WorldWideScience

Sample records for antiviral drug targets

  1. Novel drugs targeting Toll-like receptors for antiviral therapy.

    Science.gov (United States)

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge Cg

    2014-09-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.

  2. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have...... receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies...

  3. Smallpox Antiviral Drug

    Science.gov (United States)

    2007-01-01

    Candida albicans] A G1L (590 aa) Flag VV(WR) 30/ENDIDEILGIAHLLEHLLISF/50 107/HIKELENEYYFRNEVFH/123 H41A 30/ENDIDEILGIAALLEHLLISF/50 107...RSV) (Table 1). Additional antiviral drug examples include the use of interferon for human papilloma virus ( HPV ) [Cantell, 1995]. Antivirals are most...low oral bioavailability, and quick elimination from plasma [Ghosn et al., 2004; Hostetler et al., 1994; Kempf et al., 1991; Matsumoto et al., 2001

  4. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  5. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  6. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  7. Antiviral Drug Research Proposal Activity

    Directory of Open Access Journals (Sweden)

    Lisa Injaian

    2011-03-01

    Full Text Available The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.

  8. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... Other What You Should Know About Flu Antiviral Drugs Language: English (US) Español Recommend on Facebook Tweet ... used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines (pills, liquid, an ...

  9. New pathogenic viruses and novel antiviral drugs

    NARCIS (Netherlands)

    Berkhout, Ben; Eggink, Dirk

    2011-01-01

    The journal Antiviral Research was conceived and born in 1980, and launched in 1981, a time when very few antiviral drugs were around. This 30-year celebration meeting was convened by the publisher Elsevier and chaired by Eric de Clercq (Leuven University), who has acted as editor-in-chief for the

  10. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development

    Energy Technology Data Exchange (ETDEWEB)

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka [Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kondoh, Yasumitsu; Osada, Hiroyuki [Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori [Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2017-07-15

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. - Highlights: •DP2392-E10 inhibits replication of a broad range of influenza A subtypes. •DP2392-E10 inhibits nuclear exports of NP and NEP via their NP-NES3 and NEP-NES2 domains, respectively. •DP2392-E10 is predicted to directly bind CRM1 in the region near the HEAT9 and HEAT10 repeats.

  11. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development

    International Nuclear Information System (INIS)

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-01-01

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. - Highlights: •DP2392-E10 inhibits replication of a broad range of influenza A subtypes. •DP2392-E10 inhibits nuclear exports of NP and NEP via their NP-NES3 and NEP-NES2 domains, respectively. •DP2392-E10 is predicted to directly bind CRM1 in the region near the HEAT9 and HEAT10 repeats.

  12. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development.

    Science.gov (United States)

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-07-01

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Surrogacy in antiviral drug development

    Science.gov (United States)

    Shaunak, Sunil; Davies, Donald S

    2002-01-01

    The coming of age of molecular biology has resulted in an explosion in our understanding of the pathogenesis of virus related diseases. New pathogens have been identified and characterized as being responsible for old diseases. Empirical clinical evaluation of morbidity and mortality as outcome measures after a therapeutic intervention have started to give way to the use of an increasing number of surrogate markers. Using a combination of these markers, it is now possible to measure and monitor the pathogen as well as the host's response. Nowhere is this better exemplified in virology than in the field of AIDS. We have utilized the advances in pathogenesis and new antiretroviral drug development to: develop a new class of drugs which block the entry of HIV-1 into cells.develop a new approach for effectively delivering these drugs to those tissues in which most viral replication takes place. Over the last 10 years, our work has progressed from concept to clinical trial. Our laboratory based evaluation of the new molecules developed as well as our clinical evaluation of their safety and efficacy have had to respond and adapt to the rapid changes taking place in AIDS research. This paper discusses the problems encountered and the lessons learnt. PMID:12100230

  14. NEOGLYCOPROTEINS AS CARRIERS FOR ANTIVIRAL DRUGS - SYNTHESIS AND ANALYSIS OF PROTEIN DRUG CONJUGATES

    NARCIS (Netherlands)

    Molema, Grietje; Jansen, Robert W.; Visser, Jan; Herdewijn, Piet; Moolenaar, Frits; Meijer, Dirk K.F.

    In order to investigate whether neoglycoproteins can potentially act as carriers for targeting of antiviral drugs to certain cell types in the body, various neoglycoproteins were synthesized using thiophosgene-activated p-aminophenyl sugar derivatives. These neoglycoproteins were conjugated with the

  15. Hepatitis C Virus and Antiviral Drug Resistance.

    Science.gov (United States)

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-11-15

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens.

  16. 78 FR 57166 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-09-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  17. 75 FR 16151 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  18. 76 FR 62418 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  19. Aminoadamantanes versus other antiviral drugs for chronic hepatitis C

    DEFF Research Database (Denmark)

    Lamers, Mieke H; Broekman, Mark; Drenth, Joost Ph

    2014-01-01

    months after the end of treatment) in approximately 40% to 80% of treated patients, depending on viral genotype. Recently, a new class of drugs have emerged for hepatitis C infection, the direct acting antivirals, which in combination with standard therapy or alone can lead to sustained virological...... response in 80% or more of treated patients. Aminoadamantanes, mostly amantadine, are antiviral drugs used for the treatment of patients with chronic hepatitis C. We have previously systematically reviewed amantadine versus placebo or no intervention and found no significant effects of the amantadine...... on all-cause mortality or liver-related morbidity and on adverse events in patients with hepatitis C. Overall, we did not observe a significant effect of amantadine on sustained virological response. In this review, we systematically review aminoadamantanes versus other antiviral drugs. OBJECTIVES...

  20. INVESTMENT IN ANTIVIRAL DRUGS : A REAL OPTIONS APPROACH

    NARCIS (Netherlands)

    Attema, Arthur E.; Lugner, Anna K.; Feenstra, Talitha L.

    2010-01-01

    Real options analysis is a promising approach to model investment under uncertainty. We employ this approach to value stockpiling of antiviral drugs as a precautionary measure against a possible influenza pandemic. Modifications of the real options approach to include risk attitude and deviations

  1. Indian marine bivalves: Potential source of antiviral drugs

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ansari, Z.A.; Ingole, B.S.; Bichurina, M.A.; Sovetova, M.; Boikov, Y.A.

    in large quantities by traditional methods and sold live in the market for human consumption. The economically important sp e cies of marine bivalves are green mussel ( Perna viridis ), e s tuarine oyster ( Crassostrea madrasensis ), giant oyster... in developing an effecti ve drug has been the unique characteristics of antigenic variation of virus resulting in the emergence of new variant virus strains 14 . There are a number of antiviral drugs introduced in the market such as tricyclic sy m- metric...

  2. Cellular Antiviral Factors that Target Particle Infectivity of HIV-1.

    Science.gov (United States)

    Goffinet, Christine

    2016-01-01

    In the past decade, the identification and characterization of antiviral genes with the ability to interfere with virus replication has established cell-intrinsic innate immunity as a third line of antiviral defense in addition to adaptive and classical innate immunity. Understanding how cellular factors have evolved to inhibit HIV-1 reveals particularly vulnerable points of the viral replication cycle. Many, but not all, antiviral proteins share type I interferon-upregulated expression and sensitivity to viral counteraction or evasion measures. Whereas well-established restriction factors interfere with early post-entry steps and release of HIV-1, recent research has revealed a diverse set of proteins that reduce the infectious quality of released particles using individual, to date poorly understood modes of action. These include induction of paucity of mature glycoproteins in nascent virions or self-incorporation into the virus particle, resulting in poor infectiousness of the virion and impaired spread of the infection. A better understanding of these newly discovered antiviral factors may open new avenues towards the design of drugs that repress the spread of viruses whose genomes have already integrated.

  3. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux?

    Directory of Open Access Journals (Sweden)

    Alessandro Dalpiaz

    2018-03-01

    Full Text Available Although several viruses can easily infect the central nervous system (CNS, antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs. These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1, multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5, and breast cancer resistance protein (ABCG2 or BCRP. Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions, absorption enhancers (chitosan, papaverine, and mucoadhesive agents (chitosan, polyvinilpyrrolidone are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.

  4. Viral Response to Specifically Targeted Antiviral Therapy for Hepatitis C and the Implications for Treatment Success

    Directory of Open Access Journals (Sweden)

    Curtis L Cooper

    2010-01-01

    Full Text Available Currently, hepatitis C virus (HCV antiviral therapy is characterized by long duration, a multitude of side effects, difficult administration and suboptimal success; clearly, alternatives are needed. Collectively, specifically targeted antiviral therapy for HCV (STAT-C molecules achieve rapid viral suppression and very high rapid virological response rates, and improve sustained virological response rates. The attrition rate of agents within this class has been high due to various toxicities. Regardless, several STAT-C molecules are poised to become the standard of care for HCV treatment in the foreseeable future. Optimism must be tempered with concerns related to the rapid development of drug resistance with resulting HCV rebound. Strategies including induction dosing with interferon and ribavirin, use of combination high-potency STAT-C molecules and an intensive emphasis on adherence to HCV antiviral therapy will be critical to the success of this promising advance in HCV therapy.

  5. Current Landscape of Antiviral Drug Discovery [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Wade Blair

    2016-02-01

    Full Text Available Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV and hepatitis B virus (HBV; however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV and influenza (flu. Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections.

  6. Current antiviral drugs and their analysis in biological materials - Part II: Antivirals against hepatitis and HIV viruses.

    Science.gov (United States)

    Nováková, Lucie; Pavlík, Jakub; Chrenková, Lucia; Martinec, Ondřej; Červený, Lukáš

    2018-01-05

    This review is a Part II of the series aiming to provide comprehensive overview of currently used antiviral drugs and to show modern approaches to their analysis. While in the Part I antivirals against herpes viruses and antivirals against respiratory viruses were addressed, this part concerns antivirals against hepatitis viruses (B and C) and human immunodeficiency virus (HIV). Many novel antivirals against hepatitis C virus (HCV) and HIV have been introduced into the clinical practice over the last decade. The recent broadening portfolio of these groups of antivirals is reflected in increasing number of developed analytical methods required to meet the needs of clinical terrain. Part II summarizes the mechanisms of action of antivirals against hepatitis B virus (HBV), HCV, and HIV, their use in clinical practice, and analytical methods for individual classes. It also provides expert opinion on state of art in the field of bioanalysis of these drugs. Analytical methods reflect novelty of these chemical structures and use by far the most current approaches, such as simple and high-throughput sample preparation and fast separation, often by means of UHPLC-MS/MS. Proper method validation based on requirements of bioanalytical guidelines is an inherent part of the developed methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family

    NARCIS (Netherlands)

    van der Linden, Lonneke; Vives-Adrián, Laia; Selisko, Barbara; Ferrer-Orta, Cristina; Liu, Xinran; Lanke, Kjerstin; Ulferts, Rachel; De Palma, Armando M; Tanchis, Federica; Goris, Nesya; Lefebvre, David; De Clercq, Kris; Leyssen, Pieter; Lacroix, Céline; Pürstinger, Gerhard; Coutard, Bruno; Canard, Bruno; Boehr, David D; Arnold, Jamie J; Cameron, Craig E; Verdaguer, Nuria; Neyts, Johan; van Kuppeveld, Frank J M

    2015-01-01

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy.

  8. Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Katrin Hartmann

    2015-12-01

    Full Text Available Feline immunodeficiency virus (FIV is one of the most common infectious agents affecting cats worldwide .FIV and human immunodeficiency virus (HIV share many properties: both are lifelong persistent lentiviruses that are similar genetically and morphologically and both viruses propagate in T-lymphocytes, macrophages, and neural cells. Experimentally infected cats have measurable immune suppression, which sometimes progresses to an acquired immunodeficiency syndrome. A transient initial state of infection is followed by a long latent stage with low virus replication and absence of clinical signs. In the terminal stage, both viruses can cause severe immunosuppression. Thus, FIV infection in cats has become an important natural model for studying HIV infection in humans, especially for evaluation of antiviral compounds. Of particular importance for chemotherapeutic studies is the close similarity between the reverse transcriptase (RT of FIV and HIV, which results in high in vitro susceptibility of FIV to many RT-targeted antiviral compounds used in the treatment of HIV-infected patients. Thus, the aim of this article is to provide an up-to-date review of studies on antiviral treatment of FIV, focusing on commercially available compounds for human or animal use.

  9. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.

    Science.gov (United States)

    Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-06-01

    Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modified human serum albumins as carriers for the specific delivery of antiviral drugs to liver- and blood cells

    NARCIS (Netherlands)

    Jansen, Robert Walter

    1992-01-01

    The general goal of this study, was to determine the possibility of a targeted delivery of antiviral drugs to their site of action. We decided to focus on two viral diseases; HIV and Hepatitis B, that replicate in T,-lymphocytes, monocytes/macrophages and hepatocytes respectively. The specific aims

  11. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs.

    Science.gov (United States)

    Diblíková, Denisa; Kopečná, Monika; Školová, Barbora; Krečmerová, Marcela; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-04-01

    In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

  12. Targeted antiviral prophylaxis with oseltamivir in a summer camp setting.

    Science.gov (United States)

    Kimberlin, David W; Escude, Janell; Gantner, Janel; Ott, Jeanne; Dronet, Melissa; Stewart, Timothy A; Jester, Penelope; Redden, David T; Chapman, Whitney; Hammond, Rob

    2010-04-01

    To describe the effectiveness of containment of novel influenza A(H1N1) infection at a summer camp. Targeted use of oseltamivir phosphate by individuals in close contact with influenza-confirmed cases. Boys' camp in Alabama in July 2009. A total of 171 campers, 48 camp counselors, and 27 camp staff. Campers with confirmed influenza received oseltamivir and were immediately isolated and sent home. All boys and counselors in the infected child's adjoining cabins received prophylactic oseltamivir for 10 days, including 8 campers at higher risk for influenza infection (eg, those with asthma, seizure disorder, or diabetes). Alcohol-based hand sanitizer was provided at each of the daily activities, in the boys' cabins, and in the dining hall, and counselors were educated by the medical staff on the spread of influenza and its prevention through good hand hygiene. All cabins, bathrooms, and community sports equipment were sprayed or wiped down with disinfectant each day. Main Outcome Measure Virologic confirmation of influenza. Three of the 171 campers tested positive for influenza A during the course of the 2-week fourth session, for an attack rate of 1.8%. The probability of observing 3 or fewer infected campers if the attack rate was 12% is less than 1 in 10,000,000 (P hand sanitization and surface decontamination, a targeted approach to antiviral prophylaxis contained the spread of influenza in a summer camp setting.

  13. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  14. A Critical Subset Model Provides a Conceptual Basis for the High Antiviral Activity of Major HIV Drugs**

    Science.gov (United States)

    Shen, Lin; Rabi, S. Alireza; Sedaghat, Ahmad R.; Shan, Liang; Lai, Jun; Xing, Sifei; Siliciano, Robert F.

    2012-01-01

    Control of HIV-1 replication was first achieved with regimens that included a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI); however, an explanation for the high antiviral activity of these drugs has been lacking. Indeed, conventional pharmacodynamic measures like IC50 (drug concentration causing 50% inhibition) do not differentiate NNRTIs and PIs from less active nucleoside reverse transcriptase inhibitors (NRTIs). Drug inhibitory potential depends on the slope of the dose-response curve (m), which represents how inhibition increases as a function of increasing drug concentration and is related to the Hill coefficient, a measure of intramolecular cooperativity in ligand binding to a multivalent receptor. Although NNRTIs and PIs bind univalent targets, they unexpectedly exhibit cooperative dose-response curves (m > 1). We show that this cooperative inhibition can be explained by a model in which infectivity requires participation of multiple copies of a drug target in an individual life cycle stage. A critical subset of these target molecules must be in the unbound state. Consistent with experimental observations, this model predicts m > 1 for NNRTIs and PIs and m = 1 in situations where a single drug target/virus mediates a step in the life cycle, as is the case with NRTIs and integrase strand transfer inhibitors. This model was tested experimentally by modulating the number of functional drug targets per virus, and dose-response curves for modulated virus populations fit model predictions. This model explains the high antiviral activity of two drug classes important for successful HIV-1 treatment and defines a characteristic of good targets for antiviral drugs in general, namely, intermolecular cooperativity. PMID:21753122

  15. Antiviral drug resistance and helicase-primase inhibitors of herpes simplex virus.

    Science.gov (United States)

    Field, Hugh J; Biswas, Subhajit

    2011-02-01

    A new class of chemical inhibitors has been discovered that interferes with the process of herpesvirus DNA replication. To date, the majority of useful herpesvirus antivirals are nucleoside analogues that block herpesvirus DNA replication by targeting the DNA polymerase. The new helicase-primase inhibitors (HPI) target a different enzyme complex that is also essential for herpesvirus DNA replication. This review will place the HPI in the context of previous work on the nucleoside analogues. Several promising highly potent HPI will be described with a particular focus on the identification of drug-resistance mutations. Several HPI have good pharmacological profiles and are now at the outset of phase II clinical trials. Provided there are no safety issues to stop their progress, this new class of compound will be a major advance in the herpesvirus antiviral field. Furthermore, HPI are likely to have a major impact on the therapy and prevention of herpes simplex virus and varicella zoster in both immunocompetent and immunocompromised patients alone or in combination with current nucleoside analogues. The possibility of acquired drug-resistance to HPI will then become an issue of great practical importance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. The science of direct-acting antiviral and host-targeted agent therapy.

    Science.gov (United States)

    Pawlotsky, Jean-Michel

    2012-01-01

    Direct-acting antiviral drugs targeting two major steps of the HCV life cycle, polyprotein processing and replication, and cyclophilin inhibitors, that target a host cell protein required to interact with the replication complex, have reached clinical development. In order to achieve a sustained virological response, that is, a cure of the HCV infection, it is necessary to shut down virus production, to maintain viral inhibition throughout treatment and to induce a significant, slower second-phase decline in HCV RNA levels that leads to definitive clearance of infected cells. Recent findings suggest that the interferon era is coming to an end in hepatitis C therapy and HCV infection can be cured by all-oral interferon-free treatment regimens within 12 to 24 weeks. Further results are awaited that will allow the establishment of an ideal first-line all-oral, interferon-free treatment regimen for patients with chronic HCV infection.

  17. Detection of the antiviral drug oseltamivir in aquatic environments.

    Directory of Open Access Journals (Sweden)

    Hanna Söderström

    Full Text Available Oseltamivir (Tamiflu is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC, is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where oseltamivir is prescribed to patients for therapeutic use. The country where oseltamivir is used most is Japan, where it is used to treat seasonal flu. We measured the levels of OC in water samples from the Yodo River system in the Kyoto and Osaka prefectures, Japan, taken before and during the flu-season 2007/8. No OC was detected before the flu-season but 2-58 ng L(-1 was detected in the samples taken during the flu season. This study shows, for the first time, that low levels of oseltamivir can be found in the aquatic environment. Therefore the natural reservoir of influenza virus, dabbling ducks, is exposed to oseltamivir, which could promote the evolution of viral resistance.

  18. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    Science.gov (United States)

    ... Drooping of a corner of the mouth • Difficulty smiling, frowning, or making other facial expressions • Twitching or ... no definite added improvement. If there is any benefit to adding an antiviral to steroid treatment, it ...

  19. SOME ASPECTS OF THE MARKETING STUDIES FOR THE PHARMACEUTICAL MARKET OF ANTIVIRAL DRUGS

    Directory of Open Access Journals (Sweden)

    A. G. Salnikova

    2015-01-01

    Full Text Available Antiviral drugs are widely used in medicinal practice. They suppress the originator and stimulate the protection of an organism. The drugs are used for the treatment of flu and ARVI, herpetic infections, virus hepatitis, HIV-infection. Contemporary pharmaceutical market is represented by a wide range of antiviral drugs. Marketing studies are conducted to develop strategies, used for the enhancement of pharmacy organization activity efficiency. Conduction of the marketing researches of pharmaceutical market is the purpose of this study. We have used State Registry of Drugs, State Record of Drugs, List of vital drugs, questionnaires of pharmaceutical workers during our work. Historical, sociological, mathematical methods, and a method of expert evaluation were used in the paper. As the result of the study we have made the following conclusions. We have studied and generalized the literature data about classification and application of antiviral drugs, marketing, competition. The assortment of antiviral drugs on the pharmaceutical market of the Russian Federation was also studied. We have conducted an analysis for the obtainment of the information about antiviral drugs by pharmaceutical workers. We have determined the competitiveness of antiviral drugs, and on the basis of the research conducted we have submitted an offer for pharmaceutical organizations to form the range of antiviral drugs.

  20. A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells.

    Science.gov (United States)

    Koban, Robert; Neumann, Markus; Daugs, Aila; Bloch, Oliver; Nitsche, Andreas; Langhammer, Stefan; Ellerbrok, Heinz

    2018-02-01

    Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) and FDA approved for treatment of non-small cell lung cancer. In a previous study we could show the in vitro efficacy of gefitinib for treatment of poxvirus infections in monolayer (2D) cultivated cell lines. Permanent cell lines and 2D cultures, however, are known to be rather unphysiological; therefore it is difficult to predict whether determined effective concentrations or the drug efficacy per se are transferable to the in vivo situation. 3D cell cultures, which meanwhile are widely distributed across all fields of research, are a promising tool for more predictive in vitro investigations of antiviral compounds. In this study the spreading of cowpox virus and the antiviral efficacy of gefitinib were analyzed in primary human keratinocytes (NHEK) grown in a novel 3D extracellular matrix-based cell culture model and compared to the respective monolayer culture. 3D-cultivated NHEK grew in a polarized and thus a more physiological manner with altered morphology and close cell-cell contact. Infected cultures showed a strongly elevated sensitivity towards gefitinib. EGFR phosphorylation, cell proliferation, and virus replication were significantly reduced in 3D cultures at gefitinib concentrations which were at least 100-fold lower than those in monolayer cultures and well below the level of cytotoxicity. Our newly established 3D cell culture model with primary human cells is an easy-to-handle alternative to conventional monolayer cell cultures and previously described more complex 3D cell culture systems. It can easily be adapted to other cell types and a broad spectrum of viruses for antiviral drug screening and many other aspects of virus research under more in vivo-like conditions. In consequence, it may contribute to a more targeted realization of necessary in vivo experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Using ICR and SCID mice as animal models for smallpox to assess antiviral drug efficacy.

    Science.gov (United States)

    Titova, Ksenya A; Sergeev, Alexander A; Zamedyanskaya, Alena S; Galahova, Darya O; Kabanov, Alexey S; Morozova, Anastasia A; Bulychev, Leonid E; Sergeev, Artemiy A; Glotova, Tanyana I; Shishkina, Larisa N; Taranov, Oleg S; Omigov, Vladimir V; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N

    2015-09-01

    The possibility of using immunocompetent ICR mice and immunodeficient SCID mice as model animals for smallpox to assess antiviral drug efficacy was investigated. Clinical signs of the disease did not appear following intranasal (i.n.) challenge of mice with strain Ind-3a of variola virus (VARV), even when using the highest possible dose of the virus (5.2 log10 p.f.u.). The 50 % infective doses (ID50) of VARV, estimated by the virus presence or absence in the lungs 3 and 4 days post-infection, were 2.7 ± 0.4 log10 p.f.u. for ICR mice and 3.5 ± 0.7 log10 p.f.u. for SCID mice. After i.n. challenge of ICR and SCID mice with VARV 30 and 50 ID50, respectively, steady reproduction of the virus occurred only in the respiratory tract (lungs and nose). Pathological inflammatory destructive changes were revealed in the respiratory tract and the primary target cells for VARV (macrophages and epithelial cells) in mice, similar to those in humans and cynomolgus macaques. The use of mice to assess antiviral efficacies of NIOCH-14 and ST-246 demonstrated the compliance of results with those described in scientific literature, which opens up the prospect of their use as an animal model for smallpox to develop anti-smallpox drugs intended for humans.

  2. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections.

    Science.gov (United States)

    Lembo, David; Donalisio, Manuela; Civra, Andrea; Argenziano, Monica; Cavalli, Roberta

    2018-01-01

    Viral infections represent a public health problem and one of the leading causes of global mortality. Nanomedicine strategies can be considered a powerful tool to enhance the effectiveness of antiviral drugs, often associated with solubility and bioavailability issues. Consequently, high doses and frequent administrations are required, resulting in adverse side effects. To overcome these limitations, various nanomedicine platforms have been designed. Areas covered: This review focuses on the state of the art of organic-based nanoparticles for the delivery of approved antivirals. A brief description of the main characteristics of nanocarriers is followed by an overview of the most promising research addressing the treatment of most important viral infections. Expert opinion: The activity of antiviral drugs could be improved with nanomedicine formulations. Indeed, nanoparticles can affect the fate of the encapsulated drugs, allowing controlled release kinetics, enhanced bioavailability, modified pharmacokinetics, and reduced side effects. In addition, the physicochemical properties of nanocarriers can enable their capability to target specific sites and to interact with virus structures. In this regard, nanomedicines can be considered an opportunity to enhance the therapeutic index of antivirals. Efficacy, safety, and manufacturing issues need to be carefully assessed to bring this promising approach to the clinic.

  3. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Science.gov (United States)

    Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F

    2012-01-01

    Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  4. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Directory of Open Access Journals (Sweden)

    Andreas Jurgeit

    Full Text Available Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  5. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery.

    Directory of Open Access Journals (Sweden)

    Dhara A Patel

    Full Text Available Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE activity in a fully automated and robust format (Z'>0.7. Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV. The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify

  6. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  7. The Future of HCV Therapy: NS4B as an Antiviral Target

    Directory of Open Access Journals (Sweden)

    Hadas Dvory-Sobol

    2010-11-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a major worldwide cause of liver disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 170 million individuals are infected with HCV, with three to four million new cases each year. The current standard of care, combination treatment with interferon and ribavirin, eradicates the virus in only about 50% of chronically infected patients. Notably, neither of these drugs directly target HCV. Many new antiviral therapies that specifically target hepatitis C (e.g. NS3 protease or NS5B polymerase inhibitors are therefore in development, with a significant number having advanced into clinical trials. The nonstructural 4B (NS4B protein, is among the least characterized of the HCV structural and nonstructural proteins and has been subjected to few pharmacological studies. NS4B is an integral membrane protein with at least four predicted transmembrane (TM domains. A variety of functions have been postulated for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. This review summarizes potential targets within the nonstructural protein NS4B, with a focus on novel classes of NS4B inhibitors.

  8. Drug-Target Kinetics in Drug Discovery.

    Science.gov (United States)

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  9. Organelle targeting: third level of drug targeting

    Directory of Open Access Journals (Sweden)

    Sakhrani NM

    2013-07-01

    Full Text Available Niraj M Sakhrani, Harish PadhDepartment of Cell and Molecular Biology, BV Patel Pharmaceutical Education and Research Development (PERD Centre, Gujarat, IndiaAbstract: Drug discovery and drug delivery are two main aspects for treatment of a variety of disorders. However, the real bottleneck associated with systemic drug administration is the lack of target-specific affinity toward a pathological site, resulting in systemic toxicity and innumerable other side effects as well as higher dosage requirement for efficacy. An attractive strategy to increase the therapeutic index of a drug is to specifically deliver the therapeutic molecule in its active form, not only into target tissue, nor even to target cells, but more importantly, into the targeted organelle, ie, to its intracellular therapeutic active site. This would ensure improved efficacy and minimize toxicity. Cancer chemotherapy today faces the major challenge of delivering chemotherapeutic drugs exclusively to tumor cells, while sparing normal proliferating cells. Nanoparticles play a crucial role by acting as a vehicle for delivery of drugs to target sites inside tumor cells. In this review, we spotlight active and passive targeting, followed by discussion of the importance of targeting to specific cell organelles and the potential role of cell-penetrating peptides. Finally, the discussion will address the strategies for drug/DNA targeting to lysosomes, mitochondria, nuclei and Golgi/endoplasmic reticulum.Keywords: intracellular drug delivery, cancer chemotherapy, therapeutic index, cell penetrating peptides

  10. Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs

    Czech Academy of Sciences Publication Activity Database

    Diblíková, D.; Kopečná, M.; Školová, B.; Krečmerová, Marcela; Roh, J.; Hrabálek, A.; Vávrová, K.

    2014-01-01

    Roč. 31, č. 4 (2014), s. 1071-1081 ISSN 0724-8741 Grant - others:GA ČR(CZ) GAP207/11/0365 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonate antivirals * lysolipid prodrug * penetration enhancer * skin absorption * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.420, year: 2014

  11. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoguang [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Department of Medical Microbiology, Harbin Medical University, Harbin 150086 (China); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Qian, Hua [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Miyamoto, Fusako [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Naito, Takeshi [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kawaji, Kumi [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Kajiwara, Kazumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); JST Innovation Plaza Kyoto, Japan Science and Technology Agency, Nishigyo-ku, Kyoto 615-8245 (Japan); Hattori, Toshio [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Matsuoka, Masao [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  12. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    International Nuclear Information System (INIS)

    Li, Xiaoguang; Qian, Hua; Miyamoto, Fusako; Naito, Takeshi; Kawaji, Kumi; Kajiwara, Kazumi; Hattori, Toshio; Matsuoka, Masao; Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka

    2012-01-01

    Highlights: ► We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. ► The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. ► In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1 IIIB and HIV-1 BaL as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1 IIIB activity, whereas fusion inhibitors showed both anti-HIV-1 IIIB and anti-HIV-1 BaL activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, “phenotypic drug evaluation”, may be applicable for the evaluation of various antiviral drugs in vivo.

  13. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Wilson, Ian A.

    2016-12-21

    The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Å from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.

  14. 77 FR 17487 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-03-26

    ... line/phone line to learn about possible modifications before coming to the meeting. Agenda: The committee will discuss new drug application (NDA) 203- 100, for a fixed-dose combination tablet of...

  15. Pharmacogenomics of GPCR Drug Targets

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Chavali, Sreenivas; Masuho, Ikuo

    2018-01-01

    Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs...... and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug......- and effector-binding sites in the human population. We experimentally show that certain variants of μ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants...

  16. [Antiviral activity of different drugs in vitro against viruses of bovine infectious rhinotracheitis and bovine diarrhea].

    Science.gov (United States)

    Glotov, A G; Glotova, T I; Sergeev, A A; Belkina, T V; Sergeev, A N

    2004-01-01

    In vitro experiments studied the antiviral activity of 11 different drugs against viruses of bovine infective rhinotracheitis (BIRT) and bovine viral diarrhea (BVD). The 50% inhibiting concentrations of the test agents were determined in the monolayers of MDBK and KCT cell cultures. Only did phosprenyl show a virucidal activity against BIRT virus. All the tested drugs significantly inhibited the reproduction of BIRT virus in the sensitive MDBK cell cultures. Thus, bromuridin, acyclovir, ribavirin and methisazonum inhibited the virus by > or = 100,000 times; liposomal ribavirin, gossypolum, anandinum, polyprenolum, phosprenyl, by 1000-10,000 times; eracond and argovit, by 100 times. In experiments on BVD virus, the cultured KCT cells displayed the antiviral activity of bromuridin, phosprenil, polyprenolum, methisazonum, acyclovir, gossypolum, argovit, and ribavirin (in two variants), which caused a statistically significant (100-10,000-fold) decrease in the productive activity of this virus. Eracond and anandid proved to be ineffective.

  17. Drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy.

    Science.gov (United States)

    Gheorghe, Liana; Cotruta, Bogdan; Trifu, Viorel; Cotruta, Cristina; Becheanu, Gabriel; Gheorghe, Cristian

    2008-09-01

    Pegylated interferon-alpha in combination with ribavirin currently represents the therapeutic standard for the hepatitis C virus infection. Interferon based therapy may be responsible for many cutaneous side effects. We report a case of drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy. To our knowledge, this is the first reported case of Sweet's syndrome in association with pegylated interferon-alpha therapy.

  18. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug

    International Nuclear Information System (INIS)

    Saito, Y.; Price, R.W.; Rottenberg, D.A.; Fox, J.J.; Su, T.L.; Watanabe, K.A.; Philips, F.S.

    1982-01-01

    2'-Fluoro-5-methyl-1-ν-D-arabinosyluracil (FMAU) labeled with carbon-14 was used to image herpes simplex virus type 1-infected regions of rat brain by quantitative autoradiography. FMAU is a potent antiviral pyrimidine nucleoside which is selectively phosphorylated by virus-coded thymidine kinase. When the labeled FMAU was administered 6 hours before the rats were killed, the selective uptake and concentration of the drug and its metabolites by infected cells (defined by immunoperoxidase staining of viral antigens) allowed quantitative definition and mapping of HSV-1-infected structures in autoradiograms of brain sections. These results shown that quantitative autoradiography can be used to characterize the local metabolism of antiviral drugs by infected cells in vivo. They also suggest that the selective uptake of drugs that exploit viral thymidine kinase for their antiviral effect can, by appropriate labeling, be used in conjunction with clinical neuroimaging techniques to define infected regions of human brain, thereby providing a new approach to the diagnosis of herpes encephalitis in man

  19. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao; Xue, Fei; Wu, Zhixin; Shen, Wei; Li, Jun; Zhou, Zhe; Ding, Yi; Zhao, Qi; Zhang, Xuejun C.; Liao, Ming; Bartlam, Mark; Rao, Zihe (SCAU); (Tsinghua); (Chinese Aca. Sci.)

    2008-07-21

    Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{sup pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.

  20. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?

    Science.gov (United States)

    Caly, Leon; Wagstaff, Kylie M; Jans, David A

    2012-09-01

    A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  2. Pharmacogenomics of GPCR Drug Targets

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Chavali, Sreenivas; Masuho, Ikuo

    2018-01-01

    Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs and a...

  3. Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity

    Directory of Open Access Journals (Sweden)

    Strebel Klaus

    2007-08-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins constitute a family of cytidine deaminases that provide intracellular resistance to retrovirus replication and to transposition of endogenous retroelements. A3A has significant homology to the C-terminus of A3G but has only a single cytidine deaminase active site (CDA, unlike A3G, which has a second N-terminal CDA previously found to be important for Vif sensitivity and virus encapsidation. A3A is packaged into HIV-1 virions but, unlike A3G, does not have antiviral properties. Here, we investigated the reason for the lack of A3A antiviral activity. Results Sequence alignment of A3G and A3A revealed significant homology of A3A to the C-terminal region of A3G. However, while A3G co-purified with detergent-resistant viral nucleoprotein complexes (NPC, virus-associated A3A was highly detergent-sensitive leading us to speculate that the ability to assemble into NPC may be a property conveyed by the A3G N-terminus. To test this model, we constructed an A3G-3A chimeric protein, in which the N-terminal half of A3G was fused to A3A. Interestingly, the A3G-3A chimera was packaged into HIV-1 particles and, unlike A3A, associated with the viral NPC. Furthermore, the A3G-3A chimera displayed strong antiviral activity against HIV-1 and was sensitive to inhibition by HIV-1 Vif. Conclusion Our results suggest that the A3G N-terminal domain carries determinants important for targeting the protein to viral NPCs. Transfer of this domain to A3A results in A3A targeting to viral NPCs and confers antiviral activity.

