WorldWideScience

Sample records for antrim shales

  1. Change in mechanical properties of Antrim oil shale on retorting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.; Hockings, W. A.; Kim, K.

    1979-01-01

    The decomposition of kerogen in oil shale and subsequent extraction of the decomposition products during the retorting process are known to alter the pore structure, resulting in changes in permeability, deformation and strength properties. Prediction of these changes is of fundamental importance in the design of in-situ retorting processes. This paper summarizes a comprehensive laboratory investigation on the changes in mechanical properties of Antrim oil shale on retorting at 500/sup 0/C. It was observed that kerogen plays an important role in the change of the properties on retorting. When subjected to heat, the degree of deformation, the extent of fracturing and the structural instability of the specimens appeared to be strongly dependent upon kerogen content. The values of elastic modulus, strength, and density decreased whereas maximum strain at failure increased on retorting. Significant increases in permeability and porosity also resulted from retorting. The most pronounced increase was observed in the permeability in the direction parallel to bedding which exceeded in some cases as much as 3 orders of magnitude. Microscopic observations of pore structures provided a qualitative support to data obtained in measurements of porosity and permeability.

  2. Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques

    Science.gov (United States)

    Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.

    2012-01-01

    The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).

  3. Relationship of Shallow Groundwater Quality to Hydraulic Fracturing Activities in Antrim and Kalkaska Counties, MI

    Science.gov (United States)

    Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.

    2015-12-01

    Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises

  4. Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin

    Science.gov (United States)

    Kuuskraa, Vello

    1997-01-01

    Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.

  5. 75 FR 57758 - Antrim Treatment Trust; Notice of Declaration of Intention and Soliciting Comments, Protests, and...

    Science.gov (United States)

    2010-09-22

    ...: Antrim Micro-Hydropower Project. f. Location: The proposed Antrim Micro-Hydropower Project will be..., protests, and/or motions filed. k. Description of Project: The proposed Antrim Micro-Hydropower Project... and the project will not be connected to an interstate grid. When a Declaration of Intention is filed...

  6. 75 FR 37788 - Antrim Treatment Trust; Notice of Declaration of Intention and Soliciting Comments, Protests, and...

    Science.gov (United States)

    2010-06-30

    ... Micro-Hydropower Project. f. Location: The proposed Antrim Micro-Hydropower Project will be located on... motions filed. k. Description of Project: The proposed Antrim Micro-Hydropower Project will consist of: (1...-feet to the treatment plant, where it will be connected to the interstate grid; and (6) appurtenant...

  7. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1946-08-29

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors from the zone, mixing fresh cold shale with the hydrocarbon vapors to quench the same, whereby the fresh shale is preheated, recovering hydrocarbon vapors and product vapors from the mixture and withdrawing preheated shale from the mixture and charging it to a shale distillation zone.

  8. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1948-08-03

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described, which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors containing shale fines from the zone, mixing sufficient fresh cold shale with the hydrocarbon vapors to quench the same and to cause condensation of the higher boiling constituents thereof, charging the mixture of vapors, condensate, and cold shale to a separation zone where the shale is maintained in a fluidized condition by the upward movement of the hydrocarbon vapors, withdrawing condensate from the separation zone and recycling a portion of the condensate to the top of the separation zone where it flows countercurrent to the vapors passing therethrough and causes shale fines to be removed from the vapors by the scrubbing action of the condensate, recovering hydrocarbon vapors and product vapors from the separation zone, withdrawing preheated shale from the separation zone and charging it to a shale distillation zone.

  9. Biogenic gas in the Cambrian-Ordovcian Alum Shale (Denmark and Sweden)

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.M.; Wirth, R.; Biermann, S.; Arning, E.T. [Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ, Potsdam (Germany); Krueger, M.; Straaten, N. [BGR Hannover (Germany); Bechtel, A. [Montanuniv. Leoben (Austria); Berk, W. van [Technical Univ. of Clausthal (Germany); Schovsbo, N.H. [Geological Survey of Denmark and Greenland - GEUS, Copenhagen (Denmark); Crabtree, Stephen [Gripen Gas (Sweden)

    2013-08-01

    Shale gas is mainly produced from thermally mature black shales. However, biogenic methane also represents a resource which is often underestimated. Today biogenic methane is being produced from the Upper Devonian Antrim Shale in the Michigan Basin which was the most successfully exploited shale gas system during the 1990-2000 decade in the U.S.A. before significant gas production from the Barnett Shale started (Curtis et al., 2008). The Cambro-Ordovician Alum Shale in northern Europe has thermal maturities ranging from overmature in southern areas (Denmark and southern Sweden) to immature conditions (central Sweden). Biogenic methane is recorded during drilling in central Sweden. The immature Alum Shale in central Sweden has total organic carbon (TOC) contents up to 20 wt%. The hydrogen index HI ranges from 380 to 560 mgHC/gTOC at very low oxygen index (OI) values of around 4 mg CO{sub 2}/gTOC, Tmax ranges between 420 - 430 C. The organic matter is highly porous. In general, the Alum Shale is a dense shale with intercalated sandy beds which may be dense due to carbonate cementation. Secondary porosity is created in some sandy beds due to feldspar dissolution and these beds serve as gas conduits. Methane production rates with shale as substrate in the laboratory are dependent on the kind of hydrocarbon-degrading microbial enrichment cultures used in the incubation experiments, ranging from 10-620 nmol/(g*d). In these experiments, the CO{sub 2} production rate was always higher than for methane. Like the northern part of North America, also Northern European has been covered by glaciers during the Pleistocene and similar geological processes may have developed leading to biogenic shale gas formation. For the Antrim Shale one hypothesis suggests that fresh waters, recharged from Pleistocene glaciation and modern precipitation, suppressed basinal brine salinity along the northern margins of the Michigan Basin to greater depths and thereby enhancing methanogenesis

  10. 78 FR 54884 - Antrim County; Notice of Intent To Prepare an Environmental Assessment and Notice of Scoping...

    Science.gov (United States)

    2013-09-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3030-019] Antrim County; Notice of Intent To Prepare an Environmental Assessment and Notice of Scoping Meeting and Environmental Site Review and Soliciting Scoping Comments Take notice that the following hydroelectric application has been filed with the Commission and is...

  11. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1917-02-06

    The yield of oil obtained by distilling shale is increased by first soaking the shale with about 10 percent of its volume of a liquid hydrocarbon for a period of 24 hours or longer. Distillation is carried on up to a temperature of about 220/sup 0/C., and a further 10 percent of hydrocarbon is then added and the distillation continued up to a temperature of about 400/sup 0/C.

  12. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Kern, L

    1922-07-21

    In the distillation of shale and similar materials the shale is ground and briquetted and the briquettes are placed in a retort so that air passages are left between them, after which they are uniformly and slowly heated to at least 700/sup 0/C, the air passages facilitating the escape of the oil vapors, and the slow heating preventing fusion of the flux forming constituents. After the bitumen has been driven off, air is passed into the retort and heating continued to about 1050/sup 0/C, the result being a porous product suitable for insulating purposes or as a substitute for kieselguhr. The ground shale may be mixed prior to distillation with peat, sawdust, or the like, and with substances which yield acids, such as chlorides, more particularly magnesium chloride, the acids acting on the bitumen.

  13. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jacomini, V V

    1938-06-07

    To produce valuable oils from shale by continuous distillation it is preheated by a heated fluid and introduced into a distilling retort from which the oil vapours and spent material are separately removed and the vapours condensed to recover the oil. The shale is preheated to 400 to 500/sup 0/F in the hopper by combustion gases from a flue and is fed in measured quantities to a surge drum, a loading chamber and surge drum, the latter two being connected to a steam pipe which equalises the pressure thereon. The material passes by two screw conveyors to a retort with deflector bars to scatter the material so that lean hot cycling gas flowing through a pipe is spread out as it makes its way upwardly through the shale and heats the oil so that it is driven off as vapour, collected in the lean gas and carried off through an outlet pipe. A measuring valve is provided at the bottom of a retort and cutter knives cut the spent shale and distribute cooling water thereto. The gases travel through heat exchangers and a condenser to an accumulator where the cycling gas is separated from the vapours, passed to compression, and preheated in a gas exchanger and spiral coils before it is returned to the retort. The oil passes to a storage tank by way of a unit tank in which oil vapours are recovered. Water is collected by a pipe in the tank bottom and returned by shaft to a retort.

  14. Shale processing

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, W H

    1928-05-29

    The process of treating bituminiferous solid materials such as shale or the like to obtain valuable products therefrom, which comprises digesting a mixture of such material in comminuted condition with a suitable digestion liquid, such as an oil, recovering products vaporized in the digestion, and separating residual solid matter from the digestion liquid by centrifuging.

  15. Shale treatment

    Energy Technology Data Exchange (ETDEWEB)

    1941-03-03

    The charge of shale, coal, or the like, is placed in a cartridge which is inserted in a metal cylinder gas and/or steam heated to a temperature of between 300 to 500/sup 0/C is admitted through pipe and passes through two perforations through the charge which is held at a pressure of about .1 to 2 pounds per square inch and an out pipe together with evolved gases and vapours. A lid is clamped in position over the cartridge by means of an eye bolt and a nut.

  16. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Justice, P M

    1917-09-19

    Light paraffin oils and other oils for motors are obtained from shale, and benzene, toluene, and solvent naphtha are obtained from coal by a process in which the coal or shale is preferably powered to pass through a mesh of 64 to the inch and is heated with a mixture of finely ground carbonate or the like which under the action of heat gives off carbonic acid, and with small iron scrap or its equivalent which is adapted to increase the volume of hydrocarbons evolved. The temperature of the retort is maintained between 175 and 800/sup 0/C., and after all the vapors are given off at the higher temperature a fine jet of water may be injected into the retort and the temperature increased. The produced oil is condensed and purified by fractional distillation, and the gas formed is stored after passing it through a tower packed with coke saturated with a non-volatile oil with recovery of an oil of light specific gravity which is condensed in the tower. The residuum from the still in which the produced oil is fractionated may be treated with carbonate and iron, as in the first stage of the process, and the distillate therefrom passed to a second retort containing manganese dioxide and iron scrap preferably in the proportion of one part or two. The mixture, e.g., one containing shale or oil with six to thirteen percent of oxygen, to which is added three to eight per cent of carbonate, and from one and a half to four per cent of scrap iron, is conveyed by belts and an overhead skip to a hopper of a retort in a furnace heated by burners supplied with producer gas. The retort is fitted with a detachable lid and the vapors formed are led by a pipe to a vertical water-cooled condenser with a drain-cock which leads the condensed oils to a tank, from which a pipe leads to a packed tower for removing light oils and from which the gas passes to a holder.

  17. Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales

    Energy Technology Data Exchange (ETDEWEB)

    Godec, Michael [Advanced Resources International, Inc., Arlington, VA (United States)

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO2) storage in these formations. The potential storage of CO2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO2 storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO2 injection; (5) Identify and evaluate potential constraints to economic CO2 storage in gas shales, and propose development approaches that overcome these constraints

  18. Shale retort

    Energy Technology Data Exchange (ETDEWEB)

    Overton, P C

    1936-07-22

    A vertical distillation retort with an enclosed annular heating chamber has enclosed therein tiered compartments spaced apart by chambers into which burners deliver heating gases which pass via ports to the chamber and thence to the atmosphere. Shale is delivered by means of an air tight chute to the uppermost compartment and is spread therein and passed downwardly from compartment to compartment through ports, finally passing from the retort through an airtight chute, by means of scrapers rotatably mounted on a hollow shaft through which noncondensible gases are delivered to the distilling material via jets. The gaseous products of distillation are educted through ports and a manifold, which is also in communication with the head of the retort through the delivery pipe.

  19. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Armour, J; Armour, H

    1889-05-07

    The invention relates to retorts and accessory apparatus for distilling shale or other oil-yielding minerals. A series of long vertical retorts, composed of fire-brick or similar refractory material, are arranged in two rows in a bench, being divided into groups of four by transverse vertical partitions. The retorts are surmounted by metal casings or hoppers into which the fresh mineral is charged, and from which the distillate passes off through lateral pipes. Any uncondensed gases from the retorts may be passed into the flues surrounding them by the pipe and burned. The products of combustion from a furnace pass through a series of horizontal flues, being compelled to pass completely round each retort before entering the flue above. The products from two or more sets pass from the upper flues into flues running along the top of the bench, and return through a central flue to the chimney.

  20. The Devonian Marcellus Shale and Millboro Shale

    Science.gov (United States)

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  1. Process for retorting shale

    Energy Technology Data Exchange (ETDEWEB)

    1952-03-19

    The method of retorting oil shale to recover valuable liquid and gaseous hydrocarbons consists of heating the oil shale in a retorting zone to a temperature sufficient to convert its kerogenic constituents to normally liquid and normally gaseous hydrocarbons by contact with hot gas previously recovered from shale, cooling the gases and vapors effluent from the retorting zone by direct countercurrent contact with fresh shale to condense the normally liquid constituents of the gases and vapors, separating the fixed gas from the liquid product, heating the fixed gas, and returning it to the retorting zone to contact further quantities of shale.

  2. Shale gas. Shale gas formation and extraction

    International Nuclear Information System (INIS)

    Renard, Francois; Artru, Philippe

    2015-10-01

    A first article recalls the origin of shale gases and technological breakthroughs which allowed their exploitation, describes the development of shale gas exploitation in the USA during the 2000's and the consequences for the gas and electricity markets, and discusses the various environmental impacts (risks of pollution of aquifers, risks of induced seismicity, use and processing of drilling and production waters). The second article describes the formation of shale gas: presence of organic matter in sediments, early evolution with the biogenic gas, burrowing, diagenesis and oil formation, thermal generation of gas (condensates and methane). The author indicates the location of gas within the rock, and the main sites of shale oils and shale gases in the World. In the next part, the author describes the various phases of shale gas extraction: exploration, oriented drillings, well preparation for hydraulic fracturing, fracturing, processing of fracturing fluids, flow-back, gas production and transport, aquifer protection. He finally gives a brief overview of technical evolution and of shale gas economy

  3. A coherent high-precision radiocarbon chronology for the Late-glacial sequence at Sluggan Bog, Co. Antrim, Northern Ireland

    Science.gov (United States)

    Lowe, J. J.; Walker, M. J. C.; Scott, E. M.; Harkness, D. D.; Bryant, C. L.; Davies, S. M.

    2004-02-01

    Seventy-five radiocarbon dates are presented from Sluggan Bog in Co. Antrim, Northern Ireland. The Holocene peats are underlain by Late-glacial sediments, which also appear to have accumulated largely in a mire environment. The radiocarbon dates, from the Late-glacial and early Holocene part of the profile, were obtained from the humic and humin fractions of the sedimentary matrix, and from plant macrofossils. The last-named were dated by AMS and the sediment samples by radiometric (beta counting) methods. Age-depth models for the three dating series show a very high level of agreement between the two fractions and the macrofossils. No statistically significant difference is found between the beta counting and AMS results. Three tephras were located in the profile, the uppermost of which is in a stratigraphical position suggestive of the Vedde Ash, but the geochemical and radiocarbon evidence do not support this interpretation. The lower ashes are in the correct stratigraphical position for the Laacher See and Borrobol tephras, attributions substantiated by the radiocarbon evidence, but not by the geochemical data. The Sluggan sequence has generated one of the most internally consistent radiocarbon chronologies for any Late-glacial site in the British Isles, and it is suggested that in future more effort should be devoted to the search for, and analysis of, Late-glacial mire sequences, rather than the limnic records that have formed the principal focus of Late-glacial investigations hitherto. Copyright

  4. Chromium isotope fractionation during oxidative weathering of the Antrim Basalts: An insight into the global Cr geochemical cycle

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    in this area has focused on laterites, a unique soil type produced by intense tropical weathering. To evaluate if this phenomenon is unique to tropical regions we have measured the Cr isotope composition (d53/52Cr ‰) of soils and river water from the Antrim Plateau, Northern Ireland, a marine temperate climate....... Cr is enriched in the soil horizon relative to basaltic bedrock. Cr isotope fractionation is minimal with d53/52Cr values (-0.27 + 0.02 ‰ to -0.15 + 0.03‰) near to bedrock values (-0.25 + 0.04 ‰) indicating a lack of oxidative weathering. However, local river waters are enriched in isotopically heavy...... Cr as immobile Cr (III). The Cr (VI) lost from the system is insufficient to effect the isotopic composition of the soils. This study together with Cr data from other basaltic river catchments has found that the d53/52Cr of river water is catchment specific [1] and is controlled by local soil forming...

  5. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  6. Distillation of bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M

    1875-02-16

    The retort with its accessories constitutes a distillation apparatus for shale composed of a cylindrical, vertical, fixed, tubular, and of ring form metal retort. Also it is comprised of a special hearth of large dimensions in the form of a circular pocket receiving from the retort as heating agent the distilled shale and emitting by radiation the heat that makes the distillation apparatus for the shale act.

  7. Barnett shale completions

    Energy Technology Data Exchange (ETDEWEB)

    Schein, G. [BJ Services, Dallas, TX (United States)

    2006-07-01

    Fractured shales yield oil and gas in various basins across the United States. A map indicating these fractured shale source-reservoir systems in the United States was presented along with the numerous similarities and differences that exist among these systems. Hydrocarbons in the organic rich black shale come from the bacterial decomposition of organic matter, primary thermogenic decomposition of organic matter or secondary thermogenic cracking of oil. The shale may be the reservoir or other horizons may be the primary or secondary reservoir. The reservoir has induced micro fractures or tectonic fractures. This paper described the well completions in the Barnett Shale in north Texas with reference to major players, reservoir properties, mineralogy, fluid sensitivity, previous treatments, design criteria and production examples. The Barnett Shale is an organic, black shale with thickness ranging from 100 to 1000 feet. The total organic carbon (TOC) averages 4.5 per cent. The unit has undergone high rate frac treatments. A review of the vertical wells in the Barnett Shale was presented along with the fracture treatment schedule and technology changes. A discussion of refracturing opportunities and proppant settling and transport revealed that additional proppant increases fluid recovery and enhances production. Compatible scale inhibitors and biocides can be beneficial. Horizontal completions in the Barnett Shale have shown better results than vertical wells, as demonstrated in a production comparison of 3 major horizontal wells in the basin. tabs., figs.

  8. Oil shale technology

    International Nuclear Information System (INIS)

    Lee, S.

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail

  9. Shale oil. II. Gases from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil shale (from Colorado) was pyrolyzed, and the gaseous products obtained were studied. The organic material present in oil shale contains carboxyl groups that lose carbon dioxide during pyrolysis before the formation of soluble bitumen. Nitrogen was evolved as ammonia in two stages and was not continuous. The first evolution was from loosely combined nitrogen structures, whereas the second was from more stable forms. No hydrocarbons were present as such in the kerogen. The gaseous products from oil-shale pyrolysis were similar to those obtained by distillation of colophony, amber, coal, and wood. This places the kerogen of the oil shale in the same series of carbonaceous substances as those from which coals are formed. Kerogen appeared to be decomposed in three steps; namely, to insoluble bitumen, to soluble bitumen, and to oil (gas evolution accompanied each step). Its low solubility and the character of its pyrolytic gas indicated that kerogen is largely a resinous residue from vegetation of the past era and may have been formed by the tranportation of coal-forming organic debris to inland salty lakes or carried to the sea by clay-laden waters. The salt water and the natural settling action precipitated the clay and organic matter in an almost homogeneous deposit. Oil shales have existed to the present time because they have not been subjected to high pressures or elevated temperatures that would have changed them to petroleum.

  10. Origin of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, W G

    1923-01-01

    The theory by Jones was questioned. Oil shales do not contain partly decomposed vegetable matter, and, where particles of vegetation are identified, they do not prove that kerogen was formed in its place. Some shales do contain free oil that can be extracted with solvents.

  11. Chemical aspects of shale and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1922-01-01

    To prove that the kerogen in oil shale is a form of bitumen, several experiments were made with oil shale and a heavy asphaltic oil mixed with fuller's earth. When distilled, both the oil shale and asphalt-impregnated fuller's earth yielded paraffin oil, wax, and hydrogen sulfide (if sulfur was present). Both yielded ammonia if nitrogen was present. The organic material in each was partly isolated by extraction with pyridine and appeared to be the same. Oil shale is a marl that was saturated with oil or through which oil has passed or filtered. The insolubilities of its organic compounds are due to a slightly elevated temperature for a prolonged period and to the retaining effect exerted by the finely divided marl. The marl exerted a selective action on the oil and absorbed the asphaltum, sulfur, and nitrogen compounds from the oil. The class of oil evolved from a shale depended on the nature of the original compounds absorbed. Asphaltenes obtained from crude oil by precipitation with ethyl ether produced distillation products of water, hydrogen sulfide, ammonia, oil, wax, and a carbonaceous residue. Water was formed by decomposition of oxyasphaltenes and hydrogen sulfide by decomposition of thioasphaltenes. Ammonia was evolved during decomposition if lime was present, but if there was not sufficient free lime present, pyridine and pyrrole derivatives were redistilled as such. The oil and wax that resulted from the dry distillation were true decomposition products and equaled about 60 weight-percent of the asphaltenes. The oil and wax content of the mixture varied between 8 and 10 percent. The carbonaceous residue, which represented approximately 40 percent of the original asphaltene, was a decomposition product of the asphaltenes. Geologic comparisons of oil-shale deposits and oil-well fields were also made.

  12. Oil shale activities in China

    International Nuclear Information System (INIS)

    Peng, D.; Jialin, Q.

    1991-01-01

    China has abundant oil shale resources, of the Early Silurian to Neogene age, the most important being the Tertiary period. The proved oil shale reserves in Fushun amount to 3.6 billion t, in Maoming 4.1 billion t. In Fushun, oil shale is produced by open-pit mining as a byproduct of coal, in Maoming it is also mined in open pits, but without coal. In China, scale oil has been produced from oil shale for 60 years. Annual production of crude shale oil amounts to about 200 000 t. The production costs of shale oil are lower than the price of crude petroleum on the world market. China has accumulated the experience and technologies of oil shale retorting. The Fushun type retort has been elaborated, in which the latent and sensible heat of shale coke is well utilized. But the capacity of such retort is relatively small, therefore it is suitable for use in small or medium oil plants. China has a policy of steadily developing shale oil industry. China is conducting oil shale research and developing oil shale processing technology. Much attention is being pay ed to the comprehensive utilization of oil shale, shale oil, and to environmental problems. In China, oil shale is mostly used for producing shale by retorting, attention will also be paid to direct combustion for power generation. Great achievements in oil shale research have been made in the eighties, and there will be a further development in the nineties. (author), 12 refs., 3 tabs

  13. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  14. Improvements in shale retorts

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, A C

    1915-05-01

    This invention has reference to shale retorts and particularly related to the discharge of the spent material from the bottom of retorts or gas producers for the destructive distillation of shale, coal or other bituminous substances. It consists in the combination of a blade and means for rocking the same, a bottom piece or table, holes or slots in the same, a passage in the front brick-work of the retort, and a hopper with discharge doors.

  15. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  16. Process for extracting oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process is described for recovering bituminous material from oil shale, characterized in that the oil shale is extracted with wood spirits oil (byproduct of woodspirit rectification), if necessary in admixture with other solvents in the cold or the hot.

  17. Apparatus for treating bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    1942-11-24

    A method is given of transforming finely crushed bituminous shale, for instance of maximum particle size of about 5 mm, into balls, nodules, or similar shapes, in which the shale to be treated is passed in the form of lumps through a rotary drum. The finely crushed shale with a higher content of moisture is brought into contact with finely crushed shale of a lower content of moisture, and thereby serves as kernel material during the formation of the nodules or similar shapes.

  18. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  19. Oil shale highlights

    International Nuclear Information System (INIS)

    1994-01-01

    The low prices of crude oil have continued to retard the commercial development of oil shale and other syn fuels. Although research funds are more difficult to find, some R and D work by industry, academia, and governmental agencies continues in the United States and in other parts of the world. Improvements in retorting technology, upgrading oil-shale feedstock, and developing high-value niche-market products from shale oil are three notable areas of research that have been prominent for the past several years. Although the future prices of conventional crude cannot be predicted, it seems evident that diminishing supplies and a burgeoning world population will force us to turn to alternate fossil fuels as well as to cleaner sources of non-fossil energy. (author)

  20. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  1. Shale gas - Risks and stakes

    International Nuclear Information System (INIS)

    Parks, Olivier

    2014-01-01

    This book aims at exploring all aspects of the shale gas issue: geological data, environmental impacts, financial aspects and economical impacts of shale gas exploitation. It compares the available information with the field reality and defeats the dogmatic mirages. The research and compilation work carried out by the author make this book a reference in the domain of shale gas exploitation

  2. Process of briquetting fine shale

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J

    1943-05-05

    A process is described for the preparation of briquetts of fine bituminous shale, so-called Mansfield copper shale, without addition of binding material, characterized in that the fine shale is warmed to about 100/sup 0/C and concurrently briquetted in a high-pressure rolling press or piece press under a pressure of 300 to 800 kg/cm/sup 2/.

  3. Treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Dolbear, S H

    1921-01-04

    Oil shale is treated for the separation of the valuable organic compounds, with a view to economy in subsequent destructive distillation, by grinding to powder, mixing with water to form a pulp, adding a small quantity of an oil liquid and aerating the mixture to form a froth containing the organic compounds. If the powdered shale contains sufficient free oil, the addition of oil to the pulp may be dispensed with. In some cases an electrolyte such as sulfuric acid may be added to the pulp.

  4. Treating bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Ginet, J H

    1921-03-09

    Apparatus for the treatment of bituminous shales is described wherein a number of separate compartments are arranged in alignment and communicate with each other near the bottom thereof, each of the compartments being provided with outlets for the gases evolved therein, while agitators are arranged in each of the compartments, each agitator being composed of a number of shovels which sweep up the comminuted shale at their forward end and discharge it at their rearward end into the path of the next adjacent agitator.

  5. Origin of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham-Craig, E H

    1915-01-01

    Kerogen was believed to be formed by the inspissation of petroleum. During this process nitrogen and sulfur compounds were concentrated in the most inspissated or weathered products. At a certain stage, reached gradually, the organic matter became insoluble in carbon-disulfide and ceased to be a bitumen. Oil shale was formed by the power of certain clays or shales to absorb inspissated petroleum, particularly unsaturated hydrocarbons. This adsorption apparently depended on the colloid content of the argillaceous rock. This rock retained these impregnated petroleum residues long after porous sandstones in the vicinity had lost all traces of petroleum by weathering and leaching.

  6. Apparatus for decomposing shale

    Energy Technology Data Exchange (ETDEWEB)

    Gislain, M

    1865-06-20

    The apparatus is designed to fulfill the three following conditions: (1) complete extraction of the mineral oil, by avoiding partial decomposition; (2) purification of the said oil from products formed in the decomposition of the shale; (3) breaking down of the said oil into more products of different density. The separation of the heavy and bituminous products is claimed.

  7. Process of recovering shale oil

    Energy Technology Data Exchange (ETDEWEB)

    1949-01-17

    A process is disclosed for recovering oil from shale rock by means of channels cut in the shale deposit, to which heat is carried for warming the shale mass and which are separated from the fume channels formed in the shale by parts of the shale rock, characterized in that heating elements are put down in the heating channels, which occupy less cross section than these channels, and in the so-formed space between the channel wall and the heating element a filling is placed, which facilitates heat transfer between the heating element and the shale and simultaneously prevents a streaming of the oily product gasified out of the shale from working into the heating element and stopping it.

  8. Shale gas - uncertain destiny?

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2013-01-01

    This article outlines that, even if it would be allowed, the exploitation of shale gas in France would need ten years to start, and no one can say what would be our needs then and what would be the situation of the gas market at that time. Even if the government decided to forbid hydraulic fracturing, there could be some opportunity for experimentation with a search for alternative technology. The article notices that risks associated with hydraulic fracturing and extraction of non conventional hydrocarbons, i.e. water pollution and consumption and land use, are variously perceived in different European countries (Germany, Romania, Poland) where important American actors are present (Chevron, Exxon) to exploit shale gases. In the USA, the economic profitability seems in fact to rapidly decrease

  9. Distillation of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, G A

    1926-03-22

    To distill oil shales, cannel coals, and other carbonaceous materials for the extraction therefrom of hydrocarbons and volatile nitrogenous compounds, hard non-condensable gases from the condensers and scrubbers are withdrawn by blowers and admixed with burnt gases, obtained through conduits from the flues of heaters, and forced downwardly through horizontal chambers, connected by vertical conduits, of the heaters and delivered into the retort beneath the grate. Passing upwardly through the charge they vaporize the volatile substances in the shale, and a suction pump removes the vapors from the top of the retort. Immediately they are produced and at substantially the same temperature as that at which they emanate, thus preventing cracking of the oil vapors and condensation of the oil at the top of the retort. The amount of burnt flue gas admixed with the hard gases is regulated by two valves until a required uniform temperature is obtained. A generator supplies producer gas to a heater at the commencement of the retorting operation for circulation through the shale charge to initially produce oil vapors. The generator is connected by a pipe to the gas conduit leading to blowers.

  10. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  11. Oil shale (in memoriam)

    International Nuclear Information System (INIS)

    Strandberg, Marek

    2000-01-01

    Plans for the continued use of oil shale may lead the development of this country into an impasse. To this day no plans have been made for transition from the use of energy based on fossil fuels to that based on renewable resources. Without having any clear strategic plan politicians have been comforting both themselves and the population with promises to tackle the problem when the right time comes. Today the only enterprise whose cash flows and capital would really make it possible to reform the power industry is the firm Eesti Energia (Estonian Energy). However, its sole present shareholder - the state - prefers the sale of the firm's shares to carrying out a radical reform. At the same time, local consumers are likely to rather be willing to pay for the expensive electric energy produced from renewable resources than for that produced from fossil fuels, the price of which will also remain high due to the pollution tax. Practically it is impossible to buy a globally balanced environment for money - pollution taxes are but punitive mechanisms. The investments made into the oil-shale industry will also reinforce the cultural distance of North-East Estonia from the rest of Estonia - the uniform and prevalently Russian-speaking industrial area will be preserved as long as capital will continue to flow into the oil shale industry concentrated there. The way out would be for industries to make wider use of ecological and ecosystemic technologies and for the state to enforce ecologically balanced economic and social policies. (author)

  12. Process for refining shale bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Plauson, H

    1920-09-19

    A process is disclosed for refining shale bitumen for use as heavy mineral oil, characterized by mixtures of blown hard shale pitch and heavy mineral oil being blown with hot air at temperatures of 120 to 150/sup 0/ with 1 to 3 percent sulfur, and if necessary with 0.5 to 3 percent of an aldehyde.

  13. Distilling shale and the like

    Energy Technology Data Exchange (ETDEWEB)

    Gee, H T.P.

    1922-02-23

    In distilling shale or like bituminous fuels by internal heating with hot gas obtained by the gasifying of the shale residues with air or steam or a mixture of these, the amount and temperature of the gaseous distilling medium is regulated between the gasifying and the distilling chambers, by the introduction of cold gas or air.

  14. Shale Gas Technology. White Paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    Shale gas is extracted using horizontal drilling and hydraulic fracturing or 'fracking'. None of which are particularly new technologies or shale gas specific. In this white paper attention is paid to Horizontal drilling; Hydraulic fracturing or 'frackin'; Other 'unconventionals'; and Costs.

  15. Shale Gas Technology. White Paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    Shale gas is extracted using horizontal drilling and hydraulic fracturing or 'fracking'. None of which are particularly new technologies or shale gas specific. In this white paper attention is paid to Horizontal drilling; Hydraulic fracturing or 'frackin'; Other 'unconventionals'; and Costs.

  16. Recovering valuable shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Engler, C

    1922-09-26

    A process is described for the recovery of valuable shale oils or tars, characterized in that the oil shale is heated to about 300/sup 0/C or a temperature not exceeding this essentially and then is treated with a solvent with utilization of this heat.

  17. Organic substances of bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, V A; Pronina, M V

    1944-01-01

    Samples of Gdov (Estonia) and Volga (Russia) oil shales were oxidized by alkaline permanganate to study the distribution of carbon and the composition of the resulting oxidation products. Gdov shale was rather stable to oxidation and, after 42 hours 61.2 percent of the organic material remained unoxidized. Five hundred hours were required for complete oxidation, and the oxidation products consisted of CO/sub 2/, acetic, oxalic, and succinic acids. The oxidation products from Volga shale consisted of CO/sub 2/, acetic, oxalic, succinic, adipic, phthalic, benzenetricarboxylic, benzenetetracarboxylic, and benzenepentacarboxylic acids. The results indicated that Gdov shale is free of humic substances and is of sapropelic origin, while Volga shale is of sapropelic-humic origin.

  18. Treatment of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H L

    1922-07-04

    To distill oil shale in lump form, it is fed as a continuous charge through an axially rotating externally heated retorting chamber, where the exposed surfaces of the lumps are gradually decomposed by destructive distillation, and light physical shocks are continuously administered to them, due to their tumbling-over motion and their contact with the ribs, to knock off the decomposing surfaces and present fresh surfaces for distillation. The vapors are withdrawn through a conduit, and the partially distilled lumps are fed through a shoot into a plurality of rotating externally heated retorts, similar in character to the first retort, from whence the vapors pass through a conduit to condensing apparatus, from which the permanent gases are withdrawn, and used for fuel in the distillation zone, while the residue is discharged into a water well. An auxiliary heating conduit, having a burner discharging into it, may be employed, while in some cases steam may be used if required. In two modifications, different arrangements of the retorts are shown, as well as means within the retorts for breaking up the lumps of shale.

  19. Distillation of shale

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J

    1877-01-05

    The retort consists of a trough fitted with a hood, the edges of which hood dip into a channel of water formed round the sides of the trough, and thereby seal the retort. The shale is introduced at one end of the hood through a double-valved inlet hopper, and is moved along the retort by transverse scrapers or paddles. At the other end it falls through a double-valved outlet upon a set of firebars which carry it along under the retort, where either alone or in admixture with other fuel it is used for heating the vessel. The vapors from the shale pass off through pipes in the hood, or an inverted channel may be formed along the center of the hood for collecting the vapors from different parts of the vessel. The scrapers are worked by rocking shafts supported on bearings in the edges of the trough, and are made to feather when moving in a direction from the discharged end. Levers from the rocking shafts project down into the water channel, where they are connected with horizontal bars made to reciprocate longitudinally by suitable means, thus working the scrapers without using stuffing-boxes. Rotating scrapers may be substituted for the reciprocating ones.

  20. Carbon sequestration in depleted oil shale deposits

    Science.gov (United States)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  1. Distilling oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, R H

    1923-04-18

    In the fractional distillation of oils from oil shale and similar materials the charge is passed continuously through a vertical retort heated externally by hot combustion gases in flues and internally by the passage of these gases through flues passing through the retort so that zones of increasing temperature are maintained. A vapor trap is provided in each zone having an exit pipe leading through a dust trap to a condenser. The bottoms of the conical vapor traps are provided with annular passages perforated to permit of steam being sprayed into the charge to form screens which prevent the vapors in different zones from mingling, and steam may also be introduced through perforations in an annular steam box. Dampers are provided to control the passage of the heating gases through the flues independently.

  2. Distilling shale and coal

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H; Young, G

    1923-01-09

    In a process of recovering oil from shale or coal the material is ground and may be subjected to a cleaning or concentrating process of the kind described in Specification 153,663 after which it is distilled in a furnace as described in Specification 13,625/09 the sections of the furnace forming different temperature zones, and the rate of the passage of the material is regulated so that distillation is complete with respect to the temperature of each zone, the whole distillation being accomplished in successive stages. The vapors are taken off at each zone and superheated steam may be passed into the furnace at suitable points and the distillation terminated at any stage of the process.

  3. Distillation of shale

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, E L

    1923-09-04

    To retort shale, lignite, coal, or the like for the recovery of gas and oils or spirits, it is fed through a hopper and then passed in a thin film through the space between the casing and outer shell by means of louvres which with the shell and the outer shell are reciprocated vertically. The top of the shell connected by brackets and lifting joists are pivoted to an eccentric driven by a shaft. The spent material passes through openings in the fixed base casting and openings in a moving ring which is rotated by a pawl and ratchet gear actuated by the reciprocation of the shell. The openings are opposite one another at the commencement of the downward movement of the louvres and shell and closed when the louvres are right down and on their upward movement.

