WorldWideScience

Sample records for antiviral signaling protein

  1. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo, E-mail: innks@khu.ac.kr

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  2. The IKK Kinases: Operators of Antiviral Signaling

    Directory of Open Access Journals (Sweden)

    Alissa M. Pham

    2010-01-01

    Full Text Available The ability of a cell to combat an intracellular pathogen requires a mechanism to recognize the threat and elicit a transcriptional response against it. In the context of virus infection, the cell must take measures to inhibit viral replication, meanwhile, convey warning signals to neighboring cells of the imminent threat. This immune response is predominantly mediated by the production of cytokines, notably, interferon beta (IFNβ. IFNβ signaling results in the transcriptional induction of over one hundred antiviral gene products whose timely expression renders infected cells more capable of inhibiting virus replication, while providing the uninfected cells with the reinforcements to generate a less permissive cellular environment. Induction of IFNβ and many aspects of the antiviral response pivot on the function of the IKK and IKK-related kinases. Despite sharing high levels of homology and some degree of functional redundancy, the classic IKK kinases: IKKα and IKKβ, and the IKK-related kinases: TBK1 and IKKε, perform distinct roles in regulating the host antiviral defense. These kinases serve as molecular operators in their cooperative ability to integrate incoming cellular cues and act on a range of essential antiviral transcription factors to reshape the cellular transcriptome during infection.

  3. DMPD: The interferon in TLR signaling: more than just antiviral. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14552837 The interferon in TLR signaling: more than just antiviral. Hertzog PJ, O'N...on in TLR signaling: more than just antiviral. PubmedID 14552837 Title The interferon in TLR signaling: more than just anti

  4. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  5. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral signaling path...ways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  6. Construction and identification of mitochondrial antiviral signaling protein in eukaryotic expression vector%线粒体抗病毒信号蛋白真核表达载体的构建及鉴定

    Institute of Scientific and Technical Information of China (English)

    刘翠玉; 李玉军; 孙岚; 纪羽婷; 张庆猛; 魏兰兰; 张凤民

    2015-01-01

    Objective To construct the eukaryotic expression vector of mitochondrial antiviral signaling protein.Methods The target DNA fragments of mitochondrial antiviral signaling protein gene was obtained from PCR amplification,then the cDNA fragment was ligated into pMDTM18-T Vector.After double-enzyme digestion,the MAVS gene was transferred into the eukaryotic expression vector pcDNA6/myc-HisA.The constructs transformed into E.coil JM109 and positive clones were picked by pcDNA6/myc-HisA-MAVS PCR amplification.This construct was confirmed by PCR and DNA sequencing.Results The eukaryotic expression vector of mitochondrial antiviral signaling protein was constructed correctly.The recombinant vector was transfected into OL cells,and the expression of the recombinant protein was detected by western blotting.Conclusion The successfully constructed pcDNA6/myc-HisA MAVS plasmid is useful to study the gene's function and effects in cells.This study is for further study of the mechanism of gene function.%目的 构建线粒体抗病毒信号蛋白真核表达载体.方法 通过聚合酶链反应(PCR)的方法扩增获得线粒体抗病毒信号蛋白基因的完整序列,进而纯化回收后连接到pMDTM 18-T载体上,将pcDNA6/myc-HisA载体和带有目的片段的pMDTM 18-T载体同时进行双酶切,酶切产物过夜连接转化至大肠杆菌JM109,挑取阳性克隆pcDNA6/myc-HisA-MA VS扩增后,提取重组质粒;利用PCR和核酸测序验证线粒体抗病毒信号蛋白真核表达载体构建的正确性;应用Western blotting的方法检测融合蛋白的表达.结果 线粒体抗病毒信号蛋白真核表达载体构建成功,并且该载体能够在OL细胞中表达融合蛋白.结论 成功构建线粒体抗病毒信号蛋白真核表达载体,为进一步研究该蛋白的功能和作用机制奠定基础.

  7. Identification of DreI as an antiviral factor regulated by RLR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Shun Li

    Full Text Available BACKGROUND: Retinoic acid-inducible gene I (RIG-I-like receptors (RLRs had been demonstrated to prime interferon (IFN response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV-induced gene 2 (Gig2, had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI, and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV and recombinant IFN (rIFN, showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV infection in EPC (Epithelioma papulosum cyprinid cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.

  8. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death.

    Science.gov (United States)

    Bhatelia, Khyati; Singh, Aru; Tomar, Dhanendra; Singh, Kritarth; Sripada, Lakshmi; Chagtoo, Megha; Prajapati, Paresh; Singh, Rochika; Godbole, Madan M; Singh, Rajesh

    2014-02-01

    Emerging evidences suggest that chronic inflammation is one of the major causes of tumorigenesis. The role of inflammation in regulation of breast cancer progression is not well established. Recently Mediator of IRF3 Activation (MITA) protein has been identified that regulates NF-κB and IFN pathways. Role of MITA in the context of inflammation and cancer progression has not been investigated. In the current report, we studied the role of MITA in the regulation of cross talk between cell death and inflammation in breast cancer cells. The expression of MITA was significantly lower on in estrogen receptor (ER) positive breast cancer cells than ER negative cells. Similarly, it was significantly down regulated in tumor tissue as compared to the normal tissue. The overexpression of MITA in MCF-7 and T47D decreases the cell proliferation and increases the cell death by activation of caspases. MITA positively regulates NF-κB transcription factor, which is essential for MITA induced cell death. The activation of NF-κB induces TNF-α production which further sensitizes MITA induced cell death by activation of death receptor pathway through capsase-8. MITA expression decreases the colony forming units and migration ability of MCF-7 cells. Thus, our finding suggests that MITA acts as a tumor suppressor which is down regulated during tumorigenesis providing survival advantage to tumor cell.

  9. Innate antiviral immune signaling, viral evasion and modulation by HIV-1.

    Science.gov (United States)

    Rustagi, Arjun; Gale, Michael

    2014-03-20

    The intracellular innate antiviral response in human cells is an essential component of immunity against virus infection. As obligate intracellular parasites, all viruses must evade the actions of the host cell's innate immune response in order to replicate and persist. Innate immunity is induced when pathogen recognition receptors of the host cell sense viral products including nucleic acid as "non-self". This process induces downstream signaling through adaptor proteins to activate latent transcription factors that drive the expression of genes encoding antiviral and immune modulatory effector proteins that restrict virus replication and regulate adaptive immunity. The interferon regulatory factors (IRFs) are transcription factors that play major roles in innate immunity. In particular, IRF3 is activated in response to infection by a range of viruses including RNA viruses, DNA viruses and retroviruses. Among these viruses, human immunodeficiency virus type 1 (HIV-1) remains a major global health problem mediating chronic infection in millions of people wherein recent studies show that viral persistence is linked with the ability of the virus to dysregulate and evade the innate immune response. In this review, we discuss viral pathogen sensing, innate immune signaling pathways and effectors that respond to viral infection, the role of IRF3 in these processes and how it is regulated by pathogenic viruses. We present a contemporary overview of the interplay between HIV-1 and innate immunity, with a focus on understanding how innate immune control impacts infection outcome and disease.

  10. Asthma is associated with multiple alterations in anti-viral innate signalling pathways.

    Directory of Open Access Journals (Sweden)

    Antonia L Pritchard

    Full Text Available BACKGROUND: Human rhinovirus (HRV infection is a major trigger for asthma exacerbations. Anti-viral immunity appears to be abnormal in asthma, with immune dysfunction reported in both airway structural cells and migratory, bone marrow derived cells. Though decreased capacity to produce anti-viral interferons (IFNs has been reported in asthma, a detailed analysis of the molecular events involved has not been undertaken. OBJECTIVE: To compare the molecular pathway controlling type I IFN synthesis in HRV-stimulated peripheral blood mononuclear cells (PBMC from asthmatic and healthy subjects. METHODS: PBMC from 22 allergic asthmatics and 20 healthy donors were cultured with HRV for 24 hours. Multiple components of the Toll-like receptor (TLR, IFN regulatory and NFκβ pathways were compared at the mRNA and protein level. RESULTS: Multiple deficiencies in the innate immune response to HRV were identified in asthma, with significantly lower expression of IFNα, IFNβ and interferon stimulated genes than in healthy subjects. This was accompanied by reduced expression of intra-cellular signalling molecules including interferon regulatory factors (IRF1, IRF7, NF-κB family members (p50, p52, p65 and IκKα and STAT1, and by reduced responsiveness to TLR7/TLR8 activation. These observations could not be attributed to alterations in the numbers of dendritic cell (DC subsets in asthma or baseline expression of the viral RNA sensing receptors TLR7/TLR8. In healthy subjects, blocking the activity of type-I IFN or depleting plasmacytoid DC recapitulated many of the abnormalities observed in asthma. CONCLUSIONS: Multiple abnormalities in innate anti-viral signalling pathways were identified in asthma, with deficiencies in both IFN-dependent and IFN-independent molecules identified.

  11. DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation.

    Directory of Open Access Journals (Sweden)

    Ji-Seung Yoo

    2014-03-01

    Full Text Available RIG-I is a DExD/H-box RNA helicase and functions as a critical cytoplasmic sensor for RNA viruses to initiate antiviral interferon (IFN responses. Here we demonstrate that another DExD/H-box RNA helicase DHX36 is a key molecule for RIG-I signaling by regulating double-stranded RNA (dsRNA-dependent protein kinase (PKR activation, which has been shown to be essential for the formation of antiviral stress granule (avSG. We found that DHX36 and PKR form a complex in a dsRNA-dependent manner. By forming this complex, DHX36 facilitates dsRNA binding and phosphorylation of PKR through its ATPase/helicase activity. Using DHX36 KO-inducible MEF cells, we demonstrated that DHX36 deficient cells showed defect in IFN production and higher susceptibility in RNA virus infection, indicating the physiological importance of this complex in host defense. In summary, we identify a novel function of DHX36 as a critical regulator of PKR-dependent avSG to facilitate viral RNA recognition by RIG-I-like receptor (RLR.

  12. Zinc-finger antiviral protein inhibits XMRV infection.

    Directory of Open Access Journals (Sweden)

    Xinlu Wang

    Full Text Available BACKGROUND: The zinc-finger antiviral protein (ZAP is a host factor that specifically inhibits the replication of certain viruses, including Moloney murine leukemia virus (MoMLV, HIV-1, and certain alphaviruses and filoviruses. ZAP binds to specific viral mRNAs and recruits cellular mRNA degradation machinery to degrade the target RNA. The common features of ZAP-responsive RNA sequences remain elusive and thus whether a virus is susceptible to ZAP can only be determined experimentally. Xenotropic murine leukemia virus-related virus (XMRV is a recently identified γ-retrovirus that was originally thought to be involved in prostate cancer and chronic fatigue syndrome but recently proved to be a laboratory artefact. Nonetheless, XMRV as a new retrovirus has been extensively studied. Since XMRV and MoMLV share only 67.9% sequence identity in the 3'UTRs, which is the target sequence of ZAP in MoMLV, whether XMRV is susceptible to ZAP remains to be determined. FINDINGS: We constructed an XMRV-luc vector, in which the coding sequences of Gag-Pol and part of Env were replaced with luciferase-coding sequence. Overexpression of ZAP potently inhibited the expression of XMRV-luc in a ZAP expression-level-dependent manner, while downregulation of endogenous ZAP rendered cells more sensitive to infection. Furthermore, ZAP inhibited the spreading of replication-competent XMRV. Consistent with the previously reported mechanisms by which ZAP inhibits viral infection, ZAP significantly inhibited the accumulation of XMRV-luc mRNA in the cytoplasm. The ZAP-responsive element in XMRV mRNA was mapped to the 3'UTR. CONCLUSIONS: ZAP inhibits XMRV replication by preventing the accumulation of viral mRNA in the cytoplasm. Documentation of ZAP inhibiting XMRV helps to broaden the spectrum of ZAP's antiviral activity. Comparison of the target sequences of ZAP in XMRV and MoMLV helps to better understand the features of ZAP-responsive elements.

  13. Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase.

    Science.gov (United States)

    Diao, Feici; Li, Shu; Tian, Yang; Zhang, Min; Xu, Liang-Guo; Zhang, Yan; Wang, Rui-Peng; Chen, Danying; Zhai, Zhonghe; Zhong, Bo; Tien, Po; Shu, Hong-Bing

    2007-07-10

    Viral infection leads to activation of the transcription factors interferon regulatory factor-3 and NF-kappaB, which collaborate to induce type I IFNs. The RNA helicase proteins RIG-I and MDA5 were recently identified as two cytoplasmic viral RNA sensors that recognize different species of viral RNAs produced during viral replication. In this study, we identified DAK, a functionally unknown dihydroacetone kinase, as a specific MDA5-interacting protein. DAK was associated with MDA5, but not RIG-I, under physiological conditions. Overexpression of DAK inhibited MDA5- but not RIG-I- or TLR3-mediated IFN-beta induction. Overexpression of DAK also inhibited cytoplasmic dsRNA and SeV-induced activation of the IFN-beta promoter, whereas knockdown of endogenous DAK by RNAi activated the IFN-beta promoter, and increased cytoplasmic dsRNA- or SeV-triggered activation of the IFN-beta promoter. In addition, overexpression of DAK inhibited MDA5- but not RIG-I-mediated antiviral activity, whereas DAK RNAi increased cytoplasmic dsRNA-triggered antiviral activity. These findings suggest that DAK is a physiological suppressor of MDA5 and specifically inhibits MDA5- but not RIG-I-mediated innate antiviral signaling.

  14. Effect of Hepatitis C Virus Core Protein on Interferon-Induced Antiviral Genes Expression and Its Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Emerging data indicated that HCV subverts the antiviral activity of interferon (IF); however,whether HCV core protein contributes to the process remains controversial. In the present study, we examined the effect of HCV core protein on interferon-induced antiviral gene expression and whether the effect is involved in the activation and negative regulation of the Jak/STAT signaling pathway. Our results showed that, following treatment with IFN-α, the transcription of PKR, MxA and 2'-5'OAS were down-regulated in HepG2 cells expressing the core protein. In the presence of HCV core protein,ISRE-dependent luciferase activity also decreased. Further study indicated that the core protein could inhibit the tyrosine phosphorylation of STAT1, whereas the level of STAT1 expression was unchanged.Accordingly, SOCS3, the negative regulator of the Jak/STAT pathway, was induced by HCV core protein. These results suggests that HCV core protein may interfere with the expression of some interferon-induced antiviral genes by inhibiting STAT1 phosphorylation and induction of SOCS3.

  15. Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity

    Directory of Open Access Journals (Sweden)

    Michael Oglesbee

    2012-09-01

    Full Text Available Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70. However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through toll like receptors 2 and 4 (TLR2 and 4. This review examines how the virus-hsp70 relationship can lead to host protective innate antiviral immunity, and the importance of hsp70 dependent stimulation of virus gene expression in this host response. Beginning with the well-characterized measles virus-hsp70 relationship and the mouse model of neuronal infection in brain, we examine data indicating that the innate immune response is not driven by intracellular sensors of pathogen associated molecular patterns, but rather by extracellular ligands signaling through TLR2 and 4. Specifically, we address the relationship between virus gene expression, extracellular release of hsp70 (as a damage associated molecular pattern, and hsp70-mediated induction of antigen presentation and type 1 interferons in uninfected macrophages as a novel axis of antiviral immunity. New data are discussed that examines the more broad relevance of this protective mechanism using vesicular stomatitis virus, and a review of the literature is presented that supports the probable relevance to both RNA and DNA viruses and for infections both within and outside of the central nervous system.

  16. ERK signaling couples nutrient status to antiviral defense in the insect gut.

    Science.gov (United States)

    Xu, Jie; Hopkins, Kaycie; Sabin, Leah; Yasunaga, Ari; Subramanian, Harry; Lamborn, Ian; Gordesky-Gold, Beth; Cherry, Sara

    2013-09-10

    A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral "midgut barrier." Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK's antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity.

  17. Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses

    OpenAIRE

    Bedard, Kristin M.; Wang, Myra L.; Proll, Sean C.; Loo, Yueh-Ming; Michael G Katze; Gale, Michael; Iadonato, Shawn P.

    2012-01-01

    There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. T...

  18. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities.

    Directory of Open Access Journals (Sweden)

    Luis J Cocka

    2012-09-01

    Full Text Available Tetherin (BST-2/CD317/HM1.24 is an IFN induced transmembrane protein that restricts release of a broad range of enveloped viruses. Important features required for Tetherin activity and regulation reside within the cytoplasmic domain. Here we demonstrate that two isoforms, derived by alternative translation initiation from highly conserved methionine residues in the cytoplasmic domain, are produced in both cultured human cell lines and primary cells. These two isoforms have distinct biological properties. The short isoform (s-Tetherin, which lacks 12 residues present in the long isoform (l-Tetherin, is significantly more resistant to HIV-1 Vpu-mediated downregulation and consequently more effectively restricts HIV-1 viral budding in the presence of Vpu. s-Tetherin Vpu resistance can be accounted for by the loss of serine-threonine and tyrosine motifs present in the long isoform. By contrast, the l-Tetherin isoform was found to be an activator of nuclear factor-kappa B (NF-κB signaling whereas s-Tetherin does not activate NF-κB. Activation of NF-κB requires a tyrosine-based motif found within the cytoplasmic tail of the longer species and may entail formation of l-Tetherin homodimers since co-expression of s-Tetherin impairs the ability of the longer isoform to activate NF-κB. These results demonstrate a novel mechanism for control of Tetherin antiviral and signaling function and provide insight into Tetherin function both in the presence and absence of infection.

  19. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Sørensen, Louise Nørgaard; Malmgaard, Lene;

    2007-01-01

    Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes....... In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages...

  20. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3

    Institute of Scientific and Technical Information of China (English)

    Min Zhang; Yang Tian; Rui-Peng Wang; Dong Gao; Yan Zhang; Fei-Ci Diao; Dan-Ying Chen; Zhong-He Zhai; Hong-Bing Shu

    2008-01-01

    Viral infection causes host cells to produce type Ⅰ interferons (IFNs), which are critically involved in viral clearance. Previous studies have demonstrated that activation of the transcription factor interferon regulatory factor (IRF)3 is essential for virus-triggered induction of type Ⅰ IFNs. Here we show that the E3 ubiquitin ligase RBCC protein interact-ing with PKC1 (RBCK1) catalyzes the ubiquitination and degradation of IRF3. Overexpression of RBCK1 negatively regulates Sendai virus-triggered induction of type Ⅰ IFNs, while knockdown of RBCK1 has the opposite effect. Plaque assays consistently demonstrate that RBCK1 negatively regulates the cellular antiviral response. Furthermore, viral infection leads to induction of RBCK1 and subsequent degradation of IRF3. These findings suggest that the cellular antiviral response is controlled by a negative feedback regulatory mechanism involving RBCK1-mediated ubiquitina-tion and degradation of IRF3.

  1. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  2. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    Science.gov (United States)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  3. Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea xbuttiana

    Indian Academy of Sciences (India)

    Nandlal Choudhary; Harish C Kapoor; Madan L Lodha

    2008-03-01

    A full-length cDNA encoding ribosome-inactivating/antiviral protein (RIP/AVP) from the leaves of Bougainvillea xbuttiana was isolated. The cDNA consisted of 1364 nucleotides with an open reading frame (ORF) of 960 nucleotides encoding a 35.49 kDa protein of 319 amino acids. The deduced amino acid sequence has a putative active domain conserved in RIPs/AVPs and shows a varying phylogenetic relationship to the RIPs from other plant species. The deduced protein has been designated BBAP1 (Bougainvillea xbuttiana antiviral protein1). The ORF was cloned into an expression vector and expressed in E. coli as a fusion protein of ∼78 kDa. The cleaved and purified recombinant BBAP1 exhibited ribosome-inhibiting rRNA -glycosidase activity, and imparted a high level of resistance against the tobacco mosaic virus (TMV).

  4. Pokeweed Antiviral Protein: Its Cytotoxicity Mechanism and Applications in Plant Disease Resistance

    OpenAIRE

    Rong Di; Tumer, Nilgun E.

    2015-01-01

    Pokeweed antiviral protein (PAP) is a 29 kDa type I ribosome inactivating protein (RIP) found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity i...

  5. Antiviral Protein of Momordica charantia L. Inhibits Different Subtypes of Influenza A

    OpenAIRE

    Viroj Pongthanapisith; Kazuyoshi Ikuta; Pilaipan Puthavathana; Wichet Leelamanit

    2013-01-01

    The new antiviral activity of the protein extracted from Momordica charantia was determined with different subtypes of influenza A. The protein was purified from the seed of M. charantia using an anion exchanger and a Fast Protein Liquid Chromatography (FPLC) system. At the concentration of 1.401 mg/mL, the protein did not exhibit cytotoxicity in Madin-Darby canine kidney cells (MDCK) but inhibited 1 × 105 FFU influenza A/PR/8/34 H1N1 virus at 56.50%, 65.72%, and 100% inhibition by the protei...

  6. Antiviral Protein of Momordica charantia L. Inhibits Different Subtypes of Influenza A

    Directory of Open Access Journals (Sweden)

    Viroj Pongthanapisith

    2013-01-01

    Full Text Available The new antiviral activity of the protein extracted from Momordica charantia was determined with different subtypes of influenza A. The protein was purified from the seed of M. charantia using an anion exchanger and a Fast Protein Liquid Chromatography (FPLC system. At the concentration of 1.401 mg/mL, the protein did not exhibit cytotoxicity in Madin-Darby canine kidney cells (MDCK but inhibited FFU influenza A/PR/8/34 H1N1 virus at 56.50%, 65.72%, and 100% inhibition by the protein treated before the virus (pretreated, the protein treated alongside with the virus (simultaneously treated, and the protein treated after the virus (posttreated during incubation, respectively. Using 5, 25, and 100 TCID50 of influenza A/New Caledonia/20/99 H1N1, A/Fujian/411/01 H3N2 and A/Thailand/1(KAN-1/2004 H5N1, the IC50 was calculated to be 100, 150, and 200; 75, 175, and 300; and 40, 75, and 200 μg/mL, respectively. Our present finding indicated that the plant protein inhibited not only H1N1 and H3N2 but also H5N1 subtype. As a result of the broad spectrum of its antiviral activity, this edible plant can be developed as an effective therapeutic agent against various and even new emerging subtypes of influenza A.

  7. Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening.

    Directory of Open Access Journals (Sweden)

    Sarah Straschewski

    Full Text Available Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity. We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP fused with the viral proteins IE-2, ppUL32 (pp150, and ppUL83 (pp65. In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI. The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus-infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.

  8. Differential contributions of plant Dicer-like proteins to antiviral defences against potato virus X in leaves and roots.

    Science.gov (United States)

    Andika, Ida Bagus; Maruyama, Kazuyuki; Sun, Liying; Kondo, Hideki; Tamada, Tetsuo; Suzuki, Nobuhiro

    2015-03-01

    Members of the plant Dicer-like (DCL) protein family are the critical components of the RNA-silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non-host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX-GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.

  9. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus.

    Science.gov (United States)

    Bhalla, Nishank; Sun, Chengqun; Metthew Lam, L K; Gardner, Christina L; Ryman, Kate D; Klimstra, William B

    2016-09-01

    Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus. PMID:27318152

  10. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus.

    Science.gov (United States)

    Bhalla, Nishank; Sun, Chengqun; Metthew Lam, L K; Gardner, Christina L; Ryman, Kate D; Klimstra, William B

    2016-09-01

    Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus.

  11. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery.

    Directory of Open Access Journals (Sweden)

    Dhara A Patel

    Full Text Available Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE activity in a fully automated and robust format (Z'>0.7. Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV. The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify

  12. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L.

    Directory of Open Access Journals (Sweden)

    Frédéric Sorgeloos

    Full Text Available Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.

  13. Antiviral activity of recombinant porcine surfactant protein A against porcine reproductive and respiratory syndrome virus in vitro.

    Science.gov (United States)

    Li, Lan; Zheng, Qisheng; Zhang, Yuanpeng; Li, Pengcheng; Fu, Yanfeng; Hou, Jibo; Xiao, Xilong

    2016-07-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses in the swine industry worldwide. However, there is not an ideal vaccine to provide complete protection against PRRSV. Thus, the need for new antiviral strategies to control PRRSV still remains. Surfactant protein A (SP-A) belongs to the family of C-type lectins, which can exert antiviral activities. In this present study, we assessed the antiviral properties of recombinant porcine SP-A (RpSP-A) on PRRSV infection in Marc 145 cells and revealed its antiviral mechanism using a plaque assay, real-time qPCR, western blotting analysis and an attachment and penetration assay. Our results showed that RpSP-A could inhibit the infectivity of PRRSV in Marc 145 cells and could reduce the total RNA and protein level. The attachment assay indicated that RpSP-A in the presence of Ca(2+) could largely inhibit Marc 145 cell attachment; however, in the penetration assay, it was relatively inactive. Furthermore, our study suggested that virus progeny released from infected Marc145 cells were blocked by RpSP-A from infecting other cells. We conclude that RpSP-A has antiviral activity against PRRSV, most probably by blocking viral attachment and the cell-to-cell transmission pathway, and therefore, RpSP-A holds promise as a novel antiviral agent against PRRSV. PMID:27101074

  14. Inhibition of enterovirus 71 (EV-71 infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    Directory of Open Access Journals (Sweden)

    Chee Wah Tan

    Full Text Available Enterovirus 71 (EV-71 is the main causative agent of hand, foot and mouth disease (HFMD. In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50 values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  15. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA.

    Science.gov (United States)

    Zhong, Bo; Zhang, Lu; Lei, Caoqi; Li, Ying; Mao, Ai-Ping; Yang, Yan; Wang, Yan-Yi; Zhang, Xiao-Lian; Shu, Hong-Bing

    2009-03-20

    Viral infection activates transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. MITA (also known as STING) has recently been identified as an adaptor that links virus-sensing receptors to IRF3 activation. Here, we showed that the E3 ubiquitin ligase RNF5 interacted with MITA in a viral-infection-dependent manner. Overexpression of RNF5 inhibited virus-triggered IRF3 activation, IFNB1 expression, and cellular antiviral response, whereas knockdown of RNF5 had opposite effects. RNF5 targeted MITA at Lys150 for ubiquitination and degradation after viral infection. Both MITA and RNF5 were located at the mitochondria and endoplasmic reticulum (ER) and viral infection caused their redistribution to the ER and mitochondria, respectively. We further found that virus-induced ubiquitination and degradation of MITA by RNF5 occurred at the mitochondria. These findings suggest that RNF5 negatively regulates virus-triggered signaling by targeting MITA for ubiquitination and degradation at the mitochondria.

  16. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Perry

    Full Text Available Ubiquitin (Ub is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs. However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1, a critical mediator of the unfolded protein response (UPR. WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1 through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.

  17. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication.

    Directory of Open Access Journals (Sweden)

    Bryan Korithoski

    Full Text Available The RIG-like receptors (RLRs are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that-in the absence of ubiquitin-it is the first CARD domain of human RIG-I and MDA5 (CARD1 that binds directly to IPS1 CARD, and not the second (CARD2. Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways.

  18. The antiviral spectra of TRIM5α orthologues and human TRIM family proteins against lentiviral production.

    Directory of Open Access Journals (Sweden)

    Seiga Ohmine

    Full Text Available BACKGROUND: Rhesus monkey TRIM5α (TRIM5αrh recognizes the incoming HIV-1 core through its C-terminal B30.2(PRYSPRY domain and promotes its premature disassembly or degradation before reverse transcription. Previously, we have shown that TRIM5αrh blocks HIV-1 production through the N-terminal RBCC domain by the recognition of Gag polyproteins. Although all TRIM family proteins have RBCC domains, it remains elusive whether they possess similar late-restriction activities. METHODOLOGY/PRINCIPAL FINDINGS: We examined the antiviral spectra of TRIM5α orthologues and human TRIM family members which have a genetic locus proximal to human TRIM5α (TRIM5αhu, against primate lentiviral production. When HIV-1 virus-like particles (VLPs were generated in the presence of TRIM5α proteins, rhesus, African green and cynomolgus monkey TRIM5α (TRIM5αag and TRIM5αcy, but not TRIM5αhu, were efficiently incorporated into VLPs, suggesting an interaction between HIV-1 Gag and TRIM5α proteins. TRIM5αrh potently restricted the viral production of HIV-1 groups M and O and HIV-2, but not simian lentiviruses including SIV(MAC1A11, SIV(AGMTan-1 or SIV(AGMSAB-1. TRIM5αhu did not show notable late restriction activities against these lentiviruses. TRIM5αag and TRIM5αcy showed intermediate restriction phenotypes against HIV-1 and HIV-2, but showed no restriction activity against SIV production. A series of chimeric TRIM5α constructs indicated that the N-terminal region of TRIM5αag and TRIM5αcy are essential for the late restriction activity, while the C-terminal region of TRIM5αcy negatively regulates the late restriction activity against HIV-1. When select human TRIM family proteins were examined, TRIM21 and 22 were efficiently incorporated into HIV-1 VLPs, while only TRIM22 reduced HIV-1 titers up to 5-fold. The antiviral activities and encapsidation efficiencies did not correlate with their relative expression levels in the producer cells. CONCLUSIONS

  19. [Spectroscopic studies on the formation of metal complexes and on the protein binding of antiviral thiosemicarbazone derivatives (author's transl)].

    Science.gov (United States)

    Heinisch, L; Kramarczyk, K; Tonew, M; Hesse, G

    1981-04-01

    The complexation of some thiosemicarbazones and isothiosemicarbazones of isatin and quinolin-2-aldehydes with Cu2+, Zn2+ and Mn2+ ions was spectrometrically investigated. Semiquantitative data, obtained from extinction values, about the relative complexing tendencies within some groups of homologous substances were brought in relation to their antiviral effects and binding to bovine serum albumin. The complexing tendencies were greatest in compounds with methyl substituents and decreased for higher alkyl substituents. whereas the binding to protein increased in the same order. The well-known maxima of the antiviral observed with medium alkyl groups may be explained by a superposition of these effects. PMID:7255526

  20. A novel mechanism for inhibition of translation by pokeweed antiviral protein: depurination of the capped RNA template.

    OpenAIRE

    Hudak, K A; Wang, P.; Tumer, N E

    2000-01-01

    Pokeweed antiviral protein (PAP) is known to inactivate ribosomes by removal of a specific adenine from the sarcin/ricin (S/R) loop of the large rRNA, thereby inhibiting translation. We demonstrate here that in addition to the previously identified adenine (A4324), PAP removes another adenine (A4321) and a guanine (G4323) from the eukaryotic large rRNA. Recent results indicate that the antiviral activity of PAP may not be due to depurination of host ribosomes. Using PAP mutants that do not de...

  1. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α and GTPase myxovirus resistance 1 (MX1—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E and enterovirus 71 (EV71 infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.

  2. Cloning and Sequencing of the Pokeweed Antiviral Protein Gene and Its Expression in E. coli

    Institute of Scientific and Technical Information of China (English)

    CHEN Ding-hu; WANG Xi-feng; LI Li; ZHOU Guang-he

    2002-01-01

    The total RNA was isolated from pokeweed (Phytolacca americana ) leaves using the method of guanidine isothiocyanite and used as a template to amplify the deleted mutant pokeweed antiviral protein (PAP) gene by RT-PCR and then the gene was cloned into the pGEMR-T vector. The sequencing results showed that the PAP gene consisted of 711nt, which was 99.6% identical to the PAP gene reported by Lin et al (1991). The IPTG-inducible expression vector containing the PAP gene was constructed and transferred into the E. coli strain BL21 (DE3)-plysS. A specific protein was produced after induction with 0.4m mol/L IPTG and its molecular weight was 26ku. The results of the double diffusion on the agar plate and the western blotting test showed that the protein produced in E. coli was highly identical with the PAP extracted by a Frenchman from French pokeweed leaves. These revealed that PAP gene was actually achieved and exactly expressed in E . coli.

  3. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    Science.gov (United States)

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  4. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  5. Protein evolution on a human signaling network

    OpenAIRE

    Purisima Enrico O; Cui Qinghua; Wang Edwin

    2009-01-01

    Abstract Background The architectural structure of cellular networks provides a framework for innovations as well as constraints for protein evolution. This issue has previously been studied extensively by analyzing protein interaction networks. However, it is unclear how signaling networks influence and constrain protein evolution and conversely, how protein evolution modifies and shapes the functional consequences of signaling networks. In this study, we constructed a human signaling networ...

  6. Genetically Engineered Protein Modules: Development and Applications in Anti-Viral Agent Screening and Cancer Marker Detection

    OpenAIRE

    Biswas, Payal

    2010-01-01

    ABSTRACT OF THE DISSERTATION Genetically Engineered Protein Modules: Development and Applications in Anti-Viral Agent Screening and Cancer Marker Detection byPayal BiswasDoctor of Philosophy Cell Molecular and Developmental Biology Graduate ProgramUniversity of California, Riverside, August 2010Dr. Wilfred Chen, ChairpersonOne of the most critical aspects in drug discovery is the bioactivity screening assay, by which compounds that most effectively inhibit the target are identified. During t...

  7. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response.

    Science.gov (United States)

    Bharaj, Preeti; Wang, Yao E; Dawes, Brian E; Yun, Tatyana E; Park, Arnold; Yen, Benjamin; Basler, Christopher F; Freiberg, Alexander N; Lee, Benhur; Rajsbaum, Ricardo

    2016-09-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  8. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy

    NARCIS (Netherlands)

    Falco Gracia, J.A.; Barrajon-Catalan, E.; Menendez-Gutierrez, M.P.; Coll, J.; Micol, V.; Estepa, A.

    2013-01-01

    In this study, melittin, a well-characterized pore-forming lytic amphiphilic peptide susceptible to be vehiculized in lipid membranes, has been utilized to study their antiviral properties. For this purpose, an assay based on melittin loaded-immunoliposomes previously described by our group was adap

  9. Sentra, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, N.; Marland, E.; Yu, G. X.; Bhatnagar, S.; Lusk, R.; Mathematics and Computer Science

    2002-01-01

    Sentra (http://www-wit.mcs.anl.gov/sentra) is a database of signal transduction proteins with the emphasis on microbial signal transduction. The database was updated to include classes of signal transduction systems modulated by either phosphorylation or methylation reactions such as PAS proteins and serine/threonine kinases, as well as the classical two-component histidine kinases and methyl-accepting chemotaxis proteins. Currently, Sentra contains signal transduction proteins from 43 completely sequenced prokaryotic genomes as well as sequences from SWISS-PROT and TrEMBL. Signal transduction proteins are annotated with information describing conserved domains, paralogous and orthologous sequences, and conserved chromosomal gene clusters. The newly developed user interface supports flexible search capabilities and extensive visualization of the data.

  10. SENTRA, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Romine, M. F.; Maltsev, N.; Mathematics and Computer Science; PNNL

    2000-01-01

    SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.

  11. Inhibition of hepatitis B virus replication by pokeweed antiviral protein in vitro

    Institute of Scientific and Technical Information of China (English)

    Yong-Wen He; Chun-Xia Guo; Yan-Feng Pan; Cheng Peng; Zhi-Hong Weng

    2008-01-01

    AIM:To explore the inhibitory effects of pokeweed antiviral protein seed(PAP-S)and PAP encoded by a eukaryotic expression plasmid on hepatitis B virus(HBV)replication in vitro.METHODS:HepG2 2.2.15 cells in cultured medium were treated with different concentrations of PAP-S.HBsAg,HBeAg and HBV DNA in supernatants were determined by ELISA and fluorescent quantitative PCR respectively.MTT method was used to assay for cytotoxicity.HepG2 were cotransfected with various amounts of PAP encoded by a eukaryotic expression plasmid and replication competent wild-type HBV 1.3 fold overlength plasmid.On d 3 after transfection,HBsAg and HBeAg were determined by using ELISA.Levels of HBV core-associated DNA and RNA were detected by using Southern and Northern blot,respectively.RESULTS:The inhibitory effects of PAP-S on HBsAg,HBeAg and HBV DNA were gradually enhanced with the increase of PAP concentration.When the concentration of PAP-S was 10 μg/mL,the inhibition rates of HBsAg,HBeAg and HBV DNA were 20.9%,30.2% and 50%,respectively.After transfection of 1.0μg and 2.0μg plasmid pXF3H-PAP,the levels of HBV nucleocapsideassociated DNA were reduced by 38.0% and 74.0% respectively,the levels of HBsAg in the media by 76.8% and 99.7% respectively,and the levels of HBeAg by 72.7% and 99.3% respectively as compared with controls.Transfection with 2μg plasmid pXF3H-PAP reduced the levels of HBV nucleocapside-associated RNA by 69.0%.CONCLUSION:Both PAP-S and PAP encoded by a eukaryotic expression plasmid could effectively inhibit HBV replication and antigen expression in vitro,and the inhibitory effects were dose-dependent.

  12. Involvement of the interferon-regulated antiviral proteins PKR and RNase L in reovirus-induced shutoff of cellular translation.

    Science.gov (United States)

    Smith, Jennifer A; Schmechel, Stephen C; Williams, Bryan R G; Silverman, Robert H; Schiff, Leslie A

    2005-02-01

    Cellular translation is inhibited following infection with most strains of reovirus, but the mechanisms responsible for this phenomenon remain to be elucidated. The extent of host shutoff varies in a strain-dependent manner; infection with the majority of strains leads to strong host shutoff, while infection with strain Dearing results in minimal inhibition of cellular translation. A genetic study with reassortant viruses and subsequent biochemical analyses led to the hypothesis that the interferon-induced, double-stranded RNA-activated protein kinase, PKR, is responsible for reovirus-induced host shutoff. To directly determine whether PKR is responsible for reovirus-induced host shutoff, we used a panel of reovirus strains and mouse embryo fibroblasts derived from knockout mice. This approach revealed that PKR contributes to but is not wholly responsible for reovirus-induced host shutoff. Studies with cells lacking RNase L, the endoribonuclease component of the interferon-regulated 2',5'-oligoadenylate synthetase-RNase L system, demonstrated that RNase L also down-regulates cellular protein synthesis in reovirus-infected cells. In many viral systems, PKR and RNase L have well-characterized antiviral functions. An analysis of reovirus replication in cells lacking these molecules indicated that, while they contributed to host shutoff, neither PKR nor RNase L exerted an antiviral effect on reovirus growth. In fact, some strains of reovirus replicated more efficiently in the presence of PKR and RNase L than in their absence. Data presented in this report illustrate that the inhibition of cellular translation following reovirus infection is complex and involves multiple interferon-regulated gene products. In addition, our results suggest that reovirus has evolved effective mechanisms to avoid the actions of the interferon-stimulated antiviral pathways that include PKR and RNase L and may even benefit from their expression.

  13. Signal peptides and protein localization prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2005-01-01

    In 1999, the Nobel prize in Physiology or Medicine was awarded to Gunther Blobel “for the discovery that proteins have intrinsic signals that govern their transport and localization in the cell”. Since the subcellular localization of a protein is an important clue to its function, the characteriz......In 1999, the Nobel prize in Physiology or Medicine was awarded to Gunther Blobel “for the discovery that proteins have intrinsic signals that govern their transport and localization in the cell”. Since the subcellular localization of a protein is an important clue to its function...

  14. Reovirus type 3 synthesizes proteins in interferon-treated HeLa cells without reversing the antiviral state.

    Science.gov (United States)

    Feduchi, E; Esteban, M; Carrasco, L

    1988-06-01

    Treatment of HeLa cells with human lymphoblastoid interferon (IFN-alpha) does not inhibit reovirus type 3 protein synthesis during virus infection. In contrast, reovirus translation is blocked by treatment of L cells with mouse IFN-alpha. The (2'-5')A synthetase activity is induced in HeLa cells by IFN-alpha treatment and is activated after reovirus infection, since cell lysates from these cells synthesize in vitro (2'-5')A oligonucleotides. The IFN-induced protein kinase activity is also triggered in those lysates upon dsRNA addition. Thus, contrary to DNA-containing viruses, such as vaccinia virus or adenovirus, reovirus infection does not destroy or reverse the IFN-induced antiviral state. In support of this conclusion, superinfection with poliovirus or vesicular stomatitis virus of reovirus-infected HeLa cells treated with IFN leads only to a blockade of translation of the former viruses. These results provide a remarkable example where in the same cells doubly infected with two different viruses, the antiviral state induced by IFN-alpha is manifested by selectively inhibiting translation of one kind of virus (poliovirus or vesicular stomatitis virus) without affecting the translation of reovirus type 3. In addition, these results indicate that the resistance of reovirus translation to inhibition by IFN is different from the mechanism of resistance induced by DNA-containing viruses.

  15. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    Science.gov (United States)

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we

  16. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the anti-viral function of ISG15

    Science.gov (United States)

    Durfee, Larissa A.; Lyon, Nancy; Seo, Kyungwoon; Huibregtse, Jon M.