  4. Interaction Research on the Antiviral Molecule Dufulin Targeting on Southern Rice Black Streaked Dwarf Virus P9-1 Nonstructural Protein

    Directory of Open Access Journals (Sweden)

    Zhenchao Wang

    2015-03-01

    Full Text Available ern rice black streaked dwarf virus (SRBSDV causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL, an ideal anti-SRBSDV molecule, and investigated the interactions of DFL targeting on the nonstructural protein P9-1. The biological sequence information and bonding characterization of DFL to four kinds of P9-1 protein were described with fluorescence titration (FT and microscale thermophoresis (MST assays. The sequence analysis indicated that P9-1 had highly-conserved C- and N-terminal amino acid residues and a hypervariable region that differed from 131 aa to 160 aa. Consequently, wild-type (WT-His-P9-1, 23 C-terminal residues truncated (TR-ΔC23-His-P9-1, 6 N-terminal residues truncated (TR-ΔN6-His-P9-1, and Ser138 site-directed (MU-138-His-P9-1 mutant proteins were expressed. The FT and MST assay results indicated that DFL bounded to WT-His-P9-1 with micromole affinity and the 23 C-terminal amino acids were the potential targeting site. This system, which combines a complete sequence analysis, mutant protein expression, and binding action evaluating system, could further advance the understanding of the interaction abilities between antiviral drugs and their targets.

  5. Targeted drugs in radiation therapy

    International Nuclear Information System (INIS)

    Favaudon, V.; Hennequin, C.; Hennequin, C.

    2004-01-01

    New drugs aiming at the development of targeted therapies have been assayed in combination with ionizing radiation over the past few years. The rationale of this concept comes from the fact that the cytotoxic potential of targeted drugs is limited, thus requiring concomitant association with a cytotoxic agent for the eradication of tumor cells. Conversely a low level of cumulative toxicity is expected from targeted drugs. Most targeted drugs act through inhibition of post-translational modifications of proteins, such as dimerization of growth factor receptors, prenylation reactions, or phosphorylation of tyrosine or serine-threonine residues. Many systems involving the proteasome, neo-angiogenesis promoters, TGF-β, cyclooxygenase or the transcription factor NF-κB, are currently under investigation in hopes they will allow a control of cell proliferation, apoptosis, cell cycle progression, tumor angiogenesis and inflammation. A few drugs have demonstrated an antitumor potential in particular phenotypes. In most instances, however, radiation-drug interactions proved to be strictly additive in terms of cell growth inhibition or induced cell death. Strong potentiation of the response to radiotherapy is expected to require interaction with DNA repair mechanisms. (authors)

  6. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  7. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    Science.gov (United States)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  8. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing.

    Science.gov (United States)

    Frias-Staheli, Natalia; Dorner, Marcus; Marukian, Svetlana; Billerbeck, Eva; Labitt, Rachael N; Rice, Charles M; Ploss, Alexander

    2014-02-01

    Dengue virus (DENV) is the cause of a potentially life-threatening disease that affects millions of people worldwide. The lack of a small animal model that mimics the symptoms of DENV infection in humans has slowed the understanding of viral pathogenesis and the development of therapies and vaccines. Here, we investigated the use of humanized "bone marrow liver thymus" (BLT) mice as a model for immunological studies and assayed their applicability for preclinical testing of antiviral compounds. Human immune system (HIS) BLT-NOD/SCID mice were inoculated intravenously with a low-passage, clinical isolate of DENV-2, and this resulted in sustained viremia and infection of leukocytes in lymphoid and nonlymphoid organs. In addition, DENV infection increased serum cytokine levels and elicited DENV-2-neutralizing human IgM antibodies. Following restimulation with DENV-infected dendritic cells, in vivo-primed T cells became activated and acquired effector function. An adenosine nucleoside inhibitor of DENV decreased the circulating viral RNA when administered simultaneously or 2 days postinfection, simulating a potential treatment protocol for DENV infection in humans. In summary, we demonstrate that BLT mice are susceptible to infection with clinical DENV isolates, mount virus-specific adaptive immune responses, and respond to antiviral drug treatment. Although additional refinements to the model are required, BLT mice are a suitable platform to study aspects of DENV infection and pathogenesis and for preclinical testing of drug and vaccine candidates. IMPORTANCE Infection with dengue virus remains a major medical problem. Progress in our understanding of the disease and development of therapeutics has been hampered by the scarcity of small animal models. Here, we show that humanized mice, i.e., animals engrafted with components of a human immune system, that were infected with a patient-derived dengue virus strain developed clinical symptoms of the disease and mounted

  9. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  10. A method for evaluating antiviral drug susceptibility of Epstein-Barr virus

    Directory of Open Access Journals (Sweden)

    Charlotte A Romain

    2010-01-01

    Full Text Available Charlotte A Romain1, Henry H Balfour Jr1,2, Heather E Vezina1,3, Carol J Holman11Department of Laboratory Medicine and Pathology, 2Department of Pediatrics, 3Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USAAbstract: We developed an in vitro Epstein-Barr virus (EBV drug susceptibility assay using P3HR1 cells or lymphoblastoid cells from subjects with infectious mononucleosis, which were grown in the presence of various concentrations of acyclovir (ACV, ganciclovir (GCV or R-9-[4-hydroxy-2-(hydroxymethylbutyl]guanine (H2G and 12-O-tetradecanoyl-phorbol-13-acetate (TPA. On day 7, total cellular DNA was extracted and EBV DNA was detected using an in-house quantitative real-time polymerase chain reaction (PCR method. All three drugs had in vitro activity against EBV in both the laboratory standard producer cell line P3HR1 and in subject-derived lymphoblastoid cell lines. The median 50% inhibitory concentrations (IC50s in P3HR1 cells were: ACV, 3.4 μM; GCV, 2.6 μM; and H2G, 2.7 μM and in 3 subject-derived cells were: ACV, 2.5 μM; GCV, 1.7 μM; and H2G, 1.9 μM. Our assay can be used to screen candidate anti-EBV drugs. Because we can measure the IC50 of patients’ strains of EBV, this assay may also be useful for monitoring viral resistance especially in immunocompomised hosts receiving antiviral drugs for prevention or treatment of EBV diseases.Keywords: Epstein-Barr virus, ganciclovir, acyclovir, valomaciclovir, H2G, antivirals

  11. New Approaches for Quantitating the Inhibition of HIV-1 Replication by Antiviral Drugs in vitro and in vivo

    Science.gov (United States)

    McMahon, Moira A.; Shen, Lin; Siliciano, Robert F.

    2014-01-01

    Purpose of review With highly active anti-retroviral therapy (HAART), HIV-1 infection has become a manageable lifelong disease. Developing optimal treatment regimens requires understanding how to best measure anti-HIV activity in vitro and how drug dose response curves generated in vitro correlate with in vivo efficacy. Recent findings Several recent studies have indicated that conventional multi-round infectivity assays are inferior to single cycle assays at both low and high levels of inhibition. Multi-round infectivity assays can fail to detect subtle but clinically significant anti-HIV activity. The discoveries of the anti-HIV activity of the hepatitis B drug entecavir and the herpes simplex drug acyclovir were facilitated by single round infectivity assays. Recent studies using a single round infectivity assay have shown that a previously neglected parameter, the dose response curve slope, is an extremely important determinant of antiviral activity. Some antiretroviral drugs have steep slopes that result in extraordinary levels of antiviral activity. The instantaneous inhibitory potential (IIP), the log reduction in infectivity in a single round assay at clinical drug concentrations, has been proposed as a novel index for comparing antiviral activity. Summary Among in vitro measures of antiviral activity, single round infection assays have the advantage of measure instantaneous inhibition by a drug. Re-evaluating the antiviral activity of approved HIV-1 drugs has shown that the slope parameter is an important factor in drug activity. Determining the IIP by using a single round infectivity assay may provide important insights that can predict the in vivo efficacy of anti-HIV-1 drugs. PMID:19841584

  12. Restrictions for reimbursement of interferon-free direct-acting antiviral drugs for HCV infection in Europe

    NARCIS (Netherlands)

    Marshall, Alison D.; Cunningham, Evan B.; Nielsen, Stine; Aghemo, Alessio; Alho, Hannu; Backmund, Markus; Bruggmann, Philip; Dalgard, Olav; Seguin-Devaux, Carole; Flisiak, Robert; Foster, Graham R.; Gheorghe, Liana; Goldberg, David; Goulis, Ioannis; Hickman, Matthew; Hoffmann, Patrick; Jancorienė, Ligita; Jarcuska, Peter; Kåberg, Martin; Kostrikis, Leondios G.; Makara, Mihály; Maimets, Matti; Marinho, Rui Tato; Matičič, Mojca; Norris, Suzanne; Ólafsson, Sigurður; Øvrehus, Anne; Pawlotsky, Jean-Michel; Pocock, James; Robaeys, Geert; Roncero, Carlos; Simonova, Marieta; Sperl, Jan; Tait, Michele; Tolmane, Ieva; Tomaselli, Stefan; van der Valk, Marc; Vince, Adriana; Dore, Gregory J.; Lazarus, Jeffrey V.; Grebely, Jason

    2018-01-01

    All-oral direct-acting antiviral drugs (DAAs) for hepatitis C virus, which have response rates of 95% or more, represent a major clinical advance. However, the high list price of DAAs has led many governments to restrict their reimbursement. We reviewed the availability of, and national criteria

  13. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes

    Directory of Open Access Journals (Sweden)

    Yu D

    2016-01-01

    Full Text Available Debin Yu,1 Mingzhi Zhao,2 Liwei Dong,1 Lu Zhao,1 Mingwei Zou,3 Hetong Sun,4 Mengying Zhang,4 Hongyu Liu,4 Zhihua Zou1 1National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 2State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA; 4Prosit Sole Biotechnology, Co., Ltd., Beijing, People’s Republic of China Abstract: Type III interferons (IFNs (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the

  14. Drug-induced regulation of target expression

    DEFF Research Database (Denmark)

    Iskar, Murat; Campillos, Monica; Kuhn, Michael

    2010-01-01

    Drug perturbations of human cells lead to complex responses upon target binding. One of the known mechanisms is a (positive or negative) feedback loop that adjusts the expression level of the respective target protein. To quantify this mechanism systems-wide in an unbiased way, drug......-induced differential expression of drug target mRNA was examined in three cell lines using the Connectivity Map. To overcome various biases in this valuable resource, we have developed a computational normalization and scoring procedure that is applicable to gene expression recording upon heterogeneous drug treatments....... In 1290 drug-target relations, corresponding to 466 drugs acting on 167 drug targets studied, 8% of the targets are subject to regulation at the mRNA level. We confirmed systematically that in particular G-protein coupled receptors, when serving as known targets, are regulated upon drug treatment. We...

  15. Nonstructural Proteins of Alphavirus—Potential Targets for Drug Development

    Directory of Open Access Journals (Sweden)

    Farhana Abu Bakar

    2018-02-01

    Full Text Available Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe, and the Americas over the last decade, including chikungunya and o’nyong’nyong viruses, have intensified the search for selective inhibitors. In this review, we highlight key molecular determinants within the alphavirus replication complex that have been identified as viral targets, focusing on their structure and functionality in viral dissemination. We also summarize recent structural data of these viral targets and discuss how these could serve as templates to facilitate structure-based drug design and development of small molecule inhibitors.

  16. Diagnostic imaging of herpes simplex virus encephalitis using a radiolabeled antiviral drug: autoradiographic assessment in an animal model

    International Nuclear Information System (INIS)

    Saito, Y.; Rubenstein, R.; Price, R.W.; Fox, J.J.; Watanabe, K.A.

    1984-01-01

    To develop a new approach to the diagnosis of herpes simplex encephalitis, we used a radiolabeled antiviral drug, 2'-fluoro-5-methyl-1-beta-D-arabinosyluracil labeled with carbon 14 ([14C]FMAU), as a probe for selectively imaging brain infection in a rat model by quantitative autoradiography. A high correlation was found between focal infection, as defined by immunoperoxidase viral antigen staining, and increased regional [14C]FMAU uptake in brain sections. Two potential sources of false-positive imaging were defined: high concentrations of drug in the choroid plexus because of its higher permeability compared with brain, and drug sequestration by proliferating uninfected cell populations. Our results support the soundness of the proposed strategy of using a labeled antiviral drug that is selectively phosphorylated by herpes simplex virus type 1 thymidine kinase in conjunction with scanning methods for human diagnosis, and also define some of the factors that must be taken into account when planning clinical application

  17. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  18. Exploring drug-target interaction networks of illicit drugs.

    Science.gov (United States)

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. This study presents the first systematic review of the network

  19. Properties of Protein Drug Target Classes

    Science.gov (United States)

    Bull, Simon C.; Doig, Andrew J.

    2015-01-01

    Accurate identification of drug targets is a crucial part of any drug development program. We mined the human proteome to discover properties of proteins that may be important in determining their suitability for pharmaceutical modulation. Data was gathered concerning each protein’s sequence, post-translational modifications, secondary structure, germline variants, expression profile and drug target status. The data was then analysed to determine features for which the target and non-target proteins had significantly different values. This analysis was repeated for subsets of the proteome consisting of all G-protein coupled receptors, ion channels, kinases and proteases, as well as proteins that are implicated in cancer. Machine learning was used to quantify the proteins in each dataset in terms of their potential to serve as a drug target. This was accomplished by first inducing a random forest that could distinguish between its targets and non-targets, and then using the random forest to quantify the drug target likeness of the non-targets. The properties that can best differentiate targets from non-targets were primarily those that are directly related to a protein’s sequence (e.g. secondary structure). Germline variants, expression levels and interactions between proteins had minimal discriminative power. Overall, the best indicators of drug target likeness were found to be the proteins’ hydrophobicities, in vivo half-lives, propensity for being membrane bound and the fraction of non-polar amino acids in their sequences. In terms of predicting potential targets, datasets of proteases, ion channels and cancer proteins were able to induce random forests that were highly capable of distinguishing between targets and non-targets. The non-target proteins predicted to be targets by these random forests comprise the set of the most suitable potential future drug targets, and should therefore be prioritised when building a drug development programme. PMID

  20. Designing cyclopentapeptide inhibitor as potential antiviral drug for dengue virus ns5 methyltransferase.

    Science.gov (United States)

    Idrus, Syarifuddin; Tambunan, Usman Sumo Friend; Zubaidi, Ahmad Ardilla

    2012-01-01

    NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.

  1. Antiviral Activity of HIV gp120 Targeting Bispecific T Cell Engager (BiTE®) Antibody Constructs.

    Science.gov (United States)

    Brozy, Johannes; Schlaepfer, Erika; Mueller, Christina K S; Rochat, Mary-Aude; Rampini, Silvana K; Myburgh, Renier; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A; Muenz, Markus; Speck, Roberto F

    2018-05-02

    Today's gold standard in HIV therapy is the combined antiretroviral therapy (cART). It requires strict adherence by patients and life-long medication, which can lower the viral load below detection limits and prevent HIV-associated immunodeficiency, but cannot cure patients. The bispecific T cell engaging (BiTE®) antibody technology has demonstrated long-term relapse-free outcomes in patients with relapsed and refractory acute lymphocytic leukemia. We here generated BiTE® antibody constructs that target the HIV-1 envelope protein gp120 (HIV gp120) using either the scFv B12 or VRC01, the first two extracellular domains (1+2) of human CD4 alone or joined to the single chain variable fragment (scFv) of the antibody 17b fused to an anti-human CD3ϵ scFv. These engineered human BiTE® antibody constructs showed engagement of T cells for redirected lysis of HIV gp120-transfected CHO cells. Furthermore, they substantially inhibited HIV-1 replication in PBMCs as well as in macrophages co-cultured with autologous CD8+ T-cells, the most potent being the human CD4(1+2) BiTE® antibody construct and the CD4(1+2)L17b BiTE® antibody construct. The CD4(1+2) h BiTE® antibody construct promoted HIV infection of human CD4-/CD8+ T cells. In contrast, the neutralizing B12 and the VRC01 BiTE® antibody constructs as well as the CD4(1+2)L17b BiTE® antibody construct did not. Thus, BiTE® antibody constructs targeting HIV gp120 are very promising for constraining HIV and warrant further development as novel antiviral therapy with curative potential. Importance HIV is a chronic infection well controlled with the current cART. However, we lack cure of HIV, and the HIV pandemic goes on. Here we showed in vitro and ex vivo t hat a bispecific T-cell engaging (BiTE®) antibody construct targeting HIV gp120 resulted in substantially reduced HIV replication. In addition, these BiTE® antibody constructs display efficient killing of gp120 expressing cells and inhibited replication in ex vivo

  2. Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses

    Czech Academy of Sciences Publication Activity Database

    Haviernik, J.; Štefánik, M.; Fojtíková, M.; Kali, S.; Tordo, N.; Rudolf, Ivo; Hubálek, Zdeněk; Eyer, Luděk; Růžek, Daniel

    2018-01-01

    Roč. 10, č. 4 (2018), č. článku 184. ISSN 1999-4915 R&D Projects: GA ČR(CZ) GA16-20054S Institutional support: RVO:68081766 ; RVO:60077344 Keywords : Antiviral activity * Arbidol * Cell-type dependent antiviral effect * Cytotoxicity * Flavivirus * Umifenovir Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 3.465, year: 2016

  3. Drug target identification in protozoan parasites.

    Science.gov (United States)

    Müller, Joachim; Hemphill, Andrew

    2016-08-01

    Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.

  4. Nerve Regeneration in Conditions of HSV-Infection and an Antiviral Drug Influence.

    Science.gov (United States)

    Gumenyuk, Alla; Rybalko, Svetlana; Ryzha, Alona; Savosko, Sergey; Labudzynskyi, Dmytro; Levchuk, Natalia; Chaikovsky, Yuri

    2018-05-05

    Herpes simplex virus type I (HSV-I) is a latent neuroinfection which can cause focal brain lesion. The role of HSV-infection in nerve regeneration has not been studied so far. The aim of the work was to study sciatic nerve regeneration in the presence of HSV-infection and the influence of an antiviral drug. BALB/c line mice were divided into five groups. Group 1 animals were infected with HSV-I. After resolution of neuroinfection manifestations the sciatic nerve of these animals was crushed. Group 2 mice were administered acyclovir following the same procedures. Groups 3-5 mice served as controls. Thirty days after the operation distal nerve stumps and m.gastrocnemius were studied morphologically and biochemically. Ultrastructural organization of the sciatic nerve in control animals remained intact. Morphometric parameters of the nerves from the experimental groups have not reach control values. However, in the group 1 diameter of nerve fibers was significantly smaller than in the group 2. Both nerve regeneration and m.gastrocnemius reinnervation were confirmed. The muscle hypotrophy was found in groups 1, 2, and 3 (the muscle fibers diameter decreased). Metabolic changes in the muscles of the infected animals (groups 1 and 2) were more pronounced than in control groups 3 and 4. The levels of TBA-active products, conjugated dienes, carbonyl and SH-groups were reduced in m.gastrocnemius of the experimental groups, however no significant difference associated with acyclovir administration was found. HSV-infection is not limited to the local neurodegenerative changes in the CNS but affects regeneration of the injured sciatic nerve. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  5. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    Science.gov (United States)

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  6. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  7. Ophthalmic antiviral chemotherapy : An overview

    Directory of Open Access Journals (Sweden)

    Athmanathan Sreedharan

    1997-01-01

    Full Text Available Antiviral drug development has been slow due to many factors. One such factor is the difficulty to block the viral replication in the cell without adversely affecting the host cell metabolic activity. Most of the antiviral compounds are analogs of purines and pyramidines. Currently available antiviral drugs mainly inhibit viral nucleic acid synthesis, hence act only on actively replicating viruses. This article presents an overview of some of the commonly used antiviral agents in clinical ophthalmology.

  8. [Clinical significance of drug resistance-associated mutations in treatment of hepatitis C with direct-acting antiviral agents].

    Science.gov (United States)

    Li, Z; Chen, Z W; Ren, H; Hu, P

    2017-03-20

    Direct-acting antiviral agents (DAAs) achieve a high sustained virologic response rate in the treatment of chronic hepatitis C virus infection. However, drug resistance-associated mutations play an important role in treatment failure and have attracted more and more attention. This article elaborates on the clinical significance of drug resistance-associated mutations from the aspects of their definition, association with genotype, known drug resistance-associated mutations and their prevalence rates, the impact of drug resistance-associated mutations on treatment naive and treatment-experienced patients, and the role of clinical detection, in order to provide a reference for clinical regimens with DAAs and help to achieve higher sustained virologic response rates.

  9. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Colpitts, Che C; Bach, Charlotte; Heydmann, Laura; Zona, Laetitia; Xiao, Fei; Thumann, Christine; Crouchet, Emilie; Gaudin, Raphaël; Sureau, Camille; Cosset, François-Loïc; McKeating, Jane A; Pessaux, Patrick; Hoshida, Yujin; Schuster, Catherine; Zeisel, Mirjam B; Baumert, Thomas F

    2016-10-25

    Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation

    International Nuclear Information System (INIS)

    Okumura, Atsushi; Alce, Tim; Lubyova, Barbora; Ezelle, Heather; Strebel, Klaus; Pitha, Paula M.

    2008-01-01

    The activation of IRF-3 during the early stages of viral infection is critical for the initiation of the antiviral response; however the activation of IRF-3 in HIV-1 infected cells has not yet been characterized. We demonstrate that the early steps of HIV-1 infection do not lead to the activation and nuclear translocation of IRF-3; instead, the relative levels of IRF-3 protein are decreased due to the ubiquitin-associated proteosome degradation. Addressing the molecular mechanism of this effect we show that the degradation is independent of HIV-1 replication and that virion-associated accessory proteins Vif and Vpr can independently degrade IRF-3. The null mutation of these two genes reduced the capacity of the HIV-1 virus to down modulate IRF-3 levels. The degradation was associated with Vif- and Vpr-mediated ubiquitination of IRF-3 and was independent of the activation of IRF-3. N-terminal lysine residues were shown to play a critical role in the Vif- and Vpr-mediated degradation of IRF-3. These data implicate Vif and Vpr in the disruption of the initial antiviral response and point to the need of HIV-1 to circumvent the antiviral response during the very early phase of replication

  11. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes

    Directory of Open Access Journals (Sweden)

    Eloi R. Verrier

    2016-10-01

    Full Text Available Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs, including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies.

  12. Research progress in antiviral therapy for chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    YU Guoying

    2015-04-01

    Full Text Available Antiviral therapy is the most important treatment for chronic hepatitis C. This paper reviews the progress in antiviral treatment over recent years, including the combination therapy with polyethylene glycol-Interferon (PEG-IFN and ribavirin (RBV, specific target therapy, and gene therapy. The paper believes that the anti-hepatitis C virus treatment needs more effective drug combination therapies, shorter courses, less side effect, higher drug resistance threshold, etc.

  13. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  14. Mixture toxicity of the antiviral drug Tamiflu (oseltamivir ethylester) and its active metabolite oseltamivir acid

    Energy Technology Data Exchange (ETDEWEB)

    Escher, Beate I., E-mail: b.escher@uq.edu.au [University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Straub, Juerg Oliver [F.Hoffmann-La Roche Ltd, Corporate Safety, Health and Environmental Protection, 4070 Basel (Switzerland)

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24 h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  15. An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening.

    Science.gov (United States)

    Nelson, Emily V; Pacheco, Jennifer R; Hume, Adam J; Cressey, Tessa N; Deflubé, Laure R; Ruedas, John B; Connor, John H; Ebihara, Hideki; Mühlberger, Elke

    2017-10-01

    Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Quantitative autoradiographic mapping of focal herpes simplex virus encephalitis using a radiolabeled antiviral drug

    International Nuclear Information System (INIS)

    Price, R.

    1984-01-01

    A method of mapping herpes simplex viral infection comprising administering a radiolabeled antiviral active 5-substituted 1-(2'-deoxy-2'-substituted-D-arabinofuranosyl) pyrimidine nucleoside to the infected subject, and scanning the area in which the infection is to be mapped for the radiolabel

  17. Drug target ontology to classify and integrate drug discovery data.

    Science.gov (United States)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande; Turner, John Paul; Vidovic, Dusica; Forlin, Michele; Koleti, Amar; Nguyen, Dac-Trung; Jensen, Lars Juhl; Guha, Rajarshi; Mathias, Stephen L; Ursu, Oleg; Stathias, Vasileios; Duan, Jianbin; Nabizadeh, Nooshin; Chung, Caty; Mader, Christopher; Visser, Ubbo; Yang, Jeremy J; Bologa, Cristian G; Oprea, Tudor I; Schürer, Stephan C

    2017-11-09

    One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. However, only a small subset of potentially druggable targets has attracted significant research and development resources. The Illuminating the Druggable Genome (IDG) project develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug targets. A central component of the IDG program is a comprehensive knowledge resource of the druggable genome. As part of that effort, we have developed a framework to integrate, navigate, and analyze drug discovery data based on formalized and standardized classifications and annotations of druggable protein targets, the Drug Target Ontology (DTO). DTO was constructed by extensive curation and consolidation of various resources. DTO classifies the four major drug target protein families, GPCRs, kinases, ion channels and nuclear receptors, based on phylogenecity, function, target development level, disease association, tissue expression, chemical ligand and substrate characteristics, and target-family specific characteristics. The formal ontology was built using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. DTO was built based on the need for a formal semantic

  18. Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle.

    Science.gov (United States)

    Funke, Jan; Prasse, Carsten; Ternes, Thomas A

    2016-07-01

    The fate of five antiviral drugs (abacavir, emtricitabine, ganciclovir, lamivudine and zidovudine) was investigated in biological wastewater treatment. Investigations of degradation kinetics were accompanied by the elucidation of formed transformation products (TPs) using activated sludge lab experiments and subsequent LC-HRMS analysis. Degradation rate constants ranged between 0.46 L d(-1) gSS(-1) (zidovudine) and 55.8 L d(-1) gSS(-1) (abacavir). Despite these differences of the degradation kinetics, the same main biotransformation reaction was observed for all five compounds: oxidation of the terminal hydroxyl-moiety to the corresponding carboxylic acid (formation of carboxy-TPs). In addition, the oxidation of thioether moieties to sulfoxides was observed for emtricitabine and lamivudine. Antiviral drugs were detected in influents of municipal wastewater treatment plants (WWTPs) with concentrations up to 980 ng L(-1) (emtricitabine), while in WWTP effluents mainly the TPs were found with concentration levels up to 1320 ng L(-1) (carboxy-abacavir). Except of zidovudine none of the original antiviral drugs were detected in German rivers and streams, whereas the concentrations of the TPs ranged from 16 ng L(-1) for carboxy-lamivudine up to 750 ng L(-1) for carboxy-acyclovir. These concentrations indicate an appreciable portion from WWTP effluents present in rivers and streams, as well as the high environmental persistence of the carboxy-TPs. As a result three of the carboxylic TPs were detected in finished drinking water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Drug Repurposing: Far Beyond New Targets for Old Drugs

    DEFF Research Database (Denmark)

    Oprea, Tudor; Mestres, J.

    2012-01-01

    Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach...... relevance to the disease in question and the intellectual property landscape. These activities go far beyond the identification of new targets for old drugs....

  20. Short communication: cheminformatics analysis to identify predictors of antiviral drug penetration into the female genital tract.

    Science.gov (United States)

    Thompson, Corbin G; Sedykh, Alexander; Nicol, Melanie R; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander; Kashuba, Angela D M

    2014-11-01

    The exposure of oral antiretroviral (ARV) drugs in the female genital tract (FGT) is variable and almost unpredictable. Identifying an efficient method to find compounds with high tissue penetration would streamline the development of regimens for both HIV preexposure prophylaxis and viral reservoir targeting. Here we describe the cheminformatics investigation of diverse drugs with known FGT penetration using cluster analysis and quantitative structure-activity relationships (QSAR) modeling. A literature search over the 1950-2012 period identified 58 compounds (including 21 ARVs and representing 13 drug classes) associated with their actual concentration data for cervical or vaginal tissue, or cervicovaginal fluid. Cluster analysis revealed significant trends in the penetrative ability for certain chemotypes. QSAR models to predict genital tract concentrations normalized to blood plasma concentrations were developed with two machine learning techniques utilizing drugs' molecular descriptors and pharmacokinetic parameters as inputs. The QSAR model with the highest predictive accuracy had R(2)test=0.47. High volume of distribution, high MRP1 substrate probability, and low MRP4 substrate probability were associated with FGT concentrations ≥1.5-fold plasma concentrations. However, due to the limited FGT data available, prediction performances of all models were low. Despite this limitation, we were able to support our findings by correctly predicting the penetration class of rilpivirine and dolutegravir. With more data to enrich the models, we believe these methods could potentially enhance the current approach of clinical testing.

  1. The Denver Tube Combined with Antiviral Drugs In the Treatment of HBV-related Cirrhosis with Refractory Ascites: A Report of Three Cases

    Directory of Open Access Journals (Sweden)

    Wang Xiao-jin

    2014-03-01

    Full Text Available Treatment of nucleos(tide antiviral drugs for decompensated HBV-related cirrhosis can significantly improve the prognosis. But those patients with refractory ascites possibly deteriorate due to the complications of ascites before any benefit from anti-viral drugs could be observed. Therefore, it is important to find a way to help the patients with HBV-related cirrhosis and refractory ascites to receive the full benefits from antiviral therapy. Peritoneovenous shunt (PVS using Denver tube enables ascites to continuously bypass into systemic circulation, thereby reducing ascites and albumin input and improving quality of life. We report herein 3 cases of decompensated HBV-related cirrhosis with refractory ascites, PVS using Denver tube was combined with lamivudine for antiviral treatment before and after. Then, ascites was alleviated significantly or disapeared and viral responsed well. All patients achieved a satisfactory long-term survival from 6.7 to 14.7 years. It was suggested that the Denver shunt could be used as an adjuvant method to antiviral drugs for decompensated HBV-related cirrhosis with refractory ascites to help the patients reap the full benefits and maximize efficacy of antiviral treatment.

  2. Targeted Delivery of Protein Drugs by Nanocarriers

    Directory of Open Access Journals (Sweden)

    Antonella Battisti

    2010-03-01

    Full Text Available Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  3. miR-194 Inhibits Innate Antiviral Immunity by Targeting FGF2 in Influenza H1N1 Virus Infection

    Directory of Open Access Journals (Sweden)

    Keyu Wang

    2017-11-01

    Full Text Available Fibroblast growth factor 2 (FGF2 or basic FGF regulates a wide range of cell biological functions including proliferation, angiogenesis, migration, differentiation, and injury repair. However, the roles of FGF2 and the underlying mechanisms of action in influenza A virus (IAV-induced lung injury remain largely unexplored. In this study, we report that microRNA-194-5p (miR-194 expression is significantly decreased in A549 alveolar epithelial cells (AECs following infection with IAV/Beijing/501/2009 (BJ501. We found that miR-194 can directly target FGF2, a novel antiviral regulator, to suppress FGF2 expression at the mRNA and protein levels. Overexpression of miR-194 facilitated IAV replication by negatively regulating type I interferon (IFN production, whereas reintroduction of FGF2 abrogated the miR-194-induced effects on IAV replication. Conversely, inhibition of miR-194 alleviated IAV-induced lung injury by promoting type I IFN antiviral activities in vivo. Importantly, FGF2 activated the retinoic acid-inducible gene I signaling pathway, whereas miR-194 suppressed the phosphorylation of tank binding kinase 1 and IFN regulatory factor 3. Our findings suggest that the miR-194-FGF2 axis plays a vital role in IAV-induced lung injury, and miR-194 antagonism might be a potential therapeutic target during IAV infection.

  4. Fluid mechanics aspects of magnetic drug targeting.

    Science.gov (United States)

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.

  5. The target landscape of clinical kinase drugs.

    Science.gov (United States)

    Klaeger, Susan; Heinzlmeir, Stephanie; Wilhelm, Mathias; Polzer, Harald; Vick, Binje; Koenig, Paul-Albert; Reinecke, Maria; Ruprecht, Benjamin; Petzoldt, Svenja; Meng, Chen; Zecha, Jana; Reiter, Katrin; Qiao, Huichao; Helm, Dominic; Koch, Heiner; Schoof, Melanie; Canevari, Giulia; Casale, Elena; Depaolini, Stefania Re; Feuchtinger, Annette; Wu, Zhixiang; Schmidt, Tobias; Rueckert, Lars; Becker, Wilhelm; Huenges, Jan; Garz, Anne-Kathrin; Gohlke, Bjoern-Oliver; Zolg, Daniel Paul; Kayser, Gian; Vooder, Tonu; Preissner, Robert; Hahne, Hannes; Tõnisson, Neeme; Kramer, Karl; Götze, Katharina; Bassermann, Florian; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Walch, Axel; Greif, Philipp A; Schneider, Sabine; Felder, Eduard Rudolf; Ruland, Juergen; Médard, Guillaume; Jeremias, Irmela; Spiekermann, Karsten; Kuster, Bernhard

    2017-12-01

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. MODELING OF TARGETED DRUG DELIVERY PART II. MULTIPLE DRUG ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    A. V. Zaborovskiy

    2017-01-01

    Full Text Available In oncology practice, despite significant advances in early cancer detection, surgery, radiotherapy, laser therapy, targeted therapy, etc., chemotherapy is unlikely to lose its relevance in the near future. In this context, the development of new antitumor agents is one of the most important problems of cancer research. In spite of the importance of searching for new compounds with antitumor activity, the possibilities of the “old” agents have not been fully exhausted. Targeted delivery of antitumor agents can give them a “second life”. When developing new targeted drugs and their further introduction into clinical practice, the change in their pharmacodynamics and pharmacokinetics plays a special role. The paper describes a pharmacokinetic model of the targeted drug delivery. The conditions under which it is meaningful to search for a delivery vehicle for the active substance were described. Primary screening of antitumor agents was undertaken to modify them for the targeted delivery based on underlying assumptions of the model.

  7. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus.

    Science.gov (United States)

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2017-04-15

    We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 ( ie-1 ) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species. Copyright © 2017 Chen et al.

