WorldWideScience

Sample records for anuclear research reactor

  1. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin;

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  2. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  3. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  4. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  5. Safeguarding research reactors

    International Nuclear Information System (INIS)

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  6. Multipurpose research reactors

    International Nuclear Information System (INIS)

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  7. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  8. Safety of research reactors

    International Nuclear Information System (INIS)

    The number of research reactors that have been constructed worldwide for civilian applications is about 651. Of the reactors constructed, 284 are currently in operation, 258 are shut down and 109 have been decommissioned. More than half of all operating research reactors worldwide are over thirty years old. During this long period of time national priorities have changed. Facility ageing, if not properly managed, has a natural degrading effect. Many research reactors face concerns with the obsolescence of equipment, lack of experimental programmes, lack of funding for operation and maintenance and loss of expertise through ageing and retirement of the staff. Other reactors of the same vintage maintain effective ageing management programmes, conduct active research programmes, develop and retain high calibre personnel and make important contributions to society. Many countries that operate research reactors neither operate nor plan to operate power reactors. In most of these countries there is a tendency not to create a formal regulatory body. A safety committee, not always independent of the operating organization, may be responsible for regulatory oversight. Even in countries with nuclear power plants, a regulatory regime differing from the one used for the power plants may exist. Concern is therefore focused on one tail of a continuous spectrum of operational performance. The IAEA has been sending missions to review the safety of research reactors in Member States since 1972. Some of the reviews have been conducted pursuant to the IAEA' functions and responsibilities regarding research reactors that are operated within the framework of Project and Supply Agreements between Member States and the IAEA. Other reviews have been conducted upon request. All these reviews are conducted following procedures for Integrated Safety Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety

  9. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 1014 n/cm2/sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  10. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  11. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  12. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  13. Fast breeder reactor research

    International Nuclear Information System (INIS)

    reactors of the future, the body of research aimed at developing liquid metal cooled fast reactors, national plans for work in 1976 on developing fast reactors - these were some of the topics discussed in connection with the national programmes. The development of power reactors involves a wide range of problems in the fields of nuclear and reactor physics, the thermophysics, chemistry, physics and technology of the cooling system, structural materials and nuclear fuel, the fabrication of reliable fuel elements and operating equipment, reactor monitoring and control, spent fuel reprocessing, the economics of constructing fast power reactors, nuclear safety, etc. The IWGFR, as at previous meetings, therefore paid great attention to the matter of holding international specialists' meetings. The working group recommended that the IAEA should organize the following IWGFR meetings in 1976: (1) In-Service Inspection and Monitoring (Bensberg, FRG, March 1976). (2) Cavitation in Sodium and Studies of Analogy with Water as Compared to Sodium (Cadarache, France, April 1976). (3) High Temperature Structural Design Technology (United States, May 1976) (4) Aerosol Formation, Vapour Deposits and Sodium Vapour Trapping (France, September-December 1976). The Group welcomed the IAEA's proposal to hold specialists' meetings on 'Fast Reactor Instrumentation' and 'Fuel Reprocessing and Recycling Techniques' within the framework of the Agency's programme of working groups in 1976. After discussing questions of co-ordinating and organizing international conferences on fast reactors, the IWGFR agreed to send representatives to the joint meeting of the American Nuclear Society and the American Institute of Metallurgical Engineers on 'Liquid Metal Technology', to be held at Champion, Pennsylvania, U.S.A. from 3-6 May 1976, and recommended that the IAEA should organize an international symposium on the 'Design, Construction and Operating Experience of Demonstration Fast Power Reactors' at Bologna

  14. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  15. Applications of Research Reactors

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of the earlier publication, The Application of Research Reactors, IAEA-TECDOC-1234, was to present descriptions of the typical forms of research reactor use. The necessary criteria to enable an application to be performed were outlined for each one, and, in many cases, the minimum as well as the desirable requirements were given. This revision of the publication over a decade later maintains the original purpose and now specifically takes into account the changes in service requirements demanded by the relevant stakeholders. In particular, the significant improvements in

  16. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  17. MINT research reactor safety program

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad Idris bin Taib [Division of Special Project, Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2000-11-01

    Malaysian Institute for Nuclear Technology Research (MINT) Research Reactor Safety Program has been done along with Reactor Power Upgrading Project, Reactor Safety Upgrading Project and Development of Expert System for On-Line Nuclear Process Control Project. From 1993 up to date, Neutronic and Thermal-hydraulics analysis, Probabilistic Safety Assessment as well as installation of New 2 MW Secondary Cooling System were done. Installations of New Reactor Building Ventilation System, Reactor Monitoring System, Updating of Safety Analysis Report and Upgrading Primary Cooling System are in progress. For future activities, Reactor Modeling will be included to add present activities. (author)

  18. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  19. A design-phase PSA of anuclear-powered hydrogen plant

    OpenAIRE

    Flores Flores, Alain

    2007-01-01

    A probabilistic safety assessment (PSA) is being developed for a steam-methane reforming hydrogenproduction plant linked to a high-temperature gas-cooled nuclear reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute's (JAERI) High Temperature Engineering Test Reactor (HTTR) prototype in Japan. The objective of this paper is to show how the PSA can be used for improving the design of the coupled plants. A simplified HAZOP study was performed to identify initiating ev...

  20. Research reactors and alternative devices for research

    International Nuclear Information System (INIS)

    This report includes papers on research reactors and alternatives to the research reactors - radioisotopic neutron sources, cyclotrons, D-T neutron generators and small accelerators, used for radioisotope production, neutron activation analysis, material science, applied and basic research using neutron beams. A separate abstract was prepared for each of the 7 papers

  1. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Paper dwells upon the design and the operation of one of the German test reactors, namely, the TRIGA Mainz one (TRIGA: Training Research Isotope Production General Atomic). The TRIGA reactor is a pool test reactor the core of which contains a graphite reflector and is placed into 2 m diameter and 6.25 m height aluminum vessel. There are 75 fuel elements in the reactor core, and any of them contains about 36 g of 235U. The TRIGA reactors under the stable operation enjoy wide application to ensure tests and irradiation, namely: neutron activation analysis, radioisotope production, application of a neutron beam to ensure the physical, the chemical and the medical research efforts. Paper presents the reactor basic experimental program lines

  2. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.)

  3. Ageing management for research reactors

    International Nuclear Information System (INIS)

    During the past several years, ageing of research reactor facilities continues to be an important safety issue. Despite the efforts exerted by operating organizations and regulatory authorities worldwide to address this issue, the need for an improved strategy as well as the need for establishing and implementing a systematic approach to ageing management at research reactors was identified. This paper discusses, on the basis of the IAEA Safety Standards, the effect of ageing on the safety of research reactors and presents a proactive strategy for ageing management. A systematic approach for ageing management is developed and presented together with its key elements, along with practical examples for their application. (author)

  4. Light water reactor safety research

    International Nuclear Information System (INIS)

    As the technology of light water reactors (LWR) was being commercialized, the German Federal Government funded the reactor safety research program, which was conducted by national research centers, universities, and industry, and which led to the establishment, in early 1972, of the Nuclear Safety Project in Karlsruhe. In the seventies, the PNS project mainly studied the loss-of-coolant accident. Numerous experiments were run and computer codes developed for this purpose. In the eighties, the Karlsruhe Nuclear Research Center contributed to the German Risk Study, investigating especially core meltdown accidents under the impact of the events at Three Mile Island-2 and Chernobyl-4. Safety research in the nineties is concentrated on the requirements of future reactor generations, such as the European Pressurized Water Reactor (EPR) or potential approaches which, at the present time, are discernible only as tentative theoretical designs. (orig.)

  5. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  6. Research reactor education and training

    International Nuclear Information System (INIS)

    CORYS T.E.S.S. and TECHNICATOME present in this document some of the questions that can be rightfully raised concerning education and training of nuclear facilities' staffs. At first, some answers illustrate the tackled generic topics: importance of training, building of a training program, usable tools for training purposes. Afterwards, this paper deals more specifically with research reactors as an actual training tool. The pedagogical advantages they can bring are illustrated through an example consisting in the description of the AZUR facility training capabilities followed by the detailed experiences CORYS T.E.S.S. and TECHNICATOME have both gathered and keeps on gaining using research reactors for training means. The experience shows that this incomparable training material is not necessarily reserved to huge companies or organisations' numerous personnel. It offers enough flexibility to be adapted to the specific needs of a thinner audience. Thus research reactor staffs can also take advantages of this training method. (author)

  7. Research reactor modernization and refurbishment

    International Nuclear Information System (INIS)

    Many recent, high profile research reactor unplanned shutdowns can be directly linked to different challenges which have evolved over time. The concept of ageing management is certainly nothing new to nuclear facilities, however, these events are highlighting the direct impact unplanned shutdowns at research reactors have on various stakeholders who depend on research reactor goods and services. Provided the demand for these goods and services remains strong, large capital projects are anticipated to continue in order to sustain future operation of many research reactors. It is within this context that the IAEA organized a Technical Workshop to launch a broader Agency activity on research reactor modernization and refurbishment (M and R). The workshop was hosted by the operating organization of the HOR Research Reactor in Delft, the Netherlands, in October 2006. Forty participants from twenty-three countries participated in the meeting: with representation from Africa, Asia Pacific, Eastern Europe, North America, South America and Western Europe. The specific objectives of this workshop were to present facility reports on completed, existing and planned M and R projects, including the project objectives, scope and main characteristics; and to specifically report on: - the project impact (planned or actual) on the primary and key supporting motivation for the M and R project; - the project impact (planned or actual) on the design basis, safety, and/or regulatory-related reports; - the project impact (planned or actual) on facility utilization; - significant lessons learned during or following the completion of M and R work. Contributions from this workshop were reviewed by experts during a consultancy meeting held in Vienna in December 2007. The experts selected final contributions for inclusion in this report. Requests were also distributed to some authors for additional detail as well as new authors for known projects not submitted during the initial 2006 workshop

  8. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  9. Research reactor's role in Korea

    International Nuclear Information System (INIS)

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960's in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs

  10. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235U or 239Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  11. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  12. Analysis of higher power research reactors' parameters

    International Nuclear Information System (INIS)

    The objective of this monograph was to analyze and compare parameters of different types of research reactors having higher power. This analysis could be used for decision making and choice of a reactor which could possibly replace the existing ageing RA reactor in Vinca. Present experimental and irradiation needs are taken into account together with the existing reactors operated in our country, RB and TRIGA reactor

  13. Operating experiences of the research reactors

    International Nuclear Information System (INIS)

    Nuclear research reactors are devices of wide importance, being used for different scientific research tasks, for testing and improving reactor systems and components, for the production of radioisotopes, for the purposes of defence, for staff training and for other purposes. There are three research reactors in Yugoslavia: RA, RB and TRIGA. Reactors RA and RB at the 'Boris Kidric' Institute of Nuclear Sciences are of heavy water type power being 6500 and 10 kW, and maximum thermal neutron flux of 1014 and 1011(n/cm2s), respectively. TRIGA reactor at the 'Jozef Stefan' Institute in Ljubljana is of 250 kW power and maximum thermal neutron flux of 1013(n/cm2s). Reactors RA and RB use soviet fuel in the form of uranium dioxide (80% enriched) and metallic uranium (2%). Besides, RB reactor operates with natural uranium too. TRIGA reactor uses american uranium fuel 70% and 20% enriched, uranium being mixed homogeneously with moderator (ZrH). Experiences in handling and controlling the fuel before irradiation in the reactor, in reactor and after it are numerous and valuable, involving either the commercial arrangements with foreign producers, or optimal burn up in reactor or fuel treatment after the reactor irradiation. Twenty years of operating experience of these reactors have great importance especially having in mind the number of trained staff. Maintenance of reactors systems and fluids in continuous operation is valuable experience from the point of view of water reactor utilization. The case of the RA reactor primary cycle cobalt decontamination and other events connected with nuclear and radiation security for all three reactors are also specially emphasized. Owing to our research reactors, numerous theoretical, numerical and experimental methods are developed for nuclear and other analyses and design of research and power reactors,as well as methods for control and protection of radiation. (author)

  14. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  15. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The purpose of this technical paper is to provide status of the United State domestic Research Reactor Infrastructure (RRI) Program at the Idaho National Laboratory. This paper states the purpose of the program, lists the universities operating TRIGA reactors that are supported by the program, identifies anticipated fresh fuel needs for the reactor facilities, discusses spent fuel activities associated with the program, and addresses successes and planned activities for the program. (author)

  16. Overview on New Research Reactors in China

    International Nuclear Information System (INIS)

    In China, 2 research reactors are now under construction. Correspondingly, this paper consists of 2 parts. Part 1 will focus on China Advanced Research Reactor (CARR), the reactor characteristics, utilization, safety related systems and other main systems will be described in this part. Part 2 will focus on China Experiment Fast Reactor(CEFR), the general design and the safety features in particular will be illustrated in this part. (author)

  17. Reliability studies in research reactors

    International Nuclear Information System (INIS)

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This study uses the methods of FT (Fault Tree) and ET (Event Tree) to accomplish the PSA (Probabilistic Safety Assessment) in research reactors. According to IAEA (lnternational Atomic Energy Agency), the PSA is divided into Level 1, Level 2 and Level 3. At the Level 1, conceptually, the security systems perform to prevent the occurrence of accidents, At the Level 2, once accidents happened, this Level seeks to minimize consequences, known as stage management of accident, and at Level 3 accident impacts are determined. This study focuses on analyzing the Level 1, and searching through the acquisition of knowledge, the consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR-1, is a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from it, using ET, possible accidental sequences were developed, which could lead damage to the core. Moreover, for each of affected systems, probabilities of each event top of FT were developed and evaluated in possible accidental sequences. Also, the estimates of importance measures for basic events are presented in this work. The studies of this research were conducted using a commercial computational tool SAPHIRE. Additionally, achieved results thus were considered satisfactory for the performance or the failure of analyzed systems. (author)

  18. Safe Operation of Research Reactors in Germany

    International Nuclear Information System (INIS)

    In Germany, experience was gained in the field of safe operation of research reactors during the last five decades. In this time, in total 46 research reactors were built and operated safely. Concerning the design, there is, or has been, a very broad range of different types of research reactors. The variety of facilities includes large pool or tank reactors with a thermal power of several tens of megawatt as well as small educational reactors with a negligible thermal power and critical assemblies. At present, 8 research reactors are still in operation. The other facilities are permanently shutdown, in decommissioning or have already been dismantled completely and released from regulatory control. In this paper, four selected facilities still being operated are presented as examples for safe operation of research reactors in Germany, including especially a description of the safety reviews and safety upgrades for the older facilities. (author)

  19. Application of research reactors for radiation education

    International Nuclear Information System (INIS)

    Nuclear research Reactors are, as well as being necessary for research purposes, indispensable educational tools for a country whose electric power resources are strongly dependent on nuclear energy. Both large and small research reactors are available, but small ones are highly useful from the viewpoint of radiation education. This paper oders a brief review of how small research reactors can, and must, be used for radiation education for high school students, college and graduate students, as well as for the public. (author)

  20. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  1. Light water reactor safety research project

    International Nuclear Information System (INIS)

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  2. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  3. Research nuclear reactor RA - Annual Report 2000

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986 were fulfilled except the exchange of the complete reactor instrumentation. Since 1992, due to economic and political reasons, RA reactor is in a difficult situation. The old RA reactor instrumentation was dismantled. Decision about the future status of the reactor should be made because the aging of all the components is becoming dramatic. Control and maintenance of the reactor components was done regularly and efficiently. The most important activity and investment in 1998 was improvement of conditions for spent fuel storage in the existing pools at the RA reactor. Russian company ENTEK and IAEA are involved in this activity which was initiated 1997. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. Research reactor RA Annual report for year 2000 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  4. Research nuclear reactor RA - Annual Report 1998

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986 were fulfilled except the exchange of the complete reactor instrumentation. Since 1992, due to economic and political reasons, RA reactor is in a difficult situation. The old RA reactor instrumentation was dismantled. Decision about the future status of the reactor should be made because the aging of all the components is becoming dramatic. Control and maintenance of the reactor components was done regularly and efficiently. The most important activity and investment in 1998 was improvement of conditions for spent fuel storage in the existing pools at the RA reactor. Russian company ENTEK and IAEA are involved in this activity which was initiated 1997. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. Research reactor RA Annual report for year 1998 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  5. The Berkeley TRIGA Mark III research reactor

    International Nuclear Information System (INIS)

    The Berkeley Research Reactor went critical on August 10, 1966, and achieved licensed operating power of 1000 kW shortly thereafter. Since then, the reactor has operated, by and large, trouble free on a one-shift basis. The major use of the reactor is in service irradiations, and many scientific programs are accommodated, both on and off campus. The principal off-campus user is the Lawrence Radiation Laboratory at Berkeley. The reactor is also an important instructional tool in the Nuclear Engineering Department reactor experiments laboratory course, and as a source of radioisotopes for two other laboratory courses given by the Department. Finally, the reactor is used in several research programs conducted within the Department, involving studies with neutron beams and in reactor kinetics

  6. Usage of burnable poison on research reactors

    International Nuclear Information System (INIS)

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  7. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  8. Overview of research reactor operation within AECL

    International Nuclear Information System (INIS)

    This paper presents information on reactor operations within the Research Company of Atomic Energy of Canada (AECL) today relative to a few years ago, and speculates on future operations. In recent years, the need for Research Company reactors has diminished. This, combined with economic pressures, has led to the shutdown of some of the company's major reactors. However, compliance with the government agenda to privatize government companies in Canada, and a Research Company policy of business development, has led to some offsetting activities. The building of a pool-type 10 MWt MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor for isotope production will assist in the sale of the AECL isotopes marketing company. A Low Enriched Uranium (LEU) fuel fabrication facility and a Tritium Extraction Plant (TEP), both currently under construction, are needed in support of the NRU (National Research Universal) reactor and are in line with business development strategies. The research program demands on NRU stretch many years into the future and the strategies for achieving effective operation of this aging reactor, now 32 years old, are discussed. The repair of the leaking light-water reflector of the NRU reactor is highlighted. The isotope business requires that a second reactor be available for back-up production and the operation of the 42 year old NRX (National Research Experimental) reactor in its present 'hot standby' mode is believed to be unique in the world

  9. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  10. RA Research reactor, Annual report 1988

    International Nuclear Information System (INIS)

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities

  11. Research nuclear reactor RA - Annual Report 1989

    International Nuclear Information System (INIS)

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities

  12. The concept of a research fusion reactor

    International Nuclear Information System (INIS)

    Thus,for advancement towards a commercial fusion reactor,we have proposed here as a next step a steady state operated research fusion reactor with an increased plasma-wall detachment so as to further guarantee not only the production but also a long-term (for many years) confinement of a self-sustained plasma at the existing technology level. We consider the primary goal of the research fusion reactor is the provision of full-scale conditions for carrying out materials science experiments to create and test 1 st wall materials for the commercial fusion reactor

  13. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  14. Manual for the operation of research reactors

    International Nuclear Information System (INIS)

    The great majority of the research reactors in newly established centres are light-water cooled and are often also light-water moderated. Consequently, the IAEA has decided to publish in its Technical Reports Series a manual dealing with the technical and practical problems associated with the safe and efficient operation of this type of reactor. Even though this manual is limited to light-water reactors in its direct application and presents the practices and experience at one specific reactor centre, it may also be useful for other reactor types because of the general relevance of the problems discussed and the long experience upon which it is based. It has, naturally, no regulatory character but it is hoped that it will be found helpful by staff occupied in all phases of the practical operation of research reactors, and also by those responsible for planning their experimental use. 23 refs, tabs

  15. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  16. Research reactor records in the INIS database

    International Nuclear Information System (INIS)

    This report presents a statistical analysis of more than 13,000 records of publications concerned with research and technology in the field of research and experimental reactors which are included in the INIS Bibliographic Database for the period from 1970 to 2001. The main objectives of this bibliometric study were: to make an inventory of research reactor related records in the INIS Database; to provide statistics and scientific indicators for the INIS users, namely science managers, researchers, engineers, operators, scientific editors and publishers, decision-makers in the field of research reactors related subjects; to extract other useful information from the INIS Bibliographic Database about articles published in research reactors research and technology. (author)

  17. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  18. Education and Training on ISIS Research Reactor

    International Nuclear Information System (INIS)

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions

  19. Advanced research reactor fuel development

    International Nuclear Information System (INIS)

    The fabrication technology of the U3Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U3Si2 dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U3Si2 fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 ∼ 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The γ-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U3Si2. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano-plates will be conducted in the Advanced Test Reactor(ATR). 49

  20. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    In 1998, the NNSA organized to complete the nuclear safety review on the test loop in-reactor operation of the High-flux Engineering Experimental Reactor (HFEER) and the re-operation of the China Pulsed Reactor and the Uranium-water Criticality Facility. The NNSA conducted the nuclear safety review on the CP application of the China Experimental Fast Reactor (CEFR) and the siting of China Advanced Research Reactor (CARR), and carried out the construction supervision on HTR-10, and dealt with the event about the technological tube breakage of HWRR and other events

  1. MIT research reactor. Power uprate and utilization

    International Nuclear Information System (INIS)

    The MIT Research Reactor (MITR) is a university research reactor located on MIT campus. and has a long history in supporting research and education. Recent accomplishments include a 20% power rate to 6 MW and expanding advanced materials fuel testing program. Another important ongoing initiative is the conversion to high density low enrichment uranium (LEU) monolithic U-Mo fuel, which will consist of a new fuel element design and power increase to 7 MW. (author)

  2. Safety of Ghana Research Reactor (GHARR-1)

    International Nuclear Information System (INIS)

    The Ghana Research Reactor, GHARR-1 is a low power research rector with maximum thermal power lever of 30kW. The reactor is inherently safe and uses highly enriched uranium (HEU) as fuel, light water as moderator and beryllium as a reflector. The construction, commissioning and operation of this reactor have been subjected to the system of authorization and inspection developed by the Regulatory Authority, the Radiation Protection Board (RPB) with the assistance of the International Atomic Energy Agency. The reactor has been regulated by the preparation of an Interim Safety Analysis Report (SAR) based upon International Atomic Energy Agency standards. An International Safety Assessment peer review and safe inspections have confirmed a high level of operational safety of the reactor since it started operation in 1994. Since its operation there has been no significant reported incident/accidents. Several studies have validated the inherent safety of the reactor. The reactor has been used for neutron activation analysis of various samples, research and teaching. About 1000 samples are analysed annually. The final Safety Analysis Report (SAR) was submitted (after five years of extensive research on the operational reactor) to the Regulatory Authority for review in June 2000. (author)

  3. No small fry: Decommissioning research reactors

    International Nuclear Information System (INIS)

    To get a permit to build a research reactor, would-be operators need to submit an initial decommissioning plan for the eventual shutdown of their new facility. This, however, was not a requirement back in the 1950s, 60s and 70s when most research reactors that are now nearing the end of their working lives were built. The result: many unused reactors sit idle in the middle of university campuses, research parks and hospital compounds, because their operators lack the proper plans to decommission them

  4. Effective utilization and management of research reactors

    International Nuclear Information System (INIS)

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors

  5. Higher power density TRIGA research reactors

    International Nuclear Information System (INIS)

    The uranium zirconium hydride (U-ZrH) fuel is the fundamental feature of the TRIGA family of reactors that accounts for its widely recognized safety, good performance, economy of operation, and its acceptance worldwide. Of the 65 TRIGA reactors or TRIGA fueled reactors, several are located in hospitals or hospital complexes and in buildings that house university classrooms. These examples are a tribute to the high degree of safety of the operating TRIGA reactor. In the early days, the majority of the TRIGA reactors had power levels in the range from 10 to 250 kW, many with pulsing capability. An additional number had power levels up to 1 MW. By the late 1970's, seven TRIGA reactors with power levels up to 2 MW had been installed. A reduction in the rate of worldwide construction of new research reactors set in during the mid 1970's but construction of occasional research reactors has continued until the present. Performance of higher power TRIGA reactors are presented as well as the operation of higher power density reactor cores. The extremely safe TRIGA fuel, including the more recent TRIGA LEU fuel, offers a wide range of possible reactor configurations. A long core life is assured through the use of a burnable poison in the TRIGA LEU fuel. In those instances where large neutron fluxes are desired but relatively low power levels are also desired, the 19-rod hexagonal array of small diameter fuel rods offers exciting possibilities. The small diameter fuel rods have provided extremely long and trouble-free operation in the Romanian 14 MW TRIGA reactor

  6. Power Control Method for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baang, Dane; Suh, Yongsuk; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Considering safety-oriented design concept and other control environment, we developed a simple controller that provides limiting function of power change- rate as well as fine tracking performance. The design result has been well-proven via simulation and actual application to a TRIGA-II type research reactor. The proposed controller is designed to track the PDM(Power Demand) from operator input as long as maintaining the power change rate lower than a certain value for stable reactor operation. A power control method for a TRIGA-II type research reactor has been designed, simulated, and applied to actual reactor. The control performance during commissioning test shows that the proposed controller provides fine control performance for various changes in reference values (PDM), even though there is large measurement noise from neutron detectors. The overshoot at low power level is acceptable in a sense of reactor operation.

  7. Material test reactor fuel research at the BR2 reactor

    International Nuclear Information System (INIS)

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  8. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    These technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded

  9. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  10. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  11. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory

    2016-09-28

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors, for example, such characteristics include rapid on-line refueling, and a core design with room for such a large number of assemblies or targets that it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors, such as hot cells, where plutonium could be separated, could pose a safeguards challenge because, in some cases, they are not declared (because they are not located in the facility or because nuclear materials are not foreseen to be processed inside) and may not be accessible to inspectors in States without an Additional Protocol in force.

  12. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors, for example, such characteristics include rapid on-line refueling, and a core design with room for such a large number of assemblies or targets that it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors, such as hot cells, where plutonium could be separated, could pose a safeguards challenge because, in some cases, they are not declared (because they are not located in the facility or because nuclear materials are not foreseen to be processed inside) and may not be accessible to inspectors in States without an Additional Protocol in force.

  13. Status report of Indonesian research reactor

    International Nuclear Information System (INIS)

    A general description of three Indonesian research reactor, its irradiation facilities and its future prospect are described. Since 1965 Triga Mark II 250 KW Bandung, has been in operation and in 1972 the design powers were increased to 1000 KW. Using core grid form Triga 250 KW BATAN has designed and constructed Kartini Reactor in Yogyakarta which started its operation in 1979. Both of this Triga type reactors have served a wide spectrum of utilization such as training manpower in nuclear engineering, radiochemistry, isotope production and beam research in solid state physics. Each of this reactor have strong cooperation with Bandung Institute of Technology at Bandung and Gajah Mada University at Yogyakarta which has a faculty of Nuclear Engineering. Since 1976 the idea to have high flux reactor has been foreseen appropriate to Indonesian intention to prepare infrastructure for nuclear industry for both energy and non-energy related activities. The idea come to realization with the first criticality of RSG-GAS (Multipurpose Reactor G.A. Siwabessy) in July 1987 at PUSPIPTEK Serpong area. It is expected that by early 1992 the reactor will reached its full power of 30 MW and by end 1992 its expected that irradiation facilities will be utilized in the future for nuclear scientific and engineering work. (author)

  14. Nuclear reactor safety research in Kazakhstan

    International Nuclear Information System (INIS)

    Full text : The paper summarizes activities being implemented by the National Nuclear Center of the Republic of Kazakhstan in support of safe operation of nuclear reactors; shows its crucial efforts and further road map in this line. As is known, the world community considers nuclear reactor safety as one of the urgent research areas. Kazakhstan has been pursuing studies in support of nuclear energy safety since early 80s. The findings allow to coordinate available computational methods and design new ones while validating new NPP Projects and making analysis for reactor installations available

  15. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  16. BNCT activities at Slovenian TRIGA research reactor

    International Nuclear Information System (INIS)

    It has been reported that satisfactory thermal/epithermal neutron beams for Boron Neutron Capture Therapy (BNCT) could be designed at TRIGA research reactors These reactors are generally perceived as being safe to install and operate in populated areas. This contribution presents the most recent BNCT research activities on the 'Jozef Stefan' Institute, where epithermal neutron beam for 'in-vitro' irradiation has been developed and experimentally verified. Furthermore, The Monte Carlo feasibility study of development of the epithermal neutron beam for BNCT clinical trials of human patients in thermalising column (TC) of TRIGA reactor has been carried out. The simulation results prove, that a BNCT irradiation facility with performances, comparable to existing beam throughout the world, could be installed in TC of the TRIGA reactor. (author)

  17. RMB. The new Brazilian multipurpose research reactor

    International Nuclear Information System (INIS)

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also presents the

  18. RMB. The new Brazilian multipurpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto; Soares, Adalberto Jose [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2015-01-15

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also

  19. Status report of Indonesian research reactors

    International Nuclear Information System (INIS)

    A general description of the three Indonesia research reactors, their irradiation facilities and future prospect are given. The 250 kW Triga Mark II in Bandung has been in operation since 1965 and in 1972 its designed power was increased to 1000 kW. The core grid from the previous 250 kW Triga Mark II was then used by Batan for designing and constructing the Kartini reactor in Yogyakarta. This reactor commenced its operation in 1979. Both Triga reactors have served a wide spectrum of utilization such as for manpower training in nuclear engineering, radiochemistry, isotope production, and beam research in solid state physics. The Triga reactor management in Bandung has a strong cooperation with the Bandung Institute of Technology and the one in Yogyakarta with the Gadjah Mada University which has a Nuclear Engineering Department at its Faculty of Engineering. In 1976 there emerged an idea to have a high flux reactor appropriate for Indonesia's intention to prepare an infrastructure for both nuclear energy and non-energy industry era. Such an idea was then realized with the achievement of the first criticality of the RSG-GAS reactor at the Serpong area. It is now expected that by early 1992 the reactor will reach its full 30 MW power level and by the end of 1992 the irradiation facilities be utilizable fully for future scientific and engineering work. As a part of the national LEU fuel development program a study has been underway since early 1989 to convert the RSG-GAS reactor core from using oxide fuel to using higher loading silicide fuel. (author)

  20. RRFM (European Research Reactor Conference) 2011 Transactions

    International Nuclear Information System (INIS)

    The RRFM conference is an international forum for researchers, operators and decision-makers to discuss all significant aspects of Research Reactor utilisation. In order to improve operational efficiency and fuel safety and contribute to the search for back-end solutions for spent fuel

  1. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  2. Facility modernization Annular Core Research Reactor

    International Nuclear Information System (INIS)

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  3. Corrosion Minimization for Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  4. Research nuclear reactor RA - Annual report 1992

    International Nuclear Information System (INIS)

    Research reactor RA Annual report for year 1992 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. Second annex B is a paper by Z. Vukadin 'Recurrence formulas for evaluating expansion series of depletion functions' published in 'Kerntechnik' 56, (1991) No.6 (INIS record no. 23024136. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data

  5. Advanced fuel in the Budapest research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Vidovsky, I. [KFKI Atomic Energy Research Inst., Budapest (Hungary)

    1997-07-01

    The Budapest Research Reactor, the first nuclear facility of Hungary, started to operate in 1959. The main goal of the reactor is to serve neutron research, but applications as neutron radiography, radioisotope production, pressure vessel surveillance test, etc. are important as well. The Budapest Research Reactor is a tank type reactor, moderated and cooled by light water. After a reconstruction and upgrading in 1967 the VVR-SM type fuel elements were used in it. These fuel elements provided a thermal power of 5 MW in the period 1967-1986 and 10 MW after the reconstruction from 1992. In the late eighties the Russian vendor changed the fuel elements slightly, i.e. the main parameters of the fuel remained unchanged, however a higher uranium content was reached. This new fuel is called VVR-M2. The geometry of VVR-SM and VVR-M2 are identical, allowing the use to load old and new fuel assemblies together to the active core. The first new type fuel assemblies were loaded to the Budapest Research Reactor in 1996. The present paper describes the operational experience with the new type of fuel elements in Hungary. (author)

  6. Research nuclear reactor RA - Annual Report 1994

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Activities related to improvement of Russian project were continued in 1994. Control and maintenance of the reactor components was done regularly and efficiently. Extensive repair of the secondary coolant loop is almost finished and will be completed in the first part of 1995 according to existing legal procedures and IAEA recommendations. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 47 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  7. Event management in research reactors

    International Nuclear Information System (INIS)

    In the Radiological and Nuclear Safety field, the Nuclear Regulatory Authority of Argentina controls the activities of three investigation reactors and three critical groups, by means of evaluations, audits and inspections, in order to assure the execution of the requirements settled down in the Licenses of the facilities, in the regulatory standards and in the documentation of mandatory character in general. In this work one of the key strategies developed by the ARN to promote an appropriate level of radiological and nuclear safety, based on the control of the administration of the abnormal events that its could happen in the facilities is described. The established specific regulatory requirements in this respect and the activities developed in the entities operators are presented. (Author)

  8. Research reactors: a tool for science and medicine

    International Nuclear Information System (INIS)

    The types and uses of research reactors are reviewed. After an analysis of the world situation, the demand of new research reactors of about 20 MW is foreseen. The experience and competitiveness of INVAP S.E. as designer and constructor of research reactors is outlined and the general specifications of the reactors designed by INVAP for Egypt and Australia are given

  9. Experience at SAPHIR Research Reactor, Switzerland

    International Nuclear Information System (INIS)

    The former SAPHIR research reactor has been dismantled completely without any significant difficulty. There are several factors underpinning the successful dismantling of SAPHIR: – Good housekeeping during operation and after shutdown; – Good maintenance of the infrastructure before and after shutdown; – Experienced personnel with knowledge of the reactor history; – Stable legal framework; – Close cooperation with the regulatory authority; – Excellent infrastructure of a large research centre; – Stable financing; – Stable organization, motivated personnel; – Support from skilful local companies; – Waste conditioning and treatment routes on-site and approved by the regulatory authority

  10. Proceedings of the Conference on research reactors application in Yugoslavia

    International Nuclear Information System (INIS)

    The Conference on research reactors operation was organised on the occasion of 20 anniversary of the RB zero power reactor start-up. The presentations showed that research reactors in Yugoslavia, RB, RA and TRIGA had an important role in development of nuclear sciences and technology in Yugoslavia. The reactors were applied in non-destructive testing of materials and fuel elements, development of reactor noise techniques, safety analyses, reactor control methods, neutron activation analysis, neutron radiography, dosimetry, isotope production, etc

  11. Fuel behavior comparison for a research reactor

    Science.gov (United States)

    Negut, Gh.; Mladin, M.; Prisecaru, I.; Danila, N.

    2006-06-01

    The paper presents the behavior and properties analysis of the low enriched uranium fuel, which will be loaded in the Romanian TRIGA 14 MW steady state research reactor compared with the original high enriched uranium fuel. The high and low enriched uranium fuels have similar thermal properties, but different nuclear properties. The research reactor core was modeled with both fuel materials and the reactor behavior was studied during a reactivity insertion accident. The thermal hydraulic analysis results are compared with that obtained from the safety analysis report for high enriched uranium fuel core. The low enriched uranium fuel shows a good behavior during reactivity insertion accident and a revised safety analysis report will be made for the low enriched uranium fuel core.