  4. Hydrogenation of shale

    Energy Technology Data Exchange (ETDEWEB)

    Bedwell, A J; Clark, E D; Miebach, F W

    1935-09-28

    A process for the distillation, cracking, and hydrogenation of shale or other carbonaceous material consists in first distilling the material to produce hydrocarbon oils. Steam is introduced and is passed downwardly with hydrocarbon vapors from the upper portion of the retort where the temperature is maintained between 400/sup 0/C and 450/sup 0/C over the spent carbonaceous materials. The material is drawn off at the bottom of the retort which is maintained at a temperature ranging from 600/sup 0/C to 800/sup 0/C whereby the hydrocarbon vapors are cracked in the pressure of nascent hydrogen obtained by the action of the introduced steam on the spent material. The cracked gases and undecomposed steam are passed through a catalyst tower containing iron-magnesium oxides resulting in the formation of light volatile oils.

  5. Distilling coal, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Bussey, C C

    1916-07-17

    In the extraction of vovolatile ingredients from coal, shale, lignite, and other hydrocarbonaceous materials by passing through the material a heating-agent produced by burning at the base of the charge a portion of the material from which the volatile ingredients have been extracted, the temperature of the heating agent is maintained constant by continuously removing the residue from the bottom of the apparatus. The temperature employed is 800/sup 0/F or slightly less, so as to avoid any breaking-down action. As shown the retort is flared downwardly, and is provided at the base with a fireplace, which is in communication with the interior of the retort through flues fitted with screens and dampers. Beneath the bottom of the retort is mounted a movable grate carried on endless sprocket chains, which are preferably set so that the grate inclines downwardly towards the coke, etc.

  6. Recovering oil from shale

    Energy Technology Data Exchange (ETDEWEB)

    Leahey, T; Wilson, H

    1920-11-13

    To recover oil free from inorganic impurities and water, and utilize the oil vapor and tarry matter for the production of heat, shale is heated in a retort at a temperature of not less than 120/sup 0/C. The vapors pass by a pipe into a water jacketed condenser from which the condensate and gas pass through a pipe into a chamber and then by a pipe to a setting chamber from where the light oils are decanted through a pipe into a tank. The heavy oil is siphoned through a pipe into a tank, while the gas passes through a pipe into a scrubber and then into a drier, exhauster and pipe to the flue and ports, above the fire-bars, into the retort. Air is introduced through a pipe, flue, and ports.

  7. Neutron activation determination of rhenium in shales shales and molybdenites

    International Nuclear Information System (INIS)

    Zajtsev, E.I.; Radinovich, B.S.

    1977-01-01

    Described is the technique for neutron activation determination of rhenium in shales and molybdenites with its radiochemical extraction separation by methyl-ethyl ketone. The sensitivity of the analysis is 5x10 -7 %. Experimental checking of the developed technique in reference to the analysis of shales and molybdenites was carried out. Estimated is the possibility of application of X-ray gamma-spectrometer to instrumental determination of rhenium in molybdenites

  8. Oil shale utilization in Israel

    International Nuclear Information System (INIS)

    Kaiser, A.

    1993-01-01

    Geological surveys have confirmed the existence of substantial Israeli oil shale reserves. The proven reserves contain approximately 12 billion tons of available ores, and the potential is deemed to be much higher. Economic studies conducted by PAMA indicate promising potential for power generation via Israel oil shale combustion. Electric power from oil shale appears competitive with power generated from coal fired power plants located along the coast. PAMA's demonstration power plant has been in operation since the end of 1989. Based on the successful results of the first year of operation, PAMA and IEC are now engaged in the pre-project program for a 1000 MW commercial oil shale fired power plant, based on eight 120 MW units; the first unit is scheduled to begin operation in 1996

  9. Shale gas: the water myth

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, Kerry [Dillon Consulting Limited (Canada)

    2010-07-01

    In recent years, due to the depletion of traditional fossil fuel resources and the rising price of energy, production from unconventional gas activities has increased. Large shale gas plays are available in Quebec but environmental concerns, mainly in terms of water resources, have been raised. The aim of this paper is to provide information on the impact of shale gas exploitation on water resources. It is shown herein that shale gas water use is not significant, the water use of 250 wells represents only 0.3% of the Quebec pulp and paper industry's water use, or 0.0004% of the flow of the St Lawrence. It is also shown that the environmental risk associated with fracking and drilling activities is low. This paper demonstrated that as long as industry practices conform to a well-designed regulatory framework, shale gas development in Quebec will have a low impact on water resources and the environment.

  10. BLM Colorado Oil Shale Leases

    Data.gov (United States)

    Department of the Interior — KMZ file Format –This data set contains the Oil Shale Leases for the State of Colorado, derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land...

  11. Stabilization of gasoline from shale

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, L

    1929-03-14

    A process is described of stabilizing gasoline from shale, consisting in treating by agitating the gasoline freshly distilled from shale oil with 1.5 percent of its weight of sulfuric acid diluted to more than 10 times its volume, after which separating the pyridine, then treating by agitating with sulfuric acid which treatment separates the unsaturated hydrocarbons and finally treating by agitating with 1.5 percent of its weight of saturated caustic soda solution and washing with water.

  12. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  13. GRI's Devonian Shales Research Program

    International Nuclear Information System (INIS)

    Guidry, F.K.

    1991-01-01

    This paper presents a summary of the key observations and conclusions from the Gas Research Institute's (GRI's) Comprehensive Study Well (CSW) research program conducted in the Devonian Shales of the Appalachian Basin. Initiated in 1987, the CSW program was a series of highly instrumented study wells drilled in cooperation with industry partners. Seven wells were drilled as part of the program. Extensive data sets were collected and special experiments were run on the CSW's in addition to the operator's normal operations, with the objectives of identifying geologic production controls, refining formation evaluation tools, and improving reservoir description and stimulation practices in the Devonian Shales. This paper highlights the key results from the research conducted in the CSW program in the areas of geologic production controls, formation evaluation, stimulation and reservoir engineering, and field operations. The development of geologic, log analysis, and reservoir models for the Shales from the data gathered and analysis, and reservoir models for the Shales from the data gathered and analyzed during the research is discussed. In addition, on the basis of what was learned in the CSW program, GRI's plans for new research in the Devonian Shales are described

  14. Distillation of shale in situ

    Energy Technology Data Exchange (ETDEWEB)

    de Ganahl, C F

    1922-07-04

    To distill buried shale or other carbon containing compounds in situ, a portion of the shale bed is rendered permeable to gases, and the temperature is raised to the point of distillation. An area in a shale bed is shattered by explosives, so that it is in a relatively finely divided form, and the tunnel is then blocked by a wall, and fuel and air are admitted through pipes until the temperature of the shale is raised to such a point that a portion of the released hydrocarbons will burn. When distillation of the shattered area takes place and the lighter products pass upwardly through uptakes to condensers and scrubbers, liquid oil passes to a tank and gas to a gasometer while heavy unvaporized products in the distillation zone collect in a drain, flow into a sump, and are drawn off through a pipe to a storage tank. In two modifications, methods of working are set out in cases where the shale lies beneath a substantially level surface.

  15. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.; Qin, Guan; Collier, Nathan; Gong, Bin

    2011-01-01

    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even

  16. Shale gas exploitation: Status, problems and prospect

    Directory of Open Access Journals (Sweden)

    Shiqian Wang

    2018-02-01

    Full Text Available Over the past five years, great progress has been made in shale gas exploitation, which has become the most driving force for global gas output growth. Hydrocarbon extraction from shale helps drive the USA on the road to energy independence. Besides, shale oil & gas production has been kept in a sustained growth by continuous improvement in drilling efficiency and well productivity in the case of tumbling oil prices and rig counts. Shale gas reserves and production have been in a rapid growth in China owing to the Lower Paleozoic Wufeng and Longmaxi shale gas exploitation in the Sichuan Basin, which has become an important sector for the future increment of gas reserves and output in China. However, substantial progress has been made neither in non-marine shale gas exploitation as previously expected nor in the broad complicated tectonic areas in South China for which a considerable investment was made. Analysis of the basic situation and issues in domestic shale gas development shows that shale gas exploitation prospects are constrained by many problems in terms of resources endowment, horizontal well fracturing technology, etc. especially in non-marine shale deposits and complicated tectonic areas in South China where hot shales are widely distributed but geological structures are found severely deformed and over matured. Discussion on the prospects shows that the sustained and steady growth in shale gas reserves and production capacity in the coming years lies in the discovery and supersession of new shale plays in addition to Wufeng and Longmaxi shale plays, and that a technological breakthrough in ultra-high-pressure and ultra-deep (over 3500 m buried in the Sichuan Basin marine shale gas exploitation is the key and hope. Keywords: Shale gas, Exploitation, Marine facies, Hot shale, Resource endowment, Sichuan Basin, South China, Complicated tectonic area, Gas play

  17. Oil. The revenge of shales

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2017-01-01

    This article comments the evolutions noticed during these past years as the USA started to exploit non conventional hydrocarbons (shale gas and oil), and thus reduced their supplies from the Middle East. In reaction, OPEC members provoked a massive oil price decrease. If shale oil exploitation in the USA has slowed down for a while, it starts again: the number of platforms and production are increasing. Moreover, the profitability threshold is strongly decreasing. Argentina and China are also developing this sector, and Great-Britain and South-Africa are about to start projects. The article outlines that, even though France decided not to exploit shale gas and oil, French industries are present on this market and technology. In an interview, a representative of the French sector of non conventional hydrocarbons comments these evolutions as well as the French decision and its possible evolutions

  18. Process for treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process for treating oil shale is characterized in that the shale is first finely ground, then heated in the presence of steam in a high-pressure retort at 1 to 50 atmospheres pressure at a temperature of 200/sup 0/ to 450/sup 0/C and then with large amounts of water with or without materials forming emulsions with water or with oil. Solution medium suitable for bitumen or paraffin is beaten up in a rapid hammer mill until all or most all of the oil or bitumen is emulsified. The emulsion is separated by filter-pressing and centrifuging from the solid shale residue and the oil or bitumen is again separated from the emulsion medium by heating, acidulating, standing, or centrifuging, and then in known ways is further separated, refined, and worked up.

  19. Obtaining shale distillate free from sulphur

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1917-09-14

    A process whereby, from sulfur-containing shale, products free from sulfur may be obtained, consisting of mixing with the finely ground shale a portion of iron salts containing sufficient metal to unite with all the sulfur in the shale and form sulfide therewith, grinding the mixture to a fine state of subdivision and subsequently subjecting it to destructive distillation.

  20. Maquoketa Shale Caprock Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Leetaru, Hannes

    2014-09-30

    The Knox Project objective is to evaluate the potential of formations within the Cambrian-Ordovician strata above the Mt. Simon Sandstone (St. Peter Sandstone and Potosi Dolomite) as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. The suitability of the St. Peter Sandstone and Potosi Dolomite to serve as reservoirs for CO2 sequestration is discussed in separate reports. In this report the data gathered from the Knox project, the Illinois Basin – Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Sequestration project (IL-ICCS) are used to make some conclusions about the suitability of the Maquoketa shale as a confining layer for CO2 sequestration. These conclusions are then upscaled to basin-wide inferences based on regional knowledge. Data and interpretations (stratigraphic, petrophysical, fractures, geochemical, risk, seismic) applicable to the Maquoketa Shale from the above mentioned projects was inventoried and summarized. Based on the analysis of these data and interpretations, the Maquoketa Shale is considered to be an effective caprock for a CO2 injection project in either the Potosi Dolomite or St. Peter Sandstone because it has a suitable thickness (~200ft. ~61m), advantageous petrophysical properties (low effective porosity and low permeability), favorable geomechanical properties, an absence of observable fractures and is regionally extensive. Because it is unlikely that CO2 would migrate upward through the Maquoketa Shale, CO2, impact to above lying fresh water aquifers is unlikely. Furthermore, the observations indicate that CO2 injected into the St. Peter Sandstone or Potosi Dolomite may never even migrate up into the Maquoketa Shale at a high enough concentrations or pressure to threaten the integrity of the caprock. Site specific conclusions were reached by unifying the data and conclusions from the IBDP, ICCS and the Knox projects. In the Illinois Basin, as one looks further away from

  1. Origin of Scottish oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Conacher, H R.J.

    1916-12-01

    Oil shales contain two distinct types of organic material, one is comparable to the woody material in coal and the other consists of yellow bodies. When distilled, the latter yields the liquid product typical of oil shale, whereas the woody material produces large amounts of ammonia. The yellow bodies have been described by various investigators as fossil algae, spores, or dried-up globules of petroleum. In this study it was concluded that the yellow bodies were fragments of resins set free by the decay and oxidation of the vegetable matter with which they were originally associated.

  2. Mechanical Characterization of Mancos Shale

    Science.gov (United States)

    Broome, S.; Ingraham, M. D.; Dewers, T. A.

    2015-12-01

    A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.

  3. Improvements in the distillation of shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Noad, J

    1912-09-20

    A process for treating shale and other bituminous substances containing sulfur and obtaining desulfurized products of distillation consisting in the consecutive steps of crushing the shale, mixing a suitable liquid with the shale granules, mixing slaked lime with the liquid coated shale granules, and gradually feeding the lime coated shale granules into a retort presenting a series of ledges or the like and working the shale granules down from ledge to ledge so that they are continuously agitated while being heated, the volatile constituents escaping through the lime coating and being conducted away from the upper part of the retort to suitable condensing apparatus, and the sulfur being arrested by the lime coating and together with the exhausted shale and other impurities being discharged from the lower part of the retort.

  4. Desulfurization of Jordanian oil shale

    International Nuclear Information System (INIS)

    Abu-Jdayil, B. M.

    1990-01-01

    Oxy desulfurization process and caustic treatment were applied in this work to remove sulfur from Jordanian oil shale. The oxy desulfurization process has been studied in a batch process using a high pressure autoclave, with constant stirring speed, and oxygen and water were used as desulfurizing reagents. Temperature, oxygen pressure, batch time, and particle size were found to be important process variables, while solid/liquid ratio was found to have no significant effect on the desulfurization process. The response of different types of oil shale to this process varied, and the effect of the process variables on the removal of total sulfur, pyritic sulfur, organic sulfur, total carbon, and organic carbon were studied. An optimum condition for oxy desulfurization of El-Lajjun oil shale, which gave maximum sulfur removal with low loss of carbon, was determined from the results of this work. The continuous reaction model was found to be valid, and the rate of oxidation for El-Lajjun oil shale was of the first order with respect to total sulfur, organic sulfur, total carbon, and organic carbon. For pyritic sulfur oxidation, the shrinking core model was found to hold and the rate of reaction controlled by diffusion through product ash layer. An activation energy of total sulfur, organic sulfur, pyritic sulfur, total carbon, and organic carbon oxidation was calculated for the temperature range of 130 -190 degrees celsius. In caustic treatment process, aqueous sodium hydroxide at 160 degrees celsius was used to remove the sulfur from El-Lajjun oil shale. The variables tested (sodium hydroxide concentration and treatment time) were found to have a significant effect. The carbon losses in this process were less than in the oxy desulfurization process. 51 refs., 64 figs., 121 tabs. (A.M.H.)

  5. Conversion characteristics of 10 selected oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.

    1989-08-01

    The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

  6. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  7. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  8. Process of distilling bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, M

    1859-05-19

    This new process consists of placing at the end of a tube or the end of one or more retorts, an aspirating pump and compressor or a blower with two valves doing the same work or, better yet, a fan for sucking the vapor from the shale as it is formed in order to prevent its accumulating in the retorts and being decomposed. A second tube, pierced with little holes, placed in series with the pump, blower, or fan, acts as a vessel or receiver for the water. The vapors from the shale are compressed by the aspirator in the receiver for the water and condensed completely, without loss of gas and disinfect themselves for the most part.

  9. Recovering bituminous matter from shale

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, H D

    1922-08-29

    A process is described for obtaining valuable hydro-carbons from bituminous solids such as shale and the like, which comprises digesting a mixture of such a bituminous solid with a hydro-carbon liquid, the digestion being conducted at temperature high enough to effectively liquefy heavy bituminous matter contained in the solid but insufficiently high to effect substantial distillation of heavy bituminous matter, separating a resultant liquid mixture of hydrocarbons from the residue of such bituminous solid and refining the liquid mixture.

  10. Shale oil. I. Genesis of oil shales and its relation to petroleum and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil-shale kerogen originated from resinous vegetation residues of past eras, whereas well petroleum was formed from oil shales by pressure and mild heat. Petroleum migrated to its present reservoir from neighboring oil-shale deposits, leaving a residue of black bituminous shales. The high carbon dioxide content of gases present in petroleum wells originated from kerogen, as it gives off carbon dioxide gas before producing soluble oil or bitumen.

  11. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  12. Method and arrangement of distillation of shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1920-03-29

    A method is given of distilling shale and other bituminous materials utilizing the heat from the combustion of the residue, possibly with additional heat from other fuels. It is characterized by the shale, which is arranged in layers, being first submitted to a process of distillation utilizing the heat mentioned, and at the same time recovering the products of distillation, and second the shale being burned without disturbing the layers to any appreciable extent. The patent has 16 more claims.

  13. Preparation of cement from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1922-08-24

    A process for preparing cement from oil shale is described. The simultaneous recovery of shale oil by heating the oil shale formed into briquets with finely ground lime or limestone in a stream of hot gases is characterized by the fact that live steam or fine drops of water as preserving and carbonization means is introduced into the furnace, at the place, where the temperature of the briquet reaches about 500 to 600/sup 0/ C.

  14. Shale gas - the story of a deception

    International Nuclear Information System (INIS)

    Ambroise, Jacques

    2013-01-01

    This bibliographical sheet presents a book which aims at informing citizen about the irreversible consequences of shale gas exploitation on the environment, and about the economical and social aspects of an exploitation of this energy on a large scale. The author highlights the technical and environmental problems raised by hydraulic fracturing, outlines the complexity of the regulatory, legal and administrative framework, discusses the arguments which support shale gas exploitation, and outlines the importance of and energy transition without shale gas. The author notably outlines the conflicts of interest which pervert the debate on shale gas, notably within the French National Assembly

  15. A perspective on Canadian shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Mike; Davidson, Jim; Mortensen, Paul

    2010-09-15

    In a relatively new development over just the past few years, shale formations are being targeted for natural gas production. Based on initial results, there may be significant potential for shale gas in various regions of Canada, not only in traditional areas of conventional production but also non-traditional areas. However, there is much uncertainty because most Canadian shale gas production is currently in experimental or early developmental stages. Thus, its full potential will not be known for some time. If exploitation proves to be successful, Canadian shale gas may partially offset projected long-term declines in Canadian conventional natural gas production.

  16. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  17. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  18. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  19. Compaction Characteristics of Igumale Shale | Iorliam | Global ...

    African Journals Online (AJOL)

    This paper reports the outcome of an investigation into the effect of different compactive energies on the compaction characteristics of Igumale shale, to ascertain its suitability as fill material in highway ... The study showed that Igumale shale is not suitable for use as base, subbase and filling materials in road construction.

  20. Process for recovering oil from shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-20

    A process is described for recovering oil from oil-shale and the like, by the direct action of the hot gases obtained by burning the carbonized shale residue. It is immediately carried out in separate adjacent chambers, through which the feed goes from one to the other intermittently, from the upper to the lower.

  1. Method of distillation of sulfurous bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Hallback, A J.S.; Bergh, S V

    1918-04-22

    A method of distillation of sulfur-containing bituminous shales is characterized by passing the hot sulfur-containing and oil-containing gases and vapors formed during the distillation through burned shale containing iron oxide, so that when these gases and vapors are thereafter cooled they will be, as far as possible, free from sulfur compounds. The patent contains six more claims.

  2. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    A study was made to determine whether retorted shale additions would significantly affect symbiotic N/sub 2/ fixation. Results indicate that small additions of the shale may stimulate plant growth but with higher concentrations plants are stressed, resulting in a decreased biomass and a compensatory effect of an increased number of nodules and N/sub 2/ fixation potential. (JMT)

  3. Thermophysical properties of Conasauga shale

    International Nuclear Information System (INIS)

    Smith, D.D.

    1978-01-01

    Thermophysical-property characterizations of five Conasauga shale cores were determined at temperatures between 298 and 673 K. Methods of specimen fabrication for different tests were evaluated. Thermal-conductivity and thermal-expansion data were found to be dependent on the structure and orientation of the individual specimens. Thermal conductivities ranged between 2.8 and 1.0 W/m-K with a small negative temperature dependence. Thermal expansions were between 2 and 5 x 10 -3 over the temperature range for the group. Heat capacity varied with the composition. 17 figures, 3 tables

  4. Construction of Shale Gas Well

    Science.gov (United States)

    Sapińska-Śliwa, Aneta; Wiśniowski, Rafał; Skrzypaszek, Krzysztof

    2018-03-01

    The paper describes shale gas borehole axes trajectories (vertical, horizontal, multilateral). The methodology of trajectory design in a two-and three-dimensional space has been developed. The selection of the profile type of the trajectory axes of the directional borehole depends on the technical and technological possibilities of its implementation and the results of a comprehensive economic analysis of the availability and development of the field. The work assumes the possibility of a multivariate design of trajectories depending on the accepted (available or imposed) input data.

  5. Introduction to special section: China shale gas and shale oil plays

    Science.gov (United States)

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    In the last 10 years, the success of shale gas and shale oil productions as a result of technological advances in horizontal drilling, hydraulic fracturing and nanoscale reservoir characterization have revolutionized the energy landscape in the United States. Resource assessment by the China Ministry of Land and Resources in 2010 and 2012 and by the U.S. Energy Information Administration in 2011 and 2013 indicates China’s shale gas resource is the largest in the world and shale oil resource in China is also potentially significant. Inspired by the success in the United States, China looks forward to replicating the U.S. experience to produce shale gas to power its economy and reduce greenhouse gas emissions. By 2014, China had drilled 400 wells targeting marine, lacustrine, and coastal swamp transitional shales spanning in age from the Precambrian to Cenozoic in the last five years. So far, China is the leading country outside of North America in the viable production of shale gas, with very promising prospects for shale gas and shale oil development, from the Lower Silurian Longmaxi marine shale in Fuling in the southeastern Sichuan Basin. Geological investigations by government and academic institutions as well as exploration and production activities from industry indicate that the tectonic framework, depositional settings, and geomechanical properties of most of the Chinese shales are more complex than many of the producing marine shales in the United States. These differences limit the applicability of geologic analogues from North America for use in Chinese shale oil and gas resource assessments, exploration strategies, reservoir characterization, and determination of optimal hydraulic fracturing techniques. Understanding the unique features of the geology, shale oil and gas resource potential, and reservoir characteristics is crucial for sweet spot identification, hydraulic fracturing optimization, and reservoir performance prediction.

  6. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  7. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.

    2011-05-14

    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even though the cost is substantially higher than traditional gas deposits. Recent advances in horizontal drilling and multistage hydraulic fracturing, which dramatically lower costs of developing shale gas fields, are key to renewed interest in shale gas deposits. Hydraulically induced fractures are quite complex in shale gas reservoirs. Massive, multistage, multiple cluster treatments lead to fractures that interact with existing fractures (whether natural or induced earlier). A dynamic approach to the fracturing process so that the resulting network of reservoirs is known during the drilling and fracturing process is economically enticing. The process needs to be automatic and done in faster than real-time in order to be useful to the drilling crews.

  8. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    Although a soil-shale mixture was employed as the growth medium in this experiment, the results presentd are applicable to the proposed method of disposal mentioned earlier. Under field conditions, when covering the retorted shale with topsoil, some mixing of these materials might occur in the plant root region. In addition, it has been demonstrated that buried shale negatively affects enzyme activities in overburden surface soil. The occurrence of either of those events could affect symbiotic N/sub 2/ fixation in a manner similar to that reported in this paper. Researchers conclude that due to the varied effects of retorted shale on the legumes tested, further evaluation of other legumes may be necessary. Additional research would be required to determine which legumes have potential use for reclamation of retorted shale.

  9. Relation of peat to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Linker, S

    1924-01-01

    Samples of oil shale from the Green River formation and from Elko (Nev.), Brazil, Austria, and South Africa were examined, and several varieties of shale were found. Green River oil shale represents three of the more common types plus one less common type. These were: contorted shale with a velvety appearance, thin paper shale resembling the curled-up leaves of a book, massive black shale resembling a piece of rubber, and a less common type, which showed the bedding planes very clearly. The Elko (Nev.) shale was a light buff color; the shale from Brazil resembled a piece of petrified peat. When the shales were cut very thin, their colors ranged from yellow to reddish-brown. The composition, as seen under the microscope, was of well-preserved plant material such as spores, pollen grains, fragments of cell tissues, algae, fungi, bacteria, macerated organic residue, small pieces of resin, animal fossils, and translucent bodies. Oil shale was produced from organic material that accumulated in peat bogs, marshes, or swamps in fresh or salt waters. The organic matter was decomposed by bacterial action. Certain parts of the plants decayed more readily than others. Before lithification occurred, a chemical action took place that changed the softer tissues of the plant debris into a gel. This collodial matter penetrated and surrounded the more resistant fragments and preserved them from further decay. Certain bog waters contain a high percentage of humic acids in solution or collodial suspension and produce insoluble humates when neutralized. These humates are probably the so-called kerogen bodies.

  10. Age evaluation and causation of rock-slope failures along the western margin of the Antrim Lava Group (ALG), Northern Ireland, based on cosmogenic isotope (36Cl) surface exposure dating

    Science.gov (United States)

    Southall, David W.; Wilson, Peter; Dunlop, Paul; Schnabel, Christoph; Rodés, Ángel; Gulliver, Pauline; Xu, Sheng

    2017-05-01

    The temporal pattern of postglacial rock-slope failure in a glaciated upland area of Ireland (the western margin of the Antrim Lava Group) was evaluated using both 36Cl exposure dating of surface boulders on run-out debris and 14C dating of basal organic soils from depressions on the debris. The majority of the 36Cl ages ( 21-15 ka) indicate that major failures occurred during or immediately following local deglaciation ( 18-17 ka). Other ages ( 14-9 ka) suggest some later, smaller-scale failures during the Lateglacial and/or early Holocene. The 14C ages (2.36-0.15 cal ka BP) indicate the very late onset of organic accumulation and do not provide close limiting age constraints. Rock-slope failure during or immediately following local deglaciation was probably in response to some combination of glacial debuttressing, slope steepening and paraglacial stress release. Later failures may have been triggered by seismic activity associated with glacio-isostatic crustal uplift and/or permafrost degradation consequent upon climate change. The 36Cl ages support the findings of previous studies that show the deglacial - Lateglacial period in northwest Ireland and Scotland to have been one of enhanced rock-slope failure. Table S2 Concentrations of main elements (as oxides) etc.

  11. Preparation of hydraulic cement from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement from oil-shale or oil-shale residue is characterized in that, the oil-shale or shale-coke together with a slight amount of marl is burned under sintering conditions and the residue obtained is ground to a fine dust.

  12. A review of the organic geochemistry of shales

    International Nuclear Information System (INIS)

    Ho, P.C.; Meyer, R.E.

    1987-06-01

    Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids, fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified

  13. Production of oil from Israeli oil shale

    International Nuclear Information System (INIS)

    Givoni, D.

    1993-01-01

    Oil shale can be utilized in two-ways: direct combustion to generate steam and power or retorting to produce oil or gas. PAMA has been developing both direct combustion and retorting processes. Its main effort is in the combustion. An oil shale fired steam boiler was erected in the Rotem industrial complex for demonstration purposes. PAMA has also been looking into two alternative retorting concepts - slow heating of coarse particles and fast heating of fine particles. The present paper provides operating data of oil shale processing in the following scheme: (a) retorting in moving bed, pilot and bench scale units, and (b) retorting in a fluidized bed, bench scale units. (author)

  14. The real hazards of shale gas

    International Nuclear Information System (INIS)

    Favari, Daniele; Picot, Andre; Durand, Marc

    2013-01-01

    This bibliographical sheet presents a book which addresses the issue of shale gas. A first part describes the origin of this gaseous hydrocarbon, the composition of shale gas and its extraction, the technique of hydraulic fracturing, and the environmental risks. A second part addresses the economic, ecologic and political issues. The authors outline that all signs are there to prove the alarming hazards of shale gas. One of the authors outlines the necessity of an energy transition, far from fossil and nuclear energy, in order to guarantee a high level of protection of human health and of the environment

  15. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  16. Investigation of the dielectric properties of shale

    International Nuclear Information System (INIS)

    Martemyanov, Sergey M.

    2011-01-01

    The article is dedicated to investigation of the dielectric properties of oil shale. Investigations for samples prepared from shale mined at the deposit in Jilin Province in China were done. The temperature and frequency dependences of rock characteristics needed to calculate the processes of their thermal processing are investigated. Frequency dependences for the relative dielectric constant and dissipation factor of rock in the frequency range from 0,1 Hz to 1 MHz are investigated. The temperature dependences for rock resistance, dielectric capacitance and dissipation factor in the temperature range from 20 to 600°C are studied. Key words: shale, dielectric properties, relative dielectric constant, dissipation factor, temperature dependence, frequency dependence

  17. Impact of Oxidative Dissolution on Black Shale Fracturing: Implication for Shale Fracturing Treatment Design

    Science.gov (United States)

    You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.

    2017-12-01

    Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may

  18. Refining shale-oil distillates

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, J

    1952-03-17

    A process is described for refining distillates from shale oil, brown coal, tar, and other tar products by extraction with selective solvents, such as lower alcohols, halogen-hydrins, dichlorodiethyl ether, liquid sulfur dioxide, and so forth, as well as treating with alkali solution, characterized in that the distillate is first treated with completely or almost completely recovered phenol or cresotate solution, the oil is separated from the phenolate with solvent, for example concentrated or adjusted to a determined water content of lower alcohol, furfural, halogen-hydrin, dichlorodiethyl ether, liquid sulfur dioxide, or the like, extracted, and the raffinate separated from the extract layer, if necessary after distillation or washing out of solvent, and freeing with alkali solution from residual phenol or creosol.

  19. Shale gas, a hazardous exploitation

    International Nuclear Information System (INIS)

    Maincent, G.

    2011-01-01

    In march 2010 three authorizations to search for shale gases were delivered in France in the regions of Montelimar, Nant and Villeneuve-de-Berg. A general public outcry has led the government to freeze the projects till a complete assessment of the impact on the environment is made. The fears of the public are based on the feedback experience in the Usa where some underground waters were polluted. The source of pollution is twofold: first the additives used in the injected fluids (methanol as an anti-microbic agent, hydrochloric acid to dissolve natural cements or glycol ethylene as a deposit inhibitor) and secondly metal particles of copper, zinc or lead trapped in the clay layers and released by the injection of the fluids. It appears also that the injection of high pressure fluids near a crack can induce earth tremors by reactivating the crack. (A.C.)

  20. The Resurgence of Shale Oil

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-09-01

    This study addresses the resilience factors of the American production of light tight oil, in particular regarding the evolution of the financial model, and the regulatory changes with the authorisation of exports for crude oil. The paper also evaluates the development perspectives of the production on the medium and long term. US production of light tight oil (LTO, commonly known as 'shale oil') experienced a spectacular expansion between 2010 and 2014, becoming the largest source of growth in world oil production. At the start of 2015, however, the sustainability of its business model became questionable. Oil prices had collapsed and uncertainty about future US production was at its height. The sharp drop in the number of drill holes as of January 2015 raised fears of a rapid fall in US petroleum output. The LTO business model, based largely on the use of debt, reinforced this projection. Independent producers were heavily indebted, and were no longer able to invest in new wells. LTO production would therefore run out of steam. Two years later, LTO has passed its first test successfully. While output of shale gas has clearly fallen, cuts have been modest and much less than had been feared, given the falls in capital spending (CAPEX) and the number of drill holes. Productivity improvements as well as cost reductions have permitted a halving of the LTO equilibrium price. Independent producers have refocused their activities on the most productive basins and sites. The essential role played by the Permian Basin should be stressed at this point. In two years, it has become a new El dorado. Despite the fall in drill holes through to May 2016, production has continued to rise and now amounts to a quarter of American oil output. Furthermore, independents have drawn extra value from their well inventories, which include drilled, but also uncompleted wells. Lastly, the impressive number of drilled wells prior to price cuts has allowed producers to maintain their output

  1. EVALUATION OF SHALE GAS POTENTIAL IN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Lidiya Parkhomchik

    2015-01-01

    Full Text Available The article considers the primary evaluation of the shale gas resource potential in Kazakhstan, as well as defines the most problematic issues for the large-scale shale gas production over the state. The authors pay special attention to the national strategy of the Kazakhstani government in the sphere of the unconventional energy sources production, defining the possible technological and environmental problems for the shale gas extraction. The article also notes that implementation of the fracking technologies in the country could cause both positive and negative effects on the economy of Kazakhstan. Therefore, further steps in this direction should be based on the meaningful and comprehensive geological data regarding the shale gas potential.

  2. Process for desulfurizing shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Escherich, F

    1922-12-17

    A process is described for the desulfurizing of shale oil or tar, with recovery of valuable oils and hydrocarbons, characterized in that the raw material is heated in an autoclave to a pressure of 100 atmospheres or more.

  3. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn; Wenk, Hans-Rudolf; Kets, Frans; Lehr, Christian; Wirth, Richard

    2011-01-01

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub

  4. Fourier Transform Infrared Spectroscopic Determination of Shale ...

    African Journals Online (AJOL)

    acer

    minerals in the mixtures. Samples from a suite of shale reservoir rocks were analysed using standard .... qualitatative and quantitative analysis of soil properties. For example a .... using Cobalt Ka radiation range. Samples were analysed in ...

  5. Triterpene alcohol isolation from oil shale.

    Science.gov (United States)

    Albrecht, P; Ourisson, G

    1969-03-14

    Isoarborinol, an intact pentacyclic unsaturated alcohol, was isolated from the Messel oil shale (about 50 x 106 years old). Complex organic substances, even those very sensitive to oxidation, reduction, or acidic conditions, can thus survive without alteration for long periods.

  6. Legal Regime of Shale Gas Extraction

    OpenAIRE

    Ovidiu – Horia Maican

    2013-01-01

    Some countries with large reserves intend to promote shale gas production, in order to reduce their dependency on imported gas. Shale gas will be an important new aspect in the world energy scene, with many effects. European Union wants secure and affordable sources of energy. Natural gas is the cleanest fossil fuel and a vital component of European Union's energy strategy. One of the most important aspects is that gas produces significantly cleaner energy than other fossil fuels. From a lega...

  7. The influence of shale gas on steamcracking

    Energy Technology Data Exchange (ETDEWEB)

    Rupieper, A. [Linde Engineering Dresden GmbH, Dresden (Germany)

    2013-11-01

    US shale gas reserves with more than 860 TCF (Source: U.S. Energy Information Administration study World Shale Gas Resources) account for 2 of the global largest reserves after China. In 7 areas of the US, these reserves are systematically explored, providing a significant amount of cheap natural gas source for decades. The ethane share, carried by such shale gas, can reach up to 16%. Ethane has been already in the past 2 most important feedstock for Steamcrackers, being the backbone of the Petrochemical Industry. Due to availability of vast shale gas, the US steamcracker industry is facing a shift from naphtha to shale gas ethane, as the margin of Ethylene produced from shale gas ethane is significantly larger than that of naphtha based Ethylene (app. + 630 USD/t Ethylene). As a consequence shale gas is ''the magic bullet'' incinerating investments into Steamcrackers and downstream plants for U.S petrochemical industry. Steamcracker Projects with an additional ethylene production capacity of more than 17 million tons/a by 2020 are announced or already under construction. Investments into downstream plants refining the C2 derivatives will follow or are already in planning/engineering phase. But the US market cannot absorb all related products, causing a significant export exposure, which will influence global trade flows for C2 derivatives and affect prices. This article presents the impact of shale gas ethane cracking on: - Trade flow of C2 derivatives; - By-product deficits; - Alternate C3+ derivative production routes; - Challenges related to engineering requirements and project execution for Steamcracker projects. (orig.)

  8. Oil shale mines and their realizable production

    International Nuclear Information System (INIS)

    Habicht, K.