  8. Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting

    International Nuclear Information System (INIS)

    Youn, Hye Won; Kang, Keon Wook; Chung, Jun Key; Lee, Dong Soo

    2008-01-01

    Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development

  9. Molecularly targeted drugs for metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Cheng YD

    2013-11-01

    Full Text Available Ying-dong Cheng, Hua Yang, Guo-qing Chen, Zhi-cao Zhang Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China Abstract: The survival rate of patients with metastatic colorectal cancer (mCRC has significantly improved with applications of molecularly targeted drugs, such as bevacizumab, and led to a substantial improvement in the overall survival rate. These drugs are capable of specifically targeting the inherent abnormal pathways in cancer cells, which are potentially less toxic than traditional nonselective chemotherapeutics. In this review, the recent clinical information about molecularly targeted therapy for mCRC is summarized, with specific focus on several of the US Food and Drug Administration-approved molecularly targeted drugs for the treatment of mCRC in the clinic. Progression-free and overall survival in patients with mCRC was improved greatly by the addition of bevacizumab and/or cetuximab to standard chemotherapy, in either first- or second-line treatment. Aflibercept has been used in combination with folinic acid (leucovorin–fluorouracil–irinotecan (FOLFIRI chemotherapy in mCRC patients and among patients with mCRC with wild-type KRAS, the outcomes were significantly improved by panitumumab in combination with folinic acid (leucovorin–fluorouracil–oxaliplatin (FOLFOX or FOLFIRI. Because of the new preliminary studies, it has been recommended that regorafenib be used with FOLFOX or FOLFIRI as first- or second-line treatment of mCRC chemotherapy. In summary, an era of new opportunities has been opened for treatment of mCRC and/or other malignancies, resulting from the discovery of new selective targeting drugs. Keywords: metastatic colorectal cancer (mCRC, antiangiogenic drug, bevacizumab, aflibercept, regorafenib, cetuximab, panitumumab, clinical trial, molecularly targeted therapy

  10. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway

    Science.gov (United States)

    Robertson, Kevin A.; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J.; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J.; Enright, Anton J.; Yamamoto, Mami; Pradeepa, Madapura M.; Lennox, Kimberly A.; Behlke, Mark A.; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J.; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-01-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  11. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Directory of Open Access Journals (Sweden)

    Kevin A Robertson

    2016-03-01

    Full Text Available In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1. Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  12. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  13. Targeting molecular networks for drug research

    Directory of Open Access Journals (Sweden)

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  14. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  15. Antiviral drug profile of human influenza A & B viruses circulating in India: 2004-2011

    Directory of Open Access Journals (Sweden)

    V A Potdar

    2014-01-01

    Full Text Available Background & objectives: Recent influenza antiviral resistance studies in South East Asia, Europe and the United States reveal adamantane and neuraminidase inhibitor (NAIs resistance. This study was undertaken to evaluate antiviral resistance in influenza viruses isolated from various parts of India, during 2004 to 2011. Methods: Influenza viruses were analyzed genetically for known resistance markers by M2 and NA gene sequencing. Influenza A/H1N1 (n=206, A/H3N2 (n=371 viruses for amantadine resistance and A/H1N1 (n=206, A/H3N2 (n=272 and type B (n=326 for oseltamivir resistance were sequenced. Pandemic (H1N1 (n= 493 isolates were tested for H274Y mutation by real time reverse transcription (rRT-PCR. Randomly selected resistant and sensitive influenza A/H1N1 and A/H3N2 viruses were confirmed by phenotypic assay. Results: Serine to asparagine (S3IN mutation was detected in six isolates of 2007-2008.One dual-resistant A/H1N1 was detected for the first time in India with leucine to phenylalanine (L26F mutation in M2 gene and H274Y mutation in NA gene. A/H3N2 viruses showed an increase in resistance to amantadine from 22.5 per cent in 2005 to 100 per cent in 2008 onwards with S3IN mutation. Fifty of the 61 (82% A/H1N1 viruses tested in 2008-2009 were oseltamivir resistant with H274Y mutation, while all A/H3N2, pandemic A/H1N1 and type B isolates remained sensitive. Genetic results were also confirmed by phenotypic analysis of randomly selected 50 resistant A/H1N1 and 40 sensitive A/H3N2 isolates. Interpretation & conclusions: Emergence of influenza viruses resistant to amantadine and oseltamivir in spite of negligible usage of antivirals emphasizes the need for continuous monitoring of antiviral resistance.

  16. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family.

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-03-01

    Full Text Available The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71 for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylenebis(oxy]bis(5-nitro-benzonitrile with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family. Surprisingly, coxsackievirus B3 (CVB3 and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight

  17. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    Science.gov (United States)

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  18. Meningococcal disease and future drug targets

    DEFF Research Database (Denmark)

    Gammelgaard, L K; Colding, H; Hartzen, S H

    2011-01-01

    recent data and current knowledge on molecular mechanisms of meningococcal disease and explains how host immune responses ultimately may aggravate neuropathology and the clinical prognosis. Within this context, particular importance is paid to the endotoxic components that provide potential drug targets...... for novel neuroprotective adjuvants, which are needed in order to improve the clinical management of meningoencephalitis and patient prognosis....

  19. Targeted proteins for diabetes drug design

    Science.gov (United States)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  20. Nanoscale drug delivery for targeted chemotherapy.

    Science.gov (United States)

    Xin, Yong; Huang, Qian; Tang, Jian-Qin; Hou, Xiao-Yang; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan

    2016-08-28

    Despite significant improvements in diagnostic methods and innovations in therapies for specific cancers, effective treatments for neoplastic diseases still represent major challenges. Nanotechnology as an emerging technology has been widely used in many fields and also provides a new opportunity for the targeted delivery of cancer drugs. Nanoscale delivery of chemotherapy drugs to the tumor site is highly desirable. Recent studies have shown that nanoscale drug delivery systems not only have the ability to destroy cancer cells but may also be carriers for chemotherapy drugs. Some studies have demonstrated that delivery of chemotherapy via nanoscale carriers has greater therapeutic benefit than either treatment modality alone. In this review, novel approaches to nanoscale delivery of chemotherapy are described and recent progress in this field is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Targeted proteins for diabetes drug design

    International Nuclear Information System (INIS)

    Trang Nguyen, Ngoc Doan; Le, Ly Thi

    2012-01-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people. (review)

  2. Diversity of Pharmacological Properties in Chinese and European Medicinal Plants: Cytotoxicity, Antiviral and Antitrypanosomal Screening of 82 Herbal Drugs

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2011-09-01

    Full Text Available In an extensive screening, the antiviral, antitrypanosomal and anticancer properties of extracts from 82 plants used in traditional Chinese medicine and European phytomedicine were determined. Several promising plants that were highly effective against hepatitis B virus (HBV, bovine viral diarrhoea virus (BVDV—a flavivirus used here as a surrogate in vitro model of hepatitis C virus, trypanosomes (Trypanosoma brucei brucei and several cancer cell lines were identified. Six aqueous extracts from Celosia cristata, Ophioglossum vulgatum, Houttuynia cordata, Selaginella tamariscina, Alpinia galanga and Alpinia oxyphylla showed significant antiviral effects against BVDV without toxic effects on host embryonic bovine trachea (EBTr cells, while Evodia lepta, Hedyotis diffusa and Glycyrrhiza spp. demonstrated promising activities against the HBV without toxic effects on host human hepatoblastoma cells transfected with HBV-DNA (HepG2 2.2.15 cells. Seven organic extracts from Alpinia oxyphylla, Coptis chinensis, Kadsura longipedunculata, Arctium lappa, Panax ginseng, Panax notoginseng and Saposhnikovia divaricata inhibited T. b. brucei. Moreover, among fifteen water extracts that combined high antiproliferative activity (IC50 0.5–20 µg/mL and low acute in vitro toxicity (0–10% reduction in cell viability at IC50, Coptis chinensis presented the best beneficial characteristics. In conclusion, traditional herbal medicine from Europe and China still has a potential for new therapeutic targets and therapeutic applications.

  3. Tumor targeting using liposomal antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2008-03-01

    Full Text Available Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumordrugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.Keywords: tumor targeting, antineoplastic drugs, liposomes, pegylation, steric stabilization, immunoliposomes

  4. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bruno S. Pascoalino

    2016-10-01

    Full Text Available Background The recent epidemics of Zika virus (ZIKV implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4% were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.

  5. Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development

    Science.gov (United States)

    Liu, Chia-Lin; Hung, Hui-Chen; Lo, Shou-Chen; Chiang, Ching-Hui; Chen, I.-Jung; Hsu, John T.-A.; Hou, Ming-Hon

    2016-02-01

    Nucleoprotein (NP) is the most abundant type of RNA-binding viral protein in influenza A virus-infected cells and is necessary for viral RNA transcription and replication. Recent studies demonstrated that influenza NP is a valid target for antiviral drug development. The surface of the groove, covered with numerous conserved residues between the head and body domains of influenza A NP, plays a crucial role in RNA binding. To explore the mechanism by which NP binds RNA, we performed a series of site-directed mutagenesis in the RNA-binding groove, followed by surface plasmon resonance (SPR), to characterize the interactions between RNA and NP. Furthermore, a role of Y148 in NP stability and NP-RNA binding was evaluated. The aromatic residue of Y148 was found to stack with a nucleotide base. By interrupting the stacking interaction between Y148 and an RNA base, we identified an influenza virus NP inhibitor, (E, E)-1,7-bis(4-hydroxy-3-methoxyphenyl) -1,6-heptadiene-3,5-dione; this inhibitor reduced the NP’s RNA-binding affinity and hindered viral replication. Our findings will be useful for the development of new drugs that disrupt the interaction between RNA and viral NP in the influenza virus.

  6. Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus - 2 (HSV-2).

    Science.gov (United States)

    Arunkumar, Jagadeesan; Rajarajan, Swaminathan

    2018-03-28

    Herpes simplex virus - 2 (HSV-2) causes lifelong persisting infection in the immunocompromised host and intermittent in healthy individuals with high morbidity in neonatals and also increase the transmission of HIV. Acyclovir is widely used drug to treat HSV-2 infection but it unable to control viral latency and recurrent infection and prolonged usage lead to drug resistance. Plant-based bioactive compounds are the lead structural bio-molecules play an inevitable role as a potential antiviral agent with reduced toxicity. Therefore, there is an urgent need to develop anti-HSV-2 bioactive molecules to prevent viral resistance and control of latent infection. Punica granatum fruit is rich in major bioactive compounds with potential antimicrobial properties. Hence, we evaluated the anti-HSV-2 efficacy of lyophilized extracts and bioactive compounds isolated from fruit peel of P. granatum. As a result, ethanolic peel extract showed significant inhibition at 62.5 μg/ml. Hence, the fruit peel ethanolic extract was subjected for the isolation of bioactive compounds isolation by bioactivity-guided fractionation. Among isolated bioactive compounds, punicalagin showed 100% anti-HSV-2 activity at 31.25 μg/ml with supportive evidence of desirable in silico ADMET properties and strong interactions to selected protein targets of HSV-2 by docking analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5....... Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development....... The greatest need is for new prophylactic drugs, and it seems likely that such compounds will be developed in the coming decade....

  8. Antiviral agents: structural basis of action and rational design.

    Science.gov (United States)

    Menéndez-Arias, Luis; Gago, Federico

    2013-01-01

    During the last 30 years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs inhibiting hepatitis C virus replication. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by using a computer-based approach. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g. oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e. the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs in preclinical development acting against picornaviruses, hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy.

  9. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance

    Directory of Open Access Journals (Sweden)

    Richard J. Bingham

    2017-11-01

    Full Text Available The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  10. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance.

    Science.gov (United States)

    Bingham, Richard J; Dykeman, Eric C; Twarock, Reidun

    2017-11-17

    The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  11. Hepatitis C Virus Resistance to Direct-Acting Antiviral Drugs in Interferon-Free Regimens.

    Science.gov (United States)

    Pawlotsky, Jean-Michel

    2016-07-01

    Treatment of hepatitis C virus (HCV) infection has progressed considerably with the approval of interferon-free, direct-acting antiviral (DAA)-based combination therapies. Although most treated patients achieve virological cure, HCV resistance to DAAs has an important role in the failure of interferon-free treatment regimens. The presence of viral variants resistant to NS5A inhibitors at baseline is associated with lower rates of virological cure in certain groups of patients, such as those with genotype 1a or 3 HCV, those with cirrhosis, and/or prior nonresponders to pegylated interferon-based regimens. DAA-resistant HCV is generally dominant at virological failure (most often relapse). Viruses resistant to NS3-4A protease inhibitors disappear from peripheral blood in a few weeks to months, whereas NS5A inhibitor-resistant viruses persist for years. Re-treatment options are available, but first-line treatment strategies should be optimized to efficiently prevent treatment failure due to HCV resistance. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  13. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance.

    Science.gov (United States)

    Cuypers, Lize; Li, Guangdi; Libin, Pieter; Piampongsant, Supinya; Vandamme, Anne-Mieke; Theys, Kristof

    2015-09-16

    Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be

  14. Drug target ontology to classify and integrate drug discovery data

    DEFF Research Database (Denmark)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande

    2017-01-01

    using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem...... of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target...... characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. CONCLUSIONS: DTO was built based on the need for a formal semantic model for druggable targets including various related information such as protein, gene, protein...

  15. Drug-Target Interactions: Prediction Methods and Applications.

    Science.gov (United States)

    Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael

    2018-01-01

    Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Crystal Structures, Thermal Analysis, and Dissolution Behavior of New Solid Forms of the Antiviral Drug Arbidol with Dicarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Alex N. Manin

    2015-12-01

    Full Text Available Salts of the antiviral drug arbidol (umifenovir (Arb with maleate (Mlc and fumarate (Fum anions have been obtained, and their crystal structures have been described. The crystal structure of arbidol maleate has been redetermined by single crystal X-ray diffraction at 180K. A new arbidol cocrystal in zwitterion form with succinic acid (Suc has also been found and characterized. The arbidol zwitterion was not previously seen in any of the drug crystal forms, and the [Arb + Suc] cocrystal seems to be the first found instance. Analysis of the conformational preferences of the arbidol molecule in the crystal structures has shown that it adopts two types of conformations, namely “open” and “closed” ones. Thermal stability of the arbidol salts and cocrystal have been analyzed by means of differential scanning calorimetry, thermogravimetric, and mass-spectrometry analysis. The dissolution study of the arbidol salts and cocrystal performed in aqueous buffer solutions with pH 1.2 and 6.8 has shown that both the salts and the cocrystal dissolve incongruently to form an arbidol hydrochloride monohydrate at pH 1.2 and an arbidol base at pH 6.8, respectively. The cocrystal reaches the highest solubility level in both pH 1.2 and pH 6.8 solutions.

  17. Antiviral Information Management System (AIMS): a prototype for operational innovation in drug development.

    Science.gov (United States)

    Jadhav, Pravin R; Neal, Lauren; Florian, Jeff; Chen, Ying; Naeger, Lisa; Robertson, Sarah; Soon, Guoxing; Birnkrant, Debra

    2010-09-01

    This article presents a prototype for an operational innovation in knowledge management (KM). These operational innovations are geared toward managing knowledge efficiently and accessing all available information by embracing advances in bioinformatics and allied fields. The specific components of the proposed KM system are (1) a database to archive hepatitis C virus (HCV) treatment data in a structured format and retrieve information in a query-capable manner and (2) an automated analysis tool to inform trial design elements for HCV drug development. The proposed framework is intended to benefit drug development by increasing efficiency of dose selection and improving the consistency of advice from US Food and Drug Administration (FDA). It is also hoped that the framework will encourage collaboration among FDA, industry, and academic scientists to guide the HCV drug development process using model-based quantitative analysis techniques.

  18. The influence of drug distribution and drug-target binding on target occupancy : The rate-limiting step approximation

    NARCIS (Netherlands)

    Witte, de W.E.A.; Vauquelin, G.; Graaf, van der P.H.; Lange, de E.C.M.

    2017-01-01

    The influence of drug-target binding kinetics on target occupancy can be influenced by drug distribution and diffusion around the target, often referred to as "rebinding" or "diffusion-limited binding". This gives rise to a decreased decline of the drug-target complex concentration as a result of a

  19. A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology.

    Science.gov (United States)

    Kravatsky, Yuri; Chechetkin, Vladimir; Fedoseeva, Daria; Gorbacheva, Maria; Kravatskaya, Galina; Kretova, Olga; Tchurikov, Nickolai

    2017-11-23

    The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.

  20. A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology

    Directory of Open Access Journals (Sweden)

    Yuri Kravatsky

    2017-11-01

    Full Text Available The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs, requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s. Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s. The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi targets in human immunodeficiency virus 1 (HIV-1 subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.

  1. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5......-hydroxytrypamine (5-HT)(1F) receptor agonists, which are in late-stage development. Nitric oxide antagonists are also in development. New forms of administration of sumatriptan might improve efficacy and reduce side effects. Botulinum toxin A has recently been approved for the prophylaxis of chronic migraine....... Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development...

  2. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    Science.gov (United States)

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cyclophilin and Viruses: Cyclophilin as a Cofactor for Viral Infection and Possible Anti-Viral Target

    Directory of Open Access Journals (Sweden)

    Koichi Watashi

    2007-01-01

    Full Text Available Cyclophilin (CyP is a peptidyl prolyl cis/trans isomerase, catalyzing the cis-trans isomerization of proline residues in proteins. CyP plays key roles in several different aspects of cellular physiology including the immune response, transcription, mitochondrial function, cell death, and chemotaxis. In addition to these cellular events, a number of reports demonstrated that CyP plays a critical role in the life cycle of viruses, especially human immunodeficiency virus (HIV and hepatitis C virus (HCV. These two viruses are significant causes of morbidity and mortality worldwide, but current therapies are often insufficient. CyP may provide a novel therapeutic target for the management and/or cure of these diseases, in particular HCV.

  4. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Yoshiki [School of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan; Nakajim, Syo [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Ohash, Hirofumi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya, Japan; Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Perelson, Alan S. [Los Alamos National Laboratory; Iwami, Shingo [Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan: PRESTO, JST, Saitama, Japan: CREST, JST, Saitama, Japan; Watashi, Koichi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  5. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  6. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress

    NARCIS (Netherlands)

    Lammers, Twan Gerardus Gertudis Maria; Kiessling, F.; Hennink, W.E.; Storm, Gerrit

    2012-01-01

    Abstract Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells,

  7. Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology.

    Science.gov (United States)

    Zhao, Zheng; Martin, Che; Fan, Raymond; Bourne, Philip E; Xie, Lei

    2016-02-18

    The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis, few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation. One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably, Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal (Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola RNA-directed RNA polymerase through targeting the MTase domain. Identification of safe drug candidates is a crucial first step toward the determination of timely and effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is warranted.

  8. Multi-target drugs: the trend of drug research and development.

    Science.gov (United States)

    Lu, Jin-Jian; Pan, Wei; Hu, Yuan-Jia; Wang, Yi-Tao

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future.

  9. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu®) and loss of nutrient removal performance.

    Science.gov (United States)

    Slater, Frances R; Singer, Andrew C; Turner, Susan; Barr, Jeremy J; Bond, Philip L

    2011-02-01

    The 2009-2010 influenza pandemic saw many people treated with antivirals and antibiotics. High proportions of both classes of drugs are excreted and enter wastewater treatment plants (WWTPs) in biologically active forms. To date, there has been no study into the potential for influenza pandemic-scale pharmaceutical use to disrupt WWTP function. Furthermore, there is currently little indication as to whether WWTP microbial consortia can degrade antiviral neuraminidase inhibitors when exposed to pandemic-scale doses. In this study, we exposed an aerobic granular sludge sequencing batch reactor, operated for enhanced biological phosphorus removal (EBPR), to a simulated influenza-pandemic dosing of antibiotics and antivirals for 8 weeks. We monitored the removal of the active form of Tamiflu(®), oseltamivir carboxylate (OC), bacterial community structure, granule structure and changes in EBPR and nitrification performance. There was little removal of OC by sludge and no evidence that the activated sludge community adapted to degrade OC. There was evidence of changes to the bacterial community structure and disruption to EBPR and nitrification during and after high-OC dosing. This work highlights the potential for the antiviral contamination of receiving waters and indicates the risk of destabilizing WWTP microbial consortia as a result of high concentrations of bioactive pharmaceuticals during an influenza pandemic. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Drug-targeting methodologies with applications: A review

    Science.gov (United States)

    Kleinstreuer, Clement; Feng, Yu; Childress, Emily

    2014-01-01

    Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system. PMID:25516850

  11. Telomerase – future drug target enzyme?

    Directory of Open Access Journals (Sweden)

    Tomaž Langerholc

    2012-06-01

    Full Text Available Eucaryotic chromosome endings (telomeres replication problem was solved in the 1980’s by discovery of the telomerase enzyme. The Nobel Prize in Physiology or Medicine was awarded in 2009 for the discovery of telomerase. Altered telomerase expression in cancer, and human dream of eternal youth have accelerated the development of pharmacological telomerase inhibitors and activators. However, after 15 years of development they are still not available on the market. In the present article we reviewed pharmacological agents that target telomerase activity, which have entered clinical trials. Current drugs in development are mostly not intended to be used alone, as telomerase inhibitors under clinical trials are used in combination with the existing chemotherapeutics and anti-telomerase vaccines in combination with immuno-stimulants. Apart from cancer and aging, there are other diseases linked to deregulated activity of telomerase/telomeres and we also discuss technical and legal problems that researchers encounter in developing anti-telomerase therapy. Given the pace of development, first anti-telomerase drugs might appear on the market in the next 5 years.

  12. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  13. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  14. A computational approach to finding novel targets for existing drugs.

    Directory of Open Access Journals (Sweden)

    Yvonne Y Li

    2011-09-01

    Full Text Available Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM, suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects.

  15. [THE USE OF THE MODEL MOUSE ICR--VARIOLA VIRUS FOR EVALUATION OF ANTIVIRAL DRUG EFFICACY].

    Science.gov (United States)

    Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Shishkina, L N; Zamedyanskaya, A S; Nesterov, A E; Glotov, A G; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Mice of the ICR outbred population were infected intranasally (i/n) with the variola virus (VARV, strain Ind-3a). Clinical signs of the disease did not appear even at the maximum possible dose of the virus 5.2 lg PFU/head (plaque-forming units per head). In this case, 50% infective dose (ID50) of VARV estimated by the presence or absence of the virus in the lungs three days after infection (p.i.) was equal to 2.7 ± 0.4 lg PFU/head. Taking into account the 10% application of the virus in the lungs during the intranasal infection of the mice, it was adequate to 1.7 lg PFU/lungs. This indicates a high infectivity of the VARV for mice comparable to its infectivity for humans. After the i/n infection of mice with the VARV at a dose 30 ID50/ head the highest concentration of the virus detected in the lungs (4.9 ± 0.0 lg PFU/ml of homogenate) and in nasal cavity tissues (4.8 ± 0.0 lg PFU/ml) were observed. The pathomorphological changes in the respiratory organs of the mice infected with the VARV appeared at 3-5 days p.i., and the VARV reproduction noted in the epithelial cells and macrophages were noticed. When the preparations ST-246 and NIOCH-14 were administered orally at a dose of 60 μg/g of mouse weight up to one day before infection, after 2 hours, 1 and 2 days p.i., the VARV reproduction in the lungs after 3 days p.i. decreased by an order of magnitude. Thus, outbred ICR mice infected with the VARV can be used as a laboratory model of the smallpox when evaluating the therapeutic and prophylactic efficacy of the antismallpox drugs.

  16. Recent advances in targeted drug therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    FAN Yongqiang

    2018-02-01

    Full Text Available More and more clinical trials have proved the efficacy of targeted drugs in the treatment of hepatocellular carcinoma (HCC. With the development of science and technology, more and more targeted drugs have appeared. In recent years, targeted drugs such as regorafenib and ramucirumab have shown great potential in related clinical trials. In addition, there are ongoing clinical trials for second-line candidate drugs, such as c-Met inhibitors tivantinib and cabozantinib and a VEGFR-2 inhibitor ramucirumab. This article summarizes the advances in targeted drug therapy for HCC and related trial data, which provides a reference for further clinical trials and treatment.

  17. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120.

    Science.gov (United States)

    Curreli, Francesca; Belov, Dmitry S; Kwon, Young Do; Ramesh, Ranjith; Furimsky, Anna M; O'Loughlin, Kathleen; Byrge, Patricia C; Iyer, Lalitha V; Mirsalis, Jon C; Kurkin, Alexander V; Altieri, Andrea; Debnath, Asim K

    2018-05-12

    We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Drug target identification using side-effect similarity

    DEFF Research Database (Denmark)

    Campillos, Monica; Kuhn, Michael; Gavin, Anne-Claude

    2008-01-01

    Targets for drugs have so far been predicted on the basis of molecular or cellular features, for example, by exploiting similarity in chemical structure or in activity across cell lines. We used phenotypic side-effect similarities to infer whether two drugs share a target. Applied to 746 marketed...... drugs, a network of 1018 side effect-driven drug-drug relations became apparent, 261 of which are formed by chemically dissimilar drugs from different therapeutic indications. We experimentally tested 20 of these unexpected drug-drug relations and validated 13 implied drug-target relations by in vitro...... binding assays, of which 11 reveal inhibition constants equal to less than 10 micromolar. Nine of these were tested and confirmed in cell assays, documenting the feasibility of using phenotypic information to infer molecular interactions and hinting at new uses of marketed drugs....

  19. Decision Making with Regard to Antiviral Intervention during an Influenza Pandemic

    Science.gov (United States)

    Shim, Eunha; Chapman, Gretchen B.; Galvani, Alison P.

    2012-01-01

    Background Antiviral coverage is defined by the proportion of the population that takes antiviral prophylaxis or treatment. High coverage of an antiviral drug has epidemiological and evolutionary repercussions. Antivirals select for drug resistance within the population, and individuals may experience adverse effects. To determine optimal antiviral coverage in the context of an influenza outbreak, we compared 2 perspectives: 1) the individual level (the Nash perspective), and 2) the population level (utilitarian perspective). Methods We developed an epidemiological game-theoretic model of an influenza pandemic. The data sources were published literature and a national survey. The target population was the US population. The time horizon was 6 months. The perspective was individuals and the population overall. The interventions were antiviral prophylaxis and treatment. The outcome measures were the optimal coverage of antivirals in an influenza pandemic. Results At current antiviral pricing, the optimal Nash strategy is 0% coverage for prophylaxis and 30% coverage for treatment, whereas the optimal utilitarian strategy is 19% coverage for prophylaxis and 100% coverage for treatment. Subsidizing prophylaxis by $440 and treatment by $85 would bring the Nash and utilitarian strategies into alignment. For both prophylaxis and treatment, the optimal antiviral coverage decreases as pricing of antivirals increases. Our study does not incorporate the possibility of an effective vaccine and lacks probabilistic sensitivity analysis. Our survey also does not completely represent the US population. Because our model assumes a homogeneous population and homogeneous antiviral pricing, it does not incorporate heterogeneity of preference. Conclusions The optimal antiviral coverage from the population perspective and individual perspectives differs widely for both prophylaxis and treatment strategies. Optimal population and individual strategies for prophylaxis and treatment might

  20. A review on target drug delivery: magnetic microspheres

    OpenAIRE

    Amit Chandna; Deepa Batra; Satinder Kakar; Ramandeep Singh

    2013-01-01

    Novel drug delivery system aims to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the active entity to the site of action. A number of novel drug delivery systems have emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery, magnetic micro carriers being one of them. Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional ra...

  1. Deep-Learning-Based Drug-Target Interaction Prediction.

    Science.gov (United States)

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  2. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    Science.gov (United States)

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  3. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  4. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Science.gov (United States)

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  5. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  6. Target based drug design - a reality in virtual sphere.

    Science.gov (United States)

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  7. Exploring drug-target interaction networks of illicit drugs

    OpenAIRE

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Background Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit dru...

  8. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  9. An all-atom, active site exploration of antiviral drugs that target Flaviviridae polymerases

    Czech Academy of Sciences Publication Activity Database

    Valdés, James J.; Gil, V.A.; Butterill, Philip T.; Růžek, Daniel

    2016-01-01

    Roč. 97, OCT (2016), s. 2552-2565 ISSN 0022-1317 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GB14-36098G; GA MZd(CZ) NV16-34238A EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : dependent RNA-polymerase * c virus polymerase * de-novo initiation * hepatitis C * allosteric inhibitors * nucleoside inhibitors * molecular dynamics * encephalitis virus * protein-structure * cluster-analysis Subject RIV: EE - Microbiology, Virology Impact factor: 2.838, year: 2016

  10. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang; Abu Samra, Dina Bashir Kamil; Merzaban, Jasmeen; Khashab, Niveen M.

    2013-01-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug

  11. Antiviral activity of an N-allyl acridone against dengue virus

    OpenAIRE

    Mazzucco, María Belén; Talarico, Laura Beatriz; Vatansever, Sezen; Carro, Ana Clara; Fascio, Mirta Liliana; D'Accorso, Norma Beatriz; Garcia, Cybele; Damonte, Elsa Beatriz

    2016-01-01

    Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of...

  12. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    -dependent, and the transporters thus belong to the Proton-dependent Oligopeptide Transporter (POT)-family. The transporters are not drug targets per se, however due to their uniquely broad substrate specificity; they have proved to be relevant drug targets at the level of drug transport. Drug molecules such as oral active beta....../tri-peptide transporters from vesicular storages 3) changes in gene transcription/mRNA stability. The aim of the present review is to discuss physiological, patho-physiological and drug-induced regulation of di/tri-peptide transporter mediated transport....

  13. Trends in GPCR drug discovery: new agents, targets and indications

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Gloriam, David E.; Attwood, Misty M.

    2017-01-01

    current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially...... are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug......G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals...

  14. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  15. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Hwang, Tae Heon; Kim, Jin Bum; Yang, Da Som; Ryu, WonHyoung; Park, Yong-il

    2013-01-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  16. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    Science.gov (United States)

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of ∼20,000 compared to the free drug. PMID:17404004

  17. Drug Target Interference in Immunogenicity Assays: Recommendations and Mitigation Strategies.

    Science.gov (United States)

    Zhong, Zhandong Don; Clements-Egan, Adrienne; Gorovits, Boris; Maia, Mauricio; Sumner, Giane; Theobald, Valerie; Wu, Yuling; Rajadhyaksha, Manoj

    2017-11-01

    Sensitive and specific methodology is required for the detection and characterization of anti-drug antibodies (ADAs). High-quality ADA data enables the evaluation of potential impact of ADAs on the drug pharmacokinetic profile, patient safety, and efficacious response to the drug. Immunogenicity assessments are typically initiated at early stages in preclinical studies and continue throughout the drug development program. One of the potential bioanalytical challenges encountered with ADA testing is the need to identify and mitigate the interference mediated by the presence of soluble drug target. A drug target, when present at sufficiently high circulating concentrations, can potentially interfere with the performance of ADA and neutralizing antibody (NAb) assays, leading to either false-positive or, in some cases, false-negative ADA and NAb assay results. This publication describes various mechanisms of assay interference by soluble drug target, as well as strategies to recognize and mitigate such target interference. Pertinent examples are presented to illustrate the impact of target interference on ADA and NAb assays as well as several mitigation strategies, including the use of anti-target antibodies, soluble versions of the receptors, target-binding proteins, lectins, and solid-phase removal of targets. Furthermore, recommendations for detection and mitigation of such interference in different formats of ADA and NAb assays are provided.

  18. NCI-MATCH Trial Links Targeted Drugs to Mutations

    Science.gov (United States)

    Investigators for the nationwide trial, NCI-MATCH: Molecular Analysis for Therapy Choice, announced that the trial will seek to determine whether targeted therapies for people whose tumors have specific gene mutations will be effective regardless of their cancer type. NCI-MATCH will incorporate more than 20 different study drugs or drug combinations, each targeting a specific gene mutation, in order to match each patient in the trial with a therapy that targets a molecular abnormality in their tumor.

  19. Target-mediated drug disposition with drug-drug interaction, Part I: single drug case in alternative formulations.

    Science.gov (United States)

    Koch, Gilbert; Jusko, William J; Schropp, Johannes

    2017-02-01

    Target-mediated drug disposition (TMDD) describes drug binding with high affinity to a target such as a receptor. In application TMDD models are often over-parameterized and quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are essential to reduce the number of parameters. However, implementation of such approximations becomes difficult for TMDD models with drug-drug interaction (DDI) mechanisms. Hence, alternative but equivalent formulations are necessary for QE or QSS approximations. To introduce and develop such formulations, the single drug case is reanalyzed. This work opens the route for straightforward implementation of QE or QSS approximations of DDI TMDD models. The manuscript is the first part to introduce DDI TMDD models with QE or QSS approximations.

  20. New Drugs and Treatment Targets in Psoriasis

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Skov, Lone; Zachariae, Claus

    2015-01-01

    , and phosphodiesterase inhibitors. We review published clinical trials, and conference abstracts presented during the last years, concerned with new drugs under development for the treatment of psoriasis. In conclusion, our psoriasis armamentarium will be filled with several new effective therapeutic options the coming...... years. We need to be aware of the limitations of drug safety data when selecting new novel treatments. Monitoring and clinical registries are still important tools....

  1. Gaussian interaction profile kernels for predicting drug-target interaction.

    Science.gov (United States)

    van Laarhoven, Twan; Nabuurs, Sander B; Marchiori, Elena

    2011-11-01

    The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions. Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/. tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl. Supplementary data are available at Bioinformatics online.

  2. Identifying Drug-Target Interactions with Decision Templates.

    Science.gov (United States)

    Yan, Xiao-Ying; Zhang, Shao-Wu

    2018-01-01

    During the development process of new drugs, identification of the drug-target interactions wins primary concerns. However, the chemical or biological experiments bear the limitation in coverage as well as the huge cost of both time and money. Based on drug similarity and target similarity, chemogenomic methods can be able to predict potential drug-target interactions (DTIs) on a large scale and have no luxurious need about target structures or ligand entries. In order to reflect the cases that the drugs having variant structures interact with common targets and the targets having dissimilar sequences interact with same drugs. In addition, though several other similarity metrics have been developed to predict DTIs, the combination of multiple similarity metrics (especially heterogeneous similarities) is too naïve to sufficiently explore the multiple similarities. In this paper, based on Gene Ontology and pathway annotation, we introduce two novel target similarity metrics to address above issues. More importantly, we propose a more effective strategy via decision template to integrate multiple classifiers designed with multiple similarity metrics. In the scenarios that predict existing targets for new drugs and predict approved drugs for new protein targets, the results on the DTI benchmark datasets show that our target similarity metrics are able to enhance the predictive accuracies in two scenarios. And the elaborate fusion strategy of multiple classifiers has better predictive power than the naïve combination of multiple similarity metrics. Compared with other two state-of-the-art approaches on the four popular benchmark datasets of binary drug-target interactions, our method achieves the best results in terms of AUC and AUPR for predicting available targets for new drugs (S2), and predicting approved drugs for new protein targets (S3).These results demonstrate that our method can effectively predict the drug-target interactions. The software package can

  3. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  4. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS

    Directory of Open Access Journals (Sweden)

    Penghua Wang

    2013-04-01

    Full Text Available RNA viruses are sensed by RIG-I-like receptors (RLRs, which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.

  5. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    Science.gov (United States)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  6. A General Strategy for Targeting Drugs to Bone.

    Science.gov (United States)

    Jahnke, Wolfgang; Bold, Guido; Marzinzik, Andreas L; Ofner, Silvio; Pellé, Xavier; Cotesta, Simona; Bourgier, Emmanuelle; Lehmann, Sylvie; Henry, Chrystelle; Hemmig, René; Stauffer, Frédéric; Hartwieg, J Constanze D; Green, Jonathan R; Rondeau, Jean-Michel

    2015-11-23

    Targeting drugs to their desired site of action can increase their safety and efficacy. Bisphosphonates are prototypical examples of drugs targeted to bone. However, bisphosphonate bone affinity is often considered too strong and cannot be significantly modulated without losing activity on the enzymatic target, farnesyl pyrophosphate synthase (FPPS). Furthermore, bisphosphonate bone affinity comes at the expense of very low and variable oral bioavailability. FPPS inhibitors were developed with a monophosphonate as a bone-affinity tag that confers moderate affinity to bone, which can furthermore be tuned to the desired level, and the relationship between structure and bone affinity was evaluated by using an NMR-based bone-binding assay. The concept of targeting drugs to bone with moderate affinity, while retaining oral bioavailability, has broad application to a variety of other bone-targeted drugs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress.