    2010-01-01

    Summary ISG15 is an interferon-induced and anti-viral ubiquitin-like protein (Ubl). Herc5, the major E3 enzyme for ISG15, mediates the ISGylation of over 300 proteins in interferon-stimulated cells. In addressing this broad substrate selectivity of Herc5, we found that: 1) the range of substrates extends even further and includes many exogenously expressed foreign proteins, 2) ISG15 conjugation is restricted to newly synthesized pools of proteins, and 3) Herc5 is physically associated with polyribosomes. These results lead to a model for ISGylation in which Herc5 broadly modifies newly synthesized proteins in a co-translational manner. This represents a novel mechanism for conjugation of a Ubl and further suggests that, in the context of an interferon-stimulated cell, newly translated viral proteins may be primary targets of ISG15. Consistent with this, we demonstrate that ISGylation of human papillomavirus (HPV) L1 capsid protein has a dominant-inhibitory effect on the infectivity of HPV16 pseudoviruses. PMID:20542004

  17. Heat dissipation guides activation in signaling proteins

    OpenAIRE

    Weber, Jeffrey K.; Shukla, Diwakar; Pande, Vijay S.

    2015-01-01

    As with their macroscopic counterparts, the moving parts of nanoscale protein machines grow hot while in operation. A portion of the energy biomolecules harness to perform meaningful work is always dissipated as heat into the surroundings. Here, we feature a methodology by which dominant dissipative trajectories can be extracted from detailed models of protein dynamics. In two important classes of signaling proteins [kinases and G-protein–coupled receptors (GPCRs)], we find that the regions o...

  18. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents.

    Science.gov (United States)

    Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Miguel A; Martinez, Javier P; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Maga, Giovanni; Botta, Maurizio

    2016-05-10

    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target. PMID:27118832

  19. Elevation of intact and proteolytic fragments of acute phase proteins constitutes the earliest systemic antiviral response in HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Holger B Kramer

    2010-05-01

    Full Text Available The earliest immune responses activated in acute human immunodeficiency virus type 1 infection (AHI exert a critical influence on subsequent virus spread or containment. During this time frame, components of the innate immune system such as macrophages and DCs, NK cells, beta-defensins, complement and other anti-microbial factors, which have all been implicated in modulating HIV infection, may play particularly important roles. A proteomics-based screen was performed on a cohort from whom samples were available at time points prior to the earliest positive HIV detection. The ability of selected factors found to be elevated in the plasma during AHI to inhibit HIV-1 replication was analyzed using in vitro PBMC and DC infection models. Analysis of unique plasma donor panels spanning the eclipse and viral expansion phases revealed very early alterations in plasma proteins in AHI. Induction of acute phase protein serum amyloid A (A-SAA occurred as early as 5-7 days prior to the first detection of plasma viral RNA, considerably prior to any elevation in systemic cytokine levels. Furthermore, a proteolytic fragment of alpha-1-antitrypsin (AAT, termed virus inhibitory peptide (VIRIP, was observed in plasma coincident with viremia. Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity. Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses. Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies.

  20. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    Science.gov (United States)

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  1. Signal transduction by guanine nucleotide binding proteins.

    Science.gov (United States)

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  2. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination.

    Science.gov (United States)

    Zhang, Jing; Hu, Ming-Ming; Wang, Yan-Yi; Shu, Hong-Bing

    2012-08-17

    Viral infection activates several transcription factors including NF-κB and IRF3, which collaborate to induce type I interferons (IFNs) and innate antiviral response. MITA (also called STING) is a critical adaptor protein that links virus-sensing receptors to IRF3 activation upon infection by both RNA and DNA pathogens. Here we show that the E3 ubiquitin ligase tripartite motif protein 32 (TRIM32) ubiquitinated MITA and dramatically enhanced MITA-mediated induction of IFN-β. Overexpression of TRIM32 potentiated virus-triggered IFNB1 expression and cellular antiviral response. Consistently, knockdown of TRIM32 had opposite effects. TRIM32 interacted with MITA, and was located at the mitochondria and endoplasmic reticulum. TRIM32 targeted MITA for K63-linked ubiquitination at K20/150/224/236 through its E3 ubiquitin ligase activity, which promoted the interaction of MITA with TBK1. These findings suggest that TRIM32 is an important regulatory protein for innate immunity against both RNA and DNA viruses by targeting MITA for K63-linked ubiquitination and downstream activation.

  3. Antivirals interacting with hepatitis B virus core protein and core mutations may misdirect capsid assembly in a similar fashion.

    Science.gov (United States)

    Hacker, Hans Jörg; Deres, Karl; Mildenberger, Maria; Schröder, Claus H

    2003-12-15

    Recently, heteroarylpyrimidines (HAP) have been identified as potent inhibitors of capsid maturation. Here we discuss the HAP mode of action comparing the aggregation phenotype of wild-type and mutant core proteins with the respective phenotype imposed by HAP or other agents interacting with core protein. Pertinent tests include core fusion protein-mediated transactivation in a two-hybrid system and capsid formation. The finding that transactivation appeared to be unaffected by HAP, or by mutations preventing assembly, is surprising and raises the question for the structure of the interacting hybrid core proteins: Are they monomers, dimers or even oligomers? A direct activity of core fusion monomers is not excluded but considered to be highly unlikely due to rapid homodimerisation. A role of core fusion dimers in transactivation would indicate distinct interactions with a differential sensitivity to HAP. Regarding significance of data gained in two-hybrid systems, caution is necessary, since the site of transactivation is the nucleus, whereas the real site of the core protein interactions during replication is the cytoplasm. Apparently, HAP leave the monomer-monomer interface of HBV core protein unaffected but prevent capsid maturation by interacting with a region known to be crucial for dimer multimerisation and formation of stable capsids. It is suggested to use antivirals as tools for the elucidation of early steps in genome replication and capsid assembly. A frame for this could be the hypothesis that the virus uses soluble core protein, namely intracellular maturation intermediates of HbeAg for a core targeted self-restriction of replication. PMID:14637185

  4. Involvement of zebrafish RIG-I in NF-κB and IFN signaling pathways: insights into functional conservation of RIG-I in antiviral innate immunity.

    Science.gov (United States)

    Nie, Li; Zhang, Ying-sheng; Dong, Wei-ren; Xiang, Li-xin; Shao, Jian-zhong

    2015-01-01

    The retinoic acid-inducible gene I (RIG-I) is a critical sensor for host recognition of RNA virus infection and initiation of antiviral signaling pathways in mammals. However, data on the occurrence and functions of this molecule in lower vertebrates are limited. In this study, we characterized an RIG-I homolog (DrRIG-I) from zebrafish. Structurally, this DrRIG-I shares a number of conserved functional domains/motifs with its mammalian counterparts, namely, caspase activation and recruitment domain, DExD/H box, a helicase domain, and a C-terminal domain. Functionally, stimulation with DrRIG-I CARD in zebrafish embryos significantly activated the NF-κB and IFN signaling pathways, leading to the expression of TNF-α, IL-8 and IFN-induced Mx, ISG15, and viperin. However, knockdown of TRIM25 (a pivotal activator for RIG-I receptors) significantly suppressed the induced activation of IFN signaling. Results suggested the functional conservation of RIG-I receptors in the NF-κB and IFN signaling pathways between teleosts and mammals, providing a perspective into the evolutionary history of RIG-I-mediated antiviral innate immunity.

  5. Physical signals for protein-DNA recognition

    Science.gov (United States)

    Cao, Xiao-Qin; Zeng, Jia; Yan, Hong

    2009-09-01

    This paper discovers consensus physical signals around eukaryotic splice sites, transcription start sites, and replication origin start and end sites on a genome-wide scale based on their DNA flexibility profiles calculated by three different flexibility models. These salient physical signals are localized highly rigid and flexible DNAs, which may play important roles in protein-DNA recognition by the sliding search mechanism. The found physical signals lead us to a detailed hypothetical view of the search process in which a DNA-binding protein first finds a genomic region close to the target site from an arbitrary starting location by three-dimensional (3D) hopping and intersegment transfer mechanisms for long distances, and subsequently uses the one-dimensional (1D) sliding mechanism facilitated by the localized highly rigid DNAs to accurately locate the target flexible binding site within 30 bp (base pair) short distances. Guided by these physical signals, DNA-binding proteins rapidly search the entire genome to recognize a specific target site from the 3D to 1D pathway. Our findings also show that current promoter prediction programs (PPPs) based on DNA physical properties may suffer from lots of false positives because other functional sites such as splice sites and replication origins have similar physical signals as promoters do.

  6. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response.

    Science.gov (United States)

    Dedeurwaerder, Annelike; Olyslaegers, Dominique A J; Desmarets, Lowiese M B; Roukaerts, Inge D M; Theuns, Sebastiaan; Nauwynck, Hans J

    2014-02-01

    The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.

  7. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Science.gov (United States)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  8. Expression, purification and characterization of the interferon-inducible, antiviral and tumour-suppressor protein, human RNase L

    Indian Academy of Sciences (India)

    Ankush Gupta; Pramod C Rath

    2012-03-01

    The interferon (IFN)-inducible, 2′,5′-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-R Nase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant R Nase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent R Nase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of R Nase L, which can be utilized to study effects of various agents on the R Nase L activity and its protein–protein interactions.

  9. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells.

    Science.gov (United States)

    Ramírez-Carvajal, Lisbeth; Singh, Neetu; de los Santos, Teresa; Rodríguez, Luis L; Long, Charles R

    2016-01-01

    Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFNβ treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BP1 knockout (KO) porcine cells had increased expression of IFNα and β, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BP1 KO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells.

  10. A core viral protein binds host nucleosomes to sequester immune danger signals.

    Science.gov (United States)

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.

  11. Intracellular expression of IRF9 Stat fusion protein overcomes the defective Jak-Stat signaling and inhibits HCV RNA replication

    Directory of Open Access Journals (Sweden)

    Balart Luis A

    2010-10-01

    Full Text Available Abstract Interferon alpha (IFN-α binds to a cell surface receptor that activates the Jak-Stat signaling pathway. A critical component of this pathway is the translocation of interferon stimulated gene factor 3 (a complex of three proteins Stat1, Stat2 and IRF9 to the nucleus to activate antiviral genes. A stable sub-genomic replicon cell line resistant to IFN-α was developed in which the nuclear translocation of Stat1 and Stat2 proteins was prevented due to the lack of phosphorylation; whereas the nuclear translocation of IRF9 protein was not affected. In this study, we sought to overcome defective Jak-Stat signaling and to induce an antiviral state in the IFN-α resistant replicon cell line by developing a chimera IRF9 protein fused with the trans activating domain (TAD of either a Stat1 (IRF9-S1C or Stat2 (IRF9-S2C protein. We show here that intracellular expression of fusion proteins using the plasmid constructs of either IRF9-S1C or IRF9-S2C, in the IFN-α resistant cells, resulted in an increase in Interferon Stimulated Response Element (ISRE luciferase promoter activity and significantly induced HLA-1 surface expression. Moreover, we show that transient transfection of IRF9-S1C or IRF9-S2C plasmid constructs into IFN-α resistant replicon cells containing sub-genomic HCV1b and HCV2a viruses resulted in an inhibition of viral replication and viral protein expression independent of IFN-α treatment. The results of this study indicate that the recombinant fusion proteins of IRF9-S1C, IRF9-S2C alone, or in combination, have potent antiviral properties against the HCV in an IFN-α resistant cell line with a defective Jak-Stat signaling.

  12. Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation).

    Science.gov (United States)

    Stirpe, F; Williams, D G; Onyon, L J; Legg, R F; Stevens, W A

    1981-05-01

    1. Dianthin 30 and dianthin 32, two proteins isolated from the leaves of Diathus caryophyllus (carnation), were purified to homogeneity by chromatography on CM-cellulose. 2. The mol.wt. of dianthin 30 is 29 500 and that of dianthin 32 is 31 700. Both dianthins are glycoproteins containing mannose. 3. Dianthins inhibit protein synthesis in a lysate of rabbit reticulocytes, with an ID50 (concentration giving 50% inhibition) of 9.15 ng/ml (dianthin 30) and 3.6 ng/ml (dianthin 32). They act by damaging ribosomes in a less-than-equimolar ratio. Protein synthesis by intact cells is partially inhibited by dianthins at a concentration of 100 microgram/ml. 4. Dianthins mixed with tobacco-mosaic virus strongly decrease the number of local lesions on leaves of Nicotiana glutinosa.

  13. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity.

    Directory of Open Access Journals (Sweden)

    Sophiya Karki

    Full Text Available The zinc finger antiviral protein (ZAP is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV, the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.

  14. Prion protein induced signaling cascades in monocytes

    International Nuclear Information System (INIS)

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrPC), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrPC fusion proteins synthesized with a human Fc-tag. PrPC fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK1,2 and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrPC in monocytes and macrophages

  15. Modelling protein functional domains in signal transduction using Maude

    Science.gov (United States)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  16. Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales.

    Science.gov (United States)

    Braun, Benjamin A; Marcovitz, Amir; Camp, J Gray; Jia, Robin; Bejerano, Gill

    2015-06-30

    Viral outbreaks in dolphins and other Delphinoidea family members warrant investigation into the integrity of the cetacean immune system. The dynamin-like GTPase genes Myxovirus 1 (Mx1) and Mx2 defend mammals against a broad range of viral infections. Loss of Mx1 function in human and mice enhances infectivity by multiple RNA and DNA viruses, including orthomyxoviruses (influenza A), paramyxoviruses (measles), and hepadnaviruses (hepatitis B), whereas loss of Mx2 function leads to decreased resistance to HIV-1 and other viruses. Here we show that both Mx1 and Mx2 have been rendered nonfunctional in Odontoceti cetaceans (toothed whales, including dolphins and orcas). We discovered multiple exon deletions, frameshift mutations, premature stop codons, and transcriptional evidence of decay in the coding sequence of both Mx1 and Mx2 in four species of Odontocetes. We trace the likely loss event for both proteins to soon after the divergence of Odontocetes and Mystocetes (baleen whales) ∼33-37 Mya. Our data raise intriguing questions as to what drove the loss of both Mx1 and Mx2 genes in the Odontoceti lineage, a double loss seen in none of 56 other mammalian genomes, and suggests a hitherto unappreciated fundamental genetic difference in the way these magnificent mammals respond to viral infections. PMID:26080416

  17. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    Science.gov (United States)

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  18. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  19. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar;

    2014-01-01

    signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...... proteins, SOCS1-7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS......-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also...

  20. Herpes simplex virus type 2 virion host shutoff protein suppresses innate dsRNA antiviral pathways in human vaginal epithelial cells.

    Science.gov (United States)

    Yao, Xiao-Dan; Rosenthal, Kenneth Lee

    2011-09-01

    Viruses that establish persistent infections have evolved numerous strategies to evade host innate antiviral responses. We functionally assessed the role of herpes simplex virus type 2 (HSV-2) virion host shutoff (vhs) protein on innate immune sensing pathways in human vaginal epithelial cells (VK2 ECs). Infection of cells with wild-type (WT) HSV-2 significantly decreased expression of innate immune sensors of viral infection, Toll-like receptor (TLR)2, TLR3, retinoic acid inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda-5), relative to cells infected with a mutant that lacks vhs (vhsB) or mock-infected cells. Transfection with HSV-2 vhs similarly decreased expression of TLR2, TLR3, RIG-I and Mda-5, which was also confirmed in human embryonic kidney (HEK) 293 cells. vhsB infection of VK2 cells caused robust increases in the active form of interferon regulatory factor (IRF)3 and its translocation to the nucleus compared with the WT. Additionally, IRF3 activation by Sendai virus and polyinosinic : polycytidylic acid-induced stimulation of beta interferon (IFN-β) was significantly inhibited in vhs-transfected cells. Overall, our findings provide the first evidence that HSV-2 vhs plays roles in selectively inhibiting TLR3 and RIG-I/Mda-5, as well as TLR2-mediated antiviral pathways for sensing dsRNA and effectively suppresses IFN-β antiviral responses in human vaginal ECs.

  1. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein

    Energy Technology Data Exchange (ETDEWEB)

    Hoenen, Antje [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Gillespie, Leah [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia); Morgan, Garry; Heide, Peter van der [Institute for Molecular Bioscience, University of Queensland, Brisbane (Australia); Khromykh, Alexander [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Australian Infectious Diseases Research Centre, University of Queensland, Brisbane (Australia); Mackenzie, Jason, E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia)

    2014-01-05

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNV{sub KUN}) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNV{sub KUN} particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNV{sub KUN} under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNV{sub KUN} assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNV{sub KUN} assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system. - Highlights: • We show that the ISG MxA can recognize the West Nile virus capsid protein. • Interaction between WNV C protein and MxA induces cytoplasmic fibrils. • MxA can be retargeted to the ER to restrict WNV particle release. • WNV assembly process is a strategy to avoid MxA recognition.

  2. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins.

    Directory of Open Access Journals (Sweden)

    Nadine Eckert

    Full Text Available Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI zanamivir and the host cell interferon-inducible transmembrane (IFITM proteins 1-3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels.

  3. Identification of four nuclear transport signal-binding proteins that interact with diverse transport signals.

    Science.gov (United States)

    Yamasaki, L; Kanda, P; Lanford, R E

    1989-07-01

    The transport of proteins into the nucleus requires not only the presence of a nuclear transport signal on the targeted protein but also the signal recognition proteins and the nuclear pore translocation apparatus. Complicating the search for the signal recognition proteins is the fact that the nuclear transport signals identified share little obvious homology. In this study, synthetic peptides homologous to the nuclear transport signals from the simian virus 40 large T antigen, Xenopus oocyte nucleoplasmin, adenovirus E1A, and Saccharomyces cerevisiae MAT alpha 2 proteins were coupled to a UV-photoactivable cross-linker and iodinated for use in an in vitro cross-linking reaction with cellular lysates. Four proteins, p140, p100, p70, and p55, which specifically interacted with the nuclear transport signal peptides were identified. Unique patterns of reactivity were observed with closely related pairs of nuclear transport signal peptides. Competition experiments with labeled and unlabeled peptides demonstrated that heterologous signals were able to bind the same protein and suggested that diverse signals use a common transport pathway. The subcellular distribution of the four nuclear transport signal-binding proteins suggested that nuclear transport involves both cytoplasmic and nuclear receptors. The four proteins were not bound by wheat germ agglutinin and were not associated tightly with the nuclear pore complex.

  4. TPR Proteins in Plant Hormone Signaling

    OpenAIRE

    Schapire, Arnaldo L; Valpuesta, Victoriano; Botella, Miguel A

    2006-01-01

    There is a large number of proteins in nature containing Tetratrico Peptide Repeats (TPRs). TPR motifs are defined as a protein-protein interaction module involved in regulation of different cellular functions. We have recently identified TTL1 as a protein containing TPR motifs required for abscisic acid responses and osmotic stress tolerance. In recent years several of these proteins have been found to be essential for responses to other hormones such ethylene, cytokinin, gibberelling and au...

  5. Impairment of type I but not type III IFN signaling by hepatitis C virus infection influences antiviral responses in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jacques Friborg

    Full Text Available Peginterferon lambda-1a (Lambda, a type III interferon (IFN, acts through a unique receptor complex with limited cellular expression outside the liver which may result in a differentiated tolerability profile compared to peginterferon alfa (alfa. In Phase 2b clinical studies, Lambda administered in combination with ribavirin (RBV was efficacious in patients with hepatitis C virus (HCV infection representing genotypes 1 through 4, and was associated with more rapid declines in HCV RNA compared to alfa plus RBV. To gain insights into potential mechanisms for this finding, we investigated the effects of HCV replication on IFN signaling in primary human hepatocytes (PHH and in induced hepatocyte-like cells (iHLCs. HCV infection resulted in rapid down-regulation of the type I IFN-α receptor subunit 1 (IFNAR1 transcript in hepatocytes while the transcriptional level of the unique IFN-λ receptor subunit IL28RA was transiently increased. In line with this observation, IFN signaling was selectively impaired in infected cells upon stimulation with alfa but not in response to Lambda. Importantly, in contrast to alfa, Lambda was able to induce IFN-stimulated gene (ISG expression in HCV-infected hepatocytes, reflecting the onset of innate responses. Moreover, global transcriptome analysis in hepatocytes indicated that Lambda stimulation prolonged the expression of various ISGs that are potentially beneficial to antiviral defense mechanisms. Collectively, these observed effects of HCV infection on IFN receptor expression and signaling within infected hepatocytes provide a possible explanation for the more pronounced early virologic responses observed in patients treated with Lambda compared to alfa.

  6. Gene analysis of an antiviral protein SP-2 from Chinese wild silkworm, Bombyx mandarina Moore and its bio-activity assay

    Institute of Scientific and Technical Information of China (English)

    YAO HuiPeng; HE FangQing; GUO AiQin; CAO CuiPing; LU XingMeng; WU XiaoFeng

    2008-01-01

    The cDNA encoding an antiviral protein SP-2 against BmNPV was cloned from the midgut of Chinese wild silkworm, Bombyx mandarina Moore (GenBank access AY945210) based on the available informa-tion of the domesticated silkworm. Its cDNA was 855 bp encoding 284 amino acids with predicted mo-lecular weight of 29.6 kDa. Its full length in genomics was 1376 bp, including 5 exons and 4 introns. The expression analysis indicated that it was only expressed in midgut, and its expression level was higher during feeding stage of larval instars while very lower during the moltism and mature stages. The de-duced amino acid sequence of this protein showed eight-amino-acid variation compared with the counterpart of domesticated silkworm. Its antiviral activity was assayed through in vitro test. The re-sults indicated that it showed strong bioactivity against BmNPV, and its activity was 1.6 fold higher that the counterpart of domesticated silkworm.

  7. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein.

    Science.gov (United States)

    Hoenen, Antje; Gillespie, Leah; Morgan, Garry; van der Heide, Peter; Khromykh, Alexander; Mackenzie, Jason

    2014-01-01

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNVKUN) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNVKUN particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNVKUN under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNVKUN assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNVKUN assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system.

  8. Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways.

    Directory of Open Access Journals (Sweden)

    Senthil K Chinnakannan

    Full Text Available Morbilliviruses form a closely related group of pathogenic viruses which encode three non-structural proteins V, W and C in their P gene. Previous studies with rinderpest virus (RPV and measles virus (MeV have demonstrated that these non-structural proteins play a crucial role in blocking type I (IFNα/β and type II (IFNγ interferon action, and various mechanisms have been proposed for these effects. We have directly compared four important morbilliviruses, rinderpest (RPV, measles virus (MeV, peste des petits ruminants virus (PPRV and canine distemper virus (CDV. These viruses and their V proteins could all block type I IFN action. However, the viruses and their V proteins had varying abilities to block type II IFN action. The ability to block type II IFN-induced gene transcription correlated with co-precipitation of STAT1 with the respective V protein, but there was no correlation between co-precipitation of either STAT1 or STAT2 and the abilities of the V proteins to block type I IFN-induced gene transcription or the creation of the antiviral state. Further study revealed that the V proteins of RPV, MeV, PPRV and CDV could all interfere with phosphorylation of the interferon-receptor-associated kinase Tyk2, and the V protein of highly virulent RPV could also block the phosphorylation of another such kinase, Jak1. Co-precipitation studies showed that morbillivirus V proteins all form a complex containing Tyk2 and Jak1. This study highlights the ability of morbillivirus V proteins to target multiple components of the IFN signalling pathways to control both type I and type II IFN action.

  9. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  10. Inhibition of cellular protein secretion by norwalk virus nonstructural protein p22 requires a mimic of an endoplasmic reticulum export signal.

    Directory of Open Access Journals (Sweden)

    Tyler M Sharp

    Full Text Available Protein trafficking between the endoplasmic reticulum (ER and Golgi apparatus is central to cellular homeostasis. ER export signals are utilized by a subset of proteins to rapidly exit the ER by direct uptake into COPII vesicles for transport to the Golgi. Norwalk virus nonstructural protein p22 contains a YXΦESDG motif that mimics a di-acidic ER export signal in both sequence and function. However, unlike normal ER export signals, the ER export signal mimic of p22 is necessary for apparent inhibition of normal COPII vesicle trafficking, which leads to Golgi disassembly and antagonism of Golgi-dependent cellular protein secretion. This is the first reported function for p22. Disassembly of the Golgi apparatus was also observed in cells replicating Norwalk virus, which may contribute to pathogenesis by interfering with cellular processes that are dependent on an intact secretory pathway. These results indicate that the ER export signal mimic is critical to the antagonistic function of p22, shown herein to be a novel antagonist of ER/Golgi trafficking. This unique and well-conserved human norovirus motif is therefore an appealing target for antiviral drug development.

  11. Differential Regulation of TLR Signaling on the Induction of Antiviral Interferons in Human Intestinal Epithelial Cells Infected with Enterovirus 71.

    Science.gov (United States)

    Wang, Chunyang; Ji, Lianfu; Yuan, Xinhui; Jin, Yu; Cardona, Carol J; Xing, Zheng

    2016-01-01

    Enterovirus 71 (EV71) causes hand-foot-and-mouth disease, which can lead to fatal neurological complications in young children and infants. Few gastrointestinal symptoms are observed clinically, suggesting the presence of a unique immunity to EV71 in the gut. We reported a robust induction of interferons (IFNs) in human intestinal epithelial cells (HT-29), which was suppressed in other types such as RD and HeLa cells. The underlying mechanism for the apparent difference remains obscure. In this study we report that in EV71-infected HT-29 cells, TLR/TRIF signaling was essential to IFN induction; viral replication increased and the induction of IFN-α, -β, -ω, -κ, and -ε decreased markedly in TRIF-silenced HT-29 cells. Importantly, TRIF was degraded by viral 3Cpro in RD cells, but resisted cleavage, and IRF3 was activated and translocated into the nucleus in HT-29 cells. Taken together, our data suggest that IFNs were induced differentially in human HT-29 cells through an intact TLR/TRIF signaling, which differs from other cell types and may be implicated in viral pathogenesis in EV71 infection. PMID:27007979

  12. Differential Regulation of TLR Signaling on the Induction of Antiviral Interferons in Human Intestinal Epithelial Cells Infected with Enterovirus 71

    Science.gov (United States)

    Wang, Chunyang; Ji, Lianfu; Yuan, Xinhui; Jin, Yu; Cardona, Carol J.; Xing, Zheng

    2016-01-01

    Enterovirus 71 (EV71) causes hand-foot-and-mouth disease, which can lead to fatal neurological complications in young children and infants. Few gastrointestinal symptoms are observed clinically, suggesting the presence of a unique immunity to EV71 in the gut. We reported a robust induction of interferons (IFNs) in human intestinal epithelial cells (HT-29), which was suppressed in other types such as RD and HeLa cells. The underlying mechanism for the apparent difference remains obscure. In this study we report that in EV71-infected HT-29 cells, TLR/TRIF signaling was essential to IFN induction; viral replication increased and the induction of IFN-α, -β, -ω, -κ, and -ε decreased markedly in TRIF-silenced HT-29 cells. Importantly, TRIF was degraded by viral 3Cpro in RD cells, but resisted cleavage, and IRF3 was activated and translocated into the nucleus in HT-29 cells. Taken together, our data suggest that IFNs were induced differentially in human HT-29 cells through an intact TLR/TRIF signaling, which differs from other cell types and may be implicated in viral pathogenesis in EV71 infection. PMID:27007979

  13. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b.

    Science.gov (United States)

    Su, Pin; Feng, Tuizi; Zhou, Xuguo; Zhang, Songbai; Zhang, Yu; Cheng, Ju'e; Luo, Yuanhua; Peng, Jing; Zhang, Zhuo; Lu, Xiangyang; Zhang, Deyong; Liu, Yong

    2015-01-01

    Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture.

  14. Antiviral, immunomodulatory, and free radical scavenging activities of a protein-enriched fraction from the larvae of the housefly, Musca domestica.

    Science.gov (United States)

    Ai, Hui; Wang, Furong; Zhang, Na; Zhang, Lingyao; Lei, Chaoliang

    2013-01-01

    In our previous study, protein-enriched fraction (PEF) that was isolated from the larvae of the housefly, Musca domestica L. (Diptera: Muscidae), showed excellent hepatoprotective activity as well as the potential for clinical application in therapy for liver diseases. In this study, antiviral, immunomodulatory, and free radical scavenging activities of PEF were evaluated. The antiviral results demonstrated that PEF inhibited the infection of avian influenza virus H9N2 and had a virucidal effect against the multicapsid nucleopolyhedrovirus of the alfalfa looper, Autographa californica Speyer (Lepidoptera: Noctuidae) in vitro. The mortality of silkworm larve in a PEF treatment group decreased significantly compared with a negative control. PEF showed excellent scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radicals, which were similar to those of ascorbic acid. The imunomodulatory results suggested that PEF could effectively improve immune function in experimental mice. Our results indicated that PEF could possibly be used for the prophylaxis and treatment of diseases caused by avian influenza virus infection. In addition, PEF with virucidal activity against insect viruses might provide useful for the development of antimicrobial breeding technology for economically important insects. As a natural product from insects, PEF could be a potential source for the discovery of potent antioxidant and immunomodulatory agents.

  15. Regulation, Signaling, and Physiological Functions of G-Proteins.

    Science.gov (United States)

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators.

  16. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

    Science.gov (United States)

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  17. A Signal Processing Method to Explore Similarity in Protein Flexibility

    Directory of Open Access Journals (Sweden)

    Simina Vasilache

    2010-01-01

    Full Text Available Understanding mechanisms of protein flexibility is of great importance to structural biology. The ability to detect similarities between proteins and their patterns is vital in discovering new information about unknown protein functions. A Distance Constraint Model (DCM provides a means to generate a variety of flexibility measures based on a given protein structure. Although information about mechanical properties of flexibility is critical for understanding protein function for a given protein, the question of whether certain characteristics are shared across homologous proteins is difficult to assess. For a proper assessment, a quantified measure of similarity is necessary. This paper begins to explore image processing techniques to quantify similarities in signals and images that characterize protein flexibility. The dataset considered here consists of three different families of proteins, with three proteins in each family. The similarities and differences found within flexibility measures across homologous proteins do not align with sequence-based evolutionary methods.

  18. An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase.

    Science.gov (United States)

    Li, Geqiang; Xiang, Ying; Sabapathy, Kanaga; Silverman, Robert H

    2004-01-01

    Cellular stress responses induced during viral infections are critical to the health and survival of organisms. In higher vertebrates, interferons (IFNs) mediate the innate antiviral response in part through the action of RNase L, a uniquely regulated enzyme. RNase L is activated by 5'-phosphorylated, 2'-5' oligoadenylates (2-5A) produced from IFN-inducible and double stranded RNA-dependent synthetases. We show that viral activation of the c-Jun NH2-terminal kinases (JNK) family of MAP kinases and viral induction of apoptosis are both deficient in mouse cells lacking RNase L. Also, JNK phosphorylation in response to 2-5A was greatly reduced in RNase L-/- mouse cells. In addition, 2-5A treatment of the human ovarian carcinoma cell line, Hey1b, resulted in specific ribosomal RNA cleavage products coinciding with JNK activation. Furthermore, suppression of JNK activity with the chemical inhibitor, SP600125, prevented apoptosis induced by 2-5A. In contrast, inhibition of alternative MAP kinases, p38 and ERK, failed to prevent 2-5A-mediated apoptosis. Short interfering RNA to JNK1/JNK2 mRNAs resulted in JNK ablation while also suppressing 2-5A-mediated apoptosis. Moreover, Jnk1-/- Jnk2-/- cells were highly resistant to the apoptotic effects of IFN and 2-5A. These findings suggest that JNK and RNase L function in an integrated signaling pathway during the IFN response that leads to elimination of virus-infected cells through apoptosis. PMID:14570908

  19. Serotonin signaling mediates protein valuation and aging.

    Science.gov (United States)

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. PMID:27572262

  20. Protein phosphorylation and its role in archaeal signal transduction.

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies.

  1. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  2. LSm14A Plays a Critical Role in Antiviral Immune Responses by Regulating MITA Level in a Cell-Specific Manner.

    Science.gov (United States)

    Liu, Tian-Tian; Yang, Qing; Li, Mi; Zhong, Bo; Ran, Yong; Liu, Li-Li; Yang, Yan; Wang, Yan-Yi; Shu, Hong-Bing

    2016-06-15

    Viral infection triggers induction of antiviral cytokines and effectors, which are critical mediators of innate antiviral immune response. It has been shown that the processing body-associated protein LSm14A is involved in the induction of antiviral cytokines in cell lines but in vivo evidence is lacking. By generating LSm14A-deficient mice, in this study, we show that LSm14A plays a critical and specific role in the induction of antiviral cytokines in dendritic cells (DCs) but not in macrophages and fibroblasts. Induction of antiviral cytokines triggered by the DNA viruses HSV-1 and murid herpesvirus 68 and the RNA virus vesicular stomatitis virus but not Sendai virus was impaired in Lsm14a(-/-) DCs, which is correlated to the functions of the adaptor protein MITA/STING in the antiviral signaling pathways. LSm14A deficiency specifically downregulated MITA/STING level in DCs by impairing its nuclear mRNA precursor processing and subsequently impaired antiviral innate and adaptive immune responses. Our findings reveal a nuclear mRNA precursor processing and cell-specific regulatory mechanism of antiviral immune responses.

  3. Protein carbonylation as a novel mechanism in redox signaling.

    Science.gov (United States)

    Wong, Chi Ming; Cheema, Amrita K; Zhang, Lihua; Suzuki, Yuichiro J

    2008-02-15

    Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, we show that ligand-receptor-mediated signaling promotes reactive oxygen species-dependent protein carbonylation. Treatment of pulmonary artery smooth muscle cells with endothelin-1 increased protein carbonyls. Carbonylation of the majority of proteins occurred transiently, suggesting that there is also a mechanism for decarbonylation induced by endothelin-1. Decarbonylation was suppressed by inhibition of thioredoxin reductase, and cellular thioredoxin was upregulated during the decarbonylation phase. These results indicate that endothelin-1 promotes oxidant signaling as well as thioredoxin-mediated reductive signaling to regulate carbonylation and decarbonylation mechanisms. In cells treated with endothelin receptor antagonists, hydrogen peroxide scavengers, or an iron chelator, we identified, via mass spectrometry, proteins that are carbonylated in a receptor- and Fenton reaction-dependent manner, including annexin A1, which promotes apoptosis and suppresses cell growth. Carbonylation of annexin A1 by endothelin-1 was followed by proteasome-dependent degradation of this protein. We propose that carbonylation and subsequent degradation of annexin A1 may play a role in endothelin-mediated cell growth and survival, important events in pulmonary vascular remodeling. Protein carbonylation in response to ligand-receptor interactions represents a novel mechanism in redox signaling.

  4. Fluorescopic evaluation of protein-lipid relations in cellular signalling.

    NARCIS (Netherlands)

    Pap, E.H.W.

    1994-01-01

    IntroductionCellular communication is partly mediated through the modulation of protein activity, structure and dynamics by lipids. In contrast to the biochemical aspects of lipid signalling, relatively little is known about the physical properties of the "signal" lipids (lipids involved in cellular

  5. Dynamic phospholipid signaling by G protein-coupled receptors

    NARCIS (Netherlands)

    Weernink, Paschal A. Oude; Han, Li; Jakobs, Karl H.; Schmidt, Martina

    2007-01-01

    G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP

  6. Enterovirus 71 inhibits cellular type I interferon signaling by downregulating JAK1 protein expression.

    Science.gov (United States)

    Liu, Ying; Zhang, Zhe; Zhao, Xinghui; Yu, Rui; Zhang, Xiaopeng; Wu, Shipo; Liu, Ju; Chi, Xiangyang; Song, Xiaohong; Fu, Ling; Yu, Yingqun; Hou, Lihua; Chen, Wei

    2014-08-01

    Enterovirus 71 (EV71) infection can cause severe disease and lead to death in children. Recurring outbreaks of EV71 have been reported in several countries. Interferons (IFNs) have been used for decades to treat several types of viral infection, but have a limited ability to inhibit EV71 replication. Herein, we intend to investigate the mechanisms by which EV71 inhibits the cellular type I IFN response. In this study, MRC-5 (human embryonic lung fibroblast) or RD (human rhabdomyosarcoma) cells were infected with EV71, and then treated with or without IFN-α2b. Cells were harvested and analyzed by flow cytometry to determine the level of IFNAR1. Cell lysis were prepared to detect the levels of STAT1, STAT2, phosphorylated STAT1, phosphorylated STAT2, IFNAR1, JAK1, and TYK2 by Western blotting. The phosphorylation of STAT1 and STAT2 induced by IFN were inhibited without significant downregulation of IFNAR1 in EV71-infected cells. The EV71-induced suppression of STAT1 and STAT2 phosphorylation was not rescued by the protein tyrosine phosphatases inhibitor, and was independent of suppressor of cytokine signaling protein 1/3 levels. The phosphorylation of JAK1 and TYK2 were inhibited accompanied by EV71-induced downregulation of JAK1, which occurred at a post-transcriptional level and was proteasome independent. JAK1 expression did not decrease, and IFN-α-stimulated STAT1 and STAT2 phosphorylation were not blocked in HEK293T cells overexpressing the EV71 viral protein 2A or 3C. This study demonstrates that EV71 inhibits the cellular type I IFN antiviral pathway by downregulating JAK1, while the expression of IFNAR1 does not significantly alter in EV71-infected cells. Additionally, the EV71 viral proteins 2A and 3C do not act as antagonists of cellular type I IFN signaling. PMID:24905060

  7. Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells.

    Directory of Open Access Journals (Sweden)

    Isabel Weinheimer

    Full Text Available Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae encodes a Class 1 RNase III endoribonuclease (RNase3 that suppresses post-transcriptional RNA interference (RNAi and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas. For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3 and RNA-dependent RNA polymerase 6 (RDR6. In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression.

  8. Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells.

    Science.gov (United States)

    Weinheimer, Isabel; Haikonen, Tuuli; Ala-Poikela, Marjo; Moser, Mirko; Streng, Janne; Rajamäki, Minna-Liisa; Valkonen, Jari P T

    2016-01-01

    Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae) encodes a Class 1 RNase III endoribonuclease (RNase3) that suppresses post-transcriptional RNA interference (RNAi) and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas). For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA) and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6). In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression. PMID:27391019

  9. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules.

    Science.gov (United States)

    Hirst, Natasha L; Lawton, Scott P; Walker, Anthony J

    2016-06-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host. PMID:26777870

  10. The C proteins of human parainfluenza virus type 1 block IFN signaling by binding and retaining Stat1 in perinuclear aggregates at the late endosome.

    Directory of Open Access Journals (Sweden)

    Henrick Schomacker

    Full Text Available Interferons (IFNs play a crucial role in the antiviral immune response. Whereas the C proteins of wild-type human parainfluenza virus type 1 (WT HPIV1 inhibit both IFN-β induction and signaling, a HPIV1 mutant encoding a single amino acid substitution (F170S in the C proteins is unable to block either host response. Here, signaling downstream of the type 1 IFN receptor was examined in Vero cells to define at what stage WT HPIV1 can block, and F170S HPIV1 fails to block, IFN signaling. WT HPIV1 inhibited phosphorylation of both Stat1 and Stat2, and this inhibition was only slightly reduced for F170S HPIV1. Degradation of Stat1 or Stat2 was not observed. The HPIV1 C proteins were found to accumulate in the perinuclear space, often forming large granules, and co-localized with Stat1 and the cation-independent mannose 6-phosphate receptor (M6PR that is a marker for late endosomes. Upon stimulation with IFN-β, both the WT and F170S C proteins remained in the perinuclear space, but only the WT C proteins prevented Stat1 translocation to the nucleus. In addition, WT HPIV1 C proteins, but not F170S C proteins, co-immunoprecipitated both phosphorylated and unphosphorylated Stat1. Our findings suggest that the WT HPIV1 C proteins form a stable complex with Stat1 in perinuclear granules that co-localize with M6PR, and that this direct interaction between the WT HPIV1 C proteins and Stat1 is the basis for the ability of HPIV1 to inhibit IFN signaling. The F170S mutation in HPIV1 C did not prevent perinuclear co-localization with Stat1, but apparently weakened this interaction such that, upon IFN stimulation, Stat1 was translocated to the nucleus to induce an antiviral response.

  11. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include......Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation...... crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...

  12. Rap G protein signal in normal and disordered lymphohematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Nagahiro, E-mail: minato@imm.med.kyoto-u.ac.jp

    2013-09-10

    Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.

  13. New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and bougainvillea spectabilis Willd.

    Science.gov (United States)

    Bolognesi, A; Polito, L; Olivieri, F; Valbonesi, P; Barbieri, L; Battelli, M G; Carusi, M V; Benvenuto, E; Del Vecchio Blanco, F; Di Maro, A; Parente, A; Di Loreto, M; Stirpe, F

    1997-12-01

    New single-chain (type 1) ribosome-inactivating proteins (RIPs) were isolated from the seeds of Basella rubra L. (two proteins) and from the leaves of Bougainvillea spectabilis Willd. (one protein). These RIPs inhibit protein synthesis both in a cell-free system, with an IC50 (concentration causing 50% inhibition) in the 10(-10) M range, and by various cell lines, with IC50S in the 10(-8)-10(-6) M range. All three RIPs released adenine not only from rat liver ribosomes but also from Escherichia coli rRNA, polyadenylic acid, herring sperm DNA, and artichoke mottled crinkle virus (AMCV) genomic RNA, thus being polynucleotide:adenosine glycosidases. The proteins from Basella rubra had toxicity to mice similar to that of most type 1 RIPs (Barbieri et al., 1993, Biochim Biophys Acta 1154: 237-282) with an LD50 (concentration that is 50% lethal) 32 mg.kg-1. The N-terminal sequence of the two RIPs from Basella rubra had 80-93% identity, whereas it differed from the sequence of the RIP from Bougainvillea spectabilis. When tested with antibodies against various RIPs, the RIPs from Basella gave some cross-reactivity with sera against dianthin 32, and weak cross-reactivity with momordin I and momorcochin-S, whilst the RIP from Bougainvillea did not cross-react with any antiserum tested. An RIP from Basella rubra and one from Bougainvillea spectabilis were tested for antiviral activity, and both inhibited infection of Nicotiana benthamiana by AMCV. PMID:9421927

  14. Anti-lipopolysaccharide factor isoform 3 from Penaeus monodon (ALFPm3) exhibits antiviral activity by interacting with WSSV structural proteins.

