabiola; Iorio, Raffaele; Loudianos, Georgios

    2015-09-15

    We describe a case of Wilson's disease (WD) diagnosed at 5 years after routine biochemical test showed increased aminotransferases. Mutation analysis of the ATP7B gene revealed a 3039-bp deletion in the homozygous state spanning from the terminal part of intron 1 to nt position 368 of exon 2. This deletion results in the activation of 3 cryptic splice sites: an AG acceptor splice site in nt positions 578-579 producing a different breakpoint and removing the first 577 nts of exon 2, an acceptor and a donor splice site in nt positions 20363-4 and 20456-7, respectively, in intron 1, resulting in the activation of a 94-bp cryptic Alu exon being incorporated into the mature transcript. The resulting alternative transcript contains a TAG stop codon in the first amino acid position of the cryptic exon, likely producing a truncated, non-functional protein. This study shows that intron exonization can also occur in humans through naturally occurring gross deletions. The results suggest that the combination of DNA and RNA analyses can be used for molecular characterization of gross ATP7B deletions, thus improving genetic counseling and diagnosis of WD. Moreover these studies help to better establish new molecular mechanisms producing Wilson's disease.

  20. Clinical Characteristics and Outcomes of Lung Cancer Patients 
with EGFR Mutations in Exons 19 and 21

    Directory of Open Access Journals (Sweden)

    Renwang LIU

    2014-11-01

    Full Text Available Background and objective Studies on the epidermal growth factor receptor (EGFR signaling pathways and the therapeutic effects of EGFR-tyrosine kinase inhibitors (EGFR-TKIs have recently proven that targeted therapy has a major role in the treatment of lung cancer. However, the therapeutic effects of EGFR-TKIs on lung cancers with different EGFR mutation subtypes remain unclear. And if there is a significant difference in the effects of EGFR-TKIs, the mechanisms for the difference remain unclear. The aim of this study was to investigate the clinical importance of EGFR mutations in exons 19 and 21 of lung cancer patients and to compare the outcomes of these patients. Methods The study recruited 113 patients who had non-small cell lung cancer (NSCLC with EGFR mutations. EGFR mutations were detected for 47 patients using Real-time PCR or DNA sequencinag. The mutations of the remaining patients were determined using xTag-EGFR liquid chip technology. All stages I-III patients underwent radical resection followed by 4 cycles of postoperative chemotherapy. Patients with pleural metastases underwent pleural biopsy, pleurodesis, and chemotherapy only. Patients with distant metastases underwent biopsy and chemotherapy only. Collected clinical data were analyzed using SPSS 19.0 software. Results EGFR exon mutations 19 and 21 were found in 56 and 57 patients, respectively. The mean age of patients with exon 19 mutations was lower than the age of the patients with exon 21 mutations (57.02±11.31 years vs 62.25±7.76 years, respectively; P0.05 between the patients with exon 19 and 21 mutations; and survival analysis of 91 (80.5% patients with complete clinical data found no differences in overall survival. Stratification analysis found out that patients with exon 19 mutations had longer overall survival associated with age>61 years, male gender, ever smoking, and stage IV disease; although the differences were not significant. Conclusion Compared to the lung

  1. Dietary Methionine Affect Meat Qulity and Myostatin Gene Exon 1 Region Methylation in Skeletal Muscle Tissues of Broilers

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-qing; ZONG Kai; ZHANG Li-li; CAO Shu-qing

    2010-01-01

    Dietary amino acids imbalance will result in stunted broiler performance and deteriorated meat quality,which are involved in various biochemical cycles in vivo.In this study,the effects of dietary methionine on meat quality and methylation of myostatin exon 1 were investigated.Drip loss of the broilers fed with diet of high methionine levels(0.2%)increased from(6.3±0.1)%(control group)to(10.1±1.0)%,and the muscle shearing force increased from(22.8±1.9)N(control group)to(26.3±2.3)N.Moreover,many CpG sites were found at the myostatin exon 1 region(nucleotides 2360-2540 bp).To further understand the regulation of broiler myostatin expression,the methylation status of broiler myostatin exon 1 and its mRNA expression were analyzed.At the myostatin exon 1 region where CG enriches(nucleotides 2360-2540 bp),the percentages of methylation were 46 and 84% in low Met and high Met content groups after 55-d feeding,respectively.In skeletal muscle tissues,the exon 1 hypermethylation status of myostatin gene was found to be negatively correlated with the gene expression.These results suggested that methylation of this gene is a dynamic process,which plays a dominant role in regulating gene expression for development of individuals.

  2. Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5’ splice site within Col2a1 exon 2

    OpenAIRE

    Hering, Thomas M.; Wirthlin, Louisa; Ravindran, Soumya; McAlinden, Audrey

    2014-01-01

    This study describes a new mechanism controlling the production of alternatively-spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively-spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codo...

  3. Identification of the uncommon allele HLA-A*7403 in a Caucasian renal transplant cadaveric donor: extension of the exon 4 sequence.

    Science.gov (United States)

    Canossi, A; Del Beato, T; Piazza, A; Liberatore, G; Ozzella, G; Tessitore, A; Adorno, D

    2007-06-01

    This report describes the unknown exon 4 sequence of the rare A*7403 allele, identified in a Caucasian renal transplant cadaveric donor from Italy. This sequence is identical to that of the only known A*7401 exon 4, and this result allowed us to confirm the hypothesis of the generation of A*7403 allele from the ancestor A*7402 by point mutation in exon 2.

  4. Assembly of splicing complexes on exon 11 of the human insulin receptor gene does not correlate with splicing efficiency in-vitro

    OpenAIRE

    Caples Matt; Evans Lui-Guojing; Webster Nicholas JG; Erker Laura; Chew Shern L

    2004-01-01

    Abstract Background Incorporation of exon 11 of the insulin receptor gene is both developmentally and hormonally-regulated. Previously, we have shown the presence of enhancer and silencer elements that modulate the incorporation of the small 36-nucleotide exon. In this study, we investigated the role of inherent splice site strength in the alternative splicing decision and whether recognition of the splice sites is the major determinant of exon incorporation. Results We found that mutation of...

  5. Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data.

    Directory of Open Access Journals (Sweden)

    Xuejun Liu

    Full Text Available RNA-seq technology has become an important tool for quantifying the gene and transcript expression in transcriptome study. The two major difficulties for the gene and transcript expression quantification are the read mapping ambiguity and the overdispersion of the read distribution along reference sequence. Many approaches have been proposed to deal with these difficulties. A number of existing methods use Poisson distribution to model the read counts and this easily splits the counts into the contributions from multiple transcripts. Meanwhile, various solutions were put forward to account for the overdispersion in the Poisson models. By checking the similarities among the variation patterns of read counts for individual genes, we found that the count variation is exon-specific and has the conserved pattern across the samples for each individual gene. We introduce Gamma-distributed latent variables to model the read sequencing preference for each exon. These variables are embedded to the rate parameter of a Poisson model to account for the overdispersion of read distribution. The model is tractable since the Gamma priors can be integrated out in the maximum likelihood estimation. We evaluate the proposed approach, PGseq, using four real datasets and one simulated dataset, and compare its performance with other popular methods. Results show that PGseq presents competitive performance compared to other alternatives in terms of accuracy in the gene and transcript expression calculation and in the downstream differential expression analysis. Especially, we show the advantage of our method in the analysis of low expression.

  6. Coexisting JAK2V617F and CALR Exon 9 Mutation in Essential Thrombocythemia.

    Science.gov (United States)

    Rashid, Munazza; Ahmed, Rifat Zubair; Ahmed, Shariq; Nadeem, Muhammad; Ahmed, Nuzhat; Shamsi, Tahir Sultan

    2016-06-01

    Classic "BCR-ABL1-negative" MPN is an operational sub-category of MPN that includes polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) harboring JAK2V617F as the most common mutation. JAK2V617F can be detected in about 95 % of patients with PV while remaining 5 % of PV patients carry a somatic mutation of JAK2 exon 12. Approximately one-third of patients with ET or PMF do not carry any mutation in JAK2 or MPL. In December 2013, mutations were described in calreticulin (CALR) gene in 67-71 and 56-88 % of JAK2V617F and MPL negative patients with ET and PMF, respectively. Since this discovery CALR mutations have been reported to be mutually exclusive with JAK2V617F or MPL mutations. However recently few studies (eleven published reports) reported the coexistence of JAK2V617F and CALR in MPN. In the present study we are reporting JAK2V617F positive ET patient from our center with coexisting CALR exon 9 mutation type c.1214_1225del12 (p.E405_D408del) that was never reported before as a coexisting mutation and describing in detail the clinical outcomes. PMID:27408370

  7. SinEx DB: a database for single exon coding sequences in mammalian genomes.

    Science.gov (United States)

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl.

  8. Direct identification of all oncogenic mutants in KRAS exon 1 by cycling temperature capillary electrophoresis.

    Science.gov (United States)

    Bjørheim, Jens; Gaudernack, Gustav; Giercksky, Karl-Erik; Ekstrøm, Per O

    2003-01-01

    Over the past few decades, advances in genetics and molecular biology have revolutionized our understanding of cancer initiation and progression. Molecular progression models outlining genetic events have been developed for many solid tumors, including colon cancer. Previous reports in the literature have shown a relationship between different KRAS mutations and prognosis and response to medical treatment in colon cancer patients. Furthermore, the presence of a mutated KRAS has been correlated with different clinicopathological variables including age and gender of patients and tumor location. To our knowledge, few institutions screen for KRAS mutations on regular basis in colon cancer patients despite such evidence that knowledge of KRAS exon 1 status is informative. Here, we report on a mutation analysis method adapted to a 96-capillary electrophoresis instrument that allows identification of all 12 oncogenic mutations in KRAS exon 1 under denaturing conditions. To determine the optimal parameters, a series of DNA constructs generated by site-directed mutagenesis was analyzed and the migration times of all mutant peaks were measured. A classification tree was then made based on the differences in migration time between the mutants and an internal standard. A randomized series of 500 samples constructed with mutagenesis as well as 60 blind samples from sporadic colon carcinomas was analyzed to test the method. No wild-type samples were scored as mutants and all mutants were correctly identified. Post polymerase chain reaction (PCR) analysis time of 96 samples was performed within 40 min. PMID:12652573

  9. Growth hormone receptor exon 3 isoforms and their implication in growth disorders and treatment.

    Science.gov (United States)

    Jorge, Alexander A L; Arnhold, Ivo J P

    2009-04-01

    Human recombinant growth hormone (hGH) has been used to treat short stature in several different conditions, but considerable inter-individual variation in short- and long-term growth response exists. Pharmacogenomics can provide important insights into hGH therapy. The GH receptor (GHR) is the first key molecule mediating GH action. In the past 3 years, a common GHR polymorphism reflecting the presence (GHRfl) or absence (GHRd3) of exon 3 has been under intensive investigation regarding its influence on the response to hGH therapy. Studies that evaluated response to GH treatment determined by these two GHR isoforms in children with GH deficiency, girls with Turner syndrome, children born small for gestational age and patients with acromegaly showed that patients carrying the GHRd3 allele demonstrated a greater GH sensitivity than patients homozygous for the GHRfl allele. Other studies presented contradictory data, however, which may be caused by confounding factors such as small sample sizes and differences in experimental design. This GHR exon 3 genotype is the first identified genetic factor found to modulate the individual response to GH therapy. This article reviews the historical aspects and pharmacogenetic studies published to date in relation to this GHR polymorphism. The analyses of present and future validation studies may define the use of this and other polymorphisms in clinical practice, moving from pharmacogenetics to routine application and allowing individualization of hGH doses to optimize final outcome.