    1994-01-01

    The production of Estonian oil shale depends on its marketing opportunities. The realizable production is a function of the oil shale price, which in turn depends on production costs. The latter are dependent on which mines are producing oil shale and on the volume of production. The purpose of the present article is to analyze which mines should operate under various realizable production scenarios and what should be their annual output so that the total cost of oil shale production (including maintenance at idle mines) is minimized. This paper is also targeted at observing the change in the average production cost per ton of oil shale depending on the realizable output. The calculations are based on data for the first four months of 1993, as collected by N. Barabaner (Estonian Academy of Sciences, Institute of Economy). The data include the total production volume and production cost from the mines of RE 'Eesti Polevkivi' (State Enterprise 'Estonian Oil Shale'). They also project expenses from mine closings in case of conservation. The latter costs were allocated among mines in direct proportion to their respective number of employees. (author)

  9. Senate hearings whet interest in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Remirez, R

    1967-06-05

    Recent oil shale hearings by the U.S. Senate disclosed the proposed leasing rules for federal oil-shale lands. In addition, Oil Shale Corp. announced that the first commercial shale-oil processing plant would be on stream in 1970. Both these announcements are expected to create a stronger interest in what is possibly the greatest untapped natural wealth in the U.S. According to the leasing rules, development leases would involve the following phases: (1) the contractor would have a 10-yr limit to conduct a research and development program on the leased territory; and (2) upon completion of a successful research program, the Interior Department will make available to lease at least enough land to sustain commercial operation. The terms that applicants will have to meet are included in this report. At the Senate hearing, discussions ranged from opinions indicating that development of oil shale recovery was not immediately necessary to opinions urging rapid development. This report is concluded with a state-of-the-art review of some of the oil shale recovery processes.

  10. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  11. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  12. Characterization of nanoporous shales with gas sorption

    Science.gov (United States)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  13. Characterisation of organic carbon in black shales of the Kachchh ...

    Indian Academy of Sciences (India)

    46

    2Petroleum Geochemistry and Microbiology Group, National Geophysical Research Institute, .... gypsiferous shale of the Naredi Formation of early Eocene age (Biswas 1992). The shale .... This inference also helps us to explain the existence.

  14. The shale gas potential of the Opalinus Clay and Posidonia Shale in Switzerland - A first assessment

    Energy Technology Data Exchange (ETDEWEB)

    Leu, W. [Geoform Ltd, Villeneuve (Switzerland); Gautschi, A. [NAGRA, Wettingen (Switzerland)

    2014-07-01

    There has been recent interest in the shale gas potential of the Opalinus Clay and Posidonia Shale (Middle and Lower Jurassic) below the Swiss Molasse Basin in the light of the future role of domestic gas production within the expected future energy shift of Switzerland and possible conflicts in underground use. The Opalinus Clay of northern Switzerland is a potential host rock for repositories of both high-level and low-to-intermediate level radioactive waste and the exploitation of shale gas resources within or below this formation would represent a serious conflict of use. Well data from northern Switzerland shows that these two formations are unsuitable for future shale gas recovery. They never reached the gas window during their burial history (maturity values are ≤ 0.6% R{sub o}) and as a consequence never generated significant quantities of thermogenic gas. Geochemical data further shows that the average TOC values are in the range of 0.7%, i.e. clearly below accepted values of more than 1.5% for prospective shales. A review of available exploration data for the Opalinus Clay and Posidonia Shale in the deeper and western part of the Swiss Molasse Basin indicate that their shale gas potential may be substantial. The gross Posidonia Shale thickness increases from central Switzerland from less than 10 m to over 100 m in the Yverdon-Geneva area and is characterised by numerous bituminous intervals. A simplified shale gas resource calculation results for a geologically likely scenario in a technically recoverable gas volume of ∼120 billions m{sup 3}. The current database for such estimates is small and as a consequence, the uncertainties are large. However, these first encouraging results support a more detailed exploration phase with specific geochemical and petrophysical analysis of existing rock and well log data. (authors)

  15. The shale gas potential of the Opalinus Clay and Posidonia Shale in Switzerland - A first assessment

    International Nuclear Information System (INIS)

    Leu, W.; Gautschi, A.

    2014-01-01

    There has been recent interest in the shale gas potential of the Opalinus Clay and Posidonia Shale (Middle and Lower Jurassic) below the Swiss Molasse Basin in the light of the future role of domestic gas production within the expected future energy shift of Switzerland and possible conflicts in underground use. The Opalinus Clay of northern Switzerland is a potential host rock for repositories of both high-level and low-to-intermediate level radioactive waste and the exploitation of shale gas resources within or below this formation would represent a serious conflict of use. Well data from northern Switzerland shows that these two formations are unsuitable for future shale gas recovery. They never reached the gas window during their burial history (maturity values are ≤ 0.6% R o ) and as a consequence never generated significant quantities of thermogenic gas. Geochemical data further shows that the average TOC values are in the range of 0.7%, i.e. clearly below accepted values of more than 1.5% for prospective shales. A review of available exploration data for the Opalinus Clay and Posidonia Shale in the deeper and western part of the Swiss Molasse Basin indicate that their shale gas potential may be substantial. The gross Posidonia Shale thickness increases from central Switzerland from less than 10 m to over 100 m in the Yverdon-Geneva area and is characterised by numerous bituminous intervals. A simplified shale gas resource calculation results for a geologically likely scenario in a technically recoverable gas volume of ∼120 billions m 3 . The current database for such estimates is small and as a consequence, the uncertainties are large. However, these first encouraging results support a more detailed exploration phase with specific geochemical and petrophysical analysis of existing rock and well log data. (authors)

  16. Improving horizontal completions on heterogeneous tight shales

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Rivera, Roberto; Deenadayalu, Chaitanya; Chertov, Maxim; Novalo Hartanto, Ricardo; Gathogo, Patrick [Schlumberger (United States); Kunjir, Rahul [University of Utah (United States)

    2011-07-01

    Evaluation of the two formation characteristics conducive to economic well production is important when tight shale formation characterization and completion design are being considered. This paper presents the basic understanding required to improve the efficiency of horizontal completions in oil and gas producing shales. Guidelines are defined for effective perforation and fracturing to improve the efficiency and sustainability of horizontal completions using extensive laboratory characterization of mechanical properties on core, core/log integration and continuous mapping of these properties by logging-while-drilling (LWD) methods. The objective is to improve completion design efficiency. This is accomplished by suitable selection of perforation intervals based on an understanding of the relevant physical processes and rock characterization. Conditions at two reservoir regions, the near-wellbore and the far-wellbore, are outlined and are essential to completion design. From the study, it can be concluded that tight shales are strongly anisotropic and cannot be approximated using isotropic models.

  17. Cracking mechanism of shale cracks during fracturing

    Science.gov (United States)

    Zhao, X. J.; Zhan, Q.; Fan, H.; Zhao, H. B.; An, F. J.

    2018-06-01

    In this paper, we set up a model for calculating the shale fracture pressure on the basis of Huang’s model by the theory of elastic-plastic mechanics, rock mechanics and the application of the maximum tensile stress criterion, which takes into account such factors as the crustal stress field, chemical field, temperature field, tectonic stress field, the porosity of shale and seepage of drilling fluid and so on. Combined with the experimental data of field fracturing and the experimental results of three axis compression of shale core with different water contents, the results show that the error between the present study and the measured value is 3.85%, so the present study can provide technical support for drilling engineering.

  18. Thermocatalytical processing of coal and shales

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available The article investigates the questions of thermocatalytical conversion of organic mass of coal (OMC, it is shown that in the absence of a catalyst process is carried out by a radical process. Accumulated data on the properties for radicals of different structure and therefore different reaction capacity enables us to understand and interpret the conversion of OMC. Thermal conversion of OMC regarded as a kind of depolymerization, accompanied by decomposition of the functional groups with the formation of radicals, competing for hydrogen atom. Catalyst can change the direction and conditions of the process. Modern catalysts can reduce the process pressure up to 50 atm., with a high degree of coal conversion. We consider examples of simultaneous conversion of coal and shale, shale and masut, shale and tar.

  19. Multiphysical Testing of Soils and Shales

    CERN Document Server

    Ferrari, Alessio

    2013-01-01

    Significant advancements in the experimental analysis of soils and shales have been achieved during the last few decades. Outstanding progress in the field has led to the theoretical development of geomechanical theories and important engineering applications. This book provides the reader with an overview of recent advances in a variety of advanced experimental techniques and results for the analysis of the behaviour of geomaterials under multiphysical testing conditions. Modern trends in experimental geomechanics for soils and shales are discussed, including testing materials in variably saturated conditions, non-isothermal experiments, micro-scale investigations and image analysis techniques. Six theme papers from leading researchers in experimental geomechanics are also included. This book is intended for postgraduate students, researchers and practitioners in fields where multiphysical testing of soils and shales plays a fundamental role, such as unsaturated soil and rock mechanics, petroleum engineering...

  20. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  1. Thermal effects in shales: measurements and modeling

    International Nuclear Information System (INIS)

    McKinstry, H.A.

    1977-01-01

    Research is reported concerning thermal and physical measurements and theoretical modeling relevant to the storage of radioactive wastes in a shale. Reference thermal conductivity measurements are made at atmospheric pressure in a commercial apparatus; and equipment for permeability measurements has been developed, and is being extended with respect to measurement ranges. Thermal properties of shales are being determined as a function of temperature and pressures. Apparatus was developed to measure shales in two different experimental configurations. In the first, a disk 15 mm in diameter of the material is measured by a steady state technique using a reference material to measure the heat flow within the system. The sample is sandwiched between two disks of a reference material (single crystal quartz is being used initially as reference material). The heat flow is determined twice in order to determine that steady state conditions prevail; the temperature drop over the two references is measured. When these indicate an equal heat flow, the thermal conductivity of the sample can be calculated from the temperature difference of the two faces. The second technique is for determining effect of temperature in a water saturated shale on a larger scale. Cylindrical shale (or siltstone) specimens that are being studied (large for a laboratory sample) are to be heated electrically at the center, contained in a pressure vessel that will maintain a fixed water pressure around it. The temperature is monitored at many points within the shale sample. The sample dimensions are 25 cm diameter, 20 cm long. A micro computer system has been constructed to monitor 16 thermocouples to record variation of temperature distribution with time

  2. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  3. Preparing hydraulic cement from oil-shale slag

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-19

    A process for the preparation of hydraulic cementing material from oil shale or oil-shale slag according to Patent 411,584 is characterized by the fact that the oil-shale slag is added to burnt marl, blast-furnace slag, and the like, whereupon the mixture is milled to dust in the known way.

  4. Rapid gas development in the Fayetteville shale basin, Arkansas

    Science.gov (United States)

    Advances in drilling and extraction of natural gas have resulted in rapid expansion of wells in shale basins. The rate of gas well installation in the Fayetteville shale is 774 wells a year since 2005 with thousands more planned. The Fayetteville shale covers 23,000 km2 although ...

  5. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  6. Fluid flow from matrix to fractures in Early Jurassic shales

    NARCIS (Netherlands)

    Houben, M.E.; Hardebol, N.J.; Barnhoorn, A.; Boersma, Quinten; Carone, A.; Liu, Y.; de Winter, D.A.M.; Peach, C.J.; Drury, M.R.

    2017-01-01

    The potential of shale reservoirs for gas extraction is largely determined by the permeability of the rock. Typical pore diameters in shales range from the μm down to the nm scale. The permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural

  7. Fluid flow from matrix to fractures in Early Jurassic shales

    NARCIS (Netherlands)

    Houben, M. E.; Hardebol, N.J.; Barnhoorn, A.; Boersma, Q.D.; Carone, A.; Liu, Y.; de Winter, D. A.M.; Peach, C. J.; Drury, M. R.

    2017-01-01

    The potential of shale reservoirs for gas extraction is largely determined by the permeability of the rock. Typical pore diameters in shales range from the μm down to the nm scale. The permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural

  8. Extraction of hydrocarbon products from shales and coals

    Energy Technology Data Exchange (ETDEWEB)

    Reed, V Z

    1918-05-17

    A process is disclosed of extracting hydrocarbon oil matter from petroleum-bearing shales and coals which comprises subjecting a mass of such shale or coal, before distillation to the solvent action of material containing an acid, permitting the solvent material to pass through the mass of shale or coal, and recovering the combined solvent and extracted matter.

  9. shales: a review of their classifications, properties and importance to ...

    African Journals Online (AJOL)

    DJFLEX

    In the Niger Delta petroleum province, the source rocks and seal rocks are the marine/deltaic, plastic and over-pressured shales of Akata and Agbada Formations. KEY WORDS: Shales, Classification, Strength, Composition, Petroleum Industry, Niger Delta. INTRODUCTION. Shales are fine-grained laminated or fissile.

  10. Method of concentrating oil shale by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, M

    1941-01-28

    A method is described of concentrating oil shale by flotation. It is characterized by grinding the shale to a grain size which, roughly speaking, is less than 0.06 mm. and more conveniently should be less than 0.05 mm., and followed by flotation. During the process the brown foam formed is separated as concentrate, while the black-brown to all-black foam is separated as a middle product, ground fine again, and thereafter floated once more. The patent contains five additional claims.

  11. Black shales and naftogenesis. A review

    International Nuclear Information System (INIS)

    Yudovich, Yu.E.; Ketris, M.P.

    1993-01-01

    A genetic relation between petroleum plus hydrocarbon gases and bio organic authigenic matter has been well established. As black shales are enriched in organic matter they may serve as potential petroleum beds on the depths suitable for petroleum generation (2-5 km). The calculations made by petroleum geologists showed that hydrocarbon amounts generated by black shales made up to one fifth of the initial organic matter at the end of MK-2 stage of catagenesis. Consequently, black shales may serve as the main oil producers in many sedimentary basins. Petroleum generation in black shales has some peculiarities. Abundant masses of organic matter generate huge amounts of hydrocarbon gases which in turn produce anomalous high bed pressures followed by pulse cavitation effect. Bed pressures 1.5 times higher than normal lithostatic pressure have been detected in oil-bearing black shales of the Cis-Caucasus on the depth of 2.0-2.5 km, along with very high (6 degrees per 100 m) geothermal gradient. According to Stavropol oil geologists, there occurs an effect of rock-by-fluid-destruction after fluid pressure has greatly exceeded the lithostatic pressure. Stress tensions discharge by impulses and cracks may appear with a rate of 0.3-0.7 of the sound speed. Cavitation of gaseous bubbles is produced by sharp crack extension. Such cavitation accounts for impact waves and increased local pressure and temperature. Such an increase, in turn, fastens petroleum generation and new rock cracking. The effect of over-pressed rocks associated with black shales may serve as a process indicator. That is why the geophysical methods detect enhanced specific gravity and decreased porosity zones in such black shales. Cracks and petroleum accumulation occur on the flanks of such zones of rock-by-fluid-destruction. Some black shales may be petroleum-productive due to enhanced uranium content. There exist ideas about uranium-derived heat or radiolytic effects on the petroleum generation. Such

  12. Analysis of the kerogen of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Quass, F W; Down, A L

    1939-01-01

    Comments are given on the method developed by F. W. Quass for reducing the amount of mineral matter present in certain coals and oil shales (torbanites). The method consisted of grinding oil shale with water in a porcelain ball mill in the presence of oil. The oil formed a paste with the carbonaceous material, and a greater portion of the mineral matter remained suspended in the water and was separated. Ultimate analyses of the enriched samples indicated that the percent of carbon was higher, the percent of hydrogen and oxygen was lower, and the ratio of carbon to hydrogen and carbon to oxygen increased in the enriched samples.

  13. Evaluating possible industrial applications of combustible shales and shale ash wastes

    Directory of Open Access Journals (Sweden)

    Н. К. Кондрашева

    2016-08-01

    Full Text Available Today energy consumption is constantly growing while explored reserves of easily accessible oil are depleting, which is a reason why most countries tend to diversify their energy mix, develop non-hydrocarbon energy sources and use domestic types of fuel, including the low grade ones. Thereby interest is raised to such a source of hydrocarbons as combustible shales. Combustible shales appear to be one of the highest-potential types of organic raw materials, which may offset and in future even substitute oil products and gas. The paper is investigating behavior and structure of combustible shales during heat treatment in order to identify their possible industrial applications. A synchronous thermal analysis has been held, chemical composition of combustible shales’ mineral fraction and optimal conditions for shale fines briquetting have been determined.

  14. Distillation of shale and other bituminous substances. [shale granules wetted, mixed with lime, heated; sulfur recovered

    Energy Technology Data Exchange (ETDEWEB)

    Noad, J

    1912-09-23

    A process is described for the treatment of shale and other bituminous substances containing sulfur and recovering desulfurized distillates. The process consists of first grinding the shale and mixing the granules obtained with a convenient liquid. The shale granules coated or covered with liquid and mixed with slacked lime are fed into a retort with a series of steps or their equivalent, made to descend, step by step, in such manner that they are continually agitated and heated. The volatile constituents escape through the coating or sheath of lime and are carried away at the upper part of the retort to a convenient condensing apparatus, the sulfur being retained by the sheath of lime and is discharged at the bottom of the retort with the spent shale and other impurities.

  15. RUSSIA DOESN’T SUPPORT «SHALE REVOLUTION»

    Directory of Open Access Journals (Sweden)

    S. S. Zhiltsov

    2015-01-01

    Full Text Available Growth of volumes of production of shale gas in the USA compelled Russia to pay attention to this type of resourses. The interest to shale gas in Russia was limited to discussions at the level of experts and reflection of importance of this problem in statements of politicians. In the next years in Russia don't plan production of shale gas commercially. It is connected with existence in Russia of considerable reserves of traditional natural gas, absence of exact data of reserves of shale gas, high costs of production, and also environmental risks which accompany development of fields of shale gas.

  16. Electromagnetic De-Shaling of Coal

    NARCIS (Netherlands)

    De Jong, T.P.R.; Mesina, M.B.; Kuilman, W.

    2003-01-01

    The efficiency with which an electromagnetic sensor array is able to distinguish density and ash content of coal and shale mixtures was determined experimentally. The investigated sensor was originally designed for automatic metal detection and sorting in industrial glass recycle processing, where

  17. [Chemical hazards arising from shale gas extraction].

    Science.gov (United States)

    Pakulska, Daria

    2015-01-01

    The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.

  18. Chemical hazards arising from shale gas extraction

    Directory of Open Access Journals (Sweden)

    Daria Pakulska

    2015-02-01

    Full Text Available The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extremely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction. Med Pr 2015;66(1:99–117

  19. Method of treating oil-bearing shale

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, N H

    1926-04-14

    The process is given for treating shale or other oil-bearing mineral which consists of the application of dry heat to render the oil soluble and subjects the product of the heat treatment to an operation to extract the soluble oils.

  20. Epistemic values in the Burgess Shale debate

    DEFF Research Database (Denmark)

    Baron, Christian

    2009-01-01

    Focusing primarily on papers and books discussing the evolutionary and systematic interpretation of the Cambrian animal fossils from the Burgess Shale fauna, this paper explores the role of epistemic values in the context of a discipline (paleontology) striving to establish scientific authority w...

  1. Fourier Transform Infrared Spectroscopic Determination of Shale ...

    African Journals Online (AJOL)

    A Classical Least Square (CLS) model was developed from the attenuated spectra of mixtures of five mineral standards chosen to represent the most frequently encountered minerals in shale-type reservoir rocks namely: quartz, illite/smectite (30:70), kaolinite, calcite and dolomite. The CLS model developed was able to ...

  2. Evaluation of waste disposal by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1976-02-01

    The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation

  3. Quantitative effects of the shale oil revolution

    International Nuclear Information System (INIS)

    Belu Mănescu, Cristiana; Nuño, Galo

    2015-01-01

    The aim of this paper is to analyze the impact of the so-called “shale oil revolution” on oil prices and economic growth. We employ a general equilibrium model of the world oil market in which Saudi Arabia is the dominant firm, with the rest of the producers as a competitive fringe. Our results suggest that most of the expected increase in US oil supply due to the shale oil revolution has already been incorporated into prices and that it will produce an additional increase of 0.2% in the GDP of oil importers in the period 2010–2018. We also employ the model to analyze the collapse in oil prices in the second half of 2014 and conclude that it was mainly due to positive unanticipated supply shocks. - Highlights: • We analyze the impact of the “shale oil revolution” on oil prices and economic growth. • We employ a general equilibrium model of the oil market in which Saudi Arabia is the dominant firm. • We find that most of the shale oil revolution is already priced in. • We also analyze the decline in oil prices in the second half of 2014. • We find that unanticipated supply shocks played the major role in the fall.

  4. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  5. Geochemical controls on groundwater chemistry in shales

    International Nuclear Information System (INIS)

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO 3 - type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab

  6. Process of distillation of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, A L

    1968-08-16

    In an oil-shale distillation apparatus with a single retort, in which separate zones of preheating, distillation, combustion, and cooling are maintained, the operation is conducted at a presssure higher than the atmospheric pressure, preferably at a gage pressure between about 0.35 and 7.0 bars. This permits increasing the capacity of the installation.

  7. Furnace for distillation of shales, etc

    Energy Technology Data Exchange (ETDEWEB)

    Germain-Clergault, M

    1863-07-09

    Practical experience and continuous operation of 55 retorts for 5 years of the system of vertical retorts patented in 1857 (French Patent 18,422) has shown the advantages resulting from this furnace which gives over a mean yield of 5% of Auton shale, which is /sup 1///sub 2/% more than the old systems with a fuel economy varying from 15 to 20%.

  8. Shale gases, a windfall for France?

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-11-01

    After having recalled the definition and origin of shale gases, the different non conventional gases and their exploitation techniques (hydraulic fracturing and horizontal drilling) this report examines whether these gases are an opportunity for France. Some characteristics and data of the fossil and gas markets are presented and commented: world primary energy consumption, proved reserves of non conventional gases and their locations, European regions which may possess reserves of shale gases and coal-bed methane, origins of gas imports in France. The second part addresses shale gas deposits and their exploitation: discussion of the influence of the various rock parameters, evolution of production. The third part discusses the exploitation techniques and specific drilling tools. The issue of exploitation safety and security is addressed as well as the associated controversies: about the pollution of underground waters, about the fact that deep drillings result in pollution, about the risks associated with hydraulic fracturing and injections of chemical products, about the hold on ground and site degradation, about water consumption, about pollution due to gas pipeline leakage, about seismic risk, about noise drawbacks, about risks for health, about exploration and production authorization and license, and about air pollution and climate. The last part addresses the French situation and its future: status of the energy bill, recommendations made by a previous government, cancellation of authorizations, etc. Other information are provided in appendix about non conventional hydrocarbons, about shale gas exploitation in the USA, and about the Lacq gas

  9. Total and the Algerian shale gas

    International Nuclear Information System (INIS)

    Chapelle, Sophie; Petitjean, Olivier; Maurin, Wilfried; Balvet, Jacqueline; Combes, Maxime; Geze, Francois; Hamouchene, Hamza; Hidouci, Ghazi; Malti, Hocine; Renaud, Juliette; Simon, Antoine; Titouche, Fateh

    2015-01-01

    This publication proposes a rather detailed and discussed overview of the movement of mobilisation of Algerian people (notably those living in the Sahara) against projects of exploration and exploitation of shale gases in Algeria by the Total group. The authors also recall and comment the long and heavy history of hydrocarbon management in Algeria, the role of international firms and of western interests (notably French interests) in this country, and the position of Total regarding the stake related to shale gases. The authors outline problems created by shale gas exploitation regarding water consumption and waste waters. They also notice that the safety of wells is at the centre of the protest. Problems raised by hydraulic fracturing are reviewed: seismic activity, chemical pollution, air pollution and greenhouse gases, landscape destruction. The attitude of the Algerian government is commented. Then, the authors try to identify and describe the action of Total in the Algerian shale gas sector, discuss the possible French influence, and outline the presence of Total all over the world in this sector

  10. Naval Petroleum and Oil Shale Reserves

    International Nuclear Information System (INIS)

    1992-01-01

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming

  11. China organic-rich shale geologic features and special shale gas production issues

    Directory of Open Access Journals (Sweden)

    Yiwen Ju

    2014-06-01

    Full Text Available The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment, but also in non-marine environment: marine-continental transitional environment and lacustrine environment. Through analyzing large amount of outcrops and well cores, the geologic features of organic-rich shale, including mineral composition, organic matter richness and type, and lithology stratigraphy, were analyzed, indicating very special characteristics. Meanwhile, the more complex and active tectonic movements in China lead to strong deformation and erosion of organic-rich shale, well-development of fractures and faults, and higher thermal maturity and serious heterogeneity. Co-existence of shale gas, tight sand gas, and coal bed methane (CBM proposes a new topic: whether it is possible to co-produce these gases to reduce cost. Based on the geologic features, the primary production issues of shale gas in China were discussed with suggestions.

  12. Shale as a radioactive waste repository: the importance of vermiculite

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S; Roy, D M; Pennsylvania State Univ., University Park; USA). Materials Research Labs.)

    1979-01-01

    Cesium sorption and fixation properties of thirty shale minerals and shales were investigated in search of a criterion for the suitability of shales for a radioactive waste repository. Shales and illites containing vermiculite fixed the largest proportion of total Cs sorbed (up to 91%) against displacement with 0.1 N KCl. For example, a slate sample fixed 33% of the total Cs sorbed while its weathered counterpart in which chlorite had altered to vermiculite fixed 89% of the total Cs sorbed. Since Cs is one of the most soluble and hazardous radioactive ions, its containment is of great importance in safe radioactive waste disposal. Presence of vermiculite in a shale body may therefore, serve as one criterion in the selection of a suitable shale for radioactive waste disposal if and when shales in geologically stable areas are selected for repositories.

  13. A review of the organic geochemistry of shales and possible interactions between the organic matter of shales and radionuclides

    International Nuclear Information System (INIS)

    Ho, P.C.

    1990-01-01

    Shale formations have been suggested as potential host rocks for high level nuclear waste repositories. Several studies have demonstrated the interactions of nuclides with organic compounds found in shales. In order to understand the possibility of interaction between organic components of shales and trace elements, literature on the identification of organic compounds from various shales of the continental United States and evidences of interactions have been reviewed first. The Green River Formation of the Cenozoic era is the most studied shale followed by the Pierre Shale of the Mesozoic era and the Devonian Black Shale of the Paleozoic era. Organic compounds that have been identified from these shales are mainly hydrocarbons and carboxylates along with small amounts of other compounds. These organic compounds, however, constitute only a small fraction of the organic matter in shales; the majority of the organic compounds in shales are still unidentified. Interaction between organics and trace elements are found mostly due to the formation of complexes between carboxylates of shales and the elements. (orig.)

  14. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  15. Comparative acute toxicity of shale and petroleum derived distillates.

    Science.gov (United States)

    Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K

    1989-12-01

    In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.

  16. Can the US shale revolution be duplicated in Europe?

    International Nuclear Information System (INIS)

    Saussay, Aurelien

    2015-04-01

    Over the past decade, the rapid increase in shale gas and shale oil production in the United States has profoundly changed energy markets in North America, and has led to a significant decrease in American natural gas prices. The possible existence of large shale deposits in Europe, mainly in France, Poland and the United Kingdom, has fostered speculation on whether the 'shale revolution', and its accompanying macro-economic impacts, could be duplicated in Europe. However, a number of uncertainties, notably geological, technological and regulatory, make this possibility unclear. We present a techno-economic model, SHERPA (Shale Exploitation and Recovery Projection and Analysis), to analyze the main determinants of the profitability of shale wells and plays. We calibrate our model using production data from the leading American shale plays. We use SHERPA to estimate three shale gas production scenarios exploring different sets of geological and technical hypotheses for the largest potential holder of shale gas deposits in Europe, France. Even considering that the geology of the potential French shale deposits is favorable to commercial extraction, we find that under assumptions calibrated on U.S. production data, natural gas could be produced at a high breakeven price of $8.6 per MMBtu, and over a 45 year time-frame have a net present value of $19.6 billion - less than 1% of 2012 French GDP. However, the specificities of the European context, notably high deposit depth and stricter environmental regulations, could increase drilling costs and further decrease this low profitability. We find that a 40% premium over American drilling costs would make shale gas extraction uneconomical. Absent extreme well productivity, it appears very difficult for shale gas extraction to have an impact on European energy markets comparable to the American shale revolution. (author)

  17. Geology of the Devonian black shales of the Appalachian Basin

    Science.gov (United States)

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  18. Features of the first great shale gas field in China

    Directory of Open Access Journals (Sweden)

    Ruobing Liu

    2016-04-01

    Full Text Available On the 28th of November 2012, high shale gas flow was confirmed to be 203 × 103 m3 in Longmaxi Formation; this led to the discovery of the Fuling Shale Gas Field. On the 10th of July in 2014, the verified geological reserves of the first shale gas field in China were submitted to the National Reserves Committee. Practices of exploration and development proved that the reservoirs in the Fuling Shale Gas Field had quality shales deposited in the deep-shelf; the deep-shelf had stable distribution, great thickness with no interlayers. The shale gas field was characterized by high well production, high-pressure reservoirs, good gas elements, and satisfactory effects on testing production; it's from the mid-deep depth of the quality natural gas reservoirs that bore high pressure. Comprehensive studies on the regional sedimentary background, lithology, micropore structures, geophysical properties, gas sources, features of gas reservoirs, logging responding features, and producing features of gas wells showed the following: (1 The Longmaxi Formation in the Fuling Shale Gas Field belongs to deep-shelf environment where wells developed due to organic-rich shales. (2 Thermal evolution of shales in Longmaxi Formation was moderate, nanometer-level pores developed as well. (3 The shale gas sources came from kerogens the Longmaxi Formation itself. (4 The shale gas reservoirs of the Fuling Longmaxi Formation were similar to the typical geological features and producing rules in North America. The findings proved that the shale gas produced in the Longmaxi Formation in Fuling was the conventional in-situ detained, self-generated, and self-stored shale gas.

  19. Is Estonian oil shale beneficial in the future?

    International Nuclear Information System (INIS)

    Reinsalu, Enno

    1998-01-01

    Oil shale mining production reached its maximum level of 31.35·10 6 tonnes per year in 1980. After the eighties there was a steady decline in mining. The first scientific prognoses of the inescapable decrease in oil shale mining were published in 1988. According to this, the Estonian oil shale industry would vanish in the third decade of the next century. From the beginning of the nineties, the consumption and export of electricity have dropped in Estonia. The minimum level of oil shale mining was 13.5·10 6 tonnes per year. This occurred in 1994/1995. Some increase in consumption of electric power and oil shale began at the end of 1995. Oil shale processing began to increase gradually in 1993. Oil shale is the most important fuel in Estonia today. In 1997, oil shale provided 76% of Estonia's primary energy supply and accounted for 57% of its economic value. Oil shale is the cheapest fuel in Estonia. Nowadays, oil shale provides an essential part of the fuel supply in Estonia because it is considerably cheaper than other fuels. Oil shale costs EEK 12.16 per G J. At the same time, coal costs EEK 23.41 per G J and peat costs EEK 14.80 per G J (year 1997). There are three important customers of oil shale: the electric power company Eesti Energia, the oil processing company Kiviter and the factory Kunda Nordic Cement. In 1995, the power company utilised 81% of the oil shale mass and 77% of its heating value. The state energy policy inhibits increases in the oil shale price even though the mining infrastructure is decaying. Government price policies subside oil shale processing. The energy of oil shale processing is 1.9 times cheaper than the heating value of raw oil shale for power stations. It could be considered as a state subsidisation of oil and cement export at the expense of electricity. The subsidy assigned to oil processing was of EEK 124·10 6 and to the cement industry of EEK 8.4·10 6 in year 1997 (based on heating value). State regulation of prices and

  20. American shale gas in the European air

    International Nuclear Information System (INIS)

    Chauveau, L.

    2015-01-01

    Belgian scientists have detected ethane in atmosphere samples from Switzerland. The origin of this ethane is highly likely to be linked to the production of shale gas in Northern America. These concentrations of ethane have been increasing by 5% a year since 2009 while they had been steadily decreasing by about 1% a year over the 2 previous decades. These releases of ethane are massive since they are detected in Europe while ethane's lifetime in the atmosphere is only 2 months. Ethane is exclusively released from natural gas leaks during extraction operations or tank filling. A measurement campaign involving infrared spectrometry stations around the world have shown that ethane is released only in the northern hemisphere. It also appears that the beginning of the increase coincides with the beginning of the industrial exploitation of shale gas in the U.S. (A.C.)

  1. Adsorption of xenon and krypton on shales

    Science.gov (United States)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  2. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    is obtained for hydrocarbon mixtures. Such behavior is mainly caused by compositional changes in the bulk phase due to selective adsorption of the heavier components onto the rock, while the change in bubble point pressure is mainly due to capillary pressure. This study has developed several robust......Production of oil and gas from shale reservoirs has gained more attention in the past few decades due to its increasing economic feasibility and the size of potential sources around the world. Shale reservoirs are characterized by a more tight nature in comparison with conventional reservoirs......, having pore size distributions ranging in the nanometer scale. Such a confined nature introduces new challenges in the fluid phase behavior. High capillary forces can be experienced between the liquid and vapor, and selective adsorption of components onto the rock becomes relevant. The impact...

  3. Organic material of the Messel oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, B.; Littke, R.

    1986-05-01

    According to chemism, the Messel oil shales belong to the Kerogen type II, formed by algae with additions of huminite detritus, i.e. residues of higher plants. This has been confirmed by the organo-petrographic studies reported. The oil shale deposits are characterised by their content of organic materials, the occurrence of a cream-coloured inertinite maceral, and of siderite. Hence, two facies can be clearly discriminated, the lower one containing relatively much organic material and the cream-coloured inertinite, but no siderite, and the upper facies exhibiting just the opposite. As the detritus is finely grained and quite uniform in content of huminite and silicate material, and only few spores and pollen have been found, there is reason to assume that the two facies represent sediments formed far from the border of the lake.

  4. Subsidence prediction in Estonia's oil shale mines

    International Nuclear Information System (INIS)

    Pastarus, J.R.; Toomik, A.

    2000-01-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs

  5. Use for refuse of shale carbonization

    Energy Technology Data Exchange (ETDEWEB)

    1917-09-25

    A process is disclosed for using the refuse from the carbonization of bituminous shales in the preparation of light building material, characterized in that the pulverized material is mixed wet with a light filler, formed in a mold, and burned with or without the addition of clay or with the addition of binding and preserving material, preparing the mold from the pulverized material in the cold.

  6. Isothermal decomposition of Baltic oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, A Ya

    1955-01-01

    Heating oil shale at 300/sup 0/ to 440/sup 0/C yields a primary tar. Longer heating, regardless of temperature, results in the formation of heavier tar fractions. Higher temperatures tend to increase the middle and high-boiling fractions and to increase the concentration of unsaturated hydrocarbons at the expense of saturated hydrocarbons. Phenols appear, even at lower heating temperatures, indicating that aromatic structures are present or generated during the process.

  7. Process for carbonizing coal, shale, wood, etc

    Energy Technology Data Exchange (ETDEWEB)

    Matthaei, K

    1924-05-08

    A process for carbonization of coal, shale, and wood, for recovering low temperature tar and other products in a rotary retort is described. The material to be carbonized is brought directly in contact with the heating medium, that is characterized in that the heating medium streams through the retort crosswise to the longitudinal axis. The temperature of this medium in the single retort segments can be regulated.

  8. Method of utilization of alum shales

    Energy Technology Data Exchange (ETDEWEB)

    Dahlerus, C G

    1908-07-04

    A procedure - by means of reducing smelting of bituminous alum shales in a closed furnace process with or without the use of additional fuel and without adding lime or other slag-forming material - to utilize the hydrocarbons and tar oils formed, and likewise the alkali, nitrogen, and sulfur compositions is given. This is accomplished by making these products follow the furnace gases, and later separating them from the gases by cooling for condensation. The patent contains one more claim.

  9. Shale gas. Opportunities and challenges for European energy markets

    Energy Technology Data Exchange (ETDEWEB)

    De Joode, J.; Plomp, A.J.; Ozdemir, O. [ECN Policy Studies, Petten (Netherlands)

    2013-02-15

    The outline of the presentation shows the following elements: Introduction (Shale gas revolution in US and the situation in the EU); What could be the impact of potential shale gas developments on the European gas market?; How may shale gas developments affect the role of gas in the transition of the power sector?; and Key messages. The key messages are (1) Prospects for European shale gas widely differ from US case (different reserve potential, different competition, different market dynamics); (2) Shale gas is unlikely to be a game changer in Europe; and (3) Impact of shale gas on energy transition in the medium and long term crucially depends on gas vs. coal prices and the 'penalty' on CO2 emissions.

  10. Shale engineering application: the MAL-145 project in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Vassilellis, George D.; Li, Charles; Bust, Vivian K. [Gaffney, Cline and Associates (United States); Moos, Daniel; Cade, Randal [Baker Hughes Inc (United States)

    2011-07-01

    With the depletion of conventional fossil fuels and the rising energy demand, oil shale and shale gas are becoming an important component of the oil and gas markets in North America. The aim of this paper is to present a novel methodology for predicting production in shale and tight formations. This method, known as the shale engineering approach and modeling, provides reservoir simulations based on modeling the propagation of the simulated rock volume. This technique was applied to an Upper Devonian shale formation in West Virginia, United States, and was compared to available data such as production logs and downhole microseismic data. Results showed a good match between the shale engineering approach data and early well performance. This paper presented a new reservoir simulation methodology which is successful in forecasting production and which can also be used for field development design and optimization.