    Science.gov (United States)

    Suraprasit, Sivalee; Methatham, Thanachai; Jaree, Phattarunda; Phiwsaiya, Kornsunee; Senapin, Saengchan; Hirono, Ikuo; Lo, Chu Fang; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2014-10-01

    In innate immunity, antimicrobial peptides (AMPs) play a vital role in combating microbial pathogens. Among the AMPs identified in Penaeus monodon, only anti-lipopolysaccharide factor isoform 3 (ALFPm3) has been reported to exhibit activity against white spot syndrome virus (WSSV). However, the mechanism(s) involved are still not clear. In the present study, ALFPm3-interacting proteins were screened for from a WSSV library using the yeast two-hybrid screening system, revealing the five potential ALFPm3-interacting proteins of WSSV186, WSSV189, WSSV395, WSSV458 and WSSV471. Temporal transcriptional analysis in WSSV-infected P. monodon revealed that all five of these WSSV gene transcripts were expressed in the late phase of infection (24h and 48h post-infection). Of these, WSSV189 that was previously identified as a structural protein, was selected for further analysis and was shown to be an enveloped protein by Western blot and immunoelectron microscopy analyses. The in vitro pull-down assay using recombinant WSSV189 (rWSSV189) protein as bait confirmed the interaction between ALFPm3 and WSSV189 proteins. Moreover, pre-incubation of rWSSV189 protein with rALFPm3 protein interfered with the latter's neutralization effect on WSSV in vivo, as shown by the increased cumulative mortality of shrimp injected with WSSV following prior treatment with pre-incubated rWSSV189 and rALFPm3 proteins compared to that in shrimp pre-treated with rALFPm3 protein. Thus, ALFPm3 likely performs its anti-WSSV action by binding to the envelope protein WSSV189 and possibly other WSSV structural proteins.

  15. Giardia mitosomal protein import machinery differentially recognizes mitochondrial targeting signals.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Estraño, Carlos E

    2014-01-01

    Giardia lamblia mitosomes are believed to be vestigial mitochondria which lack a genome. Similar to higher eukaryotes, mitosomal proteins possess either N-terminal or internal mitosomal targeting sequences. To date, some components of the higher eukaryote archetypal mitochondrial protein import apparatus have been identified and characterized in Giardia mitosomes; therefore, it is expected that mitochondrial signals will be recognized by the mitosomal protein import system. To further determine the level of conservation of the Giardia mitosome protein import apparatus, we expressed mitochondrial proteins from higher eukaryotes in Giardia. These recombinant proteins include Tom20 and Tom22; two components of the mitochondrial protein import machinery. Our results indicate that N-terminal mitochondrial targeting sequence is recognized by the mitosomal protein import machinery; however, interestingly the internal mitochondrial targeting sequences of higher eukaryotes are not recognized by the mitosome. Our results indicate that Giardia mitosome protein transport machinery shows differential recognition of higher eukaryotic mitochondria transfer signals, suggesting a divergence of the transport system in G. lamblia. Therefore, our data support the hypothesis that the protein import machinery in Giardia lamblia mitosome is an incomplete vestigial derivative of mitochondria components.

  16. Complex of the herpes simplex virus type 1 origin binding protein UL9 with DNA as a platform for the design of a new type of antiviral drugs.

    Science.gov (United States)

    Bazhulina, N P; Surovaya, A N; Gursky, Y G; Andronova, V L; Moiseeva, E D; Nikitin, Capital A Cyrillic M; Golovkin, M V; Galegov, G А; Grokhovsky, S L; Gursky, G V

    2014-01-01

    The herpes simplex virus type 1 origin-binding protein, OBP, is a DNA helicase encoded by the UL9 gene. The protein binds in a sequence-specific manner to the viral origins of replication, two OriS sites and one OriL site. In order to search for efficient inhibitors of the OBP activity, we have obtained a recombinant origin-binding protein expressed in Escherichia coli cells. The UL9 gene has been amplified by PCR and inserted into a modified plasmid pET14 between NdeI and KpnI sites. The recombinant protein binds to Box I and Box II sequences and possesses helicase and ATPase activities. In the presence of ATP and viral protein ICP8 (single-strand DNA-binding protein), the initiator protein induces unwinding of the minimal OriS duplex (≈80 bp). The protein also binds to a single-stranded DNA (OriS*) containing a stable Box I-Box III hairpin and an unstable AT-rich hairpin at the 3'-end. In the present work, new minor groove binding ligands have been synthesized which are capable to inhibit the development of virus-induced cytopathic effect in cultured Vero cells. Studies on binding of these compounds to DNA and synthetic oligonucleotides have been performed by fluorescence methods, gel mobility shift analysis and footprinting assays. Footprinting studies have revealed that Pt-bis-netropsin and related molecules exhibit preferences for binding to the AT-spacer in OriS. The drugs stabilize structure of the AT-rich region and inhibit the fluctuation opening of AT-base pairs which is a prerequisite to unwinding of DNA by OBP. Kinetics of ATP-dependent unwinding of OriS in the presence and absence of netropsin derivatives have been studied by measuring the efficiency of Forster resonance energy transfer (FRET) between fluorophores attached to 5'- and 3'- ends of an oligonucleotide in the minimal OriS duplex. The results are consistent with the suggestion that OBP is the DNA Holiday junction (HJ) binding helicase. The protein induces conformation changes (bending

  17. Differential Regulation of NF-κB-Mediated Proviral and Antiviral Host Gene Expression by Primate Lentiviral Nef and Vpu Proteins

    Directory of Open Access Journals (Sweden)

    Daniel Sauter

    2015-02-01

    Full Text Available NF-κB is essential for effective transcription of primate lentiviral genomes and also activates antiviral host genes. Here, we show that the early protein Nef of most primate lentiviruses enhances NF-κB activation. In contrast, the late protein Vpu of HIV-1 and its simian precursors inhibits activation of NF-κB, even in the presence of Nef. Although this effect of Vpu did not correlate with its ability to interact with β-TrCP, it involved the stabilization of IκB and reduced nuclear translocation of p65. Interestingly, however, Vpu did not affect casein kinase II-mediated phosphorylation of p65. Lack of Vpu was associated with increased NF-κB activation and induction of interferon and interferon-stimulated genes (ISGs in HIV-1-infected T cells. Thus, HIV-1 and its simian precursors employ Nef to boost NF-κB activation early during the viral life cycle to initiate proviral transcription, while Vpu is used to downmodulate NF-κB-dependent expression of ISGs at later stages.

  18. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    Science.gov (United States)

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  19. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.

    Science.gov (United States)

    Zhong, Huailing; Wade, Susan M; Woolf, Peter J; Linderman, Jennifer J; Traynor, John R; Neubig, Richard R

    2003-02-28

    Regulators of G protein signaling (RGS) are GTPase-accelerating proteins (GAPs), which can inhibit heterotrimeric G protein pathways. In this study, we provide experimental and theoretical evidence that high concentrations of receptors (as at a synapse) can lead to saturation of GDP-GTP exchange making GTP hydrolysis rate-limiting. This results in local depletion of inactive heterotrimeric G-GDP, which is reversed by RGS GAP activity. Thus, RGS enhances receptor-mediated G protein activation even as it deactivates the G protein. Evidence supporting this model includes a GTP-dependent enhancement of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to G(i) by RGS. The RGS domain of RGS4 is sufficient for this, not requiring the NH(2)- or COOH-terminal extensions. Furthermore, a kinetic model including only the GAP activity of RGS replicates the GTP-dependent enhancement of GTPgammaS binding observed experimentally. Finally in a Monte Carlo model, this mechanism results in a dramatic "spatial focusing" of active G protein. Near the receptor, G protein activity is maintained even with RGS due to the ability of RGS to reduce depletion of local Galpha-GDP levels permitting rapid recoupling to receptor and maintained G protein activation near the receptor. In contrast, distant signals are suppressed by the RGS, since Galpha-GDP is not depleted there. Thus, a novel RGS-mediated "kinetic scaffolding" mechanism is proposed which narrows the spatial range of active G protein around a cluster of receptors limiting the spill-over of G protein signals to more distant effector molecules, thus enhancing the specificity of G(i) protein signals.

  20. INDUCTION OF ANTIVIRAL IMMUNE-RESPONSES BY IMMUNIZATION WITH RECOMBINANT-DNA ENCODED AVIAN CORONAVIRUS NUCLEOCAPSID PROTEIN

    NARCIS (Netherlands)

    BOOTS, AMH; BENAISSATROUW, BJ; HESSELINK, W; RIJKE, E; SCHRIER, C; HENSEN, EJ; Boots, Annemieke

    1992-01-01

    Immune responses to the infectious bronchitis virus (IBV) nucleocapsid protein were studied using a recombinant-DNA expression product. In mice, a lymphocyte proliferative response and a delayed-type hypersensitivity reaction to IBV were induced upon immunization with this nucleocapsid protein. Next

  1. Heterotrimeric G protein signaling in polycystic kidney disease.

    Science.gov (United States)

    Hama, Taketsugu; Park, Frank

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.

  2. Heterotrimeric G protein signaling in polycystic kidney disease.

    Science.gov (United States)

    Hama, Taketsugu; Park, Frank

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways. PMID:27199453

  3. Isoelectric focusing technology quantifies protein signaling in 25 cells

    Science.gov (United States)

    O'Neill, Roger A.; Bhamidipati, Arunashree; Bi, Xiahui; Deb-Basu, Debabrita; Cahill, Linda; Ferrante, Jason; Gentalen, Erik; Glazer, Marc; Gossett, John; Hacker, Kevin; Kirby, Celeste; Knittle, James; Loder, Robert; Mastroieni, Catherine; MacLaren, Michael; Mills, Thomas; Nguyen, Uyen; Parker, Nineveh; Rice, Audie; Roach, David; Suich, Daniel; Voehringer, David; Voss, Karl; Yang, Jade; Yang, Tom; Vander Horn, Peter B.

    2006-01-01

    A previously undescribed isoelectric focusing technology allows cell signaling to be quantitatively assessed in <25 cells. High-resolution capillary isoelectric focusing allows isoforms and individual phosphorylation forms to be resolved, often to baseline, in a 400-nl capillary. Key to the method is photochemical capture of the resolved protein forms. Once immobilized, the proteins can be probed with specific antibodies flowed through the capillary. Antibodies bound to their targets are detected by chemiluminescence. Because chemiluminescent substrates are flowed through the capillary during detection, localized substrate depletion is overcome, giving excellent linearity of response across several orders of magnitude. By analyzing pan-specific antibody signals from individual resolved forms of a protein, each of these can be quantified, without the problems associated with using multiple antibodies with different binding avidities to detect individual protein forms. PMID:17053065

  4. Science Signaling Podcast for 12 July 2016: Adaptor proteins limit signaling.

    Science.gov (United States)

    Wiley, H Steven; VanHook, Annalisa M

    2016-01-01

    This Podcast features an interview with Steven Wiley, senior author of a Research Article that appears in the 12 July 2016 issue of Science Signaling, about how the abundance of adaptor proteins and feedback regulators affect the flow of information downstream of the epidermal growth factor receptor (EGFR). Information flows through a signaling pathway by sequential interactions between core components of the pathway, many of which have enzymatic activity. Adaptor proteins do not directly participate in relaying the signal and do not have enzymatic activity, but are important for signaling because they facilitate interactions between the core components. Using quantitative methods, Shi et al demonstrated that core components of the EGFR pathway were highly abundant in both normal cells and cancer cells. However, adaptor proteins were present in much lower abundance in both cell types, indicating that it is the abundance of these proteins that limit signaling downstream of EGFR. The authors also found that differences in EGFR signaling between different cell types likely resulted from the variable abundance of feedback regulators.Listen to Podcast. PMID:27405978

  5. Dietary proteins and food-related reward signals

    Directory of Open Access Journals (Sweden)

    Katri Peuhkuri

    2011-06-01

    Full Text Available Proteins play a crucial role in almost all biological processes. Dietary proteins are generally considered as energy yielding nutrients and as a source of amino acids for various purposes. In addition, they may have a role in food-related reward signals. The purpose of this review was to give an overview of the role of dietary proteins in food-related reward and possible mechanisms behind such effects. Dietary proteins may elicit food-related reward by several different postprandial mechanisms, including neural and humoral signals from the gastrointestinal tract to the brain. In order to exert rewarding effects, protein have to be absorbed from the intestine and reach the target cells in sufficient concentrations, or act via receptors ad cell signalling in the gut without absorption. Complex interactions between different possible mechanisms make it very difficult to gain a clear view on the role and intesity of each mechanism. It is concluded that, in principle, dietary proteins may have a role in food-related reward. However, the evidence is based mostly on experiments with animal models and one should be careful in drawing conclusions of clinical relevance.

  6. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV

    Science.gov (United States)

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H.; Wang, Yijin; Hakim, Mohamad S.; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M.; van der Laan, Luc J. W.; van der Woude, C. Janneke; Sprengers, Dave; Metselaar, Herold J.; Smits, Ron; Poot, Raymond A.; Peppelenbosch, Maikel P.; Pan, Qiuwei

    2016-01-01

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV. PMID:27150018

  7. G protein activation stimulates phospholipase D signaling in plants

    NARCIS (Netherlands)

    Munnik, T.; Arisz, S.A.; Vrije, de T.; Musgrave, A.

    1995-01-01

    We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than w

  8. Prediction of N-terminal protein sorting signals

    DEFF Research Database (Denmark)

    Claros, Manuel G.; Brunak, Søren; von Heijne, Gunnar

    1997-01-01

    Recently, neural networks have been applied to a widening range of problems in molecular biology. An area particularly suited to neural-network methods is the identification of protein sorting signals and the prediction of their cleavage sites, as these functional units are encoded by local, line...

  9. 14-3-3 proteins in guard cell signaling

    Directory of Open Access Journals (Sweden)

    Valérie eCotelle

    2016-01-01

    Full Text Available Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  10. Antiviral Effect of Agaricomycetes Mushrooms (Review).

    Science.gov (United States)

    Teplyakova, Tamara V; Kosogova, Tatiana A

    2016-01-01

    This review presents data on the studied antiviral activities of Agaricomycetes mushrooms against the herpes, West Nile, influenza, human immunodeficiency, and hepatitis viruses, as well as orthopoxviruses, including the variola virus. Polysaccharides and other compounds (e.g., proteins, glycoproteins, terpenoids, melanins, nucleosides) exhibit antiviral activity against many viruses that are pathogenic in humans. Effective strains isolated from wild mushrooms in culture represent promising objects for the development of biotechnological drugs, including ones possessing antiviral activity. The data on antitumor and antiviral activities of compounds from the same mushroom species indicate the correlation of these properties. With regard to this connection, preparations of Basidiomycetes may have prophylactic value in preventing cancers with a viral etiology. PMID:27649599

  11. The signaling helix: a common functional theme in diverse signaling proteins

    Directory of Open Access Journals (Sweden)

    Aravind L

    2006-09-01

    Full Text Available Abstract Background The mechanism by which the signals are transmitted between receptor and effector domains in multi-domain signaling proteins is poorly understood. Results Using sensitive sequence analysis methods we identify a conserved helical segment of around 40 residues in a wide range of signaling proteins, including numerous sensor histidine kinases such as Sln1p, and receptor guanylyl cyclases such as the atrial natriuretic peptide receptor and nitric oxide receptors. We term this helical segment the signaling (S-helix and present evidence that it forms a novel parallel coiled-coil element, distinct from previously known helical segments in signaling proteins, such as the Dimerization-Histidine phosphotransfer module of histidine kinases, the intra-cellular domains of the chemotaxis receptors, inter-GAF domain helical linkers and the α-helical HAMP module. Analysis of domain architectures allowed us to reconstruct the domain-neighborhood graph for the S-helix, which showed that the S-helix almost always occurs between two signaling domains. Several striking patterns in the domain neighborhood of the S-helix also became evident from the graph. It most often separates diverse N-terminal sensory domains from various C-terminal catalytic signaling domains such as histidine kinases, cNMP cyclase, PP2C phosphatases, NtrC-like AAA+ ATPases and diguanylate cyclases. It might also occur between two sensory domains such as PAS domains and occasionally between a DNA-binding HTH domain and a sensory domain. The sequence conservation pattern of the S-helix revealed the presence of a unique constellation of polar residues in the dimer-interface positions within the central heptad of the coiled-coil formed by the S-helix. Conclusion Combining these observations with previously reported mutagenesis studies on different S-helix-containing proteins we suggest that it functions as a switch that prevents constitutive activation of linked downstream

  12. [Interferon : antiviral mechanisms and viral escape].

    Science.gov (United States)

    Espert, Lucile; Gongora, Céline; Mechti, Nadir

    2003-02-01

    15 % of human cancers have virus origin, meaning that viruses are the second cause of cancers after tabagism. The knowledge of antiviral mechanisms is essential for treatment and prevention of infection evolution towards cancers. Interferons (IFNs) are a large family of multifunctional cytokines. They are involved in regulation of cell growth and modulation of immune response. But, all these functions seem to converge toward the most important of them : the antiviral activity. IFN secretion is the first event induced by viral infection, and will act on specific receptors on neighbour cells and prevent their infection by inducing numbers of antiviral genes. Although few of them are well known like the PKR, the 2-5OAS/RNase L pathway and the Mx proteins, many others need extensive studies to understand the wide range of IFN effect. Viruses have evolved to circumvent the IFN antiviral activity, and are able not only to divert the cellular machinery but also to lure the antiviral mechanisms of the host cell. The purpose of this review is to describe the many antiviral pathways and proteins induced by IFNs and to summarize the strategies of viral escape. PMID:12660132

  13. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.

    Science.gov (United States)

    Bellomo, Elisa; Hogstrand, Christer; Maret, Wolfgang

    2014-10-01

    Zinc ions, though redox-inert, have either pro-antioxidant or pro-oxidant functions at critical junctures in redox metabolism and redox signalling. They are released from cells and in cells, e.g. from metallothionein, a protein that transduces redox signals into zinc signals (1). The released zinc ions inhibit enzymes such as protein tyrosine phosphatases (PTPs), key regulatory enzymes of cellular phosphorylation signalling. The Ki(Zn) value for inhibition of receptor PTPB is 21pM (2). The binding is about as tight as the binding of zinc to zinc metalloenzymes and suggests tonic zinc inhibition. PTP1-B (PTPN1), an enzyme regulating the insulin and leptin receptors and involved in cancer and diabetes pathobiochemistry, has a Ki(Zn) value of about 5nM (3). Zinc ions bind to the enzyme in the closed conformation when additional metal-binding ligands are brought into the vicinity of the active site. In contrast, redox reactions target cysteines in the active sites of PTPs in the open conformation. This work provides a molecular basis how hydrogen peroxide and free zinc ions generated by growth factor signalling stimulate phosphorylation signalling differentially. (Supported by the Biotechnology and Biological Sciences Research Council UK, grant BB/K001442/1.). PMID:26461422

  14. Wnt signalling: the case of the 'missing' G-protein.

    Science.gov (United States)

    Malbon, Craig C

    2011-02-01

    Wnt signalling remains a hot topic for cell signalling sleuthhounds. The trail of signalling downstream of the seven-transmembrane segment Frizzleds, which bind Wnt ligands, is replete of clues [e.g. LPR5/6 (lipoprotein receptor-related protein 5/6), G-proteins or Dishevelled] and yet remains the 'final problem'. Although the heptahelical nature of Frizzleds places them well within a populous family of G-protein-coupled receptors, resistance to this theme has waxed and waned amid increasing demands for 'proof'. The Wnt Homepage (http://www.stanford.edu/group/nusselab/cgi-bin/wnt/) has acted as a dynamic real-time arbiter of the controversy, highlighted by the appearance and later the disappearance of the G-protein from its central diagramming and tabulations. A recent publication in this issue of the Biochemical Journal offers a solution to the 'final problem', demonstrating under native conditions that Frizzleds expressed in mammalian brain preparations act functionally to catalyse guanine-nucleotide exchange in response to stimulation with Wnt3a. Lensed from the fictional character of Sherlock Holmes, The Case of the Missing G-Protein is investigated. PMID:21235522

  15. Antigen receptor signaling: integration of protein tyrosine kinase functions.

    Science.gov (United States)

    Tamir, I; Cambier, J C

    1998-09-17

    Antigen receptors on T and B cells function to transduce signals leading to a variety of biologic responses minimally including antigen receptor editing, apoptotic death, developmental progression, cell activation, proliferation and survival. The response to antigen depends upon antigen affinity and valence, involvement of coreceptors in signaling and differentiative stage of the responding cell. The requirement that these receptors integrate signals that drive an array of responses may explain their evolved structural complexity. Antigen receptors are composed of multiple subunits compartmentalized to provide antigen recognition and signal transduction function. In lieu of on-board enzymatic activity these receptors rely on associated Protein Tyrosine Kinases (PTKs) for their signaling function. By aggregating the receptors, and hence their appended PTKs, antigens induce PTK transphosphorylation, activating them to phosphorylate the receptor within conserved motifs termed Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) found in transducer subunits. The tyrosyl phosphorylated ITAMs then interact with Src Homology 2 (SH2) domains within the PTKs leading to their further activation. As receptor phosphorylation is amplified, other effectors, such as Shc, dock by virtue of SH2 binding, and serve, in-turn, as substrates for these PTKs. This sequence of events not only provides a signal amplification mechanism by combining multiple consecutive steps with positive feedback, but also allows for signal diversification by differential recruitment of effectors that provide access to distinct parallel downstream signaling pathways. The subject of antigen receptor signaling has been recently reviewed in depth (DeFranco, 1997; Kurosaki, 1997). Here we discuss the biochemical basis of antigen receptor signal transduction, using the B cell receptor (BCR) as a paradigm, with specific emphasis on the involved PTKs. We review several specific mechanisms by which responses

  16. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling.

    Science.gov (United States)

    Podgornaia, Anna I; Casino, Patricia; Marina, Alberto; Laub, Michael T

    2013-09-01

    Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, Escherichia coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes and a systematic mutagenesis study reveal how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions and protein evolution and for the design of novel protein interfaces. PMID:23954504

  17. Predicting Protein Subcellular Location Using Digital Signal Processing

    Institute of Scientific and Technical Information of China (English)

    Yu-Xi PAN; Da-Wei LI; Yun DUAN; Zhi-Zhou ZHANG; Ming-Qing XU; Guo-Yin FENG; Lin HE

    2005-01-01

    The biological functions of a protein are closely related to its attributes in a cell. With the rapid accumulation of newly found protein sequence data in databanks, it is highly desirable to develop an automated method for predicting the subcellular location of proteins. The establishment of such a predictor will expedite the functional determination of newly found proteins and the process of prioritizing genes and proteins identified by genomic efforts as potential molecular targets for drug design. The traditional algorithms for predicting these attributes were based solely on amino acid composition in which no sequence order effect was taken into account. To improve the prediction quality, it is necessary to incorporate such an effect. However, the number of possible patterns in protein sequences is extremely large, posing a formidable difficulty for realizing this goal. To deal with such difficulty, a well-developed tool in digital signal processing named digital Fourier transform (DFT) [1] was introduced. After being translated to a digital signal according to the hydrophobicity of each amino acid, a protein was analyzed by DFT within the frequency domain. A set of frequency spectrum parameters, thus obtained, were regarded as the factors to represent the sequence order effect. A significant improvement in prediction quality was observed by incorporating the frequency spectrum parameters with the conventional amino acid composition. One of the crucial merits of this approach is that many existing tools in mathematics and engineering can be easily applied in the predicting process. It is anticipated that digital signal processing may serve as a useful vehicle for many other protein science areas.

  18. Biomolecular Simulation of Base Excision Repair and Protein Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP; McCammon, J A; Miller, John H; Smith, Paul E; Vorpagel, Erich R; Wong, Chung F; Zacharias, Martin W

    2006-03-03

    The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-β, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.

  19. The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses

    Directory of Open Access Journals (Sweden)

    Michael Nevels

    2009-11-01

    Full Text Available The major immediate-early (IE gene of human cytomegalovirus (CMV is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting nonadaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses.

  20. Characterization of signalling pathways by reverse phase protein arrays.

    Science.gov (United States)

    Malinowsky, Katharina; Wolff, Claudia; Schott, Christina; Becker, Karl-Friedrich

    2013-01-01

    Reverse phase protein array (RPPA) is a very suitable technique to analyze large numbers of proteins in small samples like for example tumor biopsies. Beside their small size another major hindrance for the analysis of proteins from biopsies is the extraction of proteins from formalin-fixed and paraffin-embedded (FFPE) tissues. Here we describe a protocol, allowing quantitative extraction of large numbers of proteins from FFPE tissues and their subsequent analysis by RPPA. To elucidate the role of epidermal growth factor receptor (EGFR) signalling in ovarian cancer, we analyzed 23 primary tumors and corresponding metastases for the expression of 25 proteins involved in EGFR signalling with special emphasis on epithelial-mesenchymal transition (EMT). We found a significant correlation of Snail with EGFR((Tyr1086)) and p38 MAPK((Thr180/Tyr182)) in primary ovarian carcinoma and with EGFR((Tyr1086)) in their corresponding metastases. Additionally, we showed that high expression levels of the E-cadherin repressor Snail in primary tumors combined with high expression levels of the pp38 MAPK((Thr180/Tyr182)) in metastasis lead to an increased risk for death in ovarian carcinoma patients.

  1. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response

    Institute of Scientific and Technical Information of China (English)

    Suzanne Paz; Rongtuan Lin; John Hiscott; Myriam Vilasco; Steven J Werden; Meztli Arguello; Deshanthe Joseph-Pillai; Tiejun Zhao; Thi Lien-Anh Nguyen; Qiang Sun; Eliane F Meurs

    2011-01-01

    Recognition of viral RNA structures by the cytosolic sensor retinoic acid-inducible gene-Ⅰ (RIG-Ⅰ) results in the activation of signaling cascades that culminate with the generation of the type Ⅰ interferon (IFN) antiviral response. Onset of antiviral and inflammatory responses to viral pathogens necessitates the regulated spatiotemporal recruitment of signaling adapters,kinases and transcriptional proteins to the mitochondrial antiviral signaling protein (MAVS). We previously demonstrated that the serine/threonine kinase IKKε is recruited to the C-terminal region of MAVS following Sendal or vesicular stomatitis virus (VSV) infection,mediated by Lys63-linked polyubiquitination of MAVS at Lys500,resulting in inhibition of downstream IFN signaling (Paz et al,Mol Cell Biol,2009). In this study,we demonstrate that C-terminus of MAVS harbors a novel TRAF3-binding site in the aa450-468 region of MAVS. A consensus TRAF-interacting motif (TIM),455-PEENEY-460,within this site is required for TRAF3 binding and activation of IFN antiviral response genes,whereas mutation of the TIM eliminates TRAF3 binding and the downstream IFN response. Reconstitution of MAVS-/- mouse embryo fibroblasts with a construct expressing a TIM-mutated version of MAVS failed to restore the antiviral response or block VSV replication,whereas wild-type MAVS reconstituted antiviral inhibition of VSV replication. Furthermore,recruitment of IKKε to an adjacent C-terminal site (aa 468-540) in MAVS via Lys500 ubiquitination decreased TRAF3 binding and protein stability,thus contributing to IKKε-mediated shutdown of the IFN response. This study demonstrates that MAVS harbors a functional C-terminal TRAF3-binding site that participates in positive and negative regulation of the IFN antiviral response.

  2. Role of protein kinase D signaling in pancreatic cancer.

    Science.gov (United States)

    Guha, Sushovan; Tanasanvimon, Suebpong; Sinnett-Smith, James; Rozengurt, Enrique

    2010-12-15

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with dismal survival rates. Its intransigence to conventional therapy renders PDAC an aggressive disease with early metastatic potential. Thus, novel targets for PDAC therapy are urgently needed. Multiple signal transduction pathways are implicated in progression of PDAC. These pathways stimulate production of intracellular messengers in their target cells to modify their behavior, including the lipid-derived diacylglycerol (DAG). One of the prominent intracellular targets of DAG is the protein kinase C (PKC) family. However, the mechanisms by which PKC-mediated signals are decoded by the cell remain incompletely understood. Protein kinase D1 (PKD or PKD1, initially called atypical PKCμ), is the founding member of a novel protein kinase family that includes two additional protein kinases that share extensive overall homology with PKD, termed PKD2, and PKD3. The PKD family occupies a unique position in the signal transduction pathways initiated by DAG and PKC. PKD lies downstream of PKCs in a novel signal transduction pathway implicated in the regulation of multiple fundamental biological processes. We and others have shown that PKD-mediated signaling pathways promote mitogenesis and angiogenesis in PDAC. Our recent observations demonstrate that PKD also potentiates chemoresistance and invasive potential of PDAC cells. This review will briefly highlight diverse biological roles of PKD family in multiple neoplasias including PDAC. Further, this review will underscore our latest advancement with the development of a potent PKD family inhibitor and its effect both in vitro and in vivo in PDAC. PMID:20621068

  3. Protein sensing by nanofluidic crystal and its signal enhancement.

    Science.gov (United States)

    Sang, Jianming; Du, Hongtan; Wang, Wei; Chu, Ming; Wang, Yuedan; Li, Haichao; Alice Zhang, Haixia; Wu, Wengang; Li, Zhihong

    2013-01-01

    Nanofluidics has a unique property that ionic conductance across a nanometer-sized confined space is strongly affected by the space surface charge density, which can be utilized to construct electrical read-out biosensor. Based on this principle, this work demonstrated a novel protein sensor along with a sandwich signal enhancement approach. Nanoparticles with designed aptamer onside are assembled in a suspended micropore to form a 3-dimensional network of nanometer-sized interstices, named as nanofluidic crystal hereafter, as the basic sensing unit. Proteins captured by aptamers will change the surface charge density of nanoparticles and thereby can be detected by monitoring the ionic conductance across this nanofluidic crystal. Another aptamer can further enlarge the variations of the surface charge density by forming a sandwich structure (capturing aptamer/protein/signal enhancement aptamer) and the read-out conductance as well. The preliminary experimental results indicated that human α-thrombin was successfully detected by the corresponding aptamer modified nanofluidic crystal with the limit of detection of 5 nM (0.18 μg/ml) and the read-out signal was enhanced up to 3 folds by using another thrombin aptamer. Being easy to graft probe, facile and low-cost to prepare the nano-device, and having an electrical read-out, the present nanofluidic crystal scheme is a promising and universal strategy for protein sensing. PMID:24404017

  4. Using melanopsin to study G protein signaling in cortical neurons.

    Science.gov (United States)

    McGregor, K M; Bécamel, C; Marin, P; Andrade, R

    2016-09-01

    Our understanding of G protein-coupled receptors (GPCRs) in the central nervous system (CNS) has been hampered by the limited availability of tools allowing for the study of their signaling with precise temporal control. To overcome this, we tested the utility of the bistable mammalian opsin melanopsin to examine G protein signaling in CNS neurons. Specifically, we used biolistic (gene gun) approaches to transfect melanopsin into cortical pyramidal cells maintained in organotypic slice culture. Whole cell recordings from transfected neurons indicated that application of blue light effectively activated the transfected melanopsin to elicit the canonical biphasic modulation of membrane excitability previously associated with the activation of GPCRs coupling to Gαq-11 Remarkably, full mimicry of exogenous agonist concentration could be obtained with pulses as short as a few milliseconds, suggesting that their triggering required a single melanopsin activation-deactivation cycle. The resulting temporal control over melanopsin activation allowed us to compare the activation kinetics of different components of the electrophysiological response. We also replaced the intracellular loops of melanopsin with those of the 5-HT2A receptor to create a light-activated GPCR capable of interacting with the 5-HT2A receptor interacting proteins. The resulting chimera expressed weak activity but validated the potential usefulness of melanopsin as a tool for the study of G protein signaling in CNS neurons. PMID:27306679

  5. XB130: A novel adaptor protein in cancer signal transduction

    Science.gov (United States)

    ZHANG, RUIYAO; ZHANG, JINGYAO; WU, QIFEI; MENG, FANDI; LIU, CHANG

    2016-01-01

    Adaptor proteins are functional proteins that contain two or more protein-binding modules to link signaling proteins together, which affect cell growth and shape and have no enzymatic activity. The actin filament-associated protein (AFAP) family is an important member of the adaptor proteins, including AFAP1, AFAP1L1 and AFAP1L2/XB130. AFAP1 and AFAP1L1 share certain common characteristics and function as an actin-binding protein and a cSrc-activating protein. XB130 exhibits certain unique features in structure and function. The mRNA of XB130 is expressed in human spleen, thyroid, kidney, brain, lung, pancreas, liver, colon and stomach, and the most prominent disease associated with XB130 is cancer. XB130 has a controversial effect on cancer. Studies have shown that XB130 can promote cancer progression and downregulation of XB130-reduced growth of tumors derived from certain cell lines. A higher mRNA level of XB130 was shown to be associated with a better survival in non-small cell lung cancer. Previous studies have shown that XB130 can regulate cell growth, migration and invasion and possibly has the effect through the cAMP-cSrc-phosphoinositide 3-kinase/Akt pathway. Except for cancer, XB130 is also associated with other pathological or physiological procedures, such as airway repair and regeneration. PMID:26998266

  6. Post-translational modification of PII signal transduction proteins

    Directory of Open Access Journals (Sweden)

    Mike eMerrick

    2015-01-01

    Full Text Available The PII proteins constitute one of the most widely distributed families of signal transduction proteins in nature. They are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. Quite remarkably PII proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and in all known cases they achieve their regulatory effect by direct interaction with their target. PII proteins in the Proteobacteria and the Actinobacteria are subject to post-translational modification by uridylylation or adenylylation respectively, whilst in some Cyanobacteria they can be modified by phosphorylation. In all these cases the protein’s modification state is influenced by the cellular nitrogen status and is thought to regulate its activity. However in many organisms there is no evidence for modification of PII proteins and indeed the ability of these proteins to respond to the cellular nitrogen status is fundamentally independent of post-translational modification. In this review we explore the role of post-translational modification in PII proteins in the light of recent studies.

  7. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  8. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    Science.gov (United States)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  9. Induction and suppression of the innate antiviral responses by picornaviruses

    NARCIS (Netherlands)

    Feng, Q.

    2014-01-01

    On the front line of innate antiviral immune reactions is the type I interferon (IFN-α/β) system. IFN-α/β are small signaling molecules that can be produced by virtually all nucleated cells in our body upon virus infections, and induce a so-called “antiviral state” in neighboring cells by activating

  10. Biased and G protein-independent signaling of chemokine receptors

    Directory of Open Access Journals (Sweden)

    Anne eSteen

    2014-06-01

    Full Text Available Biased signaling or functional selectivity occurs when a 7TM receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor, different receptors (with the same ligand or different tissues or cells (for the same ligand-receptor pair. Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e. full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of classic redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confer a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor- or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the

  11. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  12. Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean.

    Directory of Open Access Journals (Sweden)

    Swarup Roy Choudhury

    Full Text Available Heterotrimeric G-proteins comprised of Gα, Gβ and Gγ proteins are important signal transducers in all eukaryotes. The Gγ protein of the G-protein heterotrimer is crucial for its proper targeting at the plasma membrane and correct functioning. Gγ proteins are significantly smaller and more diverse than the Gα and Gβ proteins. In model plants Arabidopsis and rice that have a single Gα and Gβ protein, the presence of two canonical Gγ proteins provide some diversity to the possible heterotrimeric combinations. Our recent analysis of the latest version of the soybean genome has identified ten Gγ proteins which belong to three distinct families based on their C-termini. We amplified the full length cDNAs, analyzed their detailed expression profile by quantitative PCR, assessed their localization and performed yeast-based interaction analysis to evaluate interaction specificity with different Gβ proteins. Our results show that ten Gγ genes are retained in the soybean genome and have interesting expression profiles across different developmental stages. Six of the newly identified proteins belong to two plant-specific Gγ protein families. Yeast-based interaction analyses predict some degree of interaction specificity between different Gβ and Gγ proteins. This research thus identifies a highly diverse G-protein network from a plant species. Homologs of these novel proteins have been previously identified as QTLs for grain size and yield in rice.

  13. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3.

    Directory of Open Access Journals (Sweden)

    Nicholas M Chesarino

    2015-08-01

    Full Text Available Interferon (IFN-induced transmembrane protein 3 (IFITM3 is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection.

  14. Protein sensing by nanofluidic crystal and its signal enhancement

    OpenAIRE

    Sang, Jianming; Du, Hongtan; Wang, Wei; Chu, Ming; Wang, Yuedan; Li, Haichao; Alice Zhang, Haixia; Wu, Wengang; Li, Zhihong

    2013-01-01

    Nanofluidics has a unique property that ionic conductance across a nanometer-sized confined space is strongly affected by the space surface charge density, which can be utilized to construct electrical read-out biosensor. Based on this principle, this work demonstrated a novel protein sensor along with a sandwich signal enhancement approach. Nanoparticles with designed aptamer onside are assembled in a suspended micropore to form a 3-dimensional network of nanometer-sized interstices, named a...

  15. Host Signal Transduction and Protein Kinases Implicated in Legionella Infection

    OpenAIRE

    Hempstead, Andrew D.; Isberg, Ralph R.

    2013-01-01

    Modulation of the phosphorylation status of proteins by both kinases and phosphatases plays an important role in cellular signal transduction. Challenge of host cells by Legionella pneumophila manipulates the phosphorylation state of multiple host factors. These changes play roles in bacterial uptake, vacuole modification, cellular survival, and the immune response. In addition to modification by host cell kinases in response to the bacterium, L. pneumophila translocates bacterial kinases int...

  16. Influenza virus-induced host cell signaling pathways:analysis of potential antiviral targets%流感病毒诱导的宿主细胞信号通路——潜在抗病毒药物靶点

    Institute of Scientific and Technical Information of China (English)

    王玉涛; 杨子峰

    2013-01-01

    The vaccine research for influenza is always delayed because of the mutability of the influenza virus surface antigen.The widespread use of antiviral drugs leads to point mutations of influenza viruses that finally acquire drug resistance.The interaction between influenza virus and the host cell induces the activation of a series of signaling pathways.Signaling pathways governing the replication of influenza virus can be chosen as the new antiviral targets,and through promoting or inhibiting the activation of these pathways,the influenza virus proliferation can be inhibited effectively.

  17. The differential antiviral activities of chicken interferon α (ChIFN-α and ChIFN-β are related to distinct interferon-stimulated gene expression.

    Directory of Open Access Journals (Sweden)

    Hongren Qu

    Full Text Available Chicken interferon α (ChIFN-α and ChIFN-β are type I IFNs that are important antiviral cytokines in the innate immune system. In the present study, we identified the virus-induced expression of ChIFN-α and ChIFN-β in chicken fibroblast DF-1 cells and systematically evaluated the antiviral activities of recombinant ChIFN-α and ChIFN-β by cytopathic-effect (CPE inhibition assays. We found that ChIFN-α exhibited stronger antiviral activity than ChIFN-β in terms of inhibiting the replication of vesicular stomatitis virus, Newcastle disease virus and avian influenza virus, respectively. To elucidate the mechanism of differential antiviral activities between the two ChIFNs, we measured the relative mRNA levels of IFN-stimulated genes (ISGs in IFN-treated DF-1 cells by real-time PCR. ChIFN-α displayed greater induction potency than ChIFN-β on several ISGs encoding antiviral proteins and MHC-I, whereas ChIFN-α was less potent than ChIFN-β for inducing ISGs involved in signaling pathways. In conclusion, ChIFN-α and ChIFN-β presented differential induction potency on various sets of ISGs, and the stronger antiviral activity of ChIFN-α is likely attributed to the greater expression levels of downstream antiviral ISGs.