  10. Point mutation in exon 4 of presenilin-1 gene and early-onset familial Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Yu Liao; Fan Zhao

    2006-01-01

    BACKGROUND:A total of 50 missense mutations of presenilin-1 (PS-1) have been found thus far in early-onset familial Alzheimer disease(EOFAD),PS-1 gene might be a causative gene for Chinese EOFAD.OBJECTIVE:To investigate mutation of PS-1 gene in the blood of Chinese patients with familial Alzheimer disease(FAD).DESIGN:A design with randomized control and repeated sequencing.SETTlNG:Department of Neurology,the Second People's Hospital of Wuxi.PARTICIPANTS:The experiment was carried out in Huaihua Hospital Affiliated to Nanhua University in September 1993.Eight FAD patients were graded as FAD group.There were 6 males and 2 females with the mean age of(36±16)years.The control group was composed of 42 persons,including 8 hospitalized SAD patients diagnosed according to the criteria of Practical Neuralgia and conformed to the revised fourth edition of the Diagnostic and Statistical Manual of Mental Disorders(DCM-Ⅳ-TR),11 dementia patients caused by multipie cerebral infarction,13 normal persons in the FAD family mentioned above family,and 10 normal healthy adults provided by the health examination section of our hospital.METHODS:GeneAmp PCR System 2400 (Applied Biosystems,USA),DNA-Sequencer Model 310(Perkin Elmer,USA),Taq DNA Polymerase(Fermentas,Canada).All reagents used for DNA extraction were prepared with analytical reagents manufactured in China.The samples were stratified carefully,collected the leukocytic cream from the interface,added STMT to each sample and vortexed to suspend evenly.Then the samples were centrifugated.The nuclear pellet was resuspended in digestion solution with proteinase K and incubated under appropriate condition.Genomic DNA was extract with phenol/chloroform,precipitated with dehvdraled ethanol,and washed with 70%sterilized ethanol.Finally,genomic DNA was dissolved in ultra pure water and stored for Iater use.The sequences were 5'-ACT AAC AAT GGA TGA CCT GGT GAA ATC-3'and 3'-ACG GTC TGA CCT AAG TGA ATA GTA GAG-5' to flank the exon 2 of

  11. FGFR2 exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss, and Pfeiffer syndromes: Evidence for missense changes, insertions, and a deletion due to alternative RNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, G.A.; Przylepa, K.A.; Scott, A.F. [Johns Hopkins Hospital, Baltimore, MD (United States)] [and others

    1996-03-01

    Fibroblast growth factor receptor 2 (FGFR2) mutations have been associated with the craniosynostotic conditions Crouzon, Jackson-Weiss, and Pfeiffer syndromes. Previously, mutations were described in the exons IIIa and IIIc, which form the extracellular, third immunoglobulin-like domain (IgM) and adjacent linker regions, both of which are normally involved in ligand binding. For all three conditions, mutations were found in exon IIIc. Only in Crouzon syndrome were mutations identified in exon IIIa. In this study, 39 cases with one of these three conditions were screened for exon IIIa or IIIc mutations. Eleven mutations are reported in 17 unrelated cases. Mutations in exon IIIa are identified for not only Crouzon but also Jackson-Weiss and Pfeiffer syndromes. Four mutations in either exon IIIa or exon IIIc reported only in Crouzon syndrome are present also in one of the other two syndromes. Two insertions, one in exon IIIa in a Crouzon syndrome patient and the other in exon IIIc in a Pfeiffer syndrome patient, were observed. The latter mutation has the same alternative RNA splicing effect as a reported synonymous mutation for Crouzon syndrome. A missense mutation was detected in one Pfeiffer syndrome family in which two members had craniosynostosis without limb anomalies. The inter- and intrafamilial variability in expression of FGFR2 mutations suggests that these three syndromes, presumed to be clinically distinct, are instead representative of a spectrum of related craniosynostotic and digital disorders. 16 refs., 3 figs., 1 tab.

  12. Analysis of the functional consequences of targeted exon deletion in COL7A1 reveals prospects for dystrophic epidermolysis bullosa therapy.

    Science.gov (United States)

    Bornert, Olivier; Kühl, Tobias; Bremer, Jeroen; van den Akker, Peter C; Pasmooij, Anna Mg; Nyström, Alexander

    2016-08-01

    Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB)-a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therapeutic potential of this approach is critically dependent on gene, protein, and disease intrinsic factors. Naturally occurring exon skipping in COL7A1, translating collagen VII, suggests that skipping of exons containing disease-causing mutations may be feasible for the treatment of DEB. However, despite a primarily in-frame arrangement of exons in the COL7A1 gene, no general conclusion of the aptitude of exon skipping for DEB can be drawn, since regulation of collagen VII functionality is complex involving folding, intra- and intermolecular interactions. To directly address this, we deleted two conceptually important exons located at both ends of COL7A1, exon 13, containing recurrent mutations, and exon 105, predicted to impact folding. The resulting recombinantly expressed proteins showed conserved functionality in biochemical and in vitro assays. Injected into DEB mice, the proteins promoted skin stability. By demonstrating functionality of internally deleted collagen VII variants, our study provides support of targeted exon deletion or skipping as a potential therapy to treat a large number of individuals with DEB. PMID:27157667

  13. Assembly of splicing complexes on exon 11 of the human insulin receptor gene does not correlate with splicing efficiency in-vitro

    Directory of Open Access Journals (Sweden)

    Caples Matt

    2004-07-01

    Full Text Available Abstract Background Incorporation of exon 11 of the insulin receptor gene is both developmentally and hormonally-regulated. Previously, we have shown the presence of enhancer and silencer elements that modulate the incorporation of the small 36-nucleotide exon. In this study, we investigated the role of inherent splice site strength in the alternative splicing decision and whether recognition of the splice sites is the major determinant of exon incorporation. Results We found that mutation of the flanking sub-optimal splice sites to consensus sequences caused the exon to be constitutively spliced in-vivo. These findings are consistent with the exon-definition model for splicing. In-vitro splicing of RNA templates containing exon 11 and portions of the upstream intron recapitulated the regulation seen in-vivo. Unexpectedly, we found that the splice sites are occupied and spliceosomal complex A was assembled on all templates in-vitro irrespective of splicing efficiency. Conclusion These findings demonstrate that the exon-definition model explains alternative splicing of exon 11 in the IR gene in-vivo but not in-vitro. The in-vitro results suggest that the regulation occurs at a later step in spliceosome assembly on this exon.

  14. Common N-acetylgalactosamine-6-sulfate sulfatase (GALNS exon mutations in Brazilian patients with mucopolysaccharidosis IVA (MPS IVA

    Directory of Open Access Journals (Sweden)

    Tatiana Dieter

    2007-01-01

    Full Text Available Morquio A Syndrome (mucopolysaccharidosis IVA - MPS IVA, OMIM# 253000 is an autosomal recessive inborn error of metabolism caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS. We investigated five unrelated Brazilian MPS IVA families for mutations in exons 4, 5, 9 and 10 of the GALNS gene. Six out of the 10 mutant alleles were identified. Taken together with a previous study, which included six unrelated families, common mutations among Brazilian patients were p.N164T, p.G116S and p.G301C. Among one hundred control subjects three novel silent mutations were found (p.A107A; GCC -> GCT, p.Y108Y; TAC -> TAT, p.P357P; CCG -> CCA. Screening starting with exons 4, 5, 9, 10 and 11 may be a good strategy for genotyping of Brazilian patients since these exons include 73% of all mutations identified in the current and previous studies.

  15. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools.

    Directory of Open Access Journals (Sweden)

    Omar Soukarieh

    2016-01-01

    Full Text Available The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient's RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants, including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs. We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases.

  16. Dissecting an alternative splicing analysis workflow for GeneChip® Exon 1.0 ST Affymetrix arrays

    Directory of Open Access Journals (Sweden)

    Calogero Raffaele A

    2008-11-01

    Full Text Available Abstract Background A new microarray platform (GeneChip® Exon 1.0 ST has recently been developed by Affymetrix http://www.affymetrix.com. This microarray platform changes the conventional view of transcript analysis since it allows the evaluation of the expression level of a transcript by querying each exon component. The Exon 1.0 ST platform does however raise some issues regarding the approaches to be used in identifying genome-wide alternative splicing events (ASEs. In this study an exon-level data analysis workflow is dissected in order to detect limit and strength of each step, thus modifying the overall workflow and thereby optimizing the detection of ASEs. Results This study was carried out using a semi-synthetic exon-skipping benchmark experiment embedding a total of 268 exon skipping events. Our results point out that summarization methods (RMA, PLIER do not affect the efficacy of statistical tools in detecting ASEs. However, data pre-filtering is mandatory if the detected number of false ASEs are to be reduced. MiDAS and Rank Product methods efficiently detect true ASEs but they suffer from the lack of multiple test error correction. The intersection of MiDAS and Rank Product results efficiently moderates the detection of false ASEs. Conclusion To optimize the detection of ASEs we propose the following workflow: i data pre-filtering, ii statistical selection of ASEs using both MiDAS and Rank Product, iii intersection of results derived from the two statistical analyses in order to moderate family-wise errors (FWER.