  11. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  12. Trace metal chemistry in the Marcellus shale

    Energy Technology Data Exchange (ETDEWEB)

    Bank, Tracy [University at Buffalo (United States)

    2010-07-01

    In recent years, due to the depletion of traditional fossil fuel resources and the rising price of energy, the production of unconventional gas has increased. Several black shales contain uranium both in insoluble species, U4+, and in soluble U6+ phase. Those two forms of uranium are weakly radioactive, however they are toxic and can lead to kidney and liver damage. The aim of this paper is to assess the oxidation state of uranium in the Marcellus shale formation. Samples were analyzed using several methods such as XRD, X-ray absorption near edge structure, and time of flight secondary ion mass spectrometry to determine the rock geochemistry and examine the interaction between the uranium and the hydrocarbons. It was found that uranium exists in both UO2 and U-C forms with a dominance of U6+. This study demonstrated that uranium is present in the Marcellus shale in both U4+ and U6+ states and that more research must therefore be undertaken to determine how to dispose of waste from drilling and fracking activities.

  13. The 'Shale Gas Revolution'. Hype and Reality

    International Nuclear Information System (INIS)

    Stevens, P.

    2010-09-01

    The 'shale gas revolution' - responsible for a huge increase in unconventional gas production in the US over the last couple of years - is creating huge investor uncertainties for international gas markets and renewables and could result in serious gas shortages in 10 years time. This report casts serious doubt over industry confidence in the 'revolution', questioning whether it can spread beyond the US, or indeed be maintained within it, as environmental concerns, high depletion rates and the fear that US circumstances may be impossible to replicate elsewhere, come to the fore. Investor uncertainty will reduce investment in future gas supplies to lower levels than would have happened had the 'shale gas revolution' not hit the headlines. While the markets will eventually solve this problem, rising gas demand and the long lead-in-times on most gas projects are likely to inflict high prices on consumers in the medium term. The uncertainties created by the 'shale gas revolution' are also likely to compound existing investor uncertainty in renewables for power generation in the aftermath of Copenhagen. The serious possibility of cheap, relatively clean gas may threaten investment in more expensive lower carbon technologies.

  14. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    Science.gov (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  15. Problem of Production of Shale Gas in Germany

    OpenAIRE

    Nataliya K. Meden

    2014-01-01

    A bstract: Our magazine publishes a series of articles on shale gas in different countries. This article is about Germany, a main importer of Russian natural gas, so a perspective of exploitation of local shale gas resources is of a clear practical importance for Russia. We discuss external and internal factors which determine position of the German government concerning the shale gas excavation: policy of the USA and the EU, positions of German political parties, influence of the lobbying co...

  16. Is Shale Development Drilling Holes in the Human Capital Pipeline?

    OpenAIRE

    Rickman, Dan S.; Wang, Hongbo; Winters, John V.

    2016-01-01

    Using the Synthetic Control Method (SCM) and a novel method for measuring changes in educational attainment we examine the link between educational attainment and shale oil and gas extraction for the states of Montana, North Dakota, and West Virginia. The three states examined are economically-small, relatively more rural, and have high levels of shale oil and gas reserves. They also are varied in that West Virginia is intensive in shale gas extraction, while the other two are intensive in sh...

  17. A comprehensive environmental impact assessment method for shale gas development

    OpenAIRE

    Sun, Renjin; Wang, Zhenjie

    2015-01-01

    The great success of US commercial shale gas exploitation stimulates the shale gas development in China, subsequently, the corresponding supporting policies were issued in the 12th Five-Year Plan. But from the experience in the US shale gas development, we know that the resulted environmental threats are always an unavoidable issue, but no uniform and standard evaluation system has yet been set up in China. The comprehensive environment refers to the combination of natural ecological environm...

  18. Burning Poseidonian shale ash for production of cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-10-28

    A process is described for the burning of shale coke obtained by the deoiling of Poseidonian or the usual kind of shale for the preparation of brick, mortar, or cement, characterized in that the shale coke is thrown on a pile and completely covered with burnt material, so that the gases drawn through this cover will be sufficiently choked to hold the feed at a high temperature as long as possible.

  19. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  20. Research and information needs for management of oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  1. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  2. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  3. Developments in production of synthetic fuels out of Estonian shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, Indrek

    2010-09-15

    Estonia is still the world leader in utilization of oil shale. Enefit has cooperated with Outotec to develop a new generation of solid heat carrier technology - Enefit280, which is more efficient, environmentally friendlier and has higher unit capacity. Breakeven price of oil produced in Enefit280 process is competitive with conventional oils. The new technology has advantages that allow easy adaptation to other oil shales around the world. Hydrotreated shale oil liquids have similar properties to crude oil cuts. Design for a shale oil hydrotreater unit can use process concepts, hardware components, and catalysts commercially proven in petroleum refining services.

  4. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  5. Geothermal alteration of clay minerals and shales: diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

  6. Geothermal alteration of clay minerals and shales: diagenesis

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes

  7. Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands : a 3D basin modelling study

    NARCIS (Netherlands)

    Bruns, B.; Littke, R.; Gasparik, M.; van Wees, J.-D.; Nelskamp, S.

    Sedimentary basins in NW-Germany and the Netherlands represent potential targets for shale gas exploration in Europe due to the presence of Cretaceous (Wealden) and Jurassic (Posidonia) marlstones/shales as well as various Carboniferous black shales. In order to assess the regional shale gas

  8. Oil shales of the Lothians, Part III, the chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: Vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  9. Oil shales of the Lothians. Part III. Chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  10. Experimental Study of Matrix Permeability of Gas Shale: An Application to CO2-Based Shale Fracturing

    Directory of Open Access Journals (Sweden)

    Chengpeng Zhang

    2018-03-01

    Full Text Available Because the limitations of water-based fracturing fluids restrict their fracturing efficiency and scope of application, liquid CO2 is regarded as a promising substitute, owing to its unique characteristics, including its greater environmental friendliness, shorter clean-up time, greater adsorption capacity than CH4 and less formation damage. Conversely, the disadvantage of high leak-off rate of CO2 fracturing due to its very low viscosity determines its applicability in gas shales with ultra-low permeability, accurate measurement of shale permeability to CO2 is therefore crucial to evaluate the appropriate injection rate and total consumption of CO2. The main purpose of this study is to accurately measure shale permeability to CO2 flow during hydraulic fracturing, and to compare the leak-off of CO2 and water fracturing. A series of permeability tests was conducted on cylindrical shale samples 38 mm in diameter and 19 mm long using water, CO2 in different phases and N2 considering multiple influencing factors. According to the experimental results, the apparent permeability of shale matrix to gaseous CO2 or N2 is greatly over-estimated compared with intrinsic permeability or that of liquid CO2 due to the Klinkenberg effect. This phenomenon explains that the permeability values measured under steady-state conditions are much higher than those under transient conditions. Supercritical CO2 with higher molecular kinetic energy has slightly higher permeability than liquid CO2. The leak-off rate of CO2 is an order of magnitude higher than that of water under the same injection conditions due to its lower viscosity. The significant decrease of shale permeability to gas after water flooding is due to the water block effect, and much longer clean-up time and deep water imbibition depth greatly impede the gas transport from the shale matrix to the created fractures. Therefore, it is necessary to substitute water-based fracturing fluids with liquid or super

  11. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    Science.gov (United States)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  12. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  13. A review on technologies for oil shale surface retort

    International Nuclear Information System (INIS)

    Pan, Y.; Zhang, X.; Liu, S.; Yang, S.A.; Ren, N.

    2012-01-01

    In recent years, with the shortage of oil resources and the continuous increase in oil prices, oil shale has seized much more attention. Oil shale is a kind of important unconventional oil and gas resources. Oil shale resources are plentiful according to the proven reserves in places. And shale oil is far richer than crude oil in the world. Technology processing can be divided into two categories: surface retorting and in-situ technology. The process and equipment of surface retorting are more mature, and are still up to now, the main way to produce shale oil from oil shale. According to the variations of the particle size, the surface retorting technologies of oil shale can be notified and classified into two categories such as lump shale process and particulate shale process. The lump shale processes introduced in this article include the Fushun retorting technology, the Kiviter technology and the Petrosix technology; the particulate processes include the Gloter technology, the LR technology, the Tosco-II technology, the ATP (Alberta Taciuk Process) technology and the Enefit-280 technology. After the thorough comparison of these technologies, we can notice that, this article aim is to show off that : the particulate process that is environmentally friendly, with its low cost and high economic returns characteristics, will be the major development trend; Combined technologies of surface retorting technology and other oil producing technology should be developed; the comprehensive utilization of oil shale should be considered during the development of surface retorting technology, meanwhile the process should be harmless to the environment. (author)

  14. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  15. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  16. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  17. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe

    NARCIS (Netherlands)

    Song, J.; Littke, R.; Weniger, P.; Ostertag-Henning, C.; Nelskamp, S.

    2015-01-01

    A suite of drilling cores and outcrop samples of the Lower Toarcian Posidonia Shale (PS) were collected from multiple locations including the Swabian Alb and Franconian Alb of Southwest-Germany, Runswick Bay of UK and Loon op Zand well (LOZ-1) of the West Netherlands Basin. In order to assess the

  18. Marine shale and the Hazwaste recycling debate

    International Nuclear Information System (INIS)

    Bishop, J.

    1988-01-01

    This paper reports that Marine Shale Processors, Inc. (St. Rose, La.), and the Hazardous Waste Treatment Council (Washington, D.C.), an industry trade association, are at the focus of a controversy whose resolution has significant implications for the respective definitions, concepts and legal statuses of hazardous-waste incineration and recycling. Marine Shale Processors (MSP) claims it recycles hazardous wastes from a variety of government and commercial sources by blending it and treating it thermally in a large rotary kiln to produce non-hazardous aggregate material, which is sold for construction, road-building or other purposes. The Hazardous Waste Treatment Council (HWTC) and others allege that, under the provisions of the Resource Conservation and Recovery Act (RCRA), MSP is operating an unpermitted hazardous-waste incinerator. According to HWTC officials, MSP's identification as a recycler is inappropriate and has allowed the company unfairly to avoid permitting costs and formal compliance with RCRA standards and regulations. Recently, the Louisiana legislature passed laws declaring that hazardous-waste recyclers in the state must meet the same standards as permitted hazardous-waste incinerators. At press time, a hearing before the Louisiana Department of Environmental Quality to determine MSP's status as a recycler under the new laws was set for Sept. 29. Since all parties in the debate over Marine Shale's industry role appear to agree that the controversy is central to the emerging issue of establishing clear distinctions between recycling and hazardous-waste destruction, this article describes the arguments on both sides as these stood in mid-September

  19. Utica Shale Energy and Environment Laboratory (USEEL)

    Science.gov (United States)

    Cole, D. R.

    2017-12-01

    Despite the rapid growth of the UOG industry in the Appalachian Basin of Pennsylvania and neighboring states, there are still fundamental concerns regarding the environmentally sound and cost efficient extraction of this unique asset. To address these concerns, Ohio State University has established the Department of Energy-funded Utica Shale Energy and Environment Laboratory, a dedicated research program where scientists from the university will work with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), academia, industry, and regulatory partners, to measure and monitor reservoir response to UOG development and any associated environmental concerns. The USEEL site will be located in Greene County, Pennsylvania, in the heart of the deep Utica-Pt. Pleasant Shale play of the Appalachian Basin. The USEEL project team will characterize and quantify the gas-producing attributes of one of the deepest portions of the Utica-Pt. Pleasant formations in the Appalachian Basin via a multi-disciplinary collaboration that leverages state-of-the-art capabilities in geochemistry, core assessment, well design and logging, 3-D and micro-seismic, DTS and DAS fiber optics, and reservoir modelling. Fracture and rock strength analyses will be complemented by a comprehensive suite of geophysical and geochemical logs, water and chip samples, and cores (pressure sidewall and whole core) to evaluate fluids, mineral alteration, microbes, pore structure, and hydrocarbon formation and alteration in the shale pore space. Located on an existing Marcellus drill pads in southwestern Pennsylvania, USEEL will provide an unprecedented opportunity to evaluate the economic and environmental effects of Marcellus pad expansion on the integrity of near-by existing production wells, ground disruption and slope stability, and ultimate efforts to conduct site reclamation. Combined with the overall goal of an improved understanding of the Utica-Pt. Pleasant system, USEEL

  20. Shale gas wastewater management under uncertainty.

    Science.gov (United States)

    Zhang, Xiaodong; Sun, Alexander Y; Duncan, Ian J

    2016-01-01

    This work presents an optimization framework for evaluating different wastewater treatment/disposal options for water management during hydraulic fracturing (HF) operations. This framework takes into account both cost-effectiveness and system uncertainty. HF has enabled rapid development of shale gas resources. However, wastewater management has been one of the most contentious and widely publicized issues in shale gas production. The flowback and produced water (known as FP water) generated by HF may pose a serious risk to the surrounding environment and public health because this wastewater usually contains many toxic chemicals and high levels of total dissolved solids (TDS). Various treatment/disposal options are available for FP water management, such as underground injection, hazardous wastewater treatment plants, and/or reuse. In order to cost-effectively plan FP water management practices, including allocating FP water to different options and planning treatment facility capacity expansion, an optimization model named UO-FPW is developed in this study. The UO-FPW model can handle the uncertain information expressed in the form of fuzzy membership functions and probability density functions in the modeling parameters. The UO-FPW model is applied to a representative hypothetical case study to demonstrate its applicability in practice. The modeling results reflect the tradeoffs between economic objective (i.e., minimizing total-system cost) and system reliability (i.e., risk of violating fuzzy and/or random constraints, and meeting FP water treatment/disposal requirements). Using the developed optimization model, decision makers can make and adjust appropriate FP water management strategies through refining the values of feasibility degrees for fuzzy constraints and the probability levels for random constraints if the solutions are not satisfactory. The optimization model can be easily integrated into decision support systems for shale oil/gas lifecycle

  1. Market analysis of shale oil co-products. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  2. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  3. Study on geochemical occurrences of REE in Wangqing oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Tong; Wei, Yan-zhen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Sequential chemical extraction experiment (SCEE) and Float- sink experiment (FSE) have been employed on oil shale research from Wangqing, Jilin province China, in order to determine the binding forms of rare earth elements (REE) in oil shale. The REE contents were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). Wangqing oil shale was screened into specific gravity density level: <1.5g/cm{sup 3}, 1.5-1.6g/cm{sup 3}, 1.6-2.0g/cm{sup 3}, 2.0-2.4g/cm{sup 3}, >2.4g/cm{sup 3}. The mode of occurrences of rare earth elements in Wangqing oil shale was studied by six-step SCEE. FSE results show that REEs in Wangqing oil shale exist mainly in inorganic minerals and more in excluded mineral, while SCEE results show that REEs of Wangqing oil shale is primarily occurred in minerals, including carbonate, Fe-Mn oxide, sulfide, and Si-minerals. FSE and SCEE results fully illustrate excluded mineral is mainly mode of occurrence of REEs in Wangqing oil shale, whereas inorganic minerals and organic matter is not that. The REE distribution pattern curves of FSE density and SCEE fraction products are similar with that of raw oil shale. The REE in different densities products has a close connection with terrigenous clastic rock, and the supply of terrestrial material is stable.

  4. Shale Gas in Europe: pragmatic perspectives and actions

    Science.gov (United States)

    Hübner, A.; Horsfield, B.; Kapp, I.

    2012-10-01

    Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.

  5. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  6. Implementation of an anisotropic mechanical model for shale in Geodyn

    Energy Technology Data Exchange (ETDEWEB)

    Attia, A; Vorobiev, O; Walsh, S

    2015-05-15

    The purpose of this report is to present the implementation of a shale model in the Geodyn code, based on published rock material models and properties that can help a petroleum engineer in his design of various strategies for oil/gas recovery from shale rock formation.

  7. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  8. A comparative assessment of the economic benefits from shale gas ...

    African Journals Online (AJOL)

    Kirstam

    2014-09-01

    Sep 1, 2014 ... 2Key words: shale gas extraction, economy-wide modelling, CGE, exhaustible resources, energy .... specific shale plays, whereas the UK may not attract the supply chain to specific plays to the same extent. ..... of fracking may require notable quantities of labour (i.e. the weakness of fracking is that the ...

  9. Shale Gas in Europe: pragmatic perspectives and actions

    Directory of Open Access Journals (Sweden)

    Horsfield B.

    2012-10-01

    Full Text Available Natural gas will continue to play a key role in the EU’s energy mix in the coming years, with unconventional gas’ role increasing in importance as new resources are exploited worldwide. As far as Europe’s own shale gas resources are concerned, it is especially the public’s perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project “Gas Shales in Europe” (GASH and the shale gas activities of “GeoEnergie” (GeoEn are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP brings these issues into the public domain.

  10. Oil shale energy and some alternatives in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    2002-01-01

    An academic lecture delivered by prof. Ilmar Oepik at the Thermal Engineering Department of Tallinn Technical University in Dec. 2000 to mark the 120 semesters since the cum laude diploma of a mechanical engineer discusses about ineffective utilization of oil shale and developing renewable resources as an alternative to oil shale

  11. Exploring support for shale gas extraction in the United Kingdom

    International Nuclear Information System (INIS)

    Andersson-Hudson, Jessica; Knight, William; Humphrey, Mathew; O’Hara, Sarah

    2016-01-01

    The development of shale gas in the United Kingdom (UK) using hydraulic fracturing, more commonly known as ‘fracking’, remains in its infancy. Yet understanding public attitudes for this fledgling industry is important for future policy considerations, decision-making and for industry stakeholders. This study uses data collected from the University of Nottingham, UK nationwide online survey (n=3823) conducted in September 2014, to consider ten hypothesises about the UK public's attitudes towards shale gas. From the survey data we can see that 43.11% of respondents support shale gas extraction in the UK. Furthermore, our results show that women, class DE respondents, non-Conservative party supporters, and respondents who positively associate shale gas with water contamination or earthquakes are less likely to support the extraction of shale gas in the UK. We also discuss potential policy implications for the UK government arising from these findings. - Highlights: • September 2014 survey of British attitudes towards allowing shale gas extraction. • Over 75% or respondents correctly identify shale gas. • 43.11% of respondents support shale gas extraction in the UK.

  12. The Geopolitical Impact of Shale Gas : The Modelling Approach

    NARCIS (Netherlands)

    Auping, W.L.; De Jong, S.; Pruyt, E.; Kwakkel, J.H.

    2014-01-01

    The US’ shale gas revolution, a spectacular increase in natural gas extraction from previously unconventional sources, has led to considerable lower gas prices in North America. This study focusses on consequences of the shale gas revolution on state stability of traditional oil and gas exporting

  13. Apparatus for recovering oil from Posidonien shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-04-13

    Equipment for recovering oil from shale and the like, as well as the distilling of coal is characterized in that a number of chambers provided in a known way with upper and lower air supply are arranged open to the receiver of the oil vapors through removable domes which can be attached to the usual oil-vapor carry-off. Arrangement is characterized in that the domes are movable to the side, so that they can be interchangeably attached to the different chambers.

  14. Destructive distillation of shale, torbanite, etc

    Energy Technology Data Exchange (ETDEWEB)

    Lensvelt, M W

    1931-09-21

    In the production of oil by the distillation of coal, shale, torbanite, or the like below 600/sup 0/C the occurrence of tarry matters, free carbon, ammonia, or sulfur compounds in the oils is prevented by the addition of an alkali such as caustic soda, or an alkaline earth as lime, to which sodium carbonate may be added. The carbonaceous material is ground to pass through a 20 mesh screen, and is treated for example with a slurry of quicklime having an addition of sodium carbonate, the adherent water being evaporated before the material is passed into the retort.

  15. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  16. Mechanism for Burgess Shale-type preservation

    DEFF Research Database (Denmark)

    Gaines, Robert R.; Hammarlund, Emma U.; Hou, Xianguang

    2012-01-01

    Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted......-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier...

  17. Dressing coals, shales, and the like

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, H

    1938-12-28

    A process for dressing coals, shales, and like carbonaceous substances with the use of floating and sinking phenomena caused by differences in the specific gravities of the substances to be separated in the dressing operation is characterized by the use as the dressing medium of an aqueous suspension of clay and finely ground pyrite or iron ore cinder, or finely ground easily pulverizable iron ore, such as earthy or granular limonite. The aqueous suspension has a low viscosity and a specific gravity between 1.35 and 1.70.

  18. Market analysis of shale oil co-products. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  19. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  20. Employment Creation of Shale Gas Investment in China

    Science.gov (United States)

    Wang, Xuecheng; Zhang, Baosheng; Wu, Meiling; Li, Xiang; Lin, Yuying

    2018-01-01

    An ambitious shale gas extraction plan has been proposed. The huge investment of shale gas may put an effect on the whole China’s economy, especially for employment. However, there is few study to date has quantified these effects. The aim of this paper is to quantify these effects especially employment creation and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the employment creation in four different Chinese regions. Our findings show that shale gas investment will result in creating 660000, 370000, 140000 and 58000 equivalent jobs in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  1. Clay squirt: Local flow dispersion in shale-bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2017-01-01

    Dispersion of elastic-wave velocity is common in sandstone and larger in shaly sandstone than in clean sandstone. Dispersion in fluid-saturated shaly sandstone often exceeds the level expected from the stress-dependent elastic moduli of dry sandstone. The large dispersion has been coined clay...... squirt and is proposed to originate from a pressure gradient between the clay microporosity and the effective porosity. We have formulated a simple model that quantifies the clay-squirt effect on bulk moduli of sandstone with homogeneously distributed shale laminae or dispersed shale. The model...... predictions were compared with the literature data. For sandstones with dispersed shale, agreement was found, whereas other sandstones have larger fluid-saturated bulk modulus, possibly due to partially load-bearing shales or heterogeneous shale distribution. The data that agree with the clay-squirt model...

  2. Development of Shale Gas Supply Chain Network under Market Uncertainties

    Directory of Open Access Journals (Sweden)

    Jorge Chebeir

    2017-02-01

    Full Text Available The increasing demand of energy has turned the shale gas and shale oil into one of the most promising sources of energy in the United States. In this article, a model is proposed to address the long-term planning problem of the shale gas supply chain under uncertain conditions. A two-stage stochastic programming model is proposed to describe and optimize the shale gas supply chain network. Inherent uncertainty in final products’ prices, such as natural gas and natural gas liquids (NGL, is treated through the utilization of a scenario-based method. A binomial option pricing model is utilized to approximate the stochastic process through the generation of scenario trees. The aim of the proposed model is to generate an appropriate and realistic supply chain network configuration as well as scheduling of different operations throughout the planning horizon of a shale gas development project.

  3. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  4. Pore Structure and Fractal Characteristics of Niutitang Shale from China

    Directory of Open Access Journals (Sweden)

    Zhaodong Xi

    2018-04-01

    Full Text Available A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH model. The relationships between total organic carbon (TOC content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average, high thermal maturity (3.0% on average, low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA, pore volume (PV and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion.

  5. Thermally-driven Coupled THM Processes in Shales

    Science.gov (United States)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  6. Phanerozoic environments of black shale deposition and the Wilson Cycle

    Directory of Open Access Journals (Sweden)

    J. Trabucho-Alexandre

    2012-02-01

    Full Text Available The spatial and temporal distribution of black shales is related to the development of environments in which they accumulate and to a propitious combination of environmental variables. In recent years, much has been done to improve our understanding of the mechanisms behind the temporal distribution of black shales in the Phanerozoic and of the environmental variables that result in their deposition. However, the interpretation of ancient black shale depositional environments is dominated by an oversimplistic set of three depositional models that do not capture their complexity and dynamics. These three models, the restricted circulation, the (open ocean oxygen minimum and the continental shelf models, are an oversimplification of the variety of black shale depositional environments that arise and coexist throughout the course of a basin's Wilson Cycle, i.e. the dynamic sequence of events and stages that characterise the evolution of an ocean basin, from the opening continental rift to the closing orogeny. We examine the spatial distribution of black shales in the context of the Wilson Cycle using examples from the Phanerozoic. It is shown that the geographical distribution of environments of black shale deposition and the position of black shales in the basin infill sequence strongly depend on basin evolution, which controls the development of sedimentary environments where black shales may be deposited. The nature of the black shales that are deposited, i.e. lithology and type of organic matter, also depends on basin evolution and palaeogeography. We propose that in studies of black shales more attention should be given to the sedimentary processes that have led to their formation and to the interpretation of their sedimentary environments.

  7. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    Science.gov (United States)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  8. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn

    2011-02-17

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub\\'al-Khali basin, Saudi Arabia. Kaolinite, illite-smectite, illite-mica and chlorite show strong preferred orientation with (001) pole figure maxima perpendicular to the bedding plane ranging from 2.4-6.8 multiples of a random distribution (m.r.d.). Quartz, feldspars and pyrite crystals have a random orientation distribution. Elastic properties of the polyphase aggregate are calculated by averaging the single crystal elastic properties over the orientation distribution, assuming a nonporous material. The average calculated bulk P-wave velocities are 6.2 km/s (maximum) and 5.5 km/s (minimum), resulting in a P-wave anisotropy of 12%. The calculated velocities are compared with those determined from ultrasonic velocity measurements on a similar sample. In the ultrasonic experiment, which measures the effects of the shale matrix as well as the effects of porosity, velocities are smaller (P-wave maximum 5.3 km/s and minimum 4.1 km/s). The difference between calculated and measured velocities is attributed to the effects of anisotropic pore structure and to microfractures present in the sample, which have not been taken into account in the matrix averaging. © 2011 European Association of Geoscientists & Engineers.

  9. Uranium production from low grade Swedish shale

    International Nuclear Information System (INIS)

    Carlsson, O.

    1977-01-01

    In view of the present nuclear programmes a steep increase in uranium demand is foreseen which will pose serious problems for the uranium industry. The annual additions to uranium ore reserves must almost triple within the next 15 years in order to support the required production rates. Although there are good prospects for the discovery of further conventional deposits of uranium there is a growing interest in low grade uranium deposits. Large quantities of uranium exist in black shales, phosphates, granites, sea water and other unconventional sources. There are however factors which limit the utilization of these low grade materials. These factors include the extraction costs, the environmental constrains on mining and milling of huge amounts of ore, the development of technologies for the beneficiation of uranium and, in the case of very low grade materials, the energy balance. The availability of by-product uranium is limited by the production rate of the main product. The limitations differ very much according to types of ores, mining and milling methods and the surroundings. As an illustration a description is given of the Swedish Ranstad uranium shale project, its potential, constraints and technical solutions

  10. Environmental control technology for shale oil wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  11. The Lower Jurassic Posidonia Shale in southern Germany: results of a shale gas analogue study

    Science.gov (United States)

    Biermann, Steffen; Schulz, Hans-Martin; Horsfield, Brian

    2013-04-01

    The shale gas potential of Germany was recently assessed by the Federal Institute for Geosciences and Natural Resources (2012 NiKo-Project) and is - in respect of the general natural gas occurrence in Germany - regarded as a good alternative hydrocarbon source. The Posidonia Shale in northern and southern Germany is one of the evaluated rock formation and easily accessible in outcrops in the Swabian Alps (southern Germany). The area of interest in this work is located in such an outcrop that is actively used for open pit mining next to the town of Dotternhausen, 70 km southwest of Stuttgart. 31 samples from the quarry of Dotternhausen were analyzed in order to characterize the immature Posidonia Shale (Lower Toarcian, Lias ɛ) of southern Germany as a gas shale precursor. Methods included are Rock Eval, Open Pyrolysis GC, SEM, Mercury Intrusion Porosimetry, XRD, and other. The samples of Dotternhausen contain exclusively type II kerogen. The majority of the organic matter is structureless and occurs in the argillaceous-calcareous matrix. Structured organic matter appears predominantly as alginite, in particular the algae "tasmanite" is noticeable. The TOC content ranges up to 16 wt% with a high bitumen content. The mineral content characterizes the Posidonia Shale as a marlstone or mudstone with varying clay-calcite ratios. The quartz and pyrite content reaches up to 20 wt% and 9 wt%, respectively. The rock fabric is characterized by a fine grained and laminated matrix. The mean porosity lies between 4 and 12 %. Fractures other than those introduced by sample preparation were not observed. The Posidonia Shale is predicted to have an excellent source rock potential and will generate intermediate, P-N-A low wax oil when exposed to higher P-T-conditions ("oil kitchen"). Contact surfaces between the kerogen and matrix will be vulnerable to pressure induced fracturing caused by hydrocarbon formation. Additional porosity will be formed during maturation due to the

  12. Suggestions on the development strategy of shale gas in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2016-12-01

    Full Text Available From the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1 Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2 Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3 The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4 Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5 Reform the mining rights management system, establish information platform of shale

  13. A comprehensive environmental impact assessment method for shale gas development

    Directory of Open Access Journals (Sweden)

    Renjin Sun

    2015-03-01

    Full Text Available The great success of US commercial shale gas exploitation stimulates the shale gas development in China, subsequently, the corresponding supporting policies were issued in the 12th Five-Year Plan. But from the experience in the US shale gas development, we know that the resulted environmental threats are always an unavoidable issue, but no uniform and standard evaluation system has yet been set up in China. The comprehensive environment refers to the combination of natural ecological environment and external macro-environment. In view of this, we conducted a series of studies on how to set up a comprehensive environmental impact assessment system as well as the related evaluation methodology and models. First, we made an in-depth investigation into shale gas development procedures and any possible environmental impacts, and then compared, screened and modified environmental impact assessment methods for shale gas development. Also, we established an evaluating system and assessment models according to different status of the above two types of environment: the correlation matrix method was employed to assess the impacts on natural ecological environment and the optimization distance method was modified to evaluate the impacts on external macro-environment. Finally, we substitute the two subindexes into the comprehensive environmental impact assessment model and achieved the final numerical result of environmental impact assessment. This model can be used to evaluate if a shale gas project has any impact on environment, compare the impacts before and after a shale gas development project, or the impacts of different projects.

  14. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  15. Geothermometry methods for determining the thermal history of shales

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1977-01-01

    When clays and muds are deposited, the clay mineral suite is usually not an equilibrium assemblage. With time and increased depth of burial and temperature, the clay mineral suite undergoes continuous chemical and mineral changes as it adjusts to increasingly higher temperatures. Significant changes are observed at temperatures as low as 50 0 C and continue to 400 0 C (beginning of metamorphism) and above. Once these clay-rich rocks are exposed to elevated temperatures and then later uplifted to areas of lower temperature, no significant changes occur unless the rock is exposed to weathering or to temperatures higher than that to which they have been exposed previously. An initial objective is to develop the ability to determine the mineral, chemical, and textural changes which are produced in shales by increased temperature. This will allow prediction of the diagenetic changes that occur in shales when they are exposed to the heat generated by radioactive waste. A second objective is to develop the ability to determine the maximum temperature to which a shale has been exposed. Once a shale has been exposed to temperatures of 200 to 400 0 C for thousands of years, an equilibrium assemblage is obtained which persists after the shale is elevated to near surface conditions and is only altered if the shale is exposed to temperatures higher than those of the maximum to which the shale was originally exposed. A proposal is made to select for initial study a thick Paleozoic shale, probably of Cambro-Ordovician or Devonian age, in the Appalachian region. A shale sequence will be selected which has rocks ranging from deeply buried geosynclinal environments (approx.300 to 400 0 C) to shallow shelf environments

  16. Economic appraisal of shale gas plays in Continental Europe

    International Nuclear Information System (INIS)

    Weijermars, Ruud

    2013-01-01

    Highlights: ► Economic feasibility of five European shale gas plays is assessed. ► Polish and Austrian shale plays appear profitable for P90 assessment criterion. ► Posidonia (Germany), Alum (Sweden) and a Turkish shale play below the hurdle rate. ► A 10% improvement of the IRR by sweet spot targeting makes all plays profitable. - Abstract: This study evaluates the economic feasibility of five emergent shale gas plays on the European Continent. Each play is assessed using a uniform field development plan with 100 wells drilled at a rate of 10 wells/year in the first decade. The gas production from the realized wells is monitored over a 25 year life cycle. Discounted cash flow models are used to establish for each shale field the estimated ultimate recovery (EUR) that must be realized, using current technology cost, to achieve a profit. Our analyses of internal rates of return (IRR) and net present values (NPVs) indicate that the Polish and Austrian shale plays are the more robust, and appear profitable when the strict P90 assessment criterion is applied. In contrast, the Posidonia (Germany), Alum (Sweden) and a Turkish shale play assessed all have negative discounted cumulative cash flows for P90 wells, which puts these plays below the hurdle rate. The IRR for P90 wells is about 5% for all three plays, which suggests that a 10% improvement of the IRR by sweet spot targeting may lift these shale plays above the hurdle rate. Well productivity estimates will become better constrained over time as geological uncertainty is reduced and as technology improves during the progressive development of the shale gas fields

  17. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  18. Forecasting production in Liquid Rich Shale plays

    Science.gov (United States)

    Nikfarman, Hanieh

    Production from Liquid Rich Shale (LRS) reservoirs is taking center stage in the exploration and production of unconventional reservoirs. Production from the low and ultra-low permeability LRS plays is possible only through multi-fractured horizontal wells (MFHW's). There is no existing workflow that is applicable to forecasting multi-phase production from MFHW's in LRS plays. This project presents a practical and rigorous workflow for forecasting multiphase production from MFHW's in LRS reservoirs. There has been much effort in developing workflows and methodology for forecasting in tight/shale plays in recent years. The existing workflows, however, are applicable only to single phase flow, and are primarily used in shale gas plays. These methodologies do not apply to the multi-phase flow that is inevitable in LRS plays. To account for complexities of multiphase flow in MFHW's the only available technique is dynamic modeling in compositional numerical simulators. These are time consuming and not practical when it comes to forecasting production and estimating reserves for a large number of producers. A workflow was developed, and validated by compositional numerical simulation. The workflow honors physics of flow, and is sufficiently accurate while practical so that an analyst can readily apply it to forecast production and estimate reserves in a large number of producers in a short period of time. To simplify the complex multiphase flow in MFHW, the workflow divides production periods into an initial period where large production and pressure declines are expected, and the subsequent period where production decline may converge into a common trend for a number of producers across an area of interest in the field. Initial period assumes the production is dominated by single-phase flow of oil and uses the tri-linear flow model of Erdal Ozkan to estimate the production history. Commercial software readily available can simulate flow and forecast production in this

  19. After the us shale gas revolution

    International Nuclear Information System (INIS)

    Bros, Thierry

    2012-01-01

    After 20 years at different positions in the gas sector, from the policy side to trading floors, the author gives an overview of the major gas issues and elaborate on the consequences of the US shale gas revolution. The first part of the book provides basic knowledge and gives needed tools to better understand this industry, that often stands, in sandwich, between upstream oil and utilities. After extensive research, publication and teaching, the author shares his insights on fundamental issues all along the gas chain and explains the price mechanisms ranging from oil-indexing to spot. The second part looks into the future of worldwide gas balance. To supply growing markets, the major resource holder, Russia, is now in direct competition with the major gas producer, the US. China has the potential not only to select the winner but also to decide the pricing principle for all Asian buyers in 2020. As China is a new and growing gas importer and has a lower price tolerance than historical Asian buyers (Japan and South Korea), it is highly possible that, against basic geography, China selects waterborne US LNG vs. close Russian pipe gas, to achieve lower import price. Europe, so risk adverse that it won't be able to take any decision regarding shale gas production on this side of 2020, should see its power fading on the energy scene and would rely more on Russia. Gas geopolitics could tighten Russia stronghold on Europe, on one side, and create a flourishing North America-Asian trade... This book is accessible to all and will particularly interest readers seeking a global gas perspective where economics and geopolitics mix. It can be read as an economic novel where billions of $ are invested to shape tomorrow energy world or as a geopolitical thriller where Russia and the US compete to impose their respective agenda, leaving China to select the winner. Contents: 1. Basics. 2. Technical aspects. 3. Markets, prices and costs. 4. Policies. 5. Where is the future supply

  20. After the US shale gas revolution

    International Nuclear Information System (INIS)

    Bros, Thierry

    2012-01-01

    After 20 years at different positions in the gas sector, from the policy side to trading floors, the author gives an overview of the major gas issues and elaborate on the consequences of the US shale gas revolution. The first part of the book provides basic knowledge and gives needed tools to better understand this industry, that often stands, in sandwich, between upstream oil and utilities. After extensive research, publication and teaching, the author shares his insights on fundamental issues all along the gas chain and explains the price mechanisms ranging from oil-indexing to spot. The second part looks into the future of worldwide gas balance. To supply growing markets, the major resource holder, Russia, is now in direct competition with the major gas producer, the US. China has the potential not only to select the winner but also to decide the pricing principle for all Asian buyers in 2020. As China is a new and growing gas importer and has a lower price tolerance than historical Asian buyers (Japan and South Korea), it is highly possible that, against basic geography, China selects waterborne US LNG vs. close Russian pipe gas, to achieve lower import price. Europe, so risk adverse that it won't be able to take any decision regarding shale gas production on this side of 2020, should see its power fading on the energy scene and would rely more on Russia. Gas geopolitics could tighten Russia stronghold on Europe, on one side, and create a flourishing North America-Asian trade... This book is accessible to all and will particularly interest readers seeking a global gas perspective where economics and geopolitics mix. It can be read as an economic novel where billions of $ are invested to shape tomorrow energy world or as a geopolitical thriller where Russia and the US compete to impose their respective agenda, leaving China to select the winner. Contents: 1. Basics. 2. Technicals. 3. Markets, prices and costs. 4. Policies. 5. Where is the future supply growth? 6

  1. Shale gas - los yacimientos de hidrocarburos no convencionales: origen del Shale gas

    Directory of Open Access Journals (Sweden)

    José Francisco Longoria Treviño

    2015-06-01

    Full Text Available El shale gas tiene su origen en la acumulación de materia orgánica en cuencas marinas. En Norteamérica el gas de lutita (shale gas es una fuente emergente de gas natural de bajo costo. El gas natural es una fuente de energía abundante y relativamente limpia al quemarse. Se ha convertido en un combustible popular tanto para aplicaciones residenciales como industriales. De acuerdo con los datos recientes se estima que el suministro de gas natural derivado de yacimientos no convencionales (gas de lutita – shale gas durará más de 100 años. El gas natural ofrece un remplazo potencial para sustituir a los combustibles fósiles que producen gases de efecto invernadero y que en la actualidad se usan en la generación de energía, calefacción y transporte. Las emisiones de gas de efecto invernadero de la combustión de gas natural son aproximadamente 30% más limpias que aquellas que se derivan del aceite y 45% más limpias de las del carbón.