  18. Replication-Competent Recombinant Porcine Reproductive and Respiratory Syndrome (PRRS Viruses Expressing Indicator Proteins and Antiviral Cytokines

    Directory of Open Access Journals (Sweden)

    Frank Blecha

    2012-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV can subvert early innate immunity, which leads to ineffective antimicrobial responses. Overcoming immune subversion is critical for developing vaccines and other measures to control this devastating swine virus. The overall goal of this work was to enhance innate and adaptive immunity following vaccination through the expression of interferon (IFN genes by the PRRSV genome. We have constructed a series of recombinant PRRS viruses using an infectious PRRSV cDNA clone (pCMV-P129. Coding regions of exogenous genes, which included Renilla luciferase (Rluc, green and red fluorescent proteins (GFP and DsRed, respectively and several interferons (IFNs, were constructed and expressed through a unique subgenomic mRNA placed between ORF1b and ORF2 of the PRRSV infectious clone. The constructs, which expressed Rluc, GFP, DsRed, efficiently produced progeny viruses and mimicked the parental virus in both MARC-145 cells and porcine macrophages. In contrast, replication of IFN-expressing viruses was attenuated, similar to the level of replication observed after the addition of exogenous IFN. Furthermore, the IFN expressing viruses inhibited the replication of a second PRRS virus co-transfected or co-infected. Inhibition by the different IFN subtypes corresponded to their anti-PRRSV activity, i.e., IFNω5 » IFNα1 > IFN-β > IFNδ3. In summary, the indicator-expressing viruses provided an efficient means for real-time monitoring of viral replication thus allowing high‑throughput elucidation of the role of host factors in PRRSV infection. This was shown when they were used to clearly demonstrate the involvement of tumor susceptibility gene 101 (TSG101 in the early stage of PRRSV infection. In addition, replication‑competent IFN-expressing viruses may be good candidates for development of modified live virus (MLV vaccines, which are capable of reversing subverted innate immune responses and

  19. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    Science.gov (United States)

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  20. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  1. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.

    Science.gov (United States)

    Womersley, Jacqueline S; Uys, Joachim D

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. PMID:26809999

  2. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.;

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we...... and Src homologous and collagen (Shc) protein. We identified 228 proteins, of which 28 were selectively enriched upon stimulation. EGFR and Shc, which interact directly with the bait, had large differential ratios. Many signaling molecules specifically formed complexes with the activated EGFR-Shc, as did...... plectin, epiplakin, cytokeratin networks, histone H3, the glycosylphosphatidylinositol (GPI)-anchored molecule CD59, and two novel proteins. SILAC combined with modification-based affinity purification is a useful approach to detect specific and functional protein-protein interactions....

  3. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Jianfei Hu

    Full Text Available Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process.

  4. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients.

    Directory of Open Access Journals (Sweden)

    Jakob G Jespersen

    Full Text Available BACKGROUND: Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR, glycogen synthase kinase 3β (GSK3β and forkhead box O (FoxO pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU patients compared with healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, and muscle ring finger protein 1 (MuRF1; and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1, FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6, tumor necrosis factor α (TNF-α and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p<0.05 between insulin infusion dose and phosphorylated Akt was demonstrated. CONCLUSIONS/SIGNIFICANCE: We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.

  5. Protein kinase A signaling during bidirectional axenic differentiation in Leishmania.

    Science.gov (United States)

    Bachmaier, Sabine; Witztum, Ronit; Tsigankov, Polina; Koren, Roni; Boshart, Michael; Zilberstein, Dan

    2016-02-01

    Parasitic protozoa of the genus Leishmania are obligatory intracellular parasites that cycle between the phagolysosome of mammalian macrophages, where they proliferate as intracellular amastigotes, and the midgut of female sand flies, where they proliferate as extracellular promastigotes. Shifting between the two environments induces signaling pathway-mediated developmental processes that enable adaptation to both host and vector. Developmentally regulated expression and phosphorylation of protein kinase A subunits in Leishmania and in Trypanosoma brucei point to an involvement of protein kinase A in parasite development. To assess this hypothesis in Leishmania donovani, we determined proteome-wide changes in phosphorylation of the conserved protein kinase A phosphorylation motifs RXXS and RXXT, using a phospho-specific antibody. Rapid dephosphorylation of these motifs was observed upon initiation of promastigote to amastigote differentiation in culture. No phosphorylated sites were detected in axenic amastigotes. To analyse the kinetics of (re)phosphorylation during axenic reverse differentiation from L. donovani amastigotes to promastigotes, we first established a map of this process with morphological and molecular markers. Upon initiation, the parasites rested for 6-12 h before proliferation of an asynchronous population resumed. After early changes in cell shape, the major changes in molecular marker expression and flagella biogenesis occurred between 24 and 33 h after initiation. RXXS/T re-phosphorylation and expression of the regulatory subunit PKAR1 correlated with promastigote maturation, indicating a promastigote-specific function of protein kinase A signaling. This is supported by the localization of PKAR1 to the flagellum, an organelle reduced to a remnant in amastigote forms. We conclude that a significant increase in protein kinase A-mediated phosphorylation is part of the ordered changes that characterise the amastigote to promastigote

  6. Prolactin receptor and signal transduction to milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  7. Regulation of Nuclear Localization of Signaling Proteins by Cytokinin

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, J.J.

    2010-05-01

    Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.

  8. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    Science.gov (United States)

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  9. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.

    Science.gov (United States)

    Thomsen, Alex R B; Plouffe, Bianca; Cahill, Thomas J; Shukla, Arun K; Tarrasch, Jeffrey T; Dosey, Annie M; Kahsai, Alem W; Strachan, Ryan T; Pani, Biswaranjan; Mahoney, Jacob P; Huang, Liyin; Breton, Billy; Heydenreich, Franziska M; Sunahara, Roger K; Skiniotis, Georgios; Bouvier, Michel; Lefkowitz, Robert J

    2016-08-11

    Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid β-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, β-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with β-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with β-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs. PMID:27499021

  10. Innate immunity to dengue virus infection and subversion of antiviral responses.

    Science.gov (United States)

    Green, Angela M; Beatty, P Robert; Hadjilaou, Alexandros; Harris, Eva

    2014-03-20

    Dengue is a major public health issue in tropical and subtropical regions worldwide. The four serotypes of dengue virus (DENV1-DENV4) are spread primarily by Aedes aegypti and Aedes albopictus mosquitoes, whose geographic range continues to expand. Humans are the only host for epidemic strains of DENV, and the virus has developed sophisticated mechanisms to evade human innate immune responses. The host cell's first line of defense begins with an intracellular signaling cascade resulting in production of interferon α/β (IFN-α/β), which promotes intracellular antiviral responses and helps initiates the adaptive response during the course of DENV infection. In response, DENV has developed numerous ways to subvert these intracellular antiviral responses and directly inhibit cellular signaling cascades. Specifically, DENV manipulates the unfolded protein response and autophagy to counter cellular stress and delay apoptosis. The DENV non-structural protein NS4B and subgenomic flavivirus RNA interfere with the RNA interference pathway by inhibiting the RNase Dicer. During heterotypic secondary DENV infection, subneutralizing antibodies can enable viral uptake through Fcγ receptors and down-regulate signaling cascades initiated via the pattern recognition receptors TLR-3 and MDA5/RIG-I, thus reducing the antiviral state of the cell. The DENV NS2B/3 protein cleaves human STING/MITA, interfering with induction of IFN-α/β. Finally, DENV NS2A, NS4A, and NS4B complex together to block STAT1 phosphorylation, while NS5 binds and promotes degradation of human STAT2, thus preventing formation of the STAT1/STAT2 heterodimer and its transcriptional induction of interferon stimulating genes. Here, we discuss the host innate immune response to DENV and the mechanisms of immune evasion that DENV has developed to manipulate cellular antiviral responses. PMID:24316047

  11. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  12. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  13. The V protein of Tioman virus is incapable of blocking type I interferon signaling in human cells.

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    Full Text Available The capacity of a virus to cross species barriers is determined by the development of bona fide interactions with cellular components of new hosts, and in particular its ability to block IFN-α/β antiviral signaling. Tioman virus (TioV, a close relative of mumps virus (MuV, has been isolated in giant fruit bats in Southeast Asia. Nipah and Hendra viruses, which are present in the same bat colonies, are highly pathogenic in human. Despite serological evidences of close contacts between TioV and human populations, whether TioV is associated to some human pathology remains undetermined. Here we show that in contrast to the V protein of MuV, the V protein of TioV (TioV-V hardly interacts with human STAT2, does not degrade STAT1, and cannot block IFN-α/β signaling in human cells. In contrast, TioV-V properly binds to human STAT3 and MDA5, and thus interferes with IL-6 signaling and IFN-β promoter induction in human cells. Because STAT2 binding was previously identified as a host restriction factor for some Paramyxoviridae, we established STAT2 sequence from giant fruit bats, and binding to TioV-V was tested. Surprisingly, TioV-V interaction with STAT2 from giant fruit bats is also extremely weak and barely detectable. Altogether, our observations question the capacity of TioV to appropriately control IFN-α/β signaling in both human and giant fruit bats that are considered as its natural host.

  14. Influenza virus non-structural protein 1 (NS1 disrupts interferon signaling.

    Directory of Open Access Journals (Sweden)

    Danlin Jia

    Full Text Available Type I interferons (IFNs function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1 encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.

  15. A fresh look at an antiviral helicase

    Institute of Scientific and Technical Information of China (English)

    Leonid Gitlin; Marco Colonna

    2007-01-01

    @@ In order to survive,all organlsms must guard against viral infections.Recognition of viruses is accomplished via multiple sensors.Many mammalian proteins can recognize viral products,such as double-stranded RNA(dsRNA),yet feW of them are known to induce interferon,the central antiviral messenger.Since interferon is indispensable for Successful antiviral defense [1],the interferon-inducing sensors have been of particular interest.However,a clear understanding of such sensors has been elusive,and the first well-established sensor family,the toll-like receptors (TLRs),was described relatively recently[2].Antiviral TLRS are positioned in the endosomes,where they report the appearance of viral genetic material(DNA,single-and double-stranded RNA).

  16. Signal propagation in proteins and relation to equilibrium fluctuations.

    Directory of Open Access Journals (Sweden)

    Chakra Chennubhotla

    2007-09-01

    Full Text Available Elastic network (EN models have been widely used in recent years for describing protein dynamics, based on the premise that the motions naturally accessible to native structures are relevant to biological function. We posit that equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of residues. We measure the communication abilities of residue pairs in terms of hit and commute times, i.e., the number of steps it takes on an average to send and receive signals. Functionally active residues are found to possess enhanced communication propensities, evidenced by their short hit times. Furthermore, secondary structural elements emerge as efficient mediators of communication. The present findings provide us with insights on the topological basis of communication in proteins and design principles for efficient signal transduction. While hit/commute times are information-theoretic concepts, a central contribution of this work is to rigorously show that they have physical origins directly relevant to the equilibrium fluctuations of residues predicted by EN models.

  17. Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension

    Science.gov (United States)

    Dewachter, Laurence; Adnot, Serge; Guignabert, Christophe; Tu, Ly; Marcos, Elisabeth; Fadel, Elie; Humbert, Marc; Dartevelle, Philippe; Simonneau, Gérald; Naeije, Robert; Eddahibi, Saadia

    2009-01-01

    Mutations in gene encoding for bone morphogenetic protein type 2 receptor (BMPR-2) have been reported in pulmonary arterial hypertension (PAH), but their functional relevance remains incompletely understood. BMP receptors expression was evaluated in human lungs and in cultured pulmonary artery smooth muscle cells (PASMCs) isolated from 19 idiopathic PAH patients and 9 heritable PAH patients with demonstrated BMPR-2 mutations. BMP4-treated PASMCs were assessed for Smad and p38MAPK signaling associated to mitosis and apoptosis. Lung tissue and PASMCs from heritable PAH patients presented with decreased BMPR-2 expression and variable increases in BMPR-1A and BMPR-1B expressions, while a less important decreased BMPR-2 expression was observed in PASMCs from idiopathic PAH patients. Heritable PAH PASMCs showed no increased phosphorylation of Smad1/5/8 in the presence of BMP4, which actually activated the p38MAPK pathway. Individual responses varied from one mutation to another. PASMCs from PAH patients presented with an in vitro proliferative pattern, which could be inhibited by BMP4 in idiopathic PAH, not in heritable PAH. PASMCs from idiopathic PAH and more so from heritable presented an inhibition of BMP4-induced apoptosis. Most heterogenous BMPR-2 mutations are associated with defective Smad signaling compensed for by an activation of p38MAPK signaling, accounting for PASMC proliferation and deficient apoptosis. PMID:19324947

  18. Ophthalmic antiviral chemotherapy : An overview

    Directory of Open Access Journals (Sweden)

    Athmanathan Sreedharan

    1997-01-01

    Full Text Available Antiviral drug development has been slow due to many factors. One such factor is the difficulty to block the viral replication in the cell without adversely affecting the host cell metabolic activity. Most of the antiviral compounds are analogs of purines and pyramidines. Currently available antiviral drugs mainly inhibit viral nucleic acid synthesis, hence act only on actively replicating viruses. This article presents an overview of some of the commonly used antiviral agents in clinical ophthalmology.

  19. PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling.

    Science.gov (United States)

    Meder, Benjamin; Huttner, Inken G; Sedaghat-Hamedani, Farbod; Just, Steffen; Dahme, Tillman; Frese, Karen S; Vogel, Britta; Köhler, Doreen; Kloos, Wanda; Rudloff, Jessica; Marquart, Sabine; Katus, Hugo A; Rottbauer, Wolfgang

    2011-08-01

    Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.

  20. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  1. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  2. Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins.

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available BACKGROUND: APOBEC3G (A3G and related cytidine deaminases of the APOBEC3 family of proteins are potent inhibitors of many retroviruses, including HIV-1. Formation of infectious HIV-1 requires the suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through the common mechanism of recruiting the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. The domains in Vif and various APOBEC3 proteins required for APOBEC3 recognition and degradation have not been fully characterized. METHODS AND FINDINGS: In the present study, we have demonstrated that the regions of APOBEC3F (A3F that are required for its HIV-1-mediated binding and degradation are distinct from those reported for A3G. We found that the C-terminal cytidine deaminase domain (C-CDD of A3F alone is sufficient for its interaction with HIV-1 Vif and its Vif-mediated degradation. We also observed that the domains of HIV-1 Vif that are uniquely required for its functional interaction with full-length A3F are also required for the degradation of the C-CDD of A3F; in contrast, those Vif domains that are uniquely required for functional interaction with A3G are not required for the degradation of the C-CDD of A3F. Interestingly, the HIV-1 Vif domains required for the degradation of A3F are also required for the degradation of A3C and A3DE. On the other hand, the Vif domains uniquely required for the degradation of A3G are dispensable for the degradation of cytidine deaminases A3C and A3DE. CONCLUSIONS: Our data suggest that distinct regions of A3F and A3G are targeted by HIV-1 Vif molecules. However, HIV-1 Vif suppresses A3F, A3C, and A3DE through similar recognition determinants, which are conserved among Vif molecules from diverse HIV-1 strains. Mapping these determinants may be useful for the design of novel anti-HIV inhibitors.

  3. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren;

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors invol...... involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls....

  4. Antiviral targets of human noroviruses.

    Science.gov (United States)

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  5. 低密度cDNA Macroarray对干扰素α抗病毒蛋白的筛选%Based on the low-density cDNA Macroarray for screening of antiviral proteins of IFNa tissues

    Institute of Scientific and Technical Information of China (English)

    管世鹤; 杨凯; 王琴; 程中乐; 潘颖; 吴园园; 杨东亮

    2011-01-01

    目的 基于低密度cDNA Macoarray技术筛选出差异表达的干扰素(IFN)α抗病毒基因,以探讨IFN α抗病毒蛋白的表达与HBV复制的关系. 方法 以一定浓度的IFN α处理肝胚瘤细胞株HepG2和HepG2.2.15细胞6h,用cDNA Macroarray分析比较两细胞株IFN α抗病毒基因表达谱,并筛选出差异表达的IFNα抗病毒基因.将表达HBV核心蛋白(HBc)的质粒pHBc-EGFP转染HepG2细胞,RT-PCR法分析HBc对IFN α抗病毒基因表达的影响.将表达抗黏病毒A蛋白(MxA)的表达质粒pcDNA3.1-Flag-MxA转染HepG2.2.15,以酶联免疫吸附试验、Dot blot、Southern blot等方法分别检测HepG2.2.15细胞表达释放的HBsAg与HBeAg、细胞外HBV DNA和细胞内HBV DNA复制中间体(松弛环状DNA、双股线性DNA),以判断HBV复制情况.两组间数据比较采用t检验,组间不同时间点数据比较采用单因素方差分析.结果 cDNA Macroarray分析显示HepG2和HepG2.2.15细胞的抗病毒基因表达谱具有差异性:IFNa抗病毒基因中干扰素诱导跨膜蛋白(IFITM)1、IFITM2、IFITM3、RING4等在HepG2.2.15细胞的表达被部分抑制,而重要的抗病毒蛋白MxA表达被完全抑制.HBc转染组细胞中MxA mRNA表达的相对水平为0.31±0.05,低于空白对照组的0.74±0.04,差异有统计学意义,P<0.05.MxA蛋白转染HepG2.2.15细胞48、72 h后,MxA转染组细胞上清液中HBsAg的S/CO值分别为1.42+0.21和1.58±0.18,HBeAg的S/CO值为1.44±0.14和2.28±0.24,而空白对照组细胞上清液中HBsAg的S/CO值为1.92±0.19和2.79±0.25,HBeAg的S/CO值为2.31±0.46和3.37±0.29,两组细胞上清液中HBV抗原的S/CO值差异均有统计学意义,P值均<0.05.细胞外HBV DNA、胞内HBV复制中间体DNA均无明显变化.结论 HBV及其抗原成分的复制和表达影响着IFNα抗病毒蛋白的表达;HBV通过抑制IFN α抗病毒蛋白的表达而发挥拮抗IFNα的抗病毒活性.%Objective To screen the gene expression profiles of IFN-α antiviral proteins

  6. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.

    Science.gov (United States)

    Blumer, Joe B; Smrcka, Alan V; Lanier, Stephen M

    2007-03-01

    Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.

  7. Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling.

    Directory of Open Access Journals (Sweden)

    Tina L Gumienny

    2010-05-01

    Full Text Available Bone morphogenetic protein (BMP pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.

  8. Regulation of antiviral innate immunity by deubiquitinase CYLD

    Institute of Scientific and Technical Information of China (English)

    Minying Zhang; Andrew J Lee; Xuefeng Wu; Shao-Cong Sun

    2011-01-01

    An antiviral innate immune response involves induction of type Ⅰ interferons (IFNs) and their subsequent autocrine and paracrine actions,but the underlying regulatory mechanisms are incompletely understood.Here we report that CYLD,a deubiquitinase that specifically digests lysine 63-1inked ubiquitin chains,is required for antiviral host defense.Loss of CYLD renders mice considerably more susceptible to infection by vesicular stomatitis virus (VSV).Consistently,CYLD-deficient dendritic cells are more sensitive to VSV infection.This functional defect was not due to lack of type I IFN production but rather because of attenuated IFN receptor signaling.In the absence of CYLD,IFN-β is ineffective in the induction of antiviral genes and protection of cells from viral infection.These findings establish CYLD as a novel regulator of antiviral innate immunity and suggest a role for CYLD in regulating IFN receptor signaling.

  9. IFNβ/TNFα synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH Oxidase-mediated airway antiviral response

    Institute of Scientific and Technical Information of China (English)

    Karin Fink; Lydie Martin; Esperance Mukawera; Stéfany Chartier; Xavier De Deken; Emmanuelle Brochiero; Fran(c)oise Miot

    2013-01-01

    Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses,primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state.It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNβ secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex,composed of STAT1,STAT2 and IRF9,which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities.However,the specific pathways engaged by the synergistic action of different cytokines during viral infections,and the resulting physiological outcomes are still ill-defined.Here,we unveil a novel delayed antiviral response in the airways,which is initiated by the synergistic autocrine/paracrine action of IFNβ and TNFα,and signals through a non-canonical STAT2-and IRF9-dependent,but STAT1-independent cascade.This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression.Importantly,our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production.Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses.In this regard,the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction.

  10. Unraveling the cellular context of cyclic nucleotide signaling proteins by chemical proteomics

    NARCIS (Netherlands)

    Corradini, E.

    2015-01-01

    Understanding the molecular mechanisms which regulate signal transduction is fundamental to the development of therapeutic molecules for the treatment of several diseases. In particular, signaling proteins, such as cyclic nucleotide dependent enzymes are the orchestrators of many tissue functions. A

  11. Cell wall sorting signals in surface proteins of gram-positive bacteria.

    OpenAIRE

    Schneewind, O; Mihaylova-Petkov, D; Model, P

    1993-01-01

    Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphyl...

  12. Engineered Mammalian RNAi Can Elicit Antiviral Protection that Negates the Requirement for the Interferon Response

    OpenAIRE

    Asiel Arturo Benitez; Laura Adrienne Spanko; Mehdi Bouhaddou; David Sachs; Benjamin Robert tenOever

    2015-01-01

    While the intrinsic antiviral cell defenses of many kingdoms utilize pathogen-specific small RNAs, the antiviral response of chordates is primarily protein-based and not uniquely tailored to the incoming microbe. In an effort to explain this evolutionary bifurcation, we determined whether antiviral RNA interference (RNAi) was sufficient to replace the protein-based type I interferon (IFN-I) system of mammals. To this end, we recreated an RNAi-like response in mammals and determined its effect...

  13. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor

    DEFF Research Database (Denmark)

    Chen, Y; Grall, D; Salcini, A E;

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have...... kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors....

  14. Protein Kinase Signalling in the Moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Azevedo de Silva, Raquel

    of the pathways involved in stress signalling, phosphorylating several downstream substrates in order to produce appropriate responses. We report here that P. patens has a receptor-like kinase CERK1 responsible for chitin perception which can rescue Atcerk1 mutant. Activation of PpCERK1 triggers the activation...... of the following MAPK module: MEKK1A/MEKK1B-MKK1A/MKK1C-MPK4A/MPK4B. In Arabidopsis, some of these modules were demonstrated to be activated during PTI but also during abiotic stress. However, PpMPK4a and PpMPK4b are involved in chitin-dependent defense responses but are not activated during abiotic stresses......, such as salt or osmotic stress. Moreover, the PpMEKK1 homologs seem to be involved in ABA-dependent responses, such as, dehydration. Rescue of mekk1 knockouts phenotype when exogenous ABA is applied and downregulation of ABA biosynthesis genes suggests that these proteins function upstream or parallel...

  15. Antiviral Strategies for Pandemic and Seasonal Influenza

    OpenAIRE

    Fang Fang; Maria Hedlund; Larson, Jeffrey L.

    2010-01-01

    While vaccines are the primary public health response to seasonal and pandemic flu, short of a universal vaccine there are inherent limitations to this approach. Antiviral drugs provide valuable alternative options for treatment and prophylaxis of influenza. Here, we will review drugs and drug candidates against influenza with an emphasis on the recent progress of a host-targeting entry-blocker drug candidate, DAS181, a sialidase fusion protein.

  16. Ultrasensitive proteomic quantitation of cellular signaling by digitized nanoparticle-protein counting

    OpenAIRE

    Thomas Jacob; Anupriya Agarwal; Damien Ramunno-Johnson; Thomas O’Hare; Mehmet Gönen; Tyner, Jeffrey W; Brian J Druker; Vu, Tania Q.

    2016-01-01

    Many important signaling and regulatory proteins are expressed at low abundance and are difficult to measure in single cells. We report a molecular imaging approach to quantitate protein levels by digitized, discrete counting of nanoparticle-tagged proteins. Digitized protein counting provides ultrasensitive molecular detection of proteins in single cells that surpasses conventional methods of quantitating total diffuse fluorescence, and offers a substantial improvement in protein quantitatio...

  17. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed.

  18. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Takayuki [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hibino, Ayaka; Asai, Midori [Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hojo, Hironori [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cha, Byung-Yoon [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Teruya, Toshiaki [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Nagai, Kazuo [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Chung, Ung-Il [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yagasaki, Kazumi [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo Noko University, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509 (Japan); and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  19. Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks.

    Directory of Open Access Journals (Sweden)

    Kyunghyun Park

    Full Text Available As pharmacodynamic drug-drug interactions (PD DDIs could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.

  20. Sorting and targeting of melanosomal membrane proteins: signals, pathways, and mechanisms.

    Science.gov (United States)

    Setaluri, V

    2000-06-01

    Newly synthesized melanosomal proteins, like many other cellular proteins, traverse through a series of intracellular compartments en route to melanosomes. Entry and exit of proteins through these compartments is orchestrated by cellular sorting machinery that recognize specific sorting signals. Melanosomal membrane proteins begin their intracellular journey upon co-translational importation into the endoplasmic reticulum (ER). The biosynthetic output of tyrosinase, the key melanogenic enzyme, appears to be regulated by quality-control events at the ER, the 'port of entry' to the secretory pathway. Following maturation in the ER and through the Golgi, the sorting of these proteins in the trans-Golgi network for intracellular retention and transport along endosome/lysosome pathway requires cytoplasmically exposed signals. A di-leucine motif, present in the cytoplasmic tails of most melanosomal proteins, and its interaction with adaptor protein (AP) complexes, specifically AP-3, are critical for these events. Defects in sorting signals and the cytosolic components that interact with these signals result in a number of murine coat color phenotypes and cause human pigmentary disorders. Thus, missense or frame-shift mutations that produce truncated tyrosinase lacking the melanosomal sorting signal(s) appear to be responsible for murine platinum coat color phenotypes and a proportion of human oculocutaneous albinism-1; mutations in AP-3 appear to be responsible for the mocha phenotype in mice and Hermansky-Pudlak-like syndrome in man. Additional signals and sorting steps downstream of AP-3 appear to be required for endosomal sorting and targeting proteins to melanosomes. Signals and mechanisms that sequester melanosomal proteins from endosomes/lysosomes are not understood. Potential candidates that mediate such processes include proteins encoded by lyst and pallid genes. The common occurrence of abnormalities in melanosomes in many storage-pool disorders suggests that

  1. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  2. Determinants of Cell-to-Cell Variability in Protein Kinase Signaling

    OpenAIRE

    Matthias Jeschke; Stephan Baumgärtner; Stefan Legewie

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal act...

  3. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein

    Institute of Scientific and Technical Information of China (English)

    Nicholas TRAKUL; Marsha R. ROSNER

    2005-01-01

    Proteins like Raf kinase inhibitory protein (RKIP) that serve as modulators of signaling pathways, either by promoting or inhibiting the formation of productive signaling complexes through protein-protein interactions, have been demonstrated to play an increasingly important role in a number of cell types and organisms. These proteins have been implicated in development as well as the progression of cancer. RKIP is a particularly interesting regulator, as it is a highly conserved, ubiquitously expressed protein that has been shown to play a role in growth and differentiation in a number of organisms and can regulate multiple signaling pathways. RKIP is also the first MAP kinase signaling modulator to be identified as playing a role in cancer metastasis, and identification of the mechanism by which it regulates Raf-1 activation provides new targets for therapeutic intervention.

  4. Aging impairs the unfolded protein response to sleep deprivation and leads to pro-apoptotic signaling

    OpenAIRE

    Naidoo, Nirinjini; Ferber, Megan; Master, Monali; Zhu, Yan; Pack, Allan I.

    2008-01-01

    Protein misfolding, accumulation and aggregation characterize many aging related diseases. Protein aggregates do not accumulate in unstressed cells largely because of the existence of competent cellular “quality control” machinery. The endoplasmic reticulum (ER) is a major part of this quality control system. Accumulation of misfolded proteins in the ER causes ER stress and activates a signaling pathway called the unfolded protein response (UPR). The UPR limits protein load, by up-regulating ...

  5. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Science.gov (United States)

    Schaefer, Martin H; Yang, Jae-Seong; Serrano, Luis; Kiel, Christina

    2014-06-01

    Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors) and the output (transcription factors) layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types. PMID:24922536

  6. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  7. Phosphorylation of the fused protein kinase in response to signaling from hedgehog.

    OpenAIRE

    Thérond, P P; Knight, J. D.; Kornberg, T. B.; Bishop, J M

    1996-01-01

    The hedgehog gene (hh) of Drosophila melanogaster exerts both short- and long-range effects on cell patterning during development. The product of hedgehog is a secreted protein that apparently acts by triggering an intra-cellular signaling pathway, but little is known about the details of that pathway. The Drosophila gene fused (fu) encodes a serine/threonine-protein kinase that genetic experiments have implicated in signaling initiated by hedgehog. Here we report that the fused protein is ph...

  8. Putative signal peptides of two BURP proteins can direct proteins to their destinations in tobacco cell system.

    Science.gov (United States)

    Tang, Yulin; Ou, Zhonghua; Qiu, Jianbin; Mi, Zilan

    2014-11-01

    Plant-specific BURP family proteins have a diverse subcellular localization with different functions. However, only limited studies have investigated the functions of their different domains. In the present study, the role of the N-terminal putative signal peptide in protein subcellular localization was investigated using a tobacco cell system. The results showed that SALI3-2 was present in vacuoles, whereas AtRD22 was directed to the apoplast. The N-terminal putative signal peptides of both proteins were confirmed to be the essential and critical domains for targeting the proteins to their destinations. We also demonstrate that the expression and accumulation of mGFP in tobacco cells was increased when mGFP was fused to the putative signal peptide of SALI3-2. The findings offer the potential application of this short peptide in protein production in plants. PMID:25048229

  9. Beyond TLR Signaling—The Role of SARM in Antiviral Immune Defense, Apoptosis & Development.

    Science.gov (United States)

    Panneerselvam, Porkodi; Ding, Jeak Ling

    2015-01-01

    SARM (Sterile alpha and armadillo motif-containing protein) is the recently identified TIR domain-containing cytosolic protein. Classified as a member of the TLR adaptor family, the multiple locations and functions of SARM (sometimes playing opposing roles), provoke an enigma on its biology. Although originally assumed to be a member of the TLR adaptor family (functioning as a negative regulator of TLR signaling pathway), latest findings indicate that SARM regulates signaling differently from other TLR adaptor proteins. Recent studies have highlighted the significant functional role of SARM in mediating apoptosis and antiviral innate immune response. In this review, we provide an update on the evolutionary conservation, spatial distribution, and regulated expression of SARM to highlight its diverse functional roles. The review will summarize findings on the known interacting partners of SARM and provide analogy on how they add new dimensions to the current understanding on the multifaceted roles of SARM in antiviral activities and apoptotic functions. In addition, we provide a future perspective on the roles of SARM in differentiation and development, with substantial emphasis on the molecular insights to its mechanisms of action. PMID:26268046

  10. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.

    Directory of Open Access Journals (Sweden)

    Andrea Procaccini

    Full Text Available Predictive understanding of the myriads of signal transduction pathways in a cell is an outstanding challenge of systems biology. Such pathways are primarily mediated by specific but transient protein-protein interactions, which are difficult to study experimentally. In this study, we dissect the specificity of protein-protein interactions governing two-component signaling (TCS systems ubiquitously used in bacteria. Exploiting the large number of sequenced bacterial genomes and an operon structure which packages many pairs of interacting TCS proteins together, we developed a computational approach to extract a molecular interaction code capturing the preferences of a small but critical number of directly interacting residue pairs. This code is found to reflect physical interaction mechanisms, with the strongest signal coming from charged amino acids. It is used to predict the specificity of TCS interaction: Our results compare favorably to most available experimental results, including the prediction of 7 (out of 8 known interaction partners of orphan signaling proteins in Caulobacter crescentus. Surveying among the available bacterial genomes, our results suggest 15∼25% of the TCS proteins could participate in out-of-operon "crosstalks". Additionally, we predict clusters of crosstalking candidates, expanding from the anecdotally known examples in model organisms. The tools and results presented here can be used to guide experimental studies towards a system-level understanding of two-component signaling.

  11. Antiviral immunity in amphibians.

    Science.gov (United States)

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  12. MAVS protein is attenuated by rotavirus nonstructural protein 1.

    Directory of Open Access Journals (Sweden)

    Satabdi Nandi

    Full Text Available Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS, which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1 which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.

  13. Making Sense of G Proteins: Genetic analysis of sensory G protein signaling in the nematode C. elegans

    NARCIS (Netherlands)

    H. Lans (Hannes)

    2005-01-01

    textabstractAmong the key molecules involved in sensory perception are G proteins, which act in every cell to activate a cascade of signaling molecules in response to certain environmental cues. In this thesis, several studies on the role of G proteins in the sensory system of C. elegans are describ

  14. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie;

    2014-01-01

    not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro......-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of "classic" redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where...... a single chemokine may bind to several receptors - in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles...

  15. Methods for the Analysis of Protein Phosphorylation–Mediated Cellular Signaling Networks

    Science.gov (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  16. Regulation of the Host Antiviral State by Intercellular Communications

    Directory of Open Access Journals (Sweden)

    Sonia Assil

    2015-08-01

    Full Text Available Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic.

  17. Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis.

    Directory of Open Access Journals (Sweden)

    Chiranjib Chakraborty

    Full Text Available The type 2 diabetes has increased rapidly in recent years throughout the world. The insulin signal transduction mechanism gets disrupted sometimes and it's known as insulin-resistance. It is one of the primary causes associated with type-2 diabetes. The signaling mechanisms involved several proteins that include 7 major functional proteins such as INS, INSR, IRS1, IRS2, PIK3CA, Akt2, and GLUT4. Using these 7 principal proteins, multiple sequences alignment has been created. The scores between sequences also have been developed. We have constructed a phylogenetic tree and modified it with node and distance. Besides, we have generated sequence logos and ultimately developed the protein-protein interaction network. The small insulin signal transduction protein arrangement shows complex network between the functional proteins.

  18. Sizn1 is a novel protein that functions as a transcriptional coactivator of bone morphogenic protein signaling.

    Science.gov (United States)

    Cho, Ginam; Lim, Youngshin; Zand, Dina; Golden, Jeffrey A

    2008-03-01

    Bone morphogenic proteins (BMPs) play pleotrophic roles in nervous system development, and their signaling is highly regulated at virtually every step in the pathway. We have cloned a novel gene, Sizn1 (Smad-interacting zinc finger protein), which functions as a transcriptional coactivator of BMP signaling. It positively modulates BMP signaling by interacting with Smad family members and associating with CBP in the transcription complex. Sizn1 is expressed in the ventral embryonic forebrain, where, as we will show, it contributes to BMP-dependent, cholinergic-neuron-specific gene expression. These data indicate that Sizn1 is a positive modulator of BMP signaling and provide further insight into how BMP signaling can be modulated in neuronal progenitor subsets to influence cell-type-specific gene expression and development.

  19. Antiviral defense in shrimp: from innate immunity to viral infection.

    Science.gov (United States)

    Wang, Pei-Hui; Huang, Tianzhi; Zhang, Xiaobo; He, Jian-Guo

    2014-08-01

    The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.

  20. Requirement of JIP scaffold proteins for NMDA-mediated signal transduction

    OpenAIRE

    Kennedy, Norman J.; Martin, Gilles; Ehrhardt, Anka G.; Cavanagh-Kyros, Julie; Kuan, Chia-Yi; Rakic, Pasko; Richard A Flavell; Treistman, Steven N.; Davis, Roger J

    2007-01-01

    JIP scaffold proteins are implicated in the regulation of protein kinase signal transduction pathways. To test the physiological role of these scaffold proteins, we examined the phenotype of compound mutant mice that lack expression of JIP proteins. These mice were found to exhibit severe defects in N-methyl-D-aspartic acid (NMDA) receptor function, including decreased NMDA-evoked current amplitude, cytoplasmic Ca++, and gene expression. The decreased NMDA receptor activity in JIP-deficient n...

  1. MDA7/IL-24 is an anti-viral factor that inhibits influenza virus replication.

    Science.gov (United States)

    Seong, Rak-Kyun; Choi, Young-Ki; Shin, Ok Sarah

    2016-10-01

    Melanoma differentiation associated gene-7 (mda-7)/interleukin- 24 (IL-24) is a secreted cytokine, which plays an essential role in tumor suppression. Although its role as a multifunctional protein affecting broad types of cancers is well described, functions of IL-24 in host defense against virus infection are yet to be determined. In this study, we explored the anti-viral effect of recombinant IL-24 treatment during influenza infection. Infection of human lung adenocarcinoma cells (A549) with the influenza A virus up-regulated IL-24 mRNA and protein expression in a time-dependent manner. Pre-treatment of A549 cells with recombinant IL-24 protein effectively suppressed viral plaque formation. Furthermore, IL-24 treatment of A549 cells reduced viral non-structural protein 1 (NS1) synthesis, whereas IL-24 knockdown resulted in increased viral replication. Interestingly, IL-24 treatment following influenza A virus infection led to up-regulation of interferon (IFN)-induced antiviral signaling. Taken together, our results suggest that IL-24 exerts a potent suppressive effect on influenza viral replication and can be used in the treatment of influenza infection. PMID:27687232

  2. Role of Polarized G Protein Signaling in Tracking Pheromone Gradients.

    Science.gov (United States)

    McClure, Allison W; Minakova, Maria; Dyer, Jayme M; Zyla, Trevin R; Elston, Timothy C; Lew, Daniel J

    2015-11-23

    Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial and illuminate a novel mechanism for gradient tracking. PMID:26609960

  3. Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila.

    Directory of Open Access Journals (Sweden)

    Stephen R Spindler

    Full Text Available Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR, platelet-derived growth factor (PDGF/vascular endothelial growth factor (VEGF receptors, G-protein coupled receptor (GPCR, Janus kinase (JAK/signal transducer and activator of transcription (STAT, the insulin and insulin-like growth factor (IGFI receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38, c-Jun N-terminal kinase (JNK and protein kinase C (PKC. If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity.

  4. Sentra : a database of signal transduction proteins for comparative genome analysis.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Glass, E. M.; Syed, M. H.; Zhang, Y.; Rodriguez, A.; Maltsev, N.; Galerpin, M. Y.; Mathematics and Computer Science; Univ. of Chicago; NIH

    2007-01-01

    Sentra (http://compbio.mcs.anl.gov/sentra), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentra's infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users.

  5. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech

    2009-10-01

    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  6. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  7. Antiviral Drug Research Proposal Activity

    Directory of Open Access Journals (Sweden)

    Lisa Injaian

    2011-03-01

    Full Text Available The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.

  8. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), c

  9. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    Science.gov (United States)

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.

  10. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling.

    Science.gov (United States)

    Kazi, Julhash U; Kabir, Nuzhat N; Rönnstrand, Lars

    2015-07-01

    SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.

  11. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity.

    Science.gov (United States)

    Kehrl, John H

    2016-08-15

    Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling. PMID:27071343

  12. Application of native signal sequences for recombinant proteins secretion in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Do, Duy Duc; Eriksen, Jens C.;

    alpha‐mating factor (MF) prepropeptide from Saccharomyces cerevisiae is most commonly used. Our aim was to test whether signal peptides from P. pastoris native secreted proteins could be used to direct secretion of recombinant proteins. Results Eleven native signal peptides from P. pastoris were tested...... with the promoter and signal peptide of choice (or a mix thereof) and the basic expression vector. The mix is treated with USER enzyme and transformed into E. coli. The plasmids (or plasmid mixes) are further purified, linearized and transformed into P. pastoris. We illustrate the commodity of the system...... by optimization of expression of three different proteins in P. pastoris. Conclusions Native signal peptides from P. pastoris can be used to direct secretion of recombinant proteins. A novel USER‐based P. pastoris system allows easy cloning of protein‐coding gene with the promoter and leader sequence of choice....

  13. Emerging antiviral drugs.

    Science.gov (United States)

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025. PMID:18764719

  14. Emerging antiviral drugs.

    Science.gov (United States)

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025.

  15. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Science.gov (United States)

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  16. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Science.gov (United States)

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.

  17. Fas-Associated Protein with Death Domain Regulates Notch Signaling during Muscle Regeneration.

    Science.gov (United States)

    Zhang, Rong; Wang, Lu; He, Liangqiang; Yang, Bingya; Yao, Chun; Du, Pan; Xu, Qiang; Cheng, Wei; Hua, Zi-Chun

    2014-01-01

    Notch signaling plays critical roles during myogenesis by promoting the proliferation and inhibiting the differentiation of myogenic progenitors. However, the mechanism of the temporal regulation of Notch signaling during the myogenic lineage progression remains elusive. In the present study, we show that a constitutively phosphoryl-mimicking mutation of Fas-associated death domain (FADD-D) enhances Notch-1 signaling and compromises Wnt signaling in both cultured myoblasts and regenerating muscles, which results in inhibited myogenic differentiation and muscle regeneration. Inhibition of Notch signaling recovers the regeneration ability in injured FADD-D muscles through rescuing Wnt signaling. Furthermore, we found that protein kinase Cα mediates FADD-D-induced Notch-1 signaling by stabilizing Notch-1. Collectively, these data identify a novel mechanism for the temporal regulation of Notch signaling during myogenic lineage progression and muscle regeneration. PMID:26303234

  18. G-protein-coupled receptor controls steroid hormone signaling in cell membrane

    OpenAIRE

    Wang, Di; Zhao, Wen-Li; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2015-01-01

    G-protein-coupled receptors (GPCRs) are involved in animal steroid hormone signaling, but their mechanism is unclear. In this research, we report that a GPCR called ErGPCR-2 controls steroid hormone 20-hydroxyecdysone (20E) signaling in the cell membrane of the lepidopteran insect Helicoverpa armigera. ErGPCR-2 was highly expressed during molting and metamorphosis. 20E, via ErGPCR-2, regulated rapid intracellular calcium increase, protein phosphorylation, gene transcription, and insect metamo...

  19. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have...... to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine...... receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies...