  17. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools

    Science.gov (United States)

    Soukarieh, Omar; Gaildrat, Pascaline; Hamieh, Mohamad; Drouet, Aurélie; Baert-Desurmont, Stéphanie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra

    2016-01-01

    The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases. PMID:26761715

  18. 44号内含子并非是dystrophin基因中央缺失热区最不稳定的内含子%Intron 44 is not the most unstable intron in the “central deletion hot spot” of dystrophin gene

    Institute of Scientific and Technical Information of China (English)

    潘速跃; 谢咏梅; 张成; 刘焯霖; 陈国俊; 卢锡林

    2001-01-01

    Objective To understand the distributional characteristics of dystrophin gene deletion breakpoints in “central deletion hot spot” and analyze the instability of introns 44-51 after excluding the effect of intron's length. Methods Fifty-nine Duchenne/Becker muscular dystrophy(DMD/BMD) patients were detected by polymerase chain reactions with the primers to amplify exons 44-52 of dystrophin gene. The amount of actual breakpoints, expected breakpoints according to its length, and the ratios of actual breakpoints to expected values(A/E) for introns 44-51 were calculated respectively. Results  In “central deletion hot spot”, about 30.8% of breakpoints fell in intron 44, about 23.1%, 17.9%, 10.3%, 10.3% of breakpoints fell in introns 50,51, 45, 48, respectively. But the amount of actual breakpoints of intron 44 was less than that of expected breakpoints according to its length, the ratio of A/E was 0.7. The amount of actual breakpoints of introns 48, 50, 51, 45 were more than that of length expected value. The ratios of A/E were 2.7, 2.0, 1.9, 1.1, respectively. Conclusion  Intron 44 is more stable than the whole molecular region of “central deletion hot spot”. Introns 48, 50 and 51 are comparatively instable in “central deletion hot spot”.%目的了解Duchenne/Becher型肌营养不良症(Duchenne/Becker muscular dystrophy, DMD/BMD)患者中央缺失热区44~51内含子断裂点分布情况,并结合内含子长度,在排除了内含子长度的影响因素后对中央缺失热区各内含子的不稳定性进行分析。方法 PCR检测59例DMD/BMD患者dystrophin蛋白基因44~52号9个外显子,分析44~51号内含子断裂点的分布,并计算各内含子的长度预测值及实际断裂点数与长度预测值的比值。结果 44号内含子断裂点最多,占整个中央缺失热区断裂点总数的30.8%。50号内含子次之,占23.1%。51号、45号、48号内含子内的断裂点分别占17.9%、10.3%、10.3%。44号

  19. Aggregation of truncated GST-HD exon 1 fusion proteins containing normal range and expanded glutamine repeats.

    OpenAIRE

    Hollenbach, B; Scherzinger, E; Schweiger, K; Lurz, R.; Lehrach, H; Wanker, E.E.

    1999-01-01

    We have shown previously by electron microscopy that the purified glutathione S-transferase (GST)-Huntington's disease (HD) exon 1 fusion protein with 51 glutamine residues (GST-HD51) is an oligomer, and that site-specific proteolytic cleavage of this fusion protein results in the formation of insoluble more highly ordered protein aggregates with a fibrillar or ribbon-like morphology (E. Scherzinger et al. (1997) Cell 90, 549-558). Here we report that a truncated GST HD exon 1 fusion protein ...

  20. De novo exon 1 missense mutations of SKI and Shprintzen-Goldberg syndrome: two new cases and a clinical review.

    Science.gov (United States)

    Au, P Y Billie; Racher, Hilary E; Graham, John M; Kramer, Nancy; Lowry, R Brian; Parboosingh, Jillian S; Innes, A Micheil

    2014-03-01

    Shprintzen-Goldberg syndrome (OMIM #182212) is a connective tissue disorder characterized by craniosynostosis, distinctive craniofacial features, skeletal abnormalities, marfanoid body habitus, aortic dilatation, and intellectual disability. Mutations in exon 1 of SKI have recently been identified as being responsible for approximately 90% of reported individuals diagnosed clinically with Shprintzen-Goldberg syndrome. SKI is a known regulator of TGFβ signaling. Therefore, like Marfan syndrome and Loeys-Dietz syndrome, Shprintzen-Goldberg syndrome is likely caused by deregulated TGFβ signals, explaining the considerable phenotypic overlap between these three disorders. We describe two additional patients with exon 1 SKI mutations and review the clinical features and literature of Shprintzen-Goldberg syndrome.

  1. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development.

    Directory of Open Access Journals (Sweden)

    Sushma Grellscheid

    2011-12-01

    Full Text Available Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10 is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10(fl/fl; Nestin-Cre(tg/+. This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein.

  2. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2007-08-01

    Full Text Available Abstract Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0. The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1 and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin

  3. Polymorphism and haplotype analyses of swine leukocyte antigen DQA exons 2, 3, 4, and their associations with piglet diarrhea in Chinese native pig.

    Science.gov (United States)

    Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B

    2015-09-08

    In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.

  4. Identification of POMC exonic variants associated with substance dependence and body mass index.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available BACKGROUND: Risk of substance dependence (SD and obesity has been linked to the function of melanocortin peptides encoded by the proopiomelanocortin gene (POMC. METHODS AND RESULTS: POMC exons were Sanger sequenced in 280 African Americans (AAs and 308 European Americans (EAs. Among them, 311 (167 AAs and 114 EAs were affected with substance (alcohol, cocaine, opioid and/or marijuana dependence and 277 (113 AAs and164 EAs were screened controls. We identified 23 variants, including two common polymorphisms (rs10654394 and rs1042571 and 21 rare variants; 12 of which were novel. We used logistic regression to analyze the association between the two common variants and SD or body mass index (BMI, with sex, age, and ancestry proportion as covariates. The common variant rs1042571 in the 3'UTR was significantly associated with BMI in EAs (Overweight: P(adj = 0.005; Obese: P(adj = 0.018; Overweight+Obese: P(adj = 0.002 but not in AAs. The common variant, rs10654394, was not associated with BMI and neither common variant was associated with SD in either population. To evaluate the association between the rare variants and SD or BMI, we collapsed rare variants and tested their prevalence using Fisher's exact test. In AAs, rare variants were nominally associated with SD overall and with specific SD traits (SD: P(FET,1df = 0.026; alcohol dependence: P(FET,1df = 0.027; cocaine dependence: P(FET,1df = 0.007; marijuana dependence: P(FET,1df = 0.050 (the P-value from cocaine dependence analysis survived Bonferroni correction. There was no such effect in EAs. Although the frequency of the rare variants did not differ significantly between the normal-weight group and the overweight or obese group in either population, certain rare exonic variants occurred only in overweight or obese subjects without SD. CONCLUSION: These findings suggest that POMC exonic variants may influence risk for both SD and elevated BMI, in a population-specific manner. However, common

  5. Characterizing exons 11 and 1 promoters of the mu opioid receptor (Oprm gene in transgenic mice

    Directory of Open Access Journals (Sweden)

    Pan Ying-Xian

    2006-11-01

    Full Text Available Abstract Background The complexity of the mouse mu opioid receptor (Oprm gene was demonstrated by the identification of multiple alternatively spliced variants and promoters. Our previous studies have identified a novel promoter, exon 11 (E11 promoter, in the mouse Oprm gene. The E11 promoter is located ~10 kb upstream of the exon 1 (E1 promoter. The E11 promoter controls the expression of nine splice variants in the mouse Oprm gene. Distinguished from the TATA-less E1 promoter, the E11 promoter resembles a typical TATA-containing eukaryote class II promoter. The aim of this study is to further characterize the E11 and E1 promoters in vivo using a transgenic mouse model. Results We constructed a ~20 kb transgenic construct in which a 3.7 kb E11 promoter region and an 8.9 kb E1 promoter region controlled expression of tau/LacZ and tau/GFP reporters, respectively. The construct was used to establish a transgenic mouse line. The expression of the reporter mRNAs, determined by a RT-PCR approach, in the transgenic mice during embryonic development displayed a temporal pattern similar to that of the endogenous promoters. X-gal staining for tau/LacZ reporter and GFP imaging for tau/GFP reporter showed that the transgenic E11 and E1 promoters were widely expressed in various regions of the central nervous system (CNS. The distribution of tau/GFP reporter in the CNS was similar to that of MOR-1-like immunoreactivity using an exon 4-specific antibody. However, differential expression of both promoters was observed in some CNS regions such as the hippocampus and substantia nigra, suggesting that the E11 and E1 promoters were regulated differently in these regions. Conclusion We have generated a transgenic mouse line to study the E11 and E1 promoters in vivo using tau/LacZ and tau/GFP reporters. The reasonable relevance of the transgenic model was demonstrated by the temporal and spatial expression of the transgenes as compared to those of the endogenous

  6. Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation “Memories”

    Directory of Open Access Journals (Sweden)

    Joshua D. Tompkins

    2016-02-01

    Full Text Available The directed differentiation of human cardiomyocytes (CMs from pluripotent cells provides an invaluable model for understanding mechanisms of cell fate determination and offers considerable promise in cardiac regenerative medicine. Here, we utilize a human embryonic stem cell suspension bank, produced according to a good manufacturing practice, to generate CMs using a fully defined and small molecule-based differentiation strategy. Primitive and cardiac mesoderm purification was used to remove non-committing and multi-lineage populations and this significantly aided the identification of key transcription factors, lncRNAs, and essential signaling pathways that define cardiomyogenesis. Global methylation profiles reflect CM development and we report on CM exon DNA methylation “memories” persisting beyond transcription repression and marking the expression history of numerous developmentally regulated genes, especially transcription factors.

  7. Exonic deletion of OPHN1 resulting in seizures, intellectual disability, and brain malformations

    Directory of Open Access Journals (Sweden)

    Larson A

    2014-07-01

    Full Text Available Austin Larson,1 Jamie LeRoux,2 Ellen Roy Elias11Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA; 2Colorado Genetics Laboratory, Denver, CO, USAAbstract: We report the case of a 9-year-old boy with autism, intellectual disability, and complex partial seizures as well as cerebellar vermian hypoplasia, caudate nucleus hypoplasia, and ventriculomegaly. He was found to have a deletion within the oligophrenin 1 gene (OPHN1, affecting exons 2–5. OPHN1 mutations result in a rare but well-characterized syndrome of neuroanatomical anomalies, epilepsy, and intellectual disability. This is a novel mutation in OPHN1 that adds to the spectrum of pathogenic variants of the gene. Additionally, the case illustrates the significant benefit that patients and families can derive from a definitive genetic diagnosis, even in the absence of direct therapeutic interventions.Keywords: X-linked intellectual disability, autism, cerebellar hypoplasia, chromosomal microarray, oligophrenin 1

  8. Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis

    Directory of Open Access Journals (Sweden)

    Lacombe Didier

    2011-05-01

    Full Text Available Abstract Background Usher syndrome (USH combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3. Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool. Methods We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3. Results Biallelic mutations were detected in 39 patients (72% and monoallelic mutations in an additional 10 patients (18.5%. In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%, and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48% were novel. Conclusions Based on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.