    Science.gov (United States)

    Lammers, Twan; Kiessling, Fabian; Hennink, Wim E; Storm, Gert

    2012-07-20

    Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use. Significant progress has also been made with regard to better understanding the (patho-) physiological principles of drug targeting to tumors. This has led to the identification of several important pitfalls in tumor-targeted drug delivery, including I) overinterpretation of the EPR effect; II) poor tumor and tissue penetration of nanomedicines; III) misunderstanding of the potential usefulness of active drug targeting; IV) irrational formulation design, based on materials which are too complex and not broadly applicable; V) insufficient incorporation of nanomedicine formulations in clinically relevant combination regimens; VI) negligence of the notion that the highest medical need relates to metastasis, and not to solid tumor treatment; VII) insufficient integration of non-invasive imaging techniques and theranostics, which could be used to personalize nanomedicine-based therapeutic interventions; and VIII) lack of (efficacy analyses in) proper animal models, which are physiologically more relevant and more predictive for the clinical situation. These insights strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    Science.gov (United States)

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J.; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-01-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  9. Target mediated drug disposition with drug-drug interaction, Part II: competitive and uncompetitive cases.

    Science.gov (United States)

    Koch, Gilbert; Jusko, William J; Schropp, Johannes

    2017-02-01

    We present competitive and uncompetitive drug-drug interaction (DDI) with target mediated drug disposition (TMDD) equations and investigate their pharmacokinetic DDI properties. For application of TMDD models, quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are necessary to reduce the number of parameters. To realize those approximations of DDI TMDD models, we derive an ordinary differential equation (ODE) representation formulated in free concentration and free receptor variables. This ODE formulation can be straightforward implemented in typical PKPD software without solving any non-linear equation system arising from the QE or QSS approximation of the rapid binding assumptions. This manuscript is the second in a series to introduce and investigate DDI TMDD models and to apply the QE or QSS approximation.

  10. Sequencing: Targeting Insurgents and Drugs in Colombia

    Science.gov (United States)

    2007-03-01

    p. 73. 24 initiated by previous administrations coupled with declining prices in the late 1990s for coffee and oil—two of Colombia’s major...whose involvement in the illicit drug industry gained them notoriety in the 1970s with the production of cannabis . In the 1980s, Colombia became the

  11. NEW DRUGS NEW TARGETS AND NOVEL ANTIRETROVIRALS

    African Journals Online (AJOL)

    2005-11-02

    Nov 2, 2005 ... Highly active antiretroviral therapy (HAART) has to date been based on use of a triple combination of drugs chosen from three classes of antiretrovirals (ARVs), nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs).

  12. Antiviral properties of photosensitizers

    International Nuclear Information System (INIS)

    Hudson, J.B.; Towers, G.H.N.

    1988-01-01

    We have studied the antiviral properties of three different groups of photo-sensitizers, viz. (i) various furyl compounds; (ii) β-carboline alkaloids; (iii) thiophenes and their acetylene derivatives. In general the antiviral potency of the furyl compounds correlated with their ability to produce DNA photoadducts. Among the naturally occurring β-carboline alkaloids, harmine was considerably more potent (in the presence of long wavelength UV radiation, UVA) than several other harmane-related compounds. Slight alterations in chemical structure had profound effects on their antiviral activities. Harmine was shown to inactivate the DNA-virus murine cytomegalovirus (MCMV) by inhibiting viral gene expression, although other targets may also exist. Several eudistomins, carboline derivatives isolated from a tunicate, were also photoactive against viruses. Various plant thiophenes and polyacetylenes were studied in detail. These compounds also required UVA for antiviral activity, and some of them were extremely potent against viruses with membranes, e.g. α-terthienyl, which showed significant activity at only 10 -5 μg/ml. When MCMV had been treated with α-terthienyl plus UVA, the virus retained its integrity and penetrated cells normally; but the virus did not replicate. (author)

  13. High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−RNA and (+RNA of influenza A virus in cell culture

    Directory of Open Access Journals (Sweden)

    Asya S. Levina

    2016-08-01

    Full Text Available Background: The development of new antiviral drugs based on nucleic acids is under scrutiny. An important problem in this aspect is to find the most vulnerable conservative regions in the viral genome as targets for the action of these agents. Another challenge is the development of an efficient system for their delivery into cells. To solve this problem, we proposed a TiO2·PL–DNA nanocomposite consisting of titanium dioxide nanoparticles and polylysine (PL-containing oligonucleotides.Results: The TiO2·PL–DNA nanocomposites bearing the DNA fragments targeted to different conservative regions of (−RNA and (+RNA of segment 5 of influenza A virus (IAV were studied for their antiviral activity in MDCK cells infected with the H1N1, H5N1, and H3N2 virus subtypes. Within the negative strand of each of the studied strains, the efficiency of DNA fragments increased in the direction of its 3’-end. Thus, the DNA fragment aimed at the 3’-noncoding region of (−RNA was the most efficient and inhibited the reproduction of different IAV subtypes by 3–4 orders of magnitude. Although to a lesser extent, the DNA fragments targeted at the AUG region of (+RNA and the corresponding region of (−RNA were also active. For all studied viral subtypes, the nanocomposites bearing the DNA fragments targeted to (−RNA appeared to be more efficient than those containing fragments aimed at the corresponding (+RNA regions.Conclusion: The proposed TiO2·PL–DNA nanocomposites can be successfully used for highly efficient and site-specific inhibition of influenza A virus of different subtypes. Some patterns of localization of the most vulnerable regions in IAV segment 5 for the action of DNA-based drugs were found. The (−RNA strand of IAV segment 5 appeared to be more sensitive as compared to (+RNA.

  14. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices

    International Nuclear Information System (INIS)

    Terzopoulou, Zoi; Papageorgiou, Myrsini; Kyzas, George Z.; Bikiaris, Dimitrios N.; Lambropoulou, Dimitra A.

    2016-01-01

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME_f) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q_m_a_x) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME_f. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of synthesized MIPs

  15. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Terzopoulou, Zoi [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Papageorgiou, Myrsini [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece); Kyzas, George Z.; Bikiaris, Dimitrios N. [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece)

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME{sub f}) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q{sub max}) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME{sub f}. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of

  16. Trends in GPCR drug discovery: new agents, targets and indications.

    Science.gov (United States)

    Hauser, Alexander S; Attwood, Misty M; Rask-Andersen, Mathias; Schiöth, Helgi B; Gloriam, David E

    2017-12-01

    G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

  17. Enhanced cellular transport and drug targeting using dendritic nanostructures

    Science.gov (United States)

    Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2003-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  18. Efficacy of combined antiviral therapy with pegylated interferon α-2a and ribavirin for chronic hepatitis C infection in intravenous drug users

    Directory of Open Access Journals (Sweden)

    Ružić Maja

    2010-01-01

    Full Text Available Introduction. Hepatitis C Virus infection represents not just a medical, but also a socio-economic problem. It is estimated that among 170 million infected, 60% belongs to the category of intravenous drug users (IDUs. Objective. The aim of this paper was to compare the response to the combined therapy of pegylated interferon alfa 2a and ribavirin, in the group of patients with HCV infection who were intravenous drug users (IDUs and in patients who were identified in the other way of transmission of HCV. Also to identify the influence of the therapy on diseases of addiction, during the course of HCV infection and on the effects of the combined therapy of pegylated interferon alfa 2a and ribavirin. Methods. We conducted a retrospective-prospective study, on 60 patients, treated with combined antiviral therapy-pegylated interferon alfa 2a and ribavirin. 30 patients were from the group of IDUs, and 30 patients from other epidemiological groups. Results. There were significant differences between the age of the patients (30.2±7.1 vs. 39.3±11.2 years; p=0.002, but no significant difference in the duration of the HCV infection between the two groups of patients (8.9±7.4 vs. 13.1±7.0 years; p>0.05. A large number of the patients in the group of IDUs had a problem with the abstinence of the drug abuse. In this group, there was the influence of alcohol (30% and other substances with potential hepatotoxicity: marihuana (23.3% and psycho-active drugs (73.6%. Staging of the liver fibrosis was not influenced by those two parameters and was similar in both groups (p>0.05. The genotype 3a was dominant in intravenous drug users (50.0% and genotype 1b in the control group of the patients (76.6%. In both groups, SVR was achieved at a higher percentage (86% vs. 70.00%; p>0.05, but among the intravenous drug users the relapses of HCV infection were at a lower percentage (3.3% vs. 20.0%; p=0.044. Side effects were noticed in solitary cases in both of the examined

  19. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  20. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  1. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Institute of Scientific and Technical Information of China (English)

    Huile Gao

    2016-01-01

    Due to the ability of the blood–brain barrier(BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier(BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  2. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Directory of Open Access Journals (Sweden)

    Huile Gao

    2016-07-01

    Full Text Available Due to the ability of the blood–brain barrier (BBB to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier (BBTB, and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  3. Drug-target interaction prediction: A Bayesian ranking approach.

    Science.gov (United States)

    Peska, Ladislav; Buza, Krisztian; Koller, Júlia

    2017-12-01

    In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.000 and 0.404 for GPCR, IC, NR, and E datasets respectively. Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug

  4. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    OpenAIRE

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, w...

  5. Predicting drug-target interactions using restricted Boltzmann machines.

    Science.gov (United States)

    Wang, Yuhao; Zeng, Jianyang

    2013-07-01

    In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary interactions between drugs and targets, and information about different types of interactions has not been well exploited for DTI prediction in previous studies. On the other hand, incorporating additional information about drug-target relationships or drug modes of action can improve prediction of DTIs. Furthermore, the predicted types of DTIs can broaden our understanding about the molecular basis of drug action. We propose a first machine learning approach to integrate multiple types of DTIs and predict unknown drug-target relationships or drug modes of action. We cast the new DTI prediction problem into a two-layer graphical model, called restricted Boltzmann machine, and apply a practical learning algorithm to train our model and make predictions. Tests on two public databases show that our restricted Boltzmann machine model can effectively capture the latent features of a DTI network and achieve excellent performance on predicting different types of DTIs, with the area under precision-recall curve up to 89.6. In addition, we demonstrate that integrating multiple types of DTIs can significantly outperform other predictions either by simply mixing multiple types of interactions without distinction or using only a single interaction type. Further tests show that our approach can infer a high fraction of novel DTIs that has been validated by known experiments in the literature or other databases. These results indicate that our approach can have highly practical relevance to DTI prediction and drug repositioning, and hence advance the drug discovery process. Software and datasets are available on request. Supplementary data are

  6. Ex vivo investigation of magnetically targeted drug delivery system

    International Nuclear Information System (INIS)

    Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

    2007-01-01

    In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel

  7. Targeted drug delivery to magnetic implants for therapeutic applications

    International Nuclear Information System (INIS)

    Yellen, Benjamin B.; Forbes, Zachary G.; Halverson, Derek S.; Fridman, Gregory; Barbee, Kenneth A.; Chorny, Michael; Levy, Robert; Friedman, Gary

    2005-01-01

    A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject

  8. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization.

    Science.gov (United States)

    Ezzat, Ali; Zhao, Peilin; Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong

    2017-01-01

    Experimental determination of drug-target interactions is expensive and time-consuming. Therefore, there is a continuous demand for more accurate predictions of interactions using computational techniques. Algorithms have been devised to infer novel interactions on a global scale where the input to these algorithms is a drug-target network (i.e., a bipartite graph where edges connect pairs of drugs and targets that are known to interact). However, these algorithms had difficulty predicting interactions involving new drugs or targets for which there are no known interactions (i.e., "orphan" nodes in the network). Since data usually lie on or near to low-dimensional non-linear manifolds, we propose two matrix factorization methods that use graph regularization in order to learn such manifolds. In addition, considering that many of the non-occurring edges in the network are actually unknown or missing cases, we developed a preprocessing step to enhance predictions in the "new drug" and "new target" cases by adding edges with intermediate interaction likelihood scores. In our cross validation experiments, our methods achieved better results than three other state-of-the-art methods in most cases. Finally, we simulated some "new drug" and "new target" cases and found that GRMF predicted the left-out interactions reasonably well.

  9. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  10. Increasing the Structural Coverage of Tuberculosis Drug Targets

    OpenAIRE

    Baugh, Loren; Phan, Isabelle; Begley, Darren W.; Clifton, Matthew C.; Armour, Brianna; Dranow, David M.; Taylor, Brandy M.; Muruthi, Marvin M.; Abendroth, Jan; Fairman, James W.; Fox, David; Dieterich, Shellie H.; Staker, Bart L.; Gardberg, Anna S.; Choi, Ryan

    2014-01-01

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus “homolog-rescue” strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal s...

  11. Polymeric micelles as a drug carrier for tumor targeting

    Directory of Open Access Journals (Sweden)

    Neha M Dand

    2013-01-01

    Full Text Available Polymeric micelle can be targeted to tumor site by passive and active mechanism. Some inherent properties of polymeric micelle such as size in nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor make polymeric micelles to be targeted at the tumor site by passive mechanism called enhanced permeability and retention effect. Polymeric micelle formed from the amphiphilic block copolymer is suitable for encapsulation of poorly water soluble, hydrophobic anticancer drugs. Other characteristics of polymeric micelles such as separated functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. Polymeric micelles can be conjugated with many ligands such as antibodies fragments, epidermal growth factors, α2 -glycoprotein, transferrine, and folate to target micelles to cancer cells. Application of heat and ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be done to tumor angiogenesis which is the potentially promising target for anticancer drugs. This review summarizes about recently available information regarding targeting the anticancer drug to the tumor site using polymeric micelles.

  12. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals.

    Science.gov (United States)

    Diab, Ahmed; Foca, Adrien; Zoulim, Fabien; Durantel, David; Andrisani, Ourania

    2018-01-01

    Virally encoded proteins have evolved to perform multiple functions, and the core protein (HBc) of the hepatitis B virus (HBV) is a perfect example. While HBc is the structural component of the viral nucleocapsid, additional novel functions for the nucleus-localized HBc have recently been described. These results extend for HBc, beyond its structural role, a regulatory function in the viral life cycle and potentially a role in pathogenesis. In this article, we review the diverse roles of HBc in HBV replication and pathogenesis, emphasizing how the unique structure of this protein is key to its various functions. We focus in particular on recent advances in understanding the significance of HBc phosphorylations, its interaction with host proteins and the role of HBc in regulating the transcription of host genes. We also briefly allude to the emerging niche for new direct-acting antivirals targeting HBc, known as Core (protein) Allosteric Modulators (CAMs). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.

    Science.gov (United States)

    Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L

    2015-07-15

    Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. New Equilibrium Models of Drug-Receptor Interactions Derived from Target-Mediated Drug Disposition.

    Science.gov (United States)

    Peletier, Lambertus A; Gabrielsson, Johan

    2018-05-14

    In vivo analyses of pharmacological data are traditionally based on a closed system approach not incorporating turnover of target and ligand-target kinetics, but mainly focussing on ligand-target binding properties. This study incorporates information about target and ligand-target kinetics parallel to binding. In a previous paper, steady-state relationships between target- and ligand-target complex versus ligand exposure were derived and a new expression of in vivo potency was derived for a circulating target. This communication is extending the equilibrium relationships and in vivo potency expression for (i) two separate targets competing for one ligand, (ii) two different ligands competing for a single target and (iii) a single ligand-target interaction located in tissue. The derived expressions of the in vivo potencies will be useful both in drug-related discovery projects and mechanistic studies. The equilibrium states of two targets and one ligand may have implications in safety assessment, whilst the equilibrium states of two competing ligands for one target may cast light on when pharmacodynamic drug-drug interactions are important. The proposed equilibrium expressions for a peripherally located target may also be useful for small molecule interactions with extravascularly located targets. Including target turnover, ligand-target complex kinetics and binding properties in expressions of potency and efficacy will improve our understanding of within and between-individual (and across species) variability. The new expressions of potencies highlight the fact that the level of drug-induced target suppression is very much governed by target turnover properties rather than by the target expression level as such.

  15. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    Science.gov (United States)

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-10

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  17. Drug treatment and novel drug target against Cryptosporidium

    Directory of Open Access Journals (Sweden)

    Gargala G.

    2008-09-01

    Full Text Available Cryptosporidiosis emergence triggered the screening of many compounds for potential anti-cryptosporidial activity in which the majority were ineffective. The outbreak of cryptosporidiosis which occurred in Milwaukee in 1993 was not only the first significant emergence of Cryptosporidium spp. as a major human pathogen but also a huge waterborne outbreak thickening thousands of people from a major city in North America. Since then, outbreaks of cryptosporidiosis are regularly occurring throughout the world. New drugs against this parasite became consequently urgently needed. Among the most commonly used treatments against cryptosporidiosis are paromomycin, and azithromycin, which are partially effective. Nitazoxanide (NTZ’s effectiveness was demonstrated in vitro, and in vivo using several animal models and finally in clinical trials. It significantly shortened the duration of diarrhea and decreased mortality in adults and in malnourished children. NTZ is not effective without an appropriate immune response. In AIDS patients, combination therapy restoring immunity along with antimicrobial treatment of Cryptosporidium infection is necessary. Recent investigations focused on the potential of molecular-based immunotherapy against this parasite. Others tested the effects of probiotic bacteria, but were unable to demonstrate eradication of C. parvum. New synthetic isoflavone derivatives demonstrated excellent activity against C. parvum in vitro and in a gerbil model of infection. Newly synthesized nitroor non nitro- thiazolide compounds, derived from NTZ, have been recently shown to be at least as effective as NTZ against C. parvum in vitro development and are promising new therapeutic agents.

  18. [Targeting high-risk drugs to optimize clinical pharmacists' intervention].

    Science.gov (United States)

    Mouterde, Anne-Laure; Bourdelin, Magali; Maison, Ophélie; Coursier, Sandra; Bontemps, Hervé

    2016-12-01

    By the Order of 6 April 2011, the pharmacist must validate all the prescriptions containing "high-risk drugs" or those of "patients at risk". To optimize this clinical pharmacy activity, we identified high-risk drugs. A list of high-risk drugs has been established using literature, pharmacists' interventions (PI) performed in our hospital and a survey sent to hospital pharmacists. In a prospective study (analysis of 100 prescriptions for each high-risk drug selected), we have identified the most relevant to target. We obtained a statistically significant PI rate (P<0.05) for digoxin, oral anticoagulants direct, oral methotrexate and colchicine. This method of targeted pharmaceutical validation based on high-risk drugs is relevant to detect patients with high risk of medicine-related illness. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  19. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  20. Drug Elucidation: Invertebrate Genetics Sheds New Light on the Molecular Targets of CNS Drugs

    Directory of Open Access Journals (Sweden)

    Donard S. Dwyer

    2014-07-01

    Full Text Available Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.

  1. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    Directory of Open Access Journals (Sweden)

    Atsuya Yamashita

    2015-11-01

    Full Text Available The current treatments of chronic hepatitis B (CHB face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV. We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95% and low cytotoxicity (66% to 77%. Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy-phenol (compound 1 and 3,4,5-tribromo-2-(2,4-dibromophenoxy-phenol (compound 2, which are classified as polybrominated diphenyl ethers (PBDEs, were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs.

  2. Membrane Transporters: Structure, Function and Targets for Drug Design

    Science.gov (United States)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  3. Drug-target interaction prediction from PSSM based evolutionary information.

    Science.gov (United States)

    Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-01-01

    The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  5. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  6. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    International Nuclear Information System (INIS)

    Li Yanan; An Feifei; Zhang Xiaohong; Yang Yinlong; Liu Zhuang; Zhang Xiujuan

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines. (paper)

  7. Minimum target prices for production of direct-acting antivirals and associated diagnostics to combat hepatitis C virus.

    Science.gov (United States)

    van de Ven, Nikolien; Fortunak, Joe; Simmons, Bryony; Ford, Nathan; Cooke, Graham S; Khoo, Saye; Hill, Andrew

    2015-04-01

    Combinations of direct-acting antivirals (DAAs) can cure hepatitis C virus (HCV) in the majority of treatment-naïve patients. Mass treatment programs to cure HCV in developing countries are only feasible if the costs of treatment and laboratory diagnostics are very low. This analysis aimed to estimate minimum costs of DAA treatment and associated diagnostic monitoring. Clinical trials of HCV DAAs were reviewed to identify combinations with consistently high rates of sustained virological response across hepatitis C genotypes. For each DAA, molecular structures, doses, treatment duration, and components of retrosynthesis were used to estimate costs of large-scale, generic production. Manufacturing costs per gram of DAA were based upon treating at least 5 million patients per year and a 40% margin for formulation. Costs of diagnostic support were estimated based on published minimum prices of genotyping, HCV antigen tests plus full blood count/clinical chemistry tests. Predicted minimum costs for 12-week courses of combination DAAs with the most consistent efficacy results were: US$122 per person for sofosbuvir+daclatasvir; US$152 for sofosbuvir+ribavirin; US$192 for sofosbuvir+ledipasvir; and US$115 for MK-8742+MK-5172. Diagnostic testing costs were estimated at US$90 for genotyping US$34 for two HCV antigen tests and US$22 for two full blood count/clinical chemistry tests. Minimum costs of treatment and diagnostics to cure hepatitis C virus infection were estimated at US$171-360 per person without genotyping or US$261-450 per person with genotyping. These cost estimates assume that existing large-scale treatment programs can be established. © 2014 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  8. Targeting the latest hallmark of cancer: another attempt at 'magic bullet' drugs targeting cancers' metabolic phenotype.

    Science.gov (United States)

    Cuperlovic-Culf, M; Culf, A S; Touaibia, M; Lefort, N

    2012-10-01

    The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The distinct metabolic phenotype of cancers provides an interesting avenue for treatment, potentially with minimal side effects. As many cancers show similar metabolic characteristics, drugs targeting the cancer metabolic phenotype are, perhaps optimistically, expected to be 'magic bullet' treatments. Over the last few years there have been a number of potential drugs developed to specifically target cancer metabolism. Several of these drugs are currently in clinical and preclinical trials. This review outlines examples of drugs developed for different targets of significance to cancer metabolism, with a focus on small molecule leads, chemical biology and clinical results for these drugs.

  9. Assessment of deoxyhypusine hydroxylase as a putative, novel drug target.

    Science.gov (United States)

    Kerscher, B; Nzukou, E; Kaiser, A

    2010-02-01

    Antimalarial drug resistance has nowadays reached each drug class on the market for longer than 10 years. The focus on validated, classical targets has severe drawbacks. If resistance is arising or already present in the field, a target-based High-Throughput-Screening (HTS) with the respective target involves the risk of identifying compounds to which field populations are also resistant. Thus, it appears that a rewarding albeit demanding challenge for target-based drug discovery is to identify novel drug targets. In the search for new targets for antimalarials, we have investigated the biosynthesis of hypusine, present in eukaryotic initiation factor 5A (eIF5A). Deoxyhypusine hydroxylase (DOHH), which has recently been cloned and expressed from P. falciparum, completes the modification of eIF5A through hydroxylation. Here, we assess the present druggable data on Plasmodium DOHH and its human counterpart. Plasmodium DOHH arose from a cyanobacterial phycobilin lyase by loss of function. It has a low FASTA score of 27 to its human counterpart. The HEAT-like repeats present in the parasite DOHH differ in number and amino acid identity from its human ortholog and might be of considerable interest for inhibitor design.

  10. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dongsheng [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Liu Shao [Xiangya Hospital, Central South University, Changsha 410008 (China); Xu Qingsong [School of Mathematical Sciences and Computing Technology, Central South University, Changsha 410083 (China); Lu Hongmei; Huang Jianhua [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Hu Qiannan [Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071 (China); Liang Yizeng, E-mail: yizeng_liang@263.net [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Drug-target interactions are predicted using an extended SAR methodology. Black-Right-Pointing-Pointer A drug-target interaction is regarded as an event triggered by many factors. Black-Right-Pointing-Pointer Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. Black-Right-Pointing-Pointer Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug-target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug-target interactions in a timely manner. In this article, we aim at extending current structure-activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug-target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug-target

  11. Tumor target amplification: Implications for nano drug delivery systems.

    Science.gov (United States)

    Seidi, Khaled; Neubauer, Heidi A; Moriggl, Richard; Jahanban-Esfahlan, Rana; Javaheri, Tahereh

    2018-04-10

    Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Use of allosteric targets in the discovery of safer drugs.

    Science.gov (United States)

    Grover, Ashok Kumar

    2013-01-01

    The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Consequently, such drugs may have adverse side effects. A new basis of drug discovery is emerging based on the binding of the drug molecules to sites away (allosteric) from the orthosteric sites. It is possible to find allosteric sites which are unique and hence more specific as targets for drug discovery. Of many available examples, two are highlighted here. The first is caloxins - a new class of highly specific inhibitors of plasma membrane Ca²⁺ pumps. The second concerns the modulation of receptors for the neurotransmitter acetylcholine, which binds to 12 types of receptors. Exploitation of allosteric sites has led to the discovery of drugs which can selectively modulate the activation of only 1 (M1 muscarinic) out of the 12 different types of acetylcholine receptors. These drugs are being tested for schizophrenia treatment. It is anticipated that the drug discovery exploiting allosteric sites will lead to more effective therapeutic agents with fewer side effects. Copyright © 2013 S. Karger AG, Basel.

  13. Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors

    Science.gov (United States)

    Filatova, L. Yu; Klyachko, N. L.; Kudryashova, E. V.

    2018-04-01

    The development of systems for targeted delivery of anti-tuberculosis drugs is a challenge of modern biotechnology. Currently, these drugs are encapsulated in a variety of carriers such as liposomes, polymers, emulsions and so on. Despite successful in vitro testing of these systems, virtually no success was achieved in vivo, because of low accessibility of the foci of infection located in alveolar macrophage cells. A promising strategy for increasing the efficiency of therapeutic action of anti-tuberculosis drugs is to encapsulate the agents into mannosylated carriers targeting the mannose receptors of alveolar macrophages. The review addresses the methods for modification of drug substance carriers, such as liposomes and biodegradable polymers, with mannose residues. The use of mannosylated carriers to deliver anti-tuberculosis agents increases the drug circulation time in the blood stream and increases the drug concentration in alveolar macrophage cells. The bibliography includes 113 references.

  14. Members of FOX family could be drug targets of cancers.

    Science.gov (United States)

    Wang, Jinhua; Li, Wan; Zhao, Ying; Kang, De; Fu, Weiqi; Zheng, Xiangjin; Pang, Xiaocong; Du, Guanhua

    2018-01-01

    FOX families play important roles in biological processes, including metabolism, development, differentiation, proliferation, apoptosis, migration, invasion and longevity. Here we are focusing on roles of FOX members in cancers, FOX members and drug resistance, FOX members and stem cells. Finally, FOX members as drug targets of cancer treatment were discussed. Future perspectives of FOXC1 research were described in the end. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  16. Identifying problematic drugs based on the characteristics of their targets.

    Science.gov (United States)

    Lopes, Tiago J S; Shoemaker, Jason E; Matsuoka, Yukiko; Kawaoka, Yoshihiro; Kitano, Hiroaki

    2015-01-01

    Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60-70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  17. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.

    Science.gov (United States)

    Silvério-Machado, Rita; Couto, Bráulio R G M; Dos Santos, Marcos A

    2015-04-15

    The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. rita_silverio@hotmail.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Identifying problematic drugs based on the characteristics of their targets

    Directory of Open Access Journals (Sweden)

    Tiago Jose eDa Silva Lopes

    2015-09-01

    Full Text Available Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60%¬–70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  19. Protein and Peptide in Drug Targeting and its Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    Raj K. Keservani

    2015-09-01

    Full Text Available Aim: The main aim of this review article is to provide information like advantages of protein and peptides via different routes of drug administration, targeted to a particular site and its implication in drug delivery system. Methods: To that aim, from the web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important results in the development of protein and peptide drug targeting as well as its therapeutic activity. Results: In recent years many researchers use protein and peptide as a target site of drug by a different delivery system. Proteins and peptides are used as specific and effective therapeutic agents, due to instability and side effects their use is complicated. Protein kinases are important regulators of most, if not all, biological processes. Abnormal activity of proteins and peptides has been implicated in many human diseases, such as diabetes, cancer and neurodegenerative disorders. Conclusions: It is concluded that the protein and peptide were used in drug targeting to specific site and also used in different diseased states like cancer, diabetes, immunomodulating, neurodegenerative effects and antimicrobial activity.

  20. Exploiting Genetic Interference for Antiviral Therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Tanner

    2016-05-01

    Full Text Available Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  1. New approaches to targeted drug delivery to tumour cells

    International Nuclear Information System (INIS)

    Severin, E S

    2015-01-01

    Basic approaches to the design of targeted drugs for the treatment of human malignant tumours have been considered. The stages of the development of these approaches have been described in detail and theoretically substantiated, and basic experimental results have been reported. Considerable attention is paid to the general characteristic of nanopharmacological drugs and to the description of mechanisms of cellular interactions with nanodrugs. The potentialities and limitations of application of nanodrugs for cancer therapy and treatment of other diseases have been considered. The use of nanodrugs conjugated with vector molecules seems to be the most promising trend of targeted therapy of malignant tumours. The bibliography includes 122 references

  2. RecA: a universal drug target in pathogenic bacteria.

    Science.gov (United States)

    Pavlopoulou, Athanasia

    2018-01-01

    The spread of bacterial infectious diseases due to the development of resistance to antibiotic drugs in pathogenic bacteria is an emerging global concern. Therefore, the efficacious management and prevention of bacterial infections are major public health challenges. RecA is a pleiotropic recombinase protein that has been demonstrated to be implicated strongly in the bacterial drug resistance, survival and pathogenicity. In this minireview, RecA's role in the development of antibiotic resistance and its potential as an antimicrobial drug target are discussed.

  3. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    OpenAIRE

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to d...

  4. The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I

    Directory of Open Access Journals (Sweden)

    Chunyuan Zhao

    2017-11-01

    Full Text Available Retinoic acid-inducible gene-I (RIG-I-like receptors (RLRs, including melanoma differentiation-associated gene 5 (MDA5 and RIG-I, are crucial for host recognition of non-self RNAs, especially viral RNA. Thus, the expression and activation of RLRs play fundamental roles in eliminating the invading RNA viruses and maintaining immune homeostasis. However, how RLR expression is tightly regulated remains to be further investigated. In this study, we identified a major histocompatibility complex (MHC-encoded gene, tripartite interaction motif 40 (TRIM40, as a suppressor of RLR signaling by directly targeting MDA5 and RIG-I. TRIM40 binds to MDA5 and RIG-I and promotes their K27- and K48-linked polyubiquitination via its E3 ligase activity, leading to their proteasomal degradation. TRIM40 deficiency enhances RLR-triggered signaling. Consequently, TRIM40 deficiency greatly enhances antiviral immune responses and decreases viral replication in vivo. Thus, we demonstrate that TRIM40 limits RLR-triggered innate activation, suggesting TRIM40 as a potential therapeutic target for the control of viral infection.

  5. Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yao Hailan

    2012-08-01

    Full Text Available Abstract Background Coxsackievirus B3 is an important infectious agent of viral myocarditis, pancreatitis and aseptic meningitis, but there are no specific antiviral therapeutic reagents in clinical use. RNA interference-based technology has been developed to prevent the viral infection. Methods To evaluate the impact of RNA interference on viral replication, cytopathogenicity and animal survival, short hairpin RNAs targeting the viral 2B region (shRNA-2B expressed by a recombinant vector (pGCL-2B or a recombinant lentivirus (Lenti-2B were tansfected in HeLa cells or transduced in mice infected with CVB3. Results ShRNA-2B exhibited a significant effect on inhibition of viral production in HeLa cells. Furthermore, shRNA-2B improved mouse survival rate, reduced the viral tissues titers and attenuated tissue damage compared with those of the shRNA-NC treated control group. Lenti-2B displayed more effective role in inhibition of viral replication than pGCL-2B in vivo. Conclusions Coxsackievirus B3 2B is an effective target of gene silencing against coxsackievirus B3 infection, suggesting that shRNA-2B is a potential agent for further development into a treatment for enterviral diseases.

  6. Increasing the Structural Coverage of Tuberculosis Drug Targets

    Science.gov (United States)

    Baugh, Loren; Phan, Isabelle; Begley, Darren W.; Clifton, Matthew C.; Armour, Brianna; Dranow, David M.; Taylor, Brandy M.; Muruthi, Marvin M.; Abendroth, Jan; Fairman, James W.; Fox, David; Dieterich, Shellie H.; Staker, Bart L.; Gardberg, Anna S.; Choi, Ryan; Hewitt, Stephen N.; Napuli, Alberto J.; Myers, Janette; Barrett, Lynn K.; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Tran, Ngoc; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Lorimer, Don; Buchko, Garry W.; Stacy, Robin; Stewart, Lance J.; Edwards, Thomas E.; Van Voorhis, Wesley C.; Myler, Peter J.

    2015-01-01

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus “homolog-rescue” strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD 85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases. PMID:25613812

  7. Increasing the structural coverage of tuberculosis drug targets.

    Science.gov (United States)

    Baugh, Loren; Phan, Isabelle; Begley, Darren W; Clifton, Matthew C; Armour, Brianna; Dranow, David M; Taylor, Brandy M; Muruthi, Marvin M; Abendroth, Jan; Fairman, James W; Fox, David; Dieterich, Shellie H; Staker, Bart L; Gardberg, Anna S; Choi, Ryan; Hewitt, Stephen N; Napuli, Alberto J; Myers, Janette; Barrett, Lynn K; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Tran, Ngoc; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Lorimer, Don; Buchko, Garry W; Stacy, Robin; Stewart, Lance J; Edwards, Thomas E; Van Voorhis, Wesley C; Myler, Peter J

    2015-03-01

    High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD 85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia

    DEFF Research Database (Denmark)

    Marstrand, T T; Borup, R; Willer, A

    2010-01-01

    regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost...

  9. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery.

    Science.gov (United States)

    Janga, Sarath Chandra; Tzakos, Andreas

    2009-12-01

    Recent years have seen an explosion in the amount of "omics" data and the integration of several disciplines, which has influenced all areas of life sciences including that of drug discovery. Several lines of evidence now suggest that the traditional notion of "one drug-one protein" for one disease does not hold any more and that treatment for most complex diseases can best be attempted using polypharmacological approaches. In this review, we formalize the definition of a drug-target network by decomposing it into drug, target and disease spaces and provide an overview of our understanding in recent years about its structure and organizational principles. We discuss advances made in developing promiscuous drugs following the paradigm of polypharmacology and reveal their advantages over traditional drugs for targeting diseases such as cancer. We suggest that drug-target networks can be decomposed to be studied at a variety of levels and argue that such network-based approaches have important implications in understanding disease phenotypes and in accelerating drug discovery. We also discuss the potential and scope network pharmacology promises in harnessing the vast amount of data from high-throughput approaches for therapeutic advantage.