  20. N-terminal of L protein of vesicular stomatitis virus contains a new signal sequence

    Institute of Scientific and Technical Information of China (English)

    NIE Yuchun; KE Yeyan; WANG Zai; YU Xiang; DENG Hongkui; DING Mingxiao

    2003-01-01

    The L protein (241 kD) of vesicular stomatitis virus (VSV) is the mostimportant subunit of the replication complex. The existence of specific localization signal in the L protein was investigated by making recombinant constructs expressing truncated mutants of the L protein fused to green fluorescent protein(GFP) in transient transfection assays. The chimeric genes encoding varied N-terminal of L and GFP gene were put under the control of T7 promoter or CMV promoter. The fusion proteins were transiently expressed in BHK-21, COS-7, CHO or Hep G2 cells. When more than 120 residues were deleted or only 96 residues were kepton the N-terminal, the fusion proteins were shown to be distributed throughout the cells, cytoplasm and nucleus under the confocal microscope. However, other chimeric proteins with 120 or more amino acids were dotted and distributed in theperinuclear regions. And the fusion protein with 96-120 aa has the similar distribution. A thirteen-residue peptide QGYSFLHEVDKEA (108-120) was identified as localization signal, whose function would be absolutely distributed with the deficiency of D or V. Our results show that there is an independent localizing signal in N-terminal domain of L protein of VSV and this functional signal is conserved in different cell lines.

  1. Syntrophin proteins as Santa Claus: role(s) in cell signal transduction.

    Science.gov (United States)

    Bhat, Hina F; Adams, Marvin E; Khanday, Firdous A

    2013-07-01

    Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell's own personal 'Santa Claus' that serves to 'gift' various signaling complexes with precise proteins that they 'wish for', and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated. PMID:23263165

  2. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    International Nuclear Information System (INIS)

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1–17 and 18–36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  3. Role of protein kinase D signaling in pancreatic cancer

    OpenAIRE

    Guha, Sushovan; Tanasanvimon, Suebpong; Sinnett-Smith, James; Rozengurt, Enrique

    2010-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with dismal survival rates. Its intransigence to conventional therapy renders PDAC an aggressive disease with early metastatic potential. Thus, novel targets for PDAC therapy are urgently needed. Multiple signal transduction pathways are implicated in progression of PDAC. These pathways stimulate production of intracellular messengers in their target cells to modify their behavior, including the lipid-derived diacylglyc...

  4. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice

    NARCIS (Netherlands)

    Bleuming, Sylvia A.; He, Xi C.; Kodach, Liudmila L.; Hardwick, James C.; Koopman, Frieda A.; ten Kate, Fiebo J.; van Deventer, Sander J. H.; Hommes, Daniel W.; Peppelenbosch, Maikel P.; Offerhaus, G. Johan; Li, Linheng; van den Brink, Gijs R.

    2007-01-01

    Bone morphogenetic protein (BMP) signaling is known to suppress oncogenesis in the small and large intestine of mice and humans. We examined the role of Bmpr1a signaling in the stomach. On conditional inactivation of Bmpr1a, mice developed neoplastic lesions specifically in the squamocolumnar and ga

  5. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development.

    Science.gov (United States)

    Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S

    2007-12-01

    We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication-competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 h after infection (approximately HH22) and observed that Shh expression was reduced or absent. In the mesenchyme, we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 h after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin-infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway.

  6. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola;

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...

  7. Mapping membrane protein interactions in cell signaling systems.

    Energy Technology Data Exchange (ETDEWEB)

    Light, Yooli Kim; Hadi, Masood Z.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Young, Malin M.

    2003-12-01

    We proposed to apply a chemical cross-linking, mass spectrometry and modeling method called MS3D to the structure determination of the rhodopsin-transducin membrane protein complex (RTC). Herein we describe experimental progress made to adapt the MS3D approach for characterizing membrane protein systems, and computational progress in experimental design, data analysis and protein structure modeling. Over the past three years, we have developed tailored experimental methods for all steps in the MS3D method for rhodopsin, including protein purification, a functional assay, cross-linking, proteolysis and mass spectrometry. In support of the experimental effort. we have out a data analysis pipeline in place that automatically selects the monoisotopic peaks in a mass spectrometric spectrum, assigns them and stores the results in a database. Theoretical calculations using 24 experimentally-derived distance constraints have resulted in a backbone-level model of the activated form of rhodopsin, which is a critical first step towards building a model of the RTC. Cross-linked rhodopsin-transducin complexes have been isolated via gel electrophoresis and further mass spectrometric characterization of the cross-links is underway.

  8. The protein architecture of human secretory vesicles reveals differential regulation of signaling molecule secretion by protein kinases.

    Directory of Open Access Journals (Sweden)

    Steven J Bark

    Full Text Available Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the 'human' dense core secretory vesicles (DCSV to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health.

  9. The protein interaction network of a taxis signal transduction system in a Halophilic Archaeon

    Directory of Open Access Journals (Sweden)

    Schlesner Matthias

    2012-11-01

    Full Text Available Abstract Background The taxis signaling system of the extreme halophilic archaeon Halobacterium (Hbt. salinarum differs in several aspects from its model bacterial counterparts Escherichia coli and Bacillus subtilis. We studied the protein interactions in the Hbt. salinarum taxis signaling system to gain an understanding of its structure, to gain knowledge about its known components and to search for new members. Results The interaction analysis revealed that the core signaling proteins are involved in different protein complexes and our data provide evidence for dynamic interchanges between them. Fifteen of the eighteen taxis receptors (halobacterial transducers, Htrs can be assigned to four different groups depending on their interactions with the core signaling proteins. Only one of these groups, which contains six of the eight Htrs with known signals, shows the composition expected for signaling complexes (receptor, kinase CheA, adaptor CheW, response regulator CheY. From the two Hbt. salinarum CheW proteins, only CheW1 is engaged in signaling complexes with Htrs and CheA, whereas CheW2 interacts with Htrs but not with CheA. CheY connects the core signaling structure to a subnetwork consisting of the two CheF proteins (which build a link to the flagellar apparatus, CheD (the hub of the subnetwork, two CheC complexes and the receptor methylesterase CheB. Conclusions Based on our findings, we propose two hypotheses. First, Hbt. salinarum might have the capability to dynamically adjust the impact of certain Htrs or Htr clusters depending on its current needs or environmental conditions. Secondly, we propose a hypothetical feedback loop from the response regulator to Htr methylation made from the CheC proteins, CheD and CheB, which might contribute to adaptation analogous to the CheC/CheD system of B. subtilis.

  10. Functional cross-modulation between SOCS proteins can stimulate cytokine signaling.

    Science.gov (United States)

    Piessevaux, Julie; Lavens, Delphine; Montoye, Tony; Wauman, Joris; Catteeuw, Dominiek; Vandekerckhove, Joël; Belsham, Denise; Peelman, Frank; Tavernier, Jan

    2006-11-01

    SOCS (suppressors of cytokine signaling) proteins are negative regulators of cytokine signaling that function primarily at the receptor level. Remarkably, in vitro and in vivo observations revealed both inhibitory and stimulatory effects of SOCS2 on growth hormone signaling, suggesting an additional regulatory level. In this study, we examined the possibility of direct cross-modulation between SOCS proteins and found that SOCS2 could interfere with the inhibitory actions of other SOCS proteins in growth hormone, interferon, and leptin signaling. This SOCS2 effect was SOCS box-dependent, required recruitment of the elongin BC complex, and coincided with degradation of target SOCS proteins. Detailed mammalian protein-protein interaction trap (MAPPIT) analysis indicated that SOCS2 can interact with all members of the SOCS family. SOCS2 may thus function as a molecular bridge between a ubiquitin-protein isopeptide ligase complex and SOCS proteins, targeting them for proteasomal turnover. We furthermore extended these observations to SOCS6 and SOCS7. Our findings point to a unique regulatory role for SOCS2, SOCS6, and SOCS7 within the SOCS family and provide an explanation for the unexpected phenotypes observed in SOCS2 and SOCS6 transgenic mice. PMID:16956890

  11. S-Glutathionylation and Redox Protein Signaling in Drug Addiction

    OpenAIRE

    Womersley, Jacqueline S.; Uys, Joachim D.

    2015-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protectiv...

  12. Signal Propagation in Proteins and Relation to Equilibrium Fluctuations

    OpenAIRE

    Chennubhotla, Chakra; Bahar, Ivet

    2007-01-01

    Elastic network (EN) models have been widely used in recent years for describing protein dynamics, based on the premise that the motions naturally accessible to native structures are relevant to biological function. We posit that equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of residues. We measure the communic...

  13. Signal propagation in proteins and relation to equilibrium fluctuations.

    OpenAIRE

    Chakra Chennubhotla; Ivet Bahar

    2007-01-01

    Elastic network (EN) models have been widely used in recent years for describing protein dynamics, based on the premise that the motions naturally accessible to native structures are relevant to biological function. We posit that equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of residues. We measure the communic...

  14. Phase transitions in the assembly of multivalent signalling proteins

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pilong; Banjade, Sudeep; Cheng, Hui-Chun; Kim, Soyeon; Chen, Baoyu; Guo, Liang; Llaguno, Marc; Hollingsworth, Javoris V.; King, David S.; Banani, Salman F.; Russo, Paul S.; Jiang, Qiu-Xing; Nixon, B. Tracy; Rosen, Michael K. (IIT); (UCB); (LSU); (UTSMC); (Penn)

    2013-04-08

    Cells are organized on length scales ranging from angstrom to micrometers. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometer-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometer-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin1, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.

  15. The bovine papillomavirus type 1 E2 transactivator and repressor proteins use different nuclear localization signals.

    Science.gov (United States)

    Skiadopoulos, M H; McBride, A A

    1996-02-01

    The E2 gene of bovine papillomavirus type 1 encodes at least three nuclear phosphoproteins that regulate viral transcription and DNA replication. All three proteins have a common C-terminal domain that has DNA-binding and dimerization activities. A basic region in this domain forms an alpha helix which makes direct contact with the DNA target. In this study, it is shown that in addition to its role in DNA binding, this basic region functions as a nuclear localization signal both in the E2 DNA-binding domain and in a heterologous protein. Deletion of this signal sequence resulted in increased accumulation of the E2 transactivator and repressor proteins in the cytoplasm, but nuclear localization was not eliminated. In the full-length transactivator protein, another signal, present in the N-terminal transactivation domain, is used for transport to the nucleus, and the C-terminal nuclear localization signal(s) are masked. The use of different nuclear localization signals could potentially allow differential regulation of the subcellular localization of the E2 transactivator and repressor proteins at some stage in the viral life cycle. PMID:8551571

  16. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis.

    Science.gov (United States)

    Hayashi, Hisaki; Al Mamun, Abdullah; Sakima, Miho; Sato, Motohiko

    2016-03-15

    Activator of G-protein signaling 8 (AGS8, also known as FNDC1) is a receptor-independent accessory protein for the Gβγ subunit, which was isolated from rat heart subjected to repetitive transient ischemia with the substantial development of collaterals. Here, we report the role of AGS8 in vessel formation by endothelial cells. Knockdown of AGS8 by small interfering RNA (siRNA) inhibited vascular endothelial growth factor (VEGF)-induced tube formation, as well as VEGF-stimulated cell growth and migration. VEGF stimulated the phosphorylation of the VEGF receptor-2 (VEGFR-2, also known as KDR), ERK1/2 and p38 MAPK; however, knockdown of AGS8 inhibited these signaling events. Signal alterations by AGS8 siRNA were associated with a decrease of cell surface VEGFR-2 and an increase of VEGFR-2 in the cytosol. Endocytosis blockers did not influence the decrease of VEGFR-2 by AGS8 siRNA, suggesting the involvement of AGS8 in VEGFR-2 trafficking to the plasma membrane. VEGFR-2 formed a complex with AGS8 in cells, and a peptide designed to disrupt AGS8-Gβγ interaction inhibited VEGF-induced tube formation. These data suggest a potential role for AGS8-Gβγ in VEGF signal processing. AGS8 might play a key role in tissue adaptation by regulating angiogenic events.

  17. The battle between rotavirus and its host for control of the interferon signaling pathway.

    Directory of Open Access Journals (Sweden)

    Michelle M Arnold

    2013-01-01

    Full Text Available Viral pathogens must overcome innate antiviral responses to replicate successfully in the host organism. Some of the mechanisms viruses use to interfere with antiviral responses in the infected cell include preventing detection of viral components, perturbing the function of transcription factors that initiate antiviral responses, and inhibiting downstream signal transduction. RNA viruses with small genomes and limited coding space often express multifunctional proteins that modulate several aspects of the normal host response to infection. One such virus, rotavirus, is an important pediatric pathogen that causes severe gastroenteritis, leading to ~450,000 deaths globally each year. In this review, we discuss the nature of the innate antiviral responses triggered by rotavirus infection and the viral mechanisms for inhibiting these responses.

  18. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    Directory of Open Access Journals (Sweden)

    Brase Jan C

    2010-06-01

    Full Text Available Abstract Background Reverse phase protein arrays (RPPA emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89 between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range.

  19. ANTIVIRAL EFFECTS OF PLASMA AND MILK-PROTEINS - LACTOFERRIN SHOWS POTENT ACTIVITY AGAINST BOTH HUMAN-IMMUNODEFICIENCY-VIRUS AND HUMAN CYTOMEGALOVIRUS REPLICATION IN-VITRO

    NARCIS (Netherlands)

    HARMSEN, MC; SWART, PJ; DEBETHUNE, MP; PAUWELS, R; DECLERCQ, E; THE, TH; MEIJER, DKF

    1995-01-01

    Native and chemically derivatized proteins purified from serum and milk were assayed in vitro to assess their inhibiting capacity on the cytopathic effect of human immunodeficiency virus (HIV)-1 and human cytomegalovirus (HCMV) on MT4 cells and fibroblasts, respectively. Only native and conformation

  20. Variation in cell signaling protein expression may introduce sampling bias in primary epithelial ovarian cancer.

    Science.gov (United States)

    Mittermeyer, Gabriele; Malinowsky, Katharina; Beese, Christian; Höfler, Heinz; Schmalfeldt, Barbara; Becker, Karl-Friedrich; Avril, Stefanie

    2013-01-01

    Although the expression of cell signaling proteins is used as prognostic and predictive biomarker, variability of protein levels within tumors is not well studied. We assessed intratumoral heterogeneity of protein expression within primary ovarian cancer. Full-length proteins were extracted from 88 formalin-fixed and paraffin-embedded tissue samples of 13 primary high-grade serous ovarian carcinomas with 5-9 samples each. In addition, 14 samples of normal fallopian tube epithelium served as reference. Quantitative reverse phase protein arrays were used to analyze the expression of 36 cell signaling proteins including HER2, EGFR, PI3K/Akt, and angiogenic pathways as well as 15 activated (phosphorylated) proteins. We found considerable intratumoral heterogeneity in the expression of proteins with a mean coefficient of variation of 25% (range 17-53%). The extent of intratumoral heterogeneity differed between proteins (p<0.005). Interestingly, there were no significant differences in the extent of heterogeneity between phosphorylated and non-phosphorylated proteins. In comparison, we assessed the variation of protein levels amongst tumors from different patients, which revealed a similar mean coefficient of variation of 21% (range 12-48%). Based on hierarchical clustering, samples from the same patient clustered more closely together compared to samples from different patients. However, a clear separation of tumor versus normal tissue by clustering was only achieved when mean expression values of all individual samples per tumor were analyzed. While differential expression of some proteins was detected independently of the sampling method used, the majority of proteins only demonstrated differential expression when mean expression values of multiple samples per tumor were analyzed. Our data indicate that assessment of established and novel cell signaling proteins as diagnostic or prognostic markers may require sampling of serous ovarian cancers at several distinct

  1. Variation in cell signaling protein expression may introduce sampling bias in primary epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Gabriele Mittermeyer

    Full Text Available Although the expression of cell signaling proteins is used as prognostic and predictive biomarker, variability of protein levels within tumors is not well studied. We assessed intratumoral heterogeneity of protein expression within primary ovarian cancer. Full-length proteins were extracted from 88 formalin-fixed and paraffin-embedded tissue samples of 13 primary high-grade serous ovarian carcinomas with 5-9 samples each. In addition, 14 samples of normal fallopian tube epithelium served as reference. Quantitative reverse phase protein arrays were used to analyze the expression of 36 cell signaling proteins including HER2, EGFR, PI3K/Akt, and angiogenic pathways as well as 15 activated (phosphorylated proteins. We found considerable intratumoral heterogeneity in the expression of proteins with a mean coefficient of variation of 25% (range 17-53%. The extent of intratumoral heterogeneity differed between proteins (p<0.005. Interestingly, there were no significant differences in the extent of heterogeneity between phosphorylated and non-phosphorylated proteins. In comparison, we assessed the variation of protein levels amongst tumors from different patients, which revealed a similar mean coefficient of variation of 21% (range 12-48%. Based on hierarchical clustering, samples from the same patient clustered more closely together compared to samples from different patients. However, a clear separation of tumor versus normal tissue by clustering was only achieved when mean expression values of all individual samples per tumor were analyzed. While differential expression of some proteins was detected independently of the sampling method used, the majority of proteins only demonstrated differential expression when mean expression values of multiple samples per tumor were analyzed. Our data indicate that assessment of established and novel cell signaling proteins as diagnostic or prognostic markers may require sampling of serous ovarian cancers at

  2. Time-dependent, glucose-regulated Arabidopsis Regulator of G-protein Signaling 1 network

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Jaiswal

    2016-04-01

    Full Text Available Plants lack 7-transmembrane, G-protein coupled receptors (GPCRs because the G alpha subunit of the heterotrimeric G protein complex is “self-activating”—meaning that it spontaneously exchanges bound GDP for GTP without the need of a GPCR. In lieu of GPCRs, most plants have a seven transmembrane receptor-like regulator of G-protein signaling (RGS protein, a component of the complex that keeps G-protein signaling in its non-activated state. The addition of glucose physically uncouples AtRGS1 from the complex through specific endocytosis leaving the activated G protein at the plasma membrane. The complement of proteins in the AtRGS1/G-protein complex over time from glucose-induced endocytosis was profiled by immunoprecipitation coupled to mass spectrometry (IP-MS. A total of 119 proteins in the AtRGS1 complex were identified. Several known interactors of the complex were identified, thus validating the approach, but the vast majority (93/119 were not known previously. AtRGS1 protein interactions were dynamically modulated by d-glucose. At low glucose levels, the AtRGS1 complex is comprised of proteins involved in transport, stress and metabolism. After glucose application, the AtRGS1 complex rapidly sheds many of these proteins and recruits other proteins involved in vesicular trafficking and signal transduction. The profile of the AtRGS1 components answers several questions about the type of coat protein and vesicular trafficking GTPases used in AtRGS1 endocytosis and the function of endocytic AtRGS1.

  3. ANTI-VIRAL ACTIVITY OF GLYCIRRHETINIC AND GLYCIRRHIZIC ACIDS

    Directory of Open Access Journals (Sweden)

    V. V. Zarubaev

    2016-01-01

    Full Text Available Influenza is a highly contagious human disease. In the course of use of antiviral drugs drug-resistant strains of the virus are formed, resulting in reduced efficiency of the chemotherapy. The review describes the biological activity of glycirrhetinic (GLA and glycirrhizic (GA acids in terms of their use as a therapeutic agent for viral infections. So, these compounds are against a broad spectrum of viruses, including herpes, corona-, alphaand flaviviruses, human immunodeficiency virus, vaccinia virus, poliovirus type I, vesicular stomatitis virus and influenza A virus. These data indicate that anti-viral effect of these compounds is due to several types of activity — direct antiviral effects, effects on cellular proand anti-viral and immunomodulating pathways, in particular by activation of innate immunity system. GA interferes with early steps of the viral reproductive cycle such as virus binding to its receptor, the absorption of the virus by endocytosis or virus decapsidation in the cytoplasm. This is due to the effect of GA-induced reduction of membrane fluidity. Thus, one mechanism for the antiviral activity of GA is that GA molecule increases the rigidity of cellular and viral membranes after incorporation in there. This results in increasing of energy threshold required for the formation of negative curvature at the fusion zones, as well as difficult lateral migration of the virus-receptor complexes. In addition, glycyrrhizin prevents interaction of viral nucleoprotein with cellular protein HMGB1, which is necessary for the viral life cycle. Glycyrrhizin also inhibits the induction of oxidative stress during influenza infection, exhibiting antioxidant properties, which leads to a reduction of virus-induced production of cytokines/chemokines, without affecting the replication of the virus. A wide spectrum of biological activity and effect on various aspects of the viral pathogenesis substantiate the effect of GA and GLA as a component

  4. Signaling the Unfolded Protein Response in primary brain cancers.

    Science.gov (United States)

    Le Reste, Pierre-Jean; Avril, Tony; Quillien, Véronique; Morandi, Xavier; Chevet, Eric

    2016-07-01

    The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. PMID:27016056

  5. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2015-08-01

    Full Text Available Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71 is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways.

  6. Thiol redox transitions by thioredoxin and thioredoxin-binding protein-2 in cell signaling.

    Science.gov (United States)

    Yoshihara, Eiji; Chen, Zhe; Matsuo, Yoshiyuki; Masutani, Hiroshi; Yodoi, Junji

    2010-01-01

    The cellular thiol redox state is a crucial mediator of metabolic, signaling and transcriptional processes in cells, and an exquisite balance between the oxidizing and reducing states is essential for the normal function and survival of cells. Reactive oxygen species (ROS) are widely known to function as a kind of second messenger for intracellular signaling and to modulate the thiol redox state. Thiol reduction is mainly controlled by the thioredoxin (TRX) system and glutathione (GSH) systems as scavengers of ROS and regulators of the protein redox states. The thioredoxin system is composed of several related molecules interacting through the cysteine residues at the active site, including thioredoxin, thioredoxin-2, a mitochondrial thioredoxin family, and transmembrane thioredoxin-related protein (TMX), an endoplasmic reticulum (ER)-specific thioredoxin family. Thioredoxin couples with thioredoxin-dependent peroxidases (peroxiredoxin) to scavenge hydrogen peroxide. In addition, thioredoxin does not simply act only as a scavenger of ROS but also as an important regulator of oxidative stress response through protein-protein interaction. The interaction of thioredoxin and thioredoxin-binding proteins such as thioredoxin-binding protein-2 (TBP-2, also called as Txnip or VDUP1), apoptosis signal kinase (ASK-1), redox factor 1 (Ref-1), Forkhead box class O 4 (FoxO4), and nod-like receptor proteins (NLRPs) suggested unconventional functions of thioredoxin and a novel mechanism of redox regulation. Here, we introduce the central mechanism of thiol redox transition in cell signaling regulated by thioredoxin and related molecules.

  7. Adenovirus infection reverses the antiviral state induced by human interferon.

    Science.gov (United States)

    Feduchi, E; Carrasco, L

    1987-04-01

    HeLa cells treated with human lymphoblastoid interferon do not synthesize poliovirus proteins. The antiviral state against poliovirus is reversed if cells are previously infected with adenovirus type 5. A late gene product seems to be involved in this reversion, since no effect is observed at early stages of infection or in the presence of aphidicolin.

  8. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation.

    Science.gov (United States)

    Penela, P

    2016-01-01

    G-protein-coupled receptors (GPCRs) are responsible for regulating a wide variety of physiological processes, and distinct mechanisms for GPCR inactivation exist to guarantee correct receptor functionality. One of the widely used mechanisms is receptor phosphorylation by specific G-protein-coupled receptor kinases (GRKs), leading to uncoupling from G proteins (desensitization) and receptor internalization. GRKs and β-arrestins also participate in the assembly of receptor-associated multimolecular complexes, thus initiating alternative G-protein-independent signaling events. In addition, the abundant GRK2 kinase has diverse "effector" functions in cellular migration, proliferation, and metabolism homeostasis by means of the phosphorylation or interaction with non-GPCR partners. Altered expression of GRKs (particularly of GRK2 and GRK5) occurs during pathological conditions characterized by impaired GPCR signaling including inflammatory syndromes, cardiovascular disease, and tumor contexts. It is increasingly appreciated that different pathways governing GRK protein stability play a role in the modulation of kinase levels in normal and pathological conditions. Thus, enhanced GRK2 degradation by the proteasome pathway occurs upon GPCR stimulation, what allows cellular adaptation to chronic stimulation in a physiological setting. β-arrestins participate in this process by facilitating GRK2 phosphorylation by different kinases and by recruiting diverse E3 ubiquitin ligase to the receptor complex. Different proteolytic systems (ubiquitin-proteasome, calpains), chaperone activities and signaling pathways influence the stability of GRKs in different ways, thus endowing specificity to GPCR regulation as protein turnover of GRKs can be differentially affected. Therefore, modulation of protein stability of GRKs emerges as a versatile mechanism for feedback regulation of GPCR signaling and basic cellular processes. PMID:27378756

  9. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia

    2015-05-07

    © 2015 American Chemical Society. In nanopore sensing experiments, the properties of molecules are probed by the variation of ionic currents flowing through the nanopore. In this context, the electronic properties and the single-layer thickness of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics methods with a bioinformatic structural analysis. To obtain a qualitative picture of the translocation process and to identify salient features we performed unsupervised structural clustering on translocation conformations. This allowed us to identify some specific and robust translocation intermediates, characterized by significantly different ionic current flows. We found that the ion current strictly anticorrelates with the amount of pore occupancy by thioredoxin residues, providing a putative explanation of the multilevel current scenario observed in recently published translocation experiments.

  10. GPR158/179 regulate G protein signaling by controlling localization and activity of the RGS7 complexes

    OpenAIRE

    Orlandi, Cesare; Posokhova, Ekaterina; Masuho, Ikuo; Ray, Thomas A; Hasan, Nazarul; Gregg, Ronald G; Martemyanov, Kirill A.

    2012-01-01

    The extent and temporal characteristics of G protein–coupled receptor (GPCR) signaling are shaped by the regulator of G protein signaling (RGS) proteins, which promote G protein deactivation. With hundreds of GPCRs and dozens of RGS proteins, compartmentalization plays a key role in establishing signaling specificity. However, the molecular details and mechanisms of this process are poorly understood. In this paper, we report that the R7 group of RGS regulators is controlled by interaction wi...

  11. Viral Ancestors of Antiviral Systems

    Directory of Open Access Journals (Sweden)

    Luis P. Villarreal

    2011-10-01

    Full Text Available All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  12. Viral ancestors of antiviral systems.

    Science.gov (United States)

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  13. A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum.

    Science.gov (United States)

    Huber, Robert J; O'Day, Danton H

    2012-12-01

    Matricellular proteins interact with the extracellular matrix (ECM) and modulate cellular processes by binding to cell surface receptors and initiating intracellular signal transduction. Their association with the ECM and the ability of some members of this protein family to regulate cell motility have opened up new avenues of research to investigate their functions in normal and diseased cells. In this review, we summarize the research on CyrA, an ECM calmodulin-binding protein in Dictyostelium. CyrA is proteolytically cleaved into smaller EGF-like (EGFL) repeat containing cleavage products during development. The first EGFL repeat of CyrA binds to the cell surface and activates a novel signalling pathway that modulates cell motility in this model organism. The similarity of CyrA to the most well-characterized matricellular proteins in mammals allows it to be designated as the first matricellular protein identified in Dictyostelium. PMID:22782112

  14. Classification of signaling proteins based on molecular star graph descriptors using Machine Learning models.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Cuiñas, Rubén F; Seoane, José A; Fernández-Blanco, Enrique; Dorado, Julian; Munteanu, Cristian R

    2015-11-01

    Signaling proteins are an important topic in drug development due to the increased importance of finding fast, accurate and cheap methods to evaluate new molecular targets involved in specific diseases. The complexity of the protein structure hinders the direct association of the signaling activity with the molecular structure. Therefore, the proposed solution involves the use of protein star graphs for the peptide sequence information encoding into specific topological indices calculated with S2SNet tool. The Quantitative Structure-Activity Relationship classification model obtained with Machine Learning techniques is able to predict new signaling peptides. The best classification model is the first signaling prediction model, which is based on eleven descriptors and it was obtained using the Support Vector Machines-Recursive Feature Elimination (SVM-RFE) technique with the Laplacian kernel (RFE-LAP) and an AUROC of 0.961. Testing a set of 3114 proteins of unknown function from the PDB database assessed the prediction performance of the model. Important signaling pathways are presented for three UniprotIDs (34 PDBs) with a signaling prediction greater than 98.0%. PMID:26297890

  15. Rheb-TOR signaling promotes protein synthesis, but not glucose or amino acid import, in Drosophila

    Directory of Open Access Journals (Sweden)

    de la Cruz Aida

    2007-03-01

    Full Text Available Abstract Background The Ras-related GTPase, Rheb, regulates the growth of animal cells. Genetic and biochemical tests place Rheb upstream of the target of rapamycin (TOR protein kinase, and downstream of the tuberous sclerosis complex (TSC1/TSC2 and the insulin-signaling pathway. TOR activity is regulated by nutritional cues, suggesting that Rheb might either control, or respond to, nutrient availability. Results We show that Rheb and TOR do not promote the import of glucose, bulk amino acids, or arginine in Drosophila S2 cells, but that both gene products are important regulators of ribosome biogenesis, protein synthesis, and cell size. S2 cell size, protein synthesis, and glucose import were largely insensitive to manipulations of insulin signaling components, suggesting that cellular energy levels and TOR activity can be maintained through insulin/PI3K-independent mechanisms in S2 cell culture. In vivo in Drosophila larvae, however, we found that insulin signaling can regulate protein synthesis, and thus may affect TOR activity. Conclusion Rheb-TOR signaling controls S2 cell growth by promoting ribosome production and protein synthesis, but apparently not by direct effects on the import of amino acids or glucose. The effect of insulin signaling upon TOR activity varies according to cellular type and context.

  16. RGS proteins destroy spare receptors: Effects of GPCR-interacting proteins and signal deamplification on measurements of GPCR agonist potency.

    Science.gov (United States)

    Chidiac, Peter

    2016-01-01

    Many GPCRs are able to activate multiple distinct signaling pathways, and these may include biochemical cascades activated via either heterotrimeric G proteins or by β-arrestins. The relative potencies and/or efficacies among a series of agonists that act on a common receptor can vary depending upon which signaling pathway is being activated. This phenomenon is known as biased signaling or functional selectivity, and is presumed to reflect underlying differences in ligand binding affinities for alternate conformational states of the receptor. The first part of this review discusses how various cellular GPCR interacting proteins (GIPs) can influence receptor conformation and thereby affect ligand-receptor interactions and contribute to signaling bias. Upon activation, receptors trigger biochemical cascades that lead to altered cellular function, and measuring points along the cascade (e.g., second messenger production) conveys information about receptor activity. As a signal continues along its way, the observed concentration dependence of a GPCR ligand may change due to amplification and saturation of biochemical steps. The second part of this review considers additional cellular factors that affect signal processing, focusing mainly on structural elements and deamplification mechanisms, and discusses the relevance of these to measurements of potency and functional selectivity. PMID:26297537

  17. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  18. Biased signaling through G-protein-coupled PROKR2 receptors harboring missense mutations.

    Science.gov (United States)

    Sbai, Oualid; Monnier, Carine; Dodé, Catherine; Pin, Jean-Philippe; Hardelin, Jean-Pierre; Rondard, Philippe

    2014-08-01

    Various missense mutations in the gene coding for prokineticin receptor 2 (PROKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome. However, the functional consequences of these mutations on the different signaling pathways of this receptor have not been studied. We first showed that the wild-type PROKR2 can activate different G-protein subtypes (Gq, Gs, and Gi/o) and recruit β-arrestins in transfected HEK-293 cells. We then examined, for each of these signaling pathways, the effects of 9 mutations that did not significantly impair cell surface targeting or ligand binding of the receptor. Four mutant receptors showing defective Gq signaling (R85C, R85H, R164Q, and V331M) could still recruit β-arrestins on ligand activation, which may cause biased signaling in vivo. Conversely, the R80C receptor could activate the 3 types of G proteins but could not recruit β-arrestins. Finally, the R268C receptor could recruit β-arrestins and activate the Gq and Gs signaling pathways but could not activate the Gi/o signaling pathway. Our results validate the concept that mutations in the genes encoding membrane receptors can bias downstream signaling in various ways, possibly leading to pathogenic and, perhaps in some cases, protective (e.g., R268C) effects. PMID:24830383

  19. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  20. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense

    Science.gov (United States)

    Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan

    2014-01-01

    The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792

  1. Momilactione B inhibits protein kinase A signaling and reduces tyrosinase-related proteins 1 and 2 expression in melanocytes.

    Science.gov (United States)

    Lee, Ji Hae; Cho, Boram; Jun, Hee-jin; Seo, Woo-Duck; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-05-01

    Momilactone B (MB) is a terpenoid phytoalexin present in rice bran that exhibits several biological activities. MB reduced the melanin content in B16 melanocytes melanin content and inhibited tyrosinase activities. Using transcriptome analysis, the genes involved in protein kinase A (PKA) signaling were found to be markedly altered. B16 cells stimulated with MB had decreased concentrations of cAMP protein kinase A activity, and cAMP-response element-binding protein which is a key transcription factor for microphthalmia-associated transcription factor (MITF) expression. Accordingly, the expression of MITF and its target genes, which are essential for melanogenesis, were reduced. MB thus exhibits anti-melanogenic effects by repressing tyrosinase enzyme activity and inhibiting the PKA signaling pathway which, in turn, decreases melanogenic gene expression.

  2. Mechanisms of virus resistance and antiviral activity of snake venoms

    Directory of Open Access Journals (Sweden)

    JVR Rivero

    2011-01-01

    Full Text Available Viruses depend on cell metabolism for their own propagation. The need to foster an intimate relationship with the host has resulted in the development of various strategies designed to help virus escape from the defense mechanisms present in the host. Over millions of years, the unremitting battle between pathogens and their hosts has led to changes in evolution of the immune system. Snake venoms are biological resources that have antiviral activity, hence substances of significant pharmacological value. The biodiversity in Brazil with respect to snakes is one of the richest on the planet; nevertheless, studies on the antiviral activity of venom from Brazilian snakes are scarce. The antiviral properties of snake venom appear as new promising therapeutic alternative against the defense mechanisms developed by viruses. In the current study, scientific papers published in recent years on the antiviral activity of venom from various species of snakes were reviewed. The objective of this review is to discuss the mechanisms of resistance developed by viruses and the components of snake venoms that present antiviral activity, particularly, enzymes, amino acids, peptides and proteins.

  3. Cell-free translation and purification of Arabidopsis thaliana regulator of G signaling 1 protein.

    Science.gov (United States)

    Li, Bo; Makino, Shin-Ichi; Beebe, Emily T; Urano, Daisuke; Aceti, David J; Misenheimer, Tina M; Peters, Jonathan; Fox, Brian G; Jones, Alan M

    2016-10-01

    Arabidopsis thaliana Regulator of G protein Signalling 1 (AtRGS1) is a protein with a predicted N-terminal 7-transmembrane (7TM) domain and a C-terminal cytosolic RGS1 box domain. The RGS1 box domain exerts GTPase activation (GAP) activity on Gα (AtGPA1), a component of heterotrimeric G protein signaling in plants. AtRGS1 may perceive an exogenous agonist to regulate the steady-state levels of the active form of AtGPA1. It is uncertain if the full-length AtRGS1 protein exerts any atypical effects on Gα, nor has it been established exactly how AtRGS1 contributes to perception of an extracellular signal and transmits this response to a G-protein dependent signaling cascade. Further studies on full-length AtRGS1 have been inhibited due to the extreme low abundance of the endogenous AtRGS1 protein in plants and lack of a suitable heterologous system to express AtRGS1. Here, we describe methods to produce full-length AtRGS1 by cell-free synthesis into unilamellar liposomes and nanodiscs. The cell-free synthesized AtRGS1 exhibits GTPase activating activity on Gα and can be purified to a level suitable for biochemical analyses. PMID:27164033

  4. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation.

    Science.gov (United States)

    Roth, Susanne; Ruland, Jürgen

    2013-06-01

    Caspase recruitment domain-containing protein (Card)9 is a nonredundant adapter protein that functions in the innate immune system in the assembly of multifunctional signaling complexes. Together with B cell lymphoma (Bcl)10 and the paracaspase, mucosa-associated lymphoid tissue lymphoma translocation protein (Malt)1, Card9 links spleen-tyrosine kinase (Syk)-coupled C-type lectin receptors to inflammatory responses. Card9 signaling also responds to intracellular danger sensors, such as retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) and nucleotide-oligomerization domain (Nod)2. Card9 complexes are engaged upon fungal, bacterial, or viral recognition, and they are essential for host protection. Moreover, Card9 polymorphisms are commonly associated with human inflammatory diseases. Here, we discuss the molecular regulation and the physiological functions of Card9 in host defense and immune homeostasis, and provide a framework for the therapeutic targeting of Card9 signaling in immune-mediated diseases. PMID:23523010

  5. Antiviral activity of hemocyanins

    Directory of Open Access Journals (Sweden)

    P Dolashka,

    2013-11-01

    Full Text Available Hemocyanins are giant biological macromolecules acting as oxygen-transporting glycoproteins. Most of them are respiratory proteins of arthropods and mollusks, but besides they also exhibit protecting effects against bacterial, fungal and viral invasions. As discovered by 2-DGE proteomics analyses, several proteins including hemocyanins of hemocytes from virus-infected arthropods increased upon infection, confirming hemocyanin’s role as part of the organism’s defence system. Based on the structural analyses of molluscan Hcs it is suggested that the carbohydrate chains of the glycoproteins seem to interact with surface-exposed amino acid or carbohydrate residues of the viruses through van der Waals interactions.

  6. Leverage principle of retardation signal in titration of double protein via chip moving reaction boundary electrophoresis.

    Science.gov (United States)

    Zhang, Liu-Xia; Cao, Yi-Ren; Xiao, Hua; Liu, Xiao-Ping; Liu, Shao-Rong; Meng, Qing-Hua; Fan, Liu-Yin; Cao, Cheng-Xi

    2016-03-15

    In the present work we address a simple, rapid and quantitative analytical method for detection of different proteins present in biological samples. For this, we proposed the model of titration of double protein (TDP) and its relevant leverage theory relied on the retardation signal of chip moving reaction boundary electrophoresis (MRBE). The leverage principle showed that the product of the first protein content and its absolute retardation signal is equal to that of the second protein content and its absolute one. To manifest the model, we achieved theoretical self-evidence for the demonstration of the leverage principle at first. Then relevant experiments were conducted on the TDP-MRBE chip. The results revealed that (i) there was a leverage principle of retardation signal within the TDP of two pure proteins, and (ii) a lever also existed within these two complex protein samples, evidently demonstrating the validity of TDP model and leverage theory in MRBE chip. It was also showed that the proposed technique could provide a rapid and simple quantitative analysis of two protein samples in a mixture. Finally, we successfully applied the developed technique for the quantification of soymilk in adulterated infant formula. The TDP-MRBE opens up a new window for the detection of adulteration ratio of the poor food (milk) in blended high quality one. PMID:26414025

  7. Ultrasensitive proteomic quantitation of cellular signaling by digitized nanoparticle-protein counting

    Science.gov (United States)

    Jacob, Thomas; Agarwal, Anupriya; Ramunno-Johnson, Damien; O’Hare, Thomas; Gönen, Mehmet; Tyner, Jeffrey W.; Druker, Brian J.; Vu, Tania Q.

    2016-01-01

    Many important signaling and regulatory proteins are expressed at low abundance and are difficult to measure in single cells. We report a molecular imaging approach to quantitate protein levels by digitized, discrete counting of nanoparticle-tagged proteins. Digitized protein counting provides ultrasensitive molecular detection of proteins in single cells that surpasses conventional methods of quantitating total diffuse fluorescence, and offers a substantial improvement in protein quantitation. We implement this digitized proteomic approach in an integrated imaging platform, the single cell-quantum dot platform (SC-QDP), to execute sensitive single cell phosphoquantitation in response to multiple drug treatment conditions and using limited primary patient material. The SC-QDP: 1) identified pAKT and pERK phospho-heterogeneity and insensitivity in individual leukemia cells treated with a multi-drug panel of FDA-approved kinase inhibitors, and 2) revealed subpopulations of drug-insensitive CD34+ stem cells with high pCRKL and pSTAT5 signaling in chronic myeloid leukemia patient blood samples. This ultrasensitive digitized protein detection approach is valuable for uncovering subtle but important differences in signaling, drug insensitivity, and other key cellular processes amongst single cells. PMID:27320899

  8. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    Energy Technology Data Exchange (ETDEWEB)

    YANG, CHIN-RANG [NHLBI, NIH

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  9. Surfactant Protein A integrates activation signal strength to differentially modulate T cell proliferation

    OpenAIRE

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; GOTO, HISATSUGU; Ledford, Julie G.; Hsia, Bethany; Pastva, Amy M.; Wright, Jo Rae

    2012-01-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar:airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A mediated modulation of T cell activation depends upon the strength, duration and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex and in vivo in different mouse models, ...

  10. Multiscale Approach to the Determination of the Photoactive Yellow Protein Signaling State Ensemble

    OpenAIRE

    Mary A Rohrdanz; Wenwei Zheng; Bradley Lambeth; Jocelyne Vreede; Cecilia Clementi

    2014-01-01

    The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally ...