  9. MHC Class I Exon 4 in the Multiocellated Racerunners (Eremias multiocellata):Polymorphism, Duplication and Selection

    Institute of Scientific and Technical Information of China (English)

    Xiuyun YUAN; Xiaomao ZENG; Xianguang GUO

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genetic region with an essential role in the adaptive immunity of jawed vertebrates. The MHC polymorphism is affected by many processes such as birth-and-death evolution, gene conversion, and concerted evolution. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. However, the investigation of this region in non-avian reptiles is still in its infancy. We present the ifrst characterization of MHC class I genes in a species from the family Lacertidae. We assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 4 among 37 individuals of Eremias multiocellata from a population in Lanzhou, China. We generated 67 distinct DNA sequences using cloning and sequencing methods, and identiifed 36 putative functional variants as well as two putative pseudogene-variants. We found the number of variants within an individual varying between two and seven, indicating that there are at least four MHC class I loci in this species. Gene duplication plays a role in increasing copy numbers of MHC genes and allelic diversity in this species. The class I exon 4 sequences are characteristic of low nucleotide diversity. No signal of recombination is detected, but purifying selection is detected inβ2-microglobulin interaction sites and some other silent sites outside of the function-constraint regions. Certain identical alleles are shared by Eremias multiocellata and E. przewalskii and E. brenchleyi, suggesting trans-species polymorphism. The data are compatible with a birth-and-death model of evolution.

  10. Analysis of MEFV exon methylation and expression patterns in familial Mediterranean fever

    Directory of Open Access Journals (Sweden)

    Ozdogan Huri

    2011-08-01

    Full Text Available Abstract Background MEFV mutations and decreased expression level of the gene are related to FMF pathology. DNA methylation at CpG islands is a well-known mechanism for transcriptional silencing. MEFV has a CpG island, spanning a part of the first intron and the whole of the second exon of the gene covering 998 bp region. Here, we tested the hypothesis that the MEFV transcript level in FMF patients correlates with its methylation level, and methylation, by allowing transcription silencing, has a role in FMF ethiopathogenesis. Methods The study group was composed of pediatric FMF patients (N = 51 and age-gender matched healthy controls (N = 21. The relative expression level of MEFV was assessed via quantitative real-time PCR (qRT-PCR and bisulfite sequencing (BS was performed to analyse the methylation level quantitatively. Results MEFV expression in FMF patients were decreased compared to healthy controls (P = 0.031. Methylation level of exon 2 of MEFV was found to be slightly higher in FMF patients compared to healthy controls (76% versus 74% (P = 0.049. The expression level of the MEFV was negatively correlated with the methylation level of the CpG island in both FMF and healthy controls groups (cor = -0.29, P = 0.041 but more so in the FMF only group (cor = -0.36, P = 0.035. Conclusions In this study, the relation between reduced MEFV expression level and FMF was confirmed. Observed slight increase in methylation in FMF patients, and correlation of methylation with expression might be indicative of its role in FMF, however a larger dataset is needed to confirm our preliminary findings.

  11. Missense Mutations in Exons 18–24 of EGFR in Hepatocellular Carcinoma Tissues

    Directory of Open Access Journals (Sweden)

    Ravat Panvichian

    2015-01-01

    Full Text Available Epidermal growth factor receptor (EGFR, a transmembrane tyrosine kinase receptor, plays important roles in various cancers. In nonsmall cell lung cancer (NSCLC, EGFR mutations cluster around the ATP-binding pocket (exons 18–21 and some of these mutations activate the kinase and induce an increased sensitivity to EGFR-tyrosine kinase inhibitors. Nevertheless, data of EGFR mutations in HCC are limited. In this study, we investigated EGFR expression by immunohistochemistry and EGFR mutations (exons 18–24 by PCR cloning and sequencing. EGFR overexpression in HCC and matched nontumor tissues were detected in 13/40 (32.5% and 10/35 (28.6%, respectively. Moreover, missense and silent mutations were detected in 13/33 (39.4% and 11/33 (33.3% of HCC tissues, respectively. The thirteen different missense mutations were p.L730P, p.V742I, p.K757E, p.I780T, p.N808S, p.R831C, p.V851A, p.V897A, p.S912P, p.P937L, p.T940A, p.M947V, and p.M947T. We also found already known SNP, p.Q787Q (CAG>CAA, in 13/33 (39.4% of HCC tissues. However, no significant association was detected between EGFR mutations and EGFR overexpression, tissue, age, sex, tumor size, AFP, HBsAg, TP53, and Ki-67. Further investigation is warranted to validate the frequency and activity of these missense mutations, as well as their roles in HCC tumorigenesis and in EGFR-targeted therapy.

  12. Evidence for widespread exonic small RNAs in the glaucophyte alga Cyanophora paradoxa.

    Directory of Open Access Journals (Sweden)

    Jeferson Gross

    Full Text Available RNAi (RNA interference relies on the production of small RNAs (sRNAs from double-stranded RNA and comprises a major pathway in eukaryotes to restrict the propagation of selfish genetic elements. Amplification of the initial RNAi signal by generation of multiple secondary sRNAs from a targeted mRNA is catalyzed by RNA-dependent RNA polymerases (RdRPs. This phenomenon is known as transitivity and is particularly important in plants to limit the spread of viruses. Here we describe, using a genome-wide approach, the distribution of sRNAs in the glaucophyte alga Cyanophora paradoxa. C. paradoxa is a member of the supergroup Plantae (also known as Archaeplastida that includes red algae, green algae, and plants. The ancient (>1 billion years ago split of glaucophytes within Plantae suggests that C. paradoxa may be a useful model to learn about the early evolution of RNAi in the supergroup that ultimately gave rise to plants. Using next-generation sequencing and bioinformatic analyses we find that sRNAs in C. paradoxa are preferentially associated with mRNAs, including a large number of transcripts that encode proteins arising from different functional categories. This pattern of exonic sRNAs appears to be a general trend that affects a large fraction of mRNAs in the cell. In several cases we observe that sRNAs have a bias for a specific strand of the mRNA, including many instances of antisense predominance. The genome of C. paradoxa encodes four sequences that are homologous to RdRPs in Arabidopsis thaliana. We discuss the possibility that exonic sRNAs in the glaucophyte may be secondarily derived from mRNAs by the action of RdRPs. If this hypothesis is confirmed, then transitivity may have had an ancient origin in Plantae.

  13. The differential roles of Slit2-exon 15 splicing variants in angiogenesis and HUVEC permeability.

    Science.gov (United States)

    Yang, Yun-Chiu; Chen, Pei-Ni; Wang, Siou-Yu; Liao, Chen-Yi; Lin, Yu-Ying; Sun, Shih-Rhong; Chiu, Chun-Ling; Hsieh, Yih-Shou; Shieh, Jia-Ching; Chang, Jinghua Tsai

    2015-07-01

    Slit2, a secreted glycoprotein, is down-regulated in many cancers. Slit2/Robo signaling pathway plays an important, but controversial, role in angiogenesis. We identified splicing variants of Slit2 at exon 15, Slit2-WT and Slit2-ΔE15, with differential effects on proliferation and invasive capability of lung cancer cells. The aim of this study was to elucidate the differential roles of these exon 15 splicing variants in angiogenesis. Our results revealed that both Slit2-WT and Slit2-ΔE15 inhibit motility of human umbilical vein endothelial cells (HUVECs). The conditioned medium (CM) collected from CL1-5/VC or CL1-5/Slit2-WT lung adenocarcinoma cells blocked HUVEC tube formation and angiogenesis on chorioallantoic membrane (CAM) assay when compared with untreated HUVECs and CAM, respectively. However, CM of CL1-5/Slit2-ΔE15 restored the quality of tubes and the size of vessels. Although both Slit2-WT and Slit2-ΔE15 inhibited permeability induced by CM of cancer cells, Slit2-ΔE15 exhibited stronger effect. These results suggested that Slit2-ΔE15 plays important roles in normalization of blood vessels by enhancing tube quality and tightening endothelial cells, while Slit2-WT only enhances tightening of endothelial cells. It appears that Robo4 is responsible for Slit2 isoform-mediated inhibition of permeability, while neither Robo1 nor Robo4 is required for Slit2-ΔE15-enhanced tube quality. The results of this study suggest that Slit2-ΔE15 splicing form is a promising molecule for normalizing blood vessels around a tumor, which, in turn, may increase efficacy of chemotherapy and radiotherapy.

  14. An exonic insertion within Tex14 gene causes spermatogenic arrest in pigs

    Directory of Open Access Journals (Sweden)

    Sironen Anu

    2011-12-01

    Full Text Available Abstract Background Male infertility is an increasing problem in all domestic species including man. Localization and identification of genes involved in defects causing male infertility provide valuable information of specific events in sperm development. Sperm development is a complex process, where diploid spermatogonia develop into haploid, highly specialized spermatozoa. Correct expression and function of various genes and their protein products are required for production of fertile sperm. We have identified an infertility defect in Finnish Yorkshire boars caused by spermatogenic arrest. The aim of this study was to locate the disease associated region using genome wide screen with the PorcineSNP60 Beadchip and identify the causal mutation by candidate gene approach. Results In the Finnish Yorkshire pig population the spermatogenic arrest (SA defect appears to be of genetic origin and causes severe degeneration of germ cells and total absence of spermatozoa. Genome wide scan with the PorcineSNP60 Beadchip localized the SA defect to porcine chromosome 12 in a 2 Mbp region. Sequencing of a candidate gene Tex14 revealed a 51 bp insertion within exon 27, which caused differential splicing of the exon and created a premature translation stop codon. The expression of Tex14 was markedly down regulated in the testis of a SA affected boar compared to control boars and no protein product was identified by Western blotting. The SA insertion sequence was also found within intron 27 in all analyzed animals, thus the insertion appears to be a possible duplication event. Conclusion In this study we report the identification of a causal mutation for infertility caused by spermatogenic arrest at an early meiotic phase. Our results highlight the role of TEX14 specifically in spermatogenesis and the importance of specific genomic remodeling events as causes for inherited defects.