  2. Analysis of oil shale and oil shale products for certain minor elements

    International Nuclear Information System (INIS)

    Dickman, P.T.; Purdy, M.; Doerges, J.E.; Ryan, V.A.; Poulson, R.E.

    1977-01-01

    The University of Wyoming was contracted by the Department of Energy's Laramie Energy Research Center (LERC) to develop rapid, inexpensive, and simple methods of quantitative and qualitative elemental analysis for products used and generated in the simulated in-situ retorting of oil shale. Alpha particle spectrometry was used to determine the radioisotope content of the aqueous retort products. Alpha particles are mono-energetic and the spectrometry method employed had very low background levels (1 count per 2000 seconds). These factors allow for both the quantitative and qualitative analysis of natural radioisotopes at the 1 ppm level. Sample preparation does not require any chemical treatment. Energy dispersive x-ray fluorescence (XRF) was used for the multi-element analysis of the retort products. The XRF, integrated with a mini-computer, allows rapid analysis of several elements in multiple samples. XRF samples require minimal amounts of preparation and analytical results are highly reproducible. This paper presents the methods developed and preliminary analytical results from oil shale by-products. Results from the analysis of oil shale rocks are not yet ready for presentation

  3. Hydrogen retorting of oil shales from Eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, Ontario (Canada)); Synnott, J.; Boorman, R.S.; Salter, R.S.

    1984-04-01

    The liquid production potential of thirty oil shale samples from Eastern Canada was determined by Fischer assay retort and pyrochem retort. For all shales, the presence of hydrogen during pyrochem retorting resulted in a significant increase in oil yields compared to Fischer assay yields. Ten oil shale samples were selected for detailed evaluation in the pyrochem retort in the presence of nitrogen and hydrogen. Besides increasing yields, the presence of hydrogen lowered the specific gravity of liquid products and the content of sulphur but increased the content of nitrogen. This was attributed to the stabilization of precursors to nitrogen compounds which prevented their polymerization. (J.H.K.)

  4. Technical and economic framework for market enhancement of shale oil

    International Nuclear Information System (INIS)

    Bunger, J.W.; Devineni, A.V.

    1992-01-01

    By now it is apparent that production of syncrude from shale oil will not be economically viable as long as there is a stable and reasonably-priced supply of petroleum. The costs and financial risks of producing syncrude from oil shale, in the face of price constraints imposed by petroleum markets, are too high to warrant private investment. A possible solution is to develop commodity and specialty products from shale oil which command a high market value. In this fashion, the economics are partially uncoupled from petroleum and an opportunity for a greater price/cost differential is provided

  5. Beneficiation-hydroretort processing of US oil shales: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    This report has been divided into three volumes. Volume I describes the MRI beneficiation work. In addition, Volume I presents the results of joint beneficiation-hydroretorting studies and provides an economic analysis of the combined beneficiation-hydroretorting approach for processing Eastern oil shales. Volume II presents detailed results of hydroretorting tests made by HYCRUDE/IGT on raw and beneficiated oil shales prepared by MRI. Volume III comprises detailed engineering design drawings and supporting data developed by the Roberts and Schaefer Company, Engineers and Contractors, Salt Lake City, Utah, in support of the capital and operating costs for a conceptual beneficiation plant processing an Alabama oil shale.

  6. Shale: an overlooked option for US nuclear waste disposal

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  7. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    Science.gov (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  8. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  9. Method of recovering oil from alum shales. [heating by electric currents

    Energy Technology Data Exchange (ETDEWEB)

    Wennerstrom, K G

    1918-06-04

    A method of treating alum shale and other bituminous shales in order to extract oil et cetera, is characterized by bringing the shale to a temperature at which it melts, and at which the necessary amount of heat is transferred to the molten shale to be distilled. The patent claim is characterized by heating the shale by means of electric current. The patent has one additional claim.

  10. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  11. Method of distillation of alum shale

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, G H

    1920-02-03

    A method is given of distilling alum shale by means of preheated gases obtained from the process of distillation in which the gases are circulating within a system consisting of the retort, the condensation apparatus, and generator, each separate. It is characterized by leading the gases produced during the distillation through a condensation apparatus for separation of the condensable products, such as oil, benzene, ammonia, and sulfur, and the noncondensable gases are conveyed through one or more heated generators that have been charged with residue from the process of distillation (any superfluous amount of gas formed during the process being released). The heated gases are thereupon passed to the retort for completion of the distillation process.

  12. Carbonization process for bituminous shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1917-11-08

    A process for uninterrupted carbonization with possibly greater yield of primary products and subsequent burning of the bituminous shale and other material with preponderantly inorganic constituents through direct flushing-through of the gases is characterized by a rustless shaft furnace wider at the bottom with lower inlets for air through the hot residue and air or gas inlets into the burning zone for the purpose of levelling the burning zone on one hand and regulating it in a determined cross section, and on the other hand to make possible ready determination of the temperature of the burning zone, the requisite means (vapor, wet or dry-air, air-hot gas mixture) going into the shaftcasing in the cross section in which the burning zone should be regulated, through an annular movable and double-sided coolable slit.

  13. Low temperature distillation of coal, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-08-12

    A process is disclosed for the low temperature distillation of solid carbonaceous fuels, such as coal, lignite, shale or the like, which comprises feeding or supplying the comminuted fuel in the form of a layer of shallow depth to drying and distilling zones in succession moving the fuel forward through the zones, submitting it to progressively increasing nonuniform heating therein by combustion gases supplied to the distillation zone and traveling thence to the drying zone, the gases heating the distillation zone indirectly and the drying zone both indirectly and then directly such that the fuel retains its solid discrete form during substantially the whole of its travel through the drying and distillation zones, subjecting the fuel for a portion of its travel to a zigzag ploughing and propelling movement on a heated sole, and increasing the heating so as to cause fusion of the fuel immediately prior to its discharge from the distillation zone.

  14. Completions in sand and fractured shale

    Energy Technology Data Exchange (ETDEWEB)

    da Fonseca, C F

    1968-01-01

    The development in the Candeias-Macui area depends little on well completion. The results obtained show that the practice adopted for stimulating fractured shale is not yet defined. It is necessary to improve hole quality, to undertake the research that will prove which prospective intervals are productive, to determine the possible origin of formation damage, and then to select the most suitable stimulation technique. With this, it will be possible to study the technology of ideal completion to be used on new wells in relation to a chosen type of stimulation and future workovers. From the discussion of general completion problems in RPBA, it is concluded that there is an immediate need for training engineers in the specialties of completion, workover and well stimulation. It is also concluded that the meaning of completion must be clarified, so that sectors of responsibility may be defined in order to determine when and how each sector enters into well operations.

  15. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size

  16. Shale gas exploration in the United Kingdom

    International Nuclear Information System (INIS)

    Riera, Eliette; Van Effenterre, Cyrille

    2013-11-01

    Proposed by the economic department of the French embassy in London, this report addresses the emergence of shale gas exploration/exploitation in the UK. It first evokes gas needs in the UK, briefly addresses the example of the USA, outlines that the development noticed in the USA is difficult to reproduce in Europe, and proposes an assessment of resources at the world level and at the British level. It discusses scientific challenges and recommendations as they are outlined in a public report made by the Royal Society and the Royal Academy of Engineering, and notably addresses issues related to water and fracking, to gas emissions and to seismic risks. The last part gives an overview of the British legal framework: creation of the Office for Unconventional Oil and Gas, existing regulations concerning water, air, seismic risks, and public commitment. It indicates the road-map given to involved companies

  17. Sweet spot identification and smart development -An integrated reservoir characterization study of a posidonia shale of a posidonia shale outcrop analogue

    NARCIS (Netherlands)

    Veen, J.H. ten; Verreussel, R.M.C.H.; Ventra, D.; Zijp, M.H.A.A.

    2014-01-01

    Shale gas reservoir stimulation procedures (e.g. hydraulic fracturing) require upfront prediction and planning that should be supported by a comprehensive reservoir characterization. Therefore, understanding shale depositional processes and associated vertical and lateral sedimentological

  18. Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators : Example of the Posidonia Shale Formation in the Netherlands

    NARCIS (Netherlands)

    Ter Heege, Jan; Zijp, Mart; Nelskamp, Susanne; Douma, Lisanne; Verreussel, Roel; Ten Veen, Johan; de Bruin, Geert; Peters, Rene

    2015-01-01

    Sweet spot identification in underexplored shale gas basins needs to be based on a limited amount of data on shale properties in combination with upfront geological characterization and modelling, because actual production data is usually absent. Multidisciplinary reservoir characterization and

  19. Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators: example of the Posidonia Shale Formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelskamp, S.; Douma, L.A.N.R.; Verreussel, R.M.C.H.; Veen, J.H. ten; Bruin, G. de; Peters, M.C.A.M.

    2015-01-01

    Sweet spot identification in underexplored shale gas basins needs to be based on a limited amount of data on shale properties in combination with upfront geological characterization and modelling, because actual production data is usually absent. Multidisciplinary reservoir characterization and

  20. Shale Gas characteristics of Permian black shales (Ecca group, Eastern Cape, South Africa)

    Science.gov (United States)

    Geel, Claire; Booth, Peter; Schulz, Hans-Martin; Horsfield, Brian; de Wit, Maarten

    2013-04-01

    This study involves a comprehensive and detailed lithological, sedimentalogical, structural and geochemical description of the lower Ecca Group in the Eastern Cape, South Africa. The Ecca group hosts a ~ 245 million year old organic-rich black shale, which has recently been the focus of interest of petroleum companies worldwide. The shale was deposited under anoxic conditions in a setting which formed as a consequence of retro-arc foreland basin development related to the Cape Fold Belt. This sedimentary/tectonic environment provided the conditions for deeply buried black shales to reach maturity levels for development in the gas window. The investigation site is called the Greystone Area and is situated north of Wolwefontein en route to Jansenville. The area has outcrops of the Dwyka, the Ecca and the lower Beaufort Groups. The outcrops were mapped extensively and the data was used in conjunction with GIS software to produce a detailed geological map. North-south cross sections were drawn to give indication of bed thicknesses and formation depths. Using the field work, data two boreholes were accurately sited on the northern limb of a shallow easterly plunging syncline. The first borehole reached 100m and the second was drilled to 292m depth (100m percussion and 192m core). The second borehole was drilled 200m south of the first, to penetrate the formations at a greater depth and to avoid surface weathering. Fresh core from the upper Dwyka Group, the Prince Albert Formation, the Whitehill Formation, Collingham Formation and part of the Ripon Formation were successfully extracted and a detailed stratigraphic log has been drawn up. The core was sampled during extraction and the samples were immediately sent to the GFZ in Potsdam, Germany, for geochemical analyses. As suspected the black shales of the the Whitehill Formation are high in organic carbon and have an average TOC value of 4.5%, whereas the Prince Albert and Collingham Formation are below 1%. Tmax values

  1. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf; Saad, Bilal; Negara, Ardiansyah; Sun, Shuyu

    2017-01-01

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically

  2. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  3. geochemistry of ekenkpon and nkporo shales, calabar flank, se

    African Journals Online (AJOL)

    incorporated in the clay minerals of the shales. Also the values of .... analyzed for major oxides, trace elements and rare earth element .... Trace, and rare earth elements geochemistry ..... bearing source material, Ca is leached rapidly than Na.

  4. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  5. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  6. Application of binomial-edited CPMG to shale characterization.

    Science.gov (United States)

    Washburn, Kathryn E; Birdwell, Justin E

    2014-09-01

    Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen-bitumen discrimination. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Some problems of oil shale retorting in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    1994-01-01

    Oil shale in Estonia will be competitive in the long term as a primary resource for power generating. The price of energy of Estonian oil shale is at present approximately 4 times lower than of coal. The price of electricity is anticipated to grow up to EEK 1.0/kWh in year 2020. The electricity price EEK 0.2/kWh at present in Estonia does not include capital costs needed for refurbishing of Estonian oil-shale-consuming power stations between the years 2000-2010. While all the prices and calculations of the enterprise are presented with no inflation adjustment, the other operation costs of oil shale retorting are anticipated for the prognosed period to remain at the present level: power consumption kWh 280/t crude oils and other operation costs (excluding labour, raw material and power consumption) EEK 100/t of oil

  8. Knudsen-Like Scaling May Be Inappropriate for Gas Shales

    KAUST Repository

    Patzek, Tadeusz

    2017-01-01

    We assert that a classification of gas flow regimes in shales that is widely accepted in the petroleum industry, may be inconsistent with the physics of high-pressure gas flow in capillaries. This classification follows from the 1946 work

  9. Weathering characteristics of the Lower Paleozoic black shale in ...

    Indian Academy of Sciences (India)

    permeability show that porosity increases significantly after weathering but permeability changes little. Furthermore, the ... As such, black shales usually have a high content of ... in the accumulation of soluble weathering phases, providing ...

  10. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  11. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  12. Unconventional shale gas extraction: present and future affects

    OpenAIRE

    Mohajan, Haradhan

    2012-01-01

    In the 1990s the extraction of unconventional shale gas extraction increases in the USA due to national and global demand of energy. The expansion of shale gas production will provide low carbon economy, therefore it is a positive side of low greenhouse gas emissions in the atmosphere and considering the benefit sides it has been referred to as a bridging fuel. Horizontal drilling and hydraulic fracturing are the two technologies by the combination with one another; provide the potential to ...

  13. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor

    2011-11-01

    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  14. Effects of pollution from oil shale mining in Estonia

    International Nuclear Information System (INIS)

    Vallner, L.; Sepp, K.

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  15. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  16. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.

    1979-01-01

    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  17. Scoping of fusion-driven retorting of oil shale

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1979-11-01

    In the time frame beyond 2005, fusion reactors are likely to make their first appearance when the oil shale industry will probably be operating with 20% of the production derived from surface retorts operating on deep mined shale from in situ retorts and 80% from shale retorted within these in situ retorts using relatively fine shale uniformly rubblized by expensive mining methods. A process was developed where fusion reactors supply a 600 0 C mixture of nitrogen, carbon dioxide, and water vapor to both surface and in situ retorts. The in situ production is accomplished by inert gas retorting, without oxygen, avoiding the burning of oil released from the larger shale particles produced in a simpler mining method. These fusion reactor-heated gases retort the oil from four 50x50x200m in-situ rubble beds at high rate of 40m/d and high yield (i.e., 95% F.A.), which provided high return on investment around 20% for the syncrude selling at $20/bbl, or 30% if sold as $30/bbl for heating oil. The bed of 600 0 C retorted shale, or char, left behind was then burned by the admission of ambient air in order to recover all of the possible energy from the shale resource. The hot combustion gases, mostly nitrogen, carbon dioxide and water vapor are then heat-exchanged with fusion reactor blanket coolant flow to be sequentially introduced into the next rubble bed ready for retorting. The advantages of this fusion-driven retorting process concept are a cheaper mining method, high yield and higher production rate system, processing with shale grades down to 50 l/mg (12 gpt), improved resource recovery by complete char utilization and low energy losses by leaving behind a cold, spent bed

  18. Sweet spots for hydraulic fracturing oil or gas production in underexplored shales using key performance indicators: Example of the Posidonia Shale formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelkamp, S.

    2015-01-01

    While extensive data and experiences are available for hydraulic fracturing and hydrocarbon production from shales in the U.S.A., such a record is lacking in many underexplored shale basins worldwide. As limited data is usually available in these basins, analysis of shale prospectivity and

  19. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  20. The influence of soluble organic matter on shale reservoir characterization

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-06-01

    Full Text Available Shale with a maturity within the “oil window” contains a certain amount of residual soluble organic matter (SOM. This SOM have an important influence on characterization of shale reservoir. In this study, two shale samples were collected from the Upper Permian Dalong Formation in the northwestern boundary of Sichuan Basin. Their geochemistry, mineral composition, and pore structure (surface area and pore volume were investigated before and after removing the SOM by means of extraction via dichloromethane or trichloromethane. The results show that the TOC, S1, S2, and IH of the extracted samples decrease significantly, but the mineral composition has no evident change as compared with their raw samples. Thus, we can infer that the original pore structure is thought to be unaffected from the extraction. The SOM occupies pore volume and hinders pores connectivity. The extraction greatly increases the surface area and pore volume of the samples. The residual SOM in the shale samples occur mainly in the micropores and smaller mesopores, and their occupied pore size range seems being constrained by the maturity. For the lower mature shale samples, the SOM is mainly hosted in organic pores that are less than 5 nm in size. For the middle mature shale samples, the micropores and some mesopores ranging between 2 and 20 nm in size are the main storage space for the SOM.

  1. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  2. Climate impact of potential shale gas production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Forster, D.; Perks, J. [AEA Technology plc, London (United Kingdom)

    2012-07-15

    Existing estimates of GHG emissions from shale gas production and available abatement options were used to obtain improved estimates of emissions from possible shale gas exploitation in the EU. GHG emissions per unit of electricity generated from shale gas were estimated to be around 4 to 8% higher than for electricity generated by conventional pipeline gas from within Europe. These additional emissions arise in the pre-combustion stage, predominantly in the well completion phase when the fracturing fluid is brought back to the surface together with released methane. If emissions from well completion are mitigated, through flaring or capture, and utilised, then this difference is reduced to 1 to 5%. The analysis suggests that the emissions from shale gas-based power generation (base case) are 2 to 10% lower than those from electricity generated from sources of conventional pipeline gas located outside of Europe (in Russia and Algeria), and 7 to 10% lower than those from electricity generated from LNG imported into Europe. However, under our 'worst case' shale gas scenario, where all flow back gases at well completion are vented, emissions from electricity generated from shale gas would be similar to the upper emissions level for electricity generated from imported LNG and for gas imported from Russia.

  3. Comparative dermal carcinogenesis of shale and petroleum-derived distillates.

    Science.gov (United States)

    Clark, C R; Walter, M K; Ferguson, P W; Katchen, M

    1988-03-01

    Ten test materials derived from petroleum or hydrotreated shale oils were applied 3 times/week for up to 105 weeks to the shaved skin of 25 male and 25 female C3H/HeN mice per group. Mineral oil and benzo(a) pyrene (0.15%) were control materials. Clinical observations were recorded during the study. At death, histopathologic examination was conducted on skin, internal organs and any gross lesions. Exposures to some materials were ended midway in the study due to severe irritation. Chronic toxicity of all materials was limited to inflammatory and degenerative skin changes. Significant increases over control incidence of skin tumors (squamous cell carcinoma and fibrosarcoma) occurred with both petroleum and shale-derived naphtha (21%, 50%), Jet A (26%, 28%), JP-4 (26%, 50%), and crude oils (84%, 54%). Severely hydrotreated shale oil and petroleum and shale-derived diesel distillates were not considered tumorigenic. Results indicate that toxicity of comparable petroleum and shale-derived fractions was qualitatively similar and confirm earlier findings that hydrotreating reduces or eliminates carcinogenicity of raw shale oil.

  4. Shale gas: how to progress. Report July 2014

    International Nuclear Information System (INIS)

    Clamadieu, Jean-Pierre; Aubagnac, Louis-Paul; Dolle, Julie; Lahet, Jean-Francois; Goffe, Bruno; Le Bihan-Graf, Christine; Rosenblieh, Laure; Puyfaucher, Laetitia

    2014-07-01

    This report proposes a multidisciplinary contribution to the debate on shale gas. It first shows that shale gas is already a reality at the international level, that the American economy has improved its competitiveness with direct consequences for the European economy, and notices that some countries which have been reluctant until now, are now evolving. The second part describes the potential of shale gas in France as important but with still uncertain resources. The authors outline that a status-quo would be a threat for the French industry on the short term. Then, the report proposes answers to some questions raised by the exploitation of shale gas in France in terms of risks related to hydraulic fracturing, to water resources, to methane emissions, to organic volatile compounds present in drilling waters, or in terms of noise and visual pollutions. In its last part, the report discusses how to progress in the assessment of the role of shale gas in the French and European energy mix, in the knowledge of the French underground, in the development of shale gas at the service of competitiveness, and with an ensured progressive and controlled evolution

  5. Climate impact of potential shale gas production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Forster, D.; Perks, J. [AEA Technology plc, London (United Kingdom)

    2012-07-15

    Existing estimates of GHG emissions from shale gas production and available abatement options were used to obtain improved estimates of emissions from possible shale gas exploitation in the EU. GHG emissions per unit of electricity generated from shale gas were estimated to be around 4 to 8% higher than for electricity generated by conventional pipeline gas from within Europe. These additional emissions arise in the pre-combustion stage, predominantly in the well completion phase when the fracturing fluid is brought back to the surface together with released methane. If emissions from well completion are mitigated, through flaring or capture, and utilised, then this difference is reduced to 1 to 5%. The analysis suggests that the emissions from shale gas-based power generation (base case) are 2 to 10% lower than those from electricity generated from sources of conventional pipeline gas located outside of Europe (in Russia and Algeria), and 7 to 10% lower than those from electricity generated from LNG imported into Europe. However, under our 'worst case' shale gas scenario, where all flow back gases at well completion are vented, emissions from electricity generated from shale gas would be similar to the upper emissions level for electricity generated from imported LNG and for gas imported from Russia.

  6. Prospects for the exploitation of Jordan oil shale

    International Nuclear Information System (INIS)

    Jaber, J.O; Probert, S.D.; Badr, O.

    1997-01-01

    Oil shale is the major indigenous fossil-fuel in Jordan: its predicted reserves, of about 5·10 1 0 tonnes, should be sufficient to satisfy Jordan's energy requirements for several centuries. Jordanian oil shale has, on an average, a gross calorific value of between 5 and 7 MJ/kg, an oil yield of ∼ 10 %, and a sulfur content of approximately 3 % by weight of the raw shale (i.e. 7 to 9 % of the organic matter content). Using the oil shale as the input fuel, a multipurpose production process (i.e. retorting, electricity generation, thermal water-desalination, chemicals production as well as mineral extraction) could achieve high utilisation-factors of both its chemical and energy potentials. In the long-term, oil shale is the only indigenous energy resource that could reduce Jordan's dependence on imported crude oil and hence ease the pressure on the national economy. The conversion of oil shale into a liquid or gaseous fuel and raw materials will be of decisive importance in attempts to secure the future of energy supplies. So national efforts devoted to the exploration for, and harnessing more economically, this energy resource, while limiting the associated adverse environmental impacts, should be accelerated. (author)

  7. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  8. Geomechanical Anisotropy and Rock Fabric in Shales

    Science.gov (United States)

    Huffman, K. A.; Connolly, P.; Thornton, D. A.

    2017-12-01

    Digital rock physics (DRP) is an emerging area of qualitative and quantitative scientific analysis that has been employed on a variety of rock types at various scales to characterize petrophysical, mechanical, and hydraulic rock properties. This contribution presents a generic geomechanically focused DRP workflow involving image segmentation by geomechanical constituents, generation of finite element (FE) meshes, and application of various boundary conditions (i.e. at the edge of the domain and at boundaries of various components such as edges of individual grains). The generic workflow enables use of constituent geological objects and relationships in a computational based approach to address specific questions in a variety of rock types at various scales. Two examples are 1) modeling stress dependent permeability, where it occurs and why it occurs at the grain scale; 2) simulating the path and complexity of primary fractures and matrix damage in materials with minerals or intervals of different mechanical behavior. Geomechanical properties and fabric characterization obtained from 100 micron shale SEM images using the generic DRP workflow are presented. Image segmentation and development of FE simulation composed of relatively simple components (elastic materials, frictional contacts) and boundary conditions enable the determination of bulk static elastic properties. The procedure is repeated for co-located images at pertinent orientations to determine mechanical anisotropy. The static moduli obtained are benchmarked against lab derived measurements since material properties (esp. frictional ones) are poorly constrained at the scale of investigation. Once confidence in the input material parameters is gained, the procedure can be used to characterize more samples (i.e. images) than is possible from rock samples alone. Integration of static elastic properties with grain statistics and geologic (facies) conceptual models derived from core and geophysical logs

  9. Shale gas characterization based on geochemical and geophysical analysis: Case study of Brown shale, Pematang formation, Central Sumatra Basin

    Science.gov (United States)

    Haris, A.; Nastria, N.; Soebandrio, D.; Riyanto, A.

    2017-07-01

    Geochemical and geophysical analyses of shale gas have been carried out in Brown Shale, Middle Pematang Formation, Central Sumatra Basin. The paper is aimed at delineating the sweet spot distribution of potential shale gas reservoir, which is based on Total Organic Carbon (TOC), Maturity level data, and combined with TOC modeling that refers to Passey and Regression Multi Linear method. We used 4 well data, side wall core and 3D pre-stack seismic data. Our analysis of geochemical properties is based on well log and core data and its distribution are constrained by a framework of 3D seismic data, which is transformed into acoustic impedance. Further, the sweet spot of organic-rich shale is delineated by mapping TOC, which is extracted from inverted acoustic impedance. Our experiment analysis shows that organic materials contained in the formation of Middle Pematang Brown Shale members have TOC range from 0.15 to 2.71 wt.%, which is classified in the quality of poor to very good. In addition, the maturity level of organic material is ranging from 373°C to 432°C, which is indicated by vitrinite reflectance (Ro) of 0.58. In term of kerogen type, this Brown shale formation is categorized as kerogen type of II I III, which has the potential to generate a mixture of gasIoil on the environment.

  10. Life cycle environmental impacts of UK shale gas

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2014-01-01

    Highlights: • First full life cycle assessment of shale gas used for electricity generation. • Comparison with coal, conventional and liquefied gas, nuclear, wind and solar PV. • Shale gas worse than coal for three impacts and better than renewables for four. • It has higher photochemical smog and terrestrial toxicity than the other options. • Shale gas a sound environmental option only if accompanied by stringent regulation. - Abstract: Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 × 10 13 cubic metres – enough to supply the UK for next 470 years – it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO 2 -eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and

  11. Investigating Rare Earth Element Systematics in the Marcellus Shale

    Science.gov (United States)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  12. Shale gas opportunities. Dehydrogenation of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Patcas, F.C.; Dieterle, M.; Rezai, A.; Asprion, N. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    The discovery and use of shale gas in North America has become a game changer for the chemical industry by access to a cheaper feedstock compared to conventional oil. Increased number of ethane crackers spurred increasing interest in light alkanes dehydrogenation. Several companies have announced their interest in new propane dehydrogenation units in North America. BASF is developing light alkanes dehydrogenation technologies for two decades now. BASF developed jointly with Linde the isothermal C3 dehydrogenation process. The latest dehydrogenation catalyst development at BASF focused on a supported and steam resistant Pt-Sn catalyst which yielded excellent selectivity and activity. Intense research work both internally as well as in cooperation with universities contributed to the understanding of the relationship between the surface structure and catalyst performances like activity, selectivity and coking resistance. Using such type of catalysts BASF developed an autothermal propane dehydrogenation as well as a butane dehydrogenation process. The most recent catalyst development was a dehydrogenation catalyst coated on a honeycomb monolith to improve catalyst usage and pressure drop. This will probably be the first industrial usage of catalytic monoliths in a chemical synthesis process. (orig.) (Published in summary form only)

  13. Process for distilling shales, peats, etc

    Energy Technology Data Exchange (ETDEWEB)

    Felizat, G

    1922-01-09

    The invention has for its object: a process for the distillation of shales, peats, and analogous products characterized by injecting across the substance a very rapid stream of superheated steam under pressure in order to effect a rapid removal of the products of distillation, to lower also the temperature at which it distills, to equalize the temperature throughout the mass, to hydrogenate the heavy hydrocarbons. An apparatus is put into operation characterized by the combination of a retort receiving the material to be distilled with a superheater for the steam, the combustion products which escape from the hearth of the superheater going to encircle the retort while the steam which comes off the superheater traverses this retort, the pressure of the steam being regulated by a convenient regulator; the products of the distillation result from the simultaneous action of the hot gases and steam on the contents of the retort being, on the other hand, separated at the outlet of this retort by means of cooling in a gas separator, a condenser, and part of the gas after being separated serving to heat the mentioned superheater.

  14. Emission from Estonian oil shale power plants

    International Nuclear Information System (INIS)

    Aunela, L.; Haesaenen, E.; Kinnunen, V.; Larjava, K.; Mehtonen, A.; Salmikangas, T.; Leskelae, J.; Loosaar, J.

    1995-01-01

    Flue gas emissions from pulverized oil shale fired boilers of Estonian and Baltic power plants have been studied. The concentrations of NO x , CO, C x H y , HCI, Hf and polycyclic aromatic hydrocarbons in flue gases have been found to be relatively low and acceptable according to German emission limits, for instance. Desulphurization degree of flue gases by SO 2 absorption with ash has been found to vary defending on boiler type and operation conditions. In spite of significant sulphur capture (average values for different boilers in the range between 68 and 77 % of the initial sulphur content of the fuel), SO 2 concentrations in flue gases remain still very high (up to 2600 mg/m 3 , 10% O 2 ). Very high concentrations of particles, especially at Estonian Power Plant (up o 6250 mg/m 3 , 10 % 0 2 ) have been detected. Heavy metal emissions were too high by the reason of particle control insufficiency as well. Yearly emission estimates of this study support the former Estonian ones within the range of 10-15 %. (author)

  15. Environmental baselines: preparing for shale gas in the UK

    Science.gov (United States)

    Bloomfield, John; Manamsa, Katya; Bell, Rachel; Darling, George; Dochartaigh, Brighid O.; Stuart, Marianne; Ward, Rob

    2014-05-01

    Groundwater is a vital source of freshwater in the UK. It provides almost 30% of public water supply on average, but locally, for example in south-east England, it is constitutes nearly 90% of public supply. In addition to public supply, groundwater has a number of other uses including agriculture, industry, and food and drink production. It is also vital for maintaining river flows especially during dry periods and so is essential for maintaining ecosystem health. Recently, there have been concerns expressed about the potential impacts of shale gas development on groundwater. The UK has abundant shales and clays which are currently the focus of considerable interest and there is active research into their characterisation, resource evaluation and exploitation risks. The British Geological Survey (BGS) is undertaking research to provide information to address some of the environmental concerns related to the potential impacts of shale gas development on groundwater resources and quality. The aim of much of this initial work is to establish environmental baselines, such as a baseline survey of methane occurrence in groundwater (National methane baseline study) and the spatial relationships between potential sources and groundwater receptors (iHydrogeology project), prior to any shale gas exploration and development. The poster describes these two baseline studies and presents preliminary findings. BGS are currently undertaking a national survey of baseline methane concentrations in groundwater across the UK. This work will enable any potential future changes in methane in groundwater associated with shale gas development to be assessed. Measurements of methane in potable water from the Cretaceous, Jurassic and Triassic carbonate and sandstone aquifers are variable and reveal methane concentrations of up to 500 micrograms per litre, but the mean value is relatively low at documented in the range 2km. The geological modelling process will be presented and discussed

  16. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  17. The Shale Gas potential of Lower Carboniferous Sediments in Germany

    Science.gov (United States)

    Kerschke, D.; Mihailovic, A.; Schulz, H., -M.; Horsfield, B.

    2012-04-01

    Organic-rich Carboniferous sediments are proven source rocks for conventional gas systems in NW Europe and are likely gas shale candidates. Within the framework of GeoEnergie, an initiative to strengthen scientific excellence, funded by the German Ministry of Education and Research (BMBF), the influence of palaeogeography and basin dynamics on sedimentology and diagenesis is being investigated. Our aim is to unravel the evolution of shale gas-relevant properties which control gas prospectivity and production parameters like porosity, brittleness, etc. for the Lower Carboniferous in Germany. Northern Germany is underlain by thick, mudstone-bearing Carboniferous successions with a wide range of thermal maturities. Some of these mudstone horizons are rich in organic carbon which is either of marine and/or terrigenous origin. During the Carboniferous deposition of fine-grained, TOC-rich basinal sediments changed into shallow marine to paralic siliciclastic sediments (carbonates during the Lower Carboniferous) in the north, and grade into coarse-grained sediments close to the uprising Variscan mountains in the south. As a result different architectural elements including TOC-rich fine-grained sediments like basinal shales, fine-grained parts of turbidites, and shallow marine mudstones occur in both the Lower and the Upper Carboniferous section. A high shale gas potential occurs in basinal shales of Namurian age with marine organic material and TOC contents of up to 8 % (Rhenish Alum Shales). Such sediments with thermal maturities between 1.3 to 3.0 % vitrinite reflectance and sufficient quartz contents occur in wide areas of present-day Central European Basins System (CEBS), and are at favourable depth for shale gas exploration predominantly along the southern CEBS margin.

  18. Volatile characteristic of trace elements during microwave pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Kong, Ling-wen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Oil shale is abundant in the world. Today, the industry of oil shale retorting for producing shale oil is developing owing to high price of oil in the world. In order to study migratory behavior of trace elements in oil shale at microwave pyrolysis, tests were performed in laboratory with oil shale of the Huadian deposit of China at different powers from 400 to 700 W. The trace elements As, Cd, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, Ba, Co, Mn present in oil shale and shale char were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). By comparing the content of trace elements in oil shale and shale char, distribution characteristics of trace elements at retorting were studied. The overall trends of volatile ratio of trace elements are ascending with higher microwave power and higher than the conventional pyrolysis. The differences in the volatile ratio indicate that the trace elements investigated are bound with the oil shale kerogen and its mineral matter in different manner. So Float-sink experiments (FSE) were performed on oil shale. Huadian oil shale has more included mineral. The volatilization of organic matter is not the main reason for the volatilization of trace elements in oil shale. The trace elements combined with the mineral elements may be also certain volatility.

  19. The influence of global sea level changes on European shale distribution and gas exploration

    Energy Technology Data Exchange (ETDEWEB)

    Turner, P.; Cornelius, C.T.; Clarke, H. [Cuadrilla Resources Ltd., Staffordshire (United Kingdom)

    2010-07-01

    Technological advances in directional drilling and hydraulic fracturing technology have unlocked new supplies of shale gas from reservoirs that were previously considered to be uneconomic. Several companies, both experienced majors and small independents, are currently evaluating the unconventional resource potential of mainland Europe. This paper demonstrated that global sea level changes govern the distribution of marine black shales. The Hallam Curve was used in this study to identify periods of prospective gas shale deposition. In general, these correspond to post-glacial periods of relatively high sea level. Under-filled marginal sedimentary basins are key exploration targets. The geochemical and petrophysical characteristics of the shales deposited under these conditions are often comparable to North American shales, particularly the Barnett Shale which is currently in production. Many orogenic events influence European shales in terms of organic maturity, hydrocarbon generation and fracture generation. The main prospective horizons in ascending stratigraphic sequence are the Alum Shale, Llandovery Shale, Fammenian/Frasnian Shale, Serpukhovian Shale, Toarcian Shale, Kimmeridge Clay and the Tertiary Eocene and Oligocene shales common to central Europe. This paper presented the authors initial exploration strategy, with particular focus on the Lower Palaeozoic of central Europe, the Namurian of northwest England and the Jurassic Posidonia Formation of the Roer Valley Graben in Holland. The potential obstacles to unconventional exploration in Europe include restricted access to surface locations, high water usage, a lack of convenient pipeline infrastructure, strict environmental regulations, a high population density and lack of suitable drilling rigs and well completion equipment. 13 refs., 7 figs.