  10. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Recommendation Techniques for Drug-Target Interaction Prediction and Drug Repositioning.

    Science.gov (United States)

    Alaimo, Salvatore; Giugno, Rosalba; Pulvirenti, Alfredo

    2016-01-01

    The usage of computational methods in drug discovery is a common practice. More recently, by exploiting the wealth of biological knowledge bases, a novel approach called drug repositioning has raised. Several computational methods are available, and these try to make a high-level integration of all the knowledge in order to discover unknown mechanisms. In this chapter, we review drug-target interaction prediction methods based on a recommendation system. We also give some extensions which go beyond the bipartite network case.

  12. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    Science.gov (United States)

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  13. Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L.-F.; Ralph, S.J.; Neužil, Jiří

    2011-01-01

    Roč. 15, č. 12 (2011), s. 2951-2974 ISSN 1523-0864 R&D Projects: GA AV ČR(CZ) KAN200520703 Institutional research plan: CEZ:AV0Z50520701 Keywords : Targets for anticancer drugs * mitochondrial electron transport chain * mitocans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.456, year: 2011

  14. Current and future drug targets in weight management

    NARCIS (Netherlands)

    Witkamp, R.F.

    2011-01-01

    Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being

  15. Immunoliposomes for the targeted delivery of antitumor drugs

    NARCIS (Netherlands)

    Mastrobattista, E; Koning, GA; Storm, G

    1999-01-01

    This review presents an overview of the field of immunoliposome-mediated targeting of anticancer agents. First, problems that are encountered when immunoliposomes are used for systemic anticancer drug delivery and potential solutions are discussed. Second, an update is given of the in vivo results

  16. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    Directory of Open Access Journals (Sweden)

    Andrea D Olmstead

    2012-01-01

    Full Text Available HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV, whose assembly and pathogenesis depend on interaction with lipid droplets (LDs. One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1--or site-1 protease (S1P. SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs, which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow

  17. Sperm-Hybrid Micromotor for Targeted Drug Delivery.

    Science.gov (United States)

    Xu, Haifeng; Medina-Sánchez, Mariana; Magdanz, Veronika; Schwarz, Lukas; Hebenstreit, Franziska; Schmidt, Oliver G

    2018-01-23

    A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm-cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing  toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.

  18. HCV Drug Resistance Challenges in Japan: The Role of Pre-Existing Variants and Emerging Resistant Strains in Direct Acting Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Kazuaki Chayama

    2015-10-01

    Full Text Available Sustained virological response (SVR rates have increased dramatically following the approval of direct acting antiviral (DAA therapies. While individual DAAs have a low barrier to resistance, most patients can be successfully treated using DAA combination therapy. However, DAAs are vulnerable to drug resistance, and resistance-associated variants (RAVs may occur naturally prior to DAA therapy or may emerge following drug exposure. While most RAVs are quickly lost in the absence of DAAs, compensatory mutations may reinforce fitness. However, the presence of RAVs does not necessarily preclude successful treatment. Although developments in hepatitis C virus (HCV therapy in Asia have largely paralleled those in the United States, Japan’s July 2014 approval of asunaprevir plus daclatasvir combination therapy as the first all-oral interferon-free therapy was not repeated in the United States. Instead, two different combination therapies were approved: sofosbuvir/ledipasvir and paritaprevir/ritonavir/ombitasvir/dasabuvir. This divergence in treatment approaches may lead to differences in resistance challenges faced by Japan and the US. However, the recent approval of sofosbuvir plus ledipasvir in Japan and the recent submissions of petitions for approval of paritaprevir/ritonavir plus ombitasvir suggest a trend towards a new consensus on emerging DAA regimens.

  19. Nanoparticle functionalization for brain targeting drug delivery and diagnostic

    DEFF Research Database (Denmark)

    Gomes, Maria João; Mendes, Bárbara; Martins, Susana

    2016-01-01

    carriers to cross the BBB and achieve brain, and their functionalization strategies are described; and finally the delivery of nanoparticles to the target moiety, as diagnostics or therapeutics. Therefore, this chapter is focused on how the nanoparticle surface may be functionalized for drug delivery......Nanobiotechnology has been demonstrated to be an efficient tool for targeted therapy as well as diagnosis, with particular emphasis on brain tumor and neurodegenerative diseases. On this regard, the aim of this chapter is focused on engineered nanoparticles targeted to the brain, so that they have...... and diagnostics. Furthermore, it is also mentioned that some BBB targets were already used as transport mediators to central nervous system by functionalization on nanoparticles. It summarizes the nanoparticles potential in therapeutics and molecular targeting to BBB, and also an approach of the nanoparticle...

  20. Peptide drugs to target G protein-coupled receptors.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.

    Science.gov (United States)

    Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha

    2018-01-01

    Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

  2. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    Science.gov (United States)

    Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  3. Targeted drug delivery using temperature-sensitive liposomes

    International Nuclear Information System (INIS)

    Magin, R.L.; Niesman, M.R.

    1984-01-01

    Liposomes are receiving considerable attention as vehicles for selective drug delivery. One method of targeting liposomal contents involves the combination of local hyperthermia with temperature-sensitive liposomes. Such liposomes have been used to increase the uptake of methotrexate and cis-platinum into locally heated mouse tumors. However, additional information is needed on the mechanism of liposome drug release and the physiologic deposition of liposomes in vivo before clinical trails are begun. Current research is directed at studying the encapsulation and release of water soluble drugs from temperature-sensitive liposomes. The influence of liposome size, structure, and composition on the rapid release in plasma of cytosine arabinoside, cis-platinum, and the radiation sensitizer SR-2508 are described. These results demonstrate potential applications for temperature-sensitive liposomes in selective drug delivery

  4. Structural genomics of infectious disease drug targets: the SSGCID

    International Nuclear Information System (INIS)

    Stacy, Robin; Begley, Darren W.; Phan, Isabelle; Staker, Bart L.; Van Voorhis, Wesley C.; Varani, Gabriele; Buchko, Garry W.; Stewart, Lance J.; Myler, Peter J.

    2011-01-01

    An introduction and overview of the focus, goals and overall mission of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) is given. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a consortium of researchers at Seattle BioMed, Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory that was established to apply structural genomics approaches to drug targets from infectious disease organisms. The SSGCID is currently funded over a five-year period by the National Institute of Allergy and Infectious Diseases (NIAID) to determine the three-dimensional structures of 400 proteins from a variety of Category A, B and C pathogens. Target selection engages the infectious disease research and drug-therapy communities to identify drug targets, essential enzymes, virulence factors and vaccine candidates of biomedical relevance to combat infectious diseases. The protein-expression systems, purified proteins, ligand screens and three-dimensional structures produced by SSGCID constitute a valuable resource for drug-discovery research, all of which is made freely available to the greater scientific community. This issue of Acta Crystallographica Section F, entirely devoted to the work of the SSGCID, covers the details of the high-throughput pipeline and presents a series of structures from a broad array of pathogenic organisms. Here, a background is provided on the structural genomics of infectious disease, the essential components of the SSGCID pipeline are discussed and a survey of progress to date is presented

  5. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  6. Emerging drugs which target the renin-angiotensin-aldosterone system.

    Science.gov (United States)

    Steckelings, Ulrike Muscha; Paulis, Ludovit; Unger, Thomas; Bader, Michael

    2011-12-01

    The renin-angiotensin-aldosterone system (RAAS) is already the most important target for drugs in the cardiovascular system. However, still new developments are underway to interfere with the system on different levels. The novel strategies to interfere with RAAS aim to reduce the synthesis of the two major RAAS effector hormones, angiotensin (Ang) II and aldosterone, or interfere with their receptors, AT1 and mineralocorticoid receptor, respectively. Moreover, novel targets have been identified in RAAS, such as the (pro)renin receptor, and molecules, which counteract the classical actions of Ang II and are therefore beneficial in cardiovascular diseases. These include the AT2 receptor and the ACE2/Ang-(1-7)/Mas axis. The search for drugs activating these tissue-protective arms of RAAS is therefore the most innovative field in RAAS pharmacology. Most of the novel pharmacological strategies to inhibit the classical RAAS need to prove their superiority above the existing treatment in clinical trials and then have to compete against these now quite cheap drugs in a competitive market. The newly discovered targets have functions beyond the cardiovascular system opening up novel therapeutic areas for drugs interfering with RAAS components.

  7. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  8. Functionalized mesoporous silicon for targeted-drug-delivery.

    Science.gov (United States)

    Tabasi, Ozra; Falamaki, Cavus; Khalaj, Zahra

    2012-10-01

    The present work concerns a preliminary step in the production of anticancer drug loaded porous silicon (PSi) for targeted-drug-delivery applications. A successful procedure for the covalent attachment of folic acid, polyethylene glycol (PEG) and doxorubicin to hydrophilic mesoporous silicon layers is presented. A systematic approach has been followed to obtain the optimal composition of the N,N'-dicyclohexylcarbodiimide (DCC)/N-hydroxysuccimide (NHS) in dimethylsulfoxide (DMSO) solution for the surface activation process of the undecylenic acid (UD) grafted molecules to take place with minimal undesired byproduct formation. The effect of reactant concentration and kind of solvent (aqueous or DMSO) on the attachment of folic acid to the activated PSi layer has been investigated. The covalent attachment of the doxorubicin molecules to the PSi layer functionalized with folic acid and PEG is discussed. The drug release kinetics as a function of pH has been studied. The functionalized PSi particles show a high cytotoxicity compared to the equivalent amount of free drug. Cell toxicity tests show clearly that the incorporation of folate molecules increases substantially the toxicity of the loaded PSi particles. Accordingly this new functionalized PSi may be considered a proper candidate for targeted drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  10. Combinatorial Approaches for the Identification of Brain Drug Delivery Targets

    Science.gov (United States)

    Stutz, Charles C.; Zhang, Xiaobin; Shusta, Eric V.

    2018-01-01

    The blood-brain barrier (BBB) represents a large obstacle for the treatment of central nervous system diseases. Targeting endogenous nutrient transporters that transcytose the BBB is one promising approach to selectively and noninvasively deliver a drug payload to the brain. The main limitations of the currently employed transcytosing receptors are their ubiquitous expression in the peripheral vasculature and the inherent low levels of transcytosis mediated by such systems. In this review, approaches designed to increase the repertoire of transcytosing receptors which can be targeted for the purpose of drug delivery are discussed. In particular, combinatorial protein libraries can be screened on BBB cells in vitro or in vivo to isolate targeting peptides or antibodies that can trigger transcytosis. Once these targeting reagents are discovered, the cognate BBB transcytosis system can be identified using techniques such as expression cloning or immunoprecipitation coupled with mass spectrometry. Continued technological advances in BBB genomics and proteomics, membrane protein manipulation, and in vitro BBB technology promise to further advance the capability to identify and optimize peptides and antibodies capable of mediating drug transport across the BBB. PMID:23789958

  11. Research priorities to achieve universal access to hepatitis C prevention, management and direct-acting antiviral treatment among people who inject drugs.

    Science.gov (United States)

    Grebely, Jason; Bruneau, Julie; Lazarus, Jeffrey V; Dalgard, Olav; Bruggmann, Philip; Treloar, Carla; Hickman, Matthew; Hellard, Margaret; Roberts, Teri; Crooks, Levinia; Midgard, Håvard; Larney, Sarah; Degenhardt, Louisa; Alho, Hannu; Byrne, Jude; Dillon, John F; Feld, Jordan J; Foster, Graham; Goldberg, David; Lloyd, Andrew R; Reimer, Jens; Robaeys, Geert; Torrens, Marta; Wright, Nat; Maremmani, Icro; Norton, Brianna L; Litwin, Alain H; Dore, Gregory J

    2017-09-01

    Globally, it is estimated that 71.1 million people have chronic hepatitis C virus (HCV) infection, including an estimated 7.5 million people who have recently injected drugs (PWID). There is an additional large, but unquantified, burden among those PWID who have ceased injecting. The incidence of HCV infection among current PWID also remains high in many settings. Morbidity and mortality due to liver disease among PWID with HCV infection continues to increase, despite the advent of well-tolerated, simple interferon-free direct-acting antiviral (DAA) HCV regimens with cure rates >95%. As a result of this important clinical breakthrough, there is potential to reverse the rising burden of advanced liver disease with increased treatment and strive for HCV elimination among PWID. Unfortunately, there are many gaps in knowledge that represent barriers to effective prevention and management of HCV among PWID. The Kirby Institute, UNSW Sydney and the International Network on Hepatitis in Substance Users (INHSU) established an expert round table panel to assess current research gaps and establish future research priorities for the prevention and management of HCV among PWID. This round table consisted of a one-day workshop held on 6 September, 2016, in Oslo, Norway, prior to the International Symposium on Hepatitis in Substance Users (INHSU 2016). International experts in drug and alcohol, infectious diseases, and hepatology were brought together to discuss the available scientific evidence, gaps in research, and develop research priorities. Topics for discussion included the epidemiology of injecting drug use, HCV, and HIV among PWID, HCV prevention, HCV testing, linkage to HCV care and treatment, DAA treatment for HCV infection, and reinfection following successful treatment. This paper highlights the outcomes of the roundtable discussion focused on future research priorities for enhancing HCV prevention, testing, linkage to care and DAA treatment for PWID as we strive

  12. Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection

    Science.gov (United States)

    Nath Chatterjee, Amar; Roy, Priti Kumar

    2012-02-01

    Recent development in antiretroviral treatment against HIV can help AIDS patients to fight against HIV. But the question that whether the disease is to be partially or totally eradicated from HIV infected individuals still remains unsolved. Usually, the most effective treatment for the disease is HAART which can only control the disease progression. But as the immune system becomes weak, the patients can not fight against other diseases. Immune cells are activated and proliferated by IL-2 after the identification of antigen. IL-2 production is impaired in HIV positive patients and intermitted administration of immune activator IL-2 together with HAART which is a more effective treatment to fight against the disease. Thus, its expediency is essential and is yet to be explored. In this article we anticipated a mathematical model of the effect of IL-2 together with RTIs therapy in HIV positive patients. Our analytical as well as numerical study shows that the optimal schedule of treatment for best result is to be obtained by systematic drug therapy. But at the last stage of treatment, the infection level raises again due to minimisation of drug dosage. Thus we study the perfect adherence of the drugs and found out if RTIs are taken with sufficient interval then for fixed interval of IL-2 therapy, certain amount of drug dosages may be able to sustain the immune system at pre-infection stage and the infected CD4+T cells are going towards extinction.

  13. An efficient targeted drug delivery through apotransferrin loaded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Athuluri Divakar Sai Krishna

    Full Text Available BACKGROUND: Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. METHODOLOGY/PRINCIPAL FINDINGS: Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano, and showed further increase in dimension (75-95 etam in conjugated nanoparticles (conj-nano. The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus (b pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in

  14. Rhamnogalacturonan-I based microcapsules for targeted drug release

    DEFF Research Database (Denmark)

    Svagan, Anna J.; Kusic, Anja; De Gobba, Cristian

    2016-01-01

    Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms...... such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were...

  15. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan Robinson

    2015-07-01

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative disorder with no cure and limited treatment solutions that are unable to target any of the suspected causes. Increasing evidence suggests that one of the causes of neurodegeneration is the overproduction of amyloid beta (Aβ and the inability of Aβ peptides to be cleared from the brain, resulting in self-aggregation to form toxic oligomers, fibrils and plaques. One of the potential treatment options is to target Aβ and prevent self-aggregation to allow for a natural clearing of the brain. In this paper, we review the drugs and drug delivery systems that target Aβ in relation to Alzheimer's disease. Many attempts have been made to use anti-Aβ targeting molecules capable of targeting Aβ (with much success in vitro and in vivo animal models, but the major obstacle to this technique is the challenge posed by the blood brain barrier (BBB. This highly selective barrier protects the brain from toxic molecules and pathogens and prevents the delivery of most drugs. Therefore novel Aβ aggregation inhibitor drugs will require well thought-out drug delivery systems to deliver sufficient concentrations to the brain.

  16. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    NARCIS (Netherlands)

    Witte, W.E.; Wong, Y.C.; Nederpelt, I.; Heitman, L.H.; Danhof, M.; Graaf, van der P.H.; Gilissen, R.A.; de, Lange E.C.

    2016-01-01

    INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target

  17. Iron Deprivation Affects Drug Susceptibilities of Mycobacteria Targeting Membrane Integrity

    Directory of Open Access Journals (Sweden)

    Rahul Pal

    2015-01-01

    Full Text Available Multidrug resistance (MDR acquired by Mycobacterium tuberculosis (MTB through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs in Mycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR.

  18. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database.

    Science.gov (United States)

    Barneh, Farnaz; Jafari, Mohieddin; Mirzaie, Mehdi

    2016-11-01

    Network pharmacology elucidates the relationship between drugs and targets. As the identified targets for each drug increases, the corresponding drug-target network (DTN) evolves from solely reflection of the pharmaceutical industry trend to a portrait of polypharmacology. The aim of this study was to evaluate the potentials of DrugBank database in advancing systems pharmacology. We constructed and analyzed DTN from drugs and targets associations in the DrugBank 4.0 database. Our results showed that in bipartite DTN, increased ratio of identified targets for drugs augmented density and connectivity of drugs and targets and decreased modular structure. To clear up the details in the network structure, the DTNs were projected into two networks namely, drug similarity network (DSN) and target similarity network (TSN). In DSN, various classes of Food and Drug Administration-approved drugs with distinct therapeutic categories were linked together based on shared targets. Projected TSN also showed complexity because of promiscuity of the drugs. By including investigational drugs that are currently being tested in clinical trials, the networks manifested more connectivity and pictured the upcoming pharmacological space in the future years. Diverse biological processes and protein-protein interactions were manipulated by new drugs, which can extend possible target combinations. We conclude that network-based organization of DrugBank 4.0 data not only reveals the potential for repurposing of existing drugs, also allows generating novel predictions about drugs off-targets, drug-drug interactions and their side effects. Our results also encourage further effort for high-throughput identification of targets to build networks that can be integrated into disease networks. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. A review on proniosomal drug delivery system for targeted drug action.

    Science.gov (United States)

    Radha, G V; Rani, T Sudha; Sarvani, B

    2013-03-01

    Proniosomes are dry formulation of water soluble carrier particles that are coated with surfactant. They are rehydrated to form niosomal dispersion immediately before use on agitation in hot aqueous media within minutes. Proniosomes are physically stable during the storage and transport. Drug encapsulated in the vesicular structure of proniosomes prolong the existence of drug in the systematic circulation and enhances the penetration into target tissue and reduce toxicity. From a technical point of view, niosomes are promising drug carriers as they possess greater chemical stability and lack of many disadvantages associated with liposomes, such as high- cost and variable purity problems of phospholipids. The present review emphasizes on overall methods of preparation characterization and applicability of proniosomes in targeted drug action.

  20. mTOR Signaling Confers Resistance to Targeted Cancer Drugs.

    Science.gov (United States)

    Guri, Yakir; Hall, Michael N

    2016-11-01

    Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A review on proniosomal drug delivery system for targeted drug action

    OpenAIRE

    Radha, G. V.; Rani, T. Sudha; Sarvani, B.

    2013-01-01

    Proniosomes are dry formulation of water soluble carrier particles that are coated with surfactant. They are rehydrated to form niosomal dispersion immediately before use on agitation in hot aqueous media within minutes. Proniosomes are physically stable during the storage and transport. Drug encapsulated in the vesicular structure of proniosomes prolong the existence of drug in the systematic circulation and enhances the penetration into target tissue and reduce toxicity. From a technical po...

  2. New alginic acid–atenolol microparticles for inhalatory drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ceschan, Nazareth Eliana; Bucalá, Verónica [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca (Argentina); Ramírez-Rigo, María Verónica, E-mail: vrrigo@plapiqui.edu.ar [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca (Argentina)

    2014-08-01

    The inhalatory route allows drug delivery for local or systemic treatments in a noninvasively way. The current tendency of inhalable systems is oriented to dry powder inhalers due to their advantages in terms of stability and efficiency. In this work, microparticles of atenolol (AT, basic antihypertensive drug) and alginic acid (AA, acid biocompatible polyelectrolyte) were obtained by spray drying. Several formulations, varying the relative composition AT/AA and the total solid content of the atomized dispersions, were tested. The powders were characterized by: Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Powder X-ray Diffraction, while also the following properties were measured: drug load efficiency, flow properties, particles size and density, moisture content, hygroscopicity and morphology. The ionic interaction between AA and AT was demonstrated, then the new chemical entity could improve the drug targeting to the respiratory membrane and increase its time residence due to the mucoadhesive properties of the AA polymeric chains. Powders exhibited high load efficiencies, low moisture contents, adequate mean aerodynamic diameters and high cumulative fraction of respirable particles (lower than 10 μm). - Highlights: • Novel particulate material to target atenolol to the respiratory membrane was developed. • Crumbled microparticles were obtained by spray drying of alginic–atenolol dispersions. • Ionic interaction between alginic acid and atenolol was demonstrated in the product. • Amorphous solids with low moisture content and high load efficiency were produced. • Relationships between the feed formulation and the product characteristics were found.

  3. Restrictions for reimbursement of interferon-free direct-acting antiviral drugs for HCV infection in Europe

    DEFF Research Database (Denmark)

    Marshall, Alison D; Cunningham, Evan B; Nielsen, Stine

    2018-01-01

    for, interferon-free DAA reimbursement among countries in the European Union and European Economic Area, and Switzerland. Reimbursement documentation was reviewed between Nov 18, 2016, and Aug 1, 2017. Primary outcomes were fibrosis stage, drug or alcohol use, prescriber type, and HIV co......-infection restrictions. Among the 35 European countries and jurisdictions included, the most commonly reimbursed DAA was ombitasvir, paritaprevir, and ritonavir, with dasabuvir, and with or without ribavirin (33 [94%] countries and jurisdictions). 16 (46%) countries and jurisdictions required patients to have fibrosis...... of some countries not following the 2016 hepatitis C virus treatment guidelines by the European Association for the Study of Liver....

  4. Preparation of magnetic nanoparticles and their application to magnetic targeting drug delivery

    International Nuclear Information System (INIS)

    Li Guiping; Wang Yongxian

    2006-01-01

    Magnetic nanoparticles barrier is a novel kind of drug delivery system for magnetic targeting drugs, which can effectively deliver the drug to a tumor target site and increase therapeutic benefit, with the side effects minimized. This article summarizes the most outstanding papers on the of magnetic nanoparticles used as the targeting drug's delivery systems. (authors)

  5. Chiral analysis of anti-acquired immunodeficiency syndrome drug, 9-(R)-[2-(phosphonomethoxy)propyl]adenine (tenofovir), and related antiviral acyclic nucleoside phosphonates by CE using beta-CD as chiral selector

    Czech Academy of Sciences Publication Activity Database

    Šolínová, Veronika; Kašička, Václav; Sázelová, Petra; Holý, Antonín

    2009-01-01

    Roč. 30, č. 12 (2009), s. 2245-2254 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/06/1044; GA ČR(CZ) GA203/08/1428; GA AV ČR 1QS400550501; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : antiviral drugs * capillary electrophoresis * enantioseparation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.077, year: 2009

  6. Self-assembled dopamine nanolayers wrapped carbon nanotubes as carbon-carbon bi-functional nanocatalyst for highly efficient oxygen reduction reaction and antiviral drug monitoring

    Science.gov (United States)

    Khalafallah, Diab; Akhtar, Naeem; Alothman, Othman Y.; Fouad, H.; Abdelrazek khalil, Khalil

    2017-09-01

    Oxygen reduction reaction (ORR) catalysts are the heart of eco-friendly energy resources particularly low temperature fuel cells. Although valuable efforts have been devoted to synthesize high performance catalysts for ORR, considerable challenges are extremely desirable in the development of energy technologies. Herein, we report a simple self-polymerization method to build a thin film of dopamine along the tubular nanostructures of multi-walled carbon nanotubes (CNT) in a weak alkaline solution. The dopamine@CNT hybrid (denoted as DA@CNT) reveals an enhanced electrocatalytic activity towards ORR with highly positive onset potential and cathodic current as a result of their outstanding features of longitudinal mesoporous structure, high surface area, and ornamentation of DA layers with nitrogen moieties, which enable fast electron transport and fully exposed electroactive sites. Impressively, the as-obtained hybrid afford remarkable electrochemical durability for prolonged test time of 60,000 s compared to benchmark Pt/C (20 wt%) catalyst. Furthermore, the developed DA@CNT electrode was successfully applied to access the quality of antiviral drug named Valacyclovir (VCR). The DA@CNT electrode shows enhanced sensing performance in terms of large linear range (3-75 nM), low limit of detection (2.55 nM) than CNT based electrode, indicating the effectiveness of the DA coating. Interestingly, the synergetic effect of nanostructured DA and CNT can significantly boost the electronic configuration and exposure level of active species for ORR and biomolecule recognition. Therefore, the existing carbon-based porous electrocatalyst may find numerous translational applications as attractive alternative to noble metals in polymer electrolyte membrane fuel cells and quality control assessment of pharmaceutical and therapeutic drugs.

  7. Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA.

    Science.gov (United States)

    Gao, Pu; Ascano, Manuel; Zillinger, Thomas; Wang, Weiyi; Dai, Peihong; Serganov, Artem A; Gaffney, Barbara L; Shuman, Stewart; Jones, Roger A; Deng, Liang; Hartmann, Gunther; Barchet, Winfried; Tuschl, Thomas; Patel, Dinshaw J

    2013-08-15

    Binding of dsDNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) triggers formation of the metazoan second messenger c[G(2',5')pA(3',5')p], which binds the signaling protein STING with subsequent activation of the interferon (IFN) pathway. We show that human hSTING(H232) adopts a "closed" conformation upon binding c[G(2',5')pA(3',5')p] and its linkage isomer c[G(2',5')pA(2',5')p], as does mouse mSting(R231) on binding c[G(2',5')pA(3',5')p], c[G(3',5')pA(3',5')p] and the antiviral agent DMXAA, leading to similar "closed" conformations. Comparing hSTING to mSting, 2',5'-linkage-containing cGAMP isomers were more specific triggers of the IFN pathway compared to the all-3',5'-linkage isomer. Guided by structural information, we identified a unique point mutation (S162A) placed within the cyclic-dinucleotide-binding site of hSTING that rendered it sensitive to the otherwise mouse-specific drug DMXAA, a conclusion validated by binding studies. Our structural and functional analysis highlights the unexpected versatility of STING in the recognition of natural and synthetic ligands within a small-molecule pocket created by the dimerization of STING. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

  9. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    Science.gov (United States)

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  10. Predicting Drug-Target Interactions Based on Small Positive Samples.

    Science.gov (United States)

    Hu, Pengwei; Chan, Keith C C; Hu, Yanxing

    2018-01-01

    A basic task in drug discovery is to find new medication in the form of candidate compounds that act on a target protein. In other words, a drug has to interact with a target and such drug-target interaction (DTI) is not expected to be random. Significant and interesting patterns are expected to be hidden in them. If these patterns can be discovered, new drugs are expected to be more easily discoverable. Currently, a number of computational methods have been proposed to predict DTIs based on their similarity. However, such as approach does not allow biochemical features to be directly considered. As a result, some methods have been proposed to try to discover patterns in physicochemical interactions. Since the number of potential negative DTIs are very high both in absolute terms and in comparison to that of the known ones, these methods are rather computationally expensive and they can only rely on subsets, rather than the full set, of negative DTIs for training and validation. As there is always a relatively high chance for negative DTIs to be falsely identified and as only partial subset of such DTIs is considered, existing approaches can be further improved to better predict DTIs. In this paper, we present a novel approach, called ODT (one class drug target interaction prediction), for such purpose. One main task of ODT is to discover association patterns between interacting drugs and proteins from the chemical structure of the former and the protein sequence network of the latter. ODT does so in two phases. First, the DTI-network is transformed to a representation by structural properties. Second, it applies a oneclass classification algorithm to build a prediction model based only on known positive interactions. We compared the best AUROC scores of the ODT with several state-of-art approaches on Gold standard data. The prediction accuracy of the ODT is superior in comparison with all the other methods at GPCRs dataset and Ion channels dataset. Performance

  11. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development.

    Science.gov (United States)

    Kunz, Meik; Liang, Chunguang; Nilla, Santosh; Cecil, Alexander; Dandekar, Thomas

    2016-01-01

    The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.Database URL:http://drumpid.bioapps.biozentrum.uni-wuerzburg.de. © The Author(s) 2016. Published by Oxford University Press.

  12. Combined Analysis of the Prevalence of drug Resistant Hepatitis B Virus in antiviral therapy Experienced patients in Europe (CAPRE)

    DEFF Research Database (Denmark)

    Hermans, L E; Svicher, V; Pas, S D

    2016-01-01

    BACKGROUND: European guidelines recommend treatment of chronic hepatitis B virus infection (CHB) with the nucleos(t)ide analogs (NAs) entecavir or tenofovir. However, many European CHB patients have been exposed to other NAs, which are associated with therapy failure and resistance. The CAPRE study...... was performed to gain insight in prevalence and characteristics of NA resistance in Europe. METHODS: A survey was performed on genotypic resistance testing results acquired during routine monitoring of CHB patients with detectable serum hepatitis B virus DNA in European tertiary referral centers. RESULTS: Data...... from 1568 patients were included. The majority (73.8%) were exposed to lamivudine monotherapy. Drug-resistant strains were detected in 52.7%. The most frequently encountered primary mutation was M204V/I (48.7%), followed by A181T/V (3.8%) and N236T (2.6%). In patients exposed to entecavir (n = 102...

  13. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Chakkarapani, Prabu [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Subbiah, Latha, E-mail: lathasuba2010@gmail.com [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Palanisamy, Selvamani; Bibiana, Arputha [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO{sub 3}-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO{sub 3}-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 µm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy. - Highlights: • Development of methotrexate magnetic microcapsules (MMC) by layer-by-layer method. • Characterization of physicochemical, pharmaceutical and magnetic properties of MMC. • Multiple layers of alternative polyelectrolytes prolongs methotrexate release time. • MMC is capable for targeted and sustained release rheumatoid arthritis therapy.

  14. ORAL COLON TARGETED DRUG DELIVERY SYSTEM: A REVIEW ON CURRENT AND NOVEL PERSPECTIVES

    OpenAIRE

    Asija Rajesh; Chaudhari Bharat; Asija Sangeeta

    2012-01-01

    Small intestine is mostly the site for drug absorption but in some cases the drug needs to be targeted to colon due to some factors like local colonic disease, degradation related conditions, delayed release of drugs, systemic delivery of protein and peptide drugs etc. Colon targeted drug delivery is important and relatively new concept for the absorption of drugs because it offers almost neutral pH and long residence time, thereby increasing the drug absorption. Colon has proved to be a site...

  15. Application of RNAi to Genomic Drug Target Validation in Schistosomes.

    Directory of Open Access Journals (Sweden)

    Alessandra Guidi

    2015-05-01

    Full Text Available Concerns over the possibility of resistance developing to praziquantel (PZQ, has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2 (Sm-Calm, that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310 (Sm-aPKC resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600 and p38-MAPK, Sm-MAPK p38 (Smp_133020 resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC. For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability

  16. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development.

    Science.gov (United States)

    Chen, Shun; Yang, Chao; Zhang, Wei; Mahalingam, Suresh; Wang, Mingshu; Cheng, Anchun

    2018-05-06

    Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery.

    Science.gov (United States)

    Papa, Anne-Laure; Korin, Netanel; Kanapathipillai, Mathumai; Mammoto, Akiko; Mammoto, Tadanori; Jiang, Amanda; Mannix, Robert; Uzun, Oktay; Johnson, Christopher; Bhatta, Deen; Cuneo, Garry; Ingber, Donald E

    2017-09-01

    Here we describe injectable, ultrasound (US)-responsive, nanoparticle aggregates (NPAs) that disintegrate into slow-release, nanoscale, drug delivery systems, which can be targeted to selective sites by applying low-energy US locally. We show that, unlike microbubble based drug carriers which may suffer from stability problems, the properties of mechanical activated NPAs, composed of polymer nanoparticles, can be tuned by properly adjusting the polymer molecular weight, the size of the nanoparticle precursors as well as the percentage of excipient utilized to hold the NPA together. We then apply this concept to practice by fabricating NPAs composed of nanoparticles loaded with Doxorubicin (Dox) and tested their ability to treat tumors via ultrasound activation. Mouse studies demonstrated significantly increased efficiency of tumor targeting of the US-activated NPAs compared to PLGA nanoparticle controls (with or without US applied) or intact NPAs. Importantly, when the Dox-loaded NPAs were injected and exposed to US energy locally, this increased ability to concentrate nanoparticles at the tumor site resulted in a significantly greater reduction in tumor volume compared to tumors treated with a 20-fold higher dose of the free drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles

    Science.gov (United States)

    Stimphil, Emmanuel; Nagesetti, Abhignyan; Guduru, Rakesh; Stewart, Tiffanie; Rodzinski, Alexandra; Liang, Ping; Khizroev, Sakhrat

    2017-06-01

    In regard to cancer therapy, magnetoelectric nanoparticles (MENs) have proven to be in a class of its own when compared to any other nanoparticle type. Like conventional magnetic nanoparticles, they can be used for externally controlled drug delivery via application of a magnetic field gradient and image-guided delivery. However, unlike conventional nanoparticles, due to the presence of a non-zero magnetoelectric effect, MENs provide a unique mix of important properties to address key challenges in modern cancer therapy: (i) a targeting mechanism driven by a physical force rather than antibody matching, (ii) a high-specificity delivery to enhance the cellular uptake of therapeutic drugs across the cancer cell membranes only, while sparing normal cells, (iii) an externally controlled mechanism to release drugs on demand, and (iv) a capability for image guided precision medicine. These properties separate MEN-based targeted delivery from traditional biotechnology approaches and lay a foundation for the complementary approach of technobiology. The biotechnology approach stems from the underlying biology and exploits bioinformatics to find the right therapy. In contrast, the technobiology approach is geared towards using the physics of molecular-level interactions between cells and nanoparticles to treat cancer at the most fundamental level and thus can be extended to all the cancers. This paper gives an overview of the current state of the art and presents an ab initio model to describe the underlying mechanisms of cancer treatment with MENs from the perspective of basic physics.

  19. Targeting the treatment of drug abuse with molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Wynne K. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: wynne@bnl.gov; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2007-10-15

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences.

  20. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Schiffer, Wynne K.; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L.

    2007-01-01

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  1. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yadavalli, Tejabhiram, E-mail: tejabhiram@gmail.com [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Ramasamy, Shivaraman [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); School of Physics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Chennakesavulu, Ramasamy [Department of Pharmacy practice, SRM College of Pharmacy, Chennai 603203 (India)

    2015-04-15

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation. - Highlights: • The use of gadolinium doped nickel ferrite with the suggested doping level. • The use of PNIPMA–chitosan polymer with folic acid and fluorescein as a drug carrier complex. • Magnetic hyperthermia studies of gadolinium doped nickel ferrites are being reported for the first time. • Proton relaxivity studies which indicate the MRI contrasting properties on the reported system are new. • Use of curcumin, a hydrophobic Indian spice as a cancer killing agent inside the reported magnetic polymer complex.