  15. NUCLEOTIDE-SEQUENCE OF THE LAST EXON OF THE GENE FOR HUMAN CYTOCHROME-C-OXIDASE SUBUNIT-VIB AND ITS FLANKING REGIONS

    NARCIS (Netherlands)

    TAANMAN, JW; SCHRAGE, C; BOKMA, E; REUVEKAMP, P; AGSTERIBBE, E; DEVRIES, H

    1991-01-01

    A human genomic clone encompassing the last exon of the gene for cytochrome c oxidase subunit VIb and a human genomic clone containing the most distal end of this gene were characterized. The last exon of the gene codes for the 17 C-terminal amino acid residues of the subunit and the 3' noncoding re

  16. KIT exon 11 codon 557/558 deletion/insertion mutations define a subset of gastrointestinal stromal tumors with malignant potential

    Institute of Scientific and Technical Information of China (English)

    Katerina Kontogianni-Katsarou; Euthimios Dimitriadis; Constantina Lariou; Evi Kairi-Vassilatou; Nikolaos Pandis; Agatha Kondi-Paphiti

    2008-01-01

    AIM: To study the association of the frequency and pattern of KIT and PDGFRA mutations and dinicopathological factors in a group of patients with gastrointestinal stromal tumors (GIST).METHODS: Thirty patients with GIST were examined. Exons 9, 11,13, and 17 of the KIT and exons 12 and 18 of the PDGFRA gene were analyzed for the presence of mutations by PCR amplification and direct sequencing.RESULTS: KIT or PDGFRA mutations were detected in 21 of the 30 patients (70%). Sixteen patients had mutations within KIT exon 11, three within KIT exon 9, and two within PDGFRA exon 18. GISTs with KIT exon 9 mutations were predominantly located in the small intestine, showed a spindle cell phenotype, and were assessed as potentially malignant. GISTs with KIT exon 11 mutations were located in the stomach and intestine, showed mainly a spindle cell phenotype, and were scored as potentially malignant (P < 0.05). Tumors with KIT exon 11 codon 557/558 deletion/insertion mutations were found to be associated with a potentially malignant clinical behaviour (P < 0.003). GISTs with PDGFRA mutations located in stomach showed a mixed cell phenotype and were classified as of very low or low moderate malignant potential.CONCLUSION: Determination of KIT and PDGFRA mutations should be additional parameters for the better prediction of GISTs clinical behaviour. Tumors with deletion/insertion mutations affecting codons 557/558 of the KIT gene seem to represent a distinct subset of malignant GISTs.

  17. Lack of association of DRD4 exon 3 VNTR genotype with reactivity to dynamic smoking cues in movies

    NARCIS (Netherlands)

    Lochbühler, K.C.; Verhagen, M.; Munafo, M.R.; Engels, R.C.M.E.

    2013-01-01

    Background: The objective of the present study was first to examine whether dynamic smoking cues in movies trigger craving, and second to explore whether the DRD4 48 bp variable number of tandem repeat (VNTR) exon 3 genotype modifies this relationship. Using an experimental design, daily adult smoke

  18. Structural features of the human C3 gene: Intron/exon organization, transcriptional start site, and promoter region sequence

    International Nuclear Information System (INIS)

    The third component of human complement (C3) is a key molecule in the activation of the complement cascade. C3 cDNA fragments were used to identify seven cosmid clones that covered all but 1 kilobase pair (kb) of the C3 gene. The remainder of the gene was cloned by using the polymerase chain reaction. These clones were used to identify the interon/exon boundaries and to map the gene. The C3 gene is 42 kb in length and comprises 41 exons ranging in size from 52 to 213 base pairs (bp). The transcription start site was identified by primer extension, and approximately 1 kb of DNA upstream of this site was sequenced. Putative TATA and CAAT boxes were identified along with a number of regions that shared homology with known regulatory sequences. These include responsive elements for interferon-γ, interleukin-6, nuclear factor kB, estrogen, glucocorticoids and thyroid hormone. Several of these agents have been shown to affect C3 synthesis and mRNA levels. The sizes of the exons in C3 were compared to those of C4 and α2-macroglobulin (α2M). Thirty-nine of 41 exons in C4 were found to be of similar size to the analogous ones in C3, and two-thirds of those in α2M were also similarly sized, supporting the hypothesis that these genes arose from a common ancestor

  19. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.

    Science.gov (United States)

    Shen, Manli; Mattox, William

    2012-01-01

    SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.

  20. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA

    DEFF Research Database (Denmark)

    Andersen, Christian Brix Folsted; Ballut, Lionel; Johansen, Jesper Sanderhoff;

    2006-01-01

    In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric e...

  1. Analysis of mutation induced by radiation in HPRT gene exon 7/8 of rat smooth muscles cells

    International Nuclear Information System (INIS)

    Objective: To investigate the relationship between radiation dose and HPRT gene locus mutation in rat smooth muscle cells, and provide a molecular basis for prevention of blood vessel restenosis after PTCA. Methods: The smooth muscle cells cultured in vitro were irradiated by radionuclide 188Re with different doses. HPRT gene mutation colonies were selected and isolated by 6-thioguanine. Analysis of mutation in exon 7/8 of HPRT gene were accomplished by polymerase chain reaction and single-strand conformation polymorphism. Results: The HPRT gene mutation frequency of rat smooth muscle cells that were irradiated by radionuclide 188Re ranged from 5.5 x 10-6 to 13 x 10-6. Of 91 HPRT gene mutation colonies, 13 contained exon 7/8 deletion and 15 had point mutation. The exon 7/8 mutation frequency was 30.8%. There was significant relationship between radiation dose and mutation frequency of HPRT gene and exon 7/8. Conclusions: The DNA damage and gene mutation induced by radiation was the basis of proliferation inhibition and apoptosis of smooth muscle cells

  2. Heterogeneity of phenotype in two cystic fibrosis patients homozygous for the CFTR exon 11 mutation G551D.

    OpenAIRE

    Parad, R B

    1996-01-01

    In the heterozygous state, the cystic fibrosis transmembrane conductance regulator (CFTR) exon 11 mutation G551D has been described as "severe," causing pancreatic insufficiency. Two cystic fibrosis (CF) patients homozygous for this mutation showed a mild rather than severe pancreatic phenotype and a variable pulmonary phenotype.

  3. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR exon IV-/- mice.

    Directory of Open Access Journals (Sweden)

    Zoe ePuschban

    2016-06-01

    Full Text Available The presence of the neurotrophin receptor p75NTR in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR exonIII-/- model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTR exonIV-/- mice lacking both p75NTR isoforms. Comparing p75NTR exonIV-/- and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice.Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR exonIV -/- mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.

  4. Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTR(exon IV-/-) Mice.

    Science.gov (United States)

    Puschban, Zoe; Sah, Anupam; Grutsch, Isabella; Singewald, Nicolas; Dechant, Georg

    2016-01-01

    The presence of the p75 neurotrophin receptor (p75NTR) in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR(exon III-/-) model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety-associated behavior in p75NTR(exon IV-/-) mice lacking both p75NTR isoforms. Comparing p75NTR(exon IV-/-) and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice. Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR(exon IV-/-) mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice. PMID:27313517

  5. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Andresen, B S; Jensen, T G; Bross, P;

    1994-01-01

    . Our results show that exon 11 is not especially mutation prone. We demonstrate that two of the identified disease-causing mutations can be detected by restriction enzyme digestion of the PCR product from the assay for the G985 mutation, a discovery that makes this assay even more useful than before...

  6. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Fumio; Awata, Hisataka; Matsuda, Ichiro [Kumamoto Univ. (Japan)

    1995-01-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this train together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  7. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III.

    Science.gov (United States)

    Endo, F; Awata, H; Katoh, H; Matsuda, I

    1995-01-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this strain together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  8. Human SHBG mRNA translation is modulated by alternative 5'-non-coding exons 1A and 1B.

    Directory of Open Access Journals (Sweden)

    Tomàs Pinós

    Full Text Available BACKGROUND: The human sex hormone-binding globulin (SHBG gene comprises at least 6 different transcription units (TU-1, -1A, -1B, -1C, -1D and -1E, and is regulated by no less than 6 different promoters. The best characterized are TU-1 and TU-1A: TU-1 is responsible for producing plasma SHBG, while TU-1A is transcribed and translated in the testis. Transcription of the recently described TU-1B, -1C, and -1D has been demonstrated in human prostate tissue and prostate cancer cell lines, as well as in other human cell lines such as HeLa, HepG2, HeK 293, CW 9019 and imr 32. However, there are no reported data demonstrating their translation. In the present study, we aimed to determine whether TU-1A and TU-1B are indeed translated in the human prostate and whether 5' UTR exons 1A and 1B differently regulate SHBG translation. RESULTS: Cis-regulatory elements that could potentially regulate translation were identified within the 5'UTRs of SHBG TU-1A and TU-1B. Although full-length SHBG TU-1A and TU-1B mRNAs were present in prostate cancer cell lines, the endogenous SHBG protein was not detected by western blot in any of them. LNCaP prostate cancer cells transfected with several SHBG constructs containing exons 2 to 8 but lacking the 5'UTR sequence did show SHBG translation, whereas inclusion of the 5'UTR sequences of either exon 1A or 1B caused a dramatic decrease in SHBG protein levels. The molecular weight of SHBG did not vary between cells transfected with constructs with or without the 5'UTR sequence, thus confirming that the first in-frame ATG of exon 2 is the translation start site of TU-1A and TU-1B. CONCLUSIONS: The use of alternative SHBG first exons 1A and 1B differentially inhibits translation from the ATG situated in exon 2, which codes for methionine 30 of transcripts that begin with the exon 1 sequence.

  9. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kristel Kaer

    Full Text Available BACKGROUND: Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. CONCLUSIONS/SIGNIFICANCE: Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.

  10. The SNPs Analysis of the Exons of Three Genes of MyoD Gene Family in Seven Swine Breeds (Line)

    Institute of Scientific and Technical Information of China (English)

    LI Jing-fen; LIU Di; YU Hao

    2005-01-01

    The study objects includes seven swine breeds: Minzhu, Sanjiangbaizhu, Yorkshire, Landrace, Junmuyihao, Duroc and Double muscle Yorkshire. According to the sequences of MyoG, MyoD and Myf5 of swine in GenBank, seventeen pairs of primers for MyoG, MyoD and Myf5 were designed. PCR-SSCP technology was applied to detect SNPs of the exons of the three genes. The results showed that no polymorphism was in MyoG and MyoD, and some SNPs were in three exons of Myf5. There was one mutant site in the first exon of Myf5 (G → C), three mutant sites in the second exon of Myf5 (C → A, A → G and G → A); in the third exon of Myf5, there was one base A deficiency at 3 387 bp, three bases T deficiency at 3 417 bp, one mutant site at 3 443 bp (T → C).This study obtained a tendency conclusion that gene frequency of allele M of Myf5 on the one hand is positively correlated with lean meat percentage, on the other hand is correlated with the orientation of selective breeding; it also deduced that allele F is possibly correlated with high lean meat percentage. Through statistical analysis, allele A, B, C of Myf5 have no obvious correlation with lean meat percentage of different swine breeds, In addition, the high polymorphism of Myf5 showed that seven swine breeds are rich in genetic variation, and have high selective competency.