  12. Research nuclear reactor RA - Annual Report 1991

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Construction of some support elements is almost finished by the local staff. The Institute has undertaken this activity in order to speed up the ending of the project. If all the planned instrumentation would not arrive until the end of March 1992, it would not be possible to start the RA reactor testing operation in the first part of 1993, as previously planned. In 1991, 53 staff members took part in the activities during 1991, which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  13. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    The technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  14. Proceedings of the European Research Reactor Conference - RRFM 2012 Transactions

    International Nuclear Information System (INIS)

    In 2012 RRFM, the European Research Reactor Conference will be jointly organised with IGORR, the International Group Operating Research Reactors. This will allow offering engineers and specialised nuclear researchers the chance to focus on the latest technological developments in the field of nuclear research reactors. The conference programme will revolve around a series of Plenary Sessions dedicated to the latest global developments with regards to research reactor technology and management systems, parallel sessions that focused on specific research projects and initiatives. (authors)

  15. Review of Operation and Maintenance Support Systems for Research Reactors

    International Nuclear Information System (INIS)

    Operation support systems do not directly control the plant but it can aid decision making itself by obtaining and analyzing large amounts of data. Recently, the demand of research reactor is growing and the need for operation support systems is increasing, but it has not been applied for research reactors. This study analyzes operation and maintenance support systems of NPPs and suggests appropriate systems for research reactors based on analysis. In this paper, operation support systems for research reactors are suggested by comparing with those of power reactors. Currently, research reactors do not cover special systems in order to improve safety and operability in comparison with power reactors. Therefore we expect to improve worth to use by introducing appropriate systems for research reactors. In further research, we will develop an appropriate system such as applications or tools that can be applied to the research reactor

  16. The utility of different reactor types for the research

    International Nuclear Information System (INIS)

    The report presents a general view of the use of the different belgian research reactor i.e. venus reactor, BR-1 reactor, BR-2 reactor and BR-3 reactor. Particular attention is given to the programmes which is in the interest of international collaboration. In order to reach an efficient utilization of such reactors they require a specialized personnel groups to deal with the irradiation devices and radioactive materials and post irradiation examinations, creating a complete material testing station. (A.J.)

  17. Safety review, assessment and inspection on research reactors, experimental reactors and nuclear heating reactors

    International Nuclear Information System (INIS)

    The NNSA and its regional office step further strengthened the regulation on the safety of in-service research reactors in 1996. A lot of work has been done on the supervision of safe in rectifying the review and assessment of modified items, the review of operational documents, the treatment of accidents, the establishment of the system for operational experience feedback, daily and routine inspection on nuclear safety. The internal management of the operating organization on nuclear safety was further strengthened, nuclear safety culture was further enhanced, the promotion in nuclear safety and the safety situation for in-service research reactors were improved

  18. Research reactor fuel management in the Czech Republic

    International Nuclear Information System (INIS)

    Fuel management of the Czech research reactors is described. There are three research reactors in the Czech Republic: LVR-15 and LR-0 operated by the Nuclear Research Institute Rez plc, VR-1 operated by the Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering in Prague, and SR-0 reactor of SKODA JS plc which is under decommissioning now. The paper describes the major features of the Czech research reactors, types of fuels used in them, and the spent fuel management principles. The participation of the LVR-15 and VR-1 reactors in the RERTR international programme (Reduced Enrichment for Research and Test Reactors) is also highlighted. (author)

  19. Reactor training simulator for the Replacement Research Reactor (RRR)

    International Nuclear Information System (INIS)

    The main features of the ANSTO Replacement Research Reactor (RRR) Reactor Training Simulator (RTS) are presented.The RTS is a full-scope and partial replica simulator.Its scope includes a complete set of plant normal evolutions and malfunctions obtained from the plant design basis accidents list.All the systems necessary to implement the operating procedures associated to these transients are included.Within these systems both the variables connected to the plant SCADA and the local variables are modelled, leading to several thousands input-output variables in the plant mathematical model (PMM).The trainee interacts with the same plant SCADA, a Foxboro I/A Series system.Control room hardware is emulated through graphical displays with touch-screen.The main system models were tested against RELAP outputs.The RTS includes several modules: a model manager (MM) that encapsulates the plant mathematical model; a simulator human machine interface, where the trainee interacts with the plant SCADA; and an instructor console (IC), where the instructor commands the simulation.The PMM is built using Matlab-Simulink with specific libraries of components designed to facilitate the development of the nuclear, hydraulic, ventilation and electrical plant systems models

  20. The current status of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tri Wulan Tjiptono; Syarip

    1998-10-01

    The Kartini reactor reached the first criticality on January 25, 1979. In the first three years, the reactor power is limited up to 50 kW thermal power and on July 1, 1982 has been increased to 100 kW. It has been used as experiments facility by researcher of Atomic Energy National Agency and students of the Universities. Three beam tubes used as experiments facilities, the first, is used as a neutron source for H{sub 2}O-Natural Uranium Subcritical Assembly, the second, is developed for neutron radiography facility and the third, is used for gamma radiography facility. The other facilities are rotary rack and two pneumatic transfer systems, one for delayed neutron counting system and the other for the new Neutron Activation Analysis (NAA) facility. The rotary rack used for isotope production for NAA purpose (for long time irradiation), the delayed neutron counting system used for analysis the Uranium contents of the ores and the new NAA is provided for short live elements analysis. In the last three years the Reactor Division has a joint use program with the Nuclear Component and Engineering Center in research reactor instrumentation and control development. (author)

  1. A New Generation of Research Reactors Fuelled with LEU

    International Nuclear Information System (INIS)

    A number of countries have recently shown interest in new research reactors. In response to such willingness to develop nuclear technologies, we have prepared technical proposals on typical research reactors (RR) which will be built as part of nuclear research centres (NRC) according to base design principles. The requirements for such research reactors are defined to represent their competitive service parameters, including capabilities to support a wide spectrum of studies in various areas of theoretical and applied researches. Analysis of the current and projected uses of research reactors and assessment of the external market demands have prompted two design options of a pool-type reactor at a nuclear research centre, namely, a small (up to 0.5 MW) reactor with natural coolant circulation through its core and a reactor with forced coolant circulation scaled up to 10-15 MW. The research reactors under development will run with commercially available and well-proven fuel of low enrichment. (author)

  2. The current status of utilization of research reactors in China

    International Nuclear Information System (INIS)

    Seminars on utilization of research reactors were held to enhance experience exchanging among institutes and universities in China. The status of CARR (China Advanced Research Reactor) project is briefly described. The progress in BNCT program in China is introduced. (author)

  3. Radionuclide release from research reactor spent fuel

    International Nuclear Information System (INIS)

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO2 fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in 235U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO2-fuel (LWR fuel, enrichment in 235U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl2-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAlx-Al and U3Si2-Al) was studied in 400 mL MgCl2-rich salt brine in the presence of Fe2+ under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH)3(s) and Eu(OH)3(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu(IV) oxyhydroxides species due to radiolytic effects cannot completely be

  4. Pakistan research reactor and its utilization

    International Nuclear Information System (INIS)

    The 5 MW enriched uranium fuelled, light water moderated and cooled Pakistan Research reactor became critical on 21st December, 1965 and was taken to full power on 22nd June, 1966. Since then is has been operated for about 23000 hours till 30th June, 1983 without any major break down. It has been used for the studies of neutron cross-sections, nuclear structure, fission physics, structure of material, radiation damage in crystals and semiconductors, studies of geological, biological and environmental samples by neutron activation techniques, radioisotope production, neutron radiography and for training of scientists, engineers and technicians. In the paper we have described briefly the facility of Pakistan Research Reactor and the major work carried around it during the last decade. (author)

  5. Developing the fuel for research reactors

    International Nuclear Information System (INIS)

    A review of papers dealing with the possibility of research reactor adaptation to moderately and slightly enriched fuel with the 235U content of 45 and 20%, respectively, is presented. The main peculiarities and results of investigations carried out in two main directions, are under consideration: the increase of specific uranium content in traditional fuels (UAlsub(x)-Al, U3O8-Al, U,ZrHsub(x)) by means of improvements in technology and production (USA, FRG and France); the development of new highly dense kinds of fuel, such as U3Si, U3Si-Al, UO2 (USA, France). A conclusion is drawn that the research reactor fuel enrichment may be decreased

  6. 78 FR 58575 - Review of Experiments for Research Reactors

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Guide (RG) 2.4, ``Review of Experiments for Research Reactors.'' The guide is being withdrawn because... Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because its guidance no longer...

  7. Hydrogen problems in reactor safety research

    International Nuclear Information System (INIS)

    The BMFT and BMI have initiated a workshop 'Hydrogen Problems in Reactor Safety Research' that took place October 3./4., 1983. The objective of this workshop was to present the state of the art in the main areas - Hydrogen-Production - Hydrogen-Distribution - Hydrogen-Ignition - Hydrogen-Burning and Containment Behaviour - Mitigation Measures. The lectures on the different areas are compiled. The most important results of the final discussion are summarized as well. (orig.)

  8. Defuelling of the UTR-300 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.D.; Banford, H.M.; East, B.W. [Scottish Universities Research and Reactor Centre, Glasgow (United Kingdom); Ord, M.A.; Gaffka, A.P. [AEA Technology, Harwell, Didcot, Oxfordshire OX11 0RA (United Kingdom)

    1997-12-01

    A description is given of the movement of fuel elements from the core of the UTR-300 research reactor to the UNIFETCH flask, which is normally loaded under water, through a specially designed shielding arrangement which permits a dry transfer. The regulatory requirements and the safety case are summarised along with the predicted and measured doses to operators. The task was successfully completed to a tight time schedule with recorded doses which were well within the allocated dose budget. (orig.) 3 refs.

  9. The WWR-SM-20 research reactor

    International Nuclear Information System (INIS)

    In this paper the design features and experimental capabilities of the WWR-SM-20 research reactor are described. The reactor uses fuel assemblies consisting of six coaxial fuel tubes with a square cross-section. IRT-3M fuel assemblies can be used with both 90% enriched and 36% enriched uranium. The main characteristics of the IRT-3M fuel assemblies are given, as are the technical and physical parameters of the WWR-SM-20 reactor. The core can hold up to ten ampoule-type channels with a diameter of up to 68 mm. For irradiation purposes, up to 22 26-mm-diameter channels in the fuel assemblies, and up to 48 42-mm-diameter channels in the beryllium blocks of the reflector can be used. In the graphite blanket between the horizontal channels, channels with a diameter of up to 130 mm can be used. The thermal neutron flux density has a maximum value of 1.5 X 1018 m-2 · s-1 in the core and 2.3 X 1018 m-2 · s-1 in the reflector, and the fast neutron flux density (cE > 0.821 MeV) a maximum of 1.9 X 1018 m-2 · s-1. A number of design features have been incorporated in the WWR-SM-20 reactor to make it effectively safe

  10. Chemistry research and chemical techniques based on research reactors

    International Nuclear Information System (INIS)

    Chemistry has occupied an important position historically in the sciences associated with nuclear reactors and it continues to play a prominent role in reactor-based research investigations. This Panel of prominent scientists in the field was convened by the International Atomic Energy Agency (IAEA) to assess the present state of such chemistry research for the information of its Member States and others interested in the subject. There are two ways in which chemistry is associated with nuclear reactors: (a) general applications to many scientific fields in which chemical techniques are involved as essential service functions; and (b) specific applications of reactor facilities to the solution of chemical problems themselves. Twenty years of basic research with nuclear reactors have demonstrated a very widespread, and still increasing, demand for radioisotopes and isotopically-labelled molecules in all fields of the physical and biological sciences. Similarly, the determination of the elemental composition of a material through the analytical technique of activation analysis can be applied throughout experimental science. Refs, figs and tabs

  11. The korea multi-purpose research reactor

    International Nuclear Information System (INIS)

    This paper presents and discusses background and status of the design of the 30MW Korea Multi-purpose Research Reactor(KMRR) which is planed to achieve its first criticality in December, 19992, at Daeduk site of the Korea Advanced Energy Research Institute (KAERI). KAERI playing the leading role in Korea's nuclear technology development takes the total responsibility for its design, construction and operation. Number of Korean nuclear industries are, also, actively participating in the project while making the most of their expertise in relevant areas. (Author)

  12. Proceedings of the European Research Reactor Conference - RRFM 2013 Transactions

    International Nuclear Information System (INIS)

    In 2013 RRFM, the European Research Reactor Conference is jointly organised by ENS and Atomexpo LLC. This time the Research Reactor community meet in St. Petersburg, Russia. The conference programme will revolve around a series of Plenary Sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions will focus on all areas of the Fuel Cycle of Research Reactors, their Utilisation, Operation and Management as well as specific research projects and innovative methods in research reactor analysis and design. In 2013 the European Research Reactor Conference will for the first time give special attention to complementary safety assessments of Research Reactors, following the Fukushima-Dai-Ichi NPP's Accident. (authors)

  13. Refueling strategy at the Budapest research reactor

    International Nuclear Information System (INIS)

    Refueling strategy is very important for nuclear power plants and for highly utilized research reactors with power level in the megawatt range. New core design shall fulfill several demands and needs which can contradict each other sometimes. The loaded uranium quantity should assure the scheduled operation time (energy generation) and the maneuvering capability even at the end of the campaign. On the other hand the built in excess reactivity cannot be too high, because otherwise it would jeopardize the shutdown margin and reactor safety. Moreover the core arrangement should be optimum for in-core irradiation purposes and for the beam port experiments too. Sometimes this demand can be in contradiction with the desired burnup level. The achieved burnup level is very important from the fresh fuel consumption point of view, which has direct economic significance, however the generated spent fuel quantity is an important issue too. The refueling technique presented here allowed us at the Budapest Research Reactor to reach average burnup levels superseding 60%. (author)

  14. IAEA's Cross Cutting Activities on Research Reactors

    International Nuclear Information System (INIS)

    Full text: For nuclear research and technology development to continue to advance, research reactors (RRs) must be safely and reliably operated, adequately utilized, refurbished when necessary, provided with adequate proliferation-resistant fuel cycle services and safely decommissioned at the end of life. The IAEA has established its competence in the area of RRs with a long history of assistance to Member States in improving their utilization, by taking the lead in the development of safety standards, norms and dissemination of information on good practices for all aspects of the nuclear fuel cycle and in the planning and implementation of decommissioning. IAEA activities on RRs are formulated to cover a broad range of RR issues and to promote the continued development of scientific research and technological development using RRs. Member States look to the IAEA for coordination of the worldwide effort in this area and for help in solving specific problems. Today RR operating organizations need to overcome challenges such as the on-going management of ageing facilities, pressures for increased vigilance with respect to non-proliferation, and shrinking resources (financial as well as human) while fulfilling an expanding role in support of nuclear technology development. The IAEA coordinates and implements an array of activities that together provide broad support for RRs. As with other aspects of nuclear technology, RR activities within the IAEA are spread through diverse groups in different Departments. To ensure harmonized approaches a Cross-cutting coordination Group on Research Reactors (CCCGRR) has been established, with representatives from all IAEA Departments actively supporting RR activities. Utilization and application activities are generally lead from within the Department of Nuclear Sciences and Applications (NA). With respect to RRs, NA is primarily carrying out IAEA activities to assist and advise Member States in assessing their needs for research

  15. Shielding design for research and education reactor

    International Nuclear Information System (INIS)

    For the purpose of education and research at the University, 20-KW powered SLOWPOKE-2 research reactor has been chosen as a prototype reactor. In order to study the safety characteristics of the reactor, exposure rate has been estimated at the pool boundary. Reactor core as a radiation source is assumed to be cylindrical volume source. Thus point kernel integration method can be applied to determine the exposure rate. For the sake of simplicity, calculation was done only for the prompt fission gamma rays and fission product gamma rays. As a result, the maximum exposure rate at the pool boundary was estimated to be 18R/min at the same height of the center of the core. In order to examine the accuracy for the point kernel integration method, two shielding experiments were carried out: one for the water tank only and the other for with concrete blocks outside the water tank. Water tank was made of wood pieces which is 13.4cm wide, 1.5cm thick and 2.15m long. Thus the water tank has the total dimension of 1 m radius and 2.1 m height. The experiment was carried out for the radiation source of 0.968 mCi Co-60 at the center of the water tank and the penetrated gamma rays were measured at 5 different detector positions. For the measurement and analysis of the responses, NaI(T1) 3''x3'' detector and 256 channel multichannel analyzer was utilized. To convert pulse height distribution to the exposure rate, Moriuchi conversion factor was adopted. Data from the calculations by point kernel method were well agreed within 10% band with the data from the the experiments. (Author)

  16. Safe operation and maintenance of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  17. Research reactor status for future nuclear research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel [Commissariat a l' Energie Atomique - CEA (France)

    2010-07-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source

  18. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  19. Research reactor utilization in the Philippines

    International Nuclear Information System (INIS)

    The Philippine Research Reactor (PRR-1) has been used since 1963 for a wide spectrum of scientific activities ranging from fundamental research in nuclear physics, nuclear chemistry, and radiobiology to radioisotope production, neutron activation analysis, materials testing, and manpower development. The paper gives a brief history of the establishment of PRR-1 and its utilization. The current research programme of the Philippine Nuclear Research Institute (PNRI) using the PRR-1 is then presented. The main objective of the programme is to accelerate the application of nuclear energy for the industrialization of the country through the utilization of the PRR-1. The paper also presents the PNRI's regulatory protocol which ensures the safe operation of the PRR-1. (author)

  20. Present status of BNCT at Kyoto University Research Reactor Institute

    International Nuclear Information System (INIS)

    At Kyoto University Research Reactor Institute, we have two facilities for BNCT such as a reactor-based and an accelerator-based neutron source. In this article, we will present the characteristics overview of both facilities. (author)

  1. The AFR. An approved network of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele [Mainz Univ. (Germany). Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren (AFR)

    2012-10-15

    AFR (Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren) is the German acronym for 'Association for Research Reactor Operation and Safety Issues' which was founded in 1959. Reactor managers of European research reactors mainly from the German linguistic area meet regularly for their mutual benefit to exchange experience and knowledge in all areas of operating, managing and utilization of research reactors. In the last 2 years joint meetings were held together with the French association of research reactors CER (Club d'Exploitants des Reacteurs). In this contribution the AFR, its members, work and aims as well as the French partner CER are presented. (orig.)

  2. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  3. INVAP Experience in the Design and Construction of Research Reactors. (Research Reactors in and from Argentina)

    International Nuclear Information System (INIS)

    Full Text: Argentina has a long tradition in the design and construction of Research Reactors. The first research reactor in Argentina, RA-1, was built by CNEA (Argentina Atomic Energy Commission) in 1958, using drawings lent by USA. RA-2, RA-3, RA-4 and RA-0 followed through. In 1976, a career degree in Nuclear Engineering was started by CNEA and the University of Cuyo in Bariloche. It was decided that there would be a university type reactor to assist with the training of the students. INVAP, a recently created company, was assigned the task of building the reactor in accordance with the engineering developed by CNEA. The RA-6 was a very successful project, which allowed INVAP to build the knowledge for participating in RR projects abroad. Since 1982, INVAP has built research reactors in Algeria, Egypt, Argentina and Australia and had a large participation in the RRs CNEA built in Peru. INVAP has also designed several other RR for different clients, which were not subsequently built. This paper explores this history, giving details of the RR projects in which INVAP has been involved through the years. (author)

  4. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  5. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  6. TRIGA research reactor activities around the world

    International Nuclear Information System (INIS)

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia

  7. Research reactor de-fueling and fuel shipment

    Energy Technology Data Exchange (ETDEWEB)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  8. The present status and the prospect of China research reactors

    International Nuclear Information System (INIS)

    A total of 100 reactor operation years' experience of research reactors has now been obtained in China. The type and principal parameters of China research reactors and their operating status are briefly introduced in this paper. Chinese research reactors have been playing an important role in nuclear power and nuclear weapon development, industrial and agricultural production, medicine, basic and applied science research and environmental protection, etc. The utilization scale, benefits and achievements will be given. There is a good safety record in the operation of these reactors. A general safety review is discussed. The important incidents and accidents happening during a hundred reactor operating years are described and analyzed. China has the capability of developing any type of research reactor. The prospective projects are briefly introduced

  9. Present status of research reactor decommissioning programme in Indonesia

    International Nuclear Information System (INIS)

    At present Indonesia has 3 research reactors, namely the 30 MW MTR-type multipurpose reactor at Serpong Site, two TRIGA-type research reactors, the first one being 1 MW located at Bandung Site and the second one a small reactor of 100 kW at Yogyakarta Site. The TRIGA Reactor at the Bandung Site reached its first criticality at 250 kW in 1964, and then was operated at 1000 kW since 1971. In October 2000 the reactor power was successfully upgraded to 2 MW. This reactor has already been operated for 38 years. There is not yet any decision for the decommissioning of this reactor. However it will surely be an object for the near future decommissioning programme and hence anticipation for the above situation becomes necessary. The regulation on decommissioning of research reactor is already issued by the independent regulatory body (BAPETEN) according to which the decommissioning permit has to be applied by the BATAN. For Indonesia, an early decommissioning strategy for research reactor dictates a restricted re-use of the site for other nuclear installation. This is based on high land price, limited availability of radwaste repository site, and other cost analysis. Spent graphite reflector from the Bandung TRIGA reactor is recommended for a direct disposal after conditioning, without any volume reduction treatment. Development of human resources, technological capability as well as information flow from and exchange with advanced countries are important factors for the future development of research reactor decommissioning programme in Indonesia. (author)

  10. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  11. Research reactors for the social safety and prosperous neutron use

    International Nuclear Information System (INIS)

    The present status of nuclear reactors in Japan and the world was briefly described in this report. Aiming to construct a background of stable future society dependent on nuclear energy, the necessity to establish an organization for research reactors in Japan was pointed out. There are a total of 468 reactors in the world, but only 248 of them are running at present and most of them are superannuated. In Japan, 15 research reactors are running and 8 of them are under collaborative utilization, but not a few of them have various problems. In the education of atomic energy, a reactor is dispensable for understanding its working principle through practice learning. Furthermore, a research reactor has important roles for development of power reactor in addition to various basic studies such as activation analysis, fission track, biological irradiation, neutron scattering, etc. Application of a reactor has been also progressing in industrial and medical fields. However, operation of the reactors has become more and more difficult in Japan because of a large running cost and a lack of residential consensus for nuclear reactor. Here, the author proposed an establishment of organization of research reactor in order to promote utilization of a reactor in the field of education, rearing of professionals and science and engineering. (M.N.)

  12. Spherical tokamak research for fusion reactor

    International Nuclear Information System (INIS)

    Between ITER and the commercial fusion reactor, there are many technological problems to be solved such as cost, neutron and steady-state operation. In the conceptual design of VECTOR and Slim CS reactors it was shown that the key is 'low aspect ratio'. The spherical tokamak (ST) has been expected as the base for fusion reactors. In US, ST is considered as a non-superconducting reactor for use in the neutron irradiation facility. Conceptual design of the superconducting ST reactor is conducted in Japan and Korea independently. In the present article, the prospect of the ST reactor design is discussed. (author)

  13. Safety review and assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    More operational events were occurred at various research reactors in 1995. The NNSA and its regional offices conducted careful investigation and strict regulation. In order to analyze comprehensively the safety situation of inservice research reactors and find same countermeasures the NNSA convened a meeting of the safety regulation on research reactors and a meeting for change experience of the safety regulation on research reactors that were participated in by the operating organizations in 1995. A lot of work has been done in the respects of propagation of regulations on nuclear safety, education of nuclear safety culture, the investigation and treatment of operational events, the reexamine of operation documents, the implementation of rectifying items on nuclear safety, the daily inspection and routine inspection on nuclear safety and the studying on the extending service life of research reactors etc

  14. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  15. Initiatives Supporting Research Reactor in the Asia-Pacific Region

    International Nuclear Information System (INIS)

    The safe and effective operation and utilisation of research reactors in the Asia-Pacific will assist the region as it grows and develops into the world's powerhouse for economic development in the 21st century. This paper explores the drivers for developments in regional research reactor operation and high-level initiatives in safety for some nations. Detailed examples of safety initiatives for research reactors in some Asia-Pacific nations and challenges for the future in the region are given. (author)

  16. Research activities on fast reactors in Switzerland

    International Nuclear Information System (INIS)

    The current domestic Swiss electricity supply is primarily based on hydro power (approximately 61%) and nuclear power (about 37%). The contribution of fossil systems is, consequently, minimal (the remaining 2%). In addition, long-term (but limited in time) contracts exist, securing imports of electricity of nuclear origin from France. During the last two years, the electricity consumption has been almost stagnant, although the 80s recorded an average annual increase rate of 2.7%. The future development of the electricity demand is a complex function of several factors with possibly competing effects, like increased efficiency of applications, changes in the industrial structure of the country, increase of population, further automation of industrial processes and services. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually open a gap between the postulated electricity demand and the base supply. The assumed projected demand cases, high and low, as well as the secured yearly electric energy supply are shown. The physics aspects of plutonium burning fast reactor configurations are described including first results of the CIRANO experimental program. Swiss research related to residual heat removal in fast breeder reactors is presented. It consists of experimental ana analytic investigations on the mixing between two horizontal fluid layers of different velocities and temperatures. Development of suitable computer codes for mixing layer calculation are aimed to accurately predict the flow and temperature distribution in the pools. A satisfactory codes validation based on experimental data should be done

  17. Innovation and research in reactor safety

    International Nuclear Information System (INIS)

    In line with the engineered safeguards principle of in-depth safety, the survey article deals with innovation and research in the field of reactor safety, improvements in plant operation, innovation in accident management, and reduction of the consequences of severe accidents. The survey reveals that the development and application of innovative and efficient technologies is aimed primarily at the management of aging and of the operating life, and at simplifying and improving operations processes. Another area of innovation is accident management. In this respect, some of the main areas under development are the expansion of the multi-level safety concept, the introduction of further accident control measures so as to complete the spectrum of accidents covered, the quantification of safety margins by means of the application of modern methods of computation, and the introduction of passive elements reducing the need for fast countermeasures to be initiated by the plant operating personnel. The authors conclude that, on the whole, light water reactors attain a level of safety which, in combination with corresponding efforts in the economic sector, is a precondition for the renaissance of nuclear technology in the century just begun. The second part of the article, which is to be published in July, will deal mainly with the reduction of consequences of severe accidents. (orig.)

  18. Health physics research reactor reference dosimetry

    International Nuclear Information System (INIS)

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs

  19. Defuelling of the UTR-300 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.D.; Banford, H.M.; East, B.W. [Scottish Universities Research and Reactor Centre, Glasgow (United Kingdom)

    1997-07-01

    The UTR-300 reactor at the Scottish Universities Research and Reactor Centre was based on the original Argonaut design with two aluminium core tanks set in a graphite reflector each containing six fuel elements cooled and moderated by water flowing up through the tanks in a closed primary circuit. The fuel plates in the original 13-plate elements were uranium oxide-aluminium with a 22g loading of 90% {sup 235}U. After 7 years of operation at 100 kW (10 kW average), the maximum power was increased to 300 kW (30 kW average) and, in order to maintain the operational excess reactivity, it was necessary to add another plate to each element progressively over the years until they all contained 14 plates. These extra plates were uranium metal-aluminium with 24.5 g of 90% {sup 235}U. No further modification of the elements was possible and so, with reactivity steadily decreasing, and for a variety of other reasons, a decision was taken to cease operation in September 1995. This paper describes the procedures whereby the fuel was unloaded from the core into a UNIFETCH flask equipped with a specially designed rotating gamma ray shield and then transported on two separate loads to Dounreay for reprocessing. (author)

  20. Defuelling of the UTR-300 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.D.; Banford, H.M.; East, B.W. [Scottish Universities Research and Reactor Centre, Glasgow (United Kingdom)

    1997-07-01

    The UTR-300 reactor at the Scottish Universities Research and Reactor Centre was based on the original Argonaut design with two aluminium core tanks set in a graphite reflector each containing six fuel elements cooled and moderated by water flowing up through the tanks in a closed primary circuit. The fuel plates in the original 13-plate elements were uranium oxide-aluminium with a 22g loading of 90% {sup 235}U. After 7 years of operation at 100 kW (10 kW average), the maximum power was increased to 300 kW (30 kW average) and, in order to maintain the operational excess reactivity, it was necessary to add another plate to each element progressively over the years until they all contained 14 plates. These extra plates were uranium metal-aluminium with 24.5 g of 90% {sup 235}U. No further modification of the elements was possible and so, with reactivity steadily decreasing, and for a variety of other reasons, a decision was taken to cease operation in September 1995. This paper describes the procedures whereby the fuel was unloaded from the core into a UNIFETCH flask equipped with a specially designed rotating gamma ray shield and then transported on two separate loads to Dounreay for reprocessing. (author) 2 figs., 2 tabs., refs.

  1. Optimum burnup of BAEC TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor

  2. Development of Education and Training Programs Using ISIS Research Reactor

    International Nuclear Information System (INIS)

    As a part of the French Alternative Energies and Atomic Energy Commission (CEA), the National Institute for Nuclear Science and Technology (INSTN) carries out various education and training programs on nuclear reactor theory and operation. These programs take advantage of the use of an extensive range of training tools that includes software applications, simulators, as well as the use of research reactors. After a presentation of ISIS reactor, we present the training courses that have been developed on ISIS reactor and their use in education and training programs developed by INSTN. We report on how the training courses carried out on ISIS research reactor ensure a practical and comprehensive understanding of the reactor principle and operation, bringing tremendous benefit to the trainees. We also discuss the future development of education and training programs using the ISIS research reactor as a very powerful tool for the development of the human resources needed by the nuclear industry and the nuclear programs. (author)

  3. Cost Estimation for Research Reactor Decommissioning

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of this publication is to develop a costing methodology and a software tool in order to support cost estimation for research reactor decommissioning. The costing methodology is intended for the preliminary cost estimation stages for research reactor decommissioning with limited inventory data and other input data available. Existing experience in decommissioning costing is considered. As the basis for the cost calculation structure, the costing model uses the International Structure for Decommissioning Costing (ISDC) that is recommended by the IAEA, the Organisation for

  4. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  5. Upgrading of the research reactors FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    In 1972 for the research reactor FRG-2 we applied for a license to increase the power from 15 MW to 21 MW. During this procedure a public laying out of the safety report and an upgrading procedure for both research reactors - FRG-1 (5 MW) and FRG-2 - were required by the licensing authorities. After discussing the legal background for licensing procedures in the Federal Republic of Germany the upgrading for both research reactors is described. The present status and future licensing aspects for changes of our research reactors are discussed, too. (orig.)

  6. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  7. Research nuclear reactor start-up simulator

    International Nuclear Information System (INIS)

    This work presents the design and FPGA implementation of a research nuclear reactor start-up simulator. Its aim is to generate a set of signals that allow replacing the neutron detector for stimulated signals, to feed the measurement electronic of the start-up channels, to check its operation, together with the start-up security logic. The simulator presented can be configured on three independent channels and adjust the shape of the output pulses. Furthermore, each channel can be configured in 'rate' mode, where you can specify the growth rate of the pulse frequency in %/s. Result and details of the implementation on FPGA of the different functional blocks are given. (author)

  8. Utilisation of the Research Reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    The TRIGA Mark II reactor of the University of Mainz can be operated in the steady state mode with thermal powers up to a maximum of 100 kW and in the pulse mode with a maximum peak power of 250 MW. So far, more than 17 000 pulses have been performed. For irradiations the TRIGA Mainz has a central experimental tube, three pneumatic transfer systems and a rotary specimen rack. In addition, the TRIGA Mainz includes four horizontal beam ports and a graphite thermal column which provides a source of well-thermalised neutrons. A broad spectrum of commercial applications, scientific research and training can be executed. For education and training various courses in nuclear and radiochemistry, radiation protection, reactor operation and physics are held for scientists, advanced students, teachers, engineers and technicians. Isotope production and Neutron Activation Analysis (NAA) are applied in in-core positions for different applications. NAA in Mainz is focused to determine trace elements in different materials such as in archaeometry, forensics, biology and technical materials including semiconductors for photovoltaics. The beam ports and the thermal column are used for commercial as well as for special basic and applied research in medicine, biology, chemistry and physics. Experiments are in preparation to determine the fundamental neutron properties with very high precision using ultra cold neutrons (UCN) produced at the tangential beam port. A second source is under development at the radial piercing beam port. Another experiment under development is the determination of ground-state properties of radioactive nuclei with very high precision using a penning trap and collinear laser spectroscopy. For many years fast chemical separation procedures combining a gas-jet transport system installed in one beam tube with either continuous or discontinuous chemical separation are carried out. In addition the thermal column of the reactor is also used for medical and

  9. Utilization related design features of research reactors: A compendium

    International Nuclear Information System (INIS)

    For more than 50 years, research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines, as well as to the educational and research programmes of about 70 countries worldwide. In the recent past, however, the utilization patterns of research reactors have changed remarkably. At present, new and upgraded research reactors are either facilities specialized in education, materials research and radioisotope production, or state of the art machines designed and equipped to carry out cutting edge research involving neutrons. A significant number of operating research reactors have become service-for-fee facilities producing radioisotopes, and performing neutron radiography, semiconductor doping and neutron activation analysis for a wide range of users while continuing their traditional role in education and training. At the same time, high quality basic research is the driving force for the few new, state of the art and high performance research reactors. There are significant utilization issues being faced by the research reactor community, one being the selection, design and operation of various types of devices in research reactors. Early in 2002, in order to facilitate the exchange of ideas, concepts and experience, the IAEA decided to prepare a publication on facilities and associated devices for selected fields of utilization of research reactors, including constraints and restrictions imposed on design and operation. Pursuing that objective, in December 2002 the IAEA convened a meeting to consider updating the existing documentation on multipurpose research reactors, which was produced in 1988. It was agreed at that meeting that updating the original material, and preserving its organization and contents was not the best response to the actual needs of the research reactor community worldwide. Instead, the recommendation was to prepare a guide on the

  10. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  11. Initial decommissioning planning for the Budapest research reactor

    OpenAIRE

    Toth Gabor

    2011-01-01

    The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  12. Initial decommissioning planning for the Budapest research reactor

    Directory of Open Access Journals (Sweden)

    Toth Gabor

    2011-01-01

    Full Text Available The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  13. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Baldev Raj

    2009-06-01

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective of providing fast reactor electricity at an affordable and competitive price.

  14. Technical Research for Dedicated Isotope Production Reactor of South Africa

    Institute of Scientific and Technical Information of China (English)

    ZOU; Yao; LIU; Xing-min; CHEN; Hui-qiang; SUN; Zhen; WU; Yuan-yuan

    2012-01-01

    <正>Research reactor plays an important part in nuclear science and technology, application and power development. Currently, many countries in Middle East and Africa are ready to develop their own nuclear industry. South Africa sent its User Requirements Specification (URS) for a dedicated isotope production reactor to several institutes or companies, among of which Department of Reactor Engineering Research and Design (DRERD) in China Institute of Atomic Energy (CIAE) is a competitive candidate.

  15. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical

  16. Reactor Physics Modeling Of Spent Research Reactor Fuel For Technical Nuclear Forensics

    International Nuclear Information System (INIS)

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to ∼93% 235U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The

  17. REACTOR PHYSICS MODELING OF SPENT NUCLEAR RESEARCH REACTOR FUEL FOR SNM ATTRIBUTION AND NUCLEAR FORENSICS

    Energy Technology Data Exchange (ETDEWEB)

    Sternat, M.; Beals, D.; Webb, R.; Nichols, T.