  2. Fe-S Clusters Emerging as Targets of Therapeutic Drugs

    Directory of Open Access Journals (Sweden)

    Laurence Vernis

    2017-01-01

    Full Text Available Fe-S centers exhibit strong electronic plasticity, which is of importance for insuring fine redox tuning of protein biological properties. In accordance, Fe-S clusters are also highly sensitive to oxidation and can be very easily altered in vivo by different drugs, either directly or indirectly due to catabolic by-products, such as nitric oxide species (NOS or reactive oxygen species (ROS. In case of metal ions, Fe-S cluster alteration might be the result of metal liganding to the coordinating sulfur atoms, as suggested for copper. Several drugs presented through this review are either capable of direct interaction with Fe-S clusters or of secondary Fe-S clusters alteration following ROS or NOS production. Reactions leading to Fe-S cluster disruption are also reported. Due to the recent interest and progress in Fe-S biology, it is very likely that an increasing number of drugs already used in clinics will emerge as molecules interfering with Fe-S centers in the near future. Targeting Fe-S centers could also become a promising strategy for drug development.

  3. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2016 Recommendations of the International Antiviral Society-USA Panel.

    Science.gov (United States)

    Günthard, Huldrych F; Saag, Michael S; Benson, Constance A; del Rio, Carlos; Eron, Joseph J; Gallant, Joel E; Hoy, Jennifer F; Mugavero, Michael J; Sax, Paul E; Thompson, Melanie A; Gandhi, Rajesh T; Landovitz, Raphael J; Smith, Davey M; Jacobsen, Donna M; Volberding, Paul A

    2016-07-12

    New data and therapeutic options warrant updated recommendations for the use of antiretroviral drugs (ARVs) to treat or to prevent HIV infection in adults. To provide updated recommendations for the use of antiretroviral therapy in adults (aged ≥18 years) with established HIV infection, including when to start treatment, initial regimens, and changing regimens, along with recommendations for using ARVs for preventing HIV among those at risk, including preexposure and postexposure prophylaxis. A panel of experts in HIV research and patient care convened by the International Antiviral Society-USA reviewed data published in peer-reviewed journals, presented by regulatory agencies, or presented as conference abstracts at peer-reviewed scientific conferences since the 2014 report, for new data or evidence that would change previous recommendations or their ratings. Comprehensive literature searches were conducted in the PubMed and EMBASE databases through April 2016. Recommendations were by consensus, and each recommendation was rated by strength and quality of the evidence. Newer data support the widely accepted recommendation that antiretroviral therapy should be started in all individuals with HIV infection with detectable viremia regardless of CD4 cell count. Recommended optimal initial regimens for most patients are 2 nucleoside reverse transcriptase inhibitors (NRTIs) plus an integrase strand transfer inhibitor (InSTI). Other effective regimens include nonnucleoside reverse transcriptase inhibitors or boosted protease inhibitors with 2 NRTIs. Recommendations for special populations and in the settings of opportunistic infections and concomitant conditions are provided. Reasons for switching therapy include convenience, tolerability, simplification, anticipation of potential new drug interactions, pregnancy or plans for pregnancy, elimination of food restrictions, virologic failure, or drug toxicities. Laboratory assessments are recommended before treatment, and

  4. Magnetically responsive microparticles for targeted drug and radionuclide delivery

    International Nuclear Information System (INIS)

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-01-01

    We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 (micro)m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 (micro)m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 (micro)m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial

  5. Vibrio cholerae infection, novel drug targets and phage therapy.

    Science.gov (United States)

    Fazil, Mobashar Hussain Urf Turabe; Singh, Durg V

    2011-10-01

    Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although antibiotic therapy shortens the duration of diarrhea, excessive use has contributed to the emergence of antibiotic resistance in V. cholerae. Mobile genetic elements have been shown to be largely responsible for the shift of drug resistance genes in bacteria, including some V. cholerae strains. Quorum sensing communication systems are used for interaction among bacteria and for sensing environmental signals. Sequence analysis of the ctxB gene of toxigenic V. cholerae strains demonstrated its presence in multiple cholera toxin genotypes. Moreover, bacteriophage that lyse the bacterium have been reported to modulate epidemics by decreasing the required infectious dose of the bacterium. In this article, we will briefly discuss the disease, its clinical manifestation, antimicrobial resistance and the novel approaches to locate drug targets to treat cholera.

  6. TRPV1: A Target for Rational Drug Design

    Directory of Open Access Journals (Sweden)

    Vincenzo Carnevale

    2016-08-01

    Full Text Available Transient Receptor Potential Vanilloid 1 (TRPV1 is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX. Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures.

  7. Novel Antibacterial Compounds and their Drug Targets - Successes and Challenges.

    Science.gov (United States)

    Kaczor, Agnieszka A; Polski, Andrzej; Sobótka-Polska, Karolina; Pachuta-Stec, Anna; Makarska-Bialokoz, Magdalena; Pitucha, Monika

    2017-01-01

    molecular basis of drug resistance, drug targets for novel antibacterial drugs, and new compounds (since year 2010) from different chemical classes with antibacterial activity, focusing on structure-activity relationships. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  9. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  10. Drug targets in the cytokine universe for autoimmune disease.

    Science.gov (United States)

    Liu, Xuebin; Fang, Lei; Guo, Taylor B; Mei, Hongkang; Zhang, Jingwu Z

    2013-03-01

    In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Design of a tripartite network for the prediction of drug targets

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2018-02-01

    Drug-target networks have aided in many target prediction studies aiming at drug repurposing or the analysis of side effects. Conventional drug-target networks are bipartite. They contain two different types of nodes representing drugs and targets, respectively, and edges indicating pairwise drug-target interactions. In this work, we introduce a tripartite network consisting of drugs, other bioactive compounds, and targets from different sources. On the basis of analog relationships captured in the network and so-called neighbor targets of drugs, new drug targets can be inferred. The tripartite network was found to have a stable structure and simulated network growth was accompanied by a steady increase in assortativity, reflecting increasing correlation between degrees of connected nodes leading to even network connectivity. Local drug environments in the tripartite network typically contained neighbor targets and revealed interesting drug-compound-target relationships for further analysis. Candidate targets were prioritized. The tripartite network design extends standard drug-target networks and provides additional opportunities for drug target prediction.

  12. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    Directory of Open Access Journals (Sweden)

    Avi Raveh

    Full Text Available Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable

  13. Tumor Targeting and Drug Delivery by Anthrax Toxin

    Directory of Open Access Journals (Sweden)

    Christopher Bachran

    2016-07-01

    Full Text Available Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  14. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  15. Vaccines targeting drugs of abuse: is the glass half-empty or half-full?

    Science.gov (United States)

    Janda, Kim D; Treweek, Jennifer B

    2011-12-16

    The advent of vaccines targeting drugs of abuse heralded a fundamentally different approach to treating substance-related disorders. In contrast to traditional pharmacotherapies for drug abuse, vaccines act by sequestering circulating drugs and terminating the drug-induced 'high' without inducing unwanted neuromodulatory effects. Drug-targeting vaccines have entered clinical evaluation, and although these vaccines show promise from a biomedical viewpoint, the ethical and socioeconomic implications of vaccinating patients against drugs of abuse merit discussion within the scientific community.

  16. Sigma-1 receptor: The novel intracellular target of neuropsychotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Teruo Hayashi

    2015-01-01

    Full Text Available Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane. In specific types of neurons (e.g., those at the spinal cord, sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions.

  17. Scientometrics of drug discovery efforts: pain-related molecular targets

    Directory of Open Access Journals (Sweden)

    Kissin I

    2015-07-01

    Full Text Available Igor KissinDepartment of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USAAbstract: The aim of this study was to make a scientometric assessment of drug discovery efforts centered on pain-related molecular targets. The following scientometric indices were used: the popularity index, representing the share of articles (or patents on a specific topic among all articles (or patents on pain over the same 5-year period; the index of change, representing the change in the number of articles (or patents on a topic from one 5-year period to the next; the index of expectations, representing the ratio of the number of all types of articles on a topic in the top 20 journals relative to the number of articles in all (>5,000 biomedical journals covered by PubMed over a 5-year period; the total number of articles representing Phase I–III trials of investigational drugs over a 5-year period; and the trial balance index, a ratio of Phase I–II publications to Phase III publications. Articles (PubMed database and patents (US Patent and Trademark Office database on 17 topics related to pain mechanisms were assessed during six 5-year periods from 1984 to 2013. During the most recent 5-year period (2009–2013, seven of 17 topics have demonstrated high research activity (purinergic receptors, serotonin, transient receptor potential channels, cytokines, gamma aminobutyric acid, glutamate, and protein kinases. However, even with these seven topics, the index of expectations decreased or did not change compared with the 2004–2008 period. In addition, publications representing Phase I–III trials of investigational drugs (2009–2013 did not indicate great enthusiasm on the part of the pharmaceutical industry regarding drugs specifically designed for treatment of pain. A promising development related to the new tool of molecular targeting, ie, monoclonal antibodies, for pain treatment has not

  18. Novel Drugs that Target ErbB2

    Science.gov (United States)

    2012-05-01

    of pharmacological properties including antiviral, antibacterial, anti-inflammatory, antimalarial and anticancer activities (1, 2). BA also inhibits...expression and the overall mechanisms associated with the anticancer activity of BA. We also investigated the role of BA in triple-negative MDA-MB-231...expression and the overall mechanisms associated with the anticancer activity of BA. In addition, we also investigated the role of BA in triple-negative

  19. Retention of ferrofluid aggregates at the target site during magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Asfer, Mohammed, E-mail: asfer786@gmail.com [School of Engineering and Technology, BML Munjal University, Haryana (India); Saroj, Sunil Kumar [Department of Mechanical Engineering, IIT Kanpur, Kanpur (India); Panigrahi, Pradipta Kumar, E-mail: panig@iitk.ac.in [Department of Mechanical Engineering, IIT Kanpur, Kanpur (India)

    2017-08-15

    Highlights: • The present in vitro work reports the retention dynamics of ferrofluid aggregates at the target site against a bulk flow of DI water inside a micro capillary during magnetic drug targeting. • The recirculation zone at the downstream of the aggregate is found to be a function of aggregate height, Reynolds number and the degree of surface roughness of the outer boundary of the aggregate. • The reported results of the present work can be used as a guideline for the better design of MDT technique for in vivo applications. - Abstract: The present study reports the retention dynamics of a ferrofluid aggregate localized at the target site inside a glass capillary (500 × 500 µm{sup 2} square cross section) against a bulk flow of DI water (Re = 0.16 and 0.016) during the process of magnetic drug targeting (MDT). The dispersion dynamics of iron oxide nanoparticles (IONPs) into bulk flow for different initial size of aggregate at the target site is reported using the brightfield visualization technique. The flow field around the aggregate during the retention is evaluated using the µPIV technique. IONPs at the outer boundary experience a higher shear force as compared to the magnetic force, resulting in dispersion of IONPs into the bulk flow downstream to the aggregate. The blockage effect and the roughness of the outer boundary of the aggregate resulting from chain like clustering of IONPs contribute to the flow recirculation at the downstream region of the aggregate. The entrapment of seeding particles inside the chain like clusters of IONPs at the outer boundary of the aggregate reduces the degree of roughness resulting in a streamlined aggregate at the target site at later time. The effect of blockage, structure of the aggregate, and disturbed flow such as recirculation around the aggregate are the primary factors, which must be investigated for the effectiveness of the MDT process for in vivo applications.

  20. Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information.

    Science.gov (United States)

    Zhang, Wen; Chen, Yanlin; Li, Dingfang

    2017-11-25

    Interactions between drugs and target proteins provide important information for the drug discovery. Currently, experiments identified only a small number of drug-target interactions. Therefore, the development of computational methods for drug-target interaction prediction is an urgent task of theoretical interest and practical significance. In this paper, we propose a label propagation method with linear neighborhood information (LPLNI) for predicting unobserved drug-target interactions. Firstly, we calculate drug-drug linear neighborhood similarity in the feature spaces, by considering how to reconstruct data points from neighbors. Then, we take similarities as the manifold of drugs, and assume the manifold unchanged in the interaction space. At last, we predict unobserved interactions between known drugs and targets by using drug-drug linear neighborhood similarity and known drug-target interactions. The experiments show that LPLNI can utilize only known drug-target interactions to make high-accuracy predictions on four benchmark datasets. Furthermore, we consider incorporating chemical structures into LPLNI models. Experimental results demonstrate that the model with integrated information (LPLNI-II) can produce improved performances, better than other state-of-the-art methods. The known drug-target interactions are an important information source for computational predictions. The usefulness of the proposed method is demonstrated by cross validation and the case study.

  1. Cancer Drug Development: New Targets for Cancer Treatment.

    Science.gov (United States)

    Curt

    1996-01-01

    cancer drug screening and cancer drug development. At the NCI, for example, the old in vivo mouse screen using mouse lymphomas has been shelved; it discovered compounds with some activity in lymphomas, but not the common solid tumors of adulthood. It has been replaced with an initial in vitro screen of some sixty cell lines, representing the common solid tumors-ovary, G.I., lung, breast, CNS, melanoma and others. The idea was to not only discover new drugs with specific anti-tumor activity but also to use the small volumes required for in vitro screening as a medium to screen for new natural product compounds, one of the richest sources of effective chemotherapy. The cell line project had an unexpected dividend. The pattern of sensitivity in the panel predicted the mechanism of action of unknown compounds. An antifolate suppressed cell growth of the different lines like other antifolates, anti-tubulin compounds suppressed like other anti-tubulins, and so on. It now became possible, at a very early stage of cancer drug screening, to select for drugs with unknown-and potentially novel-mechanisms of action. The idea was taken to the next logical step, and that was to characterize the entire panel for important molecular properties of human malignancy: mutations in the tumor suppressor gene p53, expression of important oncogenes like ras or myc, the gp170 gene which confers multiple drug resistance, protein-specific kinases, and others. It now became possible to use the cell line panel as a tool to detect new drugs which targeted a specific genetic property of the tumor cell. Researchers can now ask whether a given drug is likely to inhibit multiple drug resistance or kill cells which over-express specific oncogenes at the earliest phase of drug discovery. In this issue of The Oncologist, Tom Connors celebrates the fiftieth anniversary of cancer chemotherapy. His focus is on the importance of international collaboration in clinical trials and the negative impact of

  2. In Vitro Drug Sensitivity Tests to Predict Molecular Target Drug Responses in Surgically Resected Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Ryohei Miyazaki

    Full Text Available Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs and anaplastic lymphoma kinase (ALK inhibitors have dramatically changed the strategy of medical treatment of lung cancer. Patients should be screened for the presence of the EGFR mutation or echinoderm microtubule-associated protein-like 4 (EML4-ALK fusion gene prior to chemotherapy to predict their clinical response. The succinate dehydrogenase inhibition (SDI test and collagen gel droplet embedded culture drug sensitivity test (CD-DST are established in vitro drug sensitivity tests, which may predict the sensitivity of patients to cytotoxic anticancer drugs. We applied in vitro drug sensitivity tests for cyclopedic prediction of clinical responses to different molecular targeting drugs.The growth inhibitory effects of erlotinib and crizotinib were confirmed for lung cancer cell lines using SDI and CD-DST. The sensitivity of 35 cases of surgically resected lung cancer to erlotinib was examined using SDI or CD-DST, and compared with EGFR mutation status.HCC827 (Exon19: E746-A750 del and H3122 (EML4-ALK cells were inhibited by lower concentrations of erlotinib and crizotinib, respectively than A549, H460, and H1975 (L858R+T790M cells were. The viability of the surgically resected lung cancer was 60.0 ± 9.8 and 86.8 ± 13.9% in EGFR-mutants vs. wild types in the SDI (p = 0.0003. The cell viability was 33.5 ± 21.2 and 79.0 ± 18.6% in EGFR mutants vs. wild-type cases (p = 0.026 in CD-DST.In vitro drug sensitivity evaluated by either SDI or CD-DST correlated with EGFR gene status. Therefore, SDI and CD-DST may be useful predictors of potential clinical responses to the molecular anticancer drugs, cyclopedically.

  3. Biologic Drugs: A New Target Therapy in COPD?

    Science.gov (United States)

    Yousuf, Ahmed; Brightling, Christopher E

    2018-04-23

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease associated with significant morbidity and mortality. Current diagnostic criteria based on the presence of fixed airflow obstruction and symptoms do not integrate the complex pathological changes occurring within the lung and they do not define different airway inflammatory patterns. The current management of COPD is based on 'one size fits all' approach and does not take the importance of heterogeneity in COPD population into account. The available treatments aim to alleviate symptoms and reduce exacerbation frequency but do not alter the course of the disease. Recent advances in molecular biology have furthered our understanding of inflammatory pathways in pathogenesis of COPD and have led to development of targeted therapies (biologics and small molecules) based on predefined biomarkers. Herein we shall review the trials of biologics in COPD and potential future drug developments in the field.

  4. Integrative Bioinformatics Approaches for Identification of Drug Targets in Hypertension.

    Science.gov (United States)

    Hemerich, Daiane; van Setten, Jessica; Tragante, Vinicius; Asselbergs, Folkert W

    2018-01-01

    High blood pressure or hypertension is an established risk factor for a myriad of cardiovascular diseases. Genome-wide association studies have successfully found over nine hundred loci that contribute to blood pressure. However, the mechanisms through which these loci contribute to disease are still relatively undetermined as less than 10% of hypertension-associated variants are located in coding regions. Phenotypic cell-type specificity analyses and expression quantitative trait loci show predominant vascular and cardiac tissue involvement for blood pressure-associated variants. Maps of chromosomal conformation and expression quantitative trait loci (eQTL) in critical tissues identified 2,424 genes interacting with blood pressure-associated loci, of which 517 are druggable. Integrating genome, regulome and transcriptome information in relevant cell-types could help to functionally annotate blood pressure associated loci and identify drug targets.

  5. Cost-effectiveness of treating chronic hepatitis C virus with direct-acting antivirals in people who inject drugs in Australia.

    Science.gov (United States)

    Scott, Nick; Iser, David M; Thompson, Alexander J; Doyle, Joseph S; Hellard, Margaret E

    2016-04-01

    Reducing the burden of hepatitis C virus (HCV) related liver disease will require treating people who inject drugs (PWID), the group at most risk of infection and transmission. We determine the cost-effectiveness of treating PWID with interferon-free direct-acting antiviral therapy in Australia. Using a deterministic model of HCV treatment and liver disease progression, including a fixed rate of re-infection, the expected healthcare costs and quality-adjusted life years (QALYs) of a cohort of newly HCV-infected PWID were calculated for: no treatment; treatment after initial infection ("early-treatment"); and treatment prior to developing compensated cirrhosis ("late-treatment"). Incremental cost-effectiveness ratios (ICERs) were used to compare scenarios. Late-treatment was cost-effective compared to no treatment, with a discounted average gain of 2.98 (95%confidence interval 2.88-5.22) QALYs per person for an additional cost of $15,132 ($11,246-18,922), giving an ICER of $5078 ($2847-5295) per QALY gained. Compared to late-treatment, early-treatment gained a further discounted average of 2.27 (0.58-4.80) QALYs per person for $38,794 ($34,789-41,367), giving an ICER of $17,090 ($2847-63,282), which was cost-effective in approximately 90% of Monte-Carlo uncertainty simulations. For every 100 newly HCV-infected PWID, there were an estimated 40 (39-56) eventual liver-related deaths without treatment, compared to 7 (6-11) and 8 (7-13) with early-treatment and late-treatment available respectively. Treating HCV-infected PWID with new therapies is cost-effective and could prevent a significant number of liver-related deaths. Although late-treatment was the most cost-effective option, the cost per QALY gained for early-treatment compared to late-treatment is likely to be below unofficial Australian willingness to pay thresholds. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  6. Discovery of the target for immunomodulatory drugs (IMiDs).

    Science.gov (United States)

    Ito, Takumi; Ando, Hideki; Handa, Hiroshi

    2016-05-01

    Half a century ago, the sedative thalidomide caused a serious drug disaster because of its teratogenicity and was withdrawn from the market. However, thalidomide, which has returned to the market, is now used for the treatment of leprosy and multiple myeloma (MM) under strict control. The mechanism of thalidomide action had been a long-standing question. We developed a new affinity bead technology and identified cereblon (CRBN) as a thalidomide-binding protein. We found that CRBN functions as a substrate receptor of an E3 cullin-Ring ligase complex 4 (CRL4) and is a primary target of thalidomide teratogenicity. Recently, new thalidomide derivatives, called immunomodulatory drugs (IMiDs), have been developed by Celgene. Among them, lenalidomide (Len) and pomalidomide (Pom) were shown to exert strong therapeutic effects against MM. It was found that Len and Pom both bind CRBN-CRL4 and recruit neomorphic substrates (Ikaros and Aiolos). More recently it was reported that casein kinase 1a (Ck1a) was identified as a substrate for CRBN-CRL4 in the presence of Len, but not Pom. Ck1a breakdown explains why Len is specifically effective for myelodysplastic syndrome with 5q deletion. It is now proposed that binding of IMiDs to CRBN appears to alter the substrate specificity of CRBN-CRL4. In this review, we introduce recent findings on IMiDs.

  7. Targeting DNA repair systems in antitubercular drug development.

    Science.gov (United States)

    Minias, Alina; Brzostek, Anna; Dziadek, Jaroslaw

    2018-01-28

    Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate

    Directory of Open Access Journals (Sweden)

    Miguel Angel Moreno

    2014-12-01

    Full Text Available Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.

  9. NGR-peptide-drug conjugates with dual targeting properties.

    Directory of Open Access Journals (Sweden)

    Kata Nóra Enyedi

    Full Text Available Peptides containing the asparagine-glycine-arginine (NGR motif are recognized by CD13/aminopeptidase N (APN receptor isoforms that are selectively overexpressed in tumor neovasculature. Spontaneous decomposition of NGR peptides can result in isoAsp derivatives, which are recognized by RGD-binding integrins that are essential for tumor metastasis. Peptides binding to CD13 and RGD-binding integrins provide tumor-homing, which can be exploited for dual targeted delivery of anticancer drugs. We synthesized small cyclic NGR peptide-daunomycin conjugates using NGR peptides of varying stability (c[KNGRE]-NH2, Ac-c[CNGRC]-NH2 and the thioether bond containing c[CH2-CO-NGRC]-NH2, c[CH2-CO-KNGRC]-NH2. The cytotoxic effect of the novel cyclic NGR peptide-Dau conjugates were examined in vitro on CD13 positive HT-1080 (human fibrosarcoma and CD13 negative HT-29 (human colon adenocarcinoma cell lines. Our results confirm the influence of structure on the antitumor activity and dual acting properties of the conjugates. Attachment of the drug through an enzyme-labile spacer to the C-terminus of cyclic NGR peptide resulted in higher antitumor activity on both CD13 positive and negative cells as compared to the branching versions.

  10. Modern Prodrug Design for Targeted Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Arik Dahan

    2014-10-01

    Full Text Available The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  11. The Food and Drug Addiction Epidemic: Targeting Dopamine Homeostasis.

    Science.gov (United States)

    Blum, Kenneth; Thanos, Panayotis K; Wang, Gene-Jack; Febo, Marcelo; Demetrovics, Zsolt; Modestino, Edward Justin; Braverman, Eric R; Baron, David; Badgaiyan, Rajendra D; Gold, Mark S

    2018-02-12

    Obesity is damaging the lives of more than 300 million people worldwide and maintaining a healthy weight using popular weight loss tactics remains a very difficult undertaking. Managing the obesity problem seems within reach, as better understanding develops, of the function of our genome in drug/nutrient responses. Strategies indicated by this understanding of nutriepigenomics and neurogenetics in the treatment and prevention of metabolic syndrome and obesity include moderation of mRNA expression by DNA methylation, and inhibition of histone deacetylation. Based on an individual's genetic makeup, deficient metabolic pathways can be targeted epigenetically by, for example, the provision of dietary supplementation that includes phytochemicals, vitamins, and importantly functional amino acids. Also, the chromatin structure of imprinted genes that control nutrients during fetal development can be modified. Pathways affecting dopamine signaling, molecular transport and nervous system development are implicated in these strategies. Obesity is a subtype of Reward Deficiency Syndrome (RDS) and these new strategies in the treatment and prevention of obesity target improved dopamine function. It is not merely a matter of gastrointestinal signaling linked to hypothalamic peptides, but alternatively, finding novel ways to improve ventral tegmental area (VTA) dopaminergic function and homeostasis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Cdc7 kinase - a new target for drug development.

    Science.gov (United States)

    Swords, Ronan; Mahalingam, Devalingam; O'Dwyer, Michael; Santocanale, Corrado; Kelly, Kevin; Carew, Jennifer; Giles, Francis

    2010-01-01

    The cell division cycle 7 (Cdc7) is a serine threonine kinase that is of critical importance in the regulation of normal cell cycle progression. Cdc7 kinase is highly conserved during evolution and much has been learned about its biological roles in humans through the study of lower eukaryotes, particularly yeasts. Two important regulator proteins, Dbf4 and Drf1, bind to and modulate the kinase activity of human Cdc7 which phosphorylates several sites on Mcm2 (minichromosome maintenance protein 2), one of the six subunits of the replicative DNA helicase needed for duplication of the genome. Through regulation of both DNA synthesis and DNA damage response, both key functions in the survival of tumour cells, Cdc7 becomes an attractive target for pharmacological inhibition. There are much data available on the pre-clinical anti-cancer effects of Cdc7 depletion and although there are no available Cdc7 inhibitors in clinical trials as yet, several lead compounds are being optimised for this purpose. In this review, we will address the current status of Cdc7 as an important target for new drug development.

  13. PCSK9: Regulation and Target for Drug Development for Dyslipidemia.

    Science.gov (United States)

    Burke, Amy C; Dron, Jacqueline S; Hegele, Robert A; Huff, Murray W

    2017-01-06

    Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted zymogen expressed primarily in the liver. PCSK9 circulates in plasma, binds to cell surface low-density lipoprotein (LDL) receptors, is internalized, and then targets the receptors to lysosomal degradation. Studies of naturally occurring PCSK9 gene variants that caused extreme plasma LDL cholesterol (LDL-C) deviations and altered atherosclerosis risk unleashed a torrent of biological and pharmacological research. Rapid progress in understanding the physiological regulation of PCSK9 was soon translated into commercially available biological inhibitors of PCSK9 that reduced LDL-C levels and likely also cardiovascular outcomes. Here we review the swift evolution of PCSK9 from novel gene to drug target, to animal and human testing, and finally to outcome trials and clinical applications. In addition, we explore how the genetics-guided path to PCSK9 inhibitor development exemplifies a new paradigm in pharmacology. Finally, we consider some potential challenges as PCSK9 inhibition becomes established in the clinic.

  14. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors.

    Science.gov (United States)

    Sun, Wen; Fan, Jiangli; Wang, Suzhen; Kang, Yao; Du, Jianjun; Peng, Xiaojun

    2018-03-07

    Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.

  15. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases.

    Science.gov (United States)

    Sarafianos, Stefan G; Das, Kalyan; Hughes, Stephen H; Arnold, Eddy

    2004-12-01

    HIV undergoes rapid genetic variation; this variation is caused primarily by the enormous number of viruses produced daily in an infected individual. Because of this variation, HIV presents a moving target for drug and vaccine development. The variation within individuals has led to the generation of diverse HIV-1 subtypes, which further complicates the development of effective drugs and vaccines. In general, it is more difficult to hit a moving target than a stationary target. Two broad strategies for hitting a moving target (in this case, HIV replication) are to understand the movement and to aim at the portions that move the least. In the case of anti-HIV drug development, the first option can be addressed by understanding the mechanism(s) of drug resistance and developing drugs that effectively inhibit mutant viruses. The second can be addressed by designing drugs that interact with portions of the viral machinery that are evolutionarily conserved, such as enzyme active sites.

  16. Leptin signaling molecular actions and drug target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jiang N

    2014-11-01

    leptin and Ob-R in cancer cells compared to normal cells, makes leptin an ideal drug target for the prevention and treatment of HCC, especially in obese patients. Keywords: hepatocellular carcinoma, leptin, leptin antagonist, leptin signaling, tumor angiogenesis, drug target

  17. New antivirals for the treatment of chronic hepatitis B.

    Science.gov (United States)

    Soriano, Vincent; Barreiro, Pablo; Benitez, Laura; Peña, Jose M; de Mendoza, Carmen

    2017-07-01

    Current treatment with oral nucleos(t)ides entecavir or tenofovir provide sustained suppression of HBV replication and clinical benefit in most chronic hepatitis B virus (HBV) infected persons. However, HBV rebound generally occurs upon drug discontinuation due to persistence of genomic HBV reservoirs as episomic cccDNA and chromosomic integrated HBV-DNA. There is renewed enthusiasm on HBV drug discovery following recent successes with antivirals for hepatitis C and immunotherapies for some cancers. Areas covered: New drugs that target distinct steps of the HBV life cycle are been developed, including inhibitors of viral entry, new polymerase inhibitors, capsid and assembly inhibitors, virus release blockers, and disruptors of cccDNA formation and transcription. Alongside these antivirals, agents that enhance anti-HBV specific immune responses are being tested, including TLR agonists, checkpoint inhibitors and therapeutic vaccines. Expert opinion: The achievement of a 'functional cure' for chronic HBV infection, with sustained HBsAg clearance and undetectable viremia once medications are stopped, represents the next step in the pace towards HBV elimination. Hopefully, the combination of new drugs that eliminate or functionally inactivate the genomic HBV reservoirs (cccDNA and integrated HBV-DNA) along with agents that enhance or activate immune responses against HBV will lead to a 'definitive cure' for chronic HBV infection.

  18. Fragment-based drug discovery and its application to challenging drug targets.

    Science.gov (United States)

    Price, Amanda J; Howard, Steven; Cons, Benjamin D

    2017-11-08

    Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Directory of Open Access Journals (Sweden)

    Kanika Madaan

    2014-01-01

    Full Text Available Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

  20. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Science.gov (United States)

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  1. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.

    Science.gov (United States)

    Liu, Yong; Wu, Min; Miao, Chunyan; Zhao, Peilin; Li, Xiao-Li

    2016-02-01

    In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approaches that can predict potential drug-target interactions to direct the experimental verification. In this paper, we propose a novel drug-target interaction prediction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF). Specifically, the proposed NRLMF method focuses on modeling the probability that a drug would interact with a target by logistic matrix factorization, where the properties of drugs and targets are represented by drug-specific and target-specific latent vectors, respectively. Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs). Because the positive observations are already experimentally verified, they are usually more trustworthy. Furthermore, the local structure of the drug-target interaction data has also been exploited via neighborhood regularization to achieve better prediction accuracy. We conducted extensive experiments over four benchmark datasets, and NRLMF demonstrated its effectiveness compared with five state-of-the-art approaches.

  2. Collagen like peptide bioconjugates for targeted drug delivery applications

    Science.gov (United States)

    Luo, Tianzhi

    the coil/globule conformational transition of the PDEGMEMA building block above its LCST with stabilization of the nanostructures by the hydrophilic CLP. To the best of our knowledge, this is the first report on such assembled nanostructures from collagen-like peptide containing copolymers. Due to the strong propensity for CLPs to bind to natural collagen via strand invasion processes, these nanosized vesicles may be used as drug carriers for targeted delivery. In addition to synthetic polymers, the collagen like peptide is then conjugated with a thermoresponsive elastin-like peptide (ELP). The resulting ELP-CLP diblock conjugates show a remarkable reduction in the inverse transition temperature of the ELP domain, attributed to the anchoring effect of the CLP triple helix. The lower transition temperature of the conjugate enables facile formation of well-defined vesicles at physiological temperature and the unexpected resolubilization of the vesicles at elevated temperatures upon unfolding of the CLP domain. Given the ability of CLPs to modify collagens, this work provides not only a simple and versatile avenue for controlling the inverse transition behavior of elastin-like peptides, but also suggest future opportunities for these thermoresponsive nanostructures in biologically relevant environments. In the last section, the potential of using the ELP-CLP nanoparticles as drug delivery vehicles for targeting collagen containing matrices is evaluated. A sustained release of clinically relevant amount of encapsulated modelled drug is achieved within three weeks, followed by a thermally controlled burst release. As expected, the ELP-CLP nanoparticles show strong retention on collagen substrate, via specific binding through collagen triple helix hybridization. Additionally, cell viability and proliferation studies using fibroblasts and chondrocytes suggest the nanoparticles are non-cytotoxic. Additionally, almost no TNF-alpha expression from macrophages is observed

  3. Self-interest versus group-interest in antiviral control

    NARCIS (Netherlands)

    Boven, M. van; Klinkenberg, D.; Pen, I.; Weissing, F.J.; Heesterbeek, J.A.P.

    2008-01-01

    Antiviral agents have been hailed to hold considerable promise for the treatment and prevention of emerging viral diseases like H5N1 avian influenza and SARS. However, antiviral drugs are not completely harmless, and the conditions under which individuals are willing to participate in a

  4. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Directory of Open Access Journals (Sweden)

    Claudiu T. Supuran

    2016-06-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3 × 105 s−1 and kcat/KM values of (4.7–8.5 × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM. The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM. Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets.

  5. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  6. Target-mediated drug disposition model and its approximations for antibody-drug conjugates.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2014-02-01

    Antibody-drug conjugate (ADC) is a complex structure composed of an antibody linked to several molecules of a biologically active cytotoxic drug. The number of ADC compounds in clinical development now exceeds 30, with two of them already on the market. However, there is no rigorous mechanistic model that describes pharmacokinetic (PK) properties of these compounds. PK modeling of ADCs is even more complicated than that of other biologics as the model should describe distribution, binding, and elimination of antibodies with different toxin load, and also the deconjugation process and PK of the released toxin. This work extends the target-mediated drug disposition (TMDD) model to describe ADCs, derives the rapid binding (quasi-equilibrium), quasi-steady-state, and Michaelis-Menten approximations of the TMDD model as applied to ADCs, derives the TMDD model and its approximations for ADCs with load-independent properties, and discusses further simplifications of the system under various assumptions. The developed models are shown to describe data simulated from the available clinical population PK models of trastuzumab emtansine (T-DM1), one of the two currently approved ADCs. Identifiability of model parameters is also discussed and illustrated on the simulated T-DM1 examples.