  11. A DNMT3B alternatively spliced exon and encoded peptide are novel biomarkers of human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Sailesh Gopalakrishna-Pillai

    Full Text Available A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs relative to spontaneously differentiated cells (SDCs. Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency.

  12. Deletion of exon 8 from the EXT1 gene causes multiple osteochondromas (MO) in a family with three affected members.

    Science.gov (United States)

    Zhuang, Lei; Gerber, Simon D; Kuchen, Stefan; Villiger, Peter M; Trueb, Beat

    2016-01-01

    Multiple osteochondromas (also called hereditary multiple exostoses) is an autosomal dominant disorder characterized by multiple cartilaginous tumors, which are caused by mutations in the genes for exostosin-1 (EXT1) and exostosin-2 (EXT2). The goal of this study was to elucidate the genetic alterations in a family with three affected members. Isolation of RNA from the patients' blood followed by reverse transcription and PCR amplification of selected fragments showed that the three patients lack a specific region of 90 bp from their EXT1 mRNA. This region corresponds to the sequence of exon 8 from the EXT1 gene. No splice site mutation was found around exon 8. However, long-range PCR amplification of the region from intron 7 to intron 8 indicated that the three patients contain a deletion of 4318 bp, which includes exon 8 and part of the flanking introns. There is evidence that the deletion was caused by non-homologous end joining because the breakpoints are not located within a repetitive element, but contain multiple copies of the deletion hotspot sequence TGRRKM. Exon 8 encodes part of the active site of the EXT1 enzyme, including the DXD signature of all UDP-sugar glycosyltransferases. It is conceivable that the mutant protein exerts a dominant negative effect on the activity of the EXT glycosyltransferase since it might interact with normal copies of the enzyme to form an inactive hetero-oligomeric complex. We suggest that sequencing of RNA might be superior to exome sequencing to detect short deletions of a single exon.

  13. Deletion of Brca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in mice

    Science.gov (United States)

    Donoho, Greg; Brenneman, Mark A.; Cui, Tracy X.; Donoviel, Dorit; Vogel, Hannes; Goodwin, Edwin H.; Chen, David J.; Hasty, Paul

    2003-01-01

    The Brca2 tumor-suppressor gene contributes to genomic stability, at least in part by a role in homologous recombinational repair. BRCA2 protein is presumed to function in homologous recombination through interactions with RAD51. Both exons 11 and 27 of Brca2 code for domains that interact with RAD51; exon 11 encodes eight BRC motifs, whereas exon 27 encodes a single, distinct interaction domain. Deletion of all RAD51-interacting domains causes embryonic lethality in mice. A less severe phenotype is seen with BRAC2 truncations that preserve some, but not all, of the BRC motifs. These mice can survive beyond weaning, but are runted and infertile, and die very young from cancer. Cells from such mice show hypersensitivity to some genotoxic agents and chromosomal instability. Here, we have analyzed mice and cells with a deletion of only the RAD51-interacting region encoded by exon 27. Mice homozygous for this mutation (called brca2(lex1)) have a shorter life span than that of control littermates, possibly because of early onsets of cancer and sepsis. No other phenotype was observed in these animals; therefore, the brca2(lex1) mutation is less severe than truncations that delete some BRC motifs. However, at the cellular level, the brca2(lex1) mutation causes reduced viability, hypersensitivity to the DNA interstrand crosslinking agent mitomycin C, and gross chromosomal instability, much like more severe truncations. Thus, the extreme carboxy-terminal region encoded by exon 27 is important for BRCA2 function, probably because it is required for a fully functional interaction between BRCA2 and RAD51. Copyright 2003 Wiley-Liss, Inc.

  14. Study of dystrophin gene non-deletion/duplication mutations causing Becker muscular dystrophy%抗肌萎缩蛋白基因非缺失/重复突变引起的Becker型肌营养不良症的研究

    Institute of Scientific and Technical Information of China (English)

    操基清; 郑明缨; 孔杰; 张成; 冯善伟; 杨娟; 李智; 张萌; 李少英; 孙筱放; 王艳云

    2011-01-01

    Objective To identify potential mutations in patients featuring Becker muscular dystrophy (BMD) and to enhance the understanding of non-deletion/duplication mutations of the dystrophin gene causing BMD. Methods linical data of two patients affected with BMD were collected. Potential mutations in the dystrophin gene were screened with multiplex ligation-dependent probe amplification assay (MLPA). Biopsied muscle samples were examined with HE staining, immnostaining with anti-dystrophin antibody, and electronic microscopy. Results MLPA assay suggested that both cases were probably due to non-deletion/duplication mutations of the dystrophin gene. Light and electronic microcopy of skeletal muscle biopsies confirmed dystrophic changes in both patients. For patient A, immunostaining showed non-contiguous weak staining for most parts of sarcolemma. For patient B, immunostaining showed positive result with N-terminal anti-dystrophin antibody and negative result with C-terminal anti-dystrophin antibody. Conclusion For patients with mild phenotypes but without dystrophin gene deletion/duplication, muscle biopsy and immunochemistry are helpful for diagnosis and prognosis.%目的 探讨Becker型肌营养不良症(Becker muscular dystrophy,BMD)的基因突变类型,增加对抗肌萎缩蛋白基因非缺失/重复突变引起BMD的认识.方法 收集2例BMD患者的临床资料,应用多重连接依赖式探针扩增(multiplex ligation-dependent probe amplification assay,MLPA)方法对抗肌萎缩蛋白基因进行分析,并对其肌肉进行苏木素-伊红(hematoxylin-eosin,HE)染色、抗肌萎缩蛋白(dystrophin)染色及电镜检测.结果 2例患者经MLPA方法检测抗肌萎缩蛋白基因均呈非缺失/重复突变类型,肌肉活检光镜和电镜均呈肌营养不良改变.例1患者染色示肌膜dystrophin大部分呈不连续弱阳性,部分为阴性.例2患者染色示肌膜dystrophin-C为阴性,dystrophin-N为阳性.结论 对于抗肌萎缩蛋白基因非

  15. The prepared tau exon-specific antibodies revealed distinct profiles of tau in CSF of the patients with Creutzfeldt-Jakob disease.

    Directory of Open Access Journals (Sweden)

    Cao Chen

    Full Text Available BACKGROUND: The diagnostic value of CSF tau for Creutzfeldt-Jakob disease (CJD has been widely evaluated, showing a markedly disease-relative manner. However, the profiles of tau isoforms in CSF of CJD patients remain unknown. Here, we prepared the exon-specific antibodies against the peptides encoded by exon-2, exon-3 and exon-10 of human tau protein and evaluated the reactive profiles of tau in CSF samples from the patients with probable CJD. METHODOLOGY/PRINCIPAL FINDINGS: Sequences encoding exon-2, exon-3 and exon-10 of human tau protein were cloned into a prokaryotic expression vector pGEX-2T. Using recombinant fusion proteins GST-E2, GST-E3 and GST-E10, three tau exon-specific antibodies were elicited. Reliable specificities of the prepared antibodies were obtained after a serial of purification processes, not only in recognizing the tau peptides encoded by exon-2, -3 and -10, but also in distinguishing six recombinant tau isoforms by Western blot and ELISA. Three predominant tau-specific bands were observed in CSF samples with the exon-specific and the commercial tau antibodies, respectively, showing different reactive profiles between the groups of probable CJD and non-CJD. A 65 KD band was detected only in the CSF samples from probable CJD patients, especially with the antibodies against exon-2 (Anti-tE2 and exon-10 (Anit-tE10. The appearances of 65 KD band in CSF correlated well with positive 14-3-3 in CSF and typical abnormality in EEG. Such band was not observed in the CSF samples of six tested genetic CJD patients. CONCLUSIONS/SIGNIFICANCE: Three exon-specific polyclonal antibodies were successfully prepared. Based on these antibodies, different CSF tau profiles in Western blots were observed between the groups of probable CJD and non-CJD. A disease-specific tau band emerged in the CSF samples from probable sporadic CJD, which may supply a new biomarker for screening sporadic CJD.

  16. Evolution of the histones: free play with exon shuffling Evolucion de las histonas: Juego libre con reordenamiento de exones al azar

    Directory of Open Access Journals (Sweden)

    G. CECILIA TORO

    2001-03-01

    Full Text Available In higher eukaryotes, the nuclear DNA is organized for transcription, replication and mitosis in competent chromatin and chromosomes. The basic unit of chromatin is the nucleosome. This entity is formed by 168 base pairs of DNA wound around an octamer of histones, this octamer of histones consist of two copies of H2A, H2B, H3 and H4. The DNA is sealed in its input and output point by a histone linker: histone H1. Histones were supposed to be very conserved proteins. However, during the past few years it was found that these proteins present a high degree of divergency in several lower eukaryotes. In Trypanosoma, it was found that histones H3 and H4, which are at the center of the nucleosomal organization, showed more than 30 % of divergency, while histone H1 corresponded to only one of the three peptide domains present in higher eukaryotes. These features of Trypanosoma histones may explain, at least in part, the unability of chromatin to condense into chromosomes during the cell division in these parasites. Evolution of histones was usually considered as peculiar, with several proposals which are difficult to reconcile with experimental data. In the present work, it is proposed that histones followed the same evolutionary route as many other proteins. Considering that exons code for structural and functional domains in proteins and that, at the origin of eukaryotes, the histones, as other proteins, could be formed by "units" (mecano theory, it was expected that these units or domains eventually would be found in living organisms exhibiting primitive features. Furthermore, those units could work independently. Our results on the structure of Trypanosoma cruzi histone genes and proteins as well as the analysis of other histones from different species fit with this proposalEn los eucariontes superiores, el DNA nuclear se organiza en cromatina competente y en cromosomas para la transcripción, replicación y mitosis. La unidad básica de la

  17. 单淋巴细胞三重巢式PCR对dystrophin部分外显子和性别鉴定的实验研究%Single cell analysis of some deletion in dystrophin gene exons and gender determination by 3-plex nested PCR

    Institute of Scientific and Technical Information of China (English)

    黄文; 张成; 谢有梅; 陈松林; 焦泽旭; 周灿权; 张为西; 卢锡林

    2004-01-01

    目的通过建立三重巢式PCR技术检测单个淋巴细胞的dystrophin基因和Y性别决定区(sex-determining region Y, SRY)基因,探讨该技术对有家族史的缺失型Duchenne肌营养不良症(Duchenne muscular dystrophy,DMD)家系中肯定携带者进行植入前遗传学诊断(preimplantation genetic diagnosis,PGD)临床应用的可行性.方法在倒置显微镜下分别获取一名正常男性和一名正常女性的50个单个淋巴细胞,用三重巢式PCR技术检测两组dystrophin基因和SRY基因:外显子51/外显子19/SRY,外显子48/外显子19/SRY.结果在外显子51/外显子19/SRY三重PCR反应体系中, 正常男性第51、19外显子及SRY的扩增率分别为96%、94%和94%,正常女性第51、19外显子扩增率分别为94%、94%;正常男女性假阳性率均为6.7%,假阴性率均为0;在外显子48/外显子19/SRY三重PCR反应体系中,正常男性第48、19外显子及SRY扩增率分别达92%、90%和94%,假阳性率和假阴性率均为0;正常女性第48、19外显子扩增率分别达94%和92%,假阳性率和假阴性率分别为6.7%和0.结论建立的三重巢式PCR技术具有较高的敏感性,可望在有家族史的缺失型DMD家系中进行PGD临床应用.