  11. The Origins of Diversity and Specificity in G Protein-Coupled Receptor Signaling

    OpenAIRE

    Maudsley, Stuart; Martin, Bronwen; Luttrell, Louis M

    2005-01-01

    The modulation of transmembrane signaling by G protein-coupled receptors (GPCRs) constitutes the single most important therapeutic target in medicine. Drugs acting on GPCRs have traditionally been classified as agonists, partial agonists, or antagonists based on a two-state model of receptor function embodied in the ternary complex model. Over the past decade, however, many lines of investigation have shown that GPCR signaling exhibits greater diversity and “texture” than previously appreciat...

  12. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression,

  13. Use of a Novel Report Protein to Study the Secretion Signal of Flagellin in Bacillus subtilis.

    Science.gov (United States)

    Wang, Guangqiang; Xia, Yongjun; Xiong, Zhiqiang; Zhang, Hui; Ai, Lianzhong

    2016-08-01

    Flagellin (also called Hag) is the main component of bacterial flagellum and is transported across the cytoplasmic membrane by flagellar secretion apparatus. Because flagella play an essential role in the pathogenesis of numerous pathogens, the flagellins of Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Campylobacter jejuni, and Vibrio cholerae have been intensively studied; however, very few studies have focused on the flagellin of Bacillus subtilis, which is considered to be a model organism with which to study the secretion of bacteria and is used on an industrial scale for the secretion of proteins. The signal of B. subtilis flagellin is still debated. This study was performed to seek the export signals of flagellin from B. subtilis. The naturally nonsecretory, intrinsically disordered domain of nucleoskeletal-like protein (Nsp) was used as the reporter protein. Our results demonstrate that the export signal is contained within the first 50 amino acids of B. subtilis flagellin. Nsp is easily degraded inside the cell and can be exported into culture medium with the aid of the signal of flagellin. This method provides a new potential strategy for the expression of proteins with high proteolytic susceptibility via fusion to export signals. PMID:27154466

  14. Jatropha curcas Protein Concentrate Stimulates Insulin Signaling, Lipogenesis, Protein Synthesis and the PKCα Pathway in Rat Liver.

    Science.gov (United States)

    León-López, Liliana; Márquez-Mota, Claudia C; Velázquez-Villegas, Laura A; Gálvez-Mariscal, Amanda; Arrieta-Báez, Daniel; Dávila-Ortiz, Gloria; Tovar, Armando R; Torres, Nimbe

    2015-09-01

    Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition. PMID:26243665

  15. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  16. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    OpenAIRE

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong; Wu, Zhiwei

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can le...

  17. Identiifcation of the Regulator of G-Protein Signaling Protein Responsive to Plant Hormones and Abiotic Stresses in Brassica napus

    Institute of Scientific and Technical Information of China (English)

    CHEN Yun; ZHU Xia; ZHU Xiao-bin; YU Yi-fan; GE Hui-min; GAO Yong; LIANG Jian-sheng

    2014-01-01

    Regulator of G protein signaling proteins (RGS) accelerate the rate of GTP hydrolysis by Gαproteins, thus acting as negative regulators of G-protein signaling. Studies on Arabidopsis and soybean have proven that RGS proteins are physiologically important in plants and contribute to the signaling pathways regulated by different stimuli. Brassica napus is an important agriculturally relevant plant, the wildly planted oilseed rape in the world, which possesses an identiifed Gα, Gβand Gγsubunits. In the present study, we identiifed and characterized a Brassica napus RGS gene, BnRGS1, which contained an open reading frame of 1 380 bp encoding a putative 52.6 kDa polypeptide of 459 amino acids, within seven putative transmembrane domains in the N-terminal and RGS box in the C-terminal. BnRGS1 is located on the membrane in onion epidermal cells and tobacco leaves, and interacts with BnGA1 in the mating-based split-ubiquitin system. The expression levels of BnRGS1 were quite different in different tissues and developmental stages, and induced by abscisic acid (ABA) and indole-3-acetic acid (IAA). The effects of gibberellin (GA3) and brassinolide (BR) on the expression of BnRGS1 were irregular under the concentrations tested. Moreover, the transcript level of BnRGS1 was also induced by polyethylene glycol (PEG), whereas remained little changed by 200 mmol L-1 NaCl. These results suggested that the BnRGS1 may be involved in B. napus response to plant hormone signaling and abiotic stresses.

  18. Influenza Round Table: Antiviral Drugs

    Centers for Disease Control (CDC) Podcasts

    2009-11-04

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used.  Created: 11/4/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 11/4/2009.

  19. Inflammatory and protein metabolism signaling responses in human skeletal muscle after burn injury.

    Science.gov (United States)

    Merritt, Edward K; Cross, James M; Bamman, Marcas M

    2012-01-01

    Severe burn injuries lead to a prolonged hypercatabolic state resulting in dramatic loss of skeletal muscle mass. Postburn muscle loss is well documented but the molecular signaling cascade preceding atrophy is not. The purpose of this study is to determine the response to burn injury of signaling pathways driving muscle inflammation and protein metabolism. Muscle biopsies were collected in the early flow phase after burn injury from the vastus lateralis of a noninjured leg in patients with 20 to 60% TBSA burns and compared with uninjured, matched controls. Circulating levels of proinflammatory cytokines were also compared. Immunoblotting was performed to determine the protein levels of key signaling components for translation initiation, proteolysis, and tumor necrosis factor/nuclear factor kappa B (NFκB)and interleukin (IL)-6/STAT3 signaling. Burn subjects had significantly higher levels of circulating proinflammatory cytokines, with no difference in muscle STAT3 activity and lower NFκB activity. No differences were found in any translational signaling components. Regarding proteolytic signaling in burn, calpain-2 was 47% higher, calpastatin tended to be lower, and total ubiquitination was substantially higher. Surprisingly, a systemic proinflammatory response 3 to 10 days postburn did not lead to elevated muscle STAT3 or NFκB signaling. Signaling molecules governing translation initiation were unaffected, whereas indices of calcium-mediated proteolysis and ubiquitin-proteasome activity were upregulated. These novel findings are the first in humans to suggest that the net catabolic effect of burn injury in skeletal muscle (ie, atrophy) may be mediated, at least during the early flow phase, almost entirely by an increased proteolytic activity in the absence of suppressed protein synthesis signaling.

  20. Neuronal RING finger protein 11 (RNF11 regulates canonical NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Pranski Elaine L

    2012-04-01

    Full Text Available Abstract Background The RING domain-containing protein RING finger protein 11 (RNF11 is a member of the A20 ubiquitin-editing protein complex and modulates peripheral NF-κB signaling. RNF11 is robustly expressed in neurons and colocalizes with a population of α-synuclein-positive Lewy bodies and neurites in Parkinson disease patients. The NF-κB pathway has an important role in the vertebrate nervous system, where the absence of NF-κB activity during development can result in learning and memory deficits, whereas chronic NF-κB activation is associated with persistent neuroinflammation. We examined the functional role of RNF11 with respect to canonical NF-κB signaling in neurons to gain understanding of the tight association of inflammatory pathways, including NF-κB, with the pathogenesis of neurodegenerative diseases. Methods and results Luciferase assays were employed to assess NF-κB activity under targeted short hairpin RNA (shRNA knockdown of RNF11 in human neuroblastoma cells and murine primary neurons, which suggested that RNF11 acts as a negative regulator of canonical neuronal NF-κB signaling. These results were further supported by analyses of p65 translocation to the nucleus following depletion of RNF11. Coimmunoprecipitation experiments indicated that RNF11 associates with members of the A20 ubiquitin-editing protein complex in neurons. Site-directed mutagenesis of the myristoylation domain, which is necessary for endosomal targeting of RNF11, altered the impact of RNF11 on NF-κB signaling and abrogated RNF11’s association with the A20 ubiquitin-editing protein complex. A partial effect on canonical NF-κB signaling and an association with the A20 ubiquitin-editing protein complex was observed with mutagenesis of the PPxY motif, a proline-rich region involved in Nedd4-like protein interactions. Last, shRNA-mediated reduction of RNF11 in neurons and neuronal cell lines elevated levels of monocyte chemoattractant protein 1 and

  1. Emerging roles of protein kinase CK2 in abscisic acid (ABA signaling

    Directory of Open Access Journals (Sweden)

    Belmiro eVilela

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2, the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015. CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.

  2. mTOR Signaling in Protein Translation Regulation: Implications in Cancer Genesis and Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Mehvish Showkat

    2014-01-01

    Full Text Available mTOR is a central nutrient sensor that signals a cell to grow and proliferate. Through distinct protein complexes it regulates different levels of available cellular energy substrates required for cell growth. One of the important functions of the complex is to maintain available amino acid pool by regulating protein translation. Dysregulation of mTOR pathway leads to aberrant protein translation which manifests into various pathological states. Our review focuses on the role mTOR signaling plays in protein translation and its physiological role. It also throws some light on available data that show translation dysregulation as a cause of pathological complexities like cancer and the available drugs that target the pathway for cancer treatment.

  3. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  4. Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response

    Directory of Open Access Journals (Sweden)

    Hiroyuki eOshiumi

    2016-05-01

    Full Text Available Type I interferon (IFN induces many antiviral factors in host cells. RIG-I-like receptors (RLRs are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and thus cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.

  5. Reconstruction of Protein-Protein Interaction Network of Insulin Signaling in Homo Sapiens

    OpenAIRE

    Saliha Durmuş Tekir; Pelin Ümit; Aysun Eren Toku; Kutlu Ö. Ülgen

    2010-01-01

    Diabetes is one of the most prevalent diseases in the world. Type 1 diabetes is characterized by the failure of synthesizing and secreting of insulin because of destroyed pancreatic β-cells. Type 2 diabetes, on the other hand, is described by the decreased synthesis and secretion of insulin because of the defect in pancreatic β-cells as well as by the failure of responding to insulin because of malfunctioning of insulin signaling. In order to understand the signaling mechanisms of responding ...

  6. Perturbation waves in proteins and protein networks: Applications of percolation and game theories in signaling and drug design

    CERN Document Server

    Antal, Miklos A; Csermely, Peter

    2008-01-01

    The network paradigm is increasingly used to describe the dynamics of complex systems. Here we review the current results and propose future development areas in the assessment of perturbation waves, i.e. propagating structural changes in amino acid networks building individual protein molecules and in protein-protein interaction networks (interactomes). We assess the possibilities and critically review the initial attempts for the application of game theory to the often rather complicated process, when two protein molecules approach each other, mutually adjust their conformations via multiple communication steps and finally, bind to each other. We also summarize available data on the application of percolation theory for the prediction of amino acid network- and interactome-dynamics. Furthermore, we give an overview of the dissection of signals and noise in the cellular context of various perturbations. Finally, we propose possible applications of the reviewed methodologies in drug design.

  7. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Catríona M., E-mail: Catriona.Dowling@ul.ie; Kiely, Patrick A., E-mail: Catriona.Dowling@ul.ie [Department of Life Sciences, Materials and Surface Science Institute and Stokes Institute, University of Limerick, Limerick 78666 (Ireland); Health Research Institute (HRI), University of Limerick, Limerick 78666 (Ireland)

    2015-07-15

    The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  8. Scaffold State Switching Amplifies, Accelerates, and Insulates Protein Kinase C Signaling*

    Science.gov (United States)

    Greenwald, Eric C.; Redden, John M.; Dodge-Kafka, Kimberly L.; Saucerman, Jeffrey J.

    2014-01-01

    Scaffold proteins localize two or more signaling enzymes in close proximity to their downstream effectors. A-kinase-anchoring proteins (AKAPs) are a canonical family of scaffold proteins known to bind protein kinase A (PKA) and other enzymes. Several AKAPs have been shown to accelerate, amplify, and specify signal transduction to dynamically regulate numerous cellular processes. However, there is little theory available to mechanistically explain how signaling on protein scaffolds differs from solution biochemistry. In our present study, we propose a novel kinetic mechanism for enzymatic reactions on protein scaffolds to explain these phenomena, wherein the enzyme-substrate-scaffold complex undergoes stochastic state switching to reach an active state. This model predicted anchored enzymatic reactions to be accelerated, amplified, and insulated from inhibition compared with those occurring in solution. We exploited a direct interaction between protein kinase C (PKC) and AKAP7α as a model to validate these predictions experimentally. Using a genetically encoded PKC activity reporter, we found that both the strength and speed of substrate phosphorylation were enhanced by AKAP7α. PKC tethered to AKAP7α was less susceptible to inhibition from the ATP-competitive inhibitor Gö6976 and the substrate-competitive inhibitor PKC 20-28, but not the activation-competitive inhibitor calphostin C. Model predictions and experimental validation demonstrated that insulation is a general property of scaffold tethering. Sensitivity analysis indicated that these findings may be applicable to many other scaffolds as well. Collectively, our findings provide theoretical and experimental evidence that scaffold proteins can amplify, accelerate, and insulate signal transduction. PMID:24302730

  9. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    Science.gov (United States)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  10. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins

    OpenAIRE

    Lockwood, William W; Zejnullahu, Kreshnik; James E Bradner; Varmus, Harold

    2012-01-01

    Bromodomain and extra terminal domain (BET) proteins function as epigenetic signaling factors that associate with acetylated histones and facilitate transcription of target genes. Inhibitors targeting the activity of BET proteins have shown potent antiproliferative effects in hematological cancers through the suppression of c-MYC and downstream target genes. However, as the epigenetic landscape of a cell varies drastically depending on lineage, transcriptional coactivators such as BETs would ...

  11. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling

    OpenAIRE

    Drummond, Micah J.; Dreyer, Hans C.; Fry, Christopher S.; Glynn, Erin L.; Rasmussen, Blake B.

    2009-01-01

    In this review we discuss current findings in the human skeletal muscle literature describing the acute influence of nutrients (leucine-enriched essential amino acids in particular) and resistance exercise on muscle protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling. We show that essential amino acids and an acute bout of resistance exercise independently stimulate human skeletal muscle protein synthesis. It also appears that ingestion of essential amino acids fo...

  12. Control of Alternative Splicing by Signal-dependent Degradation of Splicing-regulatory Proteins*S⃞

    OpenAIRE

    Katzenberger, Rebeccah J.; Marengo, Matthew S.; Wassarman, David A.

    2009-01-01

    Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation o...

  13. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency.

    Directory of Open Access Journals (Sweden)

    Rajeev Malhotra

    Full Text Available Matrix Gla protein (MGP is reported to inhibit bone morphogenetic protein (BMP signal transduction. MGP deficiency is associated with medial calcification of the arterial wall, in a process that involves both osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs and mesenchymal transition of endothelial cells (EndMT. In this study, we investigated the contribution of BMP signal transduction to the medial calcification that develops in MGP-deficient mice.MGP-deficient mice (MGP(-/- were treated with one of two BMP signaling inhibitors, LDN-193189 or ALK3-Fc, beginning one day after birth. Aortic calcification was assessed in 28-day-old mice by measuring the uptake of a fluorescent bisphosphonate probe and by staining tissue sections with Alizarin red. Aortic calcification was 80% less in MGP(-/- mice treated with LDN-193189 or ALK3-Fc compared with vehicle-treated control animals (P<0.001 for both. LDN-193189-treated MGP(-/- mice survived longer than vehicle-treated MGP(-/- mice. Levels of phosphorylated Smad1/5 and Id1 mRNA (markers of BMP signaling did not differ in the aortas from MGP(-/- and wild-type mice. Markers of EndMT and osteogenesis were increased in MGP(-/- aortas, an effect that was prevented by LDN-193189. Calcification of isolated VSMCs was also inhibited by LDN-193189.Inhibition of BMP signaling leads to reduced vascular calcification and improved survival in MGP(-/- mice. The EndMT and osteogenic transdifferentiation associated with MGP deficiency is dependent upon BMP signaling. These results suggest that BMP signal transduction has critical roles in the development of vascular calcification in MGP-deficient mice.

  14. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos

    DEFF Research Database (Denmark)

    Dunworth, William P; Cardona-Costa, Jose; Bozkulak, Esra Cagavi;

    2014-01-01

    : Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. METHODS AND RESULTS: BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2......RATIONALE: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. OBJECTIVE...... signaling in zebrafish embryos and mouse embryonic stem cell-derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox...

  15. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling

    Directory of Open Access Journals (Sweden)

    Petr eDraber

    2012-01-01

    Full Text Available Aggregation of the high-affinity IgE receptor (FcεRI initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of Syk kinase. Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs. These proteins are characterized by a short extracellular domain, a single transmembrane domain and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified (LAT, NTAL, LAX, PAG and GAPT; engagement of four of them (LAT, NTAL, LAX and PAG in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production and chemotaxis.

  16. Monocyte chemotactic protein-1 and soluble adhesion molecules as possible prognostic markers of the efficacy of antiviral treatment in chronic hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Anatol Panasiuk; Danuta Prokopowicz; Bozena Panasiuk

    2004-01-01

    AIM: To explain the role of Monocyte chemotactic protein-1 (MCP-1) and soluble adhesion molecules in chronic hepatitis C during the treatment of interferon alpha (IFNα) 2 b and ribavirin (RBV).METHODS: Concentrations of MCP-1, soluble adhesion molecules intercellular adhesion molecule-1 (sICAM-1), sPselectin, interleukin (IL) 6, and IL10 in serum were estimated in the group of 40 patients with chronic hepatitis C treated with IFNalpha2 b and RBV in 0, 16, 32, 48 wk of the therapy.RESULTS: In chronic hepatitis C, before and during the treatment, the serum levels of MCP-1 and sP-selectin in responders were similar to those of healthy subjects. In nonresponders (NR), MCP-1 increased in the course of IFNα+RBV treatment, differences were statistically significant as compared to responders. MCP-1 correlated statistically with the activity of pedportal inflammation (r = 0.35, P<0.05) but not with staging of liver fibrosis. sICAM-1 positively correlated with inflammatory activity and fibrosis in NR. sP-selectin did not correlate with histological findings in the liver. The MCP-1 correlated with the soluble form of sP-selectin concentrations (r = 6, P<0.001) and with IL-10 level in NR (r = 0.4, P<0.05). There was no correlation observed between the concentration of MCP-1 and sICAM-1, IL-6 during the treatment.CONCLUSION: MCP-1 concentration may be a prognostic marker of the efficacy of IFN+RBV therapy in patients with chronic hepatitis C.

  17. Tus, an E. coli protein, contains mammalian nuclear targeting and exporting signals.

    Directory of Open Access Journals (Sweden)

    Stanislaw J Kaczmarczyk

    Full Text Available Shuttling of proteins between nucleus and cytoplasm in mammalian cells is facilitated by the presence of nuclear localization signals (NLS and nuclear export signals (NES, respectively. However, we have found that Tus, an E. coli replication fork arresting protein, contains separate sequences that function efficiently as NLS and NES in mammalian cell lines, as judged by cellular location of GFP-fusion proteins. The NLS was localized to a short stretch of 9 amino acids in the carboxy-terminus of Tus protein. Alterations of any of these basic amino acids almost completely abolished the nuclear targeting. The NES comprises a cluster of leucine/hydrophobic residues located within 21 amino acids at the amino terminus of Tus. Finally, we have shown that purified GFP-Tus fusion protein or GFP-Tus NLS fusion protein, when added to the culture media, was internalized very efficiently into mammalian cells. Thus, Tus is perhaps the first reported bacterial protein to possess both NLS and NES, and has the capability to transduce protein into mammalian cells.

  18. Wnt Signaling Translocates Lys48-Linked Polyubiquitinated Proteins to the Lysosomal Pathway

    Directory of Open Access Journals (Sweden)

    Hyunjoon Kim

    2015-05-01

    Full Text Available Cellular proteins are degraded in either proteasomes or lysosomes depending on the types of ubiquitin chains that covalently modify them. It is not known whether the choice between these two pathways is physiologically regulated. The Lys48-polyubiquitin chain is the major signal directing proteins for degradation in proteasomes. Here, we report the unexpected finding that canonical Wnt signaling translocates some K48-linked polyubiquitinated proteins to the endolysosomal pathway. Proteasomal target proteins, such as β-catenin, Smad1, and Smad4, were targeted into endolysosomes in a process dependent on GSK3 activity. Relocalization was also dependent on Axin1 and the multivesicular body (MVB proteins HRS/Vps27 and Vps4. The Wnt-induced accumulation of K48-linked polyubiquitinated proteins in endolysosomal organelles was accompanied by a transient decrease in cellular levels of free mono-ubiquitin, which may contribute to Wnt-regulated stabilization of proteins (Wnt/STOP. We conclude that Wnt redirects Lys48-polyubiquitinated proteins that are normally degraded in proteasomes to endolysosomes.

  19. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Squier, Thomas C.

    2006-02-01

    Under conditions of oxidative stress, the 20S proteasome plays a critical role in maintaining cellular homeostasis through the selective degradation of oxidized and damaged proteins. This adaptive stress response is distinct from ubiquitin-dependent pathways in that oxidized proteins are recognized and degraded in an ATP-independent mechanism, which can involve the molecular chaperone Hsp90. Like the regulatory complexes 19S and 11S REG, Hsp90 tightly associates with the 20S proteasome to mediate the recognition of aberrant proteins for degradation. In the case of the calcium signaling protein calmodulin, proteasomal degradation results from the oxidation of a single surface exposed methionine (i.e., Met145); oxidation of the other eight methionines has a minimal effect on the recognition and degradation of calmodulin by the proteasome. Since cellular concentrations of calmodulin are limiting, the targeted degradation of this critical signaling protein under conditions of oxidative stress will result in the downregulation of cellular metabolism, serving as a feedback regulation to diminish the generation of reactive oxygen species. The targeted degradation of critical signaling proteins, such as calmodulin, can function as sensors of oxidative stress to downregulate global rates of metabolism and enhance cellular survival.

  20. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  1. DMPD: Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17070092 Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functio...Epub 2006 Oct 27. (.png) (.svg) (.html) (.csml) Show Suppressor of cytokine signaling (SOCS) 2, a protein with multi...SOCS) 2, a protein with multiple functions. Authors Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Pu...ple functions. PubmedID 17070092 Title Suppressor of cytokine signaling (

  2. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling

    OpenAIRE

    Narazaki, Masashi; Fujimoto, Minoru; Matsumoto, Tomoshige; Morita, Yoshiaki; SAITO, HIROSHI; Kajita, Tadahiro; Yoshizaki, Kazuyuki; Naka, Tetsuji; Kishimoto, Tadamitsu

    1998-01-01

    Cytokine-inducible protein SSI-1 [signal transducers and activators of transcription (STAT)-induced STAT inhibitor 1, also referred to as SOCS-1 (suppressor of cytokine signaling 1) or JAB (Janus kinase-binding protein)] negatively regulates cytokine receptor signaling by inhibition of JAK kinases. The SSI family of proteins includes eight members that are structurally characterized by an SH2 domain and a C-terminal conserved region that we have called the SC-motif. In this study, we investig...

  3. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    Science.gov (United States)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  4. Clinical significance of expression of apoptotic signal proteins in gastric carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Xin-Han Zhao; Shan-Zhi Gu; Hong-Gang Tian; Ping Quan; Bo-Rong Pan

    2005-01-01

    AIM: To evaluate the expressions of apoptotic signal proteins FADD, TRADD, FasL, Fas, and NFκB in gastric carcinoma tissues and their clinical significance.METHODS: Western blot immune trace method was adopted to detect the expressions of apoptotic signal proteins FADD, TRADD, FasL, Fas, and NFκB in 55 tissue specimens of gastric carcinoma.RESULTS: Five apoptotic signal proteins had different expressions in the gastric carcinoma samples and their expressions were not correlated to age (P = 0.085).Expressions of the FADD, FasL, Fas, and NFκB proteins reduced with increase of the volume of tumor with the exception of increased expression the TRADD protein (64.7-71.1%, P = 0.031). With gradual increase of the malignancy of gastric carcinoma tissues, expressions of the FADD, FasL, and Fas proteins decreased (78.6-28.0%,P= 0.008; 78.6-65.9%, P= 0.071; 100.0-46.3%, P= 0.014),while expressions of the TRADD and NFκB proteins increased (42.9-78.1%, P= 0.063; 78.6-79.1%, P= 0.134).With gradual increase of serum CEA, expression of the FADD protein decreased (62.5-34.0%, P = 0.073), but expressions of the TRADD, FasL, Fas, and NFκB proteins increased (0.0-80.8%, P = 0.005; 62.5-70.2%, P = 0.093;0.0-70.2%, P = 0.003; 62.5-80.9%, P = 0.075). When compared to the tissues of gastric carcinoma without metastasis, the positive rate of expressions of the FADD and FasL proteins increased, whereas expressions of the TRADD, FADD, and NFκB proteins decreased. There was no significant difference between them (P = 0.095).CONCLUSION: Gastric carcinoma is endurable to Fasrelated apoptosis and apoptotic signal proteins are differently expressed in gastric carcinoma.

  5. Locating proteins in the cell using TargetP, SignalP and related tools

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Brunak, Søren; von Heijne, G.;

    2007-01-01

    Determining the subcellular localization of a protein is an important first step toward understanding its function. Here, we describe the properties of three well-known N-terminal sequence motifs directing proteins to the secretory pathway, mitochondria and chloroplasts, and sketch a brief history...... of methods to predict subcellular localization based on these sorting signals and other sequence properties. We then outline how to use a number of internet-accessible tools to arrive at a reliable subcellular localization prediction for eukaryotic and prokaryotic proteins. In particular, we provide detailed...

  6. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    Science.gov (United States)

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  7. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors.

    Directory of Open Access Journals (Sweden)

    Davide Calebiro

    2009-08-01

    Full Text Available G-protein-coupled receptors (GPCRs are generally thought to signal to second messengers like cyclic AMP (cAMP from the cell surface and to become internalized upon repeated or prolonged stimulation. Once internalized, they are supposed to stop signaling to second messengers but may trigger nonclassical signals such as mitogen-activated protein kinase (MAPK activation. Here, we show that a GPCR continues to stimulate cAMP production in a sustained manner after internalization. We generated transgenic mice with ubiquitous expression of a fluorescent sensor for cAMP and studied cAMP responses to thyroid-stimulating hormone (TSH in native, 3-D thyroid follicles isolated from these mice. TSH stimulation caused internalization of the TSH receptors into a pre-Golgi compartment in close association with G-protein alpha(s-subunits and adenylyl cyclase III. Receptors internalized together with TSH and produced downstream cellular responses that were distinct from those triggered by cell surface receptors. These data suggest that classical paradigms of GPCR signaling may need revision, as they indicate that cAMP signaling by GPCRs may occur both at the cell surface and from intracellular sites, but with different consequences for the cell.

  8. Lipid rafts and Alzheimer’s disease: protein-lipid interactions and perturbation of signalling

    Directory of Open Access Journals (Sweden)

    David A. Hicks

    2012-06-01

    Full Text Available Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein-protein interactions and for cellular signalling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses, axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD. Lipid rafts promote interaction of the amyloid precursor protein (APP with the secretase (BACE-1 responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signalling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signalling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signalling events.

  9. Genomic Analysis of Two-Component Signal Transduction Proteins in Basidiomycetes

    DEFF Research Database (Denmark)

    Ussery, David; Lavín, JL; Binnewies, Tim Terence;

    2010-01-01

    Two-component system (TCS) proteins are components of complex signal transduction pathways in fungi, and play essential roles in the regulation of several cellular functions and responses. Species of basidiomycetes have a marked variation in their specific physiological traits, morphological...

  10. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...

  11. Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling

    NARCIS (Netherlands)

    Dekker, Frank J.; Hedberg, Christian

    2011-01-01

    The H- and N-Ras GTPases are prominent examples of proteins, whose localizations and signalling capacities are regulated by reversible palmitoylations and depalmitoylations. Recently, the novel small molecule inhibitor palmostatin B has been described to inhibit Ras depalmitoylation and to revert th

  12. Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton.

    NARCIS (Netherlands)

    Luchtenborg, A.M.; Solis, G.P.; Egger-Adam, D.; Koval, A.; Lin, C.; Blanchard, M.G.; Kellenberger, S.; Katanaev, V.L.

    2014-01-01

    Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of t

  13. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling

    Science.gov (United States)

    Colombo, Monica; Tadini, Luca; Peracchio, Carlotta; Ferrari, Roberto; Pesaresi, Paolo

    2016-01-01

    The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration by GUN1 have remained elusive, up until the recent identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and mass-spectrometric analyses, as well as protein–protein interaction assays. Here, we review the molecular functions of the different GUN1 partners and propose a major role for GUN1 as coordinator of chloroplast translation, protein import, and protein degradation. This regulatory role is implemented through proteins that, in most cases, are part of multimeric protein complexes and whose precise functions vary depending on their association states. Within this framework, GUN1 may act as a platform to promote specific functions by bringing the interacting enzymes into close proximity with their substrates, or may inhibit processes by sequestering particular pools of specific interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling molecules in retrograde communication. PMID:27713755

  14. Insights into biological information processing: structural and dynamical analysis of a human protein signalling network

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Alberto de la; Fotia, Giorgio; Maggio, Fabio; Mancosu, Gianmaria; Pieroni, Enrico [CRS4 Bioinformatica, Parco Tecnologico POLARIS, Ed.1, Loc Piscinamanna, Pula (Italy)], E-mail: alf@crs4.it

    2008-06-06

    We present an investigation on the structural and dynamical properties of a 'human protein signalling network' (HPSN). This biological network is composed of nodes that correspond to proteins and directed edges that represent signal flows. In order to gain insight into the organization of cell information processing this network is analysed taking into account explicitly the edge directions. We explore the topological properties of the HPSN at the global and the local scale, further applying the generating function formalism to provide a suitable comparative model. The relationship between the node degrees and the distribution of signals through the network is characterized using degree correlation profiles. Finally, we analyse the dynamical properties of small sub-graphs showing high correlation between their occurrence and dynamic stability.

  15. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Schulz, Tim J; Espinoza, Daniel O;

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance.......Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation. Treatment of these cells with BMP7 for 3 days prior to adipogenic induction restored differentiation and...

  16. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    International Nuclear Information System (INIS)

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrPc), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrPc with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr Pc and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrPc:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr Pc143-153 beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrPc. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr Pc143-153 beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr Pc, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr Pc:hop/STI 1 interaction, consistent with the hypothesis that Pr Pc scaffolds multiprotein signaling complexes at the cell surface. (author)

  17. Ca2+ channels as integrators of G protein-mediated signaling in neurons.

    Science.gov (United States)

    Strock, Jesse; Diversé-Pierluissi, María A

    2004-11-01

    The observations from Dunlap and Fischbach that transmitter-mediated shortening of the duration of action potentials could be caused by a decrease in calcium conductance led to numerous studies of the mechanisms of modulation of voltage-dependent calcium channels. Calcium channels are well known targets for inhibition by receptor-G protein pathways, and multiple forms of inhibition have been described. Inhibition of Ca(2+) channels can be mediated by G protein betagamma-subunits or by kinases, such as protein kinase C and tyrosine kinases. In the last few years, it has been shown that integration of G protein signaling can take place at the level of the calcium channel by regulation of the interaction of the channel pore-forming subunit with different cellular proteins.

  18. Molecular mechanisms of Ca(2+) signaling in neurons induced by the S100A4 protein

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Novitskaya, Vera; Soroka, Vladislav;

    2006-01-01

    The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity....... Extracellular oligomeric S100A4 is a potent promoter of neurite outgrowth and survival from cultured primary neurons; however, the molecular mechanism of this effect has not been established. Here we demonstrate that oligomeric S100A4 increases the intracellular calcium concentration in primary neurons. We...... present evidence that both S100A4-induced Ca(2+) signaling and neurite extension require activation of a cascade including a heterotrimeric G protein(s), phosphoinositide-specific phospholipase C, and diacylglycerol-lipase, resulting in Ca(2+) entry via nonselective cation channels and via T- and L-type...

  19. L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise.

    Science.gov (United States)

    Wang, Wanyi; Choi, Ran Hee; Solares, Geoffrey J; Tseng, Hung-Min; Ding, Zhenping; Kim, Kyoungrae; Ivy, John L

    2015-07-01

    Sustamine™ (SUS) is a dipeptide composed of alanine and glutamine (AlaGln). Glutamine has been suggested to increase muscle protein accretion; however, the underlying molecular mechanisms of glutamine on muscle protein metabolism following resistance exercise have not been fully addressed. In the present study, 2-month-old rats climbed a ladder 10 times with a weight equal to 75 % of their body mass attached at the tail. Rats were then orally administered one of four solutions: placebo (PLA-glycine = 0.52 g/kg), whey protein (WP = 0.4 g/kg), low dose of SUS (LSUS = 0.1 g/kg), or high dose of SUS (HSUS = 0.5 g/kg). An additional group of sedentary (SED) rats was intubated with glycine (0.52 g/kg) at the same time as the ladder-climbing rats. Blood samples were collected immediately after exercise and at either 20 or 40 min after recovery. The flexor hallucis longus (FHL), a muscle used for climbing, was excised at 20 or 40 min post exercise and analyzed for proteins regulating protein synthesis and degradation. All supplements elevated the phosphorylation of FOXO3A above SED at 20 min post exercise, but only the SUS supplements significantly reduced the phosphorylation of AMPK and NF-kB p65. SUS supplements had no effect on mTOR signaling, but WP supplementation yielded a greater phosphorylation of mTOR, p70S6k, and rpS6 compared with PLA at 20 min post exercise. However, by 40 min post exercise, phosphorylation of mTOR and rpS6 in PLA had risen to levels not different than WP. These results suggest that SUS blocks the activation of intracellular signals for MPB, whereas WP accelerates mRNA translation. PMID:25837301

  20. Deciphering and modulating G protein signalling in C. elegans using the DREADD technology

    Science.gov (United States)

    Prömel, Simone; Fiedler, Franziska; Binder, Claudia; Winkler, Jana; Schöneberg, Torsten; Thor, Doreen

    2016-01-01

    G-protein signalling is an evolutionary conserved concept highlighting its fundamental impact on developmental and functional processes. Studies on the effects of G protein signals on tissues as well as an entire organism are often conducted in Caenorhabditis elegans. To understand and control dynamics and kinetics of the processes involved, pharmacological modulation of specific G protein pathways would be advantageous, but is difficult due to a lack in accessibility and regulation. To provide this option, we designed G protein-coupled receptor-based designer receptors (DREADDs) for C. elegans. Initially described in mammalian systems, these modified muscarinic acetylcholine receptors are activated by the inert drug clozapine-N-oxide, but not by their endogenous agonists. We report a novel C. elegans-specific DREADD, functionally expressed and specifically activating Gq-protein signalling in vitro and in vivo which we used for modulating mating behaviour. Therefore, this novel designer receptor demonstrates the possibility to pharmacologically control physiological functions in C. elegans. PMID:27461895

  1. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus.

    Science.gov (United States)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-02-01

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. PMID:23174505

  2. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    Science.gov (United States)

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  3. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    and the drug which increased the potency of the conjugates significantly. A different approach to drug delivery is that of surface mediated drug delivery. Hydrogels of poly(vinyl alcohol) has shown great promise in this regard. The chemical opportunities of this polymer are explored through the virtues...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein......The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...

  4. Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling.

    Science.gov (United States)

    Cuddihy, Sarah L; Winterbourn, Christine C; Hampton, Mark B

    2011-07-01

    Hydrogen peroxide acts as a second messenger in growth factor signaling where it can oxidize and modify the function of redox-sensitive proteins. While selective thiol oxidation has been measured, there has been no global assessment of protein oxidation following growth factor activation. Significant changes to the abundant and widely distributed redox sensitive thiol proteins were observed in A431 epidermoid carcinoma cells exposed to hydrogen peroxide, but no changes were observed following treatment with epidermal growth factor (EGF). This included members of the peroxiredoxin family, which were also monitored in the presence of the thioredoxin reductase inhibitor auranofin to limit their capacity to recycle to the reduced form. We conclude that widespread thiol oxidation does not occur in cells during EGF signaling, and that hydrogen peroxide must act in a highly localized or selective manner.

  5. Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility.

    Science.gov (United States)

    Yun, D J; Ibeas, J I; Lee, H; Coca, M A; Narasimhan, M L; Uesono, Y; Hasegawa, P M; Pardo, J M; Bressan, R A

    1998-05-01

    The plant pathogenesis-related protein osmotin is an antifungal cytotoxic agent that causes rapid cell death in the yeast S. cerevisiae. We show here that osmotin uses a signal transduction pathway to weaken defensive cell wall barriers and increase its cytotoxic efficacy. The pathway activated by osmotin includes the regulatory elements of the mating pheromone response STE4, STE18, STE20, STE5, STE11, STE7, FUS3, KSS1, and STE12. Neither the pheromone receptor nor its associated G protein alpha subunit GPA1 are required for osmotin action. However, mutation of SST2, a negative regulator of G alpha proteins, resulted in supersensitivity to osmotin. Phosphorylation of STE7 was rapidly stimulated by osmotin preceding any changes in cell vitality or morphology. These results demonstrate that osmotin subverts target cell signal transduction as part of its mechanism of action. PMID:9660964

  6. Determinants of cell-to-cell variability in protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Matthias Jeschke

    Full Text Available Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity' and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  7. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    OpenAIRE

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane...

  8. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.; (UNC)

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  9. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei, E-mail: wukakei@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Volta, Viviana [Molecular Histology and Cellular Growth Unit, DiBiT-San Raffaele Scientific Institute (Italy); Dipartimento di Scienze dell' Ambiente e della Vita (DiSAV), University of Eastern Piedmont (Italy); Cho, Chi Hin, E-mail: chcho@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Wu, Ya Chun; Li, Hai Tao [Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Yu, Le [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Li, Zhi Jie [Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong)

    2009-09-04

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  10. Budesonide and formoterol reduce early innate anti-viral immune responses in vitro.

    Directory of Open Access Journals (Sweden)

    Janet M Davies

    Full Text Available Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16 in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10⁻⁶ M when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2', 5' oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits

  11. Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses.

    Directory of Open Access Journals (Sweden)

    Tina M Sali

    2015-12-01

    Full Text Available Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN response by way of the transcription factor IFN regulatory factor 3 (IRF3. A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl-N-(furan-2-ylmethyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10, which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.

  12. Antiviral Strategies Against Chikungunya Virus.

    Science.gov (United States)

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2016-01-01

    In the last few decades the Chikungunya virus (CHIKV) has evolved from a geographically isolated pathogen to a virus that is widespread in many parts of Africa, Asia and recently also in Central- and South-America. Although CHIKV infections are rarely fatal, the disease can evolve into a chronic stage, which is characterized by persisting polyarthralgia and joint stiffness. This chronic CHIKV infection can severely incapacitate patients for weeks up to several years after the initial infection. Despite the burden of CHIKV infections, no vaccine or antivirals are available yet. The current therapy is therefore only symptomatic and consists of the administration of analgesics, antipyretics, and anti-inflammatory agents. Recently several molecules with various viral or host targets have been identified as CHIKV inhibitors. In this chapter, we summarize the current status of the development of antiviral strategies against CHIKV infections. PMID:27233277

  13. Mitogen-activated protein kinase signaling pathways of the tangerine pathotype of Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Kuang-Ren Chung

    2013-06-01

    Full Text Available Mitogen-activated protein kinase (MAPK- mediated signaling pathways have been known to have important functions in eukaryotic organisms. The mechanisms by which the filamentous fungus Alternaria alternata senses and responds to environmental signals have begun to be elucidated. Available data indicate that A. alternata utilizes the Fus3, Hog1 and Slt2 MAPK-mediated signaling pathways, either separately or in a cooperative manner, for conidia formation, resistance to oxidative and osmotic stress, and pathogenesis to citrus. This review provides an overview of our current knowledge of MAPK signaling pathways, in conjunction with the two-component histidine kinase and the Skn7 response regulator, in the tangerine pathotype of A. alternata.

  14. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling.

    Science.gov (United States)

    Kenyon, Emma J; Campos, Isabel; Bull, James C; Williams, P Huw; Stemple, Derek L; Clark, Matthew D

    2015-01-15

    The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo.

  15. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening.

    Science.gov (United States)

    Bisson, Melanie M A; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M; Groth, Georg

    2016-01-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis. PMID:27477591

  16. Evolutionary implications of localization of the signaling scaffold protein parafusin to both cilia and the nucleus.

    Science.gov (United States)

    Satir, Birgit Hegner; Wyroba, Elzbieta; Liu, Li; Lethan, Mette; Satir, Peter; Christensen, Søren Tvorup

    2015-02-01

    Parafusin (PFUS), a 63 kDa protein first discovered in the eukaryote Paramecium and known for its role in apicomplexan exocytosis, provides a model for the common origin of cellular systems employing scaffold proteins for targeting and signaling. PFUS is closely related to eubacterial rather than archeal phosphoglucomutases (PGM) - as we proved by comparison of their 88 sequences - but has no PGM activity. Immunofluorescence microscopy analysis with a PFUS-specific peptide antibody showed presence of this protein around the base region of primary cilia in a variety of mammalian cell types, including mouse embryonic (MEFs) and human foreskin fibroblasts (hFFs), human carcinoma stem cells (NT-2 cells), and human retinal pigment epithelial (RPE) cells. Further, PFUS localized to the nucleus of fibroblasts, and prominently to nucleoli of MEFs. Localization studies were confirmed by Western blot analysis, showing that the PFUS antibody specifically recognizes a single protein of ca. 63 kDa in both cytoplasmic and nuclear fractions. Finally, immunofluorescence microscopy analysis showed that PFUS localized to nuclei and cilia in Paramecium. These results support the suggestion that PFUS plays a role in signaling between nucleus and cilia, and that the cilium and the nucleus both evolved around the time of eukaryotic emergence. We hypothesize that near the beginnings of eukaryotic cell evolution, scaffold proteins such as PFUS arose as peripheral membrane protein identifiers for cytoplasmic membrane trafficking and were employed similarly during the subsequent evolution of exocytic, nuclear transport, and ciliogenic mechanisms.