  20. Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock

    Science.gov (United States)

    Ilgen, A.; Aman, M.; Espinoza, D. N.; Rodriguez, M. A.; Griego, J.; Dewers, T. A.; Feldman, J.; Stewart, T.; Choens, R. C., II

    2017-12-01

    Geological carbon storage (GCS) requires an impermeable caprock (e.g., shale) that prevents the upward migration and escape of carbon dioxide (CO2) from the subsurface. Geochemical alteration can occur at the caprock-reservoir rock interface, which could lead to the altering of the rock's mechanical properties, compromising the seal. We performed laboratory experiments on Mancos shale to quantify the coupled chemical-mechanical response of carbonate-rich shale in CO2-brine mixtures at conditions typical to GCS. We constructed geochemical models, calibrated them using laboratory results, and extended to time scales required for GCS. We observed the dissolution of calcite and kaolinite and the precipitation of gypsum and amorphous aluminum (hydr)oxide following the introduction of CO2. To address whether this mineral alteration causes changes in micro-mechanical properties, we examined altered Mancos shale using micro-mechanical (scratch) testing, measuring the scratch toughness of mm-scale shale lithofacies. The quartz-rich regions of the Mancos shale did not show significant changes in scratch toughness following 1-week alteration in a CO2-brine mixture. However, the scratch toughness of the calcite-rich, originally softer regions decreased by about 50%. These observations illustrate a coupled and localized chemical-mechanical response of carbonate-rich shale to the injection of CO2. This suggests a localized weakening of the caprock may occur, potentially leading to the development of preferential flow paths. The identification of vulnerable lithofacies within caprock and a characterization of mineralogical heterogeneity is imperative at prospective GCS sites. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  1. Economic Impacts Analysis of Shale Gas Investment in China

    Science.gov (United States)

    Han, Shangfeng; Zhang, Baosheng; Wang, Xuecheng

    2018-01-01

    Chinese government has announced an ambitious shale gas extraction plan, which requires significant investment. This has the potential to draw investment from other areas and may affect the whole China’s economy. There is few study to date has quantified these shale gas investment’s effects on Chinese economy. The aim of this paper is to quantify the economic effect and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the economic impacts in four different Chinese regions. Our findings show that shale gas investment will result in approximately 868, 427, 115 and 42 Billion RMB economic impacts in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. The total economic impact is only around 1453 Billion RMB, which is not significant compared to the economic impact of coalbed methane investment. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  2. Wellbore stability in shales considering chemo-poroelastic effects

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Ewerton M.P.; Pastor, Jorge A.S.C.; Fontoura, Sergio A.B.; Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo

    2004-07-01

    Under compaction and low geothermal gradients are deep water characteristics. Both under compaction and low geothermal gradients generate considerable thickness of smectite-rich shales. These rocks are the major source of wellbore stability problems, because they are susceptible to adverse physico-chemical reactions when in contact with inadequate drilling fluids. Due shales are low permeability rocks diffusion processes dominate the changes of pore pressure around wellbore. Diffusion of fluids, ions and temperature occurs in shales during drilling and demand a fully coupled modelling taking account these factors. Despite temperature importance, in this paper wellbore stability in shales is analyzed through a model that considers only the coupling between poroelastic and physico-chemical effects. The coupled equations are solved analytically and have been implemented in a computational simulator with user-friendly interface. Time-dependent simulations of wellbore stability in shales are presented for a typical deep water scenario. The results show that physico-chemical effects change pore pressure around wellbore and have high impact on the wellbore stability. (author)

  3. Ozone impacts of natural gas development in the Haynesville Shale.

    Science.gov (United States)

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg

    2010-12-15

    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.

  4. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    Science.gov (United States)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  5. Evaluation of excavation experience: Pierre shale. Final report

    International Nuclear Information System (INIS)

    Abel, J.F. Jr.; Gentry, D.W.

    1975-01-01

    Pierre shale and its stratigraphic equivalents represent a potentially favorable geologic environment for underground storage of hazardous waste products. These rock formations cover great areal and vertical extents, and represent some of the least permeable rock formations within the continental United States. There are, however, several engineering problems associated with constructing underground openings in Pierre shale. This formation is relatively weak and tends to deteriorate rather rapidly if not protected from the mine environment. It will be necessary to place all underground openings below the surficially weathered upper 50 to 70 feet of Pierre shale which contains groundwater moving on fracture permeability. The optimum site for disposal of hazardous waste in Pierre shale, or its stratigraphic equivalents, would be a seismically stable platform bounded on all sides by faults. The optimum size of individual openings would be the minimum necessary for access, storage, and retrieval of waste components. Underground excavations in Pierre shale must be made with care, must be of limited dimensions, must be widely spaced, must be protected from prolonged contact with the mine environment, must be supported immediately after excavation, and must be sited to avoid areas of faulting and(or) intense jointing. Underground openings constructed with boring machines and supported with wet shotcrete are recommended

  6. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  7. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.

    Science.gov (United States)

    Kreisserman, Yevgeny; Emmanuel, Simon

    2018-01-16

    During hydraulic fracturing, a technique often used to extract hydrocarbons from shales, large volumes of water are injected into the subsurface. Although the injected fluid typically contains various reagents, it can become further contaminated by interaction with minerals present in the rocks. Pyrite, which is common in organic-rich shales, is a potential source of toxic elements, including arsenic and lead, and it is generally thought that for these elements to become mobilized, pyrite must first dissolve. Here, we use atomic force microscopy and environmental scanning electron microscopy to show that during fluid-rock interaction, the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment, and mobilization, of embedded pyrite grains. In experiments carried out over a range of pH, salinity, and temperature we found that in all cases pyrite particles became detached from the shale surfaces. On average, the amount of pyrite detached was equivalent to 6.5 × 10 -11 mol m -2 s -1 , which is over an order of magnitude greater than the rate of pyrite oxidation expected under similar conditions. This result suggests that mechanical detachment of pyrite grains could be an important pathway for the mobilization of arsenic in hydraulic fracturing operations and in groundwater systems containing shales.

  8. Integrated reservoir characterization of a Posidonia Shale outcrop analogue: From serendipity to understanding

    NARCIS (Netherlands)

    Zijp, M.H.A.A.; Veen, J.H. ten; Verreussel, R.M.C.H.; Ventra, D.

    2014-01-01

    Shale gas reservoir stimulation procedures (e.g. hydraulic fracturing) require upfront prediction and planning that should be supported by a comprehensive reservoir characterization. Therefore, understanding shale depositional processes and associated vertical and lateral sedimentological

  9. On a boundary layer problem related to the gas flow in shales

    KAUST Repository

    Barenblatt, G. I.; Monteiro, P. J. M.; Rycroft, C. H.

    2013-01-01

    The development of gas deposits in shales has become a significant energy resource. Despite the already active exploitation of such deposits, a mathematical model for gas flow in shales does not exist. Such a model is crucial for optimizing

  10. Shale Gas Exploration and Development Progress in China and the Way Forward

    Science.gov (United States)

    Chen, Jianghua

    2018-02-01

    Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.

  11. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  12. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  13. Generic Argillite/Shale Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the

  14. Complex conductivity of organic-rich shales

    Science.gov (United States)

    Woodruff, W. F.; Revil, A.; Torres-Verdin, C.

    2013-12-01

    We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The

  15. Can shale safely host US nuclear waste?

    Science.gov (United States)

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  16. Geochemical Evaluation of black shales from the deposit Nizna Slana, lower paleozoic, Western Carpatians

    International Nuclear Information System (INIS)

    Turanova, L.; Turan, J.; Khun, M.

    1996-01-01

    Black shales from the deposit Nizna Slana and its immediate surroundings can be divided into black shales ss, carbonate black shales and siliceous black shales on the basis of chemical composition. Basic statistical characteristics of main and trace elements, as well as content of organic carbon, are evaluated and compared in this paper, either numerically, or graphically using the box-and whisker diagrams (median, 25 % percentile, 75 % percentile, total extent). (authors)

  17. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database

    Science.gov (United States)

    Brantley, S.; Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through tools that are open source and free to use, researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, these tools and data have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing lesson plans, and the resources available to learn more.

  18. Mathematical modelling of anisotropy of illite-rich shale

    Science.gov (United States)

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the

  19. Let us talk about shale gas in 30 questions

    International Nuclear Information System (INIS)

    Bauquis, Pierre-Rene

    2014-01-01

    The author addresses and gives an overview of the issue of shale gas extraction and production by answering 30 questions. These questions concern the origins of hydrocarbons, the definition of shale gas and oil, how gases and oils are produced from source rocks, the principle of hydraulic fracturing, where and how to perform this fracturing, the issue of water wastage, the risks of water pollution, seismic risks, nuisances for the neighbourhood, alternatives to hydraulic fracturing, production technical and economic characteristics, the issue of production profitability, economic benefits in the USA, impacts on the world refining industry, the possibility of creation of a new bubble, the role played by US authorities, the US shale oil and gas production, the technical potential outside the USA, the French resources, the stakes for the French economy, the macro-economic and geo-strategic impacts, the consequences for climate change, impacts on the world energy production

  20. Shale gas: don't burn your bridges

    International Nuclear Information System (INIS)

    Dupin, L.; Casalonga, S.

    2011-01-01

    As debates take place in the French Parliament to forbid the extraction of shale in gas in France, the author outlines that, according to some experts, even though some sites might be very interesting, only a fraction of their content could be exploited. He also outlines the actual danger of this exploitation for the environment, notably because hydraulic fracturing has to be used. Although the main operators are American, French big companies possess the required know-how and are gaining experience abroad. Moreover, it seems that shale gas exploitation does not possess a significant job creation potential. The situation of different countries with respect to shale gas exploitation is briefly presented: United States, Canada, China, and Poland. The United States policy on this issue is more precisely described in a last article

  1. Measurement of water activity from shales through thermo hygrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo (GTEP)

    2004-07-01

    This paper presents a campaign of lab tests to obtain the water activity from shales and its pore fluid originated from offshore and onshore basin. The results of water activity from shales indicate that the values rang from 0.754 to 0.923 and for the pore fluid are between 0.987 and 0.940. The results show that the water activity of interstitial water can be obtained in 6 days and the rock in 10 days using the thermo hygrometer used. The degree of saturation, water content, kind and tenor of expansible and hydratable clay mineral, total and interconnected porosity, salinity of interstitial fluid and the capillary pressure of shale samples affected the results of water activity. (author)

  2. Recovery of uranium from uranium bearing black shale

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Singh, Ajay K.

    2016-01-01

    Black shale is the unconventional resource of uranium. Recovery of uranium from black shale has been carried out by the following steps: i) size reduction, ii) leaching of uranium in the aqueous medium, iii) fluoride ion removal, iv) solvent extraction of uranium from the aqueous leach solution, v) scrubbing of the loaded solvent after extraction to remove impurities as much as possible and vi) stripping of uranium from the loaded organic into the aqueous phase. Leaching of black shale has been carried out in hydrochloric acid. Free acidity of the leach solution has been determined by potentiometric titration method. Removal of fluoride ions has been done using sodium chloride. Solvent extraction has been carried out by both tributyl phosphate and alamine-336 as extractants. Scrubbing has been tried with oxalic acid and sulphuric acid. Stripping with sodium carbonate solution has been carried out. Overall recovery of uranium is 95%. (author)

  3. Preliminary creep and pillar closure data for shales

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Russell, J.E.

    1987-10-01

    The results of fourteen laboratory creep tests on model pillars of four different shales are reported. Initial pillar stresses range from 6.9 MPa (1000 psi) to 69 MPa (10,000 psi) and temperatures range from ambient to 100 0 C. Laboratory response data are used to evaluate the parameters in the transient power-law pillar closure equation similar to that previously used for model pillars of rock salt. The response of the model pillars of shale shows many of the same characteristics as for rock salt. Deformation is enhanced by higher stresses and temperatures, although the shale pillars are not as sensitive to either stress or temperature as are pillars of rock salt. These test results must be considered very preliminary since they represent the initial, or scoping, phase of a comprehensive model pillar test program that will lead to the development and validation of creep laws for clay-rich rocks. 11 refs., 9 figs., 7 tabs

  4. What to do with the European shale gas?

    International Nuclear Information System (INIS)

    Geoffron, Patrice

    2013-01-01

    After having briefly recalled the European objectives in terms of reduction of greenhouse emissions, this article discusses the trends and perspectives for energy supply with the emergence of the possibility of exploitation of shale gases. It notices and comments the different answers given by European countries regarding the compatibility of shale gas with energy transition, and the possible counterbalancing of imports from South Mediterranean countries, from the Middle East and from Russia. It evokes studies performed in the USA on the impact of the exploitation and production of shale gas and oil on prices, on job creation, and on the oil and chemical industry. It notices that, despite the here-above mentioned objectives, coal is still a leading energy source in Europe, notably in Germany. The article comments the possible impact of non conventional hydrocarbons on supply security for Europe, on the attitude of the USA, and on the competition with Asia for the access to energy sources

  5. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...

  6. Effect of water on the mechanical behaviour of shales

    International Nuclear Information System (INIS)

    Wakim, J.; Hadj-Hassen, F.; Tijani, M.; Noirel, J.F.

    2005-01-01

    This paper aims to presenting the results of a research conducted in order to study the effect of water on the mechanical behaviour of the Lorraine Basin Colliery shale. The work performed can be divided into four main parts. The first part is dedicated to classical tests and it includes geological and mineralogical analysis as well as mechanical laboratory tests. The second part is devoted to the phenomenon of shale swelling under water effect. New procedures and equipment of testing were set up in order to characterise this swelling behaviour and to determine its model parameters. The tests performed in this second part are allowed to develop a phenomenological model which describes the elasto-visco-plastic behaviour of shales before and after saturation. The last phase of the work is dedicated to implement the new model in the finite element code VIPLEF in order to apply in tunnel excavated in swelling anisotropic rocks. (authors)

  7. Simultaneous caving and surface restoration system for oil shale mining

    Energy Technology Data Exchange (ETDEWEB)

    Allsman, P.T.

    1968-10-01

    A modified caving method is introduced for mining oil shale and simultaneous restoration of the land surface by return of spent shale onto the subsided area. Other methods have been designed to mine the relatively thin richer beds occurring near outcrops in the Piceance Creek Basin of NW. Colorado. Since the discovery of the much thicker beds in the N.-central part of the basin, some attention has focused on in situ and open-pit methods of recovery. Although caving has been recognized as a possible means of mining shale, most people have been skeptical of its success. This stems from the unknown and salient factors of cavability and size of broken rock with caving. Wisdom would seem to dictate that serious evaluation of the caving method be made along with the other methods.

  8. Chemical process for improved oil recovery from Bakken shale

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, Patrick; Tang, Hongxin; Lu, Zayne [ChemEOR Inc (United States); Tang, Youngchun [Power Environmental Energy Research Institute (United States)

    2011-07-01

    This paper presents the new chemically-improved oil recovery process (IOR) process for Bakken formation reservoirs. A custom surfactant agent can be used in standard hydraulic fracturing treatments in the Bakken to increase oil recovery. The rock formation consists of three members: the lower shale, middle dolostone and the upper shale. The dolostone was deposited as a coastal carbonate during shallower water and the shales were deposited in a relatively deep marine condition. With the widespread advent of horizontal well drilling and large-volume hydraulic fracturing treatments, production from the Bakken has become very active. The experimental results exhibited that specialized surfactant formulations will interact with this mixed oil-wet low permeability middle member to produce more oil. It was also observed that oil recovery by spontaneous imbibition was fast and significant. The best surfactant found in this study is compatible with a common fracture fluid system.

  9. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

    International Nuclear Information System (INIS)

    Jenner, Steffen; Lamadrid, Alberto J.

    2013-01-01

    The aim of this paper is to examine the major environmental impacts of shale gas, conventional gas and coal on air, water, and land in the United States. These factors decisively affect the quality of life (public health and safety) as well as local and global environmental protection. Comparing various lifecycle assessments, this paper will suggest that a shift from coal to shale gas would benefit public health, the safety of workers, local environmental protection, water consumption, and the land surface. Most likely, shale gas also comes with a smaller GHG footprint than coal. However, shale gas extraction can affect water safety. This paper also discusses related aspects that exemplify how shale gas can be more beneficial in the short and long term. First, there are technical solutions readily available to fix the most crucial problems of shale gas extraction, such as methane leakages and other geo-hazards. Second, shale gas is best equipped to smoothen the transition to an age of renewable energy. Finally, this paper will recommend hybrid policy regulations. - Highlights: ► We examine the impacts of (un)conventional gas and coal on air, water, and land. ► A shift from coal to shale gas would benefit public health. ► Shale gas extraction can affect water safety. ► We discuss technical solutions to fix the most crucial problems of shale gas extraction. ► We recommend hybrid regulations.

  10. Proceedings of the first thermomechanical workshop for shale

    International Nuclear Information System (INIS)

    1986-03-01

    Chapter 2 provides a description of the three federal regulations that pertain to the development of a high-level nuclear waste repository regardless of the rock type. Chapter 3 summarizes the reference shale repository conditions selected for this workshop. A room-and-pillar configuration was considered at an extraction ratio of about 0.25. The depth was assumed to be 700 m. Chapter 4 gives a summary of several case histories that were considered to be valuable in gaining an understanding of some of the design and construction features that might be unique in creating underground openings in shale. Chapter 5 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for analytical/numerical modeling in heat transfer, fluid flow, and thermomechanics. Chapter 6 assesses data and information needs in the laboratory and considerations associated with shale rock characterization. Chapter 7 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for field/in situ testing. Chapter 8 presents the consensus of the workshop participants that there is a definite need to advance the state of knowledge concerning the thermomechanical behavior of shales and to gain experience in applying this knowledge to the design of room-and-pillar excavations. Finally, Chapter 9 provides a summary of the research and development needs in the various interacting activities of repository development, including analytical/numerical modeling, laboratory testing, and field/in situ testing. The main conclusion of the workshop was that a need exists for an aggressive program in laboratory, field, numerical modeling, and design studies to provide a thermomechanical, technological base for comparison of shale types and shale regions/areas/sites

  11. Revegetation research on oil shale lands in the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.; Cook, C.W.

    1981-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  12. Volume fracturing of deep shale gas horizontal wells

    Directory of Open Access Journals (Sweden)

    Tingxue Jiang

    2017-03-01

    Full Text Available Deep shale gas reservoirs buried underground with depth being more than 3500 m are characterized by high in-situ stress, large horizontal stress difference, complex distribution of bedding and natural cracks, and strong rock plasticity. Thus, during hydraulic fracturing, these reservoirs often reveal difficult fracture extension, low fracture complexity, low stimulated reservoir volume (SRV, low conductivity and fast decline, which hinder greatly the economic and effective development of deep shale gas. In this paper, a specific and feasible technique of volume fracturing of deep shale gas horizontal wells is presented. In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques help to increase the effective stimulated reservoir volume (ESRV for deep gas production. Some of the techniques have been successfully used in the fracturing of deep shale gas horizontal wells in Yongchuan, Weiyuan and southern Jiaoshiba blocks in the Sichuan Basin. As a result, Wells YY1HF and WY1HF yielded initially 14.1 × 104 m3/d and 17.5 × 104 m3/d after fracturing. The volume fracturing of deep shale gas horizontal well is meaningful in achieving the productivity of 50 × 108 m3 gas from the interval of 3500–4000 m in Phase II development of Fuling and also in commercial production of huge shale gas resources at a vertical depth of less than 6000 m.

  13. Source apportionment of hydrocarbons measured in the Eagle Ford shale

    Science.gov (United States)

    Roest, G. S.; Schade, G. W.

    2016-12-01

    The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.

  14. Use of discriminant analysis to determine black shales of the Lesser Carpathian crystal field

    Energy Technology Data Exchange (ETDEWEB)

    Khun, M.

    1980-01-01

    Discriminant analysis of results from geochemical testing was used to separate black shales of the ore level from the nonproductive deposits. Based on a large number of experiments, the accuracy of isolating the black shales according to content of vandium, copper and nickel reached 78%. These elements have basic importance for separation of productive shales from nonproductive.

  15. Broadening the debate on shale gas : guidelines for decision-making based on the Dutch experience

    NARCIS (Netherlands)

    Waes, van A.H.M.; Vries, de A.; Est, van Q.C.; Brom, F.

    2014-01-01

    This paper focuses on the debate on shale gas in the Netherlands. In the political decision-making process relating to shale gas, the national government has highlighted the importance of clarifying the opportunities and risks related to shale gas extraction, and the question of whether this is

  16. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...-ZA31 Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk AGENCY: Coast Guard... availability of a proposed policy letter concerning the carriage of shale gas extraction waste water in bulk... transport shale gas extraction waste water in bulk. The policy letter also defines the information the Coast...

  17. Geomechanical and anisotropic acoustic properties of Lower Jurassic Posidonia Shales from Whitby (UK)

    NARCIS (Netherlands)

    Zhubayev, Alimzhan; Houben, Maartje|info:eu-repo/dai/nl/370588843; Smeulders, David; Barnhoorn, Auke|info:eu-repo/dai/nl/304843636

    2014-01-01

    The Posidonia Shale Formation (PSF) is one of the possible resource shales for unconventional gas in Northern Europe and currently is of great interest to hydrocarbon exploration and production. Due to low permeability of shales, economically viable production requires hydraulic fracturing of the

  18. Using Neutrons to Study Fluid-Rock Interactions in Shales

    Science.gov (United States)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  19. TENORM radiological survey of Utica and Marcellus Shale

    International Nuclear Information System (INIS)

    Ying, Leong; O’Connor, Frank

    2013-01-01

    Comprehensive on-site radiological survey of processed sludge drilled materials extracted from the oil and gas production activities in the Utica and Marcellus Shale in Ohio has been conducted with a shielded isotopic identifier incorporating an advanced patented algorithmic processor to measure low-activity levels in compliance with environmental standards. - highlights: • First on-site radiological survey of processed shale sludge from oil and gas fields. • Mobile spectroscopic radiation inspection system with shielding for low-activity measurements. • Quantification of Ra-226 and Ra-228 radionuclides contamination in soil samples

  20. Method of recovering oils, etc. , from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1921-05-23

    In the low-temperature distillation of bituminous shales or similar bituminous materials with high ash content for recovery of oil etc., steam or inert gases are introduced from outside through gas taps arranged in a circle in the retort. By the method used steam is introduced simultaneously in levels higher and lower than the one in which the gaseous and vaporized products are removed from the shale material and in such a manner that the zone of oil formation chiefly will be between the two places mentioned where vapors or steam are introduced into the retort. The patent has one additional claim.

  1. Chemistry of the Estonian oil-shale kukersite

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N

    1931-01-01

    Estonian oil shale is one of the oldest and richest oil shales in the world. The deposits occur in the Middle-Ordovician strata having a total thickness of 2.2 meters. The ultimate composition of the kerogen varied within the following limits: carbon 76.5 to 76.7 percent, hydrogen 9.1 to 9.2 percent, nitrogen 0.2 to 0.4 percent, sulfur 1.6 to 2.2 percent, chlorine 0.5 to 0.7 percent, and oxygen (by difference) 11.2 to 12.2 percent. The composition of kukersite kerogen corresponds nearly to the empirical formula (C/sub 8/H/sub 11/O)n. One of the most significant differences between kukersite, coal, and lignite is the amount of alkali-soluble substances present. Kukersite has almost no humic acids. Samples of kukersite were brominated and chlorinated. The halogenated shales showed a solubility in absolute alcohol of 26 percent compared to only 0.31 percent for untreated shale. Enriched shale (4.5 percent ash) did not react with chlorine as much as did raw shale. Apparently the mineral matter acted catalytically during chlorination. The amount of soluble extract obtained by solvent treatment of kukersite ranged from 0.22 percent with chloroform to 2.20 percent with tetrachloroethane. Heat was the most effective agent for the depolymerization of kukersite kerogen. The percentage loss of weight due to drying in air was much less than in the presence of carbon dioxide. The results indicated that on drying in air, the powdered shale loses water and a volatile substance, probably the oxides of carbon, up to 80/sup 0/C. Carbon dioxide was also found to be present in the gases eliminated at the temperature of initial decomposition. Pulverized shale, heated for 6 hours at 220/sup 0/C, lost 2.6 percent of its weight; its solubility in carbon disulfide was 2.11 percent. Kukersite kerogen was formed from compounds that were resistent to bacteriological decomposition, such as waxes and resins, plus decomposition products of proteins, cellulose, and putrefaction products of

  2. Inter-layered clay stacks in Jurassic shales

    Science.gov (United States)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  3. Oil shale research and coordination. Progress report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1981-01-01

    Purpose is to evaluate the environmental and health consequences of the release of toxic trace elements by an oil shale industry. Emphasis is on the five elements As, Mo, F, Se, and B. Results of four years' research are summarized and the research results over the past year are reported in this document. Reports by the task force are included as appendices, together with individual papers on various aspects of the subject topic. Separate abstracts were prepared for the eleven individual papers. A progress report on the IWG oil shale risk analysis is included at the end of this document. (DLC)

  4. The perspectives of shale gas in the World

    International Nuclear Information System (INIS)

    Weymuller, B.

    2011-01-01

    This report defines what non conventional gases are and which are their characteristics, indicates technological advances which enabled their development, the environmental challenges, and discusses the peculiarities of the business model of shale gas development. The author reports the shale gas experience of the United States (history, main areas, development characteristics, perspectives for 2020-2030), discusses the development perspectives outside the United States. He describes the roles played by international actors: United States, emerging consumer countries (China and India), Europe, and current exporters

  5. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  6. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  7. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Hall, V.S. (comp.)

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  8. Analysis and characterization of trace elements in shale oil and shale oil products by instrumental neutron activation analysis. Master's thesis

    International Nuclear Information System (INIS)

    Shaw, P.

    1978-12-01

    Trace elements and their mobilization constitute an important consideration in the development of new fossil fuel technologies. Shale oil produced by in situ retorting of oil shale is an alternative fossil energy source. This study deals with the analysis of trace elements in various shale oil products using instrumental neutron activation analysis (INAA). INAA offers several advantages for those elements for which it is applicable. The greatest advantage is the lack of sample preparation prior to analysis, which greatly simplifies the process and prevents sample contamination. The elements for which analyses are reported in this study are aluminum, antimony, arsenic, bromine, cerium, chlorine, chromium, cobalt, copper, gallium, gold, iodine, iron, manganese, mercury, molybdenum, potassium, selenium, sodium, sulfur, tungsten, vanadium, and zinc

  9. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale.

    Science.gov (United States)

    Rich, Alisa; Grover, James P; Sattler, Melanie L

    2014-01-01

    Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a "fingerprint" of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8-2.0 ppm(v)). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1

  10. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...test_nC are sho’ T, in Trbl]e .3 d :: ab ffr stead..--staoe zerfrrmance was noted wcrh the snale fel. Wh’le a ..6 :o:n: = in Scecifiz Fuel Consumption...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine

  11. 1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10 9 m 3 (1000 x 10 9 bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region

  12. Preliminary geotechnical evaluation of deep borehole facilities for nuclear waste disposal in shales

    International Nuclear Information System (INIS)

    Nataraj, M.S.; New Orleans Univ., LA

    1991-01-01

    This study is concerned with a preliminary engineering evaluation of borehole facilities for nuclear waste disposal in shales. Some of the geotechnical properties of Pierre, Rhinestreet, and typical illite shale have been collected. The influence of a few geotechnical properties on strength and deformation of host material is briefly examined. It appears that Pierre shale is very unstable and requires support to prevent collapse. Typical illite shale is more stable than Rhinestreet shale, although it undergoes relatively more deformation. 16 refs., 5 figs., 3 tabs

  13. 78 FR 18547 - Oil Shale Management-General

    Science.gov (United States)

    2013-03-27

    ... the future below the point at which oil shale production would be profitable (i.e., competitive with... competition, employment, investment, productivity, innovation, or on the ability of United States-based..., innovation, or on the ability of United States-based enterprises to compete with foreign- based enterprises...

  14. geotechnical properties of makurdi shale and effects on foundations

    African Journals Online (AJOL)

    NIJOTECH

    2007-06-02

    Jun 2, 2007 ... incidence of damage to roads, utilities and lightly loaded residential and commercial structures in Colorado where the claystone bedrock was identified as clay shales consisting predominantly of mixed layer illite/smectite with frequent thin bentonite beds. The soils were classified as having moderate to very ...

  15. A comparative assessment of the economic benefits from shale gas ...

    African Journals Online (AJOL)

    This paper is an attempt to inform the policy debate by highlighting both the potential economic benefits and environmental costs. To date, the Econometrix report (published in 2012) provides the only estimate of the economic impacts that may emanate from developing the Karoo's shale gas. The report uses a Keynesian ...

  16. Organic Pollutants in Shale Gas Flowback and Produced Waters

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A.E.; Rijnaarts, Huub H.M.; Wezel, van Annemarie P.

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses

  17. Process of preparing artificial stone from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-02-10

    A process for the preparation of artificial stone from oil-shale slag is characterized by the fact that the coarse part of the ground slag before working into artificial stone is saturated with water and serves as filler, while the fine part is milled to dust and forms the binding material.

  18. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  19. Resource potential of the Alum Shale in Denmark

    DEFF Research Database (Denmark)

    Gautier, Donald L.; Schovsbo, Niels H.; Nielsen, Arne Thorshøj

    2014-01-01

    . "Sweet spots" were defined as fault blocks that contain both TOC-rich Furongian Alum Shale and thick Silurian strata, indicating minor Late Paleozoic uplift and erosion and thus higher probability of gas retention, which is the main technical risk to the play. Large volumes of oil and then gas were...

  20. New energy equation: the geopolitical impact of US shale gas

    International Nuclear Information System (INIS)

    Nardon, Laurence

    2013-04-01

    Shale gas exploitation in the US has renewed the industrial landscape and should bring about major geopolitical changes, in particular in the Middle East. This document is a reprint of a paper published in the April-June issue of 'Confrontations Europe' journal

  1. Geotechnical and environmental problems related to shales in the ...

    African Journals Online (AJOL)

    EJIRO

    Six (6) samples of shale and five (5) water samples from hand-dug wells and boreholes, from different locations within the ... dark grey in colour, blocky, and non-micaceous in most locations. ..... Advances in water treatment and environmental ...

  2. Geotechnical Properties of Makurdi Shale and Effects on Foundations

    African Journals Online (AJOL)

    Geotechnical Properties of Makurdi Shale and Effects on Foundations. IO Agbede, P Smart ... Ten disturbed soil samples were collected from a third site of a proposed site for a light building and subjected to engineering classification tests. Based on the outcome of the second set of experiments, a foundation other than the ...

  3. What place for shale gas in fighting climate change?

    International Nuclear Information System (INIS)

    2010-09-01

    Along with petroleum and coal, natural gas is the primary cause of global warming. Equiterre believes that the energy sector must be completely decarbonised by 2050 if catastrophic consequences caused by this warming are to be avoided. The Utica shale formation in the Saint Lawrence Valley has been the object of much prospecting activity. The aim of the present study is therefore to determine if the development of shale gas can play a transitional role in the move towards a decarbonised energy system. To do this, Equiterre considers that gas should be substituted for more polluting fuels as quickly as possible and that thereafter it should be rapidly replaced by carbon-free fuels. Equiterre also considers, however, that the establishment of a shale gas industry in Quebec would only increase the overall volume of greenhouse gas emissions. Equiterre concludes that the setting up of a shale gas industry in Quebec is a purely commercial proposition which, at the best, would contribute nothing to the struggle to combat climate change.

  4. The scientific assessment of shale gas development in South Africa

    CSIR Research Space (South Africa)

    Snyman-Van der Walt, Luanita

    2017-10-01

    Full Text Available This presentation discusses the scientific assessment of shale gas development in South Africa by Luanita Snyman Van der Walt at the 6th CSIR Conference: Ideas that work for industrial development, 5-6 October 2017, CSIR International Convention...

  5. Geochemistry of shale groundwaters: Results of preliminary laboratory leaching experiments

    International Nuclear Information System (INIS)

    Von Damm, K.L.; Johnson, K.O.

    1987-09-01

    Twelve shales were reacted with distilled water at 20 0 C and 100 0 C; the composition of the waters and the mineralogy were determined before and after reaction. The experiments were conducted in a batch mode over a period of approximately 40 days. Major changes occurred in the solution chemistry; in most cases sulfate became the dominant anion while either sodium or calcium was the major cation. The high sulfate is most likely a result of the oxidation of pyrite in the samples. In the 100 0 C experiments some of the solutions became quite acidic. Examination of the observed mineralogy and comparison to the mineral assemblage calculated to be in equilibrium with the experimentally determined waters, suggests that the acidic waters are generated when no carbonate minerals remain to buffer the groundwaters to a more neutral pH. The pH of shale waters will be determined by the balance between the oxidation of pyrite and organic matter and the dissolution of carbonate minerals. The experimental data are helping to elucidate the chemical reactions that control the pH of shale groundwaters, a critical parameter in determining other water-rock and waste-water-rock interactions and ultimate solute mobility. An experimental approach also provides a means of obtaining data for shales for which no groundwater data are available as well as data on chemical species which are not usually determined or reported

  6. Geochemistry of shale groundwaters: Results of preliminary laboratory leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Von Damm, K.L.; Johnson, K.O.

    1987-09-01

    Twelve shales were reacted with distilled water at 20/sup 0/C and 100/sup 0/C; the composition of the waters and the mineralogy were determined before and after reaction. The experiments were conducted in a batch mode over a period of approximately 40 days. Major changes occurred in the solution chemistry; in most cases sulfate became the dominant anion while either sodium or calcium was the major cation. The high sulfate is most likely a result of the oxidation of pyrite in the samples. In the 100/sup 0/C experiments some of the solutions became quite acidic. Examination of the observed mineralogy and comparison to the mineral assemblage calculated to be in equilibrium with the experimentally determined waters, suggests that the acidic waters are generated when no carbonate minerals remain to buffer the groundwaters to a more neutral pH. The pH of shale waters will be determined by the balance between the oxidation of pyrite and organic matter and the dissolution of carbonate minerals. The experimental data are helping to elucidate the chemical reactions that control the pH of shale groundwaters, a critical parameter in determining other water-rock and waste-water-rock interactions and ultimate solute mobility. An experimental approach also provides a means of obtaining data for shales for which no groundwater data are available as well as data on chemical species which are not usually determined or reported.

  7. Shale gas boom in the US. Technology - economy - environmental effects

    International Nuclear Information System (INIS)

    Meyer-Renschhausen, Martin; Klippel, Philipp

    2017-01-01

    There is hardly any other issue that polarizes the energy policy discussion so far as the production of shale gas and shale oil by means of fracking processes. For the advocates, the expansion of unconventional gas and oil production offers the opportunity to intensify competition in the oil and gas markets, to lower prices and to reduce the dependence on uncertain deliveries of OPEC and Russia by increased domestic production. The critics, on the other hand, emphasize the environmental risks associated with fracking and see the extension of the fossil energy base as an obstacle to the climatically required transition to renewable energies. The German legislature emphasizes the environmental risks associated with fracking and has de facto forbidden fracking with the fracking law package of 24 June 2016. Internationally, the advantages and disadvantages of fracking are, however, assessed very differently, so that a further expansion of unconventional oil and gas production is to be expected. Fracking currently focuses almost entirely on the USA. Numerous studies investigate the potentials, the profitability of the different methods of production as well as the environmental effects. Therefore, American shale gas production offers an excellent viewpoint in order to estimate the technology, its economic efficiency and its consequences. This book evaluates the current studies and data and contributes to the assessment of the long-term energy-economic and climatological significance of shale gas production in the international context. [de

  8. Removal of organic compounds from shale gas flowback water

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P.; Rijnaarts, Huub H M

    2018-01-01

    Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback

  9. Rapid estimation of organic nitrogen in oil shale wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Harris, G.J.; Daughton, C.G.