  18. Mechanistic Evaluation for Mixed-field Agglutination in the K562 Cell Study Model with Exon 3 Deletion of A1 Gene.

    Science.gov (United States)

    Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng

    2015-01-01

    In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. PMID:26663798

  19. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Pettersson, Fredrik; Larsson, Jan

    2007-11-01

    Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF) protein, which, together with heterochromatin protein 1 (HP1), modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  20. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Directory of Open Access Journals (Sweden)

    Anna-Mia Johansson

    2007-11-01

    Full Text Available Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF protein, which, together with heterochromatin protein 1 (HP1, modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  1. Corelation Between Single Nucleotide Polymorphisms in Mu Opioid Receptor Exon 2 and Stereotypic Behaviour in Sows

    Institute of Scientific and Technical Information of China (English)

    LI Jianhong; BAO Jun; CUI Weiguo

    2008-01-01

    Three breeds of sows were observed to investigate the relationship between Single Nucleotide Polymorphisms (SNPs) in Mu Opioid Receptor (MOR) and stereotypic behaviour, such as, sham-chewing, bar biting and standing still in order to better understand the mechanism of stereotypic development of the animals in restrained conditions. MOR exon 2 partial sequences were amplified to analyze single nucleotide polymorphisms by PCR-SSCE One SNP, a silence mutant was found. A significant difference (P<0.01) was found in the frequency of genotypes in these 3 breeds where only the BB genotype, which was identical to that published in GenBank, was found in the Duroc breed, while no AA genotype was found in Landrace, 3 genotypes AA, BB and AB were found in Yorkshire. The result also indicated that the individuals with AA and AB genotypes tended to be more active in sham-chewing than those with the BB genotype (P<0.05). The overall results of this study suggested that sham-chewing of sows may be subjected to both genetic control and environmental conditions, but activity level was more likely to be affected by their environment. We can putatively draw the conclusion that MOR gene has effect on the sham-chewing behavioral traits of sow.

  2. Identification of true EST alignments and exon regions of gene sequences

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yanhong; JING Hui; LI Yanen; LIU Huailan

    2004-01-01

    Expressed sequence tags (ESTs), which have piled up considerably so far, provide a valuable resource for finding new genes, disease-relevant genes, and for recognizing alternative splicing variants, SNP sites, etc. The prerequisite for carrying out these researches is to correctly ascertain the gene-sequence-related ESTs. Based on analysis of the alignment results between some known gene sequences and ESTs in public database, several measures including Identity Check, Gap Check, Inclusion Check and Length Check have been introduced to judge whether an EST alignment is related to a gene sequence or not. A computational program EDSAc1.0 has been developed to identify true EST alignments and exon regions of query gene sequences. When tested with human gene sequences in the standard dataset HMR195 and evaluated with the standard measures of gene prediction performance, EDSAc1.0 can identify protein- coding regions with specificity of 0.997 and sensitivity of 0.88 at the nucleotide level, which outperform that of the counterpart TAP. A web server of EDSAc1.0 is available at http://infosci.hust.edu.cn.

  3. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  4. Frequency of HLA-G exon 8 polymorphisms and kidney allograft outcome in Iranian population.

    Science.gov (United States)

    Aghdaie, Mahdokht H; Azarpira, Negar; Kazemi, Kurosh; Geramizadeh, Bita; Darai, Masumeh; Malekhoseini, Seid Ali

    2011-06-01

    The 14-bp polymorphism in exon 8 of the HLA-G gene is associated with HLA-G mRNA stability and the patterns of alternative isoform splicing and may influence the functionality of the HLA-G molecule. HLA-G expression was related to allograft acceptance and fewer episodes of acute rejection during heart, kidney and liver-kidney transplantation. In order to determine a possible correlation between the 14-bp insertion/deletion polymorphism and kidney allograft outcome in our population, genomic DNA was isolated from 144 patients who had received isolated kidney allografts. The recipients was divided into two groups, grafts presenting features of rejection group and a non-rejection group, and compared them with a control group of 100 healthy subjects. There was no significant difference in allelic frequencies of 14-bp insertion/deletion polymorphism between normal controls and kidney transplant patients. No significant difference was found between the RG and the NRG regarding the 14-bp genotypes and alleles. Therefore, additional studies with more sample size from other populations with analysis of other HLA-G polymorphisms are necessary to define this polymorphism as a valuable clinical marker. PMID:21107725

  5. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    Science.gov (United States)

    Mao, Hanqian; McMahon, John J; Tsai, Yi-Hsuan; Wang, Zefeng; Silver, Debra L

    2016-09-01

    The exon junction complex (EJC) is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease. PMID:27618312

  6. DEDB: a database of Drosophila melanogaster exons in splicing graph form

    Directory of Open Access Journals (Sweden)

    Tan Tin

    2004-12-01

    Full Text Available Abstract Background A wealth of quality genomic and mRNA/EST sequences in recent years has provided the data required for large-scale genome-wide analysis of alternative splicing. We have capitalized on this by constructing a database that contains alternative splicing information organized as splicing graphs, where all transcripts arising from a single gene are collected, organized and classified. The splicing graph then serves as the basis for the classification of the various types of alternative splicing events. Description DEDB http://proline.bic.nus.edu.sg/dedb/index.html is a database of Drosophila melanogaster exons obtained from FlyBase arranged in a splicing graph form that permits the creation of simple rules allowing for the classification of alternative splicing events. Pfam domains were also mapped onto the protein sequences allowing users to access the impact of alternative splicing events on domain organization. Conclusions DEDB's catalogue of splicing graphs facilitates genome-wide classification of alternative splicing events for genome analysis. The splicing graph viewer brings together genome, transcript, protein and domain information to facilitate biologists in understanding the implications of alternative splicing.

  7. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  8. Computational analysis and prediction for exons of PAC579 genomic sequence

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yi(

    2001-01-01

    [1]Milanesi. L.. Kolchanov, N., Rogozin, I. et al.. Sequence functional inference, in Guide to Human Genome Computing (ed.Bishop. M. J.). Cambridge: Academic Press, 1994, 249-312.[2]Solovyev. V. V., Salamov, A. A., Lawrence, C. B., Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames, Nucleic Acids Res., 1994.22(24): 5156-5163.[3]Borodovsky, M., McIninch, J., GeneMark: parallel gene recognition for both DNA stands, Comp, Chem,, 1993, 17:123-133.[4]Guigo. R.. Knudsen, S, Drake, N. et al., Prediction of gene structure, J. Mol. Biol., 1992, 226(1): 141-157.[5]Kulp, D., Haussler, D., Reese, M. G. et al., A generalized Hidden Markov Model for the recognition of human genes in DNA. ISMB-96. St. Louise: AAAI/MIT Press, 1996.[6]Snyder. E. E.. Stormo, G. D., Identification of protein coding regions in genomic DNA, J. Mol. Biol., 1995, 248(1): 1-18.[7]Xu. Y., Einstein, J. R., Mural, R. J. et al., An improved system for exon recognition and gene modeling in human DNA sequences, in Proc. Int. Conf. lntell. Syst. Mol. Biol., Menlo Park, CA: AAAI Press, 1994, 2: 376-384.[8]Burset. M., Guigo, R., Evaluation of gene structure prediction programs, Genomics, 1996, 34(3): 353-367.[9]Burge. C.. Karlin, S., Prediction of complete gene structures in human genomic DNA, J. Mol. Biol., 1997, 268(l): 78-94.[10]Zhang. M. Q., Identification of protein coding regions in the human genome by quadratic discriminant analysis, Proc. Natl.Acad. Sci. USA, 1997,94(2): 565-568.[11]Mount. S. M., A catalogue of splice junction sequences, Nucleic Acids Res., 1982, 10(2): 459-472.[12]Qin Wenxin. Gu Jianren, Loss of heterozygosity on chromosome 17p13.3 in human malignant tumors, Chinese Bulletin of Life Sciences (in Chinese), 1999, 11(2): 75-77.[13]Li, D., Cao, Y., He, L. et al., Aberrations of p53 gene in human hepatocellular carcinoma from China, Carcinogenesis,1993. 14(2): 169-173.[14

  9. 内蒙古地区3个马品种ELA-DRA* exon2的PCR-SSCP分析%Analyzed ELA-DRA* exon2 of Three Horse Breeds from Inner Mongolia by PCR-SSCP

    Institute of Scientific and Technical Information of China (English)

    孟青龙; 李金莲; 石有斐; 孙玉江; 芒来

    2006-01-01

    为了检测内蒙古地区3个马品种ELA-DRA*exon2的多态性,通过PCR-SSCP技术内蒙古地区3个马品种(三河马、锡尼河马和巴尔虎马)各50匹的ELA-DRA*exon2进行检测,用12%非变性聚丙烯酰胺凝胶电泳将已变性的PCR扩增产物分离,并用银染法显色.结果表明,150匹马中共出现6种基因型:3种纯合子分别记为AA,BB和CC型,均为3条带;3种杂合子分别记为AB,BC和AC型,均为4条带.其中A等位基因频率最高,B次之,而C只在三河马中出现.因此说三河马ELA-DRA *exon2的多态性比锡尼河马和巴尔虎马丰富.