  17. Knr4: a disordered hub protein at the heart of fungal cell wall signalling.

    Science.gov (United States)

    Martin-Yken, Hélène; François, Jean Marie; Zerbib, Didier

    2016-09-01

    The most highly connected proteins in protein-protein interactions networks are called hubs; they generally connect signalling pathways. In Saccharomyces cerevisiae, Knr4 constitutes a connecting node between the two main signal transmission pathways involved in cell wall maintenance upon stress: the cell wall integrity and the calcium-calcineurin pathway. Knr4 is required to enable the cells to resist many cell wall-affecting stresses, and KNR4 gene deletion is synthetic lethal with the simultaneous deletion of numerous other genes involved in morphogenesis and cell wall biogenesis. Knr4 has been shown to engage in multiple physical interactions, an ability conferred by the intrinsic structural adaptability of major disordered regions present in the N-terminal and C-terminal parts of the protein. Taking all together, Knr4 is an intrinsically disordered hub protein. Available data from other fungi indicate the conservation of Knr4 homologs cellular function and localization at sites of polarized growth among fungal species, including pathogenic species. Because of their particular role in morphogenesis control and of their fungal specificity, these proteins could constitute interesting new pharmaceutical drug targets for antifungal combination therapy. PMID:27199081

  18. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Directory of Open Access Journals (Sweden)

    Andrea Cerutti

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS, but no nuclear export signal (NES has yet been identified.We show here that the aa(109-133 region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126 in the identified NES or in the sequence encoding the mature core aa(1-173 significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  19. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  20. Signal Peptide-Binding Drug as a Selective Inhibitor of Co-Translational Protein Translocation

    Science.gov (United States)

    Vermeire, Kurt; Bell, Thomas W.; Van Puyenbroeck, Victor; Giraut, Anne; Noppen, Sam; Liekens, Sandra; Schols, Dominique; Hartmann, Enno

    2014-01-01

    In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins. PMID:25460167

  1. Signal peptide-binding drug as a selective inhibitor of co-translational protein translocation.

    Directory of Open Access Journals (Sweden)

    Kurt Vermeire

    2014-12-01

    Full Text Available In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP, and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA is identified as a highly selective human CD4 (hCD4 down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.

  2. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis

    Directory of Open Access Journals (Sweden)

    Fry Christopher S

    2011-03-01

    Full Text Available Abstract Background Sarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency. Resistance exercise (RE training is an effective treatment to improve muscle mass and strength in older adults, but aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability to stimulate muscle-protein synthesis (MPS after an acute bout of RE. We hypothesized that older adults would have impaired mammalian target of rapamycin complex (mTORC1 signaling and MPS response compared with young adults after acute RE. Methods We measured intracellular signaling and MPS in 16 older (mean 70 ± 2 years and 16 younger (27 ± 2 years subjects. Muscle biopsies were sampled at baseline and at 3, 6 and 24 hr after exercise. Phosphorylation of regulatory signaling proteins and MPS were determined on successive muscle biopsies by immunoblotting and stable isotopic tracer techniques, respectively. Results Increased phosphorylation was seen only in the younger group (PP >0.05. After exercise, MPS increased from baseline only in the younger group (PP 0.05. Conclusions We conclude that aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. These age-related differences may contribute to the blunted hypertrophic response seen after resistance-exercise training in older adults, and highlight the mTORC1 pathway as a key therapeutic target to prevent sarcopenia.

  3. Influenza C virus NS1 protein counteracts RIG-I-mediated IFN signalling

    Directory of Open Access Journals (Sweden)

    Vlasak Reinhard

    2011-02-01

    Full Text Available Abstract The nonstructural proteins 1 (NS1 from influenza A and B viruses are known as the main viral factors antagonising the cellular interferon (IFN response, inter alia by inhibiting the retinoic acid-inducible gene I (RIG-I signalling. The cytosolic pattern-recognition receptor RIG-I senses double-stranded RNA and 5'-triphosphate RNA produced during RNA virus infections. Binding to these ligands activates RIG-I and in turn the IFN signalling. We now report that the influenza C virus NS1 protein also inhibits the RIG-I-mediated IFN signalling. Employing luciferase-reporter assays, we show that expression of NS1-C proteins of virus strains C/JJ/50 and C/JHB/1/66 considerably reduced the IFN-β promoter activity. Mapping of the regions from NS1-C of both strains involved in IFN-β promoter inhibition showed that the N-terminal 49 amino acids are dispensable, while the C-terminus is required for proper modulation of the IFN response. When a mutant RIG-I, which is constitutively active without ligand binding, was employed, NS1-C still inhibited the downstream signalling, indicating that IFN inhibitory properties of NS1-C are not necessarily linked to an RNA binding mechanism.

  4. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway.

    Science.gov (United States)

    Vissing, Kristian; Rahbek, Stine K; Lamon, Severine; Farup, Jean; Stefanetti, Renae J; Wallace, Marita A; Vendelbo, Mikkel H; Russell, Aaron

    2013-08-01

    The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.

  5. microRNA control of interferons and interferon induced anti-viral activity.

    Science.gov (United States)

    Sedger, Lisa M

    2013-12-01

    Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.

  6. Can antiviral drugs contain pandemic influenza transmission?

    Directory of Open Access Journals (Sweden)

    Niels G Becker

    Full Text Available Antiviral drugs dispensed during the 2009 influenza pandemic generally failed to contain transmission. This poses the question of whether preparedness for a future pandemic should include plans to use antiviral drugs to mitigate transmission.Simulations using a standard transmission model that allows for infected arrivals and delayed vaccination show that attempts to contain transmission require relatively few antiviral doses. In contrast, persistent use of antiviral drugs when the reproduction number remains above 1 use very many doses and are unlikely to reduce the eventual attack rate appreciably unless the stockpile is very large. A second model, in which the community has a household structure, shows that the effectiveness of a strategy of dispensing antiviral drugs to infected households decreases rapidly with time delays in dispensing the antivirals. Using characteristics of past pandemics it is estimated that at least 80% of primary household cases must present upon show of symptoms to have a chance of containing transmission by dispensing antiviral drugs to households. To determine data needs, household outbreaks were simulated with 50% receiving antiviral drugs early and 50% receiving antiviral drugs late. A test to compare the size of household outbreaks indicates that at least 100-200 household outbreaks need to be monitored to find evidence that antiviral drugs can mitigate transmission of the newly emerged virus.Use of antiviral drugs in an early attempt to contain transmission should be part of preparedness plans for a future influenza pandemic. Data on the incidence of the first 350 cases and the eventual attack rates of the first 200 hundred household outbreaks should be used to estimate the initial reproduction number R and the effectiveness of antiviral drugs to mitigate transmission. Use of antiviral drugs to mitigate general transmission should cease if these estimates indicate that containment of transmission is unlikely.

  7. Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins

    Science.gov (United States)

    Brito, Paula; Antunes, Fernando

    2014-10-01

    The lack of kinetic data concerning the biological effects of reactive oxygen species is slowing down the development of the field of redox signaling. Herein, we deduced and applied equations to estimate kinetic parameters from typical redox signaling experiments. H2O2-sensing mediated by the oxidation of a protein target and the switch-off of this sensor, by being converted back to its reduced form, are the two processes for which kinetic parameters are determined. The experimental data required to apply the equations deduced is the fraction of the H2O2 sensor protein in the reduced or in the oxidized state measured in intact cells or living tissues after exposure to either endogenous or added H2O2. Either non-linear fittings that do not need transformation of the experimental data or linearized plots in which deviations from the equations are easily observed can be used. The equations were shown to be valid by fitting to them virtual time courses simulated with a kinetic model. The good agreement between the kinetic parameters estimated in these fittings and those used to simulate the virtual time courses supported the accuracy of the kinetic equations deduced. Finally, equations were successfully tested with real data taken from published experiments that describe redox signaling mediated by the oxidation of two protein tyrosine phosphatases, PTP1B and SHP-2, which are two of the few H2O2-sensing proteins with known kinetic parameters. Whereas for PTP1B estimated kinetic parameters fitted in general the present knowledge, for SHP-2 results obtained suggest that reactivity towards H2O2 as well as the rate of SHP-2 regeneration back to its reduced form are higher than previously thought. In conclusion, valuable quantitative kinetic data can be estimated from typical redox signaling experiments, thus improving our understanding about the complex processes that underline the interplay between oxidative stress and redox signaling responses.

  8. Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins.

    Science.gov (United States)

    Garcia, Erin C; Perault, Andrew I; Marlatt, Sara A; Cotter, Peggy A

    2016-07-19

    In prokaryotes and eukaryotes, cell-cell communication and recognition of self are critical to coordinate multicellular functions. Although kin and kind discrimination are increasingly appreciated to shape naturally occurring microbe populations, the underlying mechanisms that govern these interbacterial interactions are insufficiently understood. Here, we identify a mechanism of interbacterial signal transduction that is mediated by contact-dependent growth inhibition (CDI) system proteins. CDI systems have been characterized by their ability to deliver a polymorphic protein toxin into the cytoplasm of a neighboring bacterium, resulting in growth inhibition or death unless the recipient bacterium produces a corresponding immunity protein. Using the model organism Burkholderia thailandensis, we show that delivery of a catalytically active CDI system toxin to immune (self) bacteria results in gene expression and phenotypic changes within the recipient cells. Termed contact-dependent signaling (CDS), this response promotes biofilm formation and other community-associated behaviors. Engineered strains that are isogenic with B. thailandensis, except the DNA region encoding the toxin and immunity proteins, did not display CDS, whereas a strain of Burkholderia dolosa producing a nearly identical toxin-immunity pair induced signaling in B. thailandensis Our data indicate that bcpAIOB loci confer dual benefits; they direct antagonism toward non-self bacteria and promote cooperation between self bacteria, with self being defined by the bcpAIOB allele and not by genealogic relatedness. PMID:27335458

  9. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    Science.gov (United States)

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  10. Ring Finger Protein 11 Inhibits Melanocortin 3 and 4 Receptor Signaling.

    Science.gov (United States)

    Müller, Anne; Niederstadt, Lars; Jonas, Wenke; Yi, Chun-Xia; Meyer, Franziska; Wiedmer, Petra; Fischer, Jana; Grötzinger, Carsten; Schürmann, Annette; Tschöp, Matthias; Kleinau, Gunnar; Grüters, Annette; Krude, Heiko; Biebermann, Heike

    2016-01-01

    Intact melanocortin signaling via the G protein-coupled receptors (GPCRs), melanocortin receptor 4 (MC4R), and melanocortin receptor 3 (MC3R) is crucial for body weight maintenance. So far, no connection between melanocortin signaling and hypothalamic inflammation has been reported. Using a bimolecular fluorescence complementation library screen, we identified a new interaction partner for these receptors, ring finger protein 11 (RNF11). RNF11 participates in the constitution of the A20 complex that is involved in reduction of tumor necrosis factor α (TNFα)-induced NFκB signaling, an important pathway in hypothalamic inflammation. Mice treated with high-fat diet (HFD) for 3 days demonstrated a trend toward an increase in hypothalamic Rnf11 expression, as shown for other inflammatory markers under HFD. Furthermore, Gs-mediated signaling of MC3/4R was demonstrated to be strongly reduced to 20-40% by co-expression of RNF11 despite unchanged total receptor expression. Cell surface expression was not affected for MC3R but resulted in a significant reduction of MC4R to 61% by co-expression with RNF11. Mechanisms linking HFD, inflammation, and metabolism remain partially understood. In this study, a new axis between signaling of specific body weight regulating GPCRs and factors involved in hypothalamic inflammation is suggested. PMID:27551276

  11. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    Science.gov (United States)

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  12. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS

    Directory of Open Access Journals (Sweden)

    Penghua Wang

    2013-04-01

    Full Text Available RNA viruses are sensed by RIG-I-like receptors (RLRs, which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.

  13. Gravin orchestrates protein kinase A and β2-adrenergic receptor signaling critical for synaptic plasticity and memory

    NARCIS (Netherlands)

    Havekes, Robbert; Canton, David A; Park, Alan J; Huang, Ted; Nie, Ting; Day, Jonathan P; Guercio, Leonardo A; Grimes, Quinn; Luczak, Vincent; Gelman, Irwin H; Baillie, George S; Scott, John D; Abel, Ted

    2012-01-01

    A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plast

  14. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D;

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...

  15. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein

    OpenAIRE

    Peeper, D.S.; Upton, T.M.; Ladha, M H; Neuman, E; Zalvide, J; Bernards, R.A.; DeCaprio, J A; Ewen, M E

    1997-01-01

    The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (GO) and to pass through the GI/S transition of the cell cycle. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, however. Here we report that the retinoblastoma tumour-suppressor protein (Rb), a regulator of GI exit, functionally links Ras to passage through the Gl phase. Inactivation of Ras in cycling cells cause...

  16. Regulation of apoptotic signal transduction pathways by the heat shock proteins

    Institute of Scientific and Technical Information of China (English)

    LI; Zhengyu; ZHAO; Xia; WEI; Yuquan

    2004-01-01

    The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.

  17. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    Directory of Open Access Journals (Sweden)

    Alistair E. Cole

    2016-01-01

    Full Text Available Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS. The bone morphogenetic proteins (BMPs, in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.

  18. Identification of a functional nuclear export signal in the green fluorescent protein asFP499

    International Nuclear Information System (INIS)

    The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified 194LRMEKLNI201 as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES

  19. Approved Antiviral Drugs over the Past 50 Years.

    Science.gov (United States)

    De Clercq, Erik; Li, Guangdi

    2016-07-01

    Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2'-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2'-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide. PMID:27281742

  20. Recognition of signal peptide by protein translocation machinery in middle silk gland of silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Xiuyang Guo; Yi Zhang; Xue Zhang; Shengpeng Wang; Changde Lu

    2008-01-01

    To investigate the functions of signal peptide in protein secretion in the middle silk gland of silkworm Bombyx mori,a series of recombinant Autographa californica multiple nucleopolyhedroviruses containing enhanced green fluorescent protein (egfp) gene,led by sericin-1 promoter and mutated signal peptide coding sequences,were constructed by region-deletions or single amino acid residue deletions.The recombinant Autographa californica multiple nucleopolyhedroviruses were injected into the hemocoele of newly ecdysed fifth-instar silkworm larvae.The expression and secretion of EGFP in the middle silk gland were examined by fluorescence microscopy and Western blot analysis.Results showed that even with a large part (up to 14 amino acid residues) of the ser-1 signal peptide deleted,the expressed EGFP could still be secreted into the cavity of the silk gland.Western blot analysis showed that shortening of the signal peptide from the C-terminal suppressed the maturation of pro-EGFP to EGFP.When 8 amino acid residues were deleted from the C-terminal of the signal peptide (mutant 13 aa),the secretion of EGFP was incomplete,implicating the importance of proper coupling of the h-region and c-region.The deletion of amino acid residue(s) in the h-region did not affect the secretion of EGFP,indicating that the recognition of signal peptide by translocation machinery was mainly by a structural domain,but not by special amino acid residue(s).Furthermore,the deletion of Arg2 or replacement with Asp in the n-region of the signal peptide did not influence secretion of EGFP,suggesting that a positive charge is not crucial.

  1. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Adriana C Lambertucci

    Full Text Available In this study, we investigated the effect of glutamine (Gln supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1 and the degradation pathways (MuRF-1 and MAFbx were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1 control, non-supplemented with glutamine; 2 control, supplemented with glutamine; 3 diabetic, non-supplemented with glutamine; and 4 diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2; the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  2. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways

    Institute of Scientific and Technical Information of China (English)

    Mary; Louisa; Holton; Michael; Emerson; Ludwig; Neyses; Angel; L; Armesilla

    2010-01-01

    Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular freecalcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulindependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.

  3. Characterization of the Nuclear Localization Signal of High Risk HPV16 E2 Protein

    OpenAIRE

    Klucevsek, Kristin; Wertz, Mary; Lucchi, John; Leszczynski, Anna; Moroianu, Junona

    2006-01-01

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of ...

  4. SipY Is the Streptomyces lividans Type I Signal Peptidase Exerting a Major Effect on Protein Secretion

    OpenAIRE

    Palacín, Arantxa; Parro, Víctor; Geukens, Nick; Anné, Jozef; Mellado, Rafael P.

    2002-01-01

    Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual s...

  5. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  6. Inhibition of enterovirus VP4 myristoylation is a potential antiviral strategy for hand, foot and mouth disease.

    Science.gov (United States)

    Tan, Yong Wah; Hong, Wan Jin; Chu, Justin Jang Hann

    2016-09-01

    The Hand, Foot and Mouth Disease (HFMD) can result from infections by a plethora of human enteroviruses of the species Enterovirus A and B. These infections are highly contagious, resulting in regular outbreaks especially in the Asia-Pacific Region in the recent decade. Although this disease is generally a childhood affliction which manifests as a mild, febrile illness accompanied by the vesicles on the hands, feet and mouth, permanent morbidity or even fatality can result from severe forms of the disease in a subset of the infected patients. The N-terminal myristoylation signal (MGXXXS) of viral capsid protein VP4, one of the four viral structural proteins, is an extremely well conserved feature of enteroviruses, a potential antiviral target that may yield broad-spectrum inhibitors of HFMD. In this study, we have confirmed through the use of small interfering RNAs, human N-myristoyltransferase 1 plays an integral role in human Enterovirus 71 replication. Subsequent studies by inhibition of myristoylation using different myristic acid analogues elicited differential effects on the virus replication in human rhabdomyosarcoma cells. In particular, 2-hydroxymyristic acid specifically inhibited the cleavage between VP4 and VP2, part of the virion maturation process required to ensure infectivity of progeny virions while 4-oxatetradecanoic acid reduced the synthesis of viral RNA. These findings suggest that the requirement of a myristate moiety in viral structural protein precursor cleavage can serve as a viable antiviral target for further research. PMID:27520386

  7. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau;

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were...

  8. Ultrasensitive Detection of Low-Abundance Protein Biomarkers by Mass Spectrometry Signal Amplification Assay.

    Science.gov (United States)

    Du, Ruijun; Zhu, Lina; Gan, Jinrui; Wang, Yuning; Qiao, Liang; Liu, Baohong

    2016-07-01

    A mass spectrometry signal amplification method is developed for the ultrasensitive and selective detection of low-abundance protein biomarkers by utilizing tag molecules on gold nanoparticles (AuNPs). EpCAM and thrombin as model targets are captured by specific aptamers immobilized on the AuNPs. With laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), the mass tag molecules are detected to represent the protein biomarkers. Benefiting from the MS signal amplification, the assay can achieve a limit of detection of 100 aM. The method is further applied to detect thrombin in fetal bovine serum and EpCAM in cell lysates to demonstrate its selectivity and feasibility in complex biological samples. With the high sensitivity and specificity, the protocol shows great promise for providing a new route to single-cell analysis and early disease diagnosis. PMID:27253396

  9. Carbohydrate recognition by the antiviral lectin cyanovirin-N

    OpenAIRE

    Fujimoto, Yukiji K.; Green, David F.

    2012-01-01

    Cyanovirin-N is a cyanobacterial lectin with potent antiviral activity, and has been the focus of extensive pre-clinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and Molecular-Mechanics/ Poisson–Boltzmann/Surface-Area (...

  10. Degradation Signals for Ubiquitin-Proteasome Dependent Cytosolic Protein Quality Control (CytoQC) in Yeast.

    Science.gov (United States)

    Maurer, Matthew J; Spear, Eric D; Yu, Allen T; Lee, Evan J; Shahzad, Saba; Michaelis, Susan

    2016-01-01

    Cellular protein quality control (PQC) systems selectively target misfolded or otherwise aberrant proteins for degradation by the ubiquitin-proteasome system (UPS). How cells discern abnormal from normal proteins remains incompletely understood, but involves in part the recognition between ubiquitin E3 ligases and degradation signals (degrons) that are exposed in misfolded proteins. PQC is compartmentalized in the cell, and a great deal has been learned in recent years about ER-associated degradation (ERAD) and nuclear quality control. In contrast, a comprehensive view of cytosolic quality control (CytoQC) has yet to emerge, and will benefit from the development of a well-defined set of model substrates. In this study, we generated an isogenic "degron library" in Saccharomyces cerevisiae consisting of short sequences appended to the C-terminus of a reporter protein, Ura3 About half of these degron-containing proteins are substrates of the integral membrane E3 ligase Doa10, which also plays a pivotal role in ERAD and some nuclear protein degradation. Notably, some of our degron fusion proteins exhibit dependence on the E3 ligase Ltn1/Rkr1 for degradation, apparently by a mechanism distinct from its known role in ribosomal quality control of translationally paused proteins. Ubr1 and San1, E3 ligases involved in the recognition of some misfolded CytoQC substrates, are largely dispensable for the degradation of our degron-containing proteins. Interestingly, the Hsp70/Hsp40 chaperone/cochaperones Ssa1,2 and Ydj1, are required for the degradation of all constructs tested. Taken together, the comprehensive degron library presented here provides an important resource of isogenic substrates for testing candidate PQC components and identifying new ones. PMID:27172186

  11. Crosstalk and signalling switches in mitogen-activated protein kinase cascades

    Directory of Open Access Journals (Sweden)

    Dirk eFey

    2012-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades control cell fate decisions, such as proliferation, differentiation and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength and dynamics. This implies that signalling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK, p38 mitogen-activated protein kinase (p38, c-Jun N-terminal kinase (JNK, and also include input from protein kinase B (AKT. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonises different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38 and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signalling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure ocertain drugs to

  12. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  13. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  14. G Protein-Linked Signaling Pathways in Bipolar and Major Depressive Disorders

    Directory of Open Access Journals (Sweden)

    Hiroaki eTomita

    2013-12-01

    Full Text Available The G-protein linked signaling system (GPLS comprises a large number of G-proteins, G protein-coupled receptors (GPCRs, GPCR ligands, and downstream effector molecules. G-proteins interact with both GPCRs and downstream effectors such as cyclic adenosine monophosphate (cAMP, phosphatidylinositols, and ion channels. The GPLS is implicated in the pathophysiology and pharmacology of both major depressive disorder (MDD and bipolar disorder (BPD. This study evaluated whether GPLS is altered at the transcript level. The gene expression in the dorsolateral prefrontal (DLPFC and anterior cingulate (ACC were compared from MDD, BPD, and control subjects using Affymetrix Gene Chips and real time quantitative PCR. High quality brain tissue was used in the study to control for confounding effects of agonal events, tissue pH, RNA integrity, gender, and age. GPLS signaling transcripts were altered especially in the ACC of BPD and MDD subjects. Transcript levels of molecules which repress cAMP activity were increased in BPD and decreased in MDD. Two orphan GPCRs, GPRC5B and GPR37, showed significantly decreased expression levels in MDD, and significantly increased expression levels in BPD. Our results suggest opposite changes in BPD and MDD in the GPLS, ‘activated’ cAMP signaling activity in BPD and ‘blunted’ cAMP signaling activity in MDD. GPRC5B and GPR37 both appear to have behavioral effects, and are also candidate genes for neurodegenerative disorders. In the context of the opposite changes observed in BPD and MDD, these GPCRs warrant further study of their brain effects.

  15. H2O2 alters rat cardiac sarcomere function and protein phosphorylation through redox signaling

    OpenAIRE

    Avner, Benjamin S.; Hinken, Aaron C.; Yuan, Chao; Solaro, R. John

    2010-01-01

    ROS, such as H2O2, are a component of pathological conditions in many organ systems and have been reported to be elevated in cardiac pathophysiology. The experiments presented here test the hypothesis that H2O2 induces alterations in cardiac myofilament function by the posttranslational modification of sarcomeric proteins indirectly through PKC signaling. In vitro assessment of actomyosin Mg2+-ATPase activity of myofibrillar fractions showed blunted relative ATP consumption in the relaxed sta...

  16. Mitogen-Activated Protein Kinase Signaling in Male Germ Cell Apoptosis in the Rat1

    OpenAIRE

    Jia, Yue; Castellanos, Jesse; Wang, Christina; Sinha-Hikim, Indrani; Lue, YanHe; Swerdloff, Ronald S.; Sinha-Hikim, Amiya P.

    2008-01-01

    Programmed germ cell death is critical for functional spermatogenesis. Increased germ cell apoptosis can be triggered by various regulatory stimuli, including testicular hyperthermia or deprivation of gonadotropins and intratesticular testosterone. We have previously shown the involvement of the mitogen-activated protein kinase (MAPK) 14 in apoptotic signaling of male germ cells across species after hormone deprivation. This study investigates the role of MAPK14 in germ cell apoptosis in rats...

  17. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases.

    OpenAIRE

    Z.Zhou; Gartner, A...; Cade, R.; Ammerer, G; Errede, B

    1993-01-01

    Protein phosphorylation plays an important role in pheromone-induced differentiation processes of haploid yeast cells. Among the components necessary for signal transduction are the STE7 and STE11 kinases and either one of the redundant FUS3 and KSS1 kinases. FUS3 and presumably KSS1 are phosphorylated and activated during pheromone induction by a STE7-dependent mechanism. Pheromone also induces the accumulation of STE7 in a hyperphosphorylated form. This modification of STE7 requires the STE...

  18. Cell-autonomous programming of rat adipose tissue insulin signalling proteins by maternal nutrition

    OpenAIRE

    Martin-Gronert, Malgorzata S.; Fernandez-Twinn, Denise S.; Bushell, Martin; Siddle, Kenneth; Ozanne, Susan E.

    2016-01-01

    Aims/hypothesis Individuals with a low birthweight have an increased risk of developing type 2 diabetes mellitus in adulthood. This is associated with peripheral insulin resistance. Here, we aimed to determine whether changes in insulin signalling proteins in white adipose tissue (WAT) can be detected prior to the onset of impaired glucose tolerance, determine whether these changes are cell-autonomous and identify the underlying mechanisms involved. Methods Fourteen-month-old male rat offspri...

  19. Experimental Cerebral Malaria Develops Independently of Caspase Recruitment Domain-Containing Protein 9 Signaling

    OpenAIRE

    Julius Clemence R Hafalla; Burgold, Jan; Dorhoi, Anca; Gross, Olaf; Ruland, Jürgen; Stefan H. E. Kaufmann; Matuschewski, Kai

    2012-01-01

    The outcome of infection depends on multiple layers of immune regulation, with innate immunity playing a decisive role in shaping protection or pathogenic sequelae of acquired immunity. The contribution of pattern recognition receptors and adaptor molecules in immunity to malaria remains poorly understood. Here, we interrogate the role of the caspase recruitment domain-containing protein 9 (CARD9) signaling pathway in the development of experimental cerebral malaria (ECM) using the murine Pla...

  20. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways

    Science.gov (United States)

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)–IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK–IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2–NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  1. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor

    Institute of Scientific and Technical Information of China (English)

    Alexey E Granovsky; Marsha Rich Rosner

    2008-01-01

    Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.

  2. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways.

    Science.gov (United States)

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)-IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK-IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2-NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  3. Regulation of lubricin/superficial zone protein by Wnt signalling in bovine synoviocytes.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Hari Reddi, A

    2016-02-01

    Lubricin, homologous to superficial zone protein (SZP), functions as a boundary lubricant in articular cartilage and plays an essential role in the maintenance of joint function and homeostasis. Wnt signalling plays a key role in joint development, including synovial joint formation, and several Wnt proteins are expressed in the synovium and articular cartilage in arthritis. The aim of this study was to determine the role of Wnt signalling on SZP accumulation in synoviocytes. Isolated synoviocytes from bovine knee joints were cultured with Wnt proteins (Wnt-3a and Wnt-5a) and antagonists or agonists of the Wnt-β-catenin pathway or Wnt-Ca(2+) pathway in serum-free chemically defined medium. SZP accumulation in the culture medium was determined by enzyme-linked immunosorbent assay. Wnt-3a suppressed SZP accumulation via a Wnt-β-catenin-dependent pathway. In contrast, Wnt-5a stimulated SZP accumulation via a β-catenin independent pathway. The present investigation provides novel insights into the role of the Wnt signalling pathways in SZP accumulation in synoviocytes and their roles in the homeostasis of normal joints.

  4. Holophytochrome-interacting proteins in Physcomitrella: putative actors in phytochrome cytoplasmic signaling

    Directory of Open Access Journals (Sweden)

    Anna Lena eErmert

    2016-05-01

    Full Text Available Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically-functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We discuss the roles these putative holophytochrome-interacting proteins (HIP's might have in signaling.

  5. NF-κB signaling pathways regulated by CARMA family of scaffold proteins

    Institute of Scientific and Technical Information of China (English)

    Marzenna Blonska; Xin Lin

    2011-01-01

    The NF-κB family of transcription factors plays a crucial role in cell activation,survival and proliferation.Its aberrant activity results in cancer,immunodeficiency or autoimmune disorders.Over the past two decades,tremendous progress has been made in our understanding of the signals that regulate NF-κB activation,especially how scaffold proteins link different receptors to the NF-κB-activating complex,the IκB kinase complex.The growing number of these scaffolds underscores the complexity of the signaling networks in different cell types.In this review,we discuss the role of scaffold molecules in signaling cascades induced by stimulation of antigen receptors,G-protein-coupled receptors and C-type Lectin receptors,resulting in NF-κB activation.Especially,we focus on the family of Caspase recruitment domain(CARD)-containing proteins known as CARMA and their function in activation of NF-κB,as well as the link of these scaffolds to the development of various neoplastic diseases through regulation of NF-κB.

  6. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants.

    Science.gov (United States)

    Huang, Jin; Ghosh, Ratna; Bankaitis, Vytas A

    2016-09-01

    Phosphoinositides and soluble inositol phosphates are essential components of a complex intracellular chemical code that regulates major aspects of lipid signaling in eukaryotes. These involvements span a broad array of biological outcomes and activities, and cells are faced with the problem of how to compartmentalize and organize these various signaling events into a coherent scheme. It is in the arena of how phosphoinositide signaling circuits are integrated and, and how phosphoinositide pools are functionally defined and channeled to privileged effectors, that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as critical players. As plant systems offer some unique advantages and opportunities for study of these proteins, we discuss herein our perspectives regarding the progress made in plant systems regarding PITP function. We also suggest interesting prospects that plant systems hold for interrogating how PITPs work, particularly in multi-domain contexts, to diversify the biological outcomes for phosphoinositide signaling. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27038688

  7. Charged MVB protein 5 is involved in T-cell receptor signaling.

    Science.gov (United States)

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-01

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling. PMID:26821576

  8. Charged MVB protein 5 is involved in T-cell receptor signaling.

    Science.gov (United States)

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-29

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling.

  9. Sprinter: a novel transmembrane protein required for Wg secretion and signaling.

    Science.gov (United States)

    Goodman, Robyn M; Thombre, Shreya; Firtina, Zeynep; Gray, Dione; Betts, Daniella; Roebuck, Jamie; Spana, Eric P; Selva, Erica M

    2006-12-01

    Wingless (Wg) is a secreted ligand that differentially activates gene expression in target tissues. It belongs to the Wnt family of secreted signaling molecules that regulate cell-to-cell interactions during development. Activation of Wg targets is dependent on the ligand concentration in the extracellular milieu; cellular mechanisms that govern the synthesis, delivery and receipt of Wg are elaborate and complex. We have identified sprinter (srt), which encodes a novel, evolutionarily conserved transmembrane protein required for the transmission of the Wg signal. Mutations in srt cause the accumulation of Wg in cells that express it, and retention of the ligand prevents activation of its target genes in signal-receiving cells. In the absence of Srt activity, levels of Wg targets (including Engrailed in embryos lacking maternal and zygotic srt, and Senseless and Achaete in wing discs) are reduced. Activation of Wg targets in the receiving cells does not require srt. Hence, the function of Srt is restricted to events occurring within the Wg-producing cells. We show that srt is not required for any aspect of Hedgehog (Hh) signal transduction, suggesting specificity of srt for the Wg pathway. We propose that srt encodes a protein required for Wg secretion that regulates maturation, membrane targeting or delivery of Wg. Loss of srt function in turn diminishes Wg-pathway activation in receiving cells.

  10. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Sebastian A.; Linden, Rafael [Universidade Federal do Rio de Janeiro (IBCCF/UFRl), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Cordeiro, Yraima; Rocha e Lima, Luis M.T. da [Universidade Federal do Rio de Janeiro (FF/UFRl), RJ (Brazil). Fac. de Farmacia; Lopes, Marilene H. [Instituto Ludwig de Pesquisa de Cancer, Sao Paulo, SP (Brazil); Silva, Jerson L.; Foguel, Debora [Universidade Federal do Rio de Janeiro (IBqM/UFRl), RJ (Brazil). Inst. de Bioquimica Medica

    2009-07-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP{sup c}), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP{sup c} with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P{sup c} and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP{sup c}:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P{sup c}{sub 143-153} beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP{sup c}. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P{sup c}{sub 143-153} beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P{sup c}, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P{sup c}:hop/STI 1 interaction, consistent with the hypothesis that Pr P{sup c} scaffolds multiprotein signaling complexes at the cell surface. (author)

  11. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    Science.gov (United States)

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  12. Antiviral effect of methylated flavonol isorhamnetin against influenza.

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    Full Text Available Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3', and 4' positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3'-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1. However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B. Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70-80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids.

  13. Post-translational disulfide modifications in cell signaling--role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission.

    Science.gov (United States)

    O'Brian, Catherine A; Chu, Feng

    2005-05-01

    Cell signaling entails a host of post-translational modifications of effector-proteins. These modifications control signal transmission by regulating the activity, localization or half-life of the effector-protein. Prominent oxidative modifications induced by cell-signaling reactive oxygen species (ROS) are cysteinyl modifications such as S-nitrosylation, sulfenic acid and disulfide formation. Disulfides protect protein sulfhydryls against oxidative destruction and simultaneously influence cell signaling by engaging redox-regulatory sulfhydryls in effector-proteins. The types of disulfides implicated in signaling span (1) protein S-glutathionylation, e.g. as a novel mode of Ras activation through S-glutathionylation at Cys-118 in response to a hydrogen-peroxide burst, (2) intra-protein disulfides, e.g. in the regulation of the stability of the protein phosphatase Cdc25C by hydrogen-peroxide, (3) inter-protein disulfides, e.g. in the hydrogen peroxide-mediated inactivation of receptor protein-tyrosine phosphatase alpha (RPTPalpha) by dimerization and (4) protein S-cysteaminylation by cystamine. Cystamine is a byproduct of pantetheinase-catalyzed pantothenic acid recycling from pantetheine for biosynthesis of Coenzyme A (CoA), a ubiquitous and metabolically indispensable cofactor. Cystamine inactivates protein kinase C-epsilon (PKCepsilon), gamma-glutamylcysteine synthetase and tissue transglutaminase by S-cysteaminylation-triggered mechanisms. The importance of protein S-cysteaminylation in signal transmission in vivo is evident from the ability of cystamine administration to rescue the intestinal inflammatory-response deficit of pantetheinase knockout mice. These mice lack the predominant epithelial pantetheinase isoform and have sharply reduced levels of cystamine/cysteamine in epithelial tissues. In addition, intraperitoneal administration of cystamine significantly delays neurodegenerative pathogenesis in a Huntington's disease mouse model. Thus, cystamine may

  14. A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms

    NARCIS (Netherlands)

    J. van Unen; J. Woolard; A. Rinken; C. Hoffmann; S.J. Hill; J. Goedhart; M.R. Bruchas; M. Bouvier; M.J.W. Adjobo-Hermans

    2015-01-01

    The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR trafficking, dimerization, protein-protein

  15. The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway

    Directory of Open Access Journals (Sweden)

    Kiefer Dorothee

    2010-11-01

    Full Text Available Abstract Background Rhodocista centenaria is a phototrophic α-proteobacterium exhibiting a phototactic behaviour visible as colony movement on agar plates directed to red light. As many phototrophic purple bacteria R. centenaria possesses a soluble photoactive yellow protein (Pyp. It exists as a long fusion protein, designated Ppr, consisting of three domains, the Pyp domain, a putative bilin binding domain (Bbd and a histidine kinase domain (Pph. The Ppr protein is involved in the regulation of polyketide synthesis but it is still unclear, how this is connected to phototaxis and chemotaxis. Results To elucidate the possible role of Ppr and Pph in the chemotactic network we studied the interaction with chemotactic proteins in vitro as well as in vivo. Matrix-assisted coelution experiments were performed to study the possible communication of the different putative binding partners. The kinase domain of the Ppr protein was found to interact with the chemotactic linker protein CheW. The formation of this complex was clearly ATP-dependent. Further results indicated that the Pph histidine kinase domain and CheW may form a complex with the chemotactic kinase CheAY suggesting a role of Ppr in the chemotaxis signalling pathway. In addition, when Ppr or Pph were expressed in Escherichia coli, the chemotactic response of the cells was dramatically affected. Conclusions The Ppr protein of Rhodocista centenaria directly interacts with the chemotactic protein CheW. This suggests a role of the Ppr protein in the regulation of the chemotactic response in addition to its role in chalcone synthesis.

  16. Deciphering signaling pathways in clinical tissues for personalized medicine using protein microarrays.

    Science.gov (United States)

    Malinowsky, K; Wolff, C; Ergin, B; Berg, D; Becker, K F

    2010-11-01

    The current transition in cancer therapy from general treatment approaches, based mainly on chemotherapy and radiotherapy, to more directed approaches that aim to inhibit specific molecular targets has brought about new challenges for pathology. In the past, classical assignment of pathology consisted of tumor diagnosis and staging for further therapy decisions; nowadays, pathologists are asked to predict possible therapeutic results by detecting and quantifying therapeutic targets in tumors such as the human epidermal growth factor receptor 2 (HER2). The best approach to analyze such molecular targets is to provide a tumor-specific protein expression profile prior to therapy. To further elucidate signaling networks underlying cancer development and to identify new targets, it is necessary to implement tools that allow fast, precise, cheap, and simultaneous analysis of many network components while requiring only a small amount of clinical material. Reverse phase protein microarray (RPPA) is a promising technology that meets these requirements while enabling quantitative measurement of proteins. Recently, methods for the extraction of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues have become available. In this article, we demonstrate how the use of RPPA to analyze signaling pathways from FFPE tissues may improve quantification of therapeutic targets and diagnostic markers in the near future.

  17. Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: A computational study

    Indian Academy of Sciences (India)

    Piyali Ganguli; Saikat Chowdhury; Rupa Bhowmick; Ram Rup Sarkar

    2015-10-01

    Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell’s functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical equations and simulated using the published time series microarray expression data as inputs. After validating the model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted, which shows significant variations among the proteins expression and the signalling routes through which the response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to study the changes in protein expression patterns and helps to predict variations in the cellular behaviour.

  18. Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: a computational study.

    Science.gov (United States)

    Ganguli, Piyali; Chowdhury, Saikat; Bhowmick, Rupa; Sarkar, Ram Rup

    2015-10-01

    Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell's functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical equations and simulated using the published time series microarray expression data as inputs. After validating the model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted, which shows significant variations among the proteins expression and the signalling routes through which the response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to study the changes in protein expression patterns and helps to predict variations in the cellular behaviour. PMID:26564978

  19. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    LENUS (Irish Health Repository)

    Gegenbauer, Kristina

    2013-11-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.

  20. Dickkopf-related protein 1 inhibits the WNT signaling pathway and improves pig oocyte maturation.

    Directory of Open Access Journals (Sweden)

    Lee D Spate

    Full Text Available The ability to mature oocytes in vitro provides a tool for creating embryos by parthenogenesis, fertilization, and cloning. Unfortunately the quality of oocytes matured in vitro falls behind that of in vivo matured oocytes. To address this difference, transcriptional profiling by deep sequencing was conducted on pig oocytes that were either matured in vitro or in vivo. Alignment of over 18 million reads identified 1,316 transcripts that were differentially represented. One pathway that was overrepresented in the oocytes matured in vitro was for Wingless-type MMTV integration site (WNT signaling. In an attempt to inhibit the WNT pathway, Dickkopf-related protein 1 was added to the in vitro maturation medium. Addition of Dickkopf-related protein 1 improved the percentage of oocytes that matured to the metaphase II stage, increased the number of nuclei in the resulting blastocyst stage embryos, and reduced the amount of disheveled segment polarity protein 1 protein in oocytes. It is concluded that transcriptional profiling is a powerful method for detecting differences between in vitro and in vivo matured oocytes, and that the WNT signaling pathway is important for proper oocyte maturation.

  1. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  2. From start to finish: amino-terminal protein modifications as degradation signals in plants.