    1984-03-01

    Many of the characteristics of oil shale process wastewaters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogen heterocycles and aromatic amines. For the frequent performance assessment of waste treatment procsses designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential.

  10. Anvil Points oil shale tailings management in Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, R.; Galli LaBerge, C.; McClurg, J. [Ecology and Environment Inc., Lancaster, NY (United States); Walsh Integrated, Lachine, PQ (Canada)

    2009-07-01

    This presentation summarized the oil shale tailings management program used at the Anvil Points mining site in Colorado. Decommissioning and reclamation of the site occurred between 1984 and 1986. The geology of the region is comprised of Tertiary bedrock sedimentary formations and Quaternary formations on the surface. Oil shales mined at the facility are from the Eocene Green River formation. While the site lies within big game winter ranges, the areas around the shale pile supports are not a significant nesting or feeding habitat for wildlife. No sensitive plants are located on the waste shale pile. The program currently includes revegetation test plots and the reclamation of an area where heating oil storage tanks were located. The dumping area is currently being monitored, and geophysical surveys are being conducted. Documents produced by mining activities are also being reviewed. Results of the study to date have indicated the presence of asbestos-containing materials, significant physical hazards, and significant cultural resources. An engineering evaluation and cost analysis has demonstrated that arsenic, beryllium, and iron exceed established soil screening levels. It was concluded that off-site removal actions will be conducted to prevent or reduce human exposure to the metals of concern. tabs., figs.

  11. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  12. Shale gas, a French speciality - These French who are successful in shale gas; In Texas, Total is running full gas throttle

    International Nuclear Information System (INIS)

    Cognasse, Olivier; Dupin, Ludovic; Chandes, Camille

    2013-01-01

    A first article illustrates the strong presence of French companies in the shale gas sector, from the exploitation to gas liquefaction. Some examples are evoked: Total (gas fields and petrochemical), CGG (seismic exploration), Vallourec (tube manufacturer), Nexans (cable manufacturer), Imery and Saint-Gobain (ceramic balls used to maintain cracks opened), Saltel (fracturing), SNF Floerger (extraction), GDF Suez (shale gas export). The interest of some foreign actors in the French shale gas is also evoked. A second article reports the activity of Total in Port Arthur, Texas, where it adapted a huge steam cracker to shale gas. This illustrates the renewal of the American petrochemical industry

  13. Effects of structural characteristics on the productivity of shale gas wells: A case study on the Jiaoshiba Block in the Fuling shale gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Ming Hu

    2018-03-01

    Full Text Available For the sake of figuring out the influential mechanisms of structural characteristics on the productivity of shale gas wells, the structural characteristics of the Jiaoshiba Block in the Fuling shale gasfield, Sichuan Basin, were analyzed. Then, based on well test data of more than 190 horizontal wells, the effects of structures on shale gas well productivity were discussed systematically, and the main structural factors of different structural units in the Jiaoshiba Block that influence the productivity of shale gas wells were clarified. The following results were obtained. First, the structural units in the Jiaoshiba Block were obviously different in structural characteristics and their deformation strength is different. Second, the influence of structural characteristics on shale gas well productivity is directly manifested in gas-bearing property and fracturing effect. The stronger the structural deformation and the more developed the large faults and natural fractures, the more easily shale gas escapes and the poorer the gas bearing property will be, and vice versa. Third, The stronger the structural deformation, the more developed the fractures, the greater the burial depth and the higher the compressive stress of negative structures, the worse the fracturing effect will be, and vice versa. And fourth, Tectonics is the key factor controlling the difference of shale gas productivity between different structural units in the Jiaoshiba Block, but the main structural factors influencing the productivity are different in different structural units. Keywords: Sichuan Basin, Fuling shale gasfield, Jiaoshiba, Shale gas, Structural characteristics, Gas bearing property, Fracturing, Productivity

  14. Future strategies for oil shale development as a new indigenous energy resource in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Tarawneh, T.

    2011-01-01

    Indigenous oil shale deposits could satisfy Jordan's demand for liquid and gaseous fuels as well as electricity for many centuries. Markets also exist for raw and retorted oil shale, spent shale, and for sulfur recovered during the upgrading and refining of crude shale oil. Although the potential benefits of oil shale development are substantial, complex and expensive facilities would be required, and these have serious economic, environmental, and social implications for the Kingdom and its people. In January 2006, the United States Trade and Development Agency (USTDA) awarded a grant to the Jordanian Ministry of Planning and International Cooperation to support the analysis of current oil shale processing technologies and the application of international expertise to the development of a oil shale industry in Jordan. The goal of the technical assistance project was to help the Government of Jordan (GoJ) establish short and long-term strategies for oil shale development and to facilitate the commercial production of shale oil in the country. This paper discusses the results of the project. The Kingdom's current energy situation and its previous work on oil shale are summarized, and the incentives and restraints on oil shale commercialization are described. Impediments to development are identified, and possible governmental responses are assessed. (author)

  15. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah

    2015-11-09

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  16. A Reactive Transport Model for Marcellus Shale Weathering

    Science.gov (United States)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important

  17. Numerical Simulation of Shale Gas Production with Thermodynamic Calculations Incorporated

    KAUST Repository

    Urozayev, Dias

    2015-06-01

    In today’s energy sector, it has been observed a revolutionary increase in shale gas recovery induced by reservoir fracking. So-called unconventional reservoirs became profitable after introducing a well stimulation technique. Some of the analysts expect that shale gas is going to expand worldwide energy supply. However, there is still a lack of an efficient as well as accurate modeling techniques, which can provide a good recovery and production estimates. Gas transports in shale reservoir is a complex process, consisting of slippage effect, gas diffusion along the wall, viscous flow due to the pressure gradient. Conventional industrial simulators are unable to model the flow as the flow doesn’t follow Darcy’s formulation. It is significant to build a unified model considering all given mechanisms for shale reservoir production study and analyze the importance of each mechanism in varied conditions. In this work, a unified mathematical model is proposed for shale gas reservoirs. The proposed model was build based on the dual porosity continuum media model; mass conservation equations for both matrix and fracture systems were build using the dusty gas model. In the matrix, gas desorption, Knudsen diffusion and viscous flow were taken into account. The model was also developed by implementing thermodynamic calculations to correct for the gas compressibility, or to obtain accurate treatment of the multicomponent gas. Previously, the model was built on the idealization of the gas, considering every molecule identical without any interaction. Moreover, the compositional variety of shale gas requires to consider impurities in the gas due to very high variety. Peng-Robinson equation of state was used to com- pute and correct for the gas density to pressure relation by solving the cubic equation to improve the model. The results show that considering the compressibility of the gas will noticeably increase gas production under given reservoir conditions and slow down

  18. A reactive transport model for Marcellus shale weathering

    Science.gov (United States)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  19. Indicative energy technology assessment of UK shale gas extraction

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; O’Grady, Áine

    2017-01-01

    Highlights: • UK shale gas ‘fracking’ is at a very early stage with an uncertain size of resource. • Shale gas extraction might benefit UK fuel security, as well as jobs and growth. • Potentially harmful environmental ‘side-effects’ must be monitored and regulated. • Gas bills for UK household and industrial consumers are unlikely to fall sharply. • Costs & benefits of shale gas fracking are unevenly distributed between communities. - Abstract: There is at present much interest in unconventional sources of natural gas, especially in shale gas which is obtained by hydraulic fracturing, or ‘fracking’. Boreholes are drilled and then lined with steel tubes so that a mixture of water and sand with small quantities of chemicals – the fracking fluid – can be pumped into them at very high pressure. The sand grains that wedge into the cracks induced in the shale rock by a ‘perforating gun’ then releases gas which returns up the tubes. In the United Kingdom (UK) exploratory drilling is at an early stage, with licences being issued to drill a limited number of test boreholes around the country. However, such activities are already meeting community resistance and controversy. Like all energy technologies it exhibits unwanted ‘side-effects’; these simply differ in their level of severity between the various options. Shale gas may make, for example, a contribution to attaining the UK’s statutory ‘greenhouse gas’ emissions targets, but only if appropriate and robust regulations are enforced. The benefits and disadvantages of shale gas fracking are therefore discussed in order to illustrate a ‘balance sheet’ approach. It is also argued that it is desirable to bring together experts from a range of disciplines in order to carry out energy technology assessments. That should draw on and interact with national and local stakeholders: ‘actors’ both large and small. Community engagement in a genuinely participative process – where the

  20. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu; Elgassier, Mokhtar; Wu, Yu-Shu

    2015-01-01

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  1. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  2. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  3. Louisiana waterthrush and benthic macroinvertebrate response to shale gas development

    Science.gov (United States)

    Wood, Petra; Frantz, Mack W.; Becker, Douglas A.

    2016-01-01

    Because shale gas development is occurring over large landscapes and consequently is affecting many headwater streams, an understanding of its effects on headwater-stream faunal communities is needed. We examined effects of shale gas development (well pads and associated infrastructure) on Louisiana waterthrush Parkesia motacilla and benthic macroinvertebrate communities in 12 West Virginia headwater streams in 2011. Streams were classed as impacted (n = 6) or unimpacted (n = 6) by shale gas development. We quantified waterthrush demography (nest success, clutch size, number of fledglings, territory density), a waterthrush Habitat Suitability Index, a Rapid Bioassessment Protocol habitat index, and benthic macroinvertebrate metrics including a genus-level stream-quality index for each stream. We compared each benthic metric between impacted and unimpacted streams with a Student's t-test that incorporated adjustments for normalizing data. Impacted streams had lower genus-level stream-quality index scores; lower overall and Ephemeroptera, Plecoptera, and Trichoptera richness; fewer intolerant taxa, more tolerant taxa, and greater density of 0–3-mm individuals (P ≤ 0.10). We then used Pearson correlation to relate waterthrush metrics to benthic metrics across the 12 streams. Territory density (no. of territories/km of stream) was greater on streams with higher genus-level stream-quality index scores; greater density of all taxa and Ephemeroptera, Plecoptera, and Trichoptera taxa; and greater biomass. Clutch size was greater on streams with higher genus-level stream-quality index scores. Nest survival analyses (n = 43 nests) completed with Program MARK suggested minimal influence of benthic metrics compared with nest stage and Habitat Suitability Index score. Although our study spanned only one season, our results suggest that shale gas development affected waterthrush and benthic communities in the headwater streams we studied. Thus, these ecological effects of

  4. Petrophysical characterization of the Eagle Ford Shale in south Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, J [Halliburton, Houston, TX (United States)

    2010-07-01

    The Eagle Ford shale play extends from the Mexican border in south Texas to the East Texas Basin. There are many challenges in developing the play into an economically viable venture. The shale production characteristics vary across the play, and the shale is producing dry gas in some areas and wet gas or oil in others. Some regions are naturally fractured, while others are not, and the play must be hydraulically fractured to be economically productive. It is therefore important to understand the local-area reservoir characteristics when trying to complete each well, particularly since successful completion techniques in one well may not necessarily work in another, even in the same field. This paper discussed the integration of different data-acquisition and reservoir-characterization techniques, such as mudlogs, basic openhole logs, and advanced logs, including dipole sonic; geochemical; magnetic resonance-imaging log; and core analysis. These techniques provide a better understanding of the reservoir and help to determine the shale's petrophysical characteristics and build a locally validated petrophysical model that can be applied to future wells with reduced data-acquisition programs to grade the reservoir. A model was developed to determine the surrounding lithology and clay typing in addition to the hydrocarbon resource potential of the well. The tool was also used to determine the location of organic-rich zones and to determine where to perforate based on geomechanical issues. The model provided information on the Eagle Ford shale play such as location of brittle zones; location of permeable zones; frac-design parameters; clay typing; organic content; volumetric assessment; porosity, permeability, and free fluid; and plasticity. 9 refs., 1 tab., 17 figs.

  5. The Architecture and Frictional Properties of Faults in Shale

    Science.gov (United States)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may

  6. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the southern Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Xianqing Li

    2016-06-01

    Full Text Available Data was acquired from both the drillings and core samples of the Lower Paleozoic Qiongzhusi and Longmaxi Formations' marine shale gas reservoirs in the southern Sichuan Basin by means of numerous specific experimental methods such as organic geochemistry, organic petrology, and pore analyses. Findings helped determine the characteristics of organic matter, total porosity, microscopic pore, and pore structure. The results show that the Lower Paleozoic marine shale in the south of the Sichuan Basin are characterized by high total organic carbon content (most TOC>2.0%, high thermal maturity level (RO = 2.3%–3.8%, and low total porosity (1.16%–6.87%. The total organic carbon content and thermal maturity level of the Qiongzhusi Formation shale are higher than those of the Longmaxi Formation shale, while the total porosity of the Qiongzhusi Formation shale is lower than that of the Longmaxi Formation shale. There exists intergranular pore, dissolved pore, crystal particle pore, particle edge pore, and organic matter pore in the Lower Paleozoic Qiongzhusi Formation and Longmaxi Formation shale. There are more micro-nano pores developed in the Longmaxi Formation shales than those in the Qiongzhusi Formation shales. Intergranular pores, dissolved pores, as well as organic matter pores, are the most abundant, these are primary storage spaces for shale gas. The microscopic pores in the Lower Paleozoic shales are mainly composed of micropores, mesopores, and a small amount of macropores. The micropore and mesopore in the Qiongzhusi Formation shale account for 83.92% of the total pore volume. The micropore and mesopore in the Longmaxi Formation shale accounts for 78.17% of the total pore volume. Thus, the micropores and mesopores are the chief components of microscopic pores in the Lower Paleozoic shale gas reservoirs in the southern Sichuan Basin.

  7. Intergrated study of the Devonian-age black shales in eastern Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.D.; Struble, R.A.; Carlton, R.W.; Hodges, D.A.; Honeycutt, F.M.; Kingsbury, R.H.; Knapp, N.F.; Majchszak, F.L.; Stith, D.A.

    1982-09-01

    This integrated study of the Devonian-age shales in eastern Ohio by the Ohio Department of Natural Resources, Division of Geological Survey is part of the Eastern Gas Shales Project sponsored by the US Department of Energy. The six areas of research included in the study are: (1) detailed stratigraphic mapping, (2) detailed structure mapping, (3) mineralogic and petrographic characterization, (4) geochemical characterization, (5) fracture trace and lineament analysis, and (6) a gas-show monitoring program. The data generated by the study provide a basis for assessing the most promising stratigraphic horizons for occurrences of natural gas within the Devonian shale sequence and the most favorable geographic areas of the state for natural gas exploration and should be useful in the planning and design of production-stimulation techniques. Four major radioactive units in the Devonian shale sequence are believed to be important source rocks and reservoir beds for natural gas. In order of potential for development as an unconventional gas resource, they are (1) lower and upper radioactive facies of the Huron Shale Member of the Ohio Shale, (2) upper Olentangy Shale (Rhinestreet facies equivalent), (3) Cleveland Shale Member of the Ohio Shale, and (4) lower Olentangy Shale (Marcellus facies equivalent). These primary exploration targets are recommended on the basis of areal distribution, net thickness of radioactive shale, shows of natural gas, and drilling depth to the radioactive unit. Fracture trends indicate prospective areas for Devonian shale reservoirs. Good geological prospects in the Devonian shales should be located where the fracture trends coincide with thick sequences of organic-rich highly radioactive shale.

  8. ) Geochemistry and Hydrocarbon Potential of Cretaceous Shales in the Chad Basin

    International Nuclear Information System (INIS)

    Alalade, B.; Ogunyemi, A. T.; Abimbola, A.F.; Olugbemiro, R. O.

    2003-01-01

    The Chad Basin is the largest intracratonic basin in Africa and is filled with more than 400m of Cretaceous to Recent sediments. Geochemical and petrographic studies of Cretaceous shales form the Bima, Gongola and Fika Formations were carried out to establish their hydrocarbon potential and thermal maturity. Ditch cuttings of the shales were collected from the Wa di and Karen's exploration wells located in the Nigerian sector of the Chad Basin.The geochemical analysis of the shales indicate that, except for Si02 and K20, all other oxides (Mg O, Fe2O3, AL2O3, CaO) are more abundant in the Fika shale than the Gongola shale. This suggests a more marine condition for the Fika shale compared to the Gongola shale. The Fika and Gongola shales were further classified into Iron shale and shale respectively. Organic carbon contents of the Bima, Gongola and exceed the minimum (0.5wt%) usually required for siliciclastic petroleum source rock. However, the soluble organic matter (SOM) and saturated hydrocarbon (SHC) contents of the shales, which ranges from 108pm to 743ppm and 23ppm to 100ppm respectively, are generally low and are therefore, organically lean. The organic matter of the shales is predominantly terrestrially derived, vitrinite rich, Type III kerogen and are therefore, gas prone. Thermal maturity assessed from SOM/TOC, SHC/TOC ratios and spore color index (SCI) indicate that the Fika shale is immature while the Gongola and Bima shales are within the oil window

  9. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  10. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2015-01-01

    Full Text Available The Sichuan Basin, a hotspot and one of the most successful areas for shale gas exploration and development, can largely reflect and have a big say in the future prospect of shale gas in China. Through an overall review on the progress in shale gas exploration and development in the Sichuan Basin, we obtained the following findings: (1 the Sichuan Basin has experienced the marine and terrestrial depositional evolution, resulting in the deposition of three types of organic-matter-rich shales (i.e. marine, transitional, and terrestrial, and the occurrence of six sets of favorable shale gas enrichment strata (i.e. the Sinian Doushantuo Fm, the Cambrian Qiongzhusi Fm, the Ordovician Wufeng–Silurian Longmaxi Fm, the Permian Longtan Fm, the Triassic Xujiahe Fm, and the Jurassic Zhiliujing Fm; (2 the five key elements for shale gas accumulation in the Wufeng-Longmaxi Fm are deep-water shelf facies, greater thickness of organic-rich shales, moderate thermal evolution, abundant structural fractures, reservoir overpressure; and (3 the exploration and development of shale gas in this basin still confronts two major challenges, namely, uncertain sweet spots and potential prospect of shale gas, and the immature technologies in the development of shale gas resources at a depth of more than 3500 m. In conclusion, shale gas has been discovered in the Jurassic, Triassic and Cambrian, and preliminary industrial-scale gas has been produced in the Ordovician-Silurian Fm in the Sichuan Basin, indicating a promising prospect there; commercial shale gas can be produced there with an estimated annual gas output of 30–60 billion m3; and shale gas exploration and production experiences in this basin will provide valuable theoretical and technical support for commercial shale gas development in China.

  11. A molecular organic geochemical study of black shales associated with diatomites from the Oligocene Meinilite Shale (Flysch Carpathians, SE Poland)

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koster, J.; Rospondek, M.; Zubrzycki, A.; Kolouba, M.; Leeuw, J.W. de

    1995-01-01

    Black shales of the Menilite Formation, the source rock for oils in the Carpathian overthrust belt, display a large variability in their bulk and molecular geochemical parameters. Biomarker and stable carbon isotope analyses indicate a variable contribution from different algae (particularly

  12. Marcellus shale gas potential in the southern tier of New York

    Energy Technology Data Exchange (ETDEWEB)

    Faraj, B. [Talisman Energy Inc., Calgary, AB (Canada); Duggan, J. [Hunt Oil Canada, Calgary, AB (Canada)

    2008-07-01

    Marcellus shale is a significant, underexplored, shale gas target in the Appalachian Basin. Gas-in-place estimates in the Marcellus shale range from 200 to 100 billion cubic feet (bcf). The Devonian shales have favorable attributes such as high total organic content (TOC), high gas content, favorable mineralogy and over-pressured. Land owned by Fortuna Energy in the northern Appalachian Basin may contain significant shale gas with unrisked gas-in-place in excess of 10 trillion cubic feet. Unlocking the true shale gas potential requires innovative drilling and completion techniques. This presentation discussed Marcellus shale gas potential in the southern tier and a test program being conducted by Fortuna to test the potential. Several photographs were shown, including Taughannock Falls, Finger Lakes and the Ithaca Shale, Sherburne Sandstone, and Geneseo Shale; two orthogonal fracture sets in the Upper Devonian Geneseo Shale; and two orthogonal fracture sets in the Upper Devonian Rocks, near Corning, New York. Figures that were presented included the supercontinent Pangaea in the early Triassic; undiscovered gas resources in the Appalachian Basin; stratigraphy; and total gas production in New York since 1998. Fortuna's work is ongoing in the northern Appalachian Basin. tabs., figs.

  13. Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin

    Science.gov (United States)

    Zhu, Houqin; Kong, Xiangwen; Long, Huashan; Huai, Yinchao

    2018-02-01

    In the West Canadian Sedimentary Basin (WCSB), Duvernay shale is considered to contribute most of the Canadian shale gas reserve and production. According to global shale gas exploration and development practice, reservoir property and well completion quality are the two key factors determining the shale gas economics. The two key factors are strongly depending on shale lithofacies. On the basis of inorganic mineralogy theory, all available thin section, X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) data were used to assist lithofacies analysis. Gamma ray (GR), acoustic (AC), bulk density (RHOB), neutron porosity (NPHI) and photoelectric absorption cross-section index (PE) were selected for log response analysis of various minerals. Reservoir representative equation was created constrained by quantitative core analysis results, and matrix mineral percentage of quartz, carbonate, feldspar and pyrite were calculated to classify shale lithofacies. Considering the horizontal continuity of seismic data, rock physics model was built, and acoustic impedance integrated with core data and log data was used to predict the horizontal distribution of different lithofacies. The results indicate that: (1) nine lithofacies can be categorized in Duvernay shale, (2) the horizontal distribution of different lithofacies is quite diversified, siliceous shale mainly occurs in Simonette area, calcareous shale is prone to develop in the vicinity of reef, while calcareous-siliceous shale dominates in Willesdon Green area.

  14. Petrology of the Devonian gas-bearing shale along Lake Erie helps explain gas shows

    Energy Technology Data Exchange (ETDEWEB)

    Broadhead, R.F.; Potter, P.E.

    1980-11-01

    Comprehensive petrologic study of 136 thin sections of the Ohio Shale along Lake Erie, when combined with detailed stratigraphic study, helps explain the occurrence of its gas shows, most of which occur in the silty, greenish-gray, organic poor Chagrin Shale and Three Lick Bed. Both have thicker siltstone laminae and more siltstone beds than other members of the Ohio Shale and both units also contain more clayshales. The source of the gas in the Chagrin Shale and Three Lick Bed of the Ohio Shale is believed to be the bituminous-rich shales of the middle and lower parts of the underlying Huron Member of the Ohio Shale. Eleven petrographic types were recognized and extended descriptions are provided of the major ones - claystones, clayshales, mudshales, and bituminous shales plus laminated and unlaminated siltstones and very minor marlstones and sandstones. In addition three major types of lamination were identified and studied. Thirty-two shale samples were analyzed for organic carbon, whole rock hydrogen and whole rock nitrogen with a Perkin-Elmer 240 Elemental Analyzer and provided the data base for source rock evaluation of the Ohio Shale.

  15. Sorption of cesium, strontium, and technetium onto organic-extracted shales

    International Nuclear Information System (INIS)

    Ho, P.C.

    1992-01-01

    The sorption of Cs(I), Sr(II), and Tc(VII) onto organic-extracted shales from synthetic brine groundwaters and from 0.03-M NaHCO 3 solution under oxid conditions at room temperature has been studied. The shale samples used in this study were Pumpkin Valley, Upper Dowelltown, Pierre and Green River Formation Shales. The organic content of these shales ranges from less than 2 wt% to 13 wt%. Soxhlet extraction with chloroform and a mixture of chloroform and methanol removed 0.07 to 5.9 wt% of the total organic matter from these shales. In comparison with the results of sorption of these three metal ions onto the corresponding untreated shales, it was observed that there were moderate to significant sorption decreases of Cs(I) and Sr(II) on all four organic-extracted shale samples and moderate sorption decrease of Tc(VII) on the organic-extracted Pumpkin Valley, Pierre, and Green River Shale samples, but only moderate sorption increases of Tc(VII) on the organic-extracted Upper Dowelltown Shale samples from the brine groundwaters. Nevertheless, sorption of Cs(I), Sr(II), and Tc(VII) on all four organic-extracted shale samples from the bicarbonate solution in most cases did not show a consistent pattern. (orig.)

  16. Shale Gas Exploration and Exploitation Induced Risks - SHEER

    Science.gov (United States)

    Capuano, Paolo; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Cesca, Simone; Gunning, Andrew; jaroslawsky, Janusz; Garcia-Aristizabal, Alexander; Westwood, Rachel; Gasparini, Paolo

    2017-04-01

    Shale gas operations may affect the quality of air, water and landscapes; furthermore, it can induce seismic activity, with the possible impacts on the surrounding infrastructure. The SHEER project aims at setting up a probabilistic methodology to assess and mitigate the short and the long term environmental risks connected to the exploration and exploitation of shale gas. In particular we are investigating risks associated with groundwater contamination, air pollution and induced seismicity. A shale gas test site located in Poland (Wysin) has been monitored before, during and after the fracking operations with the aim of assessing environmental risks connected with groundwater contamination, air pollution and earthquakes induced by fracking and injection of waste water. The severity of each of these hazards depends strongly on the unexpected enhanced permeability pattern, which may develop as an unwanted by-product of the fracking processes and may become pathway for gas and fluid migration towards underground water reservoirs or the surface. The project is devoted to monitor and understand how far this enhanced permeability pattern develops both in space and time. The considered hazards may be at least partially inter-related as they all depend on this enhanced permeability pattern. Therefore they are being approached from a multi-hazard, multi parameter perspective. We expect to develop methodologies and procedures to track and model fracture evolution around shale gas exploitation sites and a robust statistically based, multi-parameter methodology to assess environmental impacts and risks across the operational lifecycle of shale gas. The developed methodologies are going to be applied and tested on a comprehensive database consisting of seismicity, changes of the quality of ground-waters and air, ground deformations, and operational data collected from the ongoing monitoring episode (Wysin) and past episodes: Lubocino (Poland), Preese Hall (UK), Oklahoma (USA

  17. Prospect of shale gas recovery enhancement by oxidation-induced rock burst

    Directory of Open Access Journals (Sweden)

    Lijun You

    2017-11-01

    Full Text Available By horizontal well multi-staged fracturing technology, shale rocks can be broken to form fracture networks via hydraulic force and increase the production rate of shale gas wells. Nonetheless, the fracturing stimulation effect may be offset by the water phase trapping damage caused by water retention. In this paper, a technique in transferring the negative factor of fracturing fluid retention into a positive factor of changing the gas existence state and facilitating shale cracking was discussed using the easy oxidation characteristics of organic matter, pyrite and other minerals in shale rocks. Furthermore, the prospect of this technique in tackling the challenges of large retention volume of hydraulic fracturing fluid in shale gas reservoirs, high reservoir damage risks, sharp production decline rate of gas wells and low gas recovery, was analyzed. The organic matter and pyrite in shale rocks can produce a large number of dissolved pores and seams to improve the gas deliverability of the matrix pore throats to the fracture systems. Meanwhile, in the oxidation process, released heat and increased pore pressure will make shale rock burst, inducing expansion and extension of shale micro-fractures, increasing the drainage area and shortening the gas flowing path in matrix, and ultimately, removing reservoir damage and improving gas recovery. To sum up, the technique discussed in the paper can be used to “break” shale rocks via hydraulic force and to “burst” shale rocks via chemical oxidation by adding oxidizing fluid to the hydraulic fracturing fluid. It can thus be concluded that this method can be a favorable supplementation for the conventional hydraulic fracturing of shale gas reservoirs. It has a broad application future in terms of reducing costs and increasing profits, maintaining plateau shale gas production and improving shale gas recovery.

  18. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  19. Breakthrough and prospect of shale gas exploration and development in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2016-01-01

    Full Text Available In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas exploration and development in China is, on the whole, still at its early stage. Especially, marine shale gas in the Sichuan Basin has dominated the recent exploration and development. For the realization of shale gas scale development in China, one key point lies in the breakthrough and industrial production of transitional facies and continental facies shale gas. Low–moderate yield of shale gas wells is the normal in China, so it is crucial to develop key exploration and development technologies. Especially, strictly controlling single well investment and significantly reducing cost are the important means to increase shale gas exploration and development benefits. And finally, suggestions were proposed in five aspects. First, continuously strengthen theoretical and technical researches, actively carry out appraisal on shale gas “sweet spots”, and gradually accumulate development basis. Second, stress on primary evaluation of exploration and development, highlight the effective implementation of shale gas resources, and control the rhythm of appraisal drilling and productivity construction. Third, highlight fine description and evaluation of shale gas reservoirs and increase the overall development level. Fourth, intensify the research on exploration and development technologies in order to stand out simple and practical technologies with low costs. And fifth, summarize the experiences in fast growth of shale gas exploration and development, highlight

  20. Factors controlling the compositional variations among the marine and non-marine black shales from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Baioumy, Hassan M. [Central Metallurgical R and D Institute, PO Box 87 Helwan, Cairo (Egypt); Ismael, Ismael S. [Faculty of Science, Suez Canal University, Suez (Egypt)

    2010-07-01

    Non-marine (Jurassic) and marine (Cretaceous) black shales from Egypt were subjected to mineralogical and geochemical analyses to examine the controlling factors of their compositional variations. Non-marine black shales are composed of kaolinite and quartz with traces of gypsum, illite, calcite, feldspars, and dolomite, while marine black shales from the Red Sea area are composed of smectite, kaolinite, quartz, calcite, and dolomite with traces of feldspars. Abu Tartur marine black shales are composed of smectite and quartz with traces of feldspars and gypsum. Non-marine black shales show considerably higher Nb, Ta, Hf, and Zr contents and Th/Yb ratios compared to the marine black shales. On the other hand, marine black shales show considerably higher Cr, V, and Zn contents with positive correlations between these elements and organic carbon (C{sub org.}){sub .} Red Sea black shales have higher Ni/Co, V/Cr, and U/Al ratios. Chondrite normalized values of the medium and heavy rare earth elements (MREEs and HREEs, respectively) are higher in the non-marine black shales compared to the marine black shales. Pyrite from non-marine black shales is characterized by high positive {delta}{sup 34}S isotope values (average of + 9.3 permille). Pyrite from Red Sea black shales has low negative {delta}{sup 34}S values (average of -16.7 permille), pyrite from black shales of the lower member of the Duwi Formation has positive {delta}{sup 34}S values (average of 5.8 permille), while pyrite from marine black shales of the middle member has negative {delta}{sup 34}S values (average of -0.83 permille). Source area composition, weathering conditions, depositional environments, and type of organic matter are considered to be the probable controlling factors of these variations. The more felsic constituents in the source area of non-marine black shales is responsible for the relatively high Nb, Ta, Hf, and Zr contents and Th/Yb ratio. Relatively high kaolinite contents and Chemical

  1. On gas and shale, we do not argue

    International Nuclear Information System (INIS)

    Courcier, Jerome; Litvack, Karina

    2013-01-01

    Addressing the debate on the exploitation of shale gas in France, and the impatience of industrials in front of the moratorium which has been decided, this article states that most of the environmental impacts of shale gas exploitation on water, air, soils, energy and biodiversity can be controlled. It evokes technical choices and possibilities to avoid water pollution, to reduce water consumption, to prevent air pollution, and to prevent access of animals to by-products. These risks thus depend on industrial practices. Other risks are evoked which do not depend on them: a social risk of presumption of water pollution due to an increased turbidity, a risk of fragmentation of the territory due to the presence of several drilling platforms, and a risk of a significant increase of lorry traffic

  2. Shale gas, Poland pioneer of exploitation in Europe

    International Nuclear Information System (INIS)

    Rybicka, Urszula; Khalatbari, Azar; Schneider, Frederic; Nabrdalik, Maciek

    2012-01-01

    This article presents an installation built by a Polish company to perform drillings in the search for shale gas pockets from which gas would be extracted by hydraulic fracturing. Some technical characteristics of the installation and process are evoked. The article outlines the confidence the population now has gained in this installation. However and despite the fact that the region possesses important underground water reserves, water consumption is reported to be too high with respect to farmer needs. Besides, some farmers have had a compulsory purchase order made on their land and could afford to buy new lands. However, in some other places, the population did not accept the arrival of the multinational company Chevron. In parallel, a brief overview of shale gas exploitation projects or status in other European countries is given

  3. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  4. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  5. Ultraviolet laser-induced voltage in anisotropic shale

    Science.gov (United States)

    Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng

    2018-01-01

    The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.

  6. Arctic black shale formation during Cretaceous Oceanic Anoxic Event 2

    DEFF Research Database (Denmark)

    Lenniger, Marc; Nøhr-Hansen, Henrik; Hills, Len V.

    2014-01-01

    The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid-paleolatitudes are re......The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid...... caused massive organic-carbon burial on the Arctic shelf in general, with important implications for hydrocarbon source-rock distribution in the Arctic region....

  7. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  8. The use of shale ash in dry mix construction materials

    Science.gov (United States)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  9. Alternative routes for the chemical industry regarding US shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Kneissel, B. [Stratley AG, Koeln (Germany)

    2013-11-01

    Cracking ethane from wet shale gas in North America sets a bench mark to global ethylene production costs. Regarding very attractive ethane prices from extraction of low cost wet shale gas we suggest in North America ethylene production costs will roughly vary between 400 and 600 $/ t. As in other parts of the world, except Middle East, the availability of ethane seems to be more limited other sources for ethylene, such as methane, coal and biomass are investigated. Oxidative coupling of methane (OCM) has its limits and may only lead to competitive production costs for large scale operations. Coal converted to ethylene via calcium carbide and subsequent hydrogenation may hardly be a viable answer. Ethylene derived by dehydration of ethanol from fermentation of corn sugar may be an answer for very low crop prices. Further research on the conversion of methane with emphasis on its industrial implementation as a major carbon resource is recommended. (orig.)

  10. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  11. Energy security of supply and oil shale resources

    International Nuclear Information System (INIS)

    Elkarmi, F.

    1994-01-01

    Jordan must utilize its huge oil shale deposits in order to increase domestic security of energy supply and benefit financially. Utilization processes will require large scale financial expenditures, beyond Jordan's means. Therefore, the BOT scheme seems to be the perfects solution. Since oil shale retorting technology will produce oil which can be traded to generate valuable foreign exchange revenues, it is more advantageous than direct burning technology which produces electricity limited to local consumption regardless of economics. Under the BOT scheme, the incentive, for the foreign sponsor is to return his investment via quantities of oil; for Jordan the aim is to meet local energy demand and acquire the plant infrastructure in the long term. Recent events in the more traditional oil fields of the region make such a project in Jordan more attractive. (author) 3 tabs. 2 figs

  12. How did the US economy react to shale gas production revolution? An advanced time series approach

    International Nuclear Information System (INIS)

    Bilgili, Faik; Koçak, Emrah; Bulut, Ümit; Sualp, M. Nedim

    2016-01-01

    This paper aims at examining the impacts of shale gas revolution on industrial production in the US. To this end, this paper, first, throughout literature review, exposes the features of shale gas revolution in the US in terms of energy technology and energy markets. However, the potential influences of shale gas extraction on the US economy are not explicit in the existing literature. Thus, considering mainly the output of shale gas revolution on the US economy in this research, later, the paper conducts econometric models to reveal if there exists significant effect(s) of shale gas revolution on the US economy. Therefore, the paper employs unit root tests and cointegration tests by following relevant US monthly data from January 2008 to December 2013. Then, this paper observes long run impact of shale gas production on industrial production in the US through dynamic ordinary least squares estimation with dummy structural breaks and conducts Granger causality test based on vector error correction model. The dynamic ordinary least squares estimator explores that shale gas production has a positive effect on industrial production. Besides, the Granger causality test presents that shale gas production Granger causes industrial production in the long run. Based on the findings of the long run estimations, the paper yields that industrial production is positively related to shale gas production. Eventually, upon its findings, this paper asserts that (i) the shale gas revolution in the US has considerable positive effects on the US economy within the scope of the validity of the growth hypothesis, (ii) new technologies might be developed to mitigate the possible negative environmental effects of shale gas production, (iii) the countries having shale gas reserves, as in US, may follow energy policies to utilize their shale reserves more in the future to meet their energy demand and to increase their economic welfare. - Highlights: • Explores the US shale gas revolution

  13. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zuqing Chen

    2016-03-01

    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  14. Exploring support for shale gas extraction in the United Kingdom

    OpenAIRE

    Andersson-Hudson, Jessica; Knight, Wil; Humphrey, Mathew; O'Hara, Sarah

    2016-01-01

    The development of shale gas in the United Kingdom (UK) using hydraulic fracturing, more commonly known as ‘fracking’, remains in its infancy. Yet understanding public attitudes for this fledgling industry is important for future policy considerations, decision-making and for industry stakeholders. This study uses data collected from the University of Nottingham UK nationwide online survey (n=3,823) conducted in September 2014, to consider ten hypothesises about the UK public’s attitudes towa...