    2010-06-09

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle

  18. Status of spent fuels in Japanese research reactors

    International Nuclear Information System (INIS)

    There are now eleven research and test reactors in operation in Japan. Spent fuel issues might cause problems at the JRR-3M and JMTR reactors in the near future. Increasing the number of spent fuel racks at these reactors is now under consideration because the existing capacity is almost filled. The commissioning of extra racks will allow space for the normal discharge of fuel from these reactors for several more years. The current management of spent fuel from the eleven operational reactors is suitable to meet their needs. (author). 3 tabs

  19. International topical meeting. Research Reactor Fuel Management (RRFM) and meeting of the International Group on Reactor Research (IGORR)

    International Nuclear Information System (INIS)

    Nuclear research and test reactors have been in operation for over 60 years, over 270 research reactors are currently operating in more than 50 countries. This meeting is dedicated to different aspects of research reactor fuels: new fuels for new reactors, the conversion to low enriched uranium fuels, spent fuel management and computational tools for core simulation. About 80 contributions are reported in this document, they are organized into 7 sessions: 1) international topics and overview on new projects and fuel, 2) new projects and upgrades, 3) fuel development, 4) optimisation and research reactor utilisation, 5) innovative methods in research reactors physics, 6) safety, operation and research reactor conversion, 7) fuel back-end management, and a poster session. Experience from Australian, Romanian, Libyan, Syrian, Vietnamese, South-African and Ghana research reactors are reported among other things. The Russian program for research reactor spent fuel management is described and the status of the American-driven program for the conversion to low enriched uranium fuels is presented. (A.C.)

  20. Enhancing Safety Performance of Research Reactors at Trombay

    International Nuclear Information System (INIS)

    Based on various national requirements of basic research, material testing, isotope production, criticality experiments and research related to future power reactor program, Indian research reactor program encompasses a variety of reactors from simple pool type reactor Apsara to complex 100 MW reactor like Dhruva. To meet the varied and complex safety requirements of research reactors, a strong safety management system has also been evolved and nurtured. With over 150 reactor years of operating feedback, wealth of experience has been gained and safety enhancement has been kept as a continuously evolving process at Trombay. The 100 MWth research reactor Dhruva has now completed more than two and half decades of operation. Based on a systematic In-Service Inspection (ISI) program, structured system performance monitoring and review and Periodic Safety Review (PSR) certain incipient failures in the system could be noted and corrected in time. Based on these reviews, certain mid-term safety upgrades in various systems of Dhruva were carried out. This paper will provide an overview of overall safety enhancement of research reactors, through refurbishment, and engineering changes. (author)

  1. Strategy for Sustainable Utilization of IRT-Sofia Research Reactor

    International Nuclear Information System (INIS)

    The Research Reactor IRT-2000 in Sofia is in process of reconstruction into a low-power reactor of 200 kW under the decision of the Council of Ministers of Republic of Bulgaria from 2001. The reactor will be utilized for development and preservation of nuclear science, skills, and knowledge; implementation of applied methods and research; education of students and training of graduated physicists and engineers in the field of nuclear science and nuclear energy; development of radiation therapy facility. Nuclear energy has a strategic place within the structure of the country’s energy system. In that aspect, the research reactor as a material base, and its scientific and technical personnel, represent a solid basis for the development of nuclear energy in our country. The acquired scientific experience and qualification in reactor operation are a precondition for the equal in rights participation of the country in the international cooperation and the approaching to the European structures, and assurance of the national interests. Therefore, the operation and use of the research reactor brings significant economic benefits for the country. For education of students in nuclear energy, reactor physics experiments for measurements of static and kinetic reactor parameters will be carried out on the research reactor. The research reactor as a national base will support training and applied research, keep up the good practice and the preparation of specialists who are able to monitor radioactivity sources, to develop new methods for detection of low quantities of radioactive isotopes which are hard to find, for deactivation and personal protection. The reactor will be used for production of isotopes needed for medical therapy and diagnostics; it will be the neutron source in element activation analysis having a number of applications in industrial production, medicine, chemistry, criminology, etc. The reactor operation will increase the public understanding, confidence

  2. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Zaetta, A. [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G. [CEA/Saclay, DEN, 91 - Gif sur Yvette (France)] [and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  3. Disassembly of the Research Reactor FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Poeppinghaus, J.; Cremer, J.

    2002-02-25

    This report describes the past steps of dismantling the research reactor FRJ-1 (MERLIN) and, moreover, provides an outlook on future dismantling with the ultimate aim of a ''green field site''. MERLIN is an abbreviation for MEDIUM ENERGY RESEARCH LIGHT WATER MODERATED INDUSTRIAL NUCLEAR REACTOR.

  4. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  5. Research reactor collaboration in the Asia-Pacific region

    International Nuclear Information System (INIS)

    The number of research reactors over the world has been decreasing since its peak in the middle of the 1970s, and it is predicted to decrease more rapidly than before in the future. International collaboration on research reactors is an effective way for their continued safe service to human welfare in various technical areas. The number of new research reactors under construction or planned for in the Asia-Pacific region is the greatest in the world. Among the regional collaboration activities on research reactors, safety has been the most important subject followed by neutron activation analysis, radioisotope production and neutron beam applications. It is understood that more regional collaboration on basic technologies important for the safety, management and utilization of the research reactors is demanding. The new project proposal of the Forum for Nuclear Cooperation in Asia on 'Research Reactor Technology for Effective Utilization' is understood to meet the demands. Meanwhile, there is a consensus on the need for research reactor resource sharing in the region. As a result of the review on the international collaboration activities in the region, the author suggests a linkage between the above new project and IAEA/RCA project considering a possible sharing of research reactor resources in the region. (author)

  6. Fuel cycle for research reactors in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM Nuklear GmbH, Industriestrasse 13, D-63755 Alzenau, (Germany)

    1998-07-01

    In the European Union (EU) there are altogether 77 research reactors in operation, a large number of them being used for teaching and university research proposes as well as for fundamental research. The trend for the remaining and planned reactors is to enlarge their capacity by compact cores in order to increase neutron yields and power. Also the use of research reactors for the production of radioisotopes for medical diagnosis and treatment and therapeutic purposes has become more and more common. In addition to the 77 research reactors in operation (in the EU) there are a number of 72 reactors that have been shut down. To serve the needs of the research reactors in the European Union a vital and self-confident industry has been developed which also exports nuclear technology and fuel for peaceful purposes. The problems today in the fuel cycle lie in the disposal of spent research reactor fuel and the procurement of fresh fuel with U-235 assays above 20%. This paper provides a summary of specific activities by European companies in the individual steps of the fuel cycle for research reactors. (author)

  7. Developing research reactor coalitions and centres of excellence

    International Nuclear Information System (INIS)

    Research reactors continue to play a key role in the development of peaceful uses of atomic energy. They are used for a variety of purposes such as education and training, production of medical and industrial isotopes, non-destructive testing, analytical studies, modification of materials, for research in physics, biology and materials science, and in support of nuclear power programmes. The IAEA Research Reactor Data Base lists about 250 operational research reactors worldwide, many of which have been operating for more than 40 years. Through both statistical and anecdotal evidence, it is clear that many of these reactors are under utilized, face critical issues related to sustainability, and must make important decisions concerning future operation. These challenges are occurring in the context of increased concerns over global non-proliferation and nuclear material security, due to which research reactor operators are coming under increased pressure to substantially improve physical security and convert to the use of low enriched uranium (LEU) fuel. Thus, there is a complex environment for research reactors, and one in which underutilized and therefore likely poorly funded facilities invoke particular concern. any research reactors are challenged to generate sufficient income to offset operational costs, often in a context of declining political and/or public support. Many research reactor operators have limited access to potential customers for their services and are not familiar with the business planning concepts needed to secure additional commercial revenues or governmental or international programme funding. This not only results in reduced income for the facilities involved, but sometimes also in research reactor services priced below full cost, preventing recovery of back-end costs and creating unsustainable market norms. Parochial attitudes and competitive behaviour restrict information sharing, dissemination of best practices, and mutual support that

  8. Proceedings of the sixth Asian symposium on research reactors

    International Nuclear Information System (INIS)

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: 1) status and future plan of research and testing reactors, 2) operating experiences, 3) design and modification of the facility, and reactor fuels, 4) irradiation studies, 5) irradiation facilities, 6) reactor characteristics and instrumentation, and 7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  9. Proceedings of the sixth Asian symposium on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: (1) status and future plan of research and testing reactors, (2) operating experiences, (3) design and modification of the facility, and reactor fuels, (4) irradiation studies, (5) irradiation facilities, (6) reactor characteristics and instrumentation, and (7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  10. IAEA Sub-Programme on Research Reactor Safety

    International Nuclear Information System (INIS)

    The IAEA has greatly contributed through its programmes and activities to the records of safe operation of research reactors worldwide. Since 2006, the activities of the IAEA sub-programme on research reactor safety have been mainly focusing on supporting Member States (MSs) to enhance the safety of their research reactors mainly through the application of the Code of Conduct on the Safety of Research Reactors for the management of the safety of these facilities. In doing so, the key part of the implementation strategy of the activities included the development of Safety Standards and supporting documents. At present, the corpus of Safety Standards for research reactors has reached maturity. Safety review services, based on the IAEA Safety Standards, were provided, in the field, through the implementation of Integrated Safety Assessment (INSARR) missions and other safety review and expert missions. Since 2006, about one hundred missions were conducted to research reactors worldwide. Fact finding missions were also implemented by the IAEA in MSs establishing their first research reactors in order to identify gaps and define actions to assist them building the necessary technical and safety infrastructures. An important part of the implementation strategy for the IAEA safety enhancement plan included the fostering of regional and international cooperation to enhance operational safety and regulatory supervision of research reactors, and support for the establishment and functioning of regional advisory safety committees and nuclear safety networks. International exchange of information and sharing of operating experience feedback are essential contributors for enhancing safety and have been promoted through the IAEA web-based incident reporting system for research reactors IRSRR which ensures the collection of data and information on events and the dissemination of lessons learned from their analysis. Existing inconsistencies in the safety demonstrations for research

  11. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  12. Related activities on management of ageing of Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham Van Lam [Reactor Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the previous 250 kW TRIGA-MARK II reactor. The reactor core, the control and instrumentation system, the primary and secondary cooling systems as well as other associated systems were newly designed and installed. The renovated reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. Since then DNRR has been operated safely. Retained structures of the former reactor such as the reactor aluminum tank, the graphite reflector, the thermal column, the horizontal beam tubes and the radiation concrete shielding are 35 years old. During the recent years, in-service inspection has been carried out, the reactor control and instrumentation system were renovated due to ageing and obsolescence of its components, reactor general inspection and refurbishment were performed. Efforts are being made to cope with ageing of old reactor components to maintain safe operation of the DNRR. (author)

  13. Decommissioning technology development for research reactors

    International Nuclear Information System (INIS)

    Although it is expected that the decommissioning of a nuclear power plant will happen since 2020, the need of partial decommissioning and decontamination for periodic inspection and life extension has been on an increasing trend and domestic market has gradually been extended. Therefore, in this project the decommissioning DB system on the KRR-1 and 2 was developed as establishing the information classification system of the research reactor dismantling and the structural design and optimization of the decommissioning DB system. Also in order to secure the reliability and safety about the dismantling process, the main dismantling simulation technology that can verify the dismantling process before their real dismantling work was developed. And also the underwater cutting equipment was developed to remove these stainless steel parts highly activated from the RSR. First, the its key technologies were developed and then the design, making, and capability analysis were performed. Finally the actual proof was achieved for applying the dismantling site. an automatic surface contamination measuring equipment was developed in order to get the sample automatically and measure the radiation/radioactivity

  14. Research about reactor operator's personality characteristics and performance

    International Nuclear Information System (INIS)

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  15. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  16. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  17. Current tendencies and perspectives of development research reactors of Russia

    International Nuclear Information System (INIS)

    Full text: During more than fifty years many Research Reactors were constructed under Russian projects, and that is a considerable contribution to the world reactor building. The designs of Research Reactors, constructed under Russian projects, appeared to be so successful, that permitted to raise capacity and widen the range of their application. The majority of Russian Research Reactors being middle-aged are far from having their designed resources exhausted and are kept on the intensive run still. In 2000 'Strategy of nuclear power development in Russia in the first half of XXI century' was elaborated and approved. The national nuclear power requirements and possible ways of its development determined in this document demanded to analyze the state of the research reactors base. The analysis results are presented in this report. The main conclusion consists in the following statement: on the one hand quantity and experimental potentialities of domestic Research Reactors are sufficient for the solution of reactor materials science tasks, and on the other hand the reconstruction and modernization appears to be the most preferable way of research reactors development for the near-term outlook. At present time the modernization and reconstruction works and works on extension of operational life of high-powered multipurpose MIR-M1, SM-3, IRV-1M, BOR-60, IVV-2M and others are conducted. There is support for the development of Research Reactors, intended for carrying out the fundamental investigations on the neutron beams. Toward this end the Government of Russia gives financial and professional support with a view to complete the reactor PIK construction in PINPh and the reactor IBR-2 modernization in JINR. In future prospect Research Reactors branch in Russia is to acquire the following trends: - limited number of existent scientific centers, based on the construction sites, with high flux materials testing research reactors, equipped with experimental facilities

  18. On the RA research reactor fuel management problems

    International Nuclear Information System (INIS)

    After 25 years of operation, the Soviet-origin 6.5-MW heavy water RA research reactor was shut down in 1984. Basic facts about RA reactor operation, aging, reconstruction, and spent-fuel disposal have been presented and discussed in earlier papers. The following paragraphs present recent activities and results related to important fuel management problems

  19. Direct digital control of the WWR-SM research reactor

    International Nuclear Information System (INIS)

    The report describes the computerized control system of a 5 MW WWR-SM research reactor. The system is realized as a multilayer decision hierarchy where simple subsystems control the power and the outlet temperature of the reactor under the supervision of a self-organization layer. The structure of the program system and the hardware configuration are presented. (author)

  20. The Lo Aguirre research reactor refurbishment

    International Nuclear Information System (INIS)

    A description is given of the main work which had to be performed on the experimental reactor of the Lo Aguirre nuclear power plant (RECH-2), following which it recently came into operation. In particular, an outline is given of the main changes and improvements made with regard to reactor physics calculations, the systems and components in the facility, and repair of existing fuel elements. Special importance was attached to the definition, application and meeting of nuclear safety requirements and the implementation of a consistent quality assurance programme. Certain aspects of the work performed, by virtue of the scope and importance of the tasks involved, resulted in clear improvements to and modernization of the facility - for example, the construction of a new control room, the construction of a computerized radiation protection and surveillance control room, the reconstruction of the primary coolant circuit, the complete refitting of reactor instrumentation to incorporate a computerized data acquisition system, the redesign and construction of reactor water treatment plants, improvements in experimental devices and the design and construction of new experimental devices. The reactor, construction of which was resumed in 1986, attained criticality on 6 September 1989 using the HEU fuel available. We are now at the stage of characterizing the reactor by measuring process and nuclear parameters prior to commencing power operation

  1. Wanna be in health physics? Try a university research reactor

    International Nuclear Information System (INIS)

    Ultimately, the key radiation protection issue is each individual's understanding - i.e., understanding of the technical aspects, the safety implications, and the need for their commitment to the overall program. University research reactors can offer a wide range of radiation protection experiences to develop this understanding for not only the health physicist but also any individual involved with nuclear science and technology applications. This paper discusses such topics as radiopharmaceutical research and development, nutritional studies, and reactor maintenance as activities associated with the University of Missouri - Columbia Research Reactor Center (MURR). 3 refs., 1 tab

  2. Health Physics Research Reactor (HPRR) operating experience and applications

    International Nuclear Information System (INIS)

    The Health Physics Research Reactor (HPRR) is a small, unmoderated fast pulse reactor located at the Oak Ridge National Laboratory (ORNL). The HPRR is the principle research tool of ORNL's Dosimetry Applications Research Group. The reactor is described, and its operating experience is presented. The HPRR is used by dosimeter vendors, government laboratories, nuclear power utilities, the military, and universities as well as by the ORNL staff for a wide variety of applications. These applications have been divided into six categories as follows: (1) biological effects studies, (2) criticality alarm testing, (3) dosimetry intercomparison studies, (4) neutron and gamma dose equivalent dosimeter development, (5) simulation of nuclear weapon spectra, and (6) training

  3. Research reactors as sources of atmospheric radioxenon

    International Nuclear Information System (INIS)

    Radioxenon emissions of the TRIGA Mark II research reactor in Vienna were investigated with respect to a possible impact on the verification of the Comprehensive Nuclear Test-Ban-Treaty. Using the Swedish Automatic Unit for Noble Gas Acquisition (SAUNA II), five radioxenon isotopes 125Xe, 131mXe, 133mXe, 133Xe and 135Xe were detected, of which 125Xe is solely produced by neutron capture in stable atmospheric 124Xe and hence acts as an indicator for neutron activation processes. The other nuclides are produced in both fission and neutron capture reactions. The detected activity concentrations ranged from 0.0010 to 190 Bq/m3. The source of the radioxenon is not yet fully clarified, but it could be micro-cracks in the fuel cladding, fission of 235U contaminations on the outside of the fuel elements or neutron activation of atmospheric Xe. Neutron deficient 125Xe with its highly complex decay scheme was seen for the first time in a SAUNA system. In many experiments the activity ratios of the radioxenon nuclides carry the signature of nuclear explosions, if 131mXe is omitted. Only if 131mXe is included into the calculations of the isotopic activity ratios, the majority of the measurements revealed a 'civil' signature (typical for a NPP). A significant contribution of the TRIGA Vienna to the global or European radioxenon inventory can be excluded. Due to the very low activities, the emissions are far below any concern for human health. (author)

  4. Proceedings of first SWCR-KURRI academic seminar on research reactors and related research topics

    International Nuclear Information System (INIS)

    These are the proceedings of an academic seminar on research reactors and related research topics held at the Southwest Centre for Reactor Engineering Research and Design in Chengdu, Sichuan, People's Republic of China in September 24-26 in 1985. Included are the chairmen's addresses and 10 papers presented at the seminar in English. The titles of these papers are: (1) Nuclear Safety and Safeguards, (2) General Review of Thorium Research in Japanese Universities, (3) Comprehensive Utilization and Economic Analysis of the High Flux Engineering Test Reactor, (4) Present States of Applied Health Physics in Japan, (5) Neutron Radiography with Kyoto University Reactor, (6) Topics of Experimental Works with Kyoto University Reactor, (7) Integral Check of Nuclear Data for Reactor Structural Materials, (8) The Reactor Core, Physical Experiments and the Operation Safety Regulation of the Zero Energy Thermal Reactor for PWR Nuclear Power Plant, (9) HFETR Core Physical Parameters at Power, (10) Physical Consideration for Loads of Operated Ten Cycles in HFETR. (author)

  5. Study on secondary shutdown systems in Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, H.R.; Fadaei, A.H., E-mail: Fadaei_amir@aut.ac.ir; Gharib, M.

    2015-09-15

    Highlights: • A study was undertaken to summarize the techniques for secondary shutdown systems (SSS). • Neutronic calculation performed for proposed systems as SSS. • Dumping the heavy water stored in the reflector vessel is capable to shut down reactor. • Neutronic and transient calculation was done for validating the selected SSS. • All calculation shown that this system has advantages in safety and neutron economy. - Abstract: One important safety aspect of any research reactor is the ability to shut down the reactor. Usually, research reactors, currently in operation, have a single shutdown system based on the simultaneous insertion of the all control rods into the reactor core through gravity. Nevertheless, the International Atomic Energy Agency currently recommends use of two shutdown systems which are fully independent from each other to guarantee secure shutdown when one of them fails. This work presents an investigative study into secondary shutdown systems, which will be an important safety component in the research reactor and will provide another alternative way to shut down the reactor emergently. As part of this project, a study was undertaken to summarize the techniques that are currently used at world-wide research reactors for recognizing available techniques to consider in research reactors. Removal of the reflector, removal of the fuels, change in critical shape of reactor core and insertion of neutron absorber between the core and reflector are selected as possible techniques in mentioned function. In the next step, a comparison is performed for these methods from neutronic aspects. Then, chosen method is studied from the transient behavior point of view. Tehran research reactor which is a 5 MW open-pool reactor selected as a case study and all calculations are carried out for it. It has 5 control rods which serve the purpose of both reactivity control and shutdown of reactor under abnormal condition. Results indicated that heavy

  6. Research reactor activities in support of national nuclear programmes

    International Nuclear Information System (INIS)

    This report is the result of an IAEA Technical Committee Meeting on Research Reactor Activities in Support of National Nuclear Programmes held in Budapest, Hungary during 10-13 December 1985. The countries represented were Belgium, Finland, France, Federal Republic of Germany, German Democratic Republic, India, Poland, Spain, United Kingdom, United States, Yugoslavia and Hungary. The purpose of the meeting was to present information and details of several well-utilized research reactors and to discuss their contribution to national nuclear programmes. A related Agency activity, a Seminar on Applied Research and Service Activities for Research Reactor Operations was held in Copenhagen, Denmark during 9-13 September 1985. Selected papers from this Seminar relevant to the topic of research reactor support of national nuclear programmes have been included in this report. A separate abstract was prepared for each of 19 papers presented at the Technical Committee Meeting on Research Reactor Activities in Support of National Nuclear Programmes and for each of 15 papers selected from the presentations of the Seminar on Applied Research and Service Activities for Research Reactor Operations

  7. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    The NNSA organized mainly in 1999 to complete the verification loop in core of the high flux experimental reactor with the 2000 kW fuel elements, the re-starting of China Pulsed Reactor, review and assessment on nuclear safety for the restarting of the Uranium-water critical Facility and treat the fracture event with the fuel tubes in the HWRR

  8. Remediation of Site of Decommissioning Research Reactor

    International Nuclear Information System (INIS)

    In the world the most widespread method of soil decontamination consists of removing the contaminated upper layer and sending it for long-term controlled storage. However, implementation of this soil cleanup method for remediation of large contaminated areas would involve high material and financial expenditures, because it produces large amounts of radioactive waste demanding removal to special storage sites. Contaminated soil extraction and cleanup performed right on the spot of remediation activities represents a more advanced and economically acceptable method. Radiological separation of the radioactive soil allows reducing of amount of radwaste. Studies performed during the liquidation of the Chernobyl accident consequences revealed that a considerable fraction of radioactivity is accumulated in minute soil grains. So, the separation of contaminated soil by size fractions makes it possible to extract and concentrate the major share of radioactivity in the fine fraction. Based on these researches water gravity separation technology was proposed by Bochvar Institute. The method extracts the fine fraction from contaminated soil. Studies carried out by Bochvar Institute experts showed that, together with the fine fraction (amounting to 10-20% of the initial soil), this technology can remove up to 85-90% of contaminating radionuclides. The resulting 'dirty' soil fraction could be packaged into containers and removed as radwaste, and decontaminated fractions returned back to their extraction site. Use of radiological and water gravity separations consequently increases the productivity of decontamination facility. Efficiency of this technology applied for contaminated soil cleanup was confirmed in the course of remediation of the contaminated territories near decommissioning research reactor in the Kurchatov Institute. For soil cleaning purposes, a special facility implementing the technology of water gravity separation and radiometric monitoring of soil

  9. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  10. Introducing an ILS methodology into research reactors

    International Nuclear Information System (INIS)

    Integrated Logistics Support (ILS) is the managerial organisation that co-ordinates the activities of many disciplines to develop the supporting resources (training, staffing, designing aids, equipment removal routes, etc) required by technologically complex systems. The application of an ILS methodology in defence projects is described in several places, but it is infrequently illustrated for other areas; therefore the present paper deals with applying this approach to research reactors under design or already in operation. Although better results are obtained when applied since the very beginning of a project, it can be applied successfully in facilities already in operation to improve their capability in a cost-effective way. In applying this methodology, the key objectives shall be previously identified in order to tailor the whole approach. Generally in high power multipurpose reactors, obtaining maximum profit at the lowest possible cost without reducing the safety levels are key issues, while in others the goal is to minimise drawbacks like spurious shutdowns, low quality experimental results or even to reduce staff dose to ALARA values. These items need to be quantified for establishing a system status base line in order to trace the process evolution. Thereafter, specific logistics analyses should be performed in the different areas composing the system. RAMS (Reliability, Availability, Maintainability and Supportability), Manning, Training Needs, Supplying Needs are some examples of these special logistic assessments. The following paragraphs summarise the different areas, encompassed by this ILS methodology. Plant design is influenced focussing the designers? attention on the objectives already identified. Careful design reviews are performed only in an early design stage, being useless a later application. In this paper is presented a methodology including appropriate tools for ensuring the designers abide to ILS issues and key objectives through the

  11. RRSNF shipment operation of Indonesia research reactors

    International Nuclear Information System (INIS)

    In the beginning of the year 2004, reexport of spent nuclear fuel (SNF) of three Indonesian reactors to the origin country under 'US FRRSNF acceptance programme' was successfully completed. The TRIGA and MTR type of SNF were sent back to INEEL, Idaho and SRS, Savanah River, USA respectively. The activities took about 6 months of coordination works from starting until loading the SNF onto the ship in the harbor. Two harbors were chosen to upload the SNF i.e. Cigading Port, nearby Jakarta for SNF from RSG-GAS and TRIGA- 2000 reactors and Cilacap Port in southern part of Central Java for the SNF for Kartini reactor. A National Team was established to coordinate the whole operation. The report covers aspects of management, preparation works, loading works and transport operation. (author)

  12. China Advanced Research Reactor Project Progress in 2011

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011, China Advanced Research Reactor (CARR) Project finished the B stage commissioning and resolved the relative technical problems. Meanwhile, the acceptance items and the cold neutron source were carrying out.

  13. Considerations and Infrastructure Milestones for a Research Reactor Project

    International Nuclear Information System (INIS)

    Establishment of a research reactor is a major project requiring careful planning, preparation, implementation, and investment in time and human resources. The implementation of such a project requires establishment of sustainable infrastructures, including legal and regulatory, safety, technical, and economic. This paper discusses the scope of these infrastructures and the major stages in their development; starting with a robust pre-project justification for the research reactor and moving through three milestones in the establishment of the infrastructure itself. The paper discusses also the main elements of the feasibility study for a new research reactor project and specific safety and technical considerations in different phases of the project as well as the major activities to be performed along with the project phases, including progressive involvement of the main organizations in the project, and application of the IAEA Code of Conduct on the Safety of Research Reactors and IAEA Safety Standards. (author)

  14. Improving the proliferation resistance of research and test reactors

    International Nuclear Information System (INIS)

    Elimination, or substantial reduction, of the trade in highly enriched fuel elements for research and test reactors would significantly reduce the proliferation risk associated with the current potential for diversion of these materials. To this end, it is the long-term goal of U.S. policy to fuel all new and existing research and test reactors with uranium of less than 20% enrichment (but substantially greater than natural) excepting, perhaps, only a small number of high-power, high-performance, reactors. The U.S. development program for enrichment reduction in research and test reactor designs currently using 90-93% enriched uranium is based on the practical criterion that enrichment reduction should not cause significant flux performance (flux per unit power) or burnup performance degradation relative to the unmodified reactor design. A program is now beginning in the U.S. to develop the necessary fuel technology, but several years of work will be needed. Accordingly, as an immediate interim step, the U.S. is proposing to convert existing research and test reactors (and new designs) from the use of 90-93% enriched fuel to the use of 30-45% enriched fuel wherever this can be done without unacceptable reactor performance degradation

  15. Modern research reactors: design features and safety aspects

    International Nuclear Information System (INIS)

    The purpose of this article is to give a general information about the new orientations, which have been taken in the design and equipment of nuclear research reactors, and its wide uses in the area of basic and applied scientific research. these reactors have been subdivided into different categories according to their neutron flux density. In each category some physical and technical specifications were given for chosen examples. We end this article with a survey about the safety aspects related to its meaning in designing and operating of these reactors. (author). 5 refs., 4 figs

  16. Technology and use of low power research reactors

    International Nuclear Information System (INIS)

    The report contains a summary of discussions and 10 papers presented at the Consultants' Meeting on the Technology and Use of Low Power Research Reactors organized by the IAEA and held in Beijing (China) during 30 April - 3 May 1985. The following topics have been covered: reactor utilization in medicine and biology, in universities, for training, as a neutron source for radiography and some remarks on the safety of low power research reactors. A separate abstract was prepared for each paper presented at the meeting

  17. Research and development into power reactor fuel performance

    International Nuclear Information System (INIS)

    The nuclear fuel in a power reactor must perform reliably during normal operation, and the consequences of abnormal events must be researched and assessed. The present highly reliable operation of the natural UO2 in the CANDU power reactors has reduced the need for further work in this area; however a core of expertise must be retained for purposes such as training of new staff, retaining the capability of reacting to unforeseen circumstances, and participating in the commercial development of new ideas. The assessment of fuel performance during accidents requires research into many aspects of materials, fuel and fission product behaviour, and the consolidation of that knowledge into computer codes used to evaluate the consequences of any particular accident. This work is growing in scope, much is known from out-reactor work at temperatures up to about 1500 degreesC, but the need for in-reactor verification and investigation of higher-temperature accidents has necessitated the construction of a major new in-reactor test loop and the initiation of the associated out-reactor support programs. Since many of the programs on normal and accident-related performance are generic in nature, they will be applicable to advanced fuel cycles. Work will therefore be gradually transferred from the present, committed power reactor system to support the next generation of thorium-based reactor cycles

  18. Operating experience feedback from safety significant events at research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor; Rao, D. [Bhabha Atomic Research Centre, Mumbai (India)

    2015-05-15

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  19. Development of Digital MMIS for Research Reactors: Graded Approaches

    International Nuclear Information System (INIS)

    Though research reactors are small in size yet they are important in terms of industrial applications and R and D, educational purposes. Keeping the eye on its importance, Korean government has intention to upgrade and extend this industry. Presently, Korea is operating only HANARO at Korea Atomic Energy Research Institute (KAERI) and AGN-201K at Kyung Hee University (KHU), which are not sufficient to meet the current requirements of research and education. In addition, we need self-sufficiency in design and selfreliance in design and operation, as we are installing research reactors in domestic as well as foreign territories for instance Jordan. Based on these demands, KAERI and universities initiated a 5 year research project since December 2011 collaboratly, for the deep study of reactor core, thermal hydraulics, materials and instrumentation and control (I and C). This particular study is being carried out to develop highly reliable advanced digital I and C systems using a grading approach. It is worth mentioning that next generation research reactor should be equipped with advance state of the art digital I and C for safe and reliable operation and impermeable cyber security system that is needed to be devised. Moreover, human error is one of important area which should be linked with I and C in terms of Man Machine Interface System (MMIS) and development of I and C should cover human factor engineering. Presently, the digital I and C and MMIS are well developed for commercial power stations whereas such level of development does not exist for research reactors in Korea. Since the functional and safety requirements of research reactors are not so strict as commercial power plants, the design of digital I and C systems for research reactors seems to be graded based on the stringency of regulatory requirements. This paper was motivated for the introduction of those missions, so it is going to describe the general overview of digital I and C systems, the graded

  20. Development of an educational nuclear research reactor simulator

    International Nuclear Information System (INIS)

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  1. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  2. Microflora of nuclear research reactor pool water

    International Nuclear Information System (INIS)

    The circulation of pool water through the nuclear reactor core produces a bactericidal effect on the microflora due to the influence of various kinds of radiation. The microbe contents return to their initial level in 2 to 4 months after the circulation has stopped. The microflora comprises mainly cocci in large numbers, G-positive rods and fungi, and lower amounts of G-negative rods as compared with the water with which the reactor pool was initially filled. Increased amounts are present of radiation-resistant forms exhibiting intense production of catalase and nuclease. Supposedly, the presence of these enzymes is in some way beneficial to the microbes in their survival in the high-radiation zones. (author). 1 fig., 2 tabs., 12 refs

  3. Physical Characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor

  4. IAEA activities supporting the applications of research reactors in 2013

    International Nuclear Information System (INIS)

    As the underutilization of research reactors around the world persists as a primary topic of concern among facility owners and operators, the IAEA responded in 2013 with a broad range of activities to address the planning, execution and improvement of many experimental techniques. The revision of two critical documents for planning and diversifying a facility's portfolio of applications, TECDOC 1234 'The Applications of Research Reactors' and TECDOC 1212 'Strategic Planning for Research Reactors', is in progress in order to keep this information relevant, corresponding to the dynamism of experimental techniques and research capabilities. Related to the latter TECDOC, the IAEA convened a meeting in 2013 for the expert review of a number of strategic plans submitted by research reactor operators in developing countries. A number of activities focusing on specific applications are either continuing or beginning as well. In neutron activation analysis, a joint round of inter-comparison proficiency testing sponsored by the IAEA Technical Cooperation Department will be completed, and facility progress in measurement accuracy is described. Also, a training workshop in neutron imaging and Coordinated Research Projects in reactor benchmarks, automation of neutron activation analysis and neutron beam techniques for material testing intend to advance these activities as more beneficial services to researchers and other users. (author)

  5. A computer control system for a research reactor

    International Nuclear Information System (INIS)

    Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action

  6. Activities for extending the lifetime of MINT research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bokhari, Adnan; Kassim, Mohammad Suhaimi [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1998-10-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear reactor commissioned in June 1982. Since then, it has been used for research, isotope production, neutron activation, neutron radiography and manpower training. The total operating time till the end on September 1997 is 16968 hours with cumulative total energy release of 11188 MW-hours. After more than fifteen years of successful operation, some deterioration in components and associated systems has been observed. This paper describes some of the activities carried out to increase the lifetime and to reduce the shutdown time of the reactor. (author)

  7. Background Radiation Measurements at High Power Research Reactors

    CERN Document Server

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. Submersible compact reactor SCR for under-sea research vessel

    International Nuclear Information System (INIS)

    Conceptual design of a submersible compact reactor, SCR, to be used in an under-sea research vessel has been carried out for observation of medium region of the Arctic Ocean on the base of survey of needs for ocean observation. In the design of the SCR, compactness and lightweightness of a reactor plant, and enhancement of safety and reliability have been established by adoption of an integral type light water reactor, the natural circulation and self-pressurized method for the primary coolant, a water filled containment, and simplification of the safety system. Two reactors with I,250 kW each of thermal output are mounted on a scientific research vessel. In this paper, conceptual design and preliminary safety analysis of the SCR plant are discussed. (author)

  9. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  10. TRIGLAV - a computer programme for research reactor calculation

    Energy Technology Data Exchange (ETDEWEB)

    Persic, A.; Ravnik, M.; Slavic, S.; Zagar, T. (J.Stefan Institute, Ljubljana (Slovenia))

    1999-12-15

    TRIGLAV is a new computer programme for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport programme WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. (orig.)

  11. Stability analysis of the Ghana Research Reactor-1 (GHARR-1)

    OpenAIRE

    Della, Richard; Alhassan, Erwin; Adoo, Nana Ansah; Bansah, Yaw Christopher; Nyarko, Benjamin J. B.; Edward H. K. Akaho

    2013-01-01

    A theoretical model has been developed to study the stability of the Ghana Research Reactor one(GHARR-1). The closed-loop transfer function of GHARR-1 was established based on the model, which involved the neutronics and the thermal hydraulics transfer functions. The reactor kinetics was described by the point kinetics model for a single group of delayed neutrons, whilst the thermal hydraulics transfer function was based on the modified lumped parameter concept. The inherent internal feedback ...