  7. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    International Nuclear Information System (INIS)

    Alexiou, Christoph; Tietze, Rainer; Schreiber, Eveline; Jurgons, Roland; Richter, Heike; Trahms, Lutz; Rahn, Helene; Odenbach, Stefan; Lyer, Stefan

    2011-01-01

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: →Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. → Histology evidences the intravasation of particles enter the intracellular space. → Non-invasive imaging techniques can display the spatial arrangement of particles. → HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  8. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, Christoph, E-mail: c.alexiou@web.d [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Tietze, Rainer; Schreiber, Eveline [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Jurgons, Roland [Franz Penzoldt Center, University Hospital Erlangen (Germany); Richter, Heike; Trahms, Lutz [PTB Berlin (Germany); Rahn, Helene; Odenbach, Stefan [TU Dresden, Chair of Magnetofluiddynamics, 01062 Dresden (Germany); Lyer, Stefan [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany)

    2011-05-15

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. Histology evidences the intravasation of particles enter the intracellular space. Non-invasive imaging techniques can display the spatial arrangement of particles. HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  9. Micro RNA, A Review: Pharmacogenomic drug targets for complex diseases

    Directory of Open Access Journals (Sweden)

    Sandhya Bawa

    2010-01-01

    Full Text Available

    Micro RNAs (miRNAs are non-coding RNAs that can regulate gene expression to target several mRNAs in a gene regulatory network. MiRNA related Single Nucleotide Polymorphisms (S.N.P.s represent a newly identified type of genetic variability that can be of influence to the risk of certain human diseases and also affect how drugs can be activated and metabolized by patients. This will help in personalized medicines which are used for administrating the correct dosage of drug and drug efficacy. miRNA deregulated expression has been extensively described in a variety of diseases such as Cancer, Obesity , Diabetes, Schizophrenia and control and self renewal of stem cells. MiRNA can function as oncogenes and/or tumor suppressors. MiRNAs may act as key regulators of processes as diverse as early development, cell proliferation and cell death, apoptosis and fat metabolism and cell differentiation .miRNA expression have shown their role in brain development chronic lymphocytic leukemia, colonic adeno carcinoma, Burkiff’s lymphoma and viral infection. These show their links with viral disease, neurodevelopment and cancer. It has been shown that they play a key role in melanoma metastasis. These may be

  10. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals.

    Science.gov (United States)

    Ahmed, Asma; Felmlee, Daniel J

    2015-12-18

    There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR) rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.

  11. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals

    Directory of Open Access Journals (Sweden)

    Asma Ahmed

    2015-12-01

    Full Text Available There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.

  12. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing.

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    Full Text Available The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research.

  13. Novel Methods for Drug-Target Interaction Prediction using Graph Mining

    KAUST Repository

    Ba Alawi, Wail

    2016-01-01

    -target interactions (DTIs) before any experiments are done. However, many of these approaches suffer from unacceptable levels of false positives. We developed two novel methods based on graph mining networks of drugs and targets. The first method (DASPfind) finds all

  14. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  15. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information.

    Science.gov (United States)

    Luo, Yunan; Zhao, Xinbin; Zhou, Jingtian; Yang, Jinglin; Zhang, Yanqing; Kuang, Wenhua; Peng, Jian; Chen, Ligong; Zeng, Jianyang

    2017-09-18

    The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. In this work, we develop a computational pipeline, called DTINet, to predict novel drug-target interactions from a constructed heterogeneous network, which integrates diverse drug-related information. DTINet focuses on learning a low-dimensional vector representation of features, which accurately explains the topological properties of individual nodes in the heterogeneous network, and then makes prediction based on these representations via a vector space projection scheme. DTINet achieves substantial performance improvement over other state-of-the-art methods for drug-target interaction prediction. Moreover, we experimentally validate the novel interactions between three drugs and the cyclooxygenase proteins predicted by DTINet, and demonstrate the new potential applications of these identified cyclooxygenase inhibitors in preventing inflammatory diseases. These results indicate that DTINet can provide a practically useful tool for integrating heterogeneous information to predict new drug-target interactions and repurpose existing drugs.Network-based data integration for drug-target prediction is a promising avenue for drug repositioning, but performance is wanting. Here, the authors introduce DTINet, whose performance is enhanced in the face of noisy, incomplete and high-dimensional biological data by learning low-dimensional vector representations.

  16. Quantitative Analysis of a Parasitic Antiviral Strategy

    OpenAIRE

    Kim, Hwijin; Yin, John

    2004-01-01

    We extended a computer simulation of viral intracellular growth to study a parasitic antiviral strategy that diverts the viral replicase toward parasite growth. This strategy inhibited virus growth over a wide range of conditions, while minimizing host cell perturbations. Such parasitic strategies may inhibit the development of drug-resistant virus strains.

  17. Anti-viral effect of herbal medicine Korean traditional Cynanchum ...

    African Journals Online (AJOL)

    Background: Pestiviruses in general, and Bovine Viral Diarrhea (BVD) in particular, present several potential targets for directed antiviral therapy. Material and Methods: The antiviral effect of Cynanchum paniculatum (Bge.) Kitag (Dog strangling vine: DS) extract on the bovine viral diarrhea (BVD) virus was tested. First ...

  18. Drug-target residence time--a case for G protein-coupled receptors.

    Science.gov (United States)

    Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H

    2014-07-01

    A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.

  19. Structural systems pharmacology: a new frontier in discovering novel drug targets.

    Science.gov (United States)

    Tan, Hepan; Ge, Xiaoxia; Xie, Lei

    2013-08-01

    The modern target-based drug discovery process, characterized by the one-drug-one-gene paradigm, has been of limited success. In contrast, phenotype-based screening produces thousands of active compounds but gives no hint as to what their molecular targets are or which ones merit further research. This presents a question: What is a suitable target for an efficient and safe drug? In this paper, we argue that target selection should take into account the proteome-wide energetic and kinetic landscape of drug-target interactions, as well as their cellular and organismal consequences. We propose a new paradigm of structural systems pharmacology to deconvolute the molecular targets of successful drugs as well as to identify druggable targets and their drug-like binders. Here we face two major challenges in structural systems pharmacology: How do we characterize and analyze the structural and energetic origins of drug-target interactions on a proteome scale? How do we correlate the dynamic molecular interactions to their in vivo activity? We will review recent advances in developing new computational tools for biophysics, bioinformatics, chemoinformatics, and systems biology related to the identification of genome-wide target profiles. We believe that the integration of these tools will realize structural systems pharmacology, enabling us to both efficiently develop effective therapeutics for complex diseases and combat drug resistance.

  20. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

    1. Targeted drug delivery and penetration into solid tumors.

      Science.gov (United States)

      Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

      2012-09-01

      Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

    2. Glutamatergic Targets for Enhancing Extinction Learning in Drug Addiction

      OpenAIRE

      Cleva, R.M; Gass, J.T; Widholm, J.J; Olive, M.F

      2010-01-01

      The persistence of the motivational salience of drug-related environmental cues and contexts is one of the most problematic obstacles to successful treatment of drug addiction. Behavioral approaches to extinguishing the salience of drug-associated cues, such as cue exposure therapy, have generally produced disappointing results which have been attributed to, among other things, the context specificity of extinction and inadequate consolidation of extinction learning. Extinction of any behavio...

    3. Target Essentiality and Centrality Characterize Drug Side Effects

      OpenAIRE

      Wang, Xiujuan; Thijssen, Bram; Yu, Haiyuan

      2013-01-01

      Author Summary The ultimate goal of medical research is to develop effective treatments for disease with minimal side effects. Currently, about 20% of drug candidates failed at clinical trial phases II and III due to safety issues. Therefore, understanding the determining factors of drug side effects is of paramount importance to human health and the pharmaceutical industry. Here, we present the first systematic study to uncover key factors leading to drug side effects within the framework of...

    4. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery

      NARCIS (Netherlands)

      Shi, Y.; Lammers, Twan Gerardus Gertudis Maria; Storm, Gerrit; Hennink, W.E.

      2017-01-01

      Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on

    5. Antiviral Resistance to Influenza Viruses: Clinical and Epidemiological Aspects

      NARCIS (Netherlands)

      van der Vries, E.

      2017-01-01

      There are three classes of antiviral drugs approved for the treatment of influenza: the M2 ion channel inhibitors (amantadine, rimantadine), neuraminidase (NA) inhibitors (laninamivir, oseltamivir, peramivir, zanamivir), and the protease inhibitor (favipiravir); some of the agents are only available

    6. Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth

      Science.gov (United States)

      Al-Ali, Hassan; Lee, Do-Hun; Danzi, Matt C.; Nassif, Houssam; Gautam, Prson; Wennerberg, Krister; Zuercher, Bill; Drewry, David H.; Lee, Jae K.; Lemmon, Vance P.; Bixby, John L.

      2016-01-01

      Mammalian Central Nervous System (CNS) neurons regrow their axons poorly following injury, resulting in irreversible functional losses. Identifying therapeutics that encourage CNS axon repair has been difficult, in part because multiple etiologies underlie this regenerative failure. This suggests a particular need for drugs that engage multiple molecular targets. Although multi-target drugs are generally more effective than highly selective alternatives, we lack systematic methods for discovering such drugs. Target-based screening is an efficient technique for identifying potent modulators of individual targets. In contrast, phenotypic screening can identify drugs with multiple targets; however, these targets remain unknown. To address this gap, we combined the two drug discovery approaches using machine learning and information theory. We screened compounds in a phenotypic assay with primary CNS neurons and also in a panel of kinase enzyme assays. We used learning algorithms to relate the compounds’ kinase inhibition profiles to their influence on neurite outgrowth. This allowed us to identify kinases that may serve as targets for promoting neurite outgrowth, as well as others whose targeting should be avoided. We found that compounds that inhibit multiple targets (polypharmacology) promote robust neurite outgrowth in vitro. One compound with exemplary polypharmacology, was found to promote axon growth in a rodent spinal cord injury model. A more general applicability of our approach is suggested by its ability to deconvolve known targets for a breast cancer cell line, as well as targets recently shown to mediate drug resistance. PMID:26056718

    7. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

      Science.gov (United States)

      Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

      2017-11-01

      Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

    8. Elucidating antimalarial drug targets/mode-of-action by application of system biology technologies

      CSIR Research Space (South Africa)

      Becker, J

      2008-11-01

      Full Text Available targets/mode-of-action by application of systems biology technologies J BECKER, L MTWISHA, B CRAMPTON AND D MANCAMA CSIR Biosciences, PO Box 395, Pretoria, 0001, South Africa Email: JBecker@csir.co.za – www.csir.co.za INTRODUCTION Malaria is one... The objective of this study was to use systems biology tools to unravel the drug target/mode-of-action (MoA) of an antimalarial drug (cyclohexylamine) with a known drug target/MoA, by analysing differential expression profiles of drug treated vs untreated...

    9. Targeting the ECM to Enhance Drug Delivery in Nf1-Associated Nerve Sheath Tumors

      Science.gov (United States)

      2016-10-01

      development of the principal discipline(s) of the project? • We have learned that the drug PEGPH20, which degrades a component of connective tissue called...AWARD NUMBER: W81XWH-15-1-0114 TITLE: Targeting the ECM to Enhance Drug Delivery in Nf1-Associated Nerve Sheath Tumors PRINCIPAL INVESTIGATOR...14 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER NF140089 Targeting the ECM to Enhance Drug Delivery in Nf1-Associated Nerve Sheath Tumors 5b

    10. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome

      OpenAIRE

      Burkhart, Keith K.; Abernethy, Darrell; Jackson, David

      2015-01-01

      Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was al...

    11. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment

      Energy Technology Data Exchange (ETDEWEB)

      Hanke, Leo; Knockenhauer, Kevin E.; Brewer, R. Camille; van Diest, Eline; Schmidt, Florian I.; Schwartz, Thomas U.; Ploegh, Hidde L. (Whitehead); (MIT)

      2016-12-13

      Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of host range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies.

      IMPORTANCEInfluenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and

    12. Antiviral Effects of Saffron and its Major Ingredients.

      Science.gov (United States)

      Soleymani, Sepehr; Zabihollahi, Rezvan; Shahbazi, Sepideh; Bolhassani, Azam

      2018-01-01

      The lack of an effective vaccine against viral infections, toxicity of the synthetic anti-viral drugs and the generation of resistant viral strains led to discover novel inhibitors. Recently, saffron and its compounds were used to treat different pathological conditions. In this study, we tested the anti-HSV-1 and anti-HIV-1 activities of Iranian saffron extract and its major ingredients including crocin and picrocrocin as well as cytotoxicity in vitro. The data showed that the aqueous saffron extract was not active against HIV-1 and HSV-1 virions at certain doses (i.e., a mild activity), but crocin and picrocrocin indicated significant anti-HSV-1 and also anti-HIV-1 activities. Crocin inhibited the HSV replication at before and after entry of virions into Vero cells. Indeed, crocin carotenoid suppressed HSV penetration in the target cells as well as disturbed virus replication after entry into the cells. Picrocrocin was also effective for inhibiting virus entry and also its replication. This monoterpen aldehyde showed higher anti-HSV effects after virus penetrating in the cells. Generally, these sugar-containing compounds extracted from saffron showed to be effective antiherpetic drug candidates. The recent study is the first report suggesting antiviral activities for saffron extract and its major ingredients. Crocin and picrocrocin could be a promising anti-HSV and anti-HIV agent for herbal therapy against viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

    13. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV): consequences of deficient interferon-dependent antiviral defense

      International Nuclear Information System (INIS)

      Echchgadda, Ibtissam; Chang, Te-Hung; Sabbah, Ahmed; Bakri, Imad; Ikeno, Yuji; Hubbard, Gene B; Chatterjee, Bandana; Bose, Santanu

      2011-01-01

      Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in restricting infection was further

    14. The design of drugs for HIV and HCV.

      Science.gov (United States)

      De Clercq, Erik

      2007-12-01

      Since the discovery of the human immunodeficiency virus (HIV) in 1983, dramatic progress has been made in the development of novel antiviral drugs. The HIV epidemic fuelled the development of new antiviral drug classes, which are now combined to provide highly active antiretroviral therapies. The need for the treatment of hepatitis C virus (HCV), which was discovered in 1989, has also provided considerable impetus for the development of new classes of antiviral drugs, and future treatment strategies for chronic HCV might involve combination regimens that are analogous to those currently used for HIV. By considering the drug targets in the different stages of the life cycle of these two viruses, this article presents aspects of the history, medicinal chemistry and mechanisms of action of approved and investigational drugs for HIV and HCV, and highlights general lessons learned from anti-HIV-drug design that could be applied to HCV.

    15. Pharmacological approaches for Alzheimer's disease: neurotransmitter as drug targets.

      Science.gov (United States)

      Prakash, Atish; Kalra, Jaspreet; Mani, Vasudevan; Ramasamy, Kalavathy; Majeed, Abu Bakar Abdul

      2015-01-01

      Alzheimer's disease (AD) is the most common CNS disorder occurring worldwide. There is neither proven effective prevention for AD nor a cure for patients with this disorder. Hence, there is an urgent need to develop safer and more efficacious drugs to help combat the tremendous increase in disease progression. The present review is an attempt at discussing the treatment strategies and drugs under clinical trials governing the modulation of neurotransmitter. Therefore, looking at neurotransmitter abnormalities, there is an urge for developing the pharmacological approaches aimed at correcting those abnormalities and dysfunctioning. In addition, this review also discusses the drugs that are in Phase III trials for the treatment of AD. Despite advances in treatment strategies aimed at correcting neurotransmitter abnormalities, there exists a need for the development of drug therapies focusing on the attempts to remove the pathogenomic protein deposits, thus combating the disease progression.

    16. Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication.

      Science.gov (United States)

      Merino-Ramos, Teresa; Vázquez-Calvo, Ángela; Casas, Josefina; Sobrino, Francisco; Saiz, Juan-Carlos; Martín-Acebes, Miguel A

      2016-01-01

      West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bite of mosquitoes that causes meningitis and encephalitis in humans, horses, and birds. Several studies have highlighted that flavivirus infection is highly dependent on cellular lipids for virus replication and infectious particle biogenesis. The first steps of lipid synthesis involve the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA that is catalyzed by the acetyl-CoA carboxylase (ACC). This makes ACC a key enzyme of lipid synthesis that is currently being evaluated as a therapeutic target for different disorders, including cancers, obesity, diabetes, and viral infections. We have analyzed the effect of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) on infection by WNV. Lipidomic analysis of TOFA-treated cells confirmed that this drug reduced the cellular content of multiple lipids, including those directly implicated in the flavivirus life cycle (glycerophospholipids, sphingolipids, and cholesterol). Treatment with TOFA significantly inhibited the multiplication of WNV in a dose-dependent manner. Further analysis of the antiviral effect of this drug showed that the inhibitory effect was related to a reduction of viral replication. Furthermore, treatment with another ACC inhibitor, 3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16), also inhibited WNV infection. Interestingly, TOFA and MEDICA 16 also reduced the multiplication of Usutu virus (USUV), a WNV-related flavivirus. These results point to the ACC as a druggable cellular target suitable for antiviral development against WNV and other flaviviruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

    17. Nanoparticles laden in situ gelling system for ocular drug targeting

      Directory of Open Access Journals (Sweden)

      Divya Kumar

      2013-01-01

      Full Text Available Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development.

    18. HIV LIFE CYCLE AND POTENTIAl TARGETS FOR DRUG ACTIVITY

      African Journals Online (AJOL)

      TABLE Ill. STAGES IN THE HIV UFE CYCLE THAT ARE TARGETS FOR CURRENTLY AVAIlABLE ANTIRETROVIRAlS. Fig. 7. Life cycle ofHIVand targets for ontiretrovirol theropy. (Reproduced with permission from: 5Miller, The Clinician's Guide to. Antiretroviral Resistance, 2007.) JULY 2002. Budding: immature virus.

    19. Targeting DDX3 in cancer: personalized drug development and delivery

      NARCIS (Netherlands)

      Bol, G.M.

      2013-01-01

      Cancer begins when a cell in an organ of our body starts to grow uncontrollably. Only recently has it become clear that targeting the cancer cells’ dependency on specific proteins, rather than their origin, has greater therapeutic potential. The vast majority of potential targets for cancer therapy

    20. The antiviral drug tenofovir, an inhibitor of Pannexin-1-mediated ATP release, prevents liver and skin fibrosis by downregulating adenosine levels in the liver and skin.

      Directory of Open Access Journals (Sweden)

      Jessica L Feig

      Full Text Available Fibrosing diseases are a leading cause of morbidity and mortality worldwide and, therefore, there is a need for safe and effective antifibrotic therapies. Adenosine, generated extracellularly by the dephosphorylation of adenine nucleotides, ligates specific receptors which play a critical role in development of hepatic and dermal fibrosis. Results of recent clinical trials indicate that tenofovir, a widely used antiviral agent, reverses hepatic fibrosis/cirrhosis in patients with chronic hepatitis B infection. Belonging to the class of acyclic nucleoside phosphonates, tenofovir is an analogue of AMP. We tested the hypothesis that tenofovir has direct antifibrotic effects in vivo by interfering with adenosine pathways of fibrosis using two distinct models of adenosine and A2AR-mediated fibrosis.Thioacetamide (100mg/kg IP-treated mice were treated with vehicle, or tenofovir (75mg/kg, SubQ (n = 5-10. Bleomycin (0.25U, SubQ-treated mice were treated with vehicle or tenofovir (75mg/kg, IP (n = 5-10. Adenosine levels were determined by HPLC, and ATP release was quantitated as luciferase-dependent bioluminescence. Skin breaking strength was analysed and H&E and picrosirus red-stained slides were imaged. Pannexin-1expression was knocked down following retroviral-mediated expression of of Pannexin-1-specific or scrambled siRNA.Treatment of mice with tenofovir diminished adenosine release from the skin of bleomycin-treated mice and the liver of thioacetamide-treated mice, models of diffuse skin fibrosis and hepatic cirrhosis, respectively. More importantly, tenofovir treatment diminished skin and liver fibrosis in these models. Tenofovir diminished extracellular adenosine concentrations by inhibiting, in a dose-dependent fashion, cellular ATP release but not in cells lacking Pannexin-1.These studies suggest that tenofovir, a widely used antiviral agent, could be useful in the treatment of fibrosing diseases.

    1. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition

      DEFF Research Database (Denmark)

      Mollerup, Christian Brinch; Dalsgaard, Petur Weihe; Mardal, Marie

      2017-01-01

      of peaks to inspect by three orders of magnitude, down to four peaks per DUID sample. The screening allowed for tentative identification of metabolites and drugs not included in the initial screening, and three drugs and thirteen metabolites were tentatively identified in the authentic DUID samples......High-resolution mass spectrometry (HRMS) is widely used for the drug screening of biological samples in clinical and forensic laboratories. With the continuous addition of new psychoactive substances (NPS), keeping such methods updated is challenging. HRMS allows for combined targeted and non......-targeted screening; first, peaks are identified by software algorithms, and identifications are based on reference standard data. Remaining unknown peaks are attempted identified with in silico and literature data. However, several thousand peaks remain where most are unidentifiable or uninteresting in drug...

    2. Intensive care unit drug costs in the context of total hospital drug expenditures with suggestions for targeted cost containment efforts.

      Science.gov (United States)

      Altawalbeh, Shoroq M; Saul, Melissa I; Seybert, Amy L; Thorpe, Joshua M; Kane-Gill, Sandra L

      2018-04-01

      To assess costs of intensive care unit (ICU) related pharmacotherapy relative to hospital drug expenditures, and to identify potential targets for cost-effectiveness investigations. We offer the unique advantage of comparing ICU drug costs with previously published data a decade earlier to describe changes over time. Financial transactions for all ICU patients during fiscal years (FY) 2009-2012 were retrieved from the hospital's data repository. ICU drug costs were evaluated for each FY. ICU departments' charges were also retrieved and calculated as percentages of total ICU charges. Albumin, prismasate (dialysate), voriconazole, factor VII and alteplase denoted the highest percentages of ICU drug costs. ICU drug costs contributed to an average of 31% (SD 1.0%) of the hospital's total drug costs. ICU drug costs per patient day increased by 5.8% yearly versus 7.8% yearly for non-ICU drugs. This rate was higher for ICU drugs costs at 12% a decade previous. Pharmacy charges contributed to 17.7% of the total ICU charges. Growth rates of costs per year have declined but still drug expenditures in the ICU are consistently a significant driver in this resource intensive environment with a high impact on hospital drug expenditures. Copyright © 2017 Elsevier Inc. All rights reserved.

    3. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

      Science.gov (United States)

      Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

      2009-06-01

      Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

    4. Drug targeting systems for inflammatory disease: one for all, all for one

      NARCIS (Netherlands)

      Crielaard, B.J.; Lammers, Twan Gerardus Gertudis Maria; Schiffelers, R.M.; Storm, Gerrit

      2012-01-01

      Abstract In various systemic disorders, structural changes in the microenvironment of diseased tissues enable both passive and active targeting of therapeutic agents to these tissues. This has led to a number of targeting approaches that enhance the accumulation of drugs in the target tissues,

    5. Pharmacotherapies for decreasing maladaptive choice in drug addiction: Targeting the behavior and the drug.

      Science.gov (United States)

      Perkins, Frank N; Freeman, Kevin B

      2018-01-01

      Drug addiction can be conceptualized as a disorder of maladaptive decision making in which drugs are chosen at the expense of pro-social, nondrug alternatives. The study of decision making in drug addiction has focused largely on the role of impulsivity as a facilitator of addiction, in particular the tendency for drug abusers to choose small, immediate gains over larger but delayed outcomes (i.e., delay discounting). A parallel line of work, also focused on decision making in drug addiction, has focused on identifying the determinants underlying the choice to take drugs over nondrug alternatives (i.e., drug vs. nondrug choice). Both tracks of research have been valuable tools in the development of pharmacotherapies for treating maladaptive decision making in drug addiction, and a number of common drugs have been studied in both designs. However, we have observed that there is little uniformity in the administration regimens of potential treatments between the designs, which hinders congruence in the development of single treatment strategies to reduce both impulsive behavior and drug choice. The current review provides an overview of the drugs that have been tested in both delay-discounting and drug-choice designs, and focuses on drugs that reduced the maladaptive choice in both designs. Suggestions to enhance congruence between the findings in future studies are provided. Finally, we propose the use of a hybridized, experimental approach that may enable researchers to test the effectiveness of therapeutics at decreasing impulsive and drug choice in a single design. Published by Elsevier Inc.

    6. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery.

      Science.gov (United States)

      Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

      2016-01-01

      Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

    7. Some Remarks on Prediction of Drug-Target Interaction with Network Models.

      Science.gov (United States)

      Zhang, Shao-Wu; Yan, Xiao-Ying

      2017-01-01

      System-level understanding of the relationships between drugs and targets is very important for enhancing drug research, especially for drug function repositioning. The experimental methods used to determine drug-target interactions are usually time-consuming, tedious and expensive, and sometimes lack reproducibility. Thus, it is highly desired to develop computational methods for efficiently and effectively analyzing and detecting new drug-target interaction pairs. With the explosive growth of different types of omics data, such as genome, pharmacology, phenotypic, and other kinds of molecular networks, numerous computational approaches have been developed to predict Drug-Target Interactions (DTI). In this review, we make a survey on the recent advances in predicting drug-target interaction with network-based models from the following aspects: i) Available public data sources and benchmark datasets; ii) Drug/target similarity metrics; iii) Network construction; iv) Common network algorithms; v) Performance comparison of existing network-based DTI predictors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

    8. Identification of drug targets by chemogenomic and metabolomic profiling in yeast

      KAUST Repository

      Wu, Manhong

      2012-12-01

      OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

    9. Systems biology-embedded target validation: improving efficacy in drug discovery.

      Science.gov (United States)

      Vandamme, Drieke; Minke, Benedikt A; Fitzmaurice, William; Kholodenko, Boris N; Kolch, Walter

      2014-01-01

      The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment. © 2013 Wiley Periodicals, Inc.

    10. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome.

      Science.gov (United States)

      Burkhart, Keith K; Abernethy, Darrell; Jackson, David

      2015-06-01

      Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was also analyzed for an internal comparison of the drugs most highly associated with SJS. Cyclooxygenases 1 and 2, carbonic anhydrase 2, and sodium channel 2 alpha were identified as disproportionately associated with SJS. Cytochrome P450 (CYPs) 3A4 and 2C9 are disproportionately represented as metabolizing enzymes of the drugs associated with SJS adverse event reports. Multidrug resistance protein 1 (MRP-1), organic anion transporter 1 (OAT1), and PEPT2 were also identified and are highly associated with the transport of these drugs. A detailed review of the molecular targets identifies important roles for these targets in immune response. The association with CYP metabolizing enzymes suggests that reactive metabolites and oxidative stress may have a contributory role. Drug transporters may enhance intracellular tissue concentrations and also have vital physiologic roles that impact keratinocyte proliferation and survival. Data mining FAERS may be used to hypothesize mechanisms for adverse drug events by identifying molecular targets that are highly associated with drug-induced adverse events. The information gained may contribute to systems biology disease models.

    11. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

      Science.gov (United States)

      Gibiansky, Leonid; Gibiansky, Ekaterina

      2018-02-01

      The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

    12. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing

      DEFF Research Database (Denmark)

      Oprea, Tudor; Nielsen, Sonny Kim; Ursu, Oleg

      2011-01-01

      benefit from an integrated, semantic-web compliant computer-aided drug repurposing (CADR) effort, one that would enable deep data mining of associations between approved drugs (D), targets (T), clinical outcomes (CO) and SE. We report preliminary results from text mining and multivariate statistics, based...... on 7684 approved drug labels, ADL (Dailymed) via text mining. From the ADL corresponding to 988 unique drugs, the "adverse reactions" section was mapped onto 174 SE, then clustered via principal component analysis into a 5 x 5 self-organizing map that was integrated into a Cytoscape network of SE......Finding new uses for old drugs is a strategy embraced by the pharmaceutical industry, with increasing participation from the academic sector. Drug repurposing efforts focus on identifying novel modes of action, but not in a systematic manner. With intensive data mining and curation, we aim to apply...

    13. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast.

      Directory of Open Access Journals (Sweden)

      Elke Ericson

      2008-08-01

      Full Text Available To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac interfered with establishment of cell polarity, cyproheptadine (Periactin targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol and pimozide (Orap. Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes.

    14. Targeted drug delivery to the brain using magnetic nanoparticles.

      Science.gov (United States)

      Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

      2015-01-01

      Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain.

    15. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

      Science.gov (United States)

      Chen, Xinli; Liu, Lisha; Jiang, Chen

      2016-07-01

      Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

    16. Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations.

      Science.gov (United States)

      Vilar, Santiago; Hripcsak, George

      2016-01-01

      Drug-target identification is crucial to discover novel applications for existing drugs and provide more insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect discovery. In this article, we propose a method based on the integration of 3D chemical similarity, target and adverse effect data to generate a drug-target-adverse effect predictor along with a simple leveraging system to improve identification of drug-targets and drug-adverse effects. In the first step, we generated a system for multiple drug-target identification based on the application of 3D drug similarity into a large target dataset extracted from the ChEMBL. Next, we developed a target-adverse effect predictor combining targets from ChEMBL with phenotypic information provided by SIDER data source. Both modules were linked to generate a final predictor that establishes hypothesis about new drug-target-adverse effect candidates. Additionally, we showed that leveraging drug-target candidates with phenotypic data is very useful to improve the identification of drug-targets. The integration of phenotypic data into drug-target candidates yielded up to twofold precision improvement. In the opposite direction, leveraging drug-phenotype candidates with target data also yielded a significant enhancement in the performance. The modeling described in the current study is simple and efficient and has applications at large scale in drug repurposing and drug safety through the identification of mechanism of action of biological effects.

    17. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

      Science.gov (United States)

      Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

      2018-05-31

      Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

    18. Quantitative modeling of selective lysosomal targeting for drug design

      DEFF Research Database (Denmark)

      Trapp, Stefan; Rosania, G.; Horobin, R.W.

      2008-01-01

      log K ow. These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range...... predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation...

    19. TCGA bladder cancer study reveals potential drug targets

      Science.gov (United States)

      Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

    20. For Some Skin Cancers, Targeted Drug Hits the Mark

      Science.gov (United States)

      ... Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All Cancer Types ... Carcinoma Treatment Skin Cancer Prevention Genetics of Skin Cancer Skin Cancer Screening Research For Some Skin Cancers, Targeted ...

    1. Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics

      Science.gov (United States)

      2014-01-01

      Background The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. Results We use this approach to prioritize genes as drug target candidates in a set of ER + breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER + breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Conclusions Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use. PMID:24495353

    2. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

      Science.gov (United States)

      Palmer, Brian C.; DeLouise, Lisa A.

      2017-01-01

      Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

    3. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

      Science.gov (United States)

      Palmer, Brian C; DeLouise, Lisa A

      2016-12-15

      Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

    4. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction

      Directory of Open Access Journals (Sweden)

      Ronald E. See

      2011-06-01

      Full Text Available Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of relapse. Here, we review the evidence for the role of orexins in modulating reward and drug-seeking in animal models of addiction and the potential for orexin receptors as specific targets for anti-relapse medication approaches.

    5. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

      Directory of Open Access Journals (Sweden)

      Brian C. Palmer

      2016-12-01

      Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

    6. Identification of anti-HBV activities in Paeonia suffruticosa Andr. using GRP78 as a drug target on Herbochip®.

      Science.gov (United States)

      Lam, Iao-Fai; Huang, Min; Chang, Margaret Dah-Tysr; Yao, Pei-Wun; Chou, Yu-Ting; Ng, Sim-Kun; Tsai, Ying-Lin; Lin, Yu-Chang; Zhang, Yun-Feng; Yang, Xiao-Yuan; Lai, Yiu-Kay

      2017-01-01

      Herbochip ® technology is a high throughput drug screening platform in a reverse screening manner, in which potential chemical leads in herbal extracts are immobilized and drug target proteins can be used as probes for screening process [BMC Complementary and Alternative Medicine (2015) 15:146]. While herbal medicines represent an ideal reservoir for drug screenings, here a molecular chaperone GRP78 is demonstrated to serve as a potential target for antiviral drug discovery. We cloned and expressed a truncated but fully functional form of human GRP78 (hGRP78 1-508 ) and used it as a probe for anti-HBV drug screening on herbochips. In vitro cytotoxicity and in vitro anti-HBV activity of the herbal extracts were evaluated by MTT and ELISA assays, respectively. Finally, anti-HBV activity was confirmed by in vivo assay using DHBV DNA levels in DHBV-infected ducklings as a model. Primary screenings using GRP78 on 40 herbochips revealed 11 positives. Four of the positives, namely Dioscorea bulbifera , Lasiosphaera fenzlii , Paeonia suffruticosa and Polygonum cuspidatum were subjected to subsequent assays. None of the above extracts was cytotoxic to AML12 cells, but P. cuspidatum extract (PCE) was found to be cytotoxic to HepG2 2.2.15 cells. Both PCE and P. suffruticosa extract (PSE) suppressed secretion of HBsAg and HBeAg in HepG2 2.2.15 cells. The anti-HBV activity of PSE was further confirmed in vivo. We have demonstrated that GRP78 is a valid probe for anti-HBV drug screening on herbochips. We have also shown that PSE, while being non-cytotoxic, possesses in vitro and in vivo anti-HBV activities. Taken together, our data suggest that PSE may be a potential anti-HBV agent for therapeutic use.

    7. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.

      Science.gov (United States)

      Guo, Wei-Feng; Zhang, Shao-Wu; Shi, Qian-Qian; Zhang, Cheng-Ming; Zeng, Tao; Chen, Luonan

      2018-01-19

      The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes). Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng . In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the

    8. Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

      International Nuclear Information System (INIS)

      Tan Zhonghua

      2003-01-01

      Biochemistry drug, at present, is still the main tool that human struggle to defeat the diseases. So, developing safe and efficacious technique of drug targeting delivery and controlled release is key to enhance curative effect, decrease drug dosage, and lessen its side effect. Drug-loaded nanoparticles, which is formed by conjugate between nanotechnology and modern pharmaceutics, is a new fashioned pharmic delivery carrier. Because of advantages in pharmic targeting transport and controlled or slow release and improving bioavailability, it has been one of developing trend of modern pharmaceutical dosage forms

    9. EphB1 as a Novel Drug Target to Combat Pain and Addiction

      Science.gov (United States)

      2017-09-01

      AWARD NUMBER: W81XWH-14-1-0220 TITLE: EphB1 as a Novel Drug Target to Combat Pain and Addiction PRINCIPAL INVESTIGATOR: Mark Henkemeyer...as a Novel Drug Target to Combat Pain and Ad 5a. CONTRACT NUMBER EphB1 as a Novel Drug Target to Combat Pain and Addiction 5b. GRANT NUMBER W81XWH...neuronal and has functions in vascular endothelial cells. 6. We have also carried out computational analysis of potantial docking/binding of chemical

    10. Therapeutic Targets for Influenza - Perspectives in Drug Development

      Czech Academy of Sciences Publication Activity Database

      Majerová, Taťána; Hoffman, H.; Majer, F.

      2010-01-01

      Roč. 75, č. 1 (2010), s. 81-103 ISSN 0010-0765 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : influenza * drug research * protein structure * oligonucleotides Subject RIV: CE - Biochemistry Impact factor: 0.853, year: 2010

    11. Discovering the first microRNA-targeted drug

      DEFF Research Database (Denmark)

      Lindow, Morten; Kauppinen, Sakari

      2012-01-01

      MicroRNAs (miRNAs) are important post-transcriptional regulators of nearly every biological process in the cell and play key roles in the pathogenesis of human disease. As a result, there are many drug discovery programs that focus on developing miRNA-based therapeutics. The most advanced...

    12. The Potential Impact of a Hepatitis C Vaccine for People Who Inject Drugs: Is a Vaccine Needed in the Age of Direct-Acting Antivirals?