  15. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    OpenAIRE

    Beloborodov, Roman; Pervukhina, Marina; Han, Tongcheng; Josh, Matthew

    2017-01-01

    High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for t...

  16. Carbonization process for peat, wood, shale, and the like

    Energy Technology Data Exchange (ETDEWEB)

    1924-10-21

    A carbonization process for peat, wood, shale and the like, in intermittently operating shaft furnaces with leading in of hot gases through the charge from over to under, is characterized in that the charge is brought in for a carbonization action in single layers in such time intervals under the same distances of heating gas paths, that every fresh layer is brought first only to about 200/sup 0/ C, then to the highest layer where the carbonization is carried out completely.

  17. Paraho oil shale module. Site development plan, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  18. Strength curves for shales and sandstones under hydrostatic confining pressures

    International Nuclear Information System (INIS)

    Gupta, S.C.; Sikka, S.K.

    1978-01-01

    The experimental data for the effect of confining pressures on the fracture stress have been analysed for shales and sandstones. The normalized compressive strengths are found to lie in a narrow region so that Ohnaka's equation for crystalline rocks, can be fitted to the data. The fitted parameters are physically reasonable and indicate that the functional dependence of strength on porosity, strain rate and temperature is independent of the confining pressures. (author)

  19. Policy Brief: Shale Gas in India: Look Before You Leap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    Natural gas forms 9 per cent of the total commercial energy mix in India, but demand far exceeds supply, as shown in Figure 1. Part of the demand in 2012–13 was made up by the import of liquefied natural gas (LNG) to the extent of 18 bcm. Several power plants, which were in operation, or ready for commissioning, or in an advanced state of construction, representing about 10,000 MW of generation capacity, were, however, idle for want of gas. The exploration and production of shale gas in the United States (US) has been a game changer, making the country self-sufficient in natural gas over the last few years. This has created considerable excitement globally, particularly in Europe. India is also looking at exploring shale gas domestically to fill in the supply–demand gap. But will what works for the US also work for Europe and India? This policy brief explores this question in the context of India. It explains the nature of shale gas, the technology for its extraction from underground sources, and its potential for India. It also highlights overseas acquisitions of this resource by Indian companies even before it is sourced domestically, and then examines the viability of the technology in India. One of the key determinants of the viability of this technology is the availability of large quantities of clean water. This policy brief raises a red flag on this complementary input for exploiting shale gas resources in India, given that India is a water stressed country, and is fast approaching water scarcity conditions.

  20. Apparatus for utilizing liquid hydrocarbons such as shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, M

    1868-02-29

    The hydrocarbon liquids such as petroleum, shale oil, naphtha, cresol, coal tar, or other mineral, animal or vegetable oil are placed in a heater or special generator analogous to ordinary generators for vapors and to which the name vaporizer has been given in the description. This vaporizer is furnished with all kinds of safety devices, such as valves, manometer, float indicating the level, standard stopcock, etc., and is heated by the combustion of the vapors produced by it.

  1. Spherocylindrical microplane constitutive model for shale and other anisotropic rocks

    Science.gov (United States)

    Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.

    2017-06-01

    Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially

  2. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  3. Process for recovering oil from shale and other bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    1918-08-23

    A process for recovering oil from shale and other bituminous minerals in rotary retorts heated from outside and flushed with water vapor or other oxygen-free gases is characterized by the fact that all kinds of minerals are carbonized, and that during the carbonization process the temperature of the superheated steam or gases is about 50/sup 0/ C higher than the temperature of the carbonized mineral.

  4. Microstructural and mineralogical characterization of selected shales in support of nuclear waste repository studies

    International Nuclear Information System (INIS)

    Lee, S.Y.; Hyder, L.K.; Alley, P.D.

    1988-01-01

    Five shales were examined as part of the Sedimentary Rock Program evaluation of this medium as a potential host for a US civilian nuclear waste repository. The units selected for characterization were the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. The micromorphology and structure of the shales were examined by petrographic, scanning electron, and high-resolution transmission electron microscopy. Chemical and mineralogical compositions were studied through the use of energy-dispersive x-ray, neutron activation, atomic absorption, thermal, and x-ray diffraction analysis techniques. 18 refs., 12 figs., 2 tabs

  5. Do scaly clays control seismicity on faulted shale rocks?

    Science.gov (United States)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  6. Geology of the oil shales of Messel near Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G.

    1966-07-25

    The oil shale, with a thickness of nearly 190 m, represents the middle part of the strata of Messel. Freshly mined, it consists of about 40% water and about 25% organic matter. The rest are clay minerals, chiefly montmorillonite. Kaolinite, messelite, vivianite, pyrites, markasite, siderite, and gypsum occur in small quantities. The organic components are kerogens which are extraordinary rich in oxygen. They are tied adsorptively to montmorillonite. The bitumina are supposed to be chiefly derived from algae, in a smaller extent from fungi and pollen. Plants as well as the large ganoid fishes and the crocodiles indicate a tropical to subtropical climate and a larger extent of the former water system. The oil shales of Messel are preserved in a tectonic graben that is 1,000 m long and up to 700 m wide. This graben is divided into 3 depressions. Both depressions are close together in the south and diverge northward. The ground water lifted in the open mining shows high degrees of total hardness and unusual high sulfate and phosphate contents. These matters can be derived from the weathering events in the exposed oil shale. (133 refs.)

  7. Problem of Production of Shale Gas in Germany

    Directory of Open Access Journals (Sweden)

    Nataliya K. Meden

    2014-01-01

    Full Text Available A bstract: Our magazine publishes a series of articles on shale gas in different countries. This article is about Germany, a main importer of Russian natural gas, so a perspective of exploitation of local shale gas resources is of a clear practical importance for Russia. We discuss external and internal factors which determine position of the German government concerning the shale gas excavation: policy of the USA and the EU, positions of German political parties, influence of the lobbying communities and civic associations. The article contains rich information on vast variety of interests of actors in the domestic discussion. Taking into account the importance of civil society for political decisions, the author rests upon public relations of big companies, their methodic and results. The article summarizes data on reserve estimation and current geological projects, as well all the officially published reports concerning environmental threats cased by fracking technology. On the base of the above analyze, the author predicts possible evolution of the federal government policy.

  8. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    Science.gov (United States)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (hydrocarbon recovery processes.

  9. Recycling of Ammonia Wastewater During Vanadium Extraction from Shale

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-03-01

    In the vanadium metallurgical industry, massive amounts of ammonia hydroxide or ammonia salt are added during the precipitation process to obtain V2O5; therefore, wastewater containing a high level of NH4 + is generated, which poses a serious threat to environmental and hydrologic safety. In this article, a novel process was developed to recycle ammonia wastewater based on a combination of ammonia wastewater leaching and crystallization during vanadium extraction from shale. The effects of the NH4 + concentration, temperature, time and liquid-to-solid ratio on the leaching efficiencies of vanadium, aluminum and potassium were investigated, and the results showed that 93.2% of vanadium, 86.3% of aluminum and 96.8% of potassium can be leached from sulfation-roasted shale. Subsequently, 80.6% of NH4 + was separated from the leaching solution via cooling crystallization. Vanadium was recovered via a combined method of solvent extraction, precipitation and calcination. Therefore, ammonia wastewater was successfully recycled during vanadium extraction from shale.

  10. Geochemical controls on shale groundwaters: Results of reaction path modeling

    International Nuclear Information System (INIS)

    Von Damm, K.L.; VandenBrook, A.J.

    1989-03-01

    The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs

  11. Safe Management of Waste Generated during Shale Gas Operations

    Science.gov (United States)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  12. The role of ethics in shale gas policies.

    Science.gov (United States)

    de Melo-Martín, Inmaculada; Hays, Jake; Finkel, Madelon L

    2014-02-01

    The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled natural gas to be produced from unconventional sources, such as shale. There has been much discussion about the costs and benefits of developing shale gas among scientists, policy makers, and the general public. The debate has typically revolved around potential gains in economics, employment, energy independence, and national security as well as potential harms to the environment, the climate, and public health. In the face of scientific uncertainty, national and international governments must make decisions on how to proceed. So far, the results have been varied, with some governments banning the process, others enacting moratoria until it is better understood, and others explicitly sanctioning shale gas development. These policies reflect legislature's preferences to avoid false negative errors or false positive ones. Here we argue that policy makers have a prima facie duty to minimize false negatives based on three considerations: (1) protection from serious harm generally takes precedence over the enhancement of welfare; (2) minimizing false negatives in this case is more respectful to people's autonomy; and (3) alternative solutions exist that may provide many of the same benefits while minimizing many of the harms. © 2013.

  13. Combustible shales of the U. S. S. R

    Energy Technology Data Exchange (ETDEWEB)

    Dobryanskii, A F

    1947-01-01

    Without exception, the geological character of all known oil shales (including sapropelic shales) indicates an aqueous origin for these minerals. The initial organic material of shales has accumulated in every geological period from Cambrian to the present time. Algae, amoeba, rhizopoda, multicellular organisms, and highly organized animals and plants were the forerunners of an intermediate decomposition product referred to as ''pelogen.'' After deposition, pelogen is transformed into sapropels under the influence of anerobic conditions. The composition of sapropel depends upon the percentage of humic acids, lignins, bitumens, albumin, and similar materials that were present in the pelogen. Wax and solid hydrocarbons do not contribute significantly to the process of conversion. Factors that affect the composition of the sapropel are prevalence of plant or animal matter, age of the sapropel, and depth of burial. The basic reaction involved in the change from pelogen to sapropel consisted of an increase in carbon and hydrogen content and a decrease in oxygen content. During this change, hydroxyl groups were removed in the form of water, carboxyl in the form of carbon dioxide gas, and ethereal oxygen in the form of carbon dioxide and carbon monoxide.

  14. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  15. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  16. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  17. Depositional Environment of the Sangkarewang Oil Shale, Ombilin Basin, Indonesia

    Directory of Open Access Journals (Sweden)

    Komang Anggayana

    2014-12-01

    Full Text Available Five samples from 56 m long drill core of lacustrine Sangkarewang oil shale have been studied by means of petrography and organic geochemistry to investigate the organic matter composition and depositional environments of the shale. The organic matter consists of abundant lamalginite (30%, v/v and very limited amount of vitrinite, suggesting aquatic depositional environments with minor terrestrial influence. Organic geochemical analysis exhibits the dominance of pristane, phytane, and generally n-alkanes compounds. These compounds might originate mostly from aquatic photosynthetic organisms. The oil shale was likely deposited in anoxic lake environments, suggested by the presence of framboidal pyrite (6%, v/v and preserved organic matter with total organic carbon (TOC about 4.9%. The pristane/phytane ratio is relatively high about 3.9 and thought as source sensitive rather than redox sensitive. Hopanoid and aryl isoprenoid compounds are present in minor amounts. The latter compounds are interpreted to be derived from green sulfur bacteria dwelling in anoxic and the presence of H2S in bottom water.

  18. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  19. Shale gas: challenges and questions for the development

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Bellier, Cyrille

    2014-12-01

    As the development of shale gas exploitation appears to be successful in the USA, and as, despite environmental consequences, many emerging or developing countries are wandering about the opportunity to implement exploration and exploitation programmes, this study, in its first part, precisely defines shale gas and its conditions of exploitation (drilling, hydraulic fracturing), highlights the ephemeral nature of this production (few years) compared to conventional gas (several tens of years), and outlines that this exploitation results in economic characteristics which are very unusual for the energy sector. Some other issues are then addressed: needs in water, sand, additive chemical products, road transport and gas transport infrastructures. Environmental issues are also addressed in detail, notably methane leakages which put the so-said harmlessness of shale gas for climate into question again. The USA experience is then analysed with respect to resource, from an industrial and economic point of view, and regarding environmental consequences. The second part proposes an analysis of the different determining parameters for the elaboration of a policy: resource (absolute value, years of consumption or production), level of gas dependency, population density, water resources, industrial experience, and regulation capacity of administrative authorities. The third part proposes an analysis grid for public authorities which comprises a set of issues to be addressed by ministries and institutional actors

  20. Detachment of particulate iron sulfide during shale-water interaction

    Science.gov (United States)

    Emmanuel, S.; Kreisserman, Y.

    2017-12-01

    Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.

  1. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    This report describes the engineering, feasibility, economics, and environmental aspects of exploitation of Chattanooga Shale to recover U, synthetic crude oil, and byproduct Th, NH/sub 3/, S, Mo, V, Ni, and Co. It is concluded that the shale is a potential source of U, energy, and byproduct metals. This volume of the report covers the engineering description, feasibility, and economics of exploitation of the shale. (DLC)

  2. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  3. Gas production in the Barnett Shale obeys a simple scaling theory

    OpenAIRE

    Patzek, Tad W.; Male, Frank; Marder, Michael

    2013-01-01

    Ten years ago, US natural gas cost 50% more than that from Russia. Now, it is threefold less. US gas prices plummeted because of the shale gas revolution. However, a key question remains: At what rate will the new hydrofractured horizontal wells in shales continue to produce gas? We analyze the simplest model of gas production consistent with basic physics of the extraction process. Its exact solution produces a nearly universal scaling law for gas wells in each shale play, where production f...

  4. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  5. Process of producing fuels from slates or bituminous shales. [distillation at incandescent heat

    Energy Technology Data Exchange (ETDEWEB)

    Huppenbauer, M

    1902-07-31

    A process of producing a fuel from slates or bituminous shales by saturating or impregnating them after preliminary distillation with the vapors of tars, resins, oils, etc., is given. The process is characterized by the bituminous shale being submitted in the form of fragments to distillation at incandescent heat to make the shale porous and able to absorb the vapors of the substances already mentioned.

  6. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    OpenAIRE

    Ratajczak Tomasz

    2017-01-01

    Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl) and organic reagents (ethylamine, propylamine) as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tensio...

  7. Liberation play : technology and prices help release shale gas from unconventional status

    International Nuclear Information System (INIS)

    Roche, P.

    2006-01-01

    Shale gas production is set to increase in Canada. The British Columbia (BC) Oil and Gas Commission has approved more than 20 blocks of potential shale lands as experimental scheme areas targeting Cretaceous-age and Devonian-age shales. The BC government is currently working on a royalty scheme to benefit shale gas producers by allowing them to defer the bulk of the royalty collection until projects have reached a certain economic payout point. Interest in unconventional gas has spawned activity in previously unexplored areas of BC. Coals and shales are currently being evaluated near the community of Hudson's Hope, which has an estimated 1.8 tcf of shale gas. Canadian Spirit Resources Inc., who have leased the land, are now focusing on optimizing production processes to improve the economics of shale gas recovery. In Saskatchewan, shale gas exploration is occurring in the central region of the province, far from existing oil and gas production. PanTerra Resources Corp. has recently drilled 16 wells on its Foam Lake project, and detailed core and log analyses are being conducted to improve the understanding of the lithology and rock fabric and allow the company to design completion and stimulation programs. Stealth Ventures Ltd. is concentrating on developing the tight, biogenic Colorado Shale, which extends from Manitoba to the foothills of Alberta. Because of the shallow depths, the initial drilling costs are lower for biogenic gas than for thermogenic gas. Success will depend on the right drilling and completion methods. Junior explorers are also exploring for shale gas in an area straddling the St. Lawrence River between Quebec City and Montreal. Several large companies are examining the economic potential of shale gas production throughout North America. It was concluded that oil and gas operators are becoming more confident that domestic shale gas resources will be cheaper in future than imported liquefied natural gas (LNG), which requires special ships

  8. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium

    International Nuclear Information System (INIS)

    1978-06-01

    This report describes the engineering, feasibility, economics, and environmental aspects of exploitation of Chattanooga Shale to recover U, synthetic crude oil, and byproduct Th, NH 3 , S, Mo, V, Ni, and Co. It is concluded that the shale is a potential source of U, energy, and byproduct metals. This volume of the report covers the engineering description, feasibility, and economics of exploitation of the shale

  9. Characteristic of oil-shale in Achibo-Sombo area of Yayu coalfield in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Tang, Z. [Exploration Institute of Shandong Coal Geology Bureau, Taian (China)

    2001-02-01

    On the basis of introducing the location, condition of strata, and the development of the coal-bearing strata of Achibo-Sombo area of Yayu coal field in Ethiopia, the distributing regularities, thickness, physical and chemical characteristics of the oil-shale in this area which are of industrial utilization are studied. And the reserves of the oil-shale has been calculated. The various aspects of industrial utilization of oil-shale are outlined. 2 figs., 3 tabs.

  10. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    OpenAIRE

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-01-01

    The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/supe...

  11. Removal of reactive dyes from wastewater by shale

    Directory of Open Access Journals (Sweden)

    Jareeya Yimrattanabovorn

    2012-02-01

    Full Text Available Colored textile effluents represent severe environmental problems as they contain mixture of chemicals, auxiliariesand dyestuffs of different classes and chemical constitutions. Elimination of dyes in the textile wastewater by conventionalwastewater treatment methods is very difficult. At present, there is a growing interest in using inexpensive and potentialmaterials for the adsorption of reactive dyes. Shale has been reported to be a potential media to remove color from wastewaterbecause of its chemical characteristics. In this study, shale was used as an adsorbent. The chosen shale had particlesizes of : A (1.00 < A < 2.00 mm, B (0.50 < B < 1.00 mm, C (0.25 < C < 0.50 mm, D (0.18 < D < 0.25 mm and E (0.15 < E < 0.18mm. Remazol Deep Red RGB (Red, Remazol Brilliant Blue RN gran (Blue and Remazol Yellow 3RS 133% gran (Yellow wereused as adsorbates. Batch adsorption experiments were performed to investigate the effect of contact time, pH, temperatureand initial dye concentration. It was found that the equilibrium data were best described by the Langmuir isotherm model,with the maximum monolayer adsorption capacities of 0.0110-0.0322 mg/g for Red, 0.4479-1.1409 mg/g for Blue and 0.0133-0.0255 mg/g for Yellow, respectively. The maximum adsorption capacity of reactive dye by shale occurred at an initial pH of 2,initial concentration of 700 Pt-Co and temperature 45°C. Reactive dye adsorption capacities increased with an increase of theinitial dye concentration and temperature whereas with a decrease of pH. The fixed bed column experiments were appliedwith actual textile wastewater for estimation of life span. The results showed that COD and color removal efficiencies of shalefix bed column were 97% and 90%, respectively. Also the shale fixed bed columns were suitable for using with textile effluentfrom activated sludge system because of their COD and color removal efficiencies and life expectancy comparison using withdyebath wastewater and raw

  12. Porosity characterization for heterogeneous shales using integrated multiscale microscopy

    Science.gov (United States)

    Rassouli, F.; Andrew, M.; Zoback, M. D.

    2016-12-01

    Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements

  13. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    International Nuclear Information System (INIS)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; Hedges, Sheila W.; Lopano, Christina L.; Guthrie, George D.; Hakala, J. Alexandra

    2017-01-01

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24–48 h) fluid enrichment of certain elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales. - Highlights: • Metal concentrations could be at their peak in produced waters recovered 24–48 after fracturing. • Carbonate

  14. Pengaruh Proses Pelapukan Clay Shale terhadap Perubahan Parameter Rasio Disintegritas (DR

    Directory of Open Access Journals (Sweden)

    Idrus M Alatas

    2017-04-01

    Full Text Available The background of this research because of the frequent occurrence of the failure in the geotechnical design of clay shale caused by weathering. Disintegration ratio is a comparison of physical changes due to weathering at certain times of the initial conditions. Changes in physical properties due to clay shale weathering determined by the disintegration ratio (DR.Clay shale weathering will occur more quickly as a result of wetting and drying cycles when compared with the drying process. While due to the increased number of cycles of wetting at the same time, causing weathering on clay shale will be faster again. Until the 80th day of drying time, the magnitude DRof Semarang-Bawenclay shaleand Hambalang are the same, namely DR = 0.916 (completelly durable. However, due to wetting and drying cycles on day 32, samples of Semarang-Bawenclay shale is DR = 0.000 or non durable completelly, while on Hambalang clay shale in same day DR between 0.2117 to 0.3344. Generally Semarang-Bawen clay shale will be faster weathered than Hambalang clay shale. It is caused by the mineralogy content of Semarang-Bawen clay shale has dominated by Smectite, and Hambalangclay shalehas dominated mineral Kaolinite and Illlite.

  15. Patent analysis to identify shale gas development in China and the United States

    International Nuclear Information System (INIS)

    Lee, Woo Jin; Sohn, So Young

    2014-01-01

    Shale gas has become an increasingly important form of hydrocarbon energy, and related technologies reflect the geographical characteristics of the countries where the gas is extracted and stored. The United States (U.S.) produces most of the world’s shale gas, while China has the world’s largest shale gas reserves. In this research, we focused on identifying the trends in shale-gas related technologies registered to the United States Patent and Trademark Office (USPTO) and to the State Intellectual Property Office of the People’s Republic of China (SIPO) respectively. To cluster shale-gas related technologies, we text-mined the abstracts of patent specifications. It was found that in the U.S., the key advanced technologies were related to hydraulic fracturing, horizontal drilling, and slick water areas, whereas China had a focus on proppants. The results of our study are expected to assist energy experts in designing energy policies related to technology importation. - Highlights: • We analyzed shale gas-related patent applications in the USPTO and SIPO. • We clustered shale gas patents by text mining patent abstract. • Differences were observed in shale gas technologies developed in the U.S. and China. • We proposed the policies of shale gas exploration and development based on patent analysis

  16. Organic geochemistry: Effects of organic components of shales on adsorption: Progress report

    International Nuclear Information System (INIS)

    Ho, P.C.

    1988-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). The selected shales are Upper Dowelltown, Pierre, Green River Formation, and two Conasauga (Nolichucky and Pumpkin Valley) Shales, which represent mineralogical and compositional extremes of shales in the United States. According to mineralogical studies, the first three shales contain 5 to 13 wt % of organic matter, and the two Conasauga Shales only contain trace amounts (2 wt %) of organic matter. Soxhlet extraction with chloroform and a mixture of chloroform and methanol can remove 0.07 to 5.9 wt % of the total organic matter from these shales. Preliminary analysis if these organic extracts reveals the existence of organic carboxylic acids and hydrocarbons in these samples. Adsorption of elements such as Cs(I), Sr(II) and Tc(VII) on the organic-extracted Upper Dowelltown, Pierre, green River Formation and Pumpkin Valley Shales in synthetic groundwaters (simulating groundwaters in the Conasauga Shales) and in 0.03-M NaHCO 3 solution indicates interaction between each of the three elements and the organic-extractable bitumen. 28 refs., 8 figs., 10 tabs

  17. Maceral and geochemical characteristics of oil shale 2 from the Huangxian Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhuang; Lin, Mingyue; Li, Haimei; Zhang, Hongjian; Li, Shifeng; Jin, Kankun [Hebei Architectural Science and Technology Inst., Handan, Hebei (China)

    2001-07-01

    Five samples of Oil Shale 2 from the Huangxian Basin have been analysed by coal petrographic and geochemical methods in order to study its formation environment. Higher alginite ratios and hopanes in Oil Shale 2 indicate a lower plants and anoxic environment. Two ternary diagrams of 'facies diagnostic' macerals and biomarkers were used to interpret the depositional environments of organic matter in Oil Shale 2. In both diagrams, Oil Shale 2 plots in a lower plant zone, and was deposited in a deeper water environment. (Author)

  18. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis

    Science.gov (United States)

    Lahann, R.W.; Swarbrick, R.E.

    2011-01-01

    Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.

  19. Breakthrough and prospect of shale gas exploration and development in China

    OpenAIRE

    Dazhong Dong; Yuman Wang; Xinjing Li; Caineng Zou; Quanzhong Guan; Chenchen Zhang; Jinliang Huang; Shufang Wang; Hongyan Wang; Honglin Liu; Wenhua Bai; Feng Liang; Wen Lin; Qun Zhao; Dexun Liu

    2016-01-01

    In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas explor...

  20. Experimental analysis and application of the effect of stress on continental shale reservoir brittleness

    Science.gov (United States)

    Yin, Shuai; Lv, Dawei; Jin, Lin; Ding, Wenlong

    2018-04-01

    Hydraulic fracturing is an effective measure of reservoir modification for the development of shale gas. The evaluation of rock brittleness can provide a basis for the optimization of fracturing. In this paper, the effect of stress on the brittleness of shale is systematically analyzed by designing triaxial mechanics tests. The strain analysis method was used to evaluate the shale brittleness. The research indicates that, with the increase of effective confining pressure, the value of the brittleness index (B 1) decreases. There is a linear and positive correlation between the average reduction ratio of B 1 and the buried depth. The stress has a significant effect on the shale brittleness. Therefore, the rock brittleness can be overestimated without considering the influence of the buried depth or the stress of formation when using the mineral composition method. Being affected by the stress, when the brittle mineral content of the shale reservoir is 70%, 65%, 60%, and 55%, the lower limit depth of the shale gas development is 5000 m, 4400 m, 3000 m, and 1800 m, respectively. However, when the brittle mineral content of the shale is less than 50%, the brittleness index is less than 50% in all of the buried depths. In this case, the shale will not have any commercial development potential. The logging interpretation results of the brittleness index conducted with stress correction are more consistent with the real situation, and thus, this method can be better used to help the optimization of the fracturing intervals of shale gas.

  1. Prediction of shale prospectivity from seismically-derived reservoir and completion qualities: Application to a shale-gas field, Horn River Basin, Canada

    Science.gov (United States)

    Mo, Cheol Hoon; Lee, Gwang H.; Jeoung, Taek Ju; Ko, Kyung Nam; Kim, Ki Soo; Park, Kyung-sick; Shin, Chang Hoon

    2018-04-01

    Prospective shale plays require a combination of good reservoir and completion qualities. Total organic carbon (TOC) is an important reservoir quality and brittleness is the most critical condition for completion quality. We analyzed seismically-derived brittleness and TOC to investigate the prospectivity of the Horn River Group shale (the Muskwa, Otter Park, Evie shales) of a shale-gas field in the western Horn River Basin, British Columbia, Canada. We used the λρ-μρ brittleness template, constructed from the mineralogy-based brittleness index (MBI) and elastic logs from two wells, to convert the λρ and μρ volumes from prestack seismic inversion to the volume for the brittleness petrotypes (most brittle, intermediate, and least brittle). The probability maps of the most brittle petrotype for the three shales were generated from Bayesian classification, based on the λρ-μρ template. The relationship between TOC and P-wave and S-wave velocity ratio (VP/VS) at the wells allowed the conversion of the VP/VS volume from prestack inversion to the TOC volume, which in turn was used to construct the TOC maps for the three shales. Increased TOC is correlated with high brittleness, contrasting with the commonly-held understanding. Therefore, the prospectivity of the shales in the study area can be represented by high brittleness and increased TOC. We propose a shale prospectivity index (SPI), computed by the arithmetic average of the normalized probability of the most brittle petrotype and the normalized TOC. The higher SPI corresponds to higher production rates in the Muskwa and Evie shales. The areas of the highest SPI have not been fully tested. The future drilling should be focused on these areas to increase the economic viability of the field.

  2. Conceptual design and techno-economic evaluation of efficient oil shale refinery processes ingratiated with oil and gas products upgradation

    International Nuclear Information System (INIS)

    Yang, Qingchun; Qian, Yu; Zhou, Huairong; Yang, Siyu

    2016-01-01

    Highlights: • Three integrated oil shale refinery processes are proposed. • Techno-economic performance of three proposed processes is conducted and compared. • Competitiveness of the three proposed processes is investigated at different scenarios. • A development direction for oil shale refinery industry is suggested. - Abstract: Compared with the petrochemical industry, oil shale refinery industry is still relatively backward and has many shortcomings, such as poor quality of shale oil, inefficient utilization of retorting gas, and the unsatisfactory economic performance. In the situation of the low oil price, many oil shale refinery plants are forced to stop or cut production. Thus, oil shale industry is facing a severe problem. How to relieve monetary loss or turn it into profits? This paper proposes three integrated oil shale refinery processes: an integrated with hydrogen production from retorting gas, an integrated with hydrogenation of shale oil, and an integrated with hydrogen production and oil hydrogenation. The techno-economic performance of the three different processes is conducted and compared with that of a conventional oil shale process. Results show the exergy destruction ratio of the oil shale process integrated with hydrogen production from retorting gas is the least, 41.6%, followed by the oil shale process integrated with hydrogen production and oil hydrogenation, 45.9%. Furthermore, these two proposed processes have the best economic performance. Especially they can turn losses of the conventional oil shale process into profits at the situation of low oil price. The oil shale process integrated with hydrogen production from retorting gas is recommended to the oil shale plants which use the oil shale with oil content lower than 12.9%, while the plants using oil shale with oil content higher than 12.9% are better to select the oil shale process integrated with hydrogen production and oil hydrogenation.

  3. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  4. Field data provide estimates of effective permeability, fracture spacing, well drainage area and incremental production in gas shales

    KAUST Repository

    Eftekhari, Behzad; Marder, M.; Patzek, Tadeusz

    2018-01-01

    the external unstimulated reservoir. This allows us to estimate for the first time the effective permeability of the unstimulated shale and the spacing of fractures in the stimulated region. From an analysis of wells in the Barnett shale, we find

  5. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National

  6. Flow and Transport in Tight and Shale Formations: A Review

    KAUST Repository

    Salama, Amgad

    2017-09-18

    A review on the recent advances of the flow and transport phenomena in tight and shale formations is presented in this work. Exploration of oil and gas in resources that were once considered inaccessible opened the door to highlight interesting phenomena that require attention and understanding. The length scales associated with transport phenomena in tight and shale formations are rich. From nanoscale phenomena to field-scale applications, a unified frame that is able to encounter the varieties of phenomena associated with each scale may not be possible. Each scale has its own tools and limitations that may not, probably, be suitable at other scales. Multiscale algorithms that effectively couple simulations among various scales of porous media are therefore important. In this article, a review of the different length scales and the tools associated with each scale is introduced. Highlights on the different phenomena pertinent to each scale are summarized. Furthermore, the governing equations describing flow and transport phenomena at different scales are investigated. In addition, methods to solve these equations using numerical techniques are introduced. Cross-scale analysis and derivation of linear and nonlinear Darcy\\'s scale laws from pore-scale governing equations are described. Phenomena occurring at molecular scales and their thermodynamics are discussed. Flow slippage at the nanosize pores and its upscaling to Darcy\\'s scale are highlighted. Pore network models are discussed as a viable tool to estimate macroscopic parameters that are otherwise difficult to measure. Then, the environmental aspects associated with the different technologies used in stimulating the gas stored in tight and shale formations are briefly discussed.

  7. Flow and Transport in Tight and Shale Formations: A Review

    KAUST Repository

    Salama, Amgad; El-Amin, Mohamed; Kumar, Kundan; Sun, Shuyu

    2017-01-01

    A review on the recent advances of the flow and transport phenomena in tight and shale formations is presented in this work. Exploration of oil and gas in resources that were once considered inaccessible opened the door to highlight interesting phenomena that require attention and understanding. The length scales associated with transport phenomena in tight and shale formations are rich. From nanoscale phenomena to field-scale applications, a unified frame that is able to encounter the varieties of phenomena associated with each scale may not be possible. Each scale has its own tools and limitations that may not, probably, be suitable at other scales. Multiscale algorithms that effectively couple simulations among various scales of porous media are therefore important. In this article, a review of the different length scales and the tools associated with each scale is introduced. Highlights on the different phenomena pertinent to each scale are summarized. Furthermore, the governing equations describing flow and transport phenomena at different scales are investigated. In addition, methods to solve these equations using numerical techniques are introduced. Cross-scale analysis and derivation of linear and nonlinear Darcy's scale laws from pore-scale governing equations are described. Phenomena occurring at molecular scales and their thermodynamics are discussed. Flow slippage at the nanosize pores and its upscaling to Darcy's scale are highlighted. Pore network models are discussed as a viable tool to estimate macroscopic parameters that are otherwise difficult to measure. Then, the environmental aspects associated with the different technologies used in stimulating the gas stored in tight and shale formations are briefly discussed.

  8. Isotope dating of rare-metal mineral associations in black shales of Paleozoic

    International Nuclear Information System (INIS)

    Anderson, E.B.; Zaslavskij, V.G.; Lobikov, A.F.; Kuchina, G.N.; Markova, T.A.; Andreevskij, L.I.

    1987-01-01

    Results of isotopic-geochemical study of carbon-bearing (black) shales containing uranium mineralization using local uranium-lead method are presented. The carried out investigations of uranium-lead systems of host black shales and uranium-bearing metasomatites testify to the decisive role of tectonic-magmatic activization of the region during formation of polygenic-polychronic mineralized zones

  9. Influences of Eagle Ford Shale Development on Superintendent Leadership Experiences: A Phenomenological Narrative

    Science.gov (United States)

    Moczygemba, Jeanette Winn

    2017-01-01

    This phenomenological narrative study examined the effects of the Eagle Ford Shale development upon public school superintendent leadership experiences during the boom phase of the energy industry expansion. The four research questions investigated the shale development's influence on experiences in the areas of instruction, finance and…

  10. Studies on the utilization of PETROSIX process pyrolysed oil shale for pozzolans production

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, M C; Souza Santos, P de; Schmal, M

    1984-08-01

    It was studied the possibility of utilization the PETROSIX Process pyrolised oil-shale as a raw material in the production of cementing materials emphasizing its use as pozzolan. Analysis of X-ray diffraction and spectrophotometry were used to determine the pozzolanic characteristics of the pyrolysed oil-shale. (Author).

  11. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  12. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...

  13. Exploring the environmental effects of shale gas development in the Chesapeake Bay watershed

    Science.gov (United States)

    Scientific and Technical Committee [STAC]. Chesapeake Bay Program

    2013-01-01

    On April 11-12, 2012, the Chesapeake Bay Program's Scientific and Technical Advisory Committee (STAC) convened an expert workshop to investigate the environmental effects of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage scientists from across the nation in a review of the state-of-the-science regarding shale gas...

  14. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium

    International Nuclear Information System (INIS)

    1978-06-01

    This volume characterizes the major baseline environmental features of the Chattanooga Shale study and projects the effects which may accrue from implementation of a large scale development to recover uranium from the shale. Environmental, socioeconomic, and regulatory impacts are covered. The prototype project is located in Dekalb County in Tennessee

  15. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    International Nuclear Information System (INIS)

    Thiéry, Vincent; Bourdot, Alexandra; Bulteel, David

    2015-01-01

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements

  16. The impact of water content and ionic diffusion on the uniaxial compressive strength of shale

    Directory of Open Access Journals (Sweden)

    Talal AL-Bazali

    2013-12-01

    Finally, the impact of ionic diffusion on the compressive strength of shale was carried out in the absence of both chemical osmosis and capillary forces. Results show that the invasion of sodium and calcium ions into shale reduced its compressive strength considerably while the invasion of potassium ions enhanced its compressive strength.

  17. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Characterization of some Jordanian oil shales by pyrolysis gas chromatography

    International Nuclear Information System (INIS)

    Jaradat, Q. M.

    1995-01-01

    Gas chromatography with flame ionization detector (GC-FID) was used to study pyrolysis of some Jordanian oil shale samples. Three sampls of different altitudes from El-Lajjun were studied. Pyrograms of solid sampls were studied at different temperature profiles. Solid-liquid extraction with water, methanol, or hexane allowed extraction of organics of different polarity. Hexane showed the highest extraction efficiency. Reproducibility of the pyrograms of the solid sample was evalualted. Relative standard deviation was 7.56%. (author). 7 refs., 8 figs

  19. Identification Method of Mud Shale Fractures Base on Wavelet Transform

    Science.gov (United States)

    Xia, Weixu; Lai, Fuqiang; Luo, Han

    2018-01-01

    In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.

  20. by shale gas producers in USA and Poland

    Directory of Open Access Journals (Sweden)

    Anna Galimska

    2015-12-01

    Full Text Available The aim of this article is analysis and comparison of the standards used for preparation of financial statementsby enterprises looking for and extracting shale gas in Poland and in the USA. The author reviewsthe different accounting regulations underlying financial reporting of companies operating in this field.Nowadays, globalization and constant development of financial markets cause intensified expectations ofshareholders regarding the attributes of financial statements. The author points out the high level of specializationand comprehensiveness of American regulations. In contrast, international accounting standardsaddress only the initial phase of the process of alternative hydrocarbons extraction, which results ina lack of financial reports’ consistency and decline of investors’ interest.