  10. A V530I Mutation in c-KIT Exon 10 Is Associated to Imatinib Response in Extraabdominal Aggressive Fibromatosis

    Directory of Open Access Journals (Sweden)

    Jean-Emmanuel Kurtz

    2010-01-01

    Full Text Available Aggressive fibromatosis (AF or desmoid tumor is a rare condition, characterized by deep tissue invasion by a monoclonal fibroblastic neoplasm, developed from musculoaponeurotic structures. Surgery is the treatment of choice, but negative margins can hardly been achieved in large tumors, and can lead to major functional disability. AF medical therapy includes nonsteroids anti-inflammatory drugs, tamoxifen, with inconsistent results. Several reports of imatinib efficacy in AF appear in the literature. Here, we describe for the first time a V530I KIT exon 10 mutant that was associated to a dramatic imatinib response in an extraabdominal aggressive fibromatosis. The previously discovered V530I substitution was characterized in the core binding factor AML, but had never been reported in any other condition, so far. In this paper, we discuss the KIT exon 10 mutations or polymorphisms that have been described in a variety of KIT-related conditions, including acute myelogenous leukemia, mastocytosis, and aggressive fibromatosis.

  11. Targeted exon sequencing successfully discovers rare causative genes and clarifies the molecular epidemiology of Japanese deafness patients.

    Science.gov (United States)

    Miyagawa, Maiko; Naito, Takehiko; Nishio, Shin-ya; Kamatani, Naoyuki; Usami, Shin-ichi

    2013-01-01

    Target exon resequencing using Massively Parallel DNA Sequencing (MPS) is a new powerful strategy to discover causative genes in rare Mendelian disorders such as deafness. We attempted to identify genomic variations responsible for deafness by massive sequencing of the exons of 112 target candidate genes. By the analysis of 216randomly selected Japanese deafness patients (120 early-onset and 96 late-detected), who had already been evaluated for common genes/mutations by Invader assay and of which 48 had already been diagnosed, we efficiently identified causative mutations and/or mutation candidates in 57 genes. Approximately 86.6% (187/216) of the patients had at least one mutation. Of the 187 patients, in 69 the etiology of the hearing loss was completely explained. To determine which genes have the greatest impact on deafness etiology, the number of mutations was counted, showing that those in GJB2 were exceptionally higher, followed by mutations in SLC26A4, USH2A, GPR98, MYO15A, COL4A5 and CDH23. The present data suggested that targeted exon sequencing of selected genes using the MPS technology followed by the appropriate filtering algorithm will be able to identify rare responsible genes including new candidate genes for individual patients with deafness, and improve molecular diagnosis. In addition, using a large number of patients, the present study clarified the molecular epidemiology of deafness in Japanese. GJB2 is the most prevalent causative gene, and the major (commonly found) gene mutations cause 30-40% of deafness while the remainder of hearing loss is the result of various rare genes/mutations that have been difficult to diagnose by the conventional one-by-one approach. In conclusion, target exon resequencing using MPS technology is a suitable method to discover common and rare causative genes for a highly heterogeneous monogenic disease like hearing loss.

  12. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Wertheimer, E.; Barbetti, F.; Accili, D.; Taylor, S.I. [National Institutes of Health, Bethesda, MD (United States); Litvin, Y.; Ebstein, R.P.; Bennet, E.R.

    1994-05-01

    Molecular scanning techniques, such as denaturing gradient gel electrophoresis (DGGE), greatly facilitate screening candidate genes for mutations. The authors have used DGGE to screen for mutations in the insulin receptor gene in a family in which four of five daughters were affected by type A insulin resistance in association with acanthosis nigricans and hyperandrogenism. DGGE did not detect mutations in any of the 22 exons of the insulin receptor gene. Nevertheless, Southern blot analysis suggested that there was a deletion of exon 3 in the other paternal allele of the insulin receptor gene. Analysis of the father`s cDNA confirmed that exon 3 was deleted from mRNA molecules derived from one of his two alleles of the insulin receptor gene. Furthermore, the father was found to be hemizygous for a polymorphic sequence (GAC{sup Asp} at codon 234) in exon 3 that was not inherited by any of the five daughters. Instead, all five daughters inherited the paternal allele with the deletion mutation. They did not detect mutations in the mother`s insulin receptor gene. Furthermore, the clinical syndrome did not segregate with either of the mother`s two alleles of the insulin receptor gene. Although the youngest daughter inherited the mutant allele from her father, she was not clinically affected. The explanation for the incomplete penetrance is not known. These results emphasize the importance of specifically searching for deletion mutations when screening candidate genes for mutations. Furthermore, the existence of apparently asymptomatic carriers of mutations in the insulin receptor gene, such as the father in the present study, suggests that the prevalence of mutations in the insulin receptor gene may be higher than would be predicted on the basis of the observed prevalence of patients with extreme insulin resistance. 34 refs., 6 figs., 1 tab.

  13. Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of FBN1 causing a recognizable phenotype.

    Science.gov (United States)

    Takenouchi, Toshiki; Hida, Mariko; Sakamoto, Yoshiaki; Torii, Chiharu; Kosaki, Rika; Takahashi, Takao; Kosaki, Kenjiro

    2013-12-01

    Recently, three marfanoid patients with congenital lipodystrophy and a neonatal progeroid appearance were reported. Although their phenotype was distinct from that of classic Marfan syndrome, they all had a truncating mutation in the penultimate exon, i.e., exon 64, of FBN1, the causative gene for Marfan syndrome. These patients might represent a new entity, but the exact phenotypic and genotypic spectrum remains unknown. Here, we report on a girl born prematurely who exhibited severe congenital lipodystrophy and a neonatal progeroid appearance. The patient exhibited a characteristic growth pattern consisting of an accelerated growth in height with a discrepant poor weight gain. She had a characteristic facial appearance with craniosynostosis. A mutation analysis identified c.8175_8182del8bp, p.Arg2726Glufs*9 in exon 64 of the FBN1 gene. A review of similar, recently reported patients revealed that the cardinal features of these patients include (1) congenital lipodystrophy, (2) premature birth with an accelerated linear growth disproportionate to the weight gain, and (3) a progeroid appearance with distinct facial features. Lines of molecular evidence suggested that this new progeroid syndrome represents a neomorphic phenotype caused by truncated transcripts with an extremely charged protein motif that escapes from nonsense-mediated mRNA decay, altering FBN1-TGF beta signaling, rather than representing the severe end of the hypomorphic phenotype of the FBN1-TGF beta disorder spectrum. We propose that this marfanoid entity comprised of congenital lipodystrophy, a neonatal progeroid appearance, and a peculiar growth profile and caused by rare mutations in the penultimate exon of FBN1, be newly referred to as marfanoid-progeroid syndrome. PMID:24039054

  14. Nanoparticle Delivery of Antisense Oligonucleotides and Their Application in the Exon Skipping Strategy for Duchenne Muscular Dystrophy

    OpenAIRE

    Falzarano, Maria Sofia; Passarelli, Chiara; Ferlini, Alessandra

    2014-01-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA,...

  15. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa.

    Science.gov (United States)

    Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O

    2011-08-01

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.

  16. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells

    OpenAIRE

    Lehto, Taavi; Castillo Alvarez, Alejandra; Gauck, Sarah; Gait, Michael J.; Coursindel, Thibault; Matthew J A Wood; Lebleu, Bernard; Boisguerin, Prisca

    2013-01-01

    Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyoc...

  17. Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of FBN1 causing a recognizable phenotype.

    Science.gov (United States)

    Takenouchi, Toshiki; Hida, Mariko; Sakamoto, Yoshiaki; Torii, Chiharu; Kosaki, Rika; Takahashi, Takao; Kosaki, Kenjiro

    2013-12-01

    Recently, three marfanoid patients with congenital lipodystrophy and a neonatal progeroid appearance were reported. Although their phenotype was distinct from that of classic Marfan syndrome, they all had a truncating mutation in the penultimate exon, i.e., exon 64, of FBN1, the causative gene for Marfan syndrome. These patients might represent a new entity, but the exact phenotypic and genotypic spectrum remains unknown. Here, we report on a girl born prematurely who exhibited severe congenital lipodystrophy and a neonatal progeroid appearance. The patient exhibited a characteristic growth pattern consisting of an accelerated growth in height with a discrepant poor weight gain. She had a characteristic facial appearance with craniosynostosis. A mutation analysis identified c.8175_8182del8bp, p.Arg2726Glufs*9 in exon 64 of the FBN1 gene. A review of similar, recently reported patients revealed that the cardinal features of these patients include (1) congenital lipodystrophy, (2) premature birth with an accelerated linear growth disproportionate to the weight gain, and (3) a progeroid appearance with distinct facial features. Lines of molecular evidence suggested that this new progeroid syndrome represents a neomorphic phenotype caused by truncated transcripts with an extremely charged protein motif that escapes from nonsense-mediated mRNA decay, altering FBN1-TGF beta signaling, rather than representing the severe end of the hypomorphic phenotype of the FBN1-TGF beta disorder spectrum. We propose that this marfanoid entity comprised of congenital lipodystrophy, a neonatal progeroid appearance, and a peculiar growth profile and caused by rare mutations in the penultimate exon of FBN1, be newly referred to as marfanoid-progeroid syndrome.

  18. Analysis of Ki-ras Exon 2 Gene Mutations in 3-Methylcholanthrene and Butylated Hydroxytoluene-Induced Rat Lung Tissues

    OpenAIRE

    POLAT, Fikriye; ÖZDEMİR, Öztürk; ELAGÖZ, Şahende

    2008-01-01

    3-Methylcholanthrene (MCA) is a polycyclic aromatic hydrocarbon and potent carcinogenic agent that is often used in experimental cancer studies. Butylated hydroxytoluene (BHT) has been widely used for many years as an antioxidant to preserve and stabilize the freshness, nutritional value, flavor, and color of foods. The aim of the present study was to investigate the role of the application of MCA and BHT in the development of lung cancer, and to detect any mutation in the Ki-ras gene exon 2....

  19. Mutations in exons 2 and 3 of the cationic trypsinogen gene in Japanese families with hereditary pancreatitis

    OpenAIRE

    Nishimori, I; Kamakura, M; Fujikawa-Adachi, K; Morita, M.; Onishi, S; Yokoyama, K.; Makino, I; H. Ishida; Yamamoto, M.; Watanabe, S; Ogawa, M

    1999-01-01

    Background/Aims—Single-point mutations in the cationic trypsinogen gene have been reported in hereditary pancreatitis kindreds in the white population. The aim of the present study was to investigate whether similar gene mutations are present in Japanese hereditary pancreatitis kindreds. 
Methods—All five exons of the cationic trypsinogen gene were amplified by polymerase chain reaction and sequenced in six Japanese families with hereditary pancreatitis. 
Results—Two types o...

  20. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10 362 consecutive cases

    Science.go