  12. Development of a research nuclear reactor simulator using LABVIEW®

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  13. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  14. The DALAT nuclear research reactor operation and conversion status

    International Nuclear Information System (INIS)

    This paper presents operation and conversion status of the DALAT Nuclear Research Reactor (DNRR). The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA-MARK II reactor. The core is loaded with Soviet-designed standard type WWR-M2 fuel assemblies with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. The DNRR is operated mainly in continuous runs of 100 hours, once every 4 weeks, for radioisotope production, neutron activation analyses, training and research purposes. The remaining time between two continuous runs, is devoted to maintenance activities and to short runs. Until now 4 fuel reloading were executed. The reactor control and instrumentation system was upgraded in 1994. And now the reactor control system is being replaced by new one, the replacement will be fulfilled in March 2007. The study on fuel conversion has been done on the basis of a new LEU of 19.75% with UO2-Al dispersion fuel meat instead of the current HEU of 36% with aluminium-uranium alloy. The results of the study show that operation time of mixed core by inserting 36 LEU fuel assemblies lasts much longer than by inserting 36 HEU fuel assemblies (14.5 instead of 10.5 years). Neutron flux performances at irradiation positions are not significantly changed. Now we are working for realizing fuel conversion of the DNRR

  15. Reactor numerical simulation and hydraulic test research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. S. [Nuclear Power Institute of China, Beijing (China)

    2009-07-01

    In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device.

  16. Applications of prognostics for maintenance optimization of research reactors

    International Nuclear Information System (INIS)

    The optimization of operation especially maintenance and surveillance of various components and systems of research reactors using prognostic have been emphasized in this study to save cost and time while keeping safety and reliability high. This study is focused on the research reactors due to margin of cost competitiveness and regulation. The feasibility study has been performed in order to find the potential candidates from research reactors, on which prognostic can be implemented. System and components has been classified into category I and category II, based on the nature of working during the operation of research reactor. The systems of category I are those which, either full or part of them, remain in working condition during normal operation of a research reactor. For instance, instrumentation and control components of safety, protection and monitoring systems belong to this category. Contrary to this, the systems which remain standby during normal operation and start operation on safety signals are grouped in category II. Motor operated valves, pumps of emergency system and vital power system are well suited examples. The online and offline prognostics have been proposed as a work approach for category I and category II systems respectively. (author)

  17. The rehabilitation/upgrading of Philippine Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renato, T. Banaga [Philippines Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E{sub 1}-U-Z{sub 1}-H{sub 1.6} TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  18. Core neutronics of a swimming pool research reactor

    International Nuclear Information System (INIS)

    The initial cores of the 5 MW swimming pool research reactor of the Nuclear Research Centre, Tehran have been analyzed using the computer codes METHUSELAH and EQUIPOISE. The effective multiplication factor, critical mass, moderator temperature and void coefficients of the core have been calculated and compared with vendor's values. Calculated values agree reasonably well with the vendor's results. (author)

  19. Safety requirements applied to research reactors in France

    International Nuclear Information System (INIS)

    Full text: In France, there are currently some twenty research reactors in operation with a thermal powers up to a hundred megawatts. General safety requirements such as the redundancy and separation of protection system channels, continuous monitoring of confinement barriers and containment building leak tightness with respect to underlying soils and the underground water have been gradually established and applied. Regarding the seismic risk and those risks relating to the industrial environment and transportation of hazardous materials, the rules applying to research reactor design are the same as those applying to power reactors, albeit with some adaptations due to the specific features of certain reactors (short operating time or low radioactive product inventory). The following safety requirements applying specifically to the confinement barriers of pool-type research reactors should be noted: there must be no fuel cladding dryout under the various operating conditions; in the case of plate type fuels, this requirement implies checking the absence of flow redistribution in the hottest cooling channel; reactors must not be operated with a fuel element affected by clad failure; in such situations, the reactor must be automatically shut down and the fuel element in question removed and stored in a leaktight container; the core must not be uncovered in the event of a pipe break in the reactor coolant system or a window failure in neutron beam channels; this requirement is met through the integrated design of the reactor primary coolant system, which is installed in a 'water block', and through the implementation of automatic isolation valves on the neutron beam channels. The most significant specific approach adopted in France for the design of pool-type reactors using uranium and aluminum metal fuels is to take into account a BORAX-type explosive reactivity accident. For this type of accident, which is supposed to lead to total meltdown of the core under water

  20. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2009-06-15

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity ({rho}{sub ex}), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10{sup 3}Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  1. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    International Nuclear Information System (INIS)

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity (ρex), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 103Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  2. Shifting to non-explosive fuels for research reactors

    International Nuclear Information System (INIS)

    The RERTR program is not just an American program, it is an international program and it can succeed only with wide support and participation. Excellent work underway at research laboratories in several countries is making a vital contribution. The cooperative spirit shown by all participants is particularly gratifying. Some practical difficulties may be encountered with the safety regulatory agencies in different countries when modifying the reactors. The US NRC intends to demonstrate that conversion to low enriched fuel is not a difficult process by taking steps to enable domestic reactors operating in the United States to convert to low enriched fuels. A proposed regulation is being prepared limiting the use of highly enriched uranium in domestic reactors. In this connection, The US NRC will be prepared tp cooperate with reactor operators from other countries in the safety area as it relates to the conversion process

  3. Operating manual for the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    This manual is intended to serve as a guide in the operation and maintenance of the Health Physics Researh Reactor (HPRR) of the Health Physics Dosimetry Applications Research (DOSAR) Facility. It includes descriptions of the HPRR and of associated equipment such as the reactor positioning devises and the derrick. Procedures for routine operation of the HPRR are given in detail, and checklists for the various steps are provided where applicable. Emergency procedures are similarly covered, and maintenance schedules are outlined. Also, a bibliography of references giving more detailed information on the DOSAR Facility is included. Changes to this manual will be approved by at least two of the following senior staff members: (1) the Operations Division Director, (2) the Reactor Operations Department Head, (3) the Supervisor of Reactor Operations TSF-HPRR Areas. The master copy and the copy of the manual issued to the HPRR Operations Supervisor will always reflect the latest revision. 22 figs

  4. Positron beam facility at Kyoto University Research Reactor

    Science.gov (United States)

    Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2014-04-01

    A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing γ-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

  5. Research requirements for alternative reactor development strategies

    International Nuclear Information System (INIS)

    The purpose of this paper is to estimate and compare resource requirements and other fuel cycle quantities for alternative reactor deployment strategies. The paper examines from global and national perspectives the interaction of various fuel cycle alternatives described in the previous U.S. submissions to Working Groups 4, 5, 8 and Subgroup 1A/2A. Nuclear energy forecasts of Subgroup 1A/2A are used in the calculation of uranium demand for each strategy. These uranium demands are then compared to U.S. estimates of annual uranium producibility. Annual rather than cumulative producibility was selected because it does not assume preplanned stockpiling, and is therefore more conservative. The strategies attempt to span a range of nuclear power mixes which could evolve if appropriate commercial and governmental climates develop

  6. Nuclear disposal with the example of a research reactor

    International Nuclear Information System (INIS)

    Organising a workshop on the subject of 'Nuclear disposal with the example of a research reactor' is a courageous undertaking in a time of intense political discussion on the authorisation for the research reactor at the Berlin Hahn-Meitner Institute, but on the other hand, it contributes to making the discussion more objective, based on scientific expertise. The contributions to the discussion regard the problem of nuclear disposal as differentiated from the legal, political and scientific points of way. It is proved that the disposal from research reactors must be part of an overall disposal concept in the Federal German Republic, but simultaneously has specific features which should be distinguished from more general nuclear energy electricity generation and nuclear disposal. (BBR)

  7. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  8. FRJ-2 research reactor (DIDO) at Forschungszentrum Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, Sieghard; Damm, Gunter [Forschungszentrum Juelich GmbH (Germany)

    2012-10-15

    FRJ-2 is a research reactor of the British DIDO/PLUTO series, which uses heavy water (D{sub 2}O) in a sealed tank as a moderator and for cooling. In November 1962, it went into operation with a thermal output of 10 MW. The exhaustion of available reserves led to the output being increased in 1967 to 15 MW, and after structural alteration measures to 23 MW in 1972. Since final shutdown in May 2006, the FRJ-2 research reactor has been in the post-operational phase. The application for decommissioning and dismantling the FRJ-2 research reactor in one step was submitted to the nuclear licensing authority in North-Rhine Westphalia in 2007. FRJ-2 will be dismantled autonomously by Forschungszentrum Juelich. (orig.)

  9. Developing research reactor coalitions and centres of excellence

    International Nuclear Information System (INIS)

    The IAEA, in line with its statute and mandatory responsibilities to support its member states in the promotion of peaceful uses of nuclear energy in concert with global nuclear non-proliferation, nuclear material security, and threat reduction objectives is well positioned to provide support for regional and international cooperation involving the research reactor community. The IAEA is pleased to announce an initiative to form one or more coalitions of research reactor operators and stakeholders to improve the sustainability of research reactors through improved market analysis and strategic/business planning, joint marketing of services, increased contacts with prospective customers and enhanced public information. Such coalition(s) will also be designed to promulgate high standards of nuclear material security, safety, quality control/assurance and to conform with global non-proliferation trends. (authors)

  10. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm3 was by then in routine use, illustrated how far work has progressed

  11. Utilizing the UMass-Lowell research reactor to enhance knowledge transfer in reactor operations

    International Nuclear Information System (INIS)

    Full text: A renaissance of nuclear science and technology has begun. To meet the expected needs of the nuclear power industry and various governmental organizations (e.g. DOE and NRC), there will be an increased need to train (non-nuclear) scientists and engineers with some specialized training in the safe and effective application of various nuclear technologies. To this end UML is developing a new online Nuclear Power Fundamentals program focusing on the operation and safety of nuclear power systems. The primary target audience is Civil, Mechanical, Electrical, and Chemical engineering students or working professionals. Engineers who take this program will be able to contribute to the nuclear workforce. The goal of the online Nuclear Power Fundamentals program is to provide a strong educational base in the fundamentals of nuclear technology and reactor safety including reactor operations. Fundamental concepts needed to understand the key aspects of nuclear technology, with a focus on the basic design and safe operation of nuclear power systems will be taught. Topics will include basic nuclear and radiation physics, nuclear reactor physics, shielding, nuclear heat transport, and nuclear power systems and safety. The unique aspect of the proposed curriculum will be the 'hands-on' live remote reactor laboratory experiences and general emphasis on experiential learning that will be integrated throughout the online program. The 'hands-on' distance nuclear engineering training will offer a meaningful nuclear reactor laboratory component within the online curriculum. This laboratory capability is available via the nuclear101.com website and the UMass-Lowell Research Reactor (UMLRR) Online application. The UMLRR Online application will be used to provide a number of live demonstrations and laboratory experiences using the full capabilities of the UMLRR facility. These learning experiences will involve both core physics and balance-of-plant considerations. Typical

  12. Reactor Safety Research: Semiannual report, July-December 1986

    International Nuclear Information System (INIS)

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions

  13. Reactor Safety Research: Semiannual report, July-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  14. Neutron Transmutation Doping of Silicon at Research Reactors

    International Nuclear Information System (INIS)

    This publication details the processes and history of neutron transmutation doping of silicon, particularly its commercial pathway, followed by the requirements for a technologically modern and economically viable production scheme and the current trends in the global market for semiconductor products. It should serve as guidelines on the technical requirements, involved processes and required quality standards for the transmission of sound practices and advice for research reactor managers and operators planning commercial scale production of silicon. Furthermore, a detailed and specific database of most of the world's research reactor facilities in this domain is included, featuring their characteristics for irradiation capabilities, associated production capacities and processing.

  15. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  16. Present status and future perspective of research and test reactors in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Osamu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kaieda, Keisuke

    1999-08-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  17. Challenges of licensing the first research reactor in Nigeria

    International Nuclear Information System (INIS)

    Full text: The Nigerian Nuclear Regulatory Authority (NNRA) was established in May 2001 in accordance with the provisions of the Nuclear Safety and Radiation Protection Act 19 of 1995. The NNRA has the responsibility for nuclear safety and radiological protection regulation in the country. Its responsibilities include amongst others, regulating the possession and application of radioactive substances and devices emitting ionizing radiation and; regulating the safe promotion of nuclear research and development, and the application of nuclear energy for peaceful purposes. The NNRA is empowered to, amongst others, license operators of nuclear reactors and other critical facilities listed under Category III in section 29 of the Act. Furthermore the Act imposes strong regulatory control on nuclear materials and radiation sources and the premises where they can be used or stored and ensures the 'from cradle to grave' principle of the Agency. The NNRA thus at inception took steps to put in place the proper regulatory framework, within the context of its enabling Act, to effectively license, and inspect nuclear reactor operation and to enforce nuclear safety and nuclear safeguards nationwide. It has also taken necessary measures to have in place the basic administrative and technical capability to support its activities. These have been achieved through a very rigorous regulatory control programme, which incorporates Regulations and Guidance; Authorization; Oversight Functions; Emergency Planning and Response and Ancillary Functions. The NNRA issues licences for Siting, Design and Construction of research reactors. These regulatory functions constitute the first major challenge for the NNRA. The challenge arose from an IAEA Technical Cooperation Project, which involved the supply of a Miniature Neutron Source Reactor (MNSR). For the MNSR, these were issued retroactively after an authorization process initiated by the formal application by the operating organization, the

  18. Reactor pressure vessel structural integrity research

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.E.; Corwin, W.R. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallows surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on a shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  19. Adaptive nonlinear control for a research reactor

    International Nuclear Information System (INIS)

    Linearization by feedback of states is based on the idea of transform the nonlinear dynamic equation of a system in a linear form. This linear behavior can be achieve well in a complete way (input state) or in partial way (input output). This can be applied to systems of single or multiple inputs, and can be used to solve problems of stabilization and tracking of references trajectories. Comparing this method with conventional ones, linearization by feedback of states is exact in certain region of the space of state, instead of linear approximations of the equations in a certain point of the operation. In the presence of parametric uncertainties in the model of the system, the introduction of adaptive schemes provide a type toughness to the control system by nonlinear feedback, which gives as result the eventual cancellation of the nonlinear terms in the dynamic relationship between the output and the input of the auxiliary control. In the same way, it has been presented the design of a nonlinearizing control for the non lineal model of a TRIGA Mark III type reactor, with the aim of tracking a predetermined power profile. The asymptotic tracking of such profile is, at the present moment, in the stage of verification by computerized simulation the relative easiness in the design of auxiliary variable of control, as well as the decoupling action of the output variable, make very attractive the utilization of the method herein presented. (Author)

  20. Reactor Safety Research Programs Quarterly Report January - March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C. M

    1980-10-01

    This document summarizes the work performed by Pacific Northwest Laboratory from January 1 through March 31, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where serviceinduced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  1. Radiation protection personnel training in Research Reactors; Capacitacion en proteccion radiologica para reactores de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos Dario; Lorenzo, Nestor Pedro de [Comision Nacional de Energia Atomica, Rio Negro (Argentina). Centro Atomico Bariloche. Instituto Balseiro

    1996-07-01

    The RA-6 research reactor is considering the main laboratory in the training of different groups related with radiological protection. The methodology applied to several courses over 15 years of experience is shown in this work. The reactor is also involved in the construction, design, start-up and sell of different installation outside Argentina for this reason several theoretical and practical courses had been developed. The acquired experience obtained is shown in this paper and the main purpose is to show the requirements to be taken into account for every group (subjects, goals, on-job training, etc) (author)

  2. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  3. Current utilization of research reactor on radioisotopes production in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yishu [Nuclear Power Institute of China, Chengdu (China)

    2000-10-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, {gamma}-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, {sup 90}Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  4. Study on the Export Strategies for Research Reactors

    International Nuclear Information System (INIS)

    Key strategic considerations taken into account should be based on understanding in the forecasts of demand and supply balance as well as the missions of research reactor for customers. For timely arrival at the competition, it may be advantageous to categorize the potential customers into 3 groups, the developed, the developing and the underdeveloped countries in respect of nuclear technology, and to be ready for the group-wise reference designs of the key reactor systems. Customizing the design to specific owner's requirements can advance from one of these reference designs when competition starts. To mobilize this approach effectively, it is useful to establish an integral project and technology management system earlier. This system will function as an important success factor for international research reactor business, because it makes easy to accommodate customer requirements and to achieve the design-to-cost.

  5. Study on the Export Strategies for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. K.; Lee, Y. J.; Ham, T. K.; Hong, S. T.; Kim, J. H. [Ajou University, Suwon (Korea, Republic of)

    2008-12-15

    Key strategic considerations taken into account should be based on understanding in the forecasts of demand and supply balance as well as the missions of research reactor for customers. For timely arrival at the competition, it may be advantageous to categorize the potential customers into 3 groups, the developed, the developing and the underdeveloped countries in respect of nuclear technology, and to be ready for the group-wise reference designs of the key reactor systems. Customizing the design to specific owner's requirements can advance from one of these reference designs when competition starts. To mobilize this approach effectively, it is useful to establish an integral project and technology management system earlier. This system will function as an important success factor for international research reactor business, because it makes easy to accommodate customer requirements and to achieve the design-to-cost.

  6. Evaluation of the Community's nuclear reactor safety research programme

    International Nuclear Information System (INIS)

    This report describes an evaluation of the 1980-85 CEC reactor safety programme prepared, at the invitation of the Commission, by a panel of six independent experts by means of examining the relevant document and by holding hearings with the responsible CEC staff. It contains the recommendations made by the panel on the following topics: the need for the JRC to continue to make its competence in the reactor safety field available to the Community; the importance of continuity in the JRC and shared-cost action programmes; the difficulty of developing reactor safety research programmes which satisfy the needs of users with diverse needs; the monitoring of the utilization of the research results; the maintenance of the JRC computer codes used by the Member States; the spin-off from research results being made available to other industrial sectors; the continued contact between the JRC researchers and the national experts; the coordination of LWR safety research with that of the Member States; and, the JRC work on fast breeders to be planned with regard to the R and D programmes of the Fast Reactor European Consortium

  7. RA-10: A New Argentinian Multipurpose Research Reactor

    International Nuclear Information System (INIS)

    A new multipurpose research reactor to replace RA-3 reactor has been decided to be built in Argentina to satisfy the increasing national and regional demands for radioisotopes. The project, supported by the National Administration, has started in 2010 and is planned to be operative in 2018. The expertise acquired in the country, in the design and licensing of nuclear reactors, encourage the National Atomic Energy Commission (CNEA) to face the challenge. INVAP S.E. is involved in the design and construction of the reactor facility and related installations, playing the role of main contractor. The RA-10 is a 30 MW thermal power reactor and is designed to achieve high performance neutrons production to fulfill the stakeholder's requirements in compliance with stringent safety regulations. The principal objectives of the facility are: to consolidate and increase the radioisotope production in order to cover future demands, to provide fuel and material testing irradiation facilities to support national technology development on this field, to offer new applications in the field of science and technology based on modern neutron techniques. The reactor is an open-pool facility with a compact core with MTR (Material Testing Reactor) low enriched uranium (LEU) fuel assemblies consisting of uranium silicide fuel plates, cladded in aluminum. Reactivity control is performed by hafnium plates. A heavy water reflector tank surrounds the core. It provides a high thermal neutron flux adequate to house irradiation facilities. A diverse and independent shutdown system is engineered through its drainage. The fundamental safety objective of the design is the radiological protection of the public, the personnel and the environment and consequently the design is based in three main principles: responsibility in safety management, defense-in-depth and safety features. Engineered Safety Features are provided which are capable of maintaining the reactor in a safe condition under all

  8. Improving the proliferation resistance of research and test reactors

    International Nuclear Information System (INIS)

    Elimination, or substantial reduction, of the trade in unirradiated highly-enriched fuel elements for research and test reactors would significantly reduce the proliferation risk associated with the current potential for diversion of these materials. To this end, it is the long-term goal of U.S. policy to fuel all new and existing research and test reactors with uranium of less-than-20% enrichment (but substantially greater than natural) excepting, perhaps, only a small number of high-power, high-performance, reactors. The U.S. development program for enrichment reduction in research and test reactor designs currently using 90-93% enriched uranium is based on the practical criterion that enrichment reduction should not cause significant flux performance (flux per unit power) or burnup performance degradation relative to the unmodified reactor design. To first order, this implies the requirement that the 235U loading in the reduced-enrichment fuel elements be the same as the 235U loading in the 90-93% enriched fuel elements. This can be accomplished by substitution of higher uranium density fuel technology for currently-used fuel technology in the fuel meat volume of the current fuel element design and/or by increasing the usable fuel meat volume. For research and test reactors of power greater than 5-10 megawatts, fuel technology does not currently exist that would permit enrichment reductions to below 20% utilizing this criterion. A program is now beginning in the U.S. to develop the necessary fuel technology. Currently-proven fuel technology is capable, however, of accommodating enrichment reductions to the 30-45% range (from 90-93%) for many reactors in the 5-50MW range. Accordingly the U.S. is proposing to convert existing reactors (and new designs) in the 5-50MW range from the use of highly-enriched fuel to the use of 30-45% enriched fuel, and reactors of less that about 5MW to less-than-20% enrichment, wherever this can be done without significant performance

  9. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  10. A novel concept for CRIEC-driven subcritical research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, M.; Miley, G.H. [Illinois Univ., Fusion Studies Lab., Dept. of Nuclear, Plasma, and Radiological Engineering, Urbana, IL (United States)

    2001-07-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  11. Spent fuel situation at the ASTRA Seibersdorf and the TRIGA Vienna research reactors

    International Nuclear Information System (INIS)

    In the past decades Austria operated three research reactors, the 10 MW ASTRA reactor at Seibersdorf, the 250 kW TRIGA reactor at the Atomic Institut Vienna and the 1 kW Argonaut reactor at the Technical University in Graz. Since the shut down on July 31st, 1999 and decommissioning of the ASTRA reactor and the shut down of the ARGONAUT reactor Graz on July 31, 2004 only the TRIGA reactor remains operational. The MTR fuel elements of the ASTRA reactor have been shipped in spring 2001 to Savannah River and the fuel plates from the ARGONAUT reactor Graz in December 2005 under the DOE fuel return programme. (author)

  12. Research reactor production of radioisotopes for medical use

    International Nuclear Information System (INIS)

    More than 70% of all radioisotopes applied in medical diagnosis and research are currently produced in research reactors. Research reactors are also an important source of certain radioisotopes, such as 60Co, 90Y, 137Cs and 198Au, which are employed in teletherapy and brachytherapy. For regular medical applications, mainly 29 radionuclides produced in research reactors are used. These are now produced on an 'industrial scale' by many leading commercial manufacturers in industrialized countries as well as by national atomic energy establishments in developing countries. Five main neutron-induced reactions have been employed for the regular production of these radionuclides, namely: (n,γ), (n,p), (n,α), (n,γ) followed by decay, and (n, fission). In addition, the Szilard-Chalmers process has been used in low- and medium-flux research reactors to enrich the specific activity of a few radionuclides (mainly 51Cr) produced by the (n,γ) reaction. Extensive work done over the last three decades has resulted in the development of reliable and economic large-scale production methods for most of these radioisotopes and in the establishment of rigorous specifications and purity criteria for their manifold applications in medicine. A useful spectrum of other radionuclides with suitable half-lives and low to medium toxicity can be produced in research reactors, with the requisite purity and specific activity and at a reasonable cost, to be used as tracers. Thanks to the systematic work done in recent years by many radiopharmaceutical scientists, the radionuclides of several elements, such as arsenic, selenium, rhenium, ruthenium, palladium, cadmium, tellurium, antimony, platinum, lead and the rare earth elements, which until recently were considered 'exotic' in the biomedical field, are now gaining attention. (author)

  13. Practices for Neutronic Design of Research Reactors: Safety and Performances

    International Nuclear Information System (INIS)

    In brief, the design aims to have a facility which is quickly operational and profitable, safe and able to evolve over 40 or 60 years, taking into account both the evolution of the requirements for experiments or production yet to be realized and the safety practices. This paper presents the AREVA current design and safety practices (both cannot be realized without the other) for the neutronic design of the research reactor (RR) cores. It completes the paper and presents the general methodology of neutronic design studies for the safety and performance aspects and only slightly focuses on the reactivity shutdown systems and the neutronic calculation schemes. The main points are illustrated with examples of the Jules Horowitz Reactor (core designer point of view). On this basis of our general methodology, certain problems are separated in order to permit rapid reiteration at an individual level before the final synthesis. For example: to carry out generic studies of fuel management strategies and core reactivity control in order to manage the power peak (need core depletion calculation) and to be able to reason step 0 for certain optimizations of the core geometry and characteristics. For the neutronic calculation scheme, our current practice is to combine the use of the deterministic and stochastic codes. The strong points of each type of code are used to reinforce the safety and the performance of our cores. In this field, AREVA has a R and D framework involving and coordinating the participants from the various sectors (power reactors, research reactor etc) in the development of the general calculation methods and associated tools, in particular for Monte Carlo core depletion calculations. The CEA (along with APOLLO, CRONOS and TRIPOLI codes) largely supports us in this field. Comparisons between MCNP and TRIPOLI and between the various libraries (ENDF, JEF, etc.) are also performed. That includes the recalculation of existing reactors (OSIRIS, ORPHEE, AZUR

  14. Kartini Research Reactor prospective studies for neutron scattering application

    Energy Technology Data Exchange (ETDEWEB)

    Widarto [Yogyakarta Nuclear Research Center, BATAN (Indonesia)

    1999-10-01

    The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10{sup 7} n/cm{sup 2}s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10{sup 9} n/cm{sup 2}s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)

  15. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  16. Neutron spectrometric methods for core inventory verification in research reactors

    CERN Document Server

    Ellinger, A; Hansen, W; Knorr, J; Schneider, R

    2002-01-01

    In consequence of the Non-Proliferation Treaty safeguards, inspections are periodically made in nuclear facilities by the IAEA and the EURATOM Safeguards Directorate. The inspection methods are permanently improved. Therefore, the Core Inventory Verification method is being developed as an indirect method for the verification of the core inventory and to check the declared operation of research reactors.

  17. The Finnish research programme on reactor safety (RETU)

    International Nuclear Information System (INIS)

    In Finland the Ministry of Trade and Industry (KTM) has launched two national research programmes on the safety of nuclear reactors for the period 1995-1998. The research programme on Reactor Safety (RETU) concentrates on the search of safe limits of nuclear fuel and the reactor core, accident management methods and risk management of the operation of nuclear power plants. In the research programme the behaviour of high burnup nuclear fuel is studied both in normal operation and during power transients. In particular, the VVER fuel data base is supplemented by performing well-characterized experiments in international cooperation. The reactor dynamics codes are developed further to cope with complicated three-dimensional reactivity transients and accidents, and the operational range of the models is extended by implementing advanced flow models and numerical solution methods. In the research programme separate effects experiments are performed and severe accident calculation methods are developed. The Finnish thermal-hydraulic test facility PACTEL (Parallel Channel Test Loop) is used extensively for the evaluation of the VVER-440 plant accident behaviour, for the validation of the accident analysis computer codes and for the testing of proposed passive safety system concepts. Risk analysis is currently being introduced to safety-related risk decision-making among the power plant staff and the authorities. Methods of risk analysis are developed particularly for complicated accident sequences, where a general disturbance is combined with common-cause failures of equipment and human intervention. (4 refs., 7 figs., 2 tabs.)

  18. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris oe National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately

  19. European community light water reactor safety research projects. Experimental issue

    International Nuclear Information System (INIS)

    Research programs on light water reactor safety currently carried out in the European Community are presented. They cover: accident conditions (LOCA, ECCS, core meltdown, external influences, etc...), fault and accident prevention and means of mitigation, normal operation conditions, on and off site implications and equipment under severe accident conditions, and miscellaneous subjects

  20. China Advanced Research Reactor Project Progress in 2012

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Tie-jun

    2012-01-01

    <正>In 2012, all the commissioning for the China Advanced Research Reactor (CARR) had been finished and the diffraction pattern had been successfully obtained on the neutron scattering spectrometer. Meanwhile, the cold neutron source project and the acceptance items of CARR project had been carrying out.

  1. Water chemistry management in cooling system of research reactor in JAERI

    International Nuclear Information System (INIS)

    The department of research reactor presently operates three research reactors (JRR-2, JRR-3M and JRR-4). For controlling and management of water and gas in each research reactor are performed by the staffs of the research reactor technology development division. Water chemistry management of each research reactor is one of the important subject. The main objects are to prevent the corrosion of water cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the radioactive waste. In this report describe a outline of each research reactor facilities, radiochemical analytical methods and chemical analytical methods for water chemistry management. (author)

  2. Neutron diagnostic investigations with a research reactor

    International Nuclear Information System (INIS)

    Some aspects of the use of neutron transmission analysis in applied research, as pursued at McMaster University (Canada), are examined. Examples considered are void measurements in two-phase flow, neutron conversion enhancement in neutron radiography, reconstruction of interior bulk heterogenities in solids and temperature sensing with neutrons. (author)

  3. Seismic research in support of reactor technology

    International Nuclear Information System (INIS)

    This paper gives an overview of various topics related to the seismic analysis of nuclear power plants which are soil structure interaction, analytical methods for equipment analysis with linear or non linear behavior. In addition comments on piping system behavior and experimental analysis will be given. The research which is undertaken in CEA/DMT on these topics will also be described

  4. Fuel shuffling optimization for the Delft research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)

    1997-07-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)

  5. Verbal rating of alternative research reactors using fuzzy decision analysis

    International Nuclear Information System (INIS)

    An approach is introduced here for making decisions about alternative research reactor types based on their compatibility with the environment of Saudi Arabia and is applied to the choice between pool, light water tank, heavy water tank, and TRIGA reactors. The method is based on the fuzzy decision theory, and it allows for consideration of the availability of required local resources as well as ease of acquisition of imported resources, community acceptance, and future expandability. The use of fuzzy decision theory can overcome the numerical precision of a decision maker's judgment by allowing verbal rating and weighting for each attribute and subattribute

  6. A study on the decommissioning of research reactor

    International Nuclear Information System (INIS)

    As the result of study on decommissioning, discussion has made and data have been collected about experiences, plannings, and techniques for decommissioning through visit to GA and JAERI. GA supplied our Research Reactor No. 1 and No. 2, and JAERI made a memorial museum after dicommissioning of JRR-1 and is dismentling JPDR now. Also many kinds of documents are collected and arranged such as documents related to TRIGA reactor dicommissioning, 30 kinds of documents including decommissioning plan, technical criteria and related regulatory, and 1,200 kinds of facility description data. (Author)

  7. Safety research for LWR type reactors

    International Nuclear Information System (INIS)

    The current R and D activities are to be seen in connection with the LWR risk assessment studies. Two trends are emerging, of which the one concentrates more on BWR-specific problems, and the other on the efficiency or safety-related assessment of accident management activities. This annual report of 1988 reviews the progress of work done by the institutes and departments of the Karlsruhe Nuclear Research Center, (KfK), or on behalf of KfK by external institutions, in the field of safety research. The papers of this report present the state of work at the end of the year 1988. They are written in German, with an abstract in English. (orig./HP)

  8. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  9. Research Reactor Business at AREVA TA: Status and Perspectives

    International Nuclear Information System (INIS)

    Research reactors offer essential support for a country's nuclear power generation industry. They have for many years now provided this support in countless ways: They have made it possible to test new developments, to act as the forerunners for pressurised water reactor operations, for qualifying components, training operators as well as allowing the production of radioactive elements for medical or industrial purposes and they have also be used to perform tests on materials. In a word, they have definitively made a difference in our everyday life. For some forty years now, through its various iterations, AREVA TA has taken part in, or led the design and production of more than twenty research reactors and today, within AREVA, has the leading role in energies that generate lower CO2 emissions and in the range of engineering specialties and services offered by the group in this field, alongside CERCA, the world leader in the supply of fuel for research reactors. All of this, in a competitive worldwide market that is more than ever dominated by the need to meet the expectations of the general public. (author)

  10. Research Reactor Power Control System Design by MATLAB/SIMULINK

    Energy Technology Data Exchange (ETDEWEB)

    Baang, Dane; Suh, Yong Suk; Kim, Young Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Im, Ki Hong [Samsung Electronics, Suwon (Korea, Republic of)

    2013-07-01

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure.

  11. Research Reactor Power Control System Design by MATLAB/SIMULINK

    International Nuclear Information System (INIS)

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure

  12. In-Research Reactor Tests for SCWR Fuel Verifications

    International Nuclear Information System (INIS)

    The Supercritical water cooled reactors (SCWRs) are essentially light water reactors (LWRs) operating at higher pressure and temperature. The SCWRs achieve high thermal efficiency (i.e., about 45% vs. about 35% efficiency for advanced LWRs) and are simpler plants as the need for many of the traditional LWR components is eliminated. The SCWRs build upon two proven technologies, the LWR and the supercritical coal-fired boiler. The main mission of the SCWR is production of low-cost electricity. Thus the SCWR is also suited for hydrogen generation with electrolysis, and can support the development of the hydrogen economy in the near term. In this paper, the SCWR fuel performance verification tests are reviewed. Based on this review results, in-research reactor verification tests to be performed in a fuel test loop through the international joint program are proposed. In addition, capsule tests and fuel test loop tests to be performed in HANARO are also proposed

  13. Liquid film emergency for FRJ-2 type research reactors

    International Nuclear Information System (INIS)

    A new, efficient emergency cooling procedure based on liquid film cooling was developed for FRJ-2 type research in reactors, which allows a higher power generation in the tubular fuel elements used and which represents an improvement of the engineered safeguards of the reactor. The problem of producing coherent liquid films on the outer surfaces of the four concentrically arranged thin fuel tubes without obstructive modifications of the fuel element design was solved by using radial water jets. These jets discharge into the drained fuel elements from the outside therby crossing the upper edges of the fuel tubes. In hydraulic experiments the influence of the geometry, of the jet velocity and of the water viscosity on the water supply to each fuel tube was measured and the conditions were evaluated where by each fuel tube in the reactor obtain sufficient cooling water taking account of variations in the various parameters. (orig./HP)

  14. The role of the Iowa State University research reactor in nuclear engineering education

    International Nuclear Information System (INIS)

    On October 19, 1959, the Iowa State University Research Reactor (ISURR) was made critical for the first time. In the 29 yr since then, the reactor has been an integral part of the nuclear engineering program. Throughout its history, the major use of the ISURR has been as an educational tool. The reactor is currently used in both the undergraduate and graduate programs at ISU. The paper provides the reactor description and discusses reactor experiments for undergraduates and reactor use in graduate education

  15. Convective cooling in a pool-type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sipaun, Susan, E-mail: susan@nm.gov.my [Malaysian Nuclear Agency, Industrial Technology Division, Blok 29T, Bangi 43200, Selangor (Malaysia); Usman, Shoaib, E-mail: usmans@mst.edu [Missouri University of Science and Technology, Nuclear Engineering, 222 Fulton Hall 301 W.14th St., Rolla 64509 MO (United States)

    2016-01-22

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.

  16. Convective cooling in a pool-type research reactor

    Science.gov (United States)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  17. MCNP/MCNPX model of the annular core research reactor.

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell; Cooper, Philip J.; Parma, Edward J., Jr. (.,; .)

    2006-10-01

    Many experimenters at the Annular Core Research Reactor (ACRR) have a need to predict the neutron/gamma environment prior to testing. In some cases, the neutron/gamma environment is needed to understand the test results after the completion of an experiment. In an effort to satisfy the needs of experimenters, a model of the ACRR was developed for use with the Monte Carlo N-Particle transport codes MCNP [Br03] and MCNPX [Wa02]. The model contains adjustable safety, transient, and control rods, several of the available spectrum-modifying cavity inserts, and placeholders for experiment packages. The ACRR model was constructed such that experiment package models can be easily placed in the reactor after being developed as stand-alone units. An addition to the 'standard' model allows the FREC-II cavity to be included in the calculations. This report presents the MCNP/MCNPX model of the ACRR. Comparisons are made between the model and the reactor for various configurations. Reactivity worth curves for the various reactor configurations are presented. Examples of reactivity worth calculations for a few experiment packages are presented along with the measured reactivity worth from the reactor test of the experiment packages. Finally, calculated neutron/gamma spectra are presented.