    Science.gov (United States)

    Gibbs, Daniel J; Bailey, Mark; Tedds, Hannah M; Holdsworth, Michael J

    2016-09-01

    Contents 1188 I. 1188 II. 1189 III. 1190 IV. 1191 V. 1192 1192 References 1192 SUMMARY: The amino- (N-) terminus (Nt) of a protein can undergo a diverse array of co- and posttranslational modifications. Many of these create degradation signals (N-degrons) that mediate protein destruction via the N-end rule pathway of ubiquitin-mediated proteolysis. In plants, the N-end rule pathway has emerged as a major system for regulated control of protein stability. Nt-arginylation-dependent degradation regulates multiple growth, development and stress responses, and recently identified functions of Nt-acetylation can also be linked to effects on the in vivo half-lives of Nt-acetylated proteins. There is also increasing evidence that N-termini could act as important protein stability determinants in plastids. Here we review recent advances in our understanding of the relationship between the nature of protein N-termini, Nt-processing events and proteolysis in plants. PMID:27439310

  3. Signaling mechanisms in alcoholic liver injury: Role of transcription factors,kinases and heat shock proteins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alcoholic liver injury comprises of interactions of various intracellular signaling events in the liver. Innate immune responses in the resident Kupffer cells of the liver, oxidative stress-induced activation of hepatocytes,fibrotic events in liver stellate cells and activation of liver sinusoidal endothelial cells all contribute to alcoholic liver injury. The signaling mechanisms associated with alcoholic liver injury vary based on the cell type involved and the extent of alcohol consumption. In this review we will elucidate the oxidative stress and signaling pathways affected by alcohol in hepatocytes and Kupffer cells in the liver by alcohol. The toll-like receptors and their down-stream signaling events that play an important role in alcohol-induced inflammation will be discussed. Alcohol-induced alterations of various intracellular transcription factors such as NFκB, PPARs and AP-1, as well as MAPK kinases in hepatocytes and macrophages leading to induction of target genes that contribute to liver injury will be reviewed. Finally, we will discuss the significance of heat shock proteins as chaperones and their functional regulation in the liver that could provide new mechanistic insights into the contributions of stress-induced signaling mechanisms in alcoholic liver injury.

  4. Multiscale approach to the determination of the photoactive yellow protein signaling state ensemble.

    Directory of Open Access Journals (Sweden)

    Mary A Rohrdanz

    2014-10-01

    Full Text Available The nature of the optical cycle of photoactive yellow protein (PYP makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical.

  5. Proteins involved in platelet signaling are differentially regulated in acute coronary syndrome: a proteomic study.

    Directory of Open Access Journals (Sweden)

    Andrés Fernández Parguiña

    Full Text Available BACKGROUND: Platelets play a fundamental role in pathological events underlying acute coronary syndrome (ACS. Because platelets do not have a nucleus, proteomics constitutes an optimal approach to follow platelet molecular events associated with the onset of the acute episode. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first high-resolution two-dimensional gel electrophoresis-based proteome analysis of circulating platelets from patients with non-ST segment elevation ACS (NSTE-ACS. Proteins were identified by mass spectrometry and validations were by western blotting. Forty protein features (corresponding to 22 unique genes were found to be differentially regulated between NSTE-ACS patients and matched controls with chronic ischemic cardiopathy. The number of differences decreased at day 5 (28 and 6 months after the acute event (5. Interestingly, a systems biology approach demonstrated that 16 of the 22 differentially regulated proteins identified are interconnected as part of a common network related to cell assembly and organization and cell morphology, processes very related to platelet activation. Indeed, 14 of those proteins are either signaling or cytoskeletal, and nine of them are known to participate in platelet activation by αIIbβ3 and/or GPVI receptors. Several of the proteins identified participate in platelet activation through post-translational modifications, as shown here for ILK, Src and Talin. Interestingly, the platelet-secreted glycoprotein SPARC was down-regulated in NSTE-ACS patients compared to stable controls, which is consistent with a secretion process from activated platelets. CONCLUSIONS/SIGNIFICANCE: The present study provides novel information on platelet proteome changes associated with platelet activation in NSTE-ACS, highlighting the presence of proteins involved in platelet signaling. This investigation paves the way for future studies in the search for novel platelet-related biomarkers and drug targets

  6. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Science.gov (United States)

    Scheler, Gabriele

    2013-01-01

    We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer

  7. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  8. G protein signalling involved in host recognition and mycoparasitismrelated chitinase expression in Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Susanne Zeilinger; Barbara Reithner; Kurt Brunner; Valeria Scala; Isabel Peiβl; Matteo Lorito; Robert L Mach

    2004-01-01

    @@ Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition,attack and subsequent penetration and killing of the host. Investigations on the underlying events revealed that Trichoderma responds to multiple signals from the host (e. g. lectins or other ligands such as low molecular weight components released from the host's cell wall) and host attack is accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics.Degradation of the cell wall of the host fungus is-besides glucanases and proteases-mainly achieved by chitinases. In vivo studies showed that the ech42 gene (encoding endochitinase 42) is expressed before physical contact of Trichoderma with its host, probably representing one of the earliest events in mycoparasitism, whereas Nag1 (N-acetylglucosaminidase) plays a key role in the general induction of the chitinolytic enzyme system of T. atroviride . Investigations on the responsible signal transduction pathways of T. atroviride led to the isolation of several genes encoding key components of the cAMP and MAP kinase signaling pathways, as alpha and β subunits of heterotrimeric G proteins, the regulatory subunit of cAMP-dependent protein kinase,adenylate cyclase, and three MAP kinases. Analysis of knockout mutants, generated by Agrobacterium-mediated transformation, revealed that at least two alpha-subunits of heterotrimeric G proteins are participating in mycoparasitism-related signal transduction. The Tga1 G alpha subunit was shown to be involved in mycoparasitism-related processes such as chitinase expression and overproduction of toxic secondary metabolites, whereas Tga3 was found to be completely avirulent showing defects in chitinase formation and host recognition.

  9. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Newsletters What You Should Know About Flu Antiviral Drugs Language: ... that can be used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines ( ...

  10. Antiviral effects of Glycyrrhiza species.

    Science.gov (United States)

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs. PMID:17886224

  11. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites.

    Science.gov (United States)

    Kentala, Henriikka; Weber-Boyvat, Marion; Olkkonen, Vesa M

    2016-01-01

    Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes. PMID:26811291

  12. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    International Nuclear Information System (INIS)

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property

  13. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A [Technische Universitaet Muenchen, Technische Mikrobiologie, Weihenstephaner Steig 16, 85350 Freising (Germany)], E-mail: rudi.vogel@wzw.tum.de

    2008-07-15

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  14. Cannabinoid receptor 2 expression modulates Gβ(1)γ(2) protein interaction with the activator of G protein signalling 2/dynein light chain protein Tctex-1.

    Science.gov (United States)

    Nagler, Marina; Palkowitsch, Lysann; Rading, Sebastian; Moepps, Barbara; Karsak, Meliha

    2016-01-01

    The activator of G protein signalling AGS2 (Tctex-1) forms protein complexes with Gβγ, and controls cell proliferation by regulating cell cycle progression. A direct interaction of Tctex-1 with various G protein-coupled receptors has been reported. Since the carboxyl terminal portion of CB2 carries a putative Tctex-1 binding motif, we investigated the potential interplay of CB2 and Tctex-1 in the absence and presence of Gβγ. The supposed interaction of cannabinoid receptor CB2 with Tctex-1 and the influence of CB2 on the formation of Tctex-1-Gβγ-complexes were studied by co- and/or immunoprecipitation experiments in transiently transfected HEK293 cells. The analysis on Tctex-1 protein was performed in the absence and presence of the ligands JWH 133, 2-AG, and AM 630, the protein biosynthesis inhibitor cycloheximide or the protein degradation blockers MG132, NH4Cl/leupeptin or bafilomycin. Our results show that CB2 neither directly nor indirectly via Gβγ interacts with Tctex-1, but competes with Tctex-1 in binding to Gβγ. The Tctex-1-Gβγ protein interaction was disrupted by CB2 receptor expression resulting in a release of Tctex-1 from the complex, and its degradation by the proteasome and partly by lysosomes. The decrease in Tctex-1 protein levels is induced by CB2 expression "dose-dependently" and is independent of stimulation by agonist or blocking by an inverse agonist treatment. The results suggest that CB2 receptor expression independent of its activation by agonists is sufficient to competitively disrupt Gβγ-Tctex-1 complexes, and to initiate Tctex-1 degradation. These findings implicate that CB2 receptor expression modifies the stability of intracellular protein complexes by a non-canonical pathway.

  15. [Inhibitory effect of pumpkin protein on expression of Notch signal in RPMI8226 myeloma cells].

    Science.gov (United States)

    Liu, Ting-Bo; Yang, Pei; Xie, Jie-Ming; Hu, Jian-Da

    2014-08-01

    This study was aimed to explore the inhibitory effect of pumpkin protein (cucurmosin, CUS) on proliferation of RPMI8226 myeloma cells in vitro and its mechanism. Western blot was used to detect the expression level of Notch-1, Jagged-2, P-Akt and NF-KB in the myeloma cells treated by different concentrations of CUS. The results demonstrated that CUS could down-regulate the protein expression levels of Notch1, Jagged-2, P-Akt and NF-KB in the myeloma cells and with time-and concentration-dependent way, at the same time CUS could also decrease the expressions of BCL-2 and P-Akt. It is concluded that CUS can obviously inhibit the RPMI8226 cell proliferation in vitro, down-regulate the expression levels of Notch signal and its down-stream target genes. Therefore, Notch signaling pathway can be used as a new treatment target for multiple myeloma, and CUS may be become a potential new drug for regulating Notch signaling pathway. PMID:25130819

  16. SLOB, a SLOWPOKE channel binding protein, regulates insulin pathway signaling and metabolism in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda L Sheldon

    Full Text Available There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO undergoes modulation via its binding partner SLO-binding protein (SLOB. Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs in the pars intercerebralis (PI region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs. Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism.

  17. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.

    Science.gov (United States)

    Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W

    2010-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates. PMID:19852954

  18. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling

    Directory of Open Access Journals (Sweden)

    S.S. Smaili

    2003-02-01

    Full Text Available Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym. The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.

  19. Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction

    OpenAIRE

    Boege, Fritz; Neumann, Eberhard; Helmreich, Ernst J. M.

    1991-01-01

    Recent information obtained, mainly by recombinant cDNA technology, on structural heterogeneity of hormone and transmitter receptors, of GTP-binding proteins (G-proteins) and, especially, of G-protein-linked receptors is reviewed and the implications of structural heterogeneity for diversity of hormone and transmitter actions is discussed. For the future, three-dimensional structural analysis of membrane proteins participating in signal transmission and transduction pathways is needed in orde...

  20. Predicting the Nuclear Localization Signals of 107 Types of HPV L1 Proteins by Bioinformatic Analysis

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Yi-Li Wang; Lü-Sheng Si

    2006-01-01

    In this study, 107 types of human papillomavirus (HPV) L1 protein sequences were obtained from available databases, and the nuclear localization signals (NLSs) of these HPV L1 proteins were analyzed and predicted by bioinformatic analysis.Out of the 107 types, the NLSs of 39 types were predicted by PredictNLS software (35 types of bipartite NLSs and 4 types of monopartite NLSs). The NLSs of the remaining HPV types were predicted according to the characteristics and the homology of the already predicted NLSs as well as the general rule of NLSs.According to the result, the NLSs of 107 types of HPV L1 proteins were classified into 15 categories. The different types of HPV L1 proteins in the same NLS category could share the similar or the same nucleocytoplasmic transport pathway.They might be used as the same target to prevent and treat different types of HPV infection. The results also showed that bioinformatic technology could be used to analyze and predict NLSs of proteins.

  1. Hepatitis C Virus and Antiviral Drug Resistance

    Science.gov (United States)

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  2. A calcium sensor – protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species

    Science.gov (United States)

    Beckmann, Linda; Edel, Kai H.; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity. PMID:27538881

  3. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species.

    Science.gov (United States)

    Beckmann, Linda; Edel, Kai H; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca(2+)) signaling is a universal mechanism of signal transduction and involves Ca(2+) signal formation and decoding of information by Ca(2+) binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca(2+) binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca(2+) signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca(2+) signaling specificity. PMID:27538881

  4. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling.

    Science.gov (United States)

    Barbaglia, Allison M; Tamot, Banita; Greve, Veronica; Hoffmann-Benning, Susanne

    2016-01-01

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three

  5. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  6. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  7. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  8. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation.

    Science.gov (United States)

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2012-02-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  9. Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle

    OpenAIRE

    Mobley, C. Brooks; Hornberger, Troy A.; Fox, Carlton D; Healy, James C.; Ferguson, Brian S.; Ryan P. Lowery; McNally, Rachel M.; Lockwood, Christopher M; Stout, Jeffrey R; Kavazis, Andreas N.; Wilson, Jacob M.; Roberts, Michael D.

    2015-01-01

    Background Phosphatidic acid (PA) is a diacyl-glycerophospholipid that acts as a signaling molecule in numerous cellular processes. Recently, PA has been proposed to stimulate skeletal muscle protein accretion, but mechanistic studies are lacking. Furthermore, it is unknown whether co-ingesting PA with other leucine-containing ingredients can enhance intramuscular anabolic signaling mechanisms. Thus, the purpose of this study was to examine if oral PA feeding acutely increases anabolic signal...

  10. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  11. Nonreceptor protein tyrosine kinase involvement in signal transduction and immunodeficiency disease.

    Science.gov (United States)

    Saouaf, S J; Burkhardt, A L; Bolen, J B

    1995-09-01

    The nonreceptor protein tyrosine kinases (PTKs) have been grouped into 10 different enzyme families based on predicted amino acid sequences. As the number of enzymes belonging to the nonreceptor class of PTK is increasing, one challenge is to determine how these various classes of PTKs interact within the cell to promote signal transduction. Herein, the activation of four classes of nonreceptor PTKs is discussed in relation to their interactions with each other as well as with other signaling molecules during the process of lymphocyte surface antigen receptor-mediated activation. Recent findings of nonreceptor PTK loss-of-function mutations in different immunodeficiency diseases has revealed the important contribution of this group of enzymes to lymphocyte development. PMID:7554458

  12. Impact of rheumatoid arthritis-associated HLA-DRβ1 subtypes on protein kinase A signaling

    Institute of Scientific and Technical Information of China (English)

    栗占国; 韩蕾; 贾汝琳; 李晶

    2003-01-01

    Objective To investigate the impact of rheumatoid arthritis (RA)-associated HLA-DRβ1*0401, *0402, *0403, *0404 and *0101 subtypes on the protein kinase A (PKA) signaling pathway. Methods Adenylate cyclase (AC), cAMP and PKA activity in transfectants expressing RA-associated HLA-DRβ1 subtypes and their mutants were detected. Results Compared to HLA-DRβ1*0402 transfectants, the RA-associated HLA-DRβ1*0401, *0404 and *0101 transfectants produced significantly lower levels of AC, cAMP and PKA. Conclusion RA-associated HLA-DRβ1 molecules are involved in the pathogenesis of RA through down-regulation of the PKA signaling pathway.

  13. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.

    Science.gov (United States)

    Lohse, Martin J; Nuber, Susanne; Hoffmann, Carsten

    2012-04-01

    Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments. PMID:22407612

  14. Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus.

    Directory of Open Access Journals (Sweden)

    Daniela C Dieterich

    2008-02-01

    Full Text Available NMDA (N-methyl-D-aspartate receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-alpha to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor-induced cellular degeneration.

  15. Signalling-dependent interactions between the kinase-coupling protein CheW and chemoreceptors in living cells.

    Science.gov (United States)

    Pedetta, Andrea; Parkinson, John S; Studdert, Claudia A

    2014-09-01

    Chemical signals sensed on the periplasmic side of bacterial cells by transmembrane chemoreceptors are transmitted to the flagellar motors via the histidine kinase CheA, which controls the phosphorylation level of the effector protein CheY. Chemoreceptor arrays comprise remarkably stable supramolecular structures in which thousands of chemoreceptors are networked through interactions between their cytoplasmic tips, CheA, and the small coupling protein CheW. To explore the conformational changes that occur within this protein assembly during signalling, we used in vivo cross-linking methods to detect close interactions between the coupling protein CheW and the serine receptor Tsr in intact Escherichia coli cells. We identified two signal-sensitive contacts between CheW and the cytoplasmic tip of Tsr. Our results suggest that ligand binding triggers changes in the receptor that alter its signalling contacts with CheW (and/or CheA).

  16. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling

    OpenAIRE

    Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet

    2012-01-01

    As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis ...

  17. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein

    OpenAIRE

    Blair, Jimmy A.; Xu, Qingping; Childers, W. Seth; Mathews, Irimpan I.; Kern, Justin W.; Eckart, Michael; Deacon, Ashley M.; Shapiro, Lucy

    2013-01-01

    Vital to bacterial survival is the faithful propagation of cellular signals, and in Caulobacter crescentus ChpT is an essential mediator within the cell cycle circuit. ChpT functions as a histidine-containing phosphotransfer protein (HPt) that shuttles a phosphoryl group from the receiver domain of CckA, the upstream hybrid histidine kinase (HK), to one of two downstream response regulators (RRs)—CtrA or CpdR—that controls cell cycle progression. To understand how ChpT interacts with multiple...

  18. TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1.

    Directory of Open Access Journals (Sweden)

    Younglang Lee

    Full Text Available The innate immune response is a host defense mechanism against infection by viruses and bacteria. Type I interferons (IFNα/β play a crucial role in innate immunity. If not tightly regulated under normal conditions and during immune responses, IFN production can become aberrant, leading to inflammatory and autoimmune diseases. In this study, we identified TRIM11 (tripartite motif containing 11 as a novel negative regulator of IFNβ production. Ectopic expression of TRIM11 decreased IFNβ promoter activity induced by poly (I:C stimulation or overexpression of RIG-I (retinoic acid-inducible gene-I signaling cascade components RIG-IN (constitutively active form of RIG-I, MAVS (mitochondrial antiviral signaling protein, or TBK1 (TANK-binding kinase-1. Conversely, TRIM11 knockdown enhanced IFNβ promoter activity induced by these stimuli. Moreover, TRIM11 overexpression inhibited the phosphorylation and dimerization of IRF3 and expression of IFNβ mRNA. By contrast, TRIM11 knockdown increased the IRF3 phosphorylation and IFNβ mRNA expression. We also found that TRIM11 and TBK1, a key kinase that phosphorylates IRF3 in the RIG-I pathway, interacted with each other through CC and CC2 domain, respectively. This interaction was enhanced in the presence of the TBK1 adaptor proteins, NAP1 (NF-κB activating kinase-associated protein-1, SINTBAD (similar to NAP1 TBK1 adaptor or TANK (TRAF family member-associated NF-κB activator. Consistent with its inhibitory role in RIG-I-mediated IFNβ signaling, TRIM11 overexpression enhanced viral infectivity, whereas TRIM11 knockdown produced the opposite effect. Collectively, our results suggest that TRIM11 inhibits RIG-I-mediated IFNβ production by targeting the TBK1 signaling complex.

  19. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  20. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  1. Antiviral Perspectives for Chikungunya Virus

    Directory of Open Access Journals (Sweden)

    Deepti Parashar

    2014-01-01

    Full Text Available Chikungunya virus (CHIKV is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions.

  2. Neovibsanin B increases extracellular matrix proteins in optic nerve head cells via activation of Smad signalling pathway.

    Science.gov (United States)

    Wang, Zhen; Xu, Wei; Rong, Ao; Lin, Yan; Qiu, Xu-Ling; Qu, Shen; Lan, Xian-Hai

    2015-01-01

    The present study demonstrates the effect of neovibsanin B on the synthesis and deposition of ECM proteins and the signalling pathways used in optic nerve head (ONH) astrocytes and lamina cribrosa (LC) cells. For investigation of the signalling pathway used by neovibsanin B, ONH cells were treated with neovibsanin B. Western blot and immunostaining analyses were used to examine the phosphorylation of proteins involved in Smad and non-Smad signalling pathway. The results revealed that ONH cells on treatment with neovibsanin B showed enhanced synthesis of extracellular matrix (ECM) proteins. Neovibsanin B induced phosphorylation of canonical signalling proteins, Smad2/3. However phosphorylation of non-canonical signalling proteins, extracellular signal-regulated kinases, p38, and c-Jun N-terminal kinases (JNK) 1/2 remained unaffected. There was also increase in co-localization of pSmad2/3 with Co-Smad4 in the nucleus of ONH astrocytes and LC cells indicating activation of the canonical Smad signalling pathway. Treatment of ONH cells with SIS3, inhibitor of Smad3 phosphorylation reversed the neovibsanin B stimulated ECM expression as well as activation of canonical pathway signalling molecules. In addition, inhibition of Smad2 or Smad3 using small interfering RNA (siRNA) also suppressed neovibsanin B stimulated ECM protein synthesis in ONH astrocytes and LC cells. Thus neovibsanin B utilizes the canonical Smad signalling pathway to stimulate ECM synthesis in human ONH cells. The neovibsanin B induced ECM synthesis and activation of the canonical Smad signalling pathway may be due to its effect on transforming growth factor-β2 (TGF-β2). However, further studies are under process to understand the mechanism.

  3. Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm

    Directory of Open Access Journals (Sweden)

    Takashi W. Ijiri

    2012-01-01

    Full Text Available In sexual reproduction, two gamete cells (i.e., egg and sperm fuse (fertilization to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization.

  4. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Science.gov (United States)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  5. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Liebscher, Ines; Ackley, Brian; Araç, Demet;

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region....... In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF...... recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs....

  6. Identification of a DNA binding protein that recognizes the nonamer recombinational signal sequence of immunoglobulin genes.

    Science.gov (United States)

    Halligan, B D; Desiderio, S V

    1987-10-01

    Extracts of nuclei from B- and T-lymphoid cells contain a protein that binds specifically to the conserved nonamer DNA sequence within the recombinational signals of immunoglobulin genes. Complexes with DNA fragments from four kappa light-chain joining (J) segments have the same electrophoretic mobility. Nonamer-containing DNA fragments from heavy-chain and light-chain genes compete for binding. Within the 5'-flanking DNA of the J kappa 4 gene segment, the binding site has been localized to a 27-base-pair interval spanning the nonamer region. The binding activity is recovered as a single peak after ion-exchange chromatography. The site of binding of the protein and its presence in nuclei of lymphoid cells suggest that it may function in the assembly of immunoglobulin genes.

  7. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling.

    Science.gov (United States)

    Herhaus, Lina; Al-Salihi, Mazin A; Dingwell, Kevin S; Cummins, Timothy D; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C; Sapkota, Gopal P

    2014-05-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis. PMID:24850914

  8. The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins)

    NARCIS (Netherlands)

    Faber, Klaas Nico; Haima, Pieter; Gietl, Christine; Harder, Willem; Ab, Geert; Veenhuis, Marten

    1994-01-01

    Two main types of peroxisomal targeting signals have been identified that reside either at the extreme C terminus (PTS1) or the N terminus (PTS2) of the protein. In the methylotrophic yeast Hansenula polymorpha the majority of peroxisomal matrix proteins are of the PTS1 type. Thus far, for H. polymo

  9. PFKFB3-Driven Macrophage Glycolytic Metabolism Is a Crucial Component of Innate Antiviral Defense.

    Science.gov (United States)

    Jiang, Hui; Shi, Hengfei; Sun, Man; Wang, Yafeng; Meng, Qingzhou; Guo, Panpan; Cao, Yanlan; Chen, Jiong; Gao, Xiang; Li, Erguang; Liu, Jianghuai

    2016-10-01

    Signaling by viral nucleic acids and subsequently by type I IFN is central to antiviral innate immunity. These signaling events are also likely to engage metabolic changes in immune and nonimmune cells to support antiviral defense. In this study, we show that cytosolic viral recognition, by way of secondary IFN signaling, leads to upregulation of glycolysis preferentially in macrophages. This metabolic switch involves induction of glycolytic activator 6-phosphofructose-2-kinase and fructose-2,6-bisphosphatase (PFKFB3). Using a genetic inactivation approach together with pharmacological perturbations in mouse cells, we show that PFKFB3-driven glycolysis selectively promotes the extrinsic antiviral capacity of macrophages, via metabolically supporting the engulfment and removal of virus-infected cells. Furthermore, the antiviral function of PFKFB3, as well as some contribution of its action from the hematopoietic compartment, was confirmed in a mouse model of respiratory syncytial virus infection. Therefore, different from the long-standing perception of glycolysis as a proviral pathway, our findings establish an antiviral, immunometabolic aspect of glycolysis that may have therapeutic implications. PMID:27566823

  10. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  11. Protein kinase C-dependent activation of P44/42 mitogen-activated protein kinase and heat shock protein 70 in signal transduction during hepatocyte ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Yu-Qiang Shan; Ming-Xin Pan; Yu Wang; Li-Jun Tang; Hao Li; Zhi Zhang

    2004-01-01

    AIM: To investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (MAPKs) and heat shock protein (HSP)70 signal transduction during hepatocyte ischemic preconditioning.METHODS: In this study we used an in vitro ischemic preconditioning (IP) model for hepatocytes and an in vivo model for rat liver to investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (P44/42 MAPKs) and heat shock protein 70 (HSP70) signal transduction in IP. Through a normal liver cell hypoxic preconditioning (HP) model in which cultured normal liver cells were subjected to 3 cycles of 5 min of incubation under hypoxic conditions followed by 5 min of reoxygenation and subsequently exposed to hypoxia and reoxygenation for 6 h and 9 h respectively. PKC inhibitor, activator and MEK inhibitor were utilized to analyze the phosphorylation of PKC, the expression of P44/42 MAPKs and HSP70.Viability and cellular ultrastructure were also observed. By using rat liver as an in vivo model of liver preconditioning (3 cycles of 10-min occlusion and 10-min reperfusion),in vivo phosphorylation of PKC and P44/42MAPKs, HSP70 expression were further analyzed. AST/ALT concentration,cellular structure and ultrastruture were also observed.All the data were statistically analyzed.RESULTS: Similar results were obtained in both in vivo and in vitro IP models. Compared with the control without IP (or HP), the phosphorylation of PKC and P44/42 MAPKs and the expression of HSP70 were obviously increased in IP (or HP) treated model in which cytoprotection could be found. The effects of preconditioning were mimicked by stimulating PKC with 4β phorobol-12-myristate13-acetate (PMA). Conversely, inhibiting PKC with chelerythrine abolished the protection given by preconditioning. PD98059,inhibitor of MEK (the upstream kinase of P44/42MAPKs),also reverted the cytoprotection exerted by preconditioning.CONCLUSION: The results demonstrate that

  12. Looking for a needle in a haystack: Cellular proteins that may interact with the tyrosine-based sorting signal of the TGEV S protein.

    Science.gov (United States)

    Trincone, Anna; Schwegmann-Weßels, Christel

    2015-04-16

    The spike protein S of transmissible gastroenteritis virus, an Alphacoronavirus, contains a tyrosine-based sorting signal that is responsible for ERGIC retention and may be important for a correct viral assembly process. To find out whether the S protein interacts with cellular proteins via this sorting signal, a pulldown assay with GST fusion proteins was performed. Filamin A has been identified as a putative interaction candidate. Immunofluorescence assays confirmed a co-localization between the TGEV S protein and filamin A. Further experiments have to be performed to prove a significant impact of filamin A on TGEV infection. Different approaches of several researchers for the identification of cellular interaction candidates relevant for coronavirus replication are summarized. These results may help in the future to identify the role of cellular proteins during coronavirus assembly at the ER-Golgi intermediate compartment. PMID:25481285

  13. Heterotrimeric G protein signaling via GIV/Girdin: Breaking the rules of engagement, space, and time.

    Science.gov (United States)

    Aznar, Nicolas; Kalogriopoulos, Nicholas; Midde, Krishna K; Ghosh, Pradipta

    2016-04-01

    Canonical signal transduction via heterotrimeric G proteins is spatially and temporally restricted, that is, triggered exclusively at the plasma membrane (PM), only by agonist activation of G protein-coupled receptors (GPCRs) via a process that completes within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a non-canonical pathway for activation of heterotrimeric G proteins by the non-receptor guanidine-nucleotide exchange factor (GEF), GIV/Girdin. This pathway has distinctive temporal and spatial features and an unusual profile of receptor engagement: diverse classes of receptors, not just GPCRs can engage with GIV to trigger such activation. Such activation is spatially and temporally unrestricted, that is, can occur both at the PM and on internal membranes discontinuous with the PM, and can continue for prolonged periods of time. Here, we provide the most complete up-to-date review of the molecular mechanisms that govern the unique spatiotemporal aspects of non-canonical G protein activation by GIV and the relevance of this new paradigm in health and disease. PMID:26879989

  14. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling.

    Science.gov (United States)

    Chiapparino, Antonella; Maeda, Kenji; Turei, Denes; Saez-Rodriguez, Julio; Gavin, Anne-Claude

    2016-01-01

    Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells. PMID:26658141

  15. An improved genetic system for detection and analysis of protein nuclear import signals

    Directory of Open Access Journals (Sweden)

    Derbyshire Stephanie

    2007-01-01

    Full Text Available Abstract Background Nuclear import of proteins is typically mediated by their physical interaction with soluble cytosolic receptor proteins via a nuclear localization signal (NLS. A simple genetic assay to detect active NLSs based on their function in the yeast Saccharomyces cerevisiae has been previously described. In that system, a chimera consisting of a modified bacterial LexA DNA binding domain and the transcriptional activation domain of the yeast Gal4 protein is fused to a candidate NLS. A functional NLS will redirect the chimeric fusion to the yeast cell nucleus and activate transcription of a reporter gene. Results We have reengineered this nuclear import system to expand its utility and tested it using known NLS sequences from adenovirus E1A. Firstly, the vector has been reconstructed to reduce the level of chimera expression. Secondly, an irrelevant "stuffer" sequence from the E. coli maltose binding protein was used to increase the size of the chimera above the passive diffusion limit of the nuclear pore complex. The improved vector also contains an expanded multiple cloning site and a hemagglutinin epitope tag to allow confirmation of expression. Conclusion The alterations in expression level and composition of the fusions used in this nuclear import system greatly reduce background activity in β-galactosidase assays, improving sensitivity and allowing more quantitative analysis of NLS bearing sequences.

  16. Identification of intracellular signaling pathways that induce myotonic dystrophy protein kinase expression during myogenesis.

    Science.gov (United States)

    Carrasco, Marta; Canicio, Judith; Palacín, Manuel; Zorzano, Antonio; Kaliman, Perla

    2002-08-01

    Myotonic dystrophy (DM) is the most common inherited adult neuromuscular disorder. DM is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Decreased DMPK protein levels may contribute to the pathology of DM, as revealed by gene target studies. However, the postnatal regulation of DMPK expression and its pathophysiological role remain undefined. We studied the regulation of DMPK protein and mRNA expression during myogenesis in rat L6E9 myoblasts, mouse C2C12 myoblasts, and 10T1/2 fibroblasts stably expressing the myogenic transcription factor MyoD (10T1/2-MyoD). We detected DMPK as an 80-kDa protein mainly localized to the cytosolic fraction of skeletal muscle cells. DMPK expression and protein kinase activity were enhanced in IGF-II-differentiated cells. In L6E9 and C2C12 cells, DMPK expression was regulated through the same signaling pathways (i.e. phosphatidylinositol 3-kinase, nuclear factor-kappaB, nitric oxide synthase, and p38 mitogen-activated protein kinase) that had been described as being crucial for the myogenesis induced by either low serum or IGF-II. However, in 10T1/2-MyoD cells, p38 MAPK inhibition blocked cell fusion and caveolin-3 expression without affecting DMPK up-regulation. These results suggest that although DMPK is induced during myogenesis, its expression cannot be totally associated with the development of a fully differentiated phenotype. PMID:12130568

  17. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling.

    Science.gov (United States)

    Aznar, Nicolas; Midde, Krishna K; Dunkel, Ying; Lopez-Sanchez, Inmaculada; Pavlova, Yelena; Marivin, Arthur; Barbazán, Jorge; Murray, Fiona; Nitsche, Ulrich; Janssen, Klaus-Peter; Willert, Karl; Goel, Ajay; Abal, Miguel; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2015-01-01

    Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis. PMID:26126266

  18. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    Science.gov (United States)

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. PMID:24780919

  19. A Small G Protein as a Novel Component of the Rice Brassinosteroid Signal Transduction.

    Science.gov (United States)

    Zhang, Ge; Song, Xiaoguang; Guo, Hongyan; Wu, Yao; Chen, Xiaoying; Fang, Rongxiang

    2016-09-01

    Brassinosteroids (BRs) are a class of steroid hormones that are essential for plant growth and development. The BR signal transduction pathway in the dicot model plant Arabidopsis is well established, but the components connecting the BR signaling steps in rice have not been fully explored. For example, how the BR signaling is fine-tuned in rice, especially at the BR receptor level, is largely unknown. Here we show that OsPRA2, a rice small G protein, plays a repressive role in the BR signaling pathway. Lamina inclination, coleoptile elongation, and root inhibition assays indicated that rice plants with suppressed expression of OsPRA2 were more sensitive to exogenously applied brassinolide than the wild-type plants. Conversely, rice overexpressing OsPRA2 was less sensitive to exogenous brassinolide. Further study uncovered that OsPRA2 inhibited the dephosphorylation of, and thus inactivated the transcription factor BRASSINAZOLE-RESISTANT 1 (OsBZR1). More importantly, OsPRA2 was found to co-localize with and directly bind to rice BR receptor BRASSINOSTEROID-INSENSITIVE 1 (OsBRI1) at the plasma membrane. Additionally, the in vitro assays showed that OsPRA2 inhibits its autophosphorylation. This OsPRA2-OsBRI1 interaction led to the dissociation of OsBRI1 from its co-receptor OsBAK1, and abolished OsBRI1-mediated phosphorylation of OsBAK1. Together, these results reveal a possible working mechanism of OsPRA2 as a novel negative regulator on OsBRI1 and OsBZR1 and extend the knowledge about the regulatory mechanism of rice BR signaling.

  20. A Small G Protein as a Novel Component of the Rice Brassinosteroid Signal Transduction.

    Science.gov (United States)

    Zhang, Ge; Song, Xiaoguang; Guo, Hongyan; Wu, Yao; Chen, Xiaoying; Fang, Rongxiang

    2016-09-01

    Brassinosteroids (BRs) are a class of steroid hormones that are essential for plant growth and development. The BR signal transduction pathway in the dicot model plant Arabidopsis is well established, but the components connecting the BR signaling steps in rice have not been fully explored. For example, how the BR signaling is fine-tuned in rice, especially at the BR receptor level, is largely unknown. Here we show that OsPRA2, a rice small G protein, plays a repressive role in the BR signaling pathway. Lamina inclination, coleoptile elongation, and root inhibition assays indicated that rice plants with suppressed expression of OsPRA2 were more sensitive to exogenously applied brassinolide than the wild-type plants. Conversely, rice overexpressing OsPRA2 was less sensitive to exogenous brassinolide. Further study uncovered that OsPRA2 inhibited the dephosphorylation of, and thus inactivated the transcription factor BRASSINAZOLE-RESISTANT 1 (OsBZR1). More importantly, OsPRA2 was found to co-localize with and directly bind to rice BR receptor BRASSINOSTEROID-INSENSITIVE 1 (OsBRI1) at the plasma membrane. Additionally, the in vitro assays showed that OsPRA2 inhibits its autophosphorylation. This OsPRA2-OsBRI1 interaction led to the dissociation of OsBRI1 from its co-receptor OsBAK1, and abolished OsBRI1-mediated phosphorylation of OsBAK1. Together, these results reveal a possible working mechanism of OsPRA2 as a novel negative regulator on OsBRI1 and OsBZR1 and extend the knowledge about the regulatory mechanism of rice BR signaling. PMID:27375203

  1. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  2. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons.

    Science.gov (United States)

    Chen, Tsan-Ju; Chen, Shun-Sheng; Wang, Dean-Chuan; Hung, Hui-Shan

    2016-11-01

    Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895748

  3. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  4. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  5. SET9-Mediated Regulation of TGF-β Signaling Links Protein Methylation to Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Maximilianos Elkouris

    2016-06-01

    Full Text Available TGF-β signaling regulates a variety of cellular processes, including proliferation, apoptosis, differentiation, immune responses, and fibrogenesis. Here, we describe a lysine methylation-mediated mechanism that controls the pro-fibrogenic activity of TGF-β. We find that the methyltransferase Set9 potentiates TGF-β signaling by targeting Smad7, an inhibitory downstream effector. Smad7 methylation promotes interaction with the E3 ligase Arkadia and, thus, ubiquitination-dependent degradation. Depletion or pharmacological inhibition of Set9 results in elevated Smad7 protein levels and inhibits TGF-β-dependent expression of genes encoding extracellular matrix components. The inhibitory effect of Set9 on TGF-β-mediated extracellular matrix production is further demonstrated in mouse models of pulmonary fibrosis. Lung fibrosis induced by bleomycin or Ad-TGF-β treatment was highly compromised in Set9-deficient mice. These results uncover a complex regulatory interplay among multiple Smad7 modifications and highlight the possibility that protein methyltransferases may represent promising therapeutic targets for treating lung fibrosis.

  6. Nicotinic Acid Increases Adiponectin Secretion from Differentiated Bovine Preadipocytes through G-Protein Coupled Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Christina Kopp

    2014-11-01

    Full Text Available The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001 and the mRNA abundances of GPR109A (p ≤ 0.05 and chemerin (p ≤ 0.01. Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001. The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.

  7. Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion.

    Science.gov (United States)

    Finnie, Christine; Andersen, Birgit; Shahpiri, Azar; Svensson, Birte

    2011-05-01

    The cereal aleurone layer is of major importance due to its nutritional properties as well as its central role in seed germination and industrial malting. Cereal seed germination involves mobilisation of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellic acid produced by the embryo, the aleurone layer synthesises hydrolases that are secreted to the endosperm for the degradation of storage products. The barley aleurone layer can be separated from the other seed tissues and maintained in culture, allowing the study of the effect of added signalling molecules in an isolated system. These properties have led to its use as a model system for the study of plant signalling and germination. More recently, proteome analysis of the aleurone layer has provided new insight into this unique tissue including identification of plasma membrane proteins and targeted analysis of germination-related changes and the thioredoxin system. Here, analysis of intracellular and secreted proteomes reveals features of the aleurone layer system that makes it promising for investigations of plant protein secretion mechanisms.

  8. Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Luis A. Videla

    2012-01-01

    Full Text Available The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP- activated protein kinase (AMPK constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reversible phosphorylation of AMPK, in response to signals such as energy status, serum insulin/glucagon ratio, nutritional stresses, pharmacological and natural compounds, and oxidative stress status. Reactive oxygen species (ROS lead to cellular AMPK activation and downstream signaling under several experimental conditions. Thyroid hormone (L-3,3′,5-triiodothyronine, T3 administration, a condition that enhances liver ROS generation, triggers the redox upregulation of cytoprotective proteins affording preconditioning against ischemia-reperfusion (IR liver injury. Data discussed in this work suggest that T3-induced liver activation of AMPK may be of importance in the promotion of metabolic processes favouring energy supply for the induction and operation of preconditioning mechanisms. These include antioxidant, antiapoptotic, and anti-inflammatory mechanisms, repair or resynthesis of altered biomolecules, induction of the homeostatic acute-phase response, and stimulation of liver cell proliferation, which are required to cope with the damaging processes set in by IR.

  9. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits.

    Science.gov (United States)

    Lin, Ming-Kuem; Belanger, Helene; Lee, Young-Jin; Varkonyi-Gasic, Erika; Taoka, Ken-Ichiro; Miura, Eriko; Xoconostle-Cázares, Beatriz; Gendler, Karla; Jorgensen, Richard A; Phinney, Brett; Lough, Tony J; Lucas, William J

    2007-05-01

    Cucurbita moschata, a cucurbit species responsive to inductive short-day (SD) photoperiods, and Zucchini yellow mosaic virus (ZYMV) were used to test whether long-distance movement of FLOWERING LOCUS T (FT) mRNA or FT is required for floral induction. Ectopic expression of FT by ZYMV was highly effective in mediating floral induction of long-day (LD)-treated plants. Moreover, the infection zone of ZYMV was far removed from floral meristems, suggesting that FT transcripts do not function as the florigenic signal in this system. Heterografting demonstrated efficient transmission of a florigenic signal from flowering Cucurbita maxima stocks to LD-grown C. moschata scions. Real-time RT-PCR performed on phloem sap collected from C. maxima stocks detected no FT transcripts, whereas mass spectrometry of phloem sap proteins revealed the presence of Cm-FTL1 and Cm-FTL2. Importantly, studies on LD- and SD-treated C. moschata plants established that Cmo-FTL1 and Cmo-FTL2 are regulated by photoperiod at the level of movement into the phloem and not by transcription. Finally, mass spectrometry of florally induced heterografted C. moschata scions revealed that C. maxima FT, but not FT mRNA, crossed the graft union in the phloem translocation stream. Collectively, these studies are consistent with FT functioning as a component of the florigenic signaling system in the cucurbits.

  10. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway.

    Science.gov (United States)

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We report