  18. Proposed replacement nuclear research reactor, Lucas Heights, NSW

    International Nuclear Information System (INIS)

    On 17 February 1999, the House of Representatives referred to the Parliamentary Standing Committee on Public Works for consideration and report the proposed replacement nuclear research reactor at Lucas Heights, New South Wales. The Committee received a written submission from ANSTO and took evidence from ANSTO officials at public hearings held at Parliament House. It has also received submissions and took evidence from a number of organisations and individuals. Prior to the first day of public hearings, the Committee undertook an extensive inspection of the facilities at Lucas Heights. The Committee's main conclusion and recommendations are as follows: 1) A need exists to replace HIFAR with a modern research reactor. The need for the replacement of HIFAR arises as a consequence of national interest considerations, research and development requirements and the need to sustain the local production of radiopharmaceuticals.The comparative costs of locating the replacement research reactor at Lucas Heights or a green fields site favour the former by a considerable margin. The refurbishing HIFAR of would not provide an enhancement of its research and operational capabilities which are considered by the scientific community to be limited. Such limitations have led to a reduction in national research and development opportunities. It is estimated that the new national research reactor must be operational some time before HIFAR is decommissioned. Provided all recommendations and commitments contained in the Environment Assessment Report are implemented during construction and commissioning and for the expected life of the research reactor, the Committee believes, based on the evidence, that all known risks have been identified and their impact on public safety will be as low as technically possible. It is recommended that during the licensing, construction and commissioning phases ANSTO should provide the Committee with six-monthly reports on progress and that removal of

  19. Monitoring and reviewing research reactor safety in Australia

    International Nuclear Information System (INIS)

    Th research reactors operated by the Australian Nuclear Science and Technology Organization (ANSTO) comprise the 10 MW reactor HIFAR and the 100 kW reactor Moata. Although there are no power reactors in Australia the problems and issues of public concern which arise in the operation of research reactors are similar to those of power reactors although on a smaller scale. The need for independent safety surveillance has been recognized by the Australian Government and the ANSTO Act, 1987, required the Board of ANSTO to establish a Nuclear Safety Bureau (NSB) with responsibility to the Minister for monitoring and reviewing the safety of nuclear plant operated by ANSTO. The Executive Director of ANSTO operates HIFAR subject to compliance with requirements and arrangements contained in a formal Authorization from the Board of ANSTO. A Ministerial Direction to the Board of ANSTO requires the NSB to report to him, on a quarterly basis, matters relating to its functions of monitoring and reviewing the safety of ANSTO's nuclear plant. Experience has shown that the Authorization provides a suitable framework for the operational requirements and arrangements to be organised in a disciplined and effective manner, and also provides a basis for audits by the NSB by which compliance with the Board's safety requirements are monitored. Examples of the way in which the NSB undertakes its monitoring and reviewing role are given. Moata, which has a much lower operating power level and fission product inventory than HIFAR, has not been subject to a formal Authorization to date but one is under preparation

  20. IGORR 6: Proceedings of the 6th meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    A total of 39 papers were presented in 4 technical sessions: operating research reactors (operation, upgrades, and refurbishments); operating research reactors (experience from systems for better future design); new research reactors and projects, workshop on cold neutron sources, and workshop on research and development needs. All the papers presented at the meeting are published in this Proceedings

  1. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehin, Jess C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-10

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled “Needs and Requirements for Future Research Reactors”, was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collect valuable input on the reactor’s current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.

  2. Present status and future prospects of research reactors in the Soviet Union

    International Nuclear Information System (INIS)

    The research reactors which are currently in use in the USSR are employed in a wide range of research in various scientific fields, as well as for certain applied tasks. Most of these reactors are pool-type reactors. Since it is significantly cheaper to upgrade research reactors rather than to build new ones, the vast majority of them have been upgraded and their experimental capabilities significantly expanded. In the USSR the future of research reactors lies in the continued modernization of currently operating research reactors and the building of new powerful research reactors for which designs are being developed. Some are already under construction (for example, the PIK reactor). These designs are developing Soviet research reactor concepts which centre around pressure-vessel-type reactors and channel-type reactors in tanks. Other technical ideas are also being used. Research reactor safety meets current requirements on the whole; however, their long operating life, their proximity to heavily populated areas, and several other features of research reactors make safety a higher priority. A series of organizational and technical measures are being undertaken to improve research reactor safety

  3. Research reactor utilization. Summary reports of three study group meetings: Irradiation techniques at research reactors, held in Istanbul 15-19 November 1965; Research reactor operation and maintenance problems, held in Caracas 6-10 December 1965; and Research reactor utilization in the Far East, held in Lucas Heights 28 February - 4 March 1966

    International Nuclear Information System (INIS)

    The three sections of this book, which are summary reports of three Study Group meetings of the IAEA: Irradiation techniques at research reactors, Istanbul, 15-19 November 1965; Research reactor operation and maintenance problems, Caracas, 6-10 December 1965; and Research reactor utilization in the Far East, Lucas Heights, Australia, 28 February - 4 March 1966. These meetings were the latest in a series designed to promote efficient utilization of research reactors, to disseminate information on advances in techniques, to discuss common problems in reactor operations, and to outline some advanced areas of reactor-based research. (author)

  4. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  5. RRFM 2009 transactions: 13. international topical meeting on Research Reactor Fuel Management (RRFM)

    International Nuclear Information System (INIS)

    The Conference covers topics in the area of research reactor fuel handling, performance, properties, core conversion, accident analysis etc. Different types of fuels for research reactors and their behaviour are presented in details

  6. Reliability Analysis of I and C Architecture of Research Reactors Using Bayesian Networks

    International Nuclear Information System (INIS)

    The objective of this research project is to identify a configuration of architecture which gives highest availability with maintaining low cost of manufacturing. In this regard, two configurations of a single channel of RPS are formulated in the current article and BN models were constructed. Bayesian network analysis was performed to find the reliability features. This is a continuation of study towards the standardization of I and C architecture for low and medium power research reactors. This research is the continuation of study to analyze the reliability of single channel of Reactor Protection System (RPS) using Bayesian networks. The focus of research was on the development of architecture for low power research reactors. What level of reliability is sufficient for protection, safety and control systems in case of low power research reactors? There should be a level which should satisfy all the regulatory requirements as well as operational demands with optimized cost of construction. Scholars, researchers and material investigators from educational and research institutes are demanding for construction of more research reactors. In order to meet this demand and construct more units, it is necessary to do more research in various areas. The research is also needed to make a standardization of research reactor I and C architectures on the same lines of commercial power plants. The research reactors are categorized into two broad categories, Low power research reactors and medium to high power research reactors. According to IAEA TECDOC-1234, Research reactors with 0.250-2.0 MW power rating or 2.5-10 Χ 1011 n/cm2.s. flux are termed low power reactor whereas research reactors ranging from 2-10 MW power rating or 0.1-10 Χ 1013 n/cm2.s. are considered as Medium to High power research reactors. Some other standards (IAEA NP-T-5.1) define multipurpose research reactor ranging from power few hundred KW to 10 MW as low power research reactor

  7. Proceedings of the FNCA 2004 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    The FNCA 2004 Workshop on the Utilization of Research Reactors, which is the twelfth workshop on the theme of research reactor utilization, was held in Bangkok, Thailand from January 13 to 21, 2005. This workshop was executed based on the agreement in the fifth Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2004. The workshop consisted of three groups under the themes of the following fields; 1) Neutron Activation Analysis, 2) Research Reactor Technology and 3) Tc-99m Generator Technology. The total number of participants for the workshop was 59 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. This report consists of 6 papers for Neutron Activation Analysis, 5 papers for Research Reactor Technology, 5 Papers for Tc-99m Generator Technology and a summary report. The 15 of the presented papers are indexed individually. (J.P.N.)

  8. International symposium on research reactor utilization, safety and management. Book of extended synopses

    International Nuclear Information System (INIS)

    The Symposium, considered as an important meeting of the owners and operators of research reactors as well as scientists concerned with problems of research reactors operation, management and safety covered the following topics: global and regional overview of research reactors, research reactors utilisation, research reactors safety, research reactors management, research reactors engineering. IAEA Research Reactors Database (RRDB) contains data concerning 291 operational research reactors, 247 shutdown reactors, 106 decommissioned reactors, 15 under construction and 15 new reactors planned. There is quite an even distribution of operational research reactors among 58 countries. Although about 66% of operational research reactors described in the RRDB are over 30 years old, the number of research reactors under construction or planned appears to have increased in recent years. According to the RRDB, the major applications of research reactors are in the field of neutron activation analysis, isotope production and neutron scattering work. Great concern was shown for several aspects of research reactors safety, especially since the average age of the operating research reactors is almost 30 years. Ageing problems involve more than the degradation of properties of the materials. Issues such as outdated equipment, lack of spare parts, outdating of the control and documentation systems related to the reactor, as well as budgetary limitations, affect the safety of some reactors. There are serious problems related to the spent fuel condition and the ageing of fuel storage facilities, in particular corrosion and leakage. The outstanding issues of concern are life extension of the spent fuel storage facilities and the future of take-back programmes of foreign research reactor fuels that will not be continued. A number of discussions related to safety requirements were focused on licensing and regulatory issues, especially in the case of older research reactors and those

  9. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  10. Safety Committees for Argentinean Research Reactor - Regulatory Issues

    International Nuclear Information System (INIS)

    In the field of radiological and nuclear safety, the Nuclear Regulatory Authority (ARN) of Argentina controls three research reactors and three critical assemblies, by means of evaluations, audits and inspections, in order to ensure the fulfillment of the requirements established in the Licenses, in the Regulatory Standards and in the Mandatory Documentation in general. From the Nuclear Regulatory Authority's point of view, within the general process of research reactors safety management, the Operational Organization self verification of radiological and nuclear safety plays an outstanding role. In this aspect the ARN has established specific requirements in the Regulatory Standards, in the Operation Licenses and in the Operational Limits and Conditions. These requirements include the figure of different safety committees, which act as reviewers or advisers in diverse situations. This paper describes the main characteristics of the committees, their function, scope and the regulatory documents where the requirements are included. (author)

  11. IAEA designated international centre based on research reactors (ICERR)

    Energy Technology Data Exchange (ETDEWEB)

    Di Tigliole, Andrea Borio; Bradley, Edward; Khoroshev, Mikhail; Marshall, Frances; Morris, Charles; Tozser, Sandor [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Energy

    2016-04-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals. However, the needs of the nuclear community dictate that the majority of the research reactors continues to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. In view of this fact, the IAEA drew up a report presenting available reprocessing and recycling services for RR SNF.

  12. Safety culture and quality management of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia); Hauptmanns, Ulrich [Department of Plant Design and Safety, Otto-Von-Guericke-University, Magdeburg (Germany)

    1999-10-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  13. Fuels for research and test reactors, status review: July 1982

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO/sub 2/ rod fuels. Among new fuels, those given major emphasis include H/sub 3/Si-Al dispersion and UO/sub 2/ caramel plate fuels.

  14. Fuels for research and test reactors, status review: July 1982

    International Nuclear Information System (INIS)

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO2 rod fuels. Among new fuels, those given major emphasis include H3Si-Al dispersion and UO2 caramel plate fuels

  15. 77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor

    Science.gov (United States)

    2012-07-20

    ... COMMISSION License Renewal for the Dow Chemical TRIGA Research Reactor AGENCY: Nuclear Regulatory Commission... Research Reactor is located on the Michigan Division of the Dow Chemical Company in Midland, MI and is a... INFORMATION CONTACT: Geoffrey A. Wertz, Project Manager, Research and Test Reactor Licensing Branch,...

  16. The risks of the Taiwan research reactor spent fuel project

    International Nuclear Information System (INIS)

    The proposed action is to transport up to 118 spent fuel rods, to include canned spent fuel rod particulates immobilized on filters, from a research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the Receiving Basin for Offsite Fuels at the Savannah River Site (SRS). At SRS, the spent fuel will be reprocessed to recover uranium and plutonium. 55 refs., 8 tabs

  17. Development of Core Design Model for Small-Sized Research Reactor and Establishment of Infrastructure for Reactor Export

    International Nuclear Information System (INIS)

    Within 10 years a growing world-wide demand of new research reactor construction is expected because of obsolescence. In Korea, a new research reactor is also required in order to meet domestic demand of utilization. KAERI has been devoted to develop an export-oriented research reactors for these kinds of demand. A next generation research reactor should comply with general requirements for safety, economics, environment-friendliness and non-proliferation as well as high performance requirement of high flux level. A export-tailored reactor should be developed for the demand of developing counties or under-developed countries. A new design concept is to be developed for a long cycle length core which has excellent irradiation facility with high flux

  18. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  19. Generic component reliability data for research reactor PSA

    International Nuclear Information System (INIS)

    The purpose of this document is to provide reference generic component-reliability information for a variety of research reactor types. As noted in Section 2 and Table IV, component data accumulated over many years is in the database. It is expected that the report should provide representative data which will remain valid for a number of years. The database provides component failure rates on a time and/or demand related basis according to the operational modes of the components. No update of the database is presently planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available by the contributing research reactor facilities themselves. As noted in Section 1.1, the report does not include a detailed discussion of information regarding component classification and reliability parameter definitions. The report does provide some insights and discussions regarding the practicalities of the data collection process and some guidelines for database usage. 9 refs, 7 tabs

  20. RB research nuclear reactor - Annual report for 1986, I - III

    International Nuclear Information System (INIS)

    This report includes data concerning the RB reactor operation in 1986, state of the reactor components, data about the employed personnel and the database of experimental and other reactor related devices. It is made of 3 parts: Engineering description and operation of the RB reactor including dosimetry, reactor staff data and financial report; Reactor facility components and maintenance; RB reactor operation and utilization in 1986

  1. Technical Research on Safety Management and Effective Application of China Advanced Research Reactor

    International Nuclear Information System (INIS)

    China Advanced Research Reactor (CARR) is a tank in pool type, light water cooled, heavy water reflected research reactor. The maximum thermal neutron flux of the reactor is 1.0x1015 cm-2s-1, and the reactor power is 60 MW. The reactor was designed and constructed completely by China Institute of Atomic Energy (CIAE). The construction project began on Aug. 26, 2002, reactor criticality was achieved on May 13, 2010, and it is scheduled to complete power increasing tests by the end of 2011. Future operation of CARR is preparing and its utilization program is considered. It is expected that CARR will greatly improve and enhance the comprehensive research capability of nuclear science and technology and push the peaceful use of nuclear technology forward. The paper briefly presents the reactor safety features, the operation organization and responsibilities, the management of operation safety, and the future utilizations. According to national safety regulations of research reactor, evaluation of operation safety of CARR shall be executed after initial operation at power level and submit the revised ''Final Safety Analysis Report'' (FSAR) to the regulatory body.Ordinary operation shall be approved and operation license shall be issued by the regulatory body after review on the ''Final Safety Analysis Report.'' Vertical and horizontal channels with associated equipment and instruments are installed in reactor core and in heavy water reflector. CARR will be used to produce variety of RIs in comprehensive fields, to meet the requirements of engineering tests and irradiation for developing NPP fuels and materials in China, to apply for NTD of mono-crystalline silicone, NAA, neutron photography and to provide high intense neutron beam for application of neutron scattering experiments in an adequate scale and others, etc. (author)

  2. Activities of research-reactor-technology project in FNCA from FY2005 to FY2007. Sharing neutronics calculation technique for core management and utilization of research reactors

    International Nuclear Information System (INIS)

    RRT project (Research-Reactor-Technology Project) was carried out with the theme of 'sharing neutronics calculation technique for core management and utilization of research reactors' in the framework of FNCA (Forum for Nuclear Cooperation in Asia) from FY2005 to FY2007. The objective of the project was to improve and equalize the level of neutronics calculation technique for the reactor core management among participating countries to assure the safe and stable operation of research reactors and the promotion of the effective utilization. Neutronics calculation codes, namely SRAC code system and MVP code, were adopted as common codes. Participating countries succeeded in applying the common codes to analyzing the core of each domestic research reactor. Some participating countries succeeded in applying the common codes to analyzing for utilization of own research reactors. Activities of RRT project have improved and equalized the level of neutronics calculation technique among participating countries. (author)

  3. Hands-on Training Courses Using Research Reactors and Accelerators

    International Nuclear Information System (INIS)

    The enhancement of nuclear science education and training in all Member States is of interest to the IAEA since many of these countries, particularly in the developing world, are building up and expanding their scientific and technological infrastructures. Unfortunately, most of these countries still lack sufficient numbers of well-educated and qualified nuclear specialists and technologists. This may arise from, amongst other things: a lack of candidates with sufficient educational background in nuclear science who would qualify to receive specialized training; a lack of institutions available for training nuclear science specialists; a lack of lecturers in nuclear related fields; and a lack of suitable educational and teaching materials. A related concern is the potential loss of valuable knowledge accumulated over many decades due to the ageing workforce. An imperative for Member States is to develop and offer suitable graduate and postgraduate academic programmes which combine study and project work so that students can attain a prerequisite level of knowledge, abilities and skills in their chosen subject area. In nearly all academic programmes, experimental work forms an essential and integral component of study to help students develop general and subject specific skills. Experimental laboratory courses and exercises can mean practical work in a conventional laboratory or an advanced facility with an operational particle accelerator or research reactor often accompanied by computer simulations and theoretical exercises. In this context, available or newly planned research reactors and particle accelerators should be seen as extremely important and indispensable components of nuclear science and technology curricula. Research reactors can demonstrate nuclear science and technology based on nuclear fission and the interaction of neutrons and photons with matter, while particle accelerators can demonstrate nuclear science and technology based on charged particle

  4. Preparation Before Signature of Upgrade of Algeria Heavy Water Research Reactor Contract

    Institute of Scientific and Technical Information of China (English)

    LI; Song; ZAN; Huai-qi; XU; Qi-guo; JIA; Yu-wen

    2012-01-01

    <正>Algeria heavy water research reactor (Birine) is a multiple-purpose research reactor, which was constructed with the help of China more than 20 years ago. By request of Algeria, China will upgrade the research reactor; so as to improve the status of current reactor such as equipment ageing, shortage of spare parts, several systems do not meet requirements of current standards and criteria etc.

  5. Emergency intervention plan for 14 MW TRIGA - PITESTI Research Reactor

    International Nuclear Information System (INIS)

    A 14 Mw TRIGA research reactor is operated on the Institute for Nuclear Research site. In the event of a nuclear accident or radiological emergency that may affect the public the effectiveness of protective actions depends on the adequacy of intervention plans prepared in advance. Considerable planning is necessary to reduce to manageable levels the types of decisions leading to effective responses to protect the public in such an event. The essential structures of our on-site, off-site and county emergency intervention plan and the correlation between emergency intervention plans are presented. (author)

  6. Dhruva reactor -- a high flux facility for neutron beam research

    International Nuclear Information System (INIS)

    Dhruva reactor, the highest flux thermal neutron source in India has been operating at full power of 100 MW over the past two years. Several advanced facilities like the cold source, guides, etc. are being installed for neutron beam research in condensed matter. A large number and variety of neutron spectrometers are operational. This paper deals with the basic advantages that one can derive from neutron scattering investigations and gives a brief description of the instruments that are developed and commissioned at Dhruva for neutron beam research. (author). 3 figs

  7. Application of probabilistic safety assessment to research reactors

    International Nuclear Information System (INIS)

    This document has been prepared to assist in the performance of a research reactor probabilistic safety assessment (PSA). It offers examples of experience gained by a number of Member States in carrying out PSA for research reactors. These examples are illustrative of the types of approach adopted, the problems that arise and the judgements entered into when conducting a PSA. The illustrative examples of experiences gained are discussed in a series of thirteen chapters which address some of the issues that arise in a PSA. The examples are not exhaustive and offer evidence of how other analyses have approached the task of preparing a PSA, for their particular plant. The principles should be capable of being utilised and the various issues which are discussed should be translated into the needs of the analyst. Each PSA will make its own demands on the analyst depending on the reactor and so the illustrations must only be used as guidance and not adopted as published, without critical appreciation. Refs, figs and tabs

  8. Products and Services of Research Reactor ETRR-2

    International Nuclear Information System (INIS)

    The Egyptian Atomic Energy Authority (EAEA) owns a new material testing research reactor (MTR) called ETRR-2. This reactor was commissioned in 1997 and is a swimming pool type using plate type Fuel elements with 20% enrichment. It is cooled and moderated by light water and uses beryllium as a reflector. Its maximum thermal power is 22 MW, with maximum thermal neutron flux of 2.7×l014 cm-2s-1 and can be operated up to one cycle, around 18 days, for the high fluence necessary for applying long irradiations for peaceful utilization and a wide range of applications. The reactor is a multipurpose utilization, containing different facilities for applying neutron activation analysis (NAA), radioisotope production (e.g., Ir-131, Co-60, P-32, Mo-99, etc.), neutron transmutation doping (NTD) of silicon ingots of 12.5 cm diameter and 30 cm in length, neutron radiography education for university students, research for scientists, and training for new operators. (author)

  9. Feasibility of Thermoelectric Waste Heat Recovery from Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A thermoelectric generator has the most competitive method to regenerate the waste heat from research reactors, because it has no limitation on operating temperature. In addition, since the TEG is a solid energy conversion device converting heat to electricity directly without moving parts, the regenerating power system becomes simple and highly reliable. In this regard, a waste heat recovery using thermoelectric generator (TEG) from 15-MW pool type research reactor is suggested and the feasibility is demonstrated. The producible power from waste heat is estimated with respect to the reactor parameters, and an application of the regenerated power is suggested by performing a safety analysis with the power. The producible power from TEG is estimated with respect to the LMTD of the HX and the required heat exchange area is also calculated. By increasing LMTD from 2 K to 20K, the efficiency and the power increases greatly. Also an application of the power regeneration system is suggested by performing a safety analysis with the system, and comparing the results with reference case without the power regeneration.

  10. The IAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors

    International Nuclear Information System (INIS)

    The Reactor Institute Delft was inaugurated in May 2009 as a new IAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (i) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (ii) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques; and, as a cross-cutting activity, (iii) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. (author)

  11. Role of research reactors in training of NPP personnel with special focus on training reactor VR-1

    International Nuclear Information System (INIS)

    Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training program are demonstrated. (authors)

  12. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  13. Developing strategic plans for effective utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, Danas [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Sciences and Applications

    2015-12-15

    Strategic plans are indispensable documents for research reactors (RRs) to ensure their efficient, optimized and well managed utilization. A strategic plan provides a framework for increasing utilization, while helping to create a positive safety culture, a motivated staff, a clear understanding of real costs and a balanced budget. A strategic plan should be seen as an essential tool for a responsible manager of any RR, from the smallest critical facility to the largest reactor. Results and lessons learned are shown from the IAEA efforts to help the RR facilities developing strategic plans, provide review and advise services, organize national and regional stakeholder/user workshops, prepare further guidance and recommendations, document and publish guidance documents and other supporting materials.

  14. Status of reactor shielding research in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties.

  15. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  16. Design requirement for electrical system of an advanced research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system.

  17. The research reactor TRIGA Mainz. A neutron source for versatile applications in research and education

    International Nuclear Information System (INIS)

    Currently, four research reactors with a thermal power ranging from 0.1 to 23 MWth are in operation in Germany and one new reactor (20 MWth) is under construction. The TRIGA Mark II reactor at the Institut fuer Kernchemie became first critical on August 3, 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. A survey of the research programmes carried out at the TRIGA Mainz is given covering a wide range of applications in basic and applied science in nuclear chemistry, nuclear- and particle physics. Furthermore, the reactor is used for neutron activation analysis and for education and training of students and technical personal. (orig.)

  18. Joint KAERI/VAEC pre-possibility study on a new research reactor for Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Kim, H.; Lee, C. S.; Choi, C. O.; Jun, B. J. [KAERI, Taejon (Korea, Republic of); Vien, Luong Ba; Dien, Nguyen Nhi [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2004-05-01

    Based on the agreement on the technical cooperation for nuclear technology between Korea and Vietnam, a KAERI/VAEC joint study on the pre-possibility of a new research reactor for Vietnam has been carried out in the research reactor area from Nov. 2003 to May 2004. In this report, the results of the pre-possibility study on a new research reactor are described. The report presents the necessity of a new research reactor in Vietnam, and the desired performance requirements of the new research reactor if necessary. The major design characteristics of some existing research reactors and those under planning were also reviewed and the main characteristics which should be considered in selecting a new multipurpose research reactor for Vietnam were drawn. Some recommendations on the considerations for the next step of the feasibility study such as the project formulation, manpower requirements and international co-operation were also briefly touched upon.

  19. Joint KAERI/VAEC pre-possibility study on a new research reactor for Vietnam

    International Nuclear Information System (INIS)

    Based on the agreement on the technical cooperation for nuclear technology between Korea and Vietnam, a KAERI/VAEC joint study on the pre-possibility of a new research reactor for Vietnam has been carried out in the research reactor area from Nov. 2003 to May 2004. In this report, the results of the pre-possibility study on a new research reactor are described. The report presents the necessity of a new research reactor in Vietnam, and the desired performance requirements of the new research reactor if necessary. The major design characteristics of some existing research reactors and those under planning were also reviewed and the main characteristics which should be considered in selecting a new multipurpose research reactor for Vietnam were drawn. Some recommendations on the considerations for the next step of the feasibility study such as the project formulation, manpower requirements and international co-operation were also briefly touched upon

  20. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  1. RB research nuclear reactor, Annual report for 1989, I - III

    International Nuclear Information System (INIS)

    This report is made of three parts. Part one contains a short description of the reactor, reactor operation, incidents, status of reactor equipment and components (nuclear fuel, heavy water, reactor vessel, heavy water circulation system, electronic, electric and mechanical equipment, auxiliary systems and Vax-8250 computer). It includes dosimetry and radiation protection data, personnel and financial data. Second part of this report in concerned with maintenance of reactor components and instrumentation. Part three includes data about reactor utilization during 1989

  2. Advanced sodium fast reactor accident source terms : research needs.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  3. Design of a new portable fork detector for research reactor spent fuel

    International Nuclear Information System (INIS)

    There are many situations in nonproliferation and international safeguards when one needs to verify spent research-reactor fuel. Special inspections, a reactor coming under safeguards for the first time, and failed surveillance are prime examples. Several years ago, Los Alamos developed the FORK detector for the IAEA and EURATOM. This detector, together with the GRAND electronics package, is used routinely by inspectors to verify light-water-reactor spent fuels. Both the FORK detector and the GRAND electronics technologies have been transferred and are now commercially available. Recent incidents in the world indicate that research-reactor fuel is potentially a greater concern for proliferation than light-water-reactor fuels. A device similar to the FORK/GRAND should be developed to verify research-reactor spent fuels because the signals from light-water-reactor spent fuel are quite different than those from research-reactor fuels

  4. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1

  5. The Budapest research reactor as an advanced research facility for the early 21st century

    International Nuclear Information System (INIS)

    The Budapest Research Reactor, Hungary's first nuclear facility was originally put into operation in 1959. The reactor serves for: basic and applied research, technological and commercial applications, education and training. The main goal of the reactor is to serve neutron research. This unique research possibility is used by a broad user community of Europe. Eight instruments for neutron scattering, radiography and activation analyses are already used, others (e.g. time of flight spectrometer, neutron reflectometer) are being installed. The majority of these instruments will get a much improved utilization when the cold neutron source is put into operation. In 1999 the Budapest Research Reactor was operated for 3129 full power hours in 14 periods. The normal operation period took 234 hours (starting Monday noon and finishing Thursday morning). The entire production for the year 1999 was 1302 MW days. This is a slightly reduced value, due to the installation of the cold neutron source. For the year 2000 a somewhat longer operation is foreseen (near to 4000 hours), as the cold neutron source will be operational. The operation of the reactor is foreseen at least up to the end of the first decade of the 21st century. (author)

  6. Reference dosimetry for various Health Physics Research Reactor spectra

    International Nuclear Information System (INIS)

    Reference neutron dosimetry is developed in a consistent and reproducible manner for five different Health Physics Research Reactor (HPRR) spectra: the unshielded HPRR, the HPRR shielded by 20-cm concrete, by 12-cm Lucite, by 13-m steel, and by a 5-cm steel/15-cm concrete shield. The reference dosimetry is presented in two forms so as to be of maximum usefulness both to dosimetrists and to reactor operations personnel. The forms are: (1) dosimetric data (i.e., wet tissue kerma, element 57 dose, and element 57 dose equivalent) per unit fluence at 3 m from the centerline of the HPRR, and (2) dosimetric data at 3 m from the centerline of the HPRR per fission in the reactor. A large amount of HPRR dosimetry-related information are included and form a comprehensive compilation of available data. These data include calculated HPRR neutron energy spectra for each of the five above mentioned shielding situations, dosimetric data per unit fluence as a function of neutron energy, dosimetric contributions to the total reference values by neutron energy group, quality factors, shield attenuation factors and a summary of nuclear engineering data for each shield, kerma variation with distance from the HPRR, and a summary of previously published reference dosimetry-related HPRR data

  7. Radioisotope Production Plan and Strategy of Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This reactor will be located at Kijang, Busan, Korea and be dedicated to produce mainly medical radioisotopes. Tc-99m is very important isotope for diagnosis and more than 80% of radiation diagnostic procedures in nuclear medicine depend on this isotope. There were, however, several times of insecure production of Mo-99 due to the shutdown of major production reactors worldwide. OECD/NEA is leading member countries to resolve the shortage of this isotope and trying to secure the international market of Mo-99. The radioisotope plan and strategy of Kijang Research Reactor (KJRR) should be carefully established to fit not only the domestic but also international demand on Mo-99. The implementation strategy of 6 principles of HLG-MR should be established that is appropriate to national environments. Ministry of Science, ICT and Future Planning and Ministry of Health and welfare should cooperate well to organize the national radioisotope supply structure, to set up the reasonable and competitive pricing of radioisotopes, and to cope with the international supply strategy.

  8. Contribution of CAD and PLM Research Reactors Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnetain, Xavier [AREVA TA, Paris (France)

    2013-07-01

    As all the reactors, the main stakes in the engineering of design and construction of the research reactors consist of the management and sharing of the technical data, the functional, physical and contractual interfaces data between the various contributors on the whole designs and construction cycle project. For 40 years, AREVA TA designs and builds reactors. Computer Aided Design (CAD) tools were introduced for 30 years into the engineering processes of AREVA TA, completed for 15 years by Product Lifecycle Management (PLM) tools. For 15 years AREVA TA pursues the integration since the feasibility of its newest Information Technologies (IT). In the first part, the paper presents IN the second part, the paper presents how the schematics and CAD tools support the engineering processes during the different phases of the project. CAD was used during the studies and now supports the management of the layout and design studies, including interfaces between suppliers, up to the constitution of the as built CAD mock-up. In the third part, the paper presents the relations between the various tools and the PLM solution implemented by AREVA TA to ensure the consistency between all tools and data for the benefit of the project.

  9. Reactor core materials research and integrated material database establishment

    International Nuclear Information System (INIS)

    Mainly two research areas were covered in this project. One is to establish the integrated database of nuclear materials, and the other is to study the behavior of reactor core materials, which are usually under the most severe condition in the operating plants. During the stage I of the project (for three years since 1999) in- and out of reactor properties of stainless steel, the major structural material for the core structures of PWR (Pressurized Water Reactor), were evaluated and specification of nuclear grade material was established. And the damaged core components from domestic power plants, e.g. orifice of CVCS, support pin of CRGT, etc. were investigated and the causes were revealed. To acquire more resistant materials to the nuclear environments, development of the alternative alloys was also conducted. For the integrated DB establishment, a task force team was set up including director of nuclear materials technology team, and projector leaders and relevant members from each project. The DB is now opened in public through the Internet

  10. Progress with OPAL, the new Australian research reactor

    Indian Academy of Sciences (India)

    R A Robinson

    2008-11-01

    Australian science is entering a new `golden age', with the start-up of bright new neutron and photon sources in Sydney and Melbourne, in 2006 and 2007 respectively. The OPAL reactor and the Australian Synchrotron can be considered as the greatest single investment in scientific infrastructure in Australia's history. They will essentially be `sister' facilities, with a common open user ethos, and a vision to play a major role in international science. Fuel was loaded into the reactor in August 2006, and full power was (20 MW) achieved in November 2006. The first call for proposals was made in 2007, and commissioning experiments have taken place well before then. The first three instruments in operation are high-resolution powder diffractometer (for materials discovery), high-intensity powder diffractometer (for kinetics experiments and small samples) and a strain scanner (for mechanical engineering and industrial applications). These are closely followed by four more instruments with broad application in nanoscience, condensed matter physics and other scientific disciplines. Instrument performance will be competitive with the best research-reactor facilities anywhere. To date there is committed funding for nine instruments, with a capacity to install a total of ∼ 18 beamlines. An update will be given on the status of OPAL, its thermal and cold neutron sources, its instruments and the first results.

  11. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  12. Fast Reactor Research in Europe: The Way Towards Sustainability (Summary)

    International Nuclear Information System (INIS)

    examined against the costs and risks in a balanced approach; - Research on fast neutron reactors is being strengthened in Europe, under the umbrella of the Generation IV International Forum. European coordination is entrusted to the Joint Research Centre. (author)

  13. Present status of liquid metal research for a fusion reactor

    Science.gov (United States)

    Tabarés, Francisco L.

    2016-01-01

    Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.

  14. Safe Operation of Critical Assemblies and Research Reactors

    International Nuclear Information System (INIS)

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  15. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    November 9--10, 1978, marked the first of what has become an annual event--the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR). The meeting brought together for the first time many people who became major program participants in later years. This first meeting emphasized fuel development, and it established the basis for all later meetings. Believing that the proceedings of this first meeting are important as a historical record of the beginning of the international RERTR effort. This report provides presentations and discussions of this original meeting. Individual papers have been cataloged separately

  16. Upgrading of neutron radiography/tomography facility at research reactor

    International Nuclear Information System (INIS)

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  17. Revised radiation emergency procedures at Pakistan research reactor PINSTECH

    International Nuclear Information System (INIS)

    Necessary procedures have been laid down in this report to meet the radiation emergency at Pakistan Research Reactor PINSTECH. The Nuclear Safety Committee PINSTECH (NSCP) had also recommended a number of improvements in the existing procedures. Revision of the procedures was also considered necessary to incorporate into it new radiation units/limits and new emergency equipment available. Radiation emergency preparedness programme is of continuous nature. Latest developments else-where and local experience contribute to the improvement of the existing arrangements under this programme. (A.B.)

  18. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included

  19. Some tooling for manufacturing research reactor fuel plates

    International Nuclear Information System (INIS)

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment. (author)

  20. Upgrading of neutron radiography/tomography facility at research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Bar, Waleed; Mongy, Tarek [Atomic Energy Authority, Cairo (Egypt). ETRR-2; Kardjilov, Nikolay [Helmholtz Zentrum Berlin (HZB) for Materials and Energy, Berlin (Germany)

    2014-03-15

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  1. Improvements in the model of neutron calculations for research reactors

    International Nuclear Information System (INIS)

    Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results are researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements, by one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author)

  2. Improvements in the model of neutron calculations for research reactors

    International Nuclear Information System (INIS)

    Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results, are being researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements by means of one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author)

  3. Review of the status of low power research reactors and considerations for its development

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Cheol; Wu, Sang Ik; Lee, Byung Chul; Ha, Jae Joo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    At present, 232 research reactors in the world are in operation and two thirds of them have a power less than 1 MW. Many countries have used research reactors as the tools for educating and training students or engineers and for scientific service such as neutron activation analysis. As the introduction of a research reactor is considered a stepping stone for a nuclear power development program, many newcomers are considering having a low power research reactor. The IAEA has continued to provide forums for the exchange of information and experiences regarding low power research reactors. Considering these, the Agency is recently working on the preparation of a guide for the preparation of technical specification possibly for a member state to use when wanting to purchase a low power research reactor. In addition, ANS has stated that special consideration should be given to the continued national support to maintain and expand research and test reactor programs and to the efforts in identifying and addressing the future needs by working toward the development and deployment of next generation nuclear research and training facilities. Thus, more interest will be given to low power research reactors and its role as a facility for education and training. Considering these, the status of low power research reactors was reviewed, and some aspects to be considered in developing a low power research reactor were studied.

  4. Reactor core conversion studies of Ghana: Research Reactor-1 and proposal for addition of safety rod

    International Nuclear Information System (INIS)

    The inclusion of an additional safety rod in conjunction with a core conversion study of Ghana Research Reactor-1 (GHARR-1) was carried out using neutronics, thermal hydraulics and burnup codes. The study is based on a recommendation by Integrated Safety Assessment for Research Reactors (INSARP) mission to incorporate a safety rod to the reactor safety system as well as the need to replace the reactor fuel with LEU. Conversion from one fuel type to another requires a complete re-evaluation of the safety analysis. Changes to the reactivity worth, shutdown margin, power density and material properties must be taken into account, and appropriate modifications made. Neutronics analysis including burnup was studied followed by thermal hydraulics analyses which comprise steady state and transients. Four computer codes were used for the analysis; MCNP, REBUS, PLTEP and PARET. The neutronics analysis revealed that the LEU core must be operated at 34 Kw in order to attain the flux of 1.0E12 n/cm2.s as the nominal flux of the HEU core. The auxiliary safety rod placed at a modified irradiation site gives a better worth than the cadmium capsules. For core excess reactivity of 4 mk, 348 fuel pins would be appropriate for the GHARR-1 LEU core. Results indicate that flux level of 1.0E12 n/cm2.s in the inner irradiation channel will not be compromised, if the power of the LEU core is increased to 34 kW. The GHARR-1 core using LEU-U02-12.5% fuel can be operated for 23 shim cycles, with cycles length 2.5 years, for over 57 years at the 17 kW power level. All 23 LEU cycles meet the ∼ 4.0 mk excess reactivity required at the beginning of cycle . For comparison, the MNSR HEU reference core can also be operated for 23 shim cycles, but with a cycle length of 2.0 years for just over 46 years at 15.0kW power level. It is observed that the GHARR-1 core with LEU UO2 fuel enriched to 12.5% and a power level of 34 kW can be operated ∼25% longer than the current HEU core operated at 30 k

  5. Proceedings of the international symposium on research reactor safety operations and modifications

    International Nuclear Information System (INIS)

    The International Symposium on Research Reactor Safety, Operations and Modifications was organized by the International Atomic Energy Agency in cooperation with Atomic Energy of Canada Limited-Research Company. The main objectives of this Symposium were: (1) to exchange information and to discuss current perspectives and concerns relating to all aspects to research reactor safety, operations, and modifications; and, (2) to present views and to discuss future initiatives and directions for research reactor design, operations, utilization, and safety. The symposium topics included: research reactor programmes and experience; research reactor design safety and analysis; research reactor modifications and decommissioning; research reactor licensing; and new research reactors. These topics were covered during eight oral sessions and three poster sessions. These Proceedings include the full text of the 93 papers presented. The subject of Symposium was quite wide-ranging in that it covered essentially all aspects of research reactor safety, operations, and modifications. This was considered to be appropriate and timely given the 326 research reactors currently in operation in some 56 countries; given the degree of their utilization which ranges from pure and applied research to radioisotopes production to basic training and manpower development; and given that many of these reactors are undergoing extensive modifications, core conversions, power upratings, and are becoming the subject of safety reassessment and regulatory reviews. Although the Symposium covered many topics, the majority of papers and discussions tended to focus mainly on research reactor safety. This was seen as a clear sign of the continuing recognition of the fundamental importance of identifying and addressing, particularly through international cooperation, issues and concerns associated with research reactor safety

  6. Proceedings of the FNCA 2005 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    The FNCA 2005 Workshop on the Utilization of Research Reactors, which is the twelfth workshop on the theme of research reactor utilization, was held in Kuala Lumpur, Malaysia from August 8 to 12, 2005. This workshop was executed based on the agreement in the sixth Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2005. The workshop consisted of three groups under the themes of the following fields; 1) Neutron Activation Analysis, 2) Research Reactor Technology and 3) Tc-99m Generator Technology. The total number of participants for the workshop was 49 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. 17 reports by NAA, 11 reports by RRT, and 15 reports by TCG were presented. This report consists of 5 Papers of those reports from Tc-99m Generator Technology and a summary report. All of these 5 papers are indexed individually. (J.P.N.)

  7. Proceedings of the FNCA 2003 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    The FNCA 2003 Workshop on the Utilization of Research Reactors, which is the twelfth workshop on the theme of research reactor utilization, was held in Dalat, Vietnam and Jakarta and Serpong, Indonesia from January 12 to 16, 2004. This workshop was executed based on the agreement in the fourth Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2003. The workshop consisted of four groups under the theme of the following fields; 1) Neutron Activation Analysis, 2) Research Reactors, 3) Tc-99m Generator Technology and 4) Neutron Scattering. The total number of participants for the workshop was 93 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. The 30 of the presented papers are indexed individually. (J.P.N.)

  8. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  9. RB Research nuclear reactor, Annual report for 1994, I - III

    International Nuclear Information System (INIS)

    Report on RB reactor operation during 1994 contains 3 parts. Part one contains a brief description of the reactor, reactor operation and operational capabilities, reactor components, relevant dosimetry and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization as well as operation of the VAX-8250 computer

  10. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  11. Activity report on the utilization of research reactors. Japanese fiscal year, 2003

    International Nuclear Information System (INIS)

    During the fiscal year 2003, the Tokai Research Establishment research reactors carried out 8 cycles of joint use reactor operation at JRR-3 and 42 cycles at JRR-4. The research reactors are being utilized for various purposes including experimental studies such as neutron scattering, prompt gamma analysis, neutron radiography and medical irradiation (BNCT), and irradiation utilization such as neutron activation analysis of various samples, Irradiation Test of Reactor Materials and fission track. This volume contains 246 activity reports, which are categorized into the fields of neutron scattering (9 subcategories), neutron radiography, neutron activation analysis, reactor materials, prompt analysis, and others, submitted by the users in JAERI and from other organizations. (author)

  12. Training of operators in the Portuguese Research Reactor

    International Nuclear Information System (INIS)

    Full text: The Portuguese Research Reactor (RPI) is a pool-type 1 MW reactor designed by AMF Atomics and built during the period of 1959/61. Like in many other small and medium power research reactors, the continuation of its operation depends on four factors: active users, ageing of the installation, availability of fuel and, last but not least, ageing of the operating staff. Back in 1997 the RPI had only four licensed operators, with two of them close to retirement age. A new two-year training course was started in October 1997 with 13 candidates. Funding was granted from the Portuguese Science and Technology Foundation for the duration of the course. The trainees were selected among people with at least 12 years of school (high school diploma) and with technical courses in the areas of chemistry, mechanics or electronics. In addition to standard selection procedures, all candidates were subjected to psychological tests. It was decided from the beginning that the new operators would have a broader training than previously. On one hand the decrease in the number of support technicians has made it necessary for the operators to perform tasks which were not traditionally theirs and required specific training - e.g., preparation of samples to irradiate, maintenance of the control system, control of activity of water samples. On the other hand, the presence of an initially large number of trainees made it necessary to have a large number of well defined chores or guided work for small groups - this led to a 'natural' distribution and rotation of the trainees through all the activities in the reactor, including research activities. The course comprised a 1st semester of class lectures, followed by a written exam. In the 2nd semester there were several facility-walk through to specific systems - e.g. ventilation, control system, followed by specific chores or guided work in the systems. All trainees participated in the annual maintenance, which was longer than usual to

  13. Optimization of research reactor availability and reliability: Recommended practices

    International Nuclear Information System (INIS)

    For a select (and growing) population of research reactor organizations, an unplanned, forced, or otherwise inadvertent reactor shutdown or power reduction is a significant event - so significant that these organizations are willing to proactively invest resources to reduce these occurrences to a minimum. This report focuses on operation and maintenance programmes and best practices that have led to demonstrated performance improvements. The effort to develop the material relied on inputs from representatives of operating organizations with heavily utilized research reactors involved in activities that are highly sensitive to inadvertent automatic shutdowns, reductions in power, forced outages or unplanned outage extensions. The content of this report reflects efforts to achieve operational excellence. The relevance and importance of related safety and security programmes were repeatedly emphasized throughout the development of this report. The unanimous agreement from all involved is that fully developed and well implemented safety and security programmes, with all the relevant attributes including a well established safety culture and integral management system, among others, are an absolute prerequisite to optimize availability and reliability. Details about such programmes may be found in specifically referenced documents, as well as general references included in a bibliography. Other than these references, it is not the objective of this report to provide any recommendations, guidelines or practices aimed solely at improving facility safety. This report was developed over the course of two meetings in September 2006 and April 2007. Participants included operation and maintenance managers representing heavily utilized facilities with demonstrated operation and maintenance performance excellence. In these meetings a general outline was developed and then expanded to cover a range of programmes and activities that the participants identified as significant to

  14. Research on Power Ramp Testing Method for PWR Fuel Rod at Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to develop high performance fuel assembly for domestic nuclear power plant, it is necessary to master some fundamental test technology. So the research on the power ramp testing methods is proposed. A tentative power ramp test for short PWR fuel rod has been conducted at the heavy water research reactor (HWRR) in China Institute of Atomic Energy (CIAE) in May of 2001. The in-pile test rig was placed into the central channel of the reactor . The test rig consists of pressure pipe assembly, thimble, solid neutron absorbing screen and its driving parts, etc.. The test

  15. Research reactor operation, maintenance and utilization in Thailand

    International Nuclear Information System (INIS)

    Thai Research Reactor, TRR-1/Ml is currently operated at one meggawatt steady state power. It was first commissioned in 1962 as MTR swimming pool type research reactor, and the core was later changed to TRIGA Mark III. The new core has been operated since 1978. Current core configuration Core no.5, has totally 108 low-enriched-uranium (LEU) fuel elements of 8.5 wt% and 20 wt% a mixed core. It is light water cooled and moderated with end graphite and radial water reflected. Fuel meat consists of homogeneous mixture of U-ZrH1.6 alloy which provides built-in negative temperature coefficient. Since 1978, The TRIGA core has generated energy cumulatively of 358.18 MWD thermal, as of 30 September 1986. There are six major groups of facilities; four for neutron activation analysis (NAA), one for isotope production, and a group of beam tubes. The average utilization time of these facilities varies from 0 per cent to 98 per cent. Two main utilization are NAA and radioisotope production. (author)

  16. IAEA Assistance in the development of new research reactor projects

    International Nuclear Information System (INIS)

    A research reactor (RR) project is a major undertaking that requires careful preparation, planning, implementation and investment in time, money, and human resources. In recent years, the interest of IAEA Member States in developing RR programmes has grown significantly, and currently, several Member States are in different stages of new RR projects. The majority of these countries are building their first RR as a key national facility for the development of their nuclear science and technology programmes, including nuclear power. In order to support Member States in such efforts, the IAEA in 2012 published the Nuclear Energy Series Report No. NP-T-5.1 on Specific Considerations and Milestones for a Research Reactor Project. To provide further support, the IAEA also published a document to assist Member States in the preparation of the bid invitation specification for the purchase of a RR. The IAEA will also continue to provide assistance for human resources development of the Member States establishing their first RR, and to facilitate sharing experience and knowledge among Member States through its programmatic activities including expert mission services, technical meetings, training courses and workshops addressing relevant technical and safety topics. This paper presents the IAEA assistance and services provided to the Member States considering new RRs, with particular emphasis on those establishing their first RR, including elaboration on the services mentioned above.

  17. Innovation and research in reactor safety. Pt. 2

    International Nuclear Information System (INIS)

    The second part of this article contains the continued survey of the advanced development of measures of engineered safeguards and facilities for accident management, referring in greater detail to digital safety and instrumentation and control systems, studies carried out at national research centers, and new facilities. Another topic considered in a separate chapter is the mitigation of the consequences of severe accidents. Irrespective of numerous improvements in accident prevention, reactor safety research in the past decade was characterized by its concentration on severe accidents. The objective of restricting the consequences of hypothetical severe accidents to the plant building was approached in mitigating emergency measures developed and, in some part, also implemented. In addition, analytical methods in the field of severe accidents were expanded, and technologies were developed and validated which seek to stabilize the core melt and to control the phenomena associated with core meltdown. On the whole, light water reactors incorporating the innovations mentioned above attain a safety level which, combined with corresponding efforts in the economic sector, is a prerequisite of the renaissance of nuclear technology in the beginning century. (orig.)

  18. IAEA Assistance in the development of new research reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Borio di Tigliole, Andrea; Bradley, Ed; Zhukova, Anastasia; Adelfang, Pablo [International Atomic Energy Agency, Research Reactor Section, Vienna (Austria); Shokr, Amgad [International Atomic Energy Agency, Research Reactor Safety Section, Vienna (Austria); Ridikas, Danas [International Atomic Energy Agency, Physics Section, Vienna (Austria)

    2015-08-15

    A research reactor (RR) project is a major undertaking that requires careful preparation, planning, implementation and investment in time, money, and human resources. In recent years, the interest of IAEA Member States in developing RR programmes has grown significantly, and currently, several Member States are in different stages of new RR projects. The majority of these countries are building their first RR as a key national facility for the development of their nuclear science and technology programmes, including nuclear power. In order to support Member States in such efforts, the IAEA in 2012 published the Nuclear Energy Series Report No. NP-T-5.1 on Specific Considerations and Milestones for a Research Reactor Project. To provide further support, the IAEA also published a document to assist Member States in the preparation of the bid invitation specification for the purchase of a RR. The IAEA will also continue to provide assistance for human resources development of the Member States establishing their first RR, and to facilitate sharing experience and knowledge among Member States through its programmatic activities including expert mission services, technical meetings, training courses and workshops addressing relevant technical and safety topics. This paper presents the IAEA assistance and services provided to the Member States considering new RRs, with particular emphasis on those establishing their first RR, including elaboration on the services mentioned above.

  19. Implications of the Fukushima Accident on Research Reactor Safety

    International Nuclear Information System (INIS)

    Preliminary findings of Fukushima accident show that there is no evidence of major human errors as in previous accidents in the nuclear power industry, namely, Three Mile Island (USA) and Chernobyl (Soviet Union), and that the initiating event, a natural catastrophe of extraordinary magnitude, caused a long term loss of the normal power supply producing the failure of each defence-in depth barriers with the final release of radioactive material to the atmosphere. It is worth noticing that the direct damage caused in Japan by the earthquake and tsunami far exceeded any damage caused by the accident at the nuclear plant. In the light of this event the question whether safety systems of research reactors will cope with this type of scenarios arises. The objective of this works is to present an overview of the current practice commonly used in the safety analysis in research reactors and to assess the capability to mitigate conditions from a beyond-design-basis event like the one occurred at Fukushima power plant. (author)

  20. Analysis of Nigeria research reactor-1 thermal power calibration methods

    Energy Technology Data Exchange (ETDEWEB)

    Agbo, Sunday Arome; Ahmed, Yusuf Aminu; Ewa, Ita Okon; Jibrin, Yahaya [Ahmadu Bello University, Zaria (Nigeria)

    2016-06-15

    This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  1. IGORR-IV - Proceedings of the fourth meeting of the International Group on Research Reactors

    International Nuclear Information System (INIS)

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results

  2. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K.F. [comp.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  3. Decontamination of Belarus research reactor installation by strippable coatings

    International Nuclear Information System (INIS)

    The goal of this study was to develop new strippable coatings using water-based solutions of polyvinyl alcohol and active additives for decontamination of research reactor equipment. The employment of strippable coatings makes it possible to minimize the quantity of liquid radioactive waste. The selection of strippable decontaminating coatings was carried out on the basis of general requirements to decontaminating solutions: successfully dissolve corrosion deposits; ensure the desorption of radionuclides from the surfaces and the absence of resorption; introduce minimal corrosion effect of construction materials; to be relatively cheap and available in reagents. The decontaminating ability and adhesion properties of these coatings depending on metal and deposit sorts were investigated. Research on the chemical stability of solid wastes was carried out. The data obtained were the base for recommendations on waste management procedure for used films and pastes. A full-scale case-study analysis was performed for comparing strippable coatings with decontaminating solutions. (author)

  4. Analysis of tritium production in TRIGA Mark II reactor at JSI for the needs of fusion research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jazbec, Anze; Zerovnik, Gasper; Snoj, Luka; Trkov, Andrej [Jozef Stefan Institute, Ljubljana (Slovenia)

    2013-12-15

    In future, electricity could be produced in fusion power plants. One of the steps towards development of fusion power plants is the construction of an experimental fusion reactor ITER where deuterium (D) and tritium (T) will be fused and energy will be released. As natural concentrations of T are extremely low, the T as fusion fuel will have to be produced artificially. A series of calculations were made to investigate the possibility of producing small quantities of T for experimental fusion reactors such as JET and ITER in a small research reactor like the TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). The T production is the largest if all irradiation channels in reactor's reflector are filled with LiAlO{sub 2} samples. When samples are inserted, the excess reactivity decreases by around 200 pcm. In the second part of the work an estimate was made of how long the reactor can operate with current fuel supplies. Calculations were made with the TRIGLAV computer code. TRIGA can operate at full power for at least 2,860 days, during which 152 mg of T could be produced. We conclude that small TRIGA reactors can not produce any significant quantities of T for the needs of the future experimental fusion reactors. (orig.)

  5. Analysis of tritium production in TRIGA Mark II reactor at JSI for the needs of fusion research reactors

    International Nuclear Information System (INIS)

    In future, electricity could be produced in fusion power plants. One of the steps towards development of fusion power plants is the construction of an experimental fusion reactor ITER where deuterium (D) and tritium (T) will be fused and energy will be released. As natural concentrations of T are extremely low, the T as fusion fuel will have to be produced artificially. A series of calculations were made to investigate the possibility of producing small quantities of T for experimental fusion reactors such as JET and ITER in a small research reactor like the TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). The T production is the largest if all irradiation channels in reactor's reflector are filled with LiAlO2 samples. When samples are inserted, the excess reactivity decreases by around 200 pcm. In the second part of the work an estimate was made of how long the reactor can operate with current fuel supplies. Calculations were made with the TRIGLAV computer code. TRIGA can operate at full power for at least 2,860 days, during which 152 mg of T could be produced. We conclude that small TRIGA reactors can not produce any significant quantities of T for the needs of the future experimental fusion reactors. (orig.)

  6. The Research Reactor IRT-Sofia: 50 Years after First Criticality

    International Nuclear Information System (INIS)

    The design features of the research reactor IRT-2000 in Sofia and accumulated experience in the past prior to the partial dismantling of obsolete reactor systems are outlined. The present status of the ongoing refurbishment to a low power reactor IRT-200 and its planned utilization are briefly described. (author)

  7. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  8. The RERTR [Reduced Enrichment Research and Test Reactor] program:

    International Nuclear Information System (INIS)

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) program is described. After a brief summary of the results which the RERTR program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results and new developments which ocurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U3Si2-Al and U3Si-Al fuels was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U3Si2-Al fuel at 4.8 g U/cm3 was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40 % average burnup. Good progress was made in the area of LEU usage for the production of fission 99Mo, and in the coordination of safety evaluations related to LEU conversions of U.S. university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U3Si-Al with 19.75 % enrichment and U3Si2-Al with 45 % enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR program. (Author)

  9. An assessment of the radiological consequences of accidents in research reactors

    International Nuclear Information System (INIS)

    This work analyses the radiological consequences of accidents in two types of research reactors: a 5 MWt open pool reactor and a 50 MWt PWR reactor. Two siting cases have been considered: the reactor located near to a large population center and sited in a rural area. The influence of several factors such as source term, meteorological conditions and population distribution have been considered in the present analysis. (author)

  10. 40 years of neutron research at the WWR-M reactor

    International Nuclear Information System (INIS)

    Proceeding contain materials of the jubilee scientific conference '40 years of neutron research at the WWR-M reactor' which took place in the Scientific Center 'Institute for Nuclear Research' of the National Academy of Sciences of Ukraine. General results of scientific researches and technical activities in fields nuclear physics, reactor radiation material science, neutron studies of condensed matter, radiation physics of semiconductors, radiobiology, radionuclide production of during of the reactor operation period are presented

  11. International Centers of Excellence based on Research Reactors

    International Nuclear Information System (INIS)

    A number of high flux research reactors were, or will be constructed. Each of these high flux facilities has the potential to be an important regional or International Centre of Excellence based on Research Reactors (ICERR) and scientific hub for research and materials investigations. Some are so organized currently, but for many there is a strongly national focus and scope for a significant expansion of their international role. There are manifold benefits of an expanded international role both for the ICERR's themselves and for the institutes that affiliate with them. These benefits include increased utilization and financial stability, increased international prestige, and enhanced scientific resources and capabilities. There are significant hurdles to obtaining the benefits from an expanded international role. For example, to achieve its full potential an ICERR must accommodate scientists from other nations, and include the plans and aspirations of the international community in the ICERR governance. The ICERR must also fully meet the national responsibilities for safety and security. Balancing these potentially conflicting requirements and finding a path through the organisational and legal issues is a significant challenge for any institute. The existing ICERR's therefore provide important case studies and examples of best practice that could inform the actions of other potential ICERR's. This paper describes an IAEA initiative to encourage and support the formation of new ICERR's, strengthen existing ones, and increase training resources available to Member States. The initiative will seek to share best practice and facilitate meetings and technical exchanges between the existing and potential ICERRs, and between the potential ICERR's and potential subscribing or affiliating institutes. (authors)

  12. International centres of excellence based on research reactors

    International Nuclear Information System (INIS)

    A number of high flux research reactors were, or will be constructed. Each of these high flux facilities has the potential to be an important regional or International Centre of Excellence based on Research Reactors (ICERR) and scientific hub for research and materials investigations. Some are so organized currently, but for many there is a strongly national focus and scope for a significant expansion of their international role. There are manifold benefits of an expanded international role both for the ICERR's themselves and for the institutes that affiliate with them. These benefits include increased utilization and financial stability, increased international prestige, and enhanced scientific resources and capabilities. There are significant hurdles to obtaining the benefits from an expanded international role. For example, to achieve its full potential an ICERR must accommodate scientists from other nations, and include the plans and aspirations of the international community in the ICERR governance. The ICERR must also fully meet the national responsibilities for safety and security. Balancing these potentially conflicting requirements and finding a path through the organisational and legal issues is a significant challenge for any institute. The existing ICERR's therefore provide important case studies and examples of best practice that could inform the actions of other potential ICERR's. This paper describes an IAEA initiative to encourage and support the formation of new ICERR's, strengthen existing ones, and increase training resources available to Member States. The initiative will seek to share best practice and facilitate meetings and technical exchanges between the existing and potential ICERRs, and between the potential ICERR's and potential subscribing or affiliating institutes. (orig.)

  13. nuclear emergency management system case study:- Egypt's second research reactor

    International Nuclear Information System (INIS)

    the response to a radiological accident is basically the same as the response to any accident involving hazardous material. provisions should be developed to identify potential radiological hazard and inform the public and emergency workers of the action they should take. radiological emergency plans provide an efficient and effective response operation that, should an emergency occur, will protect the health and safety of workers, responders, the public, and the environment . one of the most important aspects of managing a nuclear emergency is the ability to promptly and adequately estimate the consequences of an accident. because of the need for protective actions to be initiated promptly in order to be effective, nuclear accident assessment must make use of all information that is available to on-site and of - site organizations. the work done in this paper describes the overall organization, including its relationship to the overall structure, and responsibility of all internal organizational elements with emergency responsibilities, practical guidance and tools for accident assessment and a basic assessment capability needed in the event of a serious reactor accident.An emergency management intelligent system (EMIS) is developed to provide assistance in the situation of radiological accident. The EMIS can be applied to a broad spectrum of accidents at Egypt's second research reactor. Complete data analysis is given in case of loss of coolant accident (LOCA) including dose assessment for the public

  14. A research reactor simulator for operators training and teaching

    International Nuclear Information System (INIS)

    This work describes a training simulator of Research Reactors (RR). The simulator is an interactive tool for teaching and operator training of the bases of the RR operation, reactor physics and thermal hydraulics. The Brazilian IEA-R1 RR was taken as the reference (default configuration). The implementation of the simulator consists of the modeling of the process and system (neutronics, thermal hydraulics), its numerical solution, and the implementation of the man-machine interface through visual interactive screens. The point kinetics model was used for the nuclear process and the heat and mass conservation models were used for the thermal hydraulic feed back in the average core channel. The heat exchanger and cooling tower were also modeled. The main systems were: the reactivity control system, including the automatic control, and the primary and secondary coolant systems. The Visual C++ was used to codes and graphics lay-outs. The simulator is to be used in a PC with Windows XP system. The simulator allows simulation in real time of start up, power maneuver, and shut down. (authors)

  15. Radiation protection programme of the Ghana Research Reactor (GHARR-1)

    International Nuclear Information System (INIS)

    The Radiation Protection Programme is generally based on a prior risk assessment in which the locations and magnitudes of all radiation hazards are taken into account. This work has shown that the Ghana Research Reactor-1 which is a Miniature Neutron Source Reactor has ensured both technical and administrative protocols for an effective radiation protection programme. The key principle that has aided the technical inherent safety is the defence in depth and the adoption of multiple barriers for prevention of the escape of radioactive materials into the environment. Administrative procedures established include the classification of working areas and access control; local rules and supervision of work; monitoring of individuals and the workplace; work planning and work permits; application of the principle of optimization of protection; removal or reduction in intensity of sources of radiation, health surveillance and training. The MNSR passed various rigorous tests as the required quality assurance and control was adhered to. The control systems are in accordance with the Chinese national standards and guidelines and are compatible with those of IEC, IEEE and IAEA. (author)

  16. Numerical simulation research on flow field in reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huaqi, Li [Key laboratory, (China)

    2009-07-01

    In this paper, some CFD examples completed by our lab. are introduced. Those examples include integral reactor core and single component flow field, also include transient and steady state. The geometry of computational domain for each example has been made by 3-D commercial software, such as UG and Pro/E. Some parts or components in the test model are removed, after the sensitivity analysis of those structures has been completed. The mesh is obtained by ICEM code, which can be single integral block or several separate blocks conbined after. All numerical simulation researches focus our analysis on the hydraulic characteristics including the flow resistant, the flow distribution and the mixing trail. In the end, the flow field in integral reactor core is taken as the special topic. The computation of the flow field has been carried out according to the test operation flow rate. Computational results has been compared with the corresponding test results. The relative error between computation and test is less than 6%. The computation results can be used to illustrate the influence on the flow distribution at core inlet by the lower supporting plate and other structures in lower plenum.

  17. Fast Shutdown System tests in the Georgia Tech Research Reactor

    International Nuclear Information System (INIS)

    The Fast Shutdown System (FSS) is a new safety system design concept being considered for in installation in the Savannah River (SRS) production reactors. This system is expected to mitigate the consequences of a Design Basis Loss of Coolant Accident, and therefore allow higher operational power levels. A test of this system in the Georgia Tech Research Reactor is proposed to demonstrate the efficacy of this concept. Three tests will be conducted at full power (5MW) and one at low power (100kw). Two full power tests will be conducted with the FSS rod backfilled with one (1) atmosphere of He-4, and one with the rod evacuated. The low power conducted with the FSS rod evacuated. Neutron flux and pressure data will be collected with an independent data acquisition system (DAS). Safety issues associated with the performance of the Fast Shutdown System experiments are addressed in this report. The credible accident scenarios were analyzed using worst case scenarios to demonstrate that no significant nuclear or personnel safety hazards would result from the performance of the proposed experiments

  18. The educational role of a large research reactor

    International Nuclear Information System (INIS)

    Nuclear engineering is a discipline that has special conditions, not common, in general, to most other engineering disciplines, with the exception of aerospace/aeronautical engineering. The conditions demanded by quality assurance, procedural control, certified training, documentation, and reporting expose the nuclear engineering profession to demands that were unheard of two decades ago. These requirements strike with a cruel shock to the dedicated, ambitious, and imaginative new graduate just entering the nuclear industry. Yet, it is essential that the recent graduate accept and work effectively and efficiently within these constraints, which were developed to assure as close to absolute safety for out industry as is possible with reasonable rules and regulations. Compliance with the institutional and regulatory issues is a demanding aspect of the nuclear engineering profession. Today's demands on exactness and reliability in nuclear engineering may be tomorrow's demands on all the other engineering professions. Consequently, at the Columbia campus of the University of Missouri, student training benefits from the fact that our research reactor operates as a round-the-clock production facility, with tight and exacting controls. The one-semester graduate laboratory course is designed to permit the students to learn as much as possible about the true realities of a regulated nuclear engineering and science industry, concentrating on the meaningful analyses and measurements that are a routine part of normal reactor operations

  19. Antineutrino emission and gamma background characteristics from a thermal research reactor

    CERN Document Server

    Bui, V M; Fallot, M; Communeau, V; Cormon, S; Estienne, M; Lenoir, M; Peuvrel, N; Shiba, T; Cucoanes, A S; Elnimr, M; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Thiolliere, N; Yermia, F; Zakari-Issoufou, A -A

    2016-01-01

    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\\% enrichment in $^{235}$U. In addition, the required off-equilibrium correction...

  20. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L.; Diamond, D.; Xu, J.; Carew, J.; Rorer, D.

    2004-03-31

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the

  1. 75 FR 57080 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-09-17

    ... which authorizes the possession, use, and operation of the Aerotest Radiography and Research Reactor... COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order... Regulations (10 CFR) Section 50.21(c) for research and development purposes. Aerotest is a wholly...

  2. Research Reactors - An analysis with a focus on non-proliferation and export control

    International Nuclear Information System (INIS)

    The Swedish Defence Research Agency, FOI, has under contract work financed by the Swedish Radiation Safety Authority, performed a study on research reactors. The principle of a research reactor and its characteristics and uses are described in this report. The potential use of research reactors for plutonium production for nuclear weapons is also described and the parameters of importance for optimal plutonium production are identified. Research reactors, mainly heavy water or graphite moderated reactors, have been used by some countries to produce weapon-grade plutonium. To prevent nuclear weapons proliferation, the Nuclear Suppliers' Group has identified nuclear reactor equipment and technology that is of importance to export control. This equipment and technology has also been implemented in the EU-regulation 428/2009. The equipment and technology that can be used in nuclear reactor applications and possible indicators on a nuclear reactor in operation is described in the report. The differences between a power reactor and a research reactor concerning these areas are high-lighted

  3. Research reactor instrumentation and control technology. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    The majority of research reactors operating today were put into operation 20 years ago, and some of them underwent modifications, upgrading and refurbishing since their construction to meet the requirements for higher neutron fluxes. However, a few of these ageing research reactors are still operating with their original instrumentation and control systems (I and C) which are important for reactor safety to guard against abnormal occurrences and reactor control involving startup, shutdown and power regulation. Worn and obsolete I and C systems cause operational problems as well as difficulties in obtaining replacement parts. In addition, satisfying the stringent safety conditions laid out by the nuclear regulatory bodies requires the modernization of research reactors I and C systems and integration of additional instrumentation units to the reactor. In order to clarify these issues and to provide some guidance to reactor operators on state-of-art technology and future trends for the I and C systems for research reactors, a Technical Committee Meeting on Technology and Trends for Research Reactor Instrumentation and Controls was held in Ljubljana, Slovenia, from 4 to 8 December 1995. This publication summarizes the discussions and recommendations resulting from that meeting. This is expected to benefit the research reactor operators planning I and C improvements. Refs, figs, tabs

  4. Status of research reactors in China. Their utilization and safety upgrading

    International Nuclear Information System (INIS)

    The main research reactors in China basically consist of several old reactors including HWRR, HFETR, SPR, MJTR and MNSR. Except the last one, all the other reactors operate at a high power density and represent themselves as main tools in China for engineering testing, radioactive isotope production, and neutron scattering research. The research and production activities by these reactors are briefed. Main equipment and research topics for neutron scattering are described. The production of radioisotope is summarized. Safety upgrading activities in recent years taken by these old reactors are described, which make the safety feature of each reactor significantly improved and on the whole more close to (even not completely consistent) with the targets set by the modern safety regulation. Since a new multi-purpose research reactor CARR is expected available around the year of 2005, a schedule about the construction of new reactor, reforming or decommissioning of old reactors and smoothly transition of research and production activities from old to new reactor during the coming years has been under careful planning. A suggestion of potential international cooperation items has been preliminarily given. (author)

  5. Innovative research reactor core designed. Estimation and analysis of gamma heating distribution

    International Nuclear Information System (INIS)

    The Gamma heating value is an important factor needed for safety analysis of each experiments that will be realized on research reactor core. Gamma heat is internal heat source occurs in each irradiation facilities or any material irradiated in reactor core. This value should be determined correctly because of the safety related problems. The gamma heating value is in general depend on. reactor core characteristics, different one and other, and then each new reactor design should be completed by gamma heating data. The Innovative Research Reactor is one of the new reactor design that should be completed with any safety data, including the gamma heating value. For this reasons, calculation and analysis of gamma heating in the hole of reactor core and irradiation facilities in reflector had been done by using of modified and validated Gamset computer code. The result shown that gamma heating value of 11.75 W/g is the highest value at the center of reactor core, higher than gamma heating value of RSG-GAS. However, placement of all irradiation facilities in reflector show that safety characteristics for irradiation facilities of innovative research reactor more better than RSG-GAS reactor. Regarding the results obtained, and based on placement of irradiation facilities in reflector, can be concluded that innovative research reactor more safe for any irradiation used. (author)

  6. The applications of research reactors. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    Owners and operators of many research reactors are finding that their facilities are not being utilized as fully as they might wish. Perhaps the original mission of the reactor has been accomplished or a particular analysis is now performed better in other ways. In addition, the fact that a research reactor exists and is available does not guarantee that users will come seeking to take advantage of the facility. Therefore, many research reactor owners and operators recognize that there is a need to develop a strategic plan for long term sustainability, including the 'marketing' of their facilities. An important first element in writing a strategic plan is to evaluate the current and potential capabilities of the reactor. The purpose of this document is to assist in such an evaluation by providing some factual and advisory information with respect to all of the current applications of research reactors. By reference to this text, each facility owner and operator will be able to assess whether or not a new application is feasible with the reactor, and what will be required to develop capability in that application. Applications fall into four broad categories: human resource development, irradiations, extracted beam work and testing. The human resource category includes public information, training and education and can be accomplished by any reactor. Irradiation applications involves inserting material into the reactor to induce radioactivity for analytical purposes, to produce radioisotopes or to induce radiation damage effects. Almost all reactors can be utilized for some irradiation applications, but as the reactor flux gets higher the range of potential uses gets larger. Beam work usually includes using neutron beams outside of the reactor for a variety of analytical purposes. Because of the magnitude of the fluxes needed at some distance from the core, most beam work can only be performed by the intermediate and higher powered research reactors. Testing nuclear

  7. Ageing investigation and upgrading of components/systems of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip; Widi Setiawan [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia)

    1998-10-01

    Kartini research reactor has been operated in good condition and has demonstrated successful operation for the past 18 years, utilized for: reactor kinetic and control studies, instrumentation tests, neutronic and thermohydraulic studies, routine neutron activation analysis, reactor safety studies, training for research reactor operators and supervisors, and reactor physics experiments. Several components of Kartini reactor use components from the abandoned IRT-2000 Project at Serpong and from Bandung Reactor Centre such as: reactor tank, reactor core, heat exchanger, motor blower for ventilation system, fuel elements, etc. To maintain a good operating performance and also for aging investigation purposes, the component failure data collection has been done. The method used is based on the Manual on Reliability Data Collection For Research Reactor PSAs, IAEA TECDOC 636, and analyzed by using Data Entry System (DES) computer code. Analysis result shows that the components/systems failure rate of Kartini reactor is around 1,5.10{sup -4} up to 2,8.10{sup -4} per hour, these values are within the ranges of the values indicated in IAEA TECDOC 478. Whereas from the analysis of irradiation history shows that the neutron fluence of fuel element with highest burn-up (2,05 gram U-235 in average) is around 1.04.10{sup 16} n Cm{sup -2} and this value is still far below its limiting value. Some reactor components/systems have been replaced and upgraded such as heat exchanger, instrumentation and control system (ICS), etc. The new reactor ICS was installed in 1994 which is designed as a distributed structure by using microprocessor based systems and bus system technology. The characteristic and operating performance of the new reactor ICS, as well as the operation history and improvement of the Kartini research reactor is presented. (J.P.N.)

  8. The neutron texture diffractometer at the China Advanced Research Reactor

    Science.gov (United States)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  9. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  10. Sodium fast reactor fuels and materials : research needs.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  11. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  12. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  13. Spent fuel management options for research reactors in Latin America

    International Nuclear Information System (INIS)

    Research reactors (RRs) have been operated in Latin America since the late 1950s, and a total of 23 RRs have been built in the region. At the time of writing (November 2005), 18 RRs are in operation, 4 have been shut down and 1 has been decommissioned. The number of operating RRs in Latin America represents around 6% of the existing operational RRs worldwide and around 21% of the RRs operating in developing countries. Common to all RRs in the region is a consistent record of safe and successful operation. With the purpose of carrying out a collaborative study of different aspects of the management of spent fuel from RRs, some countries from the region proposed to the IAEA in 2000 the organization of a Regional Project. The project (IAEA TC Regional Project RLA/4/018) that was approved for the biennium 2001-2002 and extended for 2003-2004 included the participation of Argentina, Brazil, Chile, Mexico and Peru. The main objectives of this project were: (a) to define the basic conditions for a regional strategy for managing spent fuel that will provide solutions compatible with the economic and technological realities of the countries involved; and (b) to determine what is needed for the temporary wet and dry storage of spent fuel from the research reactors in the countries of the Latin American region that participated in the project. This TECDOC is based on the results of TC Regional Project RLA/4/018. This project was successful in identifying and assessing a number of viable alternatives for RRSF management in the Latin American region. Options for operational and interim storage, spent fuel conditioning and final disposal have been carefully considered. This report presents the views of Latin American experts on RR spent fuel management and will be useful as reference material for the Latin American RR community, decision making authorities in the region and the public in general

  14. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  15. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  16. Project Experiences in Research Reactor Ageing Management, Modernization and Refurbishment. Report of a Technical Meeting on Research Reactor Ageing Management, Modernization and Refurbishment

    International Nuclear Information System (INIS)

    Research reactors have played an important role in several scientific fields for around 60 years: in the development of nuclear science and technology; in the valuable generation of radioisotopes for various applications; and in the development of human resources and skills. Moreover, research reactors have been effectively utilized to support sustainable development in more than 60 countries worldwide. More than half of all operating research reactors are now over 40 years old, with many exceeding their originally conceived design life. The majority of operating research reactors face challenges due to the negative impacts of component and system ageing, which manifest in a number of forms. This situation was highlighted by a serious medical isotope supply crisis which peaked in mid-2010, when several major producing reactors underwent prolonged shutdowns due to extensive necessary overhauls of various systems. Several facilities have established a proactive systematic approach to managing ageing or mitigating its impact on safety and availability of isotopes. Others have tried to prevent or remedy the drawbacks of ageing on a case by case basis. Overall, a large body of knowledge related to ageing issues exists in many Member States. Collecting and sharing this information within the research reactor community can provide a solid foundation to develop a more systematic approach — that is, an ageing management programme to prevent negative consequences of ageing on the safety, and the operability and lifetime of operating, or even future, reactors. It may also help organizations to manage research reactors that have been in an extended shutdown state by ensuring that any required systems are operated and maintained in a safe manner prior to final decommissioning and disposal of fuel to safe storage facilities. Sharing experiences from projects undertaken to refurbish or replace equipment and systems, satisfy safety and regulatory requirements, improve

  17. Training and teaching with SILOETTE reactor and associated simulators at the Nuclear Research Centre of Grenoble

    International Nuclear Information System (INIS)

    Thanks to its three reactors SILOE (35 MW), MELUSINE (8 MW) and SILOETTE (100 KW), the Reactor Department of the Nuclear Research Centre of Grenoble has gained a considerable experience in the operation and utilization of research and material testing reactors. Inside of this general framework, the Reactor Department of Grenoble has built up a training and teaching centre that has been permanently active since 1975, with the aim of satisfying the considerable needs arising from the development of electro-nuclear power stations. The course is mainly intended for engineers and technicians who will be responsible for running power stations. A thorough series of practical exercices, carried out in the SILOETTE training reactor and in a PWR or in a Gas Cooled Reactor Simulator, desmonstrates the application of the theorical courses and familiarises the trainees with the behaviour of reactors and power stations

  18. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    Carew, J.; Hanson, A.; Xu, J.; Rorer, D.; Diamond, D.

    2003-08-26

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional MCNP Monte Carlo neutron and photon transport calculations were performed to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model including the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated

  19. Sodium Fast Reactor Safety and Licensing Research Plan

    International Nuclear Information System (INIS)

    This paper summarizes potential research priorities for the US Department of Energy (DOE) with the intent of improving the licensability of the sodium cooled fast reactor (SFR). In support of this project, five panels were tasked with identifying potential safety related gaps in the available information, data and models needed to support the licensing of an SFR. The areas examined were sodium technology; accident sequences and initiators; source term characterization, codes and methods; and fuels and materials. It is the intent of this paper to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the applied technology access control designation from old documents. The second cross-cutting gap is the need for a robust knowledge management and preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with applied technology and knowledge management. (author)

  20. Sodium fast reactor safety and licensing research plan. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  1. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  2. On Line Measurement of Reactivity Worth of TRIGA Mark-II Research Reactor Control Rods

    OpenAIRE

    Nusrat Jahan; Mamunur M. Rashid; F. Ahmed; M. G. S. Islam; M. Aliuzzaman; Islam, S.M.A

    2011-01-01

    The reactivity worth measurement system for control rods of the TRIGA MARK-II research reactor of Bangladesh has been design and developed. The theory of the kinetic technique of measuring reactivity has been used by this measurement system. The system comprises of indigenous hardware and software for online acquisition of neutron flux signals from reactor console and then computes the reactivity worth accordingly. Here for the TRIGA MARK-II research reactor, the reactivity measurement system...

  3. Project RA Research nuclear reactor - Annual report 1993 with comparative review for the period 1991 - 1993

    International Nuclear Information System (INIS)

    Research reactor RA Annual report for year 1993 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. The ninth separate annex deals with the feasibility of RA reactor applications. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data

  4. Safety Research Experiment Facility Project. Conceptual design report. Volume VII. Reactor cooling

    International Nuclear Information System (INIS)

    The Reactor Cooling System (RCS) will provide the required cooling during test operations of the Safety Research Experiment Facility (SAREF) reactor. The RCS transfers the reactor energy generated in the core to a closed-loop water storage system located completely inside the reactor containment building. After the reactor core has cooled to a safe level, the stored heat is rejected through intermediate heat exchangers to a common forced-draft evaporative cooling tower. The RCS is comprised of three independent cooling loops of which any two can remove sufficient heat from the core to prevent structural damage to the system components

  5. International conference on research reactor utilization, safety, decommissioning, fuel and waste management. Extended synopses

    International Nuclear Information System (INIS)

    For more than 50 years research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines as well as to the educational and research programmes of about 70 countries world wide. About 675 research reactors have been built to date, of which some 278 are now operating in 59 countries (86 of them in 38 developing Member States). Altogether over 13,000 reactor-years of cumulative operational experience has been gained during this remarkable period. The objective of this conference was to foster the exchange of information on current research reactor concerns related to safety, operation, utilization, decommissioning and to provide a forum for reactor operators, designers, managers, users and regulators to share experience, exchange opinions and to discuss options and priorities. The topical areas covered were: a) Utilization, including New trends and directions for utilization of research reactors; Effective management of research reactors and associated facilities; Engineering considerations and experience related to refurbishment and modifications; Strategic planning and marketing; Classical applications (nuclear activation analysis, isotope production, neutron beam applications, industrial irradiations, medical applications); Training for operators; Educational programmes using a reactor; Current developments in design and fabrication of experimental facilities; Irradiation facilities; Projects for regional uses of facilities; Core management and calculation tools; Future trends for reactors; Use of simulators for training and educational programmes. b) Safety, including Experience with the preparation and Review of Safety Analysis Reports; Human factors in safety analysis; Management of extended shutdown periods; Modifications: safety analysis, regulatory aspects, commissioning programmes; Engineering safety features; Safety culture; Safety peer reviews and

  6. RA Research reactor Annual report 1981 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    The RA nuclear reactor stopped operation after March 1979 campaign due to appearance of aluminium oxyhydrates deposits on the surface of fuel element claddings. Relevant decisions of the Sanitary inspection body of the Ministry of health and the Director General of the 'Boris Kidric' Institute of nuclear sciences, Vinca, banned further reactor operation until reasons caused aluminium oxyhydrates deposition are investigated and removed to enable regular reactor operation. Until the end of 1979 and during 1980, after a series of analyses and findings that caused cease of reactor operation, all the preparatory actions needed for restart were performed. Due to the fact that there is no emergency cooling system and no appropriate filtering system at the reactor, and according to the new regulations about start up of nuclear facilities, the Sanitary inspection body made a decision about temporary licence for reactor start-up meaning performance of the 'zero experiment' limiting the operating power to 1% of the nominal power. Accordingly the reactor was restarted on January 21 1981. Criticality was reached with the core made of 80% enriched fuel elements only. After the experiment was finished by the end of March a permission was demanded for operation at higher power levels at full power. Taking into account the state of the reactor components the operating licence was issued limiting the power to 2 MW until reconstruction of the ventilation system and construction of the emergency cooling system are fulfilled. Program of testing operation started on September 15 1981 increasing gradually the operating power. Thus the reactor was operated at 2 MW power for 15 days during November and December. The total production achieved in 1981 was 1698 MWh. This enabled isotopes production at the reactor during last two months. Control and maintenance of the reactor components and systems was done regularly and efficiently within limits imposed by availability of spare parts. The

  7. An evaluation of control rod motion simulator of research reactor

    International Nuclear Information System (INIS)

    Motion simulator for rod control research reactor has been carried out using a servo motor. Reactor rod motion control at any point should be in the right position, one of the motors that can move in a precise and correct is the servo motor. To ensure that the servo motor to move in accordance with the desired program, then the servo motor function test should be carried out to ensure having good performance. Tests carried out on meshes stress disorder, the load is stable within a certain period and travel time safety control rod up and down, travel time regulating control rods up and down and travel time compensation control rods up and down. In testing the breakdown voltage V out nets at 24 V, 6.5 A with 12 Q load deviation obtained V0= V1 = 0.1% and 0.65% and for the stability of the load in a certain time deviation V = 0.7125% , next to the breakdown voltage V out nets at 12 V, 4.2 A with a 6 Q load deviation obtained V0= V1 = 0.275% and 1.158% for the stability of the load in a certain time deviation V = 1.463% and the net-voltage noise nets on V out 24 V, 4.5 A with 12 Q load deviation obtained V0 = V1 = 0.196% and 0.496% and for the stability of the load in a certain time deviation V = 0.3625%. While the travel time of a safety control rod up and down, up and down the regulator and compensation rise and fall showed a steady linear graph. The results show that the performance of the servo motor is very stable with the working area below the tolerance limit, it is 5% - 10%.(author)

  8. Update on the University of Missouri-Columbia Research Reactor Upgrade

    International Nuclear Information System (INIS)

    The University of Missouri-Columbia (MU) is in the process of upgrading the research and operational capabilities of the MU Research Reactor (MURR) and associated facilities. The plans include an expanded research building that will double the laboratory space, the addition of new research programs, instrumentation and equipment, a cold neutron source, and improved reactor systems. These enhancements, which are in various stages of completion, will greatly expand the present active multidisciplinary research programs at MURR

  9. Irradiation testing of miniature fuel plates for the RERTR program. [Reduced Enrichment Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Senn, R.L.; Martin, M.M.

    1981-07-01

    An irradiation test facility, which provides a test bed for irradiating a variety of miniature fuel plates (miniplates) for the Reduced Enrichment Research and Test Reactors (RERTR) program, has been placed into operation. These tests screen various candidate fuel materials on their suitability for replacing the highly enriched uranium fuel materials currently used by the world's test and research reactors with a lower enrichment fuel material, without significantly degrading reactor operating characteristics and power levels. The use of low uranium enrichment of about 20% /sup 235/U in place of highly enriched fuel for these reactors would reduce the potential for /sup 235/U diversion. The irradiation test facility, designated as HFED, is operating in core position E-7 in the Oak Ridge Research Reactor (ORR), a 30-MW water-moderated reactor. The miniplates will achieve burnups of up to approx. 2.2 x 10/sup 27/ fissions/m/sup 3/ of fuel.

  10. Implementation of a management system for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Aquino, Afonso Rodrigues de; Zouain, Desiree Moraes, E-mail: araquino@ipen.b, E-mail: dmzouain@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the requirements established by an IAEA draft technical document for the implementation of a management system for operating organisations of research reactors. The following aspects will be discussed: structure of IAEA draft technical document, management system requirements, processes common to all research reactors, aspects for the implementation of the management system, and a formula for grading the management system requirements. (author)

  11. Proceeding of the Seminar of Research Result of Multipurpose Reactor Center Year of 1997/1998

    International Nuclear Information System (INIS)

    The proceeding contained papers presented in seminar on research results of Multipurpose Reactor Center year 1997/1998 held on June 9-10, 1998 in Serpong, Indonesia. These papers are the significant result of research activities conducted in the Multipurpose Reactor Center, National Atomic Energy Agency during fiscal year of 1997/1998. There are 37 article which have separated index. (ID)

  12. 75 FR 39985 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-07-13

    ..., use and operation of the Aerotest Radiography and Research Reactor (ARRR) located in San Ramon... the Federal Register on May 14, 2010; 75 FR 27368. No hearing requests or written comments were... COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor);...

  13. Research and development for high temperature gas cooled reactor in Japan

    International Nuclear Information System (INIS)

    The paper describes the current status of High Temperature Gas Cooled Reactor research and development work in Japan, with emphasis on the Experimental Very High Temperature Reactor (Exp. VHTR) to be built by Japan Atomic Energy Research Institute (JAERI) before the end of 1985. The necessity of construction of Exp. VHTR was explained from the points of Japanese energy problems and resources

  14. Latest development on the disposal of Research Reactor Fuel and Triga Fuel elements

    International Nuclear Information System (INIS)

    The MTR spent nuclear fuel reprocessing by the UKAEA, the intermediate storage+direct disposal for research reactors, the research reactor spent nuclear fuel return to the U.S., shipments and ports of entry, management sites, fees, storage technologies, contracts, actual shipments, legal processes, and NUKEM activities are listed. (HSI)

  15. Status of reduced enrichment programs for research reactors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji; Nishihara, Hedeaki [Kyoto Univ., Osaka (Japan); Shirai, Eiji; Oyamada, Rokuro; Sanokawa, Konomo [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1997-08-01

    The reduced enrichment programs for the JRR-2, JRR-3, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI), and the KUR of Kyoto University Research Reactor Institute (KURRI) have been partially completed and are mostly still in progress under the Joint Study Programs with Argonne National Laboratory (ANL). The JMTR and JRR-2 have been already converted to use MEU aluminide fuels in 1986 and 1987, respectively. The operation of the upgraded JRR-3(JRR-3M) has started in March 1990 with the LEU aluminide fuels. Since May 1992, the two elements have been inserted in the KUR. The safety review application for the full core conversion to use LEU silicide in the JMTR was approved in February 1992 and the conversion has been done in January 1994. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until 2001. Since March 1994, Kyoto University is continuing negotiation with UKAEA Dounreay on spent fuel reprocessing and blending down of recovered uranium, in addition to that with USDOE.

  16. Status of reduced enrichment programs for research reactors in Japan

    International Nuclear Information System (INIS)

    The reduced enrichment programs for the JRR-2, JRR-3, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI), and the KUR of Kyoto University Research Reactor Institute (KURRI) have been partially completed and are mostly still in progress under the Joint Study Programs with Argonne National Laboratory (ANL). The JMTR and JRR-2 have been already converted to use MEU aluminide fuels in 1986 and 1987, respectively. The operation of the upgraded JRR-3(JRR-3M) has started in March 1990 with the LEU aluminide fuels. Since May 1992, the two elements have been inserted in the KUR. The safety review application for the full core conversion to use LEU silicide in the JMTR was approved in February 1992 and the conversion has been done in January 1994. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until 2001. Since March 1994, Kyoto University is continuing negotiation with UKAEA Dounreay on spent fuel reprocessing and blending down of recovered uranium, in addition to that with USDOE

  17. Design characteristics and requirements of irradiation holes for research reactor experimental facilities

    International Nuclear Information System (INIS)

    In order to be helpful for the design of a new research reactor with high performance, are summarized the applications of research reactors in various fields and the design characteristics of experimental facility such as vertical irradiation holes and beam tubes. Basic requirements of such experimental facilities are also described. Research reactor has been widely utilized in various fields such as industry, engineering, medicine, life science, environment etc., and now the application fields are gradually being expanded together with the development of technology. Looking into the research reactors which are recently constructed or in plan, it seems that to develop a multi-purpose research reactor with intensive neutron beam research capability has become tendency. In the layout of the experimental facilities, the number and configuration of irradiation and beam holes should be optimized to meet required test conditions such as neutron flux at the early design stage. But, basically high neutron flux is required to perform experiments efficiently. In this aspect, neutron flux is regarded as one of important parameters to judge the degree of research reactor performance. One of main information for a new research reactor design is utilization demands and requirements of experimental holes. So basic requirements which should be considered in a new research reactor design were summarized from the survey of experimental facilities characteristics of various research reactors with around 20 MW thermal power and the experiences of HANARO utilization. Also is suggested an example of the requirements of experimental holes such as size, number and neutron flux, which are thought as minimum, in a new research reactor for exporting to developing countries such as Vietnam

  18. Assessment methodology applicable to safe decommissioning of Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    The paper contains the results of research activity performed by CITON specialists regarding the assessment methodology intended to be applied to safe decommissioning of the research reactors, developed taking into account specific conditions of the Romanian VVR-S Research Reactor. The Romanian VVR-S Research Reactor is an old reactor (1957) and its Decommissioning Plan is under study. The main topics of paper are as follows: Safety approach of nuclear facilities decommissioning. Applicable safety principles; Main steps of the proposed assessment methodology; Generic content of Decommissioning Plan. Main decommissioning activities. Discussion about the proposed Decommissioning Plan for Romanian Research Reactor; Safety risks which may occur during decommissioning activities. Normal decommissioning operations. Fault conditions. Internal and external hazards; Typical development of a scenario. Features, Events and Processes List. Exposure pathways. Calculation methodology. (author)

  19. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  20. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN2 test, Source LH2-H2O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface

  1. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1988

    International Nuclear Information System (INIS)

    According to the action plan for 1988, operation of the RA reactor should have been restarted in October, but the operating license was not obtained. Control and maintenance of the reactor components was done regularly and efficiently dependent on the availability of the spare parts. The major difficulty was maintenance of the reactor instrumentation. Period of the reactor shutdown was used for repair of the heavy water pumps in the primary coolant loop. With the aim to ensure future safe and reliable reactor operation, action were started concerning renewal of the reactor instrumentation. Design project was done by the soviet company Atomenergoeksport. The contract for constructing this equipment was signed, and it is planned that the equipment will be delivered by the end of 1990. In order to increase the space for storage of the irradiated fuel elements and its more efficient usage, projects were started concerned with reconstruction of the existing fuel handling equipment, increase of the storage space and purification of the water in the fuel storage pools. These projects are scheduled to be finished in mid 1989. This report includes 8 annexes concerning reactor operation, activities of services and financial issues

  2. RA Research nuclear reactor, Part I - RA nuclear reactor operation, maintenance and utilization in 1984

    International Nuclear Information System (INIS)

    During the 1984 the reactor operation was limited by the temporary operating license issued by the Committee of Serbian ministry for health and social care. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. This temporary license has limited the reactor power to 2 MW from 1981. Operation of the primary cooling system was changed in order to avoid appearance of the previously noticed aluminium oxyhydrate on the surface of the fuel element claddings. The new cooling regime enabled more efficient heavy water purification. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. In order to enable future reliable operation of the RA reactor, according to new licensing regulations, during 1984, three major tasks are planned: building of the new emergency system, reconstruction of the existing ventilation system, and renewal of the reactor instrumentation. Financing of the planned activities will be partly covered by the IAEA. this Part I of the report includes 8 Annexes describing in detail the reactor operation, and 6 special papers dealing with the problems of reactor operation and utilization

  3. Proceedings of the 2001 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    The 2001 Workshop on the Utilization of Research Reactors, which is the tenth Workshop on the theme of research reactor utilization, was held in Beijing, China from November 5 to 9. This Workshop was executed based on the agreement in the Second Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2001. The Workshop consists of three groups under the themes of the following fields; 1) Neutron Scattering, 2) Tc Generator, and 3) Neutron Activation Analysis. The total number of participants for the Workshop was about 70 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam, and Japan. This report consists of 12 papers from the plenary session, 12 papers for Neutron Scattering, 13 papers for Tc Generator, 11 papers for Neutron Activation Analysis and a summary report. The 48 of the presented papers are indexed individually. (J.P.N.)

  4. Proceedings of the FNCA 2002 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    The FNCA 2002 Workshop on the Utilization of Research Reactors, which is the eleventh workshop on the theme of research reactor utilization, was held in Jakarta and Serpong, Indonesia from January 13 to 17. This workshop was executed based on the agreement in the third Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2002. The workshop consists of two groups under the theme of the following fields; 1) Tc-99m Generator Technology, 2) Neutron Activation Analysis. The total number of participants for the workshop was 88 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. This report consists of 8 papers from the plenary session, 10 papers for Tc-99m Generator, 10 Papers for Neutron Activation Analysis and a summary report. The 28 of the presented papers are indexed individually. (J.P.N.)

  5. ENS RRFM 2005: 9th international topical meeting on research reactor fuel management. Transactions

    International Nuclear Information System (INIS)

    The ENS topical meeting on research reactor fuel management is an annual conference launched successfully in 1997. It has since then grown into well established international forum for the exchange and expertise on all significant aspects of the nuclear fuel cycle of research reactors. Oral presentations at this meeting were divided in the following four sessions: International Topics; Fuel Development, Qualification, Fabrication and Licensing; Reactor Operation, Fuel Safety and Core Conversion; Spent Fuel Management, Back-end Options, Transportation. The three poster sessions were devoted to fuel development, qualification, fabrication and licensing; reactor operation, fuel safety, core conversion, spent fuel; spent fuel management, fuel cycle back-end options, transportation

  6. Advanced Reactor Safety Research Program quarterly report, April--June 1977. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-01

    Information is presented concerning accident energetics; core debris behavior; sodium containment and structural integrity; research for elevated temperature design criteria; fuel motion detection; ACPR fuel motion system; and advanced reactor safety research assessment.

  7. Current status, research progress and future plan of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sardjono, Y.; Syarip; Tjiptono, T.W. [Yogyakarta Nuclear Research Center, Batan (Indonesia)

    1999-10-01

    The current status, research progress and future plan of the Kartini Research Reactor (KRR) is presented. The measurements of axial burn-up distributions for each fuel element by gamma scanning techniques, core axial power distribution display, fuel management for safeguards purpose as well as some research progress activities i.e.; utilization of beamport for: neutron radiography, application neutron activation analysis and history record of KRR power operations is also presented. The KRR is 100 kW pool water reactor type which uses natural circulation and provided by: five beamports in which one of them already coupled with natural uranium subcritical assembly, two thermalizing columns in which one of them is prepared for developing Boron Neutron Capture Therapy (BNCT), two rabbit systems utilized for special analysis uranium ore by delayed neutron counting techniques, one center timbre and 40 irradiation rack (lazy susan) for neutron activation analysis. The KRR was constructed as a second research reactor in Indonesia with special purpose for training and education, high safety margin with involve in high negative temperature coefficient which achieved its first criticality on January 25, 1979. The maximum power level on first criticality is 50 kW and since August 1981 up to now is operating 100 kW. Base on the KRR design limit, it is planned to increase the power level up to 250 kW in the future plan. The preliminary activities such as Non Destructive Testing (NDT) for some reactor components especially water tank and thermal column should be done before decided to increase power level. (author)

  8. The initial results of research on two-step cascades in the Dalat research reactor

    CERN Document Server

    Hai, Nguyen Xuan; Tan, Vuong Huu; Thang, Ho Huu; Sukhovoj, A M; Khitrov, V A

    2013-01-01

    By the financial support of Vietnam Atomic Energy Commission and kind cooperation of Frank Laboratory, in the year of 2005 a measure system based on summation of amplitude pulses was established on the tangential channel of Dalat Research Reactor. After a serial of testing, the measure system was explored. In this, we would like to show the initial results were gotten with 36-Cl isotope.

  9. Progress of Research on Demonstration Fast Reactor Main Pipe Material

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The main characteristics of the sodium pipe system in demonstration fast reactor are high-temperature, thin-wall and big-caliber, which is different from the high-pressure and thick-wall of the pressurized water reactor system, and the system is long-term

  10. Modeling of operating history of the research nuclear reactor

    Science.gov (United States)

    Naymushin, A.; Chertkov, Yu; Shchurovskaya, M.; Anikin, M.; Lebedev, I.

    2016-06-01

    The results of simulation of the IRT-T reactor operation history from 2012 to 2014 are presented. Calculations are performed using continuous energy Monte Carlo code MCU-PTR. Comparison is made between calculation and experimental data for the critical reactor.

  11. Researches on a reactor core in heavy ion inertial fusion

    CERN Document Server

    Kondo, S; Iinuma, T; Kubo, K; Kato, H; Kawata, S; Ogoyski, A I

    2016-01-01

    In this paper a study on a fusion reactor core is presented in heavy ion inertial fusion (HIF), including the heavy ion beam (HIB) transport in a fusion reactor, a HIB interaction with a background gas, reactor cavity gas dynamics, the reactor gas backflow to the beam lines, and a HIB fusion reactor design. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50 to operate a HIF fusion reactor with a standard energy output of 1GW of electricity. In a fusion reactor the HIB charge neutralization is needed for a ballistic HIB transport. Multiple mechanical shutters would be installed at each HIB port at the reactor wall to stop the blast waves and the chamber gas backflow, so that the accelerator final elements would be protected from the ...

  12. Current status of neutron activation analysis in HANARO Research Reactor

    International Nuclear Information System (INIS)

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 1013 - 1 x 1014 n/cm2·s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  13. Current status of neutron activation analysis in HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Sohn, Jae Min [Korea Atomic Energy Research Institute, Daejeon (Korea)

    2003-03-01

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 10{sup 13} - 1 x 10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  14. Condensed matter research at the modernized IBR-2 reactor: from functional materials to nanobiotechnologies

    Science.gov (United States)

    Aksenov, V. L.; Balagurov, A. M.; Kozlenko, D. P.

    2016-07-01

    An overview of the main scientific areas of condensed matter research, which are extended with the use of the IBR-2 high-flux research reactor, is presented. It is demonstrated that the spectrometer facility of the upgraded reactor has great potential for studying the structural, magnetic, and dynamical properties of novel functional materials and nanobiosystems, which ensures the leading position of the Joint Institute for Nuclear Research in neutron research of condensed matter for the long-term prospect.

  15. Research and development on next generation reactor (phase I)

    International Nuclear Information System (INIS)

    The objective of the study is to improve the volume of nuclear power plant which adopts passive safety system concept. The passive safety system reactor is characterized by excellent safety and reliability. But the volume of NSSS (Nuclear Steam Supply System) of the passive safety system reactor is so small that it should be upgraded for commercial operation. For volume upgrade, detailed analyses are performed as follows; core design, hydraulics, design and mechnical structures, and safety analysis. In addition to above analysis, some investigations must be supplied as follows: power density vs. DNB margin decrease, outlet temperature vs. EPRI-URD, additional tests for upgraded reactor, dynamic analysis of mechanical vibration according to expanded reactor vessel and expanded in-core structures, and Merit loss of passive safety system reactor according to design margin decrease. (Author)

  16. Research and development on next generation reactor (phase I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyoon; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1994-10-01

    The objective of the study is to improve the volume of nuclear power plant which adopts passive safety system concept. The passive safety system reactor is characterized by excellent safety and reliability. But the volume of NSSS (Nuclear Steam Supply System) of the passive safety system reactor is so small that it should be upgraded for commercial operation. For volume upgrade, detailed analyses are performed as follows; core design, hydraulics, design and mechnical structures, and safety analysis. In addition to above analysis, some investigations must be supplied as follows: power density vs. DNB margin decrease, outlet temperature vs. EPRI-URD, additional tests for upgraded reactor, dynamic analysis of mechanical vibration according to expanded reactor vessel and expanded in-core structures, and Merit loss of passive safety system reactor according to design margin decrease. (Author).

  17. International conference on research reactors: Safe management and effective utilization. Book of extended synopses

    International Nuclear Information System (INIS)

    The IAEA has promoted and fostered exchange of scientific and technical information on research reactors for many years. An important mechanism for this exchange has been the periodic meetings, seminars, symposia and conferences organized by the IAEA. In recent years, the IAEA has organized major international conferences on topics of interest to the research reactor community every four years. The last such meeting was the International Conference on Research Reactor Utilization, Safety, Decommissioning, Fuel and Waste Management, held in Santiago, Chile, in November 2003. A number of significant issues, primarily related to safety and security, operation and utilization, the fuel cycle, decommissioning and waste management, are being faced by the research reactor community. In view of the continuing interest in these topics and in a wide range of additional issues, it is timely to convene another conference in the series of international conferences to discuss the issues, report progress and plans, exchange information and foster cooperation among the worldwide research reactor community. This exchange of information is expected to include projects on design, construction and commissioning of new research reactor facilities. The objective of this conference is to foster exchange of information on current research reactors and to provide a forum for reactor operators, designers, managers, users and regulators to share experience, exchange opinions and discuss options and priorities. The conference will have a number of technical sessions dealing with specific topical areas. Sessions are expected to include papers from invited speakers as well as contributions by participants. While most papers will focus on one of the principal areas below, authors are encouraged to consider integration with the other areas as appropriate. The topical areas are grouped below under five major headings: Safety and security of research reactors; Operation and utilization of research

  18. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  19. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    International Nuclear Information System (INIS)

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies

  20. Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals

  1. Monitoring and Control Research Using a University Reactor and SBWR Test-Loop

    International Nuclear Information System (INIS)

    The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs

  2. IAEA's subprogramme on research reactors: technology and non-proliferation

    International Nuclear Information System (INIS)

    For nuclear research and technology development to continue to advance, research reactors (RRs) must be safely and reliably operated, adequately utilized, refurbished when necessary, provided with adequate proliferation-resistant fuel cycle services and safely decommissioned at the end of life. The IAEA has established its competence in the area of RRs with a long history of assistance to Member States in improving their utilization, by taking the lead in the development of norms and codes of good practice for all aspects of the nuclear fuel cycle and in the planning and implementation of decommissioning. The IAEA Subprogramme on RRs is formulated to cover a broad range of RR issues and to promote the continued development of scientific research and technological development using RRs. Member States look to the IAEA for coordination of the worldwide effort in this area and for help in solving specific problems. The IAEA coordinates and implements an array of activities that together provide broad support for RRs. As with other aspects of nuclear technology, RR activities within the IAEA are spread through diverse groups in different Departments. To ensure a common approach a Cross-Cutting Coordination Group on Research Reactors (CCCGRR) has been established, with representatives from all departments actively supporting RR activities. Utilization and application activities are generally lead from within the Department of Nuclear Applications (NA). With respect to RRs, NA is primarily carrying out IAEA activities to assist and advise Member States in assessing their needs for research and development in the nuclear sciences, as well in supporting their activities in specific fields. Safety and Security aspects of RRs are handled by the Department of Nuclear Safety and Security (NS). The technological, fuel cycle and operational aspects of RR management are supported by the Department of Nuclear Energy (NE). NE is primarily working to support RR organizations in their

  3. Safe operation of research reactors and critical assemblies. Code of practice and annexes. 1984 ed

    International Nuclear Information System (INIS)

    The safe operation of research reactors and critical assemblies (hereafter termed 'reactors') requires proper design, construction, management and supervision. This Code of Practice deals mainly with management and supervision. The provisions of the Code apply to the whole life of the reactor, including modification, updating and upgrading. The Code may be subject to revision in the light of experience and the state of technology. The Code is aimed at defining minimum requirements for the safe operation of reactors. Emphasis is placed on which safety requirements should be met rather than on specifying how these requirements may be met. The Code also provides guidance and information to persons and authorities responsible for the operation of reactors. The Code recommends that documents dealing with the operation of reactors and including safety analyses be prepared and submitted for review and approval to a regulatory body. Operation would be authorized on the understanding that it would comply with limits and conditions designed to ensure safety. The Code covers a wide range of reactor types, which gives rise to a variety of safety issues. Safety issues applicable to specific reactor types only (e.g. fast reactors) are not necessarily covered in this Code. Some of the recommendations in the Code are not directly applicable to critical assemblies. A recommendation may therefore be interpreted according to the type of reactor concerned. In such cases the words 'adequate' and 'appropriate' are used to mean 'adequate' or 'appropriate' for the type of reactor under consideration.

  4. A new safety channel based on ¹⁷N detection in research reactors.

    Science.gov (United States)

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. PMID:26123105

  5. Core conversion of the Portuguese research reactor to LEU fuel

    International Nuclear Information System (INIS)

    Core conversion of the Portuguese Research Reactor (RPI) to LEU fuel is being performed within IAEA's Technical Cooperation project POR/4/016, with financial support from the US and Portugal. CERCA was selected as manufacturer of the LEU assemblies by the IAEA after an international call for bids. CERCA provided a comprehensive package to the RPI which included the mechanical verification of the design of the assemblies, their manufacture and arrangements for a joint inspection of the finished assemblies. The LEU fuel assemblies were manufactured within 8 months upon final approval of the design. The safety analyses for the core conversion to LEU fuel were made with the assistance of the RERTR program and were submitted for review by the IAEA and by Portuguese authorities in January 2007. Revised documents were submitted in June 2007 addressing the issues raised during review. Regulatory approval was received in early August and core conversion was done in early September. All measured safety parameters are within the defined acceptance limits. Operation at full power is expected by the end of October. (author)

  6. A neutron tomography facility at a low power research reactor

    CERN Document Server

    Körner, S; Von Tobel, P; Rauch, H

    2001-01-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at ...

  7. Shielding design calculation of a 50 MW research reactor

    International Nuclear Information System (INIS)

    The computer code ANISN/PC has been applied to calculate the group flux distribution across different shield layers of a 50 MW light water research reactor. The code has been run in P3 approximation and S8 discrete ordinates. The calculated group fluxes multiplied by appropriate flux-to-dose rate conversion factors have been used to give the dose distribution across the shield layers. The thickness of the concrete shield has been determined to give the dose rate at the outer surface of the shield as 0.5 nSv/sec. The same calculation have been also performed in axial direction to determine the thickness of water needed above the core to reduce the dose level to 25 nSv/sec. The result of calculation shows that the contribution of capture gamma rays to the total dose at the outer surface of the shield is more than 50 percent. This simplifies the calculations to determine the shield layer thickness, especially in preliminary stages of the shield design. (author)

  8. Quality assurance application in the documentation of nuclear research reactor

    International Nuclear Information System (INIS)

    For each nuclear research reactor a document control system should be established and should be provide for preparation, review, approval, issuance, distribution, revision and validation (where appropriate) of documents essential to the management, performance and verification of work. In the document control system the responsibilities for each participating organization or individual should be defined in writing. The types of document include, but are not limited to document comprising the QA program, safety requirements, maintenance and operating procedures, inspection instructions, inspection and test reports, assessment reports, drawings, data files, calculations, specifications, computer codes, purchase orders and related documents, vendor supplied documents and work instruction. Management should identify the need for documents and should provide guidance to the organizations and people preparing them. The guidance should cover the status, scope and contents and the policies, standards and codes witch apply. It should also explain the need for feedback of experience. Plant modification or the results of assessments could also give rise to the need for a new document

  9. The University of Missouri Research Reactor facility can melter system

    International Nuclear Information System (INIS)

    At the University of Missouri Research Reactor (MURR), a waste compacting system for reducing the volume of radioactive aluminum cans has been designed, built and put into operation. In MURR's programs of producing radioisotopes and transmutation doping of silicon, a large volume of radioactive aluminum cans is generated. The Can Melter System (CMS) consists of a sorting station, a can masher, an electric furnace and a gas fired furnace. This system reduces the cans and other radioactive metal into barrels of solid metal close to theoretical density. The CMS has been in operation at the MURR now for over two years. Twelve hundred cu ft of cans and other metals have been reduced into 150 cu ft of shipable waste. The construction cost of the CMS was $4950.84 plus 1680 man hours of labor, and the operating cost of the CMS is $18/lb. The radiation exposure to the operator is 8.6 mR/cu ft. The yearly operating savings is $30,000. 20 figs., 10 tabs

  10. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    Science.gov (United States)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  11. IGORR-IV: Proceedings of the fourth meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    The fourth meeting of the International Group on Research Reactors (IGORR-IV) was attended by was good 55 registered participants from 28 organizations in 13 countries, which compares well with the previous meetings. Twenty-nine papers were presented in five sessions over the two-day meeting. Session subjects were: Operating Research Reactors and Facility Upgrades; Research Reactors in Desin and Construction; Research, Development, and Analysis Results of Thermal Hydraulic Calculations, U3Si2 Fuel Performance and Faibrication; Structural Materials Performance; Neutronics; Severe Accident analysis. Written versions of the papers or hard copies of the viewgraphs used are published in these Proceedings

  12. Future development of the research nuclear reactor IRT-2000 in Sofia

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T.G. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

    1999-07-01

    The present paper presents a short description of the research reactor IRT-2000 Sofia, started in 1961 and operated for 28 years. Some items are considered, connected to the improvements made in the contemporary safety requirements and the unrealized project for modernization to 5 MW. Proposals are considered for reconstruction of reactor site to a 'reactor of low power' for education purposes and as a basis for the country's nuclear technology development. (author)

  13. The application of research reactor Maria for analysis of thorium use in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Andrzejewski, K.; Myslek-Laurikainen, B.; Pytel, B.; Szczurek, J. [Dep. Thorium Project, Institute of Atomic Energy POLATOM, 05-400 Otwock-Swierk (Poland); Polkowska-Motrenko, H. [Institute of Nuclear Chemistry and Technology, ul.Dorodna 16 03-195 Warszawa (Poland)

    2010-07-01

    The MARIA reactor, pool-type light-water cooled and beryllium moderated nuclear research reactor was used to evaluate the {sup 233}U breeding during the experimental irradiation of the thorium samples. The level of impurities concentrations was determined using ICP-MS method. The associated development of computer programs for analysis of application of thorium in EPR reactor consist of PC version of CORD-2/GNOMER system are presented. (authors)

  14. RERTR-2004: International meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Book of abstracts

    International Nuclear Information System (INIS)

    Oral and poster presentations of the Meeting covered the following topics: National and international programs related to Reduced Enrichment for Research and Test Reactors (RERTR); development of new fuel types, testing, fabrication, modelling; studies of reactor cores conversion from highly enriched to low enriched fuel, including licensing; new and converted reactors; spent fuel management including storage and transportation; production of Molybdenum 99 under converted core conditions

  15. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  16. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  17. Research on the usage of a deep sea fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira; Kowata, Yasuki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    Many new types of fast reactors have been studied in PNC. A deep sea fast reactor has the highest realization probability of the reactors studied because its development is desired by many specialists of oceanography, meteorology, deep sea bottom oil field, seismology and so on and because the development does not cost big budget and few technical problems remain to be solved. This report explains the outline and the usage of the reactor of 40 kWe and 200 to 400 kWe. The reactor can be used as a power source at an unmanned base for long term climate prediction and the earth science and an oil production base in a deep sea region. On the other hand, it is used for heat and electric power supply to a laboratory in the polar region. In future, it will be used in the space. At the present time, a large FBR development plan does not proceed successfully and a realization goal time of FBR has gone later and later. We think that it is the most important to develop the reactor as fast as possible and to plant a fast reactor technique in our present society. (author)

  18. Simulation research and optimal design for digital power regulating system of China advanced research reactor

    International Nuclear Information System (INIS)

    Based on SimPort simulation platform of nuclear power plant, a simulation model for Digital Power Regulating System (DPRS) of China Advanced Research Reactor (CARR) was established. By simulating the transient state of DPRS using this model, the adjusting parameters for the digital PID controller were determined. According to the features of the driving mechanism, the effects of the driving accuracy of the control rod and the displacement delay between electromagnetic coil and armature upon system stability and the regulating performance were analyzed, furthermore, their stability limit values were obtained respectively. The research results of this paper have some engineering practical value. (authors)

  19. The Management of TRIGA Spent Fuel at ENEA RC-1 Research Reactor

    International Nuclear Information System (INIS)

    TRIGA Mark II reactor of ENEA's Casaccia research Center (in Italy named RC-1) reached first criticality in 1960. Reactor core was realized with 61 standard TRIGA fuel elements, aluminium clad. In this condition, the reactor was operated until August 1965 at a steady state power level of 100 kW. In the summer of 1965, a programme was established to increase the reactor power to 1 MW. After significant plant modifications (in order both to adapt the reactor to the new operative circumstances, including safety regulations, and to extend reactor flexibility in the widest research areas), the new criticality was reached in July 1967. The 1 MW reactor operative configuration was initially obtained with 76 standard TRIGA fuel elements, but stainless steel clad. The RC-1 Reactor is still operational and during these years, many fuel elements were used. In this paper we describe the facility, the infrastructure available for spent fuel storage, and the operative experience accumulated during these years in the management of RC-1 Spent Nuclear Fuel (SNF). The activities and the incumbencies during SNF shipment that was carried out in 1999, in the frame of the USA Return of Foreign Research Reactors Spent Fuel Programme, are also described. (author)

  20. Research means to back the development of nuclear reactors

    International Nuclear Information System (INIS)

    After 50 year long feedback experience on nuclear reactor operations it is legitimate to wonder whether experimental facilities used to support nuclear power programs are still necessary. The various participants of this conference said yes for mainly 4 reasons: -) to validate the extension of the service life of a reactor without putting at risk its high safety standard, -) to give the reactor more flexibility to cope with the power demand, -) to confront the results given by computerized simulations with experimental data, and -) to qualify the nuclear systems of tomorrow. (A.C.)

  1. Karlsruhe Nuclear Research Center, Institute of Neutron Physics and Reactor Engineering. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    The Institute of Neutron Physics and Reactor Engineering is concerned with research work in the field of nuclear engineering related to the safety of thermal reactors as well as with specific problems of fusion reactor technology. Under the project of nuclear safety research, the Institute works on concepts designed to drastically improve reactor safety. Apart from that, methods to estimate and minimize the radiological consequences of reactor accidents are developed. Under the fusion technology project, the Institute deals with neutron physics and technological questions of the breeding blanket. Basic research covers technico-physical questions of the interaction between light ion radiation of a high energy density and matter. In addition and to a small extent, questions of employing hydrogen in the transport area are studied. (orig.)

  2. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  3. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    International Nuclear Information System (INIS)

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers

  4. Operating Experience from Events Reported to the IAEA Incident Reporting System for Research Reactors

    International Nuclear Information System (INIS)

    Operating experience feedback is an effective mechanism in providing lessons learned from events and the associated corrective actions to prevent them, helping to improve safety at nuclear installations. The Incident Reporting System for Research Reactors (IRSRR), which is operated by the IAEA, is an important tool for international exchange of operating experience feedback for research reactors. The IRSRR reports contain information on events of safety significance with their root causes and lessons learned which help in reducing the occurrence of similar events at research reactors. To improve the effectiveness of the system, it is essential that national organizations demonstrate an appropriate interest for the timely reporting of events important to safety and share the information in the IRSRR database. At their biennial technical meetings, the IRSRR national coordinators recommended collecting the operating experience from the events reported to the IRSRR and disseminating it in an IAEA publication. This publication highlights the root causes, safety significance, lessons learned, corrective actions and the causal factors for the events reported to the IRSRR up to September 2014. The publication also contains relevant summary information on research reactor events from sources other than the IRSRR, operating experience feedback from the International Reporting System for Operating Experience considered relevant to research reactors, and a description of the elements of an operating experience programme as established by the IAEA safety standards. This publication will be of use to research reactor operating organizations, regulators and designers, and any other organizations or individuals involved in the safety of research reactors

  5. Transients analysis by reactivity insertion in research reactors

    International Nuclear Information System (INIS)

    PARET code was used to simulate accidental situations arising from positive reactivity insertions, in order to analyze the behavior of RP-10 reactor. The simulations considered three different cases: First is for the reactor operating at 10 Mw nominal power with 3 pumps in use, the second, at 6.6 Mw with only one pump working. In all cases the reactor trip was assumed when a 12 Mw power level is reached. An additional simulation for the reactor operating at 50w before the reactivity insertion, showed to be the worst accidental situation of all cases because of the higher temperature and power rise. Hot channel thermohydraulic and kinetic parameters have been evaluated at each axial mesh point and transient time step. None of the cases showed melting of fuel plates

  6. Power start up of the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    After accomplishing the physical start-up of the reactor, the power start-up was carried out in February 1984. The power of the reactor has reached: 10 KW on 6/2/1984, 100 KW on 7/2/1984, 200 KW and 300 KW on 8/2/1984; 400 KW and nominal power 500 KW on 9/2/1984. The reactivity temperature coefficient and the xenon poisoning were determined. 3 figs., 12 tabs

  7. ENS RRFM 2006: 10th international topical meeting on research reactor fuel management. Transactions

    International Nuclear Information System (INIS)

    The RRFM Conference is organized by the European Nuclear Society (ENS) with co-operation of the IAEA. It includes detailed scientific and technical reports reports on the following main topics: Fuel development, qualification, fabrication and licensing; Spent fuel management, back-end options and transportation; Reactor operation, fuel safety and core conversion; Innovative methods in research reactor analysis; Global Treat Reduction Initiative

  8. Shielding analyses for design of the upgraded JRR-3 research reactor, 1

    International Nuclear Information System (INIS)

    Shielding analyses for design of the upgraded JRR-3 research reactor have been performed. In the report described are the design principles and the overall analytical procedures. In addition, described are the results of shielding analyses of reactor, canal, spent fuel storage pond and so on. (author)

  9. Activities, problems and prospects related to safe disposal of research reactor RA spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M.V.; Vukadin, Z.; Plecas, I.; Pavlovic, R. [VINCA Institute of Nuclear Sciences, Belgrade (Yugoslavia); Bulkin, S.; Sokolov, A.; Morduhai, A. [R and D Institute for Power Engineering, Moscow (Russian Federation)

    2001-07-01

    Actions performed in order to identify and improve storage conditions of spent fuel from RA research reactor are summarized. Recently performed inspection of sealed aluminum barrels, containing aluminum cladded metallic uranium fuel, are described in details. Based on the results of this inspection, options for future safe disposal of reactor spent fuel are proposed. (author)

  10. Nuclear energy was the way of the future; 50 anniversary of the research reactor

    NARCIS (Netherlands)

    Wassink, J.

    2013-01-01

    It was the hidden jewel of TU Delft, according to the employees of the nuclear reactor. Others protested against it and insisted that it be eliminated. Following a major mid-life crisis, the Delft research reactor is now in better shape than ever before.

  11. Reactor Safety Research Programs Quarterly Report July - September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-01-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Reactor Safety Research Programs Quarterly Report October - December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... COMMISSION Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108... Chemical Company (the licensee) to operate the Dow Chemical TRIGA Research Reactor (DTRR) at a maximum... INFORMATION CONTACT: Geoffrey Wertz, Project Manager, Research and Test Reactors Licensing Branch, Division...

  14. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Science.gov (United States)

    2013-05-08

    ... COMMISSION Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and Correction AGENCY: Nuclear Regulatory Commission. ACTION... Chemical TRIGA Research Reactor,'' to inform the public that the NRC is considering issuance of a...

  15. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  16. The past, present, and future of test and research reactor physics

    International Nuclear Information System (INIS)

    Reactor physics calculations have been performed on research reactors since the first one was built 50 yr ago under the University of Chicago stadium. Since then, reactor physics calculations have evolved from Fermi-age theory calculations performed with slide rules to three-dimensional, continuous-energy, coupled neutron-photon Monte Carlo computations performed with supercomputers and workstations. Such enormous progress in reactor physics leads us to believe that the next 50 year will be just as exciting. This paper reviews this transition from the past to the future

  17. Numerical Simulation of Flow Field in Flow-guide Tank of China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The flow-guide tank of China advanced research reactor (CARR) is located at the top of the reactor vessel and connected with the inlet coolant pipe. It acts as a reactor inlet coolant distributor and plays an important role in reducing the flow-induced vibration of the internal components of the reactor core. Several designs of the flow-guide tank have been proposed, however, the final design option has to be made after detailed investigation of the velocity profile within the flow-guide tank for each configuration.

  18. Human Resources Development by the Eastern European Research Reactor Initiative (EERRI)

    International Nuclear Information System (INIS)

    EERRI experiences and conclusions: • Collaboration in: – education and training is very easy; – beam experiments are easy; – fuel and material testing is more difficult; – isotopes productions is very difficult. • Collaboration between: – low power research reactors is very easy; – medium power research reactors is easy; – high power research reactors is difficult. • Such a six weeks course with a wide variety of subjects and practical experiments is extremely difficult to organize by a single research reactor due to limited staff, limited reactor availability and limited time availability. • Using a coalition of reactors such as EERRI is an excellent example to offer in a short time different research reactor types and selected experiments to the participants. • These coalition activities aim to transfer knowledge from one region (country) into another region (country) in a short time period. • During this training period further contacts may be established between the host organisations and participant‘s research institute for further cooperation. • EERRI is one typical example of an international course with hands-on capacity building and international knowledge transfer

  19. IAEA activities related to research reactor fuel conversion and spent fuel return programmes

    International Nuclear Information System (INIS)

    Full text: The IAEA has been involved for more than twenty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly associated efforts to return research reactor fuel to the country of origin where it was originally enriched. IAEA efforts have included the development and maintenance of several data bases with information related to research reactors and research reactor spent fuel inventories that have been essential in planning and managing both RERTR and spent fuel return programmes. Other IAEA regular budget programmes have supported research reactor fuel conversion from HEU to low enriched uranium, and in addressing issues common to many member states with spent fuel management problems and concerns. The paper briefly describes IAEA involvement since the early 1980's in these areas, including regular budget and Technical Co-operation programme activities, and focuses on efforts in the past five years to continue to support and accelerate U.S. and Russian research reactor spent fuel return programmes. It is hoped that an announcement of the extension of the U.S. Acceptance Programme, which is expected in the very near future, will facilitate the life extensions of many productive TRIGA reactors around the world. (author)

  20. Current activities on improving storage conditions of the research reactor 'RA' spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M.V.; Vukadin, Z.; Pavlovic, R.; Marinkovic [VINCA Inst. of Nuclear Sciences, Belgrade (Yugoslavia)

    1997-07-01

    After 25 years of successful operation, the 6.5/10 MW thermal heavy water moderated and cooled research reactor RA at the VINCA Institute was shut down for refurbishment in 1984. Since for a number of reasons this refurbishment has not yet been completed, and having in mind the long shut-down period, the future status of the RA reactor is presently a subject of serious reconsideration. Closely related to the problem of future use, or eventual decommissioning, of the research reactor RA is the problem of safe and reliable storage of fuel irradiated so far, as well as disposal of the new irradiated fuel if and when the reactor is re-started. Basic facts about operation, ageing, reconstruction and spent fuel storage of the research reactor RA have been presented and discussed in detail in some earlier papers. The present paper describes current activities on improving storage conditions of the research reactor RA spent fuel. Recent results are presented concerning identification and minimization of corrosion processes. Options for permanent resolving of the spent fuel storage problem are discussed and a possible scenario for building a new long term research research reactor RA spent fuel storage is proposed. (author)

  1. Current activities on improving storage conditions of the research reactor `RA` spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M.V.; Vukadin, Z.; Pavlovic, R.; Marinkovic [VIBCA Inst. of Nuclear Sciences, Belgrade (Yugoslavia)

    1997-07-01

    After 25 years of successful operation, the 6.5/10 MW thermal heavy water moderated and cooled research reactor RA at the VINCA Institute was shut down for refurbishment in 1984. Since for a number of reasons this refurbishment has not yet been completed, and having in mind the long shut-down period, the future status of the RA reactor is presently a subject of serious reconsideration. Closely related to the problem of future use, or eventual decommissioning, of the research reactor RA is the problem of safe and reliable storage of fuel irradiated so far, as well as disposal of the new irradiated fuel if and when the reactor is re-started. Basic facts about operation, ageing, reconstruction and spent fuel storage of the research reactor RA have been presented and discussed in detail in some earlier papers. The present paper describes current activities on improving storage conditions of the research reactor RA spent fuel. Recent results are presented concerning identification and minimization of corrosion processes. Options for permanent resolving of the spent fuel storage problem are discussed and a possible scenario for building a new long term research research reactor RA spent fuel storage is proposed. (author) 6 figs., 4 refs.

  2. Canadian Experience in Application of Graded Approach for Safety Assessment of Research Reactors

    International Nuclear Information System (INIS)

    Full text: Research reactors are typically used for basic and applied research, education and training, production of isotopes, material testing, neutron activation analysis and other purposes. Most research reactors have a small potential for hazard to the public compared with power reactors. Safety assessment for the research reactors needs to be undertaken to evaluate compliance with safety requirements and to determine the measures to ensure reactor safety. Considering the different types of research reactors and their associated utilization, safety assessment should be commensurate with the potential hazard, ensuring that the design and operation of each reactor lead to adequate safety and defence in depth. The scope of presentation will cover the following topics: - Canadian regulatory framework for licensing research reactors; - Graded approach applied to safety assessment of the research reactors; - Use of graded approach to safety assessment of SLOWPOKE and NRU reactors. Canadian Nuclear Safety Commission (CNSC) has developed a regulatory framework for licensing small reactor facilities (including research reactors) that sets out requirements for the safety analysis and reactor design. CNSC staff considers each application individually in determining how much rigour and stringency are required for the safety assessment. All important factors affecting the overall reactor safety, such as safety system design, inherent safety features, the amount of fissile and fissionable materials, and the source terms are considered. The graded approach introduced, allows safety requirements to be implemented in such way that the level of safety assessment is proportional to the potential hazards posed by the research reactor. Licensing requirements vary with the type of facility and they may be applied in a graded fashion based on overall risk. Graded approach can be applied to all components of safety assessment including radiation risk, safety functions, defence in

  3. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    2013-07-01

    domains will be expanded and the validation base of commonlyused calculation methods will be expanded to cover a new range of research reactor types. From a practical perspective, CROCUS and the UFTR will have fully validated reactor dynamic and transient models for dynamic and accident analysis. With these validated models, both facilities will have improved capabilities and flexibility for extended operations in the future. CROCUS and the UFTR will be able to make future reactor modifications with reduced regulatory resistance. A feasibility analysis of future power uprates at these facilities will also result.

  4. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  5. Utilization and operating experience of the 250 kw TRIGA Mark II research reactor in Ljubljana

    International Nuclear Information System (INIS)

    In its 35th year, the TRIGA Mark II 250 kW pulsing research reactor in Ljubljana is continuing its busy operation. With the maximum neutron flux in the central thimble of 10 13 n/cm 2 sec and many sample radiation positions the reactor has been used to perform many experiments in the following fields: solid state physics (elastic and inelastic neutron scattering), neutron dosimetry, neutron radiography, reactor physics including burn up measurements and calculations, boron neutron capture therapy and neutron activation analysis which represents one of the major usage of our reactor. Besides these, applied research around the reactor has been conducted, such as doping of silicon monocrystals, a routine production of various radioactive isotopes for industry ( 60Co, 64Zn, 24Na, 82Br) and medical use ( 18F, 99m Tc, etc.) and other activities. During the past decade the reactor was almost completely reconstructed (new grid plates, the control mechanisms and the control unit, modification of the spent fuel storage pool, etc). The main novelty in the reactor physics and operation features of the reactor was the installation of a pulse rod, therefore the reactor can be operated in a pulse mode. After reconstruction, the core was loaded with fresh 20% enriched fuel elements. In 1999 all spent fuel elements were shipped to the USA. (author)

  6. Qualification of Uranium-Molybdenum Alloys for Research Reactor Community

    International Nuclear Information System (INIS)

    Uranium-molybdenum (U-Mo) alloys are being produced to refuel international research reactors - replacing current highly-enriched uranium fuel assemblies. Over the past two years, Y-12 Analytical Chemistry has been the primary qualification laboratory for current U-Mo materials development in the U.S. During this time, multiple analytical techniques have been explored to obtain complete and accurate characterization of U-Mo materials. For the chemical characterization of U-Mo materials, three primary techniques have been utilized: (i) thermal ionization mass spectrometry (TIMS) for uranium content and isotopic analyses, (ii) a combination of inductively-coupled plasma (ICP) techniques for determination of molybdenum content and trace elemental concentrations and (iii) combustion analyses for trace elemental analyses. Determination of uranium content, uranium isotopic composition and elemental impurities by combustion analyses (H, C, O, N) required only minimal changes to existing analytical methodology for uranium metal analyses. However, spectral interferences (both isobaric and optical) due to high molybdenum content presented significant challenges to the use of ICP instrumentation. While providing a brief description of methods for determination of uranium content and H, C, O and N content, this manuscript concentrates on the challenges faced in applying ICP techniques to qualification of U-Mo fuels. Multiple ICP techniques were explored to determine the effectiveness (e.g., accuracy, precision, speed of analysis, etc.) for determining both molybdenum content and trace elemental impurity concentrations: high-resolution inductively-coupled plasma mass spectrometry (HR-ICPMS), inductively- coupled plasma quadrupole mass spectrometry (ICP-QMS) and inductively-coupled plasma optical emission spectroscopy (ICP-OES). The merits and limitations of these techniques for qualification of U-Mo alloys are presented, to include the limits of quantitation and uncertainties

  7. A neutron tomography facility at a low power research reactor

    Science.gov (United States)

    Koerner, S.; Schillinger, B.; Vontobel, P.; Rauch, H.

    2001-09-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at this beam position is 1.3×10 5 neutrons/cm 2 s and the beam diameter is 8 cm. For a 3D tomographic reconstruction of the sample interior, transmission images of the object taken from different view angles are required. Therefore, a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel a suitable electronic imaging device based on a neutron sensitive scintillator screen and a CCD-camera has been designed. It can be controlled by a computer in order to synchronize the software of the detector and of the rotary table with the aim of an automation of measurements. Reasonable exposure times can get as low as 20 s per image. This means that a complete tomography of a sample can be performed within one working day. Calculation of the 3D voxel array is made by using the filtered backprojection algorithm.

  8. A neutron tomography facility at a low power research reactor

    International Nuclear Information System (INIS)

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at this beam position is 1.3x105 neutrons/cm2 s and the beam diameter is 8 cm. For a 3D tomographic reconstruction of the sample interior, transmission images of the object taken from different view angles are required. Therefore, a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel a suitable electronic imaging device based on a neutron sensitive scintillator screen and a CCD-camera has been designed. It can be controlled by a computer in order to synchronize the software of the detector and of the rotary table with the aim of an automation of measurements. Reasonable exposure times can get as low as 20 s per image. This means that a complete tomography of a sample can be performed within one working day. Calculation of the 3D voxel array is made by using the filtered backprojection algorithm

  9. Research on reactor physics using the Japan Materials Testing Reactor Critical Facility (JMTRC)

    International Nuclear Information System (INIS)

    The JMTRC of 100 W was installed for the purpose of carrying out the basic experiment on the nuclear characteristics of reactors and the preceding test related to the operation plan of the Japan material testing reactor (JMTR, 50 MW). After the attainment of the initial criticality in October, 1965, for obtaining the reactor physics characteristics, criticality experiment was begun. The items of the criticality experiment were critical mass, control rod worth, reactor dynamic characteristic parameters, shutdown margin and so on, and these experimental data were effectively utilized for the safety evaluation in the operation of the JMTR. The preceding test using the JMTRC has been carried out for obtaining the nuclear characteristics of samples and the thermal characteristics estimated from those results by simulating the JMTR core. In August, 1983, the degree of fuel enrichment for the JMTRC was reduced to 45 % U-235, and various experiments usig the MEU core were carried out. In this paper, the criticality experiment using the MEU core and the experiment on the characteristics of lithium-containing pellets are reported. (K.I.)

  10. Proceedings of sixth meeting of the international group on research reactors

    International Nuclear Information System (INIS)

    The 6th Meeting of the International Group on Research Reactors which is being hosted by KAERI, was held from April 29 to May 1, 1998. The three day meeting was attended by 118 experts from 17 countries including Argentina, Australia, Belgium, Canada, Denmark, Egypt, France, Germany, Iran, Japan, Korea, Netherlands, Poland, Russia, Taiwan, and U.S.A. The status of research reactor development in the world today varies according to each country's needs and technical capabilities. However, research reactors continue to grow in importance. Effort should be made to enhance the use of research reactors in the spirit of cooperation and for the mutual benefit of all. Of greatest importance, will be the role of research reactors to promote basic and advanced research, and to provide various services to improve public welfare. The Korean government fully recognizes that the application of radiation and radioisotopes has contributed to the development of industries, scientific research, disease diagnosis and therapy. These application areas have diversified in conjunction with our nation's economic development and the resultant increase in the quality of life. In light of these issues is our 30 MWt class multi-purpose research reactor, HANARO which was inaugurated 3 years ago is an excellent model for meeting high level user requirements. A total of 39 papers were presented in 4 technical sessions: operating research reactors, new research reactors and projects, workshop on cold neutron sources, and workshop on R and D needs. All the papers presented at the meeting are published in these Proceedings. All topics tabled are very important, including the cold neutron issues. (Cho, G. S.)

  11. IEA-R1 research reactor: operational life extension and considerations regarding future decommissioning

    International Nuclear Information System (INIS)

    The IEA-R1 reactor is a pool type research reactor moderated and cooled by light water and uses graphite and beryllium reflectors. The reactor is located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), in the city of Sao Paulo, Brazil. It is the oldest research reactor in the southern hemisphere and one of the oldest of this kind in the world. The first criticality of the reactor was obtained on September 16, 1957. Given the fact that Brazil does not have yet a definitive radioactive waste repository and a national policy establishing rules for the spent fuel storage, the institutions which operate the research reactors for more than 50 years in the country have searched internal solutions for continued operation. This paper describes the spent fuel assemblies and radioactive waste management process for the IEA-R1 reactor and the refurbishment and modernization program adopted to extend its lifetime. Some considerations about the future decommissioning of the reactor are also discussed which, in my opinion, might help the operating organization to make decisions about financial, legal and technical aspects of the decommissioning procedures in a time frame of 10-15 years(author)

  12. Current status of nuclear research reactor management and utilization program in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Aramrattana, M. [Deputy Secretary General, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand); Busamongkol, Y.

    1999-08-01

    The TRR1/M1 is the first research reactor and has been in operational for more than 20 years. During the three decades of research reactor operation in Thailand the utilization of research reactor have been broadened in different fields such as agriculture, medicine and industry. Limitation on utilization of the existing reactor in various fields has led to establishing of a new nuclear research center, Ongkharak Nuclear Research Center (ONRC). The ONRC comprises three major facilities, namely Reactor Island, Isotope Production Facility and Waste Processing and Storage Facility. The reactor itself is a 10 MW TRIGA-type fuels, moderated and cooled by light water with beryllium and heavy water as the reflectors. It is a multi-purpose reactor consisting of different facilities inside and around the core for radioisotope production, medical and industrial uses; and for beam experiments such as High Resolution Powder Diffractometry (HRPD), Neutron Radiography (NR), Prompt Gamma Neutron Activation Analysis (PGNAA), and Boron Neutron Capture Therapy (BNCT). The center is expected to be operational by year 2001. (author)

  13. Failure of triga fuel cladding at the Berkeley Research Reactor

    International Nuclear Information System (INIS)

    On September 16, 1985, following a long maintenance shutdown, unusually high concentrations of radioisotopes were detected in the reactor-room air on a Constant Air Monitor (CAM) after two and a half hours of full power operation. It was thought that the activity could be coming from some contamination in the pool water. Thus the water was cleaned and the water conductivity was reduced fourfold. However, a full-power operation again showed high count rates on the CAM. A third test was conducted with a germanium detector. Following two hours of operation, three fission-product gasses were identified in the reactor-room air; Kr85, Kr37 and Kr88. Once again no unusual activities could be detected on the CAM filter, in the pool water, or in the demineralizer resins. It was concluded that the gasses must be coming from a leaking fuel element. Three old, instrumented elements with defective thermocouples were selected to be the first ones isolated from the core. After removing the elements, the reactor was operated at full-power for two hours with no abnormal activities detected. New standard elements were loaded and the reactor was again operated at full-power to confirm that no leaking element remained in the core. Since then, the reactor has been operated, with no abnormal activities detected. (Nogami, K.)

  14. Research and development studies carried out for the seismic verification of the Italian PEC Fast Reactor

    International Nuclear Information System (INIS)

    This paper presents the main features and results of the numerical and experimental studies that were carried out by ENEA, in co-operation with ANSALDO and ISMES for the seismic verification of the Italian PEC Fast Reactor. More precisely, the paper focuses on the wide-ranging research and development programme that was performed on the reactor building, the reactor-block, the main vessel, the core and the shutdown system. The needs of these detailed studies are stressed and the general validity of the analyses in the framework of research and development activities for nuclear reactors are pointed out. The adopted design criteria and methods are presented in a separate paper, together with the effects of seismic conditions on PEC design, and comparisons with the other fast reactors of the European Community countries. (author)

  15. Enhancement of physical security at the IAN-R1 research reactor

    International Nuclear Information System (INIS)

    The IAN-R1 research reactor has undergone continuous substantial changes involving modifications to the instrumentation, power and fuel. The reactor group of the Institute of Nuclear Science and Alternative Energy (INEA) of the Ministry of Mines and Energy has endeavoured to improve the physical security of the reactor installations. Colombia has undertaken to maintain adequate physical protection measures with respect to the installations and the materials supplied, as well as any special fissionable material used, including subsequent generations of fissionable material produced. The paper gives details of the level of physical protection and the implementation of physical protection measures and the IAN-R1 research reactor and of the new project currently being developed under which the present system of security installed in the reactor will be upgraded and greater security will be applied to other sensitive installations of INEA. (author)

  16. Continuous thermal balance monitoring for IEA-R1 nuclear research reactor power determination

    International Nuclear Information System (INIS)

    This research deals with thermal balance calculation for real time power level determination of IEA-R1 nuclear research reactor. It is also shown the development of a supervision software (Visual Basic) of operation parameters. The assembled data acquisition system allows data analysis during reactor operation, giving a reliable measurement of reactor power, and the organization of a data base allows a back-up surveillance of reactor operation whenever necessary. Results obtained from temperature and primary flow are shown in a continuous form and also the Data Base implementation for further studies and analysis of energy balance behavior of the many reactor components. Besides it is planned to manage N-16 activity measurement channel (monitoring) for comparison of acquired data results for thermal calculations. The results of this acquisition and related thermal balance calculations are shown in a continuous shape (On-Line) by means of windows operational system using Visual Basic VB6 software for development. (author)

  17. Simulation Research on Neutron Guide System CNGC for China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; HE; Lin-feng; WANG; Yu; WANG; Hong-li; LIU; Yun-tao; CHEN; Dong-feng; ZHAO; Zhi-xiang

    2012-01-01

    <正>The out-pile section of the neutron guide CNGC at CARR (China Advanced Research Reactor) was designed by Monte Carlo simulation with VITESS. The out-pile section of CNGC will be spitted to CNGC-S and CNGC-N, the cold neutron imaging facility and small angle neutron scattering facility will be installed at the end of guides respectively. XRD patterns of Bi1-xLaxFe1-yScyO3 were shown in Fig. 1.

  18. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  19. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    International Nuclear Information System (INIS)

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  20. Keeping research reactors relevant: A pro-active approach for SLOWPOKE-2

    International Nuclear Information System (INIS)

    The SLOWPOKE is a small, inherently safe, pool-type research reactor that was engineered and marketed by Atomic Energy of Canada Limited (AECL) in the 1970s and 80s. The original reactor, SLOWPOKE-1, was moved from Chalk River to the University of Toronto in 1970 and was operated until upgraded to the SLOWPOKE-2 reactor in 1973. In all, eight reactors in the two versions were produced and five are still in operation today, three having been decommissioned. All of the remaining reactors are designated as SLOWPOKE-2 reactors. These research reactors are prone to two major issues: aging components and lack of relevance to a younger audience. In order to combat these problems, one SLOWPOKE -2 facility has embraced a strategy that involves modernizing their reactor in order to keep the reactor up to date and relevant. In 2001, this facility replaced its aging analogue reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. The digital control system provides a better interface and allows flexibility in data storage and retrieval that was never possible with the analogue control system. This facility has started work on another upgrade to the digital control and instrumentation system that will be installed in 2010. The upgrade includes new computer hardware, updated software and a web-based simulation and training system that will allow licensed operators, students and researchers to use an online simulation tool for training, education and research. The tool consists of: 1) A dynamic simulation for reactor kinetics (e.g., core flux, power, core temperatures, etc). This tool is useful for operator training and student education; 2) Dynamic mapping of the reactor and pool container gamma and neutron fluxes as well as the vertical neutron beam tube flux. This research planning tool is used for various researchers who wish to do irradiations (e.g., neutron