      Directory of Open Access Journals (Sweden)

      Jack Stone

      Full Text Available The advent of highly effective hepatitis C (HCV treatments has questioned the need for a vaccine to control HCV amongst people who inject drugs (PWID. However, high treatment costs and ongoing reinfection risk suggest it could still play a role. We compared the impact of HCV vaccination amongst PWID against providing HCV treatment.Dynamic HCV vaccination and treatment models among PWID were used to determine the vaccination and treatment rates required to reduce chronic HCV prevalence or incidence in the UK over 20 or 40 years. Projections considered a low (50% protection for 5 years, moderate (70% protection for 10 years or high (90% protection for 20 years efficacy vaccine. Sensitivities to various parameters were examined.To halve chronic HCV prevalence over 40 years, the low, moderate and high efficacy vaccines required annual vaccination rates (coverage after 20 years of 162 (72%, 77 (56% and 44 (38% per 1000 PWID, respectively. These vaccination rates were 16, 7.6 and 4.4 times greater than corresponding treatment rates. To halve prevalence over 20 years nearly doubled these vaccination rates (moderate and high efficacy vaccines only and the vaccination-to-treatment ratio increased by 20%. For all scenarios considered, required annual vaccination rates and vaccination-to-treatment ratios were at least a third lower to reduce incidence than prevalence. Baseline HCV prevalence had little effect on the vaccine's impact on prevalence or incidence, but substantially affected the vaccination-to-treatment ratios. Behavioural risk heterogeneity only had an effect if we assumed no transitions between high and low risk states and vaccinations were targeted or if PWID were high risk for their first year.Achievable coverage levels of a low efficacy prophylactic HCV vaccine could greatly reduce HCV transmission amongst PWID. Current high treatment costs ensure vaccination could still be an important intervention option.

    13. The application of carbon nanotubes in target drug delivery systems for cancer therapies

      Science.gov (United States)

      Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

      2011-10-01

      Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

    14. A comparison of machine learning techniques for detection of drug target articles.

      Science.gov (United States)

      Danger, Roxana; Segura-Bedmar, Isabel; Martínez, Paloma; Rosso, Paolo

      2010-12-01

      Important progress in treating diseases has been possible thanks to the identification of drug targets. Drug targets are the molecular structures whose abnormal activity, associated to a disease, can be modified by drugs, improving the health of patients. Pharmaceutical industry needs to give priority to their identification and validation in order to reduce the long and costly drug development times. In the last two decades, our knowledge about drugs, their mechanisms of action and drug targets has rapidly increased. Nevertheless, most of this knowledge is hidden in millions of medical articles and textbooks. Extracting knowledge from this large amount of unstructured information is a laborious job, even for human experts. Drug target articles identification, a crucial first step toward the automatic extraction of information from texts, constitutes the aim of this paper. A comparison of several machine learning techniques has been performed in order to obtain a satisfactory classifier for detecting drug target articles using semantic information from biomedical resources such as the Unified Medical Language System. The best result has been achieved by a Fuzzy Lattice Reasoning classifier, which reaches 98% of ROC area measure. Copyright © 2010 Elsevier Inc. All rights reserved.

    15. A side-effect free method for identifying cancer drug targets.

      Science.gov (United States)

      Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

      2018-04-27

      Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

    16. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines

      Directory of Open Access Journals (Sweden)

      Vaks Lilach

      2011-12-01

      Full Text Available Abstract Background Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. Results With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. Conclusion Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine.

    17. PDTD: a web-accessible protein database for drug target identification

      Directory of Open Access Journals (Sweden)

      Gao Zhenting

      2008-02-01

      Full Text Available Abstract Background Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD, and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. Description PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. Conclusion PDTD serves as a comprehensive and

    18. Antiviral lead compounds from marine sponges

      KAUST Repository

      Sagar, Sunil

      2010-10-11

      Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

    19. Chemotherapy and Drug Targeting in the Treatment of Leishmaniasis

      Science.gov (United States)

      1989-05-30

      nucleotides with specific enzymes (67). Some commonly used purine analogs 20 6- Mercaptopurine 6-Thioguanine SH SH Ni N N N NH 2 NkN N H H Azathiopine CH3...Chemotherapeutic Drugs. 21 include: 6- Mercaptopurine , which is used for the treatment of acute leukemias (Fig 4). 6-Thioguanine, which is also used in the treatment... degradation of nucleic acids or nucleotides. In contrast, Leihmania. spp. rely primarily on the salvage pathways for their source of nucleotides. They

    20. Is PDE4 too difficult a drug target?

      Science.gov (United States)

      Higgs, Gerry

      2010-05-01

      The search for selective inhibitors of PDE4 as novel anti-inflammatory drugs has continued for more than 30 years. Although several compounds have demonstrated therapeutic effects in diseases such as asthma, COPD, atopic dermatitis and psoriasis, none have reached the market. A persistent challenge in the development of PDE4 inhibitors has been drug-induced gastrointestinal adverse effects, such as nausea. However, extensive clinical trials with well-tolerated doses of roflumilast (Daxas; Nycomed/Mitsubishi Tanabe Pharma Corp/Forest Laboratories Inc) in COPD, a disease that is generally unresponsive to existing therapies, have demonstrated significant therapeutic improvements. In addition, GlaxoSmithKline plc is developing 256066, an inhaled formulation of a PDE4 inhibitor that has demonstrated efficacy in trials in asthma, and apremilast from Celgene Corp has been reported to be effective for the treatment of psoriasis. Despite the challenges and complications that have been encountered during the development of PDE4 inhibitors, these drugs may provide a genuinely novel class of anti-inflammatory agents, and there are several compounds in development that could fulfill that promise.

    1. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

      Science.gov (United States)

      Upcroft, Peter; Upcroft, Jacqueline A.

      2001-01-01

      The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

    2. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

      Directory of Open Access Journals (Sweden)

      Oula Penate Medina

      2011-01-01

      Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

    3. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting

      NARCIS (Netherlands)

      Raavé , R.; Kuppevelt, T.H. van; Daamen, W.F.

      2018-01-01

      Systemic chemotherapy is a primary strategy in the treatment of cancer, but comes with a number of limitations such as toxicity and unfavorable biodistribution. To overcome these issues, numerous targeting systems for specific delivery of chemotherapeutics to tumor cells have been designed and

    4. Y-Trap Cancer Immunotherapy Drug Targets Two Proteins

      Science.gov (United States)

      Two groups of researchers, working independently, have fused a TGF-beta receptor to a monoclonal antibody that targets a checkpoint protein. The result, this Cancer Currents blog describes, is a single hybrid molecule called a Y-trap that blocks two pathways used by tumors to evade the immune system.

    5. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

      NARCIS (Netherlands)

      Tavanti, E.; Sero, V.; Vella, S.; Fanelli, M.; Michelacci, F.; Landuzzi, L.; Magagnoli, G.; Versteeg, R.; Picci, P.; Hattinger, C. M.; Serra, M.

      2013-01-01

      Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell

    6. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

      Science.gov (United States)

      Gibiansky, Leonid; Gibiansky, Ekaterina

      2017-10-01

      The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

    7. Identification of drug targets by chemogenomic and metabolomic profiling in yeast

      KAUST Repository

      Wu, Manhong; Zheng, Ming; Zhang, Weiruo; Suresh, Sundari; Schlecht, Ulrich; Fitch, William L.; Aronova, Sofia; Baumann, Stephan; Davis, Ronald; St.Onge, Robert; Dill, David L.; Peltz, Gary

      2012-01-01

      OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all

    8. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–2

      Directory of Open Access Journals (Sweden)

      Diego Muñoz-Torrero

      2017-12-01

      Full Text Available Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes is a series of Editorials, which are published on a biannual basis by the Editorial Board of the Medicinal Chemistry section of the journal Molecules [...

    9. Identification of novel small-molecule Ulex europaeus I mimetics for targeted drug delivery.

      Science.gov (United States)

      Hamashin, Christa; Spindler, Lisa; Russell, Shannon; Schink, Amy; Lambkin, Imelda; O'Mahony, Daniel; Houghten, Richard; Pinilla, Clemencia

      2003-11-17

      Lectin mimetics have been identified that may have potential application towards targeted drug delivery. Synthetic multivalent polygalloyl constructs effectively competed with Ulex europaeus agglutinin I (UEA1) for binding to intestinal Caco-2 cell membranes.

    10. Structure-based drug design approach to target toll-like receptor ...

      African Journals Online (AJOL)

      TLRs are now viewed as potential therapeutic targets in the treatment of autoimmune diseases. This ... Vascular endothelial growth factor. NMR .... induces the release of tumor necrosis factor ... Alternative anticancer drugs called CpG-based.

    11. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery

      Science.gov (United States)

      Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon

      2017-01-01

      Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible. PMID:28880220

    12. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

      Science.gov (United States)

      Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

      2015-01-01

      Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

    13. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

      Science.gov (United States)

      Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

      2018-02-08

      The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

    14. Targeting Extracellular Histones with Novel RNA Bio drugs for the Treatment of Acute Lung Injury

      Science.gov (United States)

      2017-10-01

      AWARD NUMBER: W81XWH-16-1-0179 TITLE: Targeting Extracellular Histones with Novel RNA Bio -drugs for the Treatment of Acute Lung Injury...4. TITLE AND SUBTITLE Targeting Extracellular Histones with Novel RNA Bio -drugs for the Treatment of Acute Lung Injury 5a. CONTRACT NUMBER 5b...and field situations. To accomplish this goal, we developed novel bio -reagents (RNA aptamers) that bind to those histones known to cause MODS/ARDS and

    15. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.

      Science.gov (United States)

      Zong, Nansu; Kim, Hyeoneui; Ngo, Victoria; Harismendy, Olivier

      2017-08-01

      A heterogeneous network topology possessing abundant interactions between biomedical entities has yet to be utilized in similarity-based methods for predicting drug-target associations based on the array of varying features of drugs and their targets. Deep learning reveals features of vertices of a large network that can be adapted in accommodating the similarity-based solutions to provide a flexible method of drug-target prediction. We propose a similarity-based drug-target prediction method that enhances existing association discovery methods by using a topology-based similarity measure. DeepWalk, a deep learning method, is adopted in this study to calculate the similarities within Linked Tripartite Network (LTN), a heterogeneous network generated from biomedical linked datasets. This proposed method shows promising results for drug-target association prediction: 98.96% AUC ROC score with a 10-fold cross-validation and 99.25% AUC ROC score with a Monte Carlo cross-validation with LTN. By utilizing DeepWalk, we demonstrate that: (i) this method outperforms other existing topology-based similarity computation methods, (ii) the performance is better for tripartite than with bipartite networks and (iii) the measure of similarity using network topology outperforms the ones derived from chemical structure (drugs) or genomic sequence (targets). Our proposed methodology proves to be capable of providing a promising solution for drug-target prediction based on topological similarity with a heterogeneous network, and may be readily re-purposed and adapted in the existing of similarity-based methodologies. The proposed method has been developed in JAVA and it is available, along with the data at the following URL: https://github.com/zongnansu1982/drug-target-prediction . nazong@ucsd.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

    16. GPCR homomers and heteromers: a better choice as targets for drug development than GPCR monomers?

      Science.gov (United States)

      Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Pérez-Capote, Kamil; Ferré, Sergi; Lluis, Carmen; Franco, Rafael; Canela, Enric I

      2009-11-01

      G protein-coupled receptors (GPCR) are targeted by many therapeutic drugs marketed to fight against a variety of diseases. Selection of novel lead compounds are based on pharmacological parameters obtained assuming that GPCR are monomers. However, many GPCR are expressed as dimers/oligomers. Therefore, drug development may consider GPCR as homo- and hetero-oligomers. A two-state dimer receptor model is now available to understand GPCR operation and to interpret data obtained from drugs interacting with dimers, and even from mixtures of monomers and dimers. Heteromers are distinct entities and therefore a given drug is expected to have different affinities and different efficacies depending on the heteromer. All these concepts would lead to broaden the therapeutic potential of drugs targeting GPCRs, including receptor heteromer-selective drugs with a lower incidence of side effects, or to identify novel pharmacological profiles using cell models expressing receptor heteromers.

    17. [Advances of tumor targeting peptides drug delivery system with pH-sensitive activities].

      Science.gov (United States)

      Ma, Yin-yun; Li, Li; Huang, Hai-feng; Gou, San-hu; Ni, Jing-man

      2016-05-01

      The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism,type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.

    18. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

      International Nuclear Information System (INIS)

      Moynie, Lucille; Schnell, Robert; McMahon, Stephen A.; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W.; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N.; Naismith, James H.; Schneider, Gunter

      2012-01-01

      A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery. Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns

    19. Pros and cons of the liposome platform in cancer drug targeting.

      Science.gov (United States)

      Gabizon, Alberto A; Shmeeda, Hilary; Zalipsky, Samuel

      2006-01-01

      Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil or Caelyx, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.

    20. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

      Science.gov (United States)

      Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

      2012-02-01

      The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

    1. Genome-wide identification of structural variants in genes encoding drug targets

      DEFF Research Database (Denmark)

      Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

      2012-01-01

      The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

    2. In vivo imaging of passively tumor targeted polymer carrier and the enzymatically cleavable drug model

      Czech Academy of Sciences Publication Activity Database

      Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

      2017-01-01

      Roč. 6, 4 (Suppl) (2017), s. 90 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA MZd(CZ) NV16-28594A Institutional support: RVO:61389013 Keywords : polymer drug carrier * tumor targeting * enzymatic release Subject RIV: FD - Oncology ; Hematology

    3. Host pharmacokinetics and drug accumulation of anthelmintics within target helminth parasites of ruminants.

      Science.gov (United States)

      Lifschitz, A; Lanusse, C; Alvarez, L

      2017-07-01

      Anthelmintic drugs require effective concentrations to be attained at the site of parasite location for a certain period to assure their efficacy. The processes of absorption, distribution, metabolism and excretion (pharmacokinetic phase) directly influence drug concentrations attained at the site of action and the resultant pharmacological effect. The aim of the current review article was to provide an overview of the relationship between the pharmacokinetic features of different anthelmintic drugs, their availability in host tissues, accumulation within target helminths and resulting therapeutic efficacy. It focuses on the anthelmintics used in cattle and sheep for which published information on the overall topic is available; benzimidazoles, macrocyclic lactones and monepantel. Physicochemical properties, such as water solubility and dissolution rate, determine the ability of anthelmintic compounds to accumulate in the target parasites and consequently final clinical efficacy. The transcuticular absorption process is the main route of penetration for different drugs in nematodes and cestodes. However, oral ingestion is a main route of drug entry into adult liver flukes. Among other factors, the route of administration may substantially affect the pharmacokinetic behaviour of anthelmintic molecules and modify their efficacy. Oral administration improves drug efficacy against nematodes located in the gastroinestinal tract especially if parasites have a reduced susceptibility. Partitioning of the drug between gastrointestinal contents, mucosal tissue and the target parasite is important to enhance the drug exposure of the nematodes located in the lumen of the abomasum and/or small intestine. On the other hand, large inter-animal variability in drug exposure and subsequent high variability in efficacy is observed after topical administration of anthelmintic compounds. As it has been extensively demonstrated under experimental and field conditions, understanding

    4. Nitric oxide-related drug targets in headache

      DEFF Research Database (Denmark)

      Olesen, Jes

      2010-01-01

      SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called del......SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so......-called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache....... Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human...

    5. Ribonucleotide reductase as a drug target against drug resistance Mycobacterium leprae: A molecular docking study.

      Science.gov (United States)

      Mohanty, Partha Sarathi; Bansal, Avi Kumar; Naaz, Farah; Gupta, Umesh Datta; Dwivedi, Vivek Dhar; Yadava, Umesh

      2018-06-01

      Leprosy is a chronic infection of skin and nerve caused by Mycobacterium leprae. The treatment is based on standard multi drug therapy consisting of dapsone, rifampicin and clofazamine. The use of rifampicin alone or with dapsone led to the emergence of rifampicin-resistant Mycobacterium leprae strains. The emergence of drug-resistant leprosy put a hurdle in the leprosy eradication programme. The present study aimed to predict the molecular model of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of nucleotides, to screen new drugs for treatment of drug-resistant leprosy. The study was conducted by retrieving RNR of M. leprae from GenBank. A molecular 3D model of M. leprae was predicted using homology modelling and validated. A total of 325 characters were included in the analysis. The predicted 3D model of RNR showed that the ϕ and φ angles of 251 (96.9%) residues were positioned in the most favoured regions. It was also conferred that 18 α-helices, 6 β turns, 2 γ turns and 48 helix-helix interactions contributed to the predicted 3D structure. Virtual screening of Food and Drug Administration approved drug molecules recovered 1829 drugs of which three molecules, viz., lincomycin, novobiocin and telithromycin, were taken for the docking study. It was observed that the selected drug molecules had a strong affinity towards the modelled protein RNR. This was evident from the binding energy of the drug molecules towards the modelled protein RNR (-6.10, -6.25 and -7.10). Three FDA-approved drugs, viz., lincomycin, novobiocin and telithromycin, could be taken for further clinical studies to find their efficacy against drug resistant leprosy. Copyright © 2018 Elsevier B.V. All rights reserved.

    6. Large-scale prediction of drug–target interactions using protein sequences and drug topological structures

      International Nuclear Information System (INIS)

      Cao Dongsheng; Liu Shao; Xu Qingsong; Lu Hongmei; Huang Jianhua; Hu Qiannan; Liang Yizeng

      2012-01-01

      Highlights: ► Drug–target interactions are predicted using an extended SAR methodology. ► A drug–target interaction is regarded as an event triggered by many factors. ► Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. ► Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug–target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug–target interactions in a timely manner. In this article, we aim at extending current structure–activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug–target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug–target interactions, and show a general compatibility between the new scheme and current SAR

    7. Smuggling Drugs into the Brain : An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier

      NARCIS (Netherlands)

      Zuhorn, Inge; Georgieva, Julia V.; Hoekstra, Dick

      2015-01-01

      The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics

    8. One For All? Hitting multiple Alzheimer’s Disease targets with one drug

      Directory of Open Access Journals (Sweden)

      Rebecca Ellen Hughes

      2016-04-01

      Full Text Available Alzheimer’s disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs. Intended as a introduction for non-experts, this review describes the key multi-target drug design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch and also the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer’s Disease are rasagiline, originally developed for the treatment of Parkinson’s Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.

    9. Mining predicted essential genes of Brugia malayi for nematode drug targets.

      Directory of Open Access Journals (Sweden)

      Sanjay Kumar

      Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

    10. The interferon response circuit in antiviral host defense.

      Science.gov (United States)

      Haller, O; Weber, F

      2009-01-01

      Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.

    11. Sirtuins: Novel targets for metabolic disease in drug development

      International Nuclear Information System (INIS)

      Jiang Weijian

      2008-01-01

      Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD + -dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes

    12. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

      Science.gov (United States)

      Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

      2011-07-01

      We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

    13. EphB1 as a Novel Drug Target to Combat Pain and Addiction

      Science.gov (United States)

      2016-09-01

      Award Number: W81XWH-14-1-0220 Project Title: EphB1 as a Novel Drug Target to Combat Pain and Addiction Principal Investigator Name: Mark...Pain and Addiction 5a. CONTRACT NUMBER EphB1 as a Novel Drug Target to Combat Pain and Addiction 5b. GRANT NUMBER W81XWH-14-1-0220 5c. PROGRAM...SUBJECT TERMS Chronic neuropathic pain, opioid addiction , synaptic plasticity, EphB1 receptor, ephrin-B2, NMDA receptor, drug discovery 16. SECURITY

    14. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

      Directory of Open Access Journals (Sweden)

      Xiaojing Wan

      Full Text Available Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI, a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets. As an example, in the present study, 28 target crosstalk networks (TCNs of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

    15. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

      Science.gov (United States)

      Wan, Xiaojing; Meng, Jia; Dai, Yingnan; Zhang, Yina; Yan, Shuang

      2014-01-01

      Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI), a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets). As an example, in the present study, 28 target crosstalk networks (TCNs) of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen) were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

    16. The Pim kinases: new targets for drug development.

      Science.gov (United States)

      Swords, Ronan; Kelly, Kevin; Carew, Jennifer; Nawrocki, Stefan; Mahalingam, Devalingam; Sarantopoulos, John; Bearss, David; Giles, Francis

      2011-12-01

      The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to cancer development and progression. They were first recognized as pro-viral integration sites for the Moloney Murine Leukemia virus. Unlike other kinases, they possess a hinge region which creates a unique binding pocket for ATP. Absence of a regulatory domain means that these proteins are constitutively active once transcribed. Pim kinases are critical downstream effectors of the ABL (ableson), JAK2 (janus kinase 2), and Flt-3 (FMS related tyrosine kinase 1) oncogenes and are required by them to drive tumorigenesis. Recent investigations have established that the Pim kinases function as effective inhibitors of apoptosis and when overexpressed, produce resistance to the mTOR (mammalian target of rapamycin) inhibitor, rapamycin . Overexpression of the PIM kinases has been reported in several hematological and solid tumors (PIM 1), myeloma, lymphoma, leukemia (PIM 2) and adenocarcinomas (PIM 3). As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Novel small molecule inhibitors of the human Pim kinases have been designed and are currently undergoing preclinical evaluation.

    17. Mechanism of action of a pestivirus antiviral compound

      Science.gov (United States)

      Baginski, Scott G.; Pevear, Daniel C.; Seipel, Marty; Sun, Siu Chi Chang; Benetatos, Christopher A.; Chunduru, Srinivas K.; Rice, Charles M.; Collett, Marc S.

      2000-01-01

      We report here the discovery of a small molecule inhibitor of pestivirus replication. The compound, designated VP32947, inhibits the replication of bovine viral diarrhea virus (BVDV) in cell culture at a 50% inhibitory concentration of approximately 20 nM. VP32947 inhibits both cytopathic and noncytopathic pestiviruses, including isolates of BVDV-1, BVDV-2, border disease virus, and classical swine fever virus. However, the compound shows no activity against viruses from unrelated virus groups. Time of drug addition studies indicated that VP32947 acts after virus adsorption and penetration and before virus assembly and release. Analysis of viral macromolecular synthesis showed VP32947 had no effect on viral protein synthesis or polyprotein processing but did inhibit viral RNA synthesis. To identify the molecular target of VP32947, we isolated drug-resistant (DR) variants of BVDV-1 in cell culture. Sequence analysis of the complete genomic RNA of two DR variants revealed a single common amino acid change located within the coding region of the NS5B protein, the viral RNA-dependent RNA polymerase. When this single amino acid change was introduced into an infectious clone of drug-sensitive wild-type (WT) BVDV-1, replication of the resulting virus was resistant to VP32947. The RNA-dependent RNA polymerase activity of the NS5B proteins derived from WT and DR viruses expressed and purified from recombinant baculovirus-infected insect cells confirmed the drug sensitivity of the WT enzyme and the drug resistance of the DR enzyme. This work formally validates NS5B as a target for antiviral drug discovery and development. The utility of VP32947 and similar compounds for the control of pestivirus diseases, and for hepatitis C virus drug discovery efforts, is discussed. PMID:10869440

    18. Novel Methods for Drug-Target Interaction Prediction using Graph Mining

      KAUST Repository

      Ba Alawi, Wail

      2016-08-31

      The problem of developing drugs that can be used to cure diseases is important and requires a careful approach. Since pursuing the wrong candidate drug for a particular disease could be very costly in terms of time and money, there is a strong interest in minimizing such risks. Drug repositioning has become a hot topic of research, as it helps reduce these risks significantly at the early stages of drug development by reusing an approved drug for the treatment of a different disease. Still, finding new usage for a drug is non-trivial, as it is necessary to find out strong supporting evidence that the proposed new uses of drugs are plausible. Many computational approaches were developed to narrow the list of possible candidate drug-target interactions (DTIs) before any experiments are done. However, many of these approaches suffer from unacceptable levels of false positives. We developed two novel methods based on graph mining networks of drugs and targets. The first method (DASPfind) finds all non-cyclic paths that connect a drug and a target, and using a function that we define, calculates a score from all the paths. This score describes our confidence that DTI is correct. We show that DASPfind significantly outperforms other state-of-the-art methods in predicting the top ranked target for each drug. We demonstrate the utility of DASPfind by predicting 15 novel DTIs over a set of ion channel proteins, and confirming 12 out of these 15 DTIs through experimental evidence reported in literature and online drug databases. The second method (DASPfind+) modifies DASPfind in order to increase the confidence and reliability of the resultant predictions. Based on the structure of the drug-target interaction (DTI) networks, we introduced an optimization scheme that incrementally alters the network structure locally for each drug to achieve more robust top 1 ranked predictions. Moreover, we explored effects of several similarity measures between the targets on the prediction

    19. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique

      Energy Technology Data Exchange (ETDEWEB)

      Hao, Ming; Wang, Yanli, E-mail: ywang@ncbi.nlm.nih.gov; Bryant, Stephen H., E-mail: bryant@ncbi.nlm.nih.gov

      2016-02-25

      Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.

    20. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique

      International Nuclear Information System (INIS)

      Hao, Ming; Wang, Yanli; Bryant, Stephen H.

      2016-01-01

      Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.

    1. The Nicotinic Acetylcholine Receptor as a Target for Antidepressant Drug Development

      Directory of Open Access Journals (Sweden)

      Noah S. Philip

      2012-01-01

      Full Text Available An important new area of antidepressant drug development involves targeting the nicotinic acetylcholine receptor (nAChR. This receptor, which is distributed widely in regions of the brain associated with depression, is also implicated in other important processes that are relevant to depression, such as stress and inflammation. The two classes of drugs that target nAChRs can be broadly divided into mecamylamine- and cytisine-based compounds. These drugs probably exert their effects via antagonism at α4β2 nAChRs, and strong preclinical data support the antidepressant efficacy of both classes when used in conjunction with other primary antidepressants (e.g., monoamine reuptake inhibitors. Although clinical data remain limited, preliminary results in this area constitute a compelling argument for further evaluation of the nAChR as a target for future antidepressant drug development.

    2. Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR

      DEFF Research Database (Denmark)

      Narayanan, Dilip; Gani, Osman ABSM; Gruber, Franz XE

      2017-01-01

      encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan......Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however...... consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug...

    3. Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease

      DEFF Research Database (Denmark)

      Dencker, Ditte; Thomsen, Morgane; Wörtwein, Gitta

      2011-01-01

      's disease and drug abuse. Dopaminergic systems are regulated by cholinergic, especially muscarinic, input. Not surprisingly, increasing evidence implicates muscarinic acetylcholine receptor-mediated pathways as potential targets for the treatment of these disorders classically viewed as "dopamine based...... site. Such agents may lead to the development of novel classes of drugs useful for the treatment of psychosis, drug abuse and Parkinson's disease. The present review highlights recent studies carried out using muscarinic receptor knock-out mice and new subtype-selective allosteric ligands to assess...... the roles of M(1), M(4), and M(5) receptors in various central processes that are under strong dopaminergic control. The outcome of these studies opens new perspectives for the use of novel muscarinic drugs for several severe disorders of the CNS....

    4. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63

      DEFF Research Database (Denmark)

      de Goeij, Bart E.C.G.; Vink, Tom; Ten Napel, Hendrik

      2016-01-01

      Antibody-drug conjugates (ADC) are designed to be stable in circulation and to release potent cytotoxic drugs intracellularly following antigen-specific binding, uptake, and degradation in tumor cells. Efficient internalization and routing to lysosomes where proteolysis can take place is therefore......, for the first time, that intracellular trafficking of ADCs can be improved using a bsAb approach that targets the lysosomal membrane protein CD63 and provide a rationale for the development of novel bsADCs that combine tumor-specific targeting with targeting of rapidly internalizing antigens. © 2016 American...

    5. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

      DEFF Research Database (Denmark)

      Klemm, Per; Hancock, Viktoria; Kvist, Malin

      2007-01-01

      is particularly problematic in medical contexts because biofilm-associated bacteria are particularly hard to eradicate. Several promising candidate drugs that target bacterial adhesion and biofilm formation are being developed. Some of these might be valuable weapons for fighting infectious diseases in the future...... formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...

    6. FOXM1: A novel drug target in gastroenteropancreatic neuroendocrine tumors

      Science.gov (United States)

      Briest, Franziska; Berg, Erika; Grass, Irina; Freitag, Helma; Kaemmerer, Daniel; Lewens, Florentine; Christen, Friederike; Arsenic, Ruza; Altendorf-Hofmann, Annelore; Kunze, Almut; Sänger, Jörg; Knösel, Thomas; Siegmund, Britta; Hummel, Michael; Grabowski, Patricia

      2015-01-01

      Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are heterogeneous tumors that need to be molecularly defined to obtain novel therapeutic options. Forkheadbox protein M1 (FOXM1) is a crucial transcription factor in neoplastic cells and has been associated with differentiation and proliferation. We found that FOXM1 is strongly associated with tumor differentiation and occurrence of metastases in gastrointestinal NENs. In vitro inhibition by the FOXM1 inhibitor siomycin A led to down-regulation of mitotic proteins and resulted in a strong inhibitory effect. Siomycin A decreased mitosis rate, induced apoptosis in GEP-NEN cell lines and exerts synergistic effects with chemotherapy. FOXM1 is associated with clinical outcome and FOXM1 inhibition impairs survival in vitro. We therefore propose FOXM1 as novel therapeutic target in GEP-NENs. PMID:25797272

    7. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

      Directory of Open Access Journals (Sweden)

      Juan Carlos Pizarro

      Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

    8. Cost Minimization Analysis of Hypnotic Drug: Target Controlled Inhalation Anesthesia (TCIA Sevoflurane and Target Controlled Infusion (TCI Propofol

      Directory of Open Access Journals (Sweden)

      Made Wiryana

      2016-09-01

      Full Text Available Background: Cost minimization analysis is a pharmaco-economic study used to compare two or more health interventions that have been shown to have the same effect, similar or equivalent. With limited health insurance budget from the Indonesian National Social Security System implementation in 2015, the quality control and the drug cost are two important things that need to be focused. The application of pharmaco-economic study results in the selection and use of drugs more effectively and efficiently. Objective: To determine cost minimization analysis of hypnotic drug between a target controlled inhalation anesthesia (TCIA sevoflurane and a target controlled infusion (TCI propofol in patients underwent a major oncologic surgery in Sanglah General Hospital. Methods: Sixty ASA physical status I-II patients underwent major oncologic surgery were divided into two groups. Group A was using TCIA sevoflurane and group B using TCI propofol. Bispectral index monitor (BIS index was used to evaluate the depth of anesthesia. The statistical tests used are the Shapiro-Wilk test, Lavene test, Mann-Whitney U test and unpaired t-test (α = 0.05. The data analysis used the Statistical Package for Social Sciences (SPSS for Windows. Results: In this study, the rate of drug used per unit time in group A was 0.12 ml sevoflurane per minute (± 0.03 and the group B was 7.25 mg propofol per minute (±0.98. Total cost of hypnotic drug in group A was IDR598.43 (IQR 112.47 per minute, in group B was IDR703.27 (IQR 156.73 per minute (p>0.05. Conclusions: There was no statistically significant difference from the analysis of the drug cost minimization hypnotic drug in a major oncologic surgery using TCIA sevoflurane and TCI propofol.

    9. Photopatternable Magnetic Hollowbots by Nd-Fe-B Nanocomposite for Potential Targeted Drug Delivery Applications

      Directory of Open Access Journals (Sweden)

      Hui Li

      2018-04-01

      Full Text Available In contrast to traditional drug administration, targeted drug delivery can prolong, localize, target and have a protected drug interaction with the diseased tissue. Drug delivery carriers, such as polymeric micelles, liposomes, dendrimers, nanotubes, and so on, are hard to scale-up, costly, and have short shelf life. Here we show the novel fabrication and characterization of photopatternable magnetic hollow microrobots that can potentially be utilized in microfluidics and drug delivery applications. These magnetic hollowbots can be fabricated using standard ultraviolet (UV lithography with low cost and easily accessible equipment, which results in them being easy to scale up, and inexpensive to fabricate. Contact-free actuation of freestanding magnetic hollowbots were demonstrated by using an applied 900 G external magnetic field to achieve the movement control in an aqueous environment. According to the movement clip, the average speed of the magnetic hollowbots was estimated to be 1.9 mm/s.

    10. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

      Directory of Open Access Journals (Sweden)

      Sherry L. Mowbray

      2014-08-01

      Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

    11. Moonlighting adenosine deaminase: a target protein for drug development.

      Science.gov (United States)

      Cortés, Antoni; Gracia, Eduard; Moreno, Estefania; Mallol, Josefa; Lluís, Carme; Canela, Enric I; Casadó, Vicent

      2015-01-01

      Interest in adenosine deaminase (ADA) in the context of medicine has mainly focused on its enzymatic activity. This is justified by the importance of the reaction catalyzed by ADA not only for the intracellular purine metabolism, but also for the extracellular purine metabolism as well, because of its capacity as a regulator of the concentration of extracellular adenosine that is able to activate adenosine receptors (ARs). In recent years, other important roles have been described for ADA. One of these, with special relevance in immunology, is the capacity of ADA to act as a costimulator, promoting T-cell proliferation and differentiation mainly by interacting with the differentiation cluster CD26. Another role is the ability of ADA to act as an allosteric modulator of ARs. These receptors have very general physiological implications, particularly in the neurological system where they play an important role. Thus, ADA, being a single chain protein, performs more than one function, consistent with the definition of a moonlighting protein. Although ADA has never been associated with moonlighting proteins, here we consider ADA as an example of this family of multifunctional proteins. In this review, we discuss the different roles of ADA and their pathological implications. We propose a mechanism by which some of their moonlighting functions can be coordinated. We also suggest that drugs modulating ADA properties may act as modulators of the moonlighting functions of ADA, giving them additional potential medical interest. © 2014 Wiley Periodicals, Inc.

    12. A screen to identify drug resistant variants to target-directed anti-cancer agents

      Directory of Open Access Journals (Sweden)

      Azam Mohammad

      2003-01-01

      Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

    13. From genome to antivirals: SARS as a test tube.

      Science.gov (United States)

      Kliger, Yossef; Levanon, Erez Y; Gerber, Doron

      2005-03-01

      The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.

    14. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

      Directory of Open Access Journals (Sweden)

      John C. Leach

      2016-03-01

      Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

    15. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.

      Science.gov (United States)

      Wang, Xia; Shen, Yihang; Wang, Shiwei; Li, Shiliang; Zhang, Weilin; Liu, Xiaofeng; Lai, Luhua; Pei, Jianfeng; Li, Honglin

      2017-07-03

      The PharmMapper online tool is a web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database. The original version of PharmMapper includes more than 7000 target pharmacophores derived from complex crystal structures with corresponding protein target annotations. In this article, we present a new version of the PharmMapper web server, of which the backend pharmacophore database is six times larger than the earlier one, with a total of 23 236 proteins covering 16 159 druggable pharmacophore models and 51 431 ligandable pharmacophore models. The expanded target data cover 450 indications and 4800 molecular functions compared to 110 indications and 349 molecular functions in our last update. In addition, the new web server is united with the statistically meaningful ranking of the identified drug targets, which is achieved through the use of standard scores. It also features an improved user interface. The proposed web server is freely available at http://lilab.ecust.edu.cn/pharmmapper/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

    16. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

      Science.gov (United States)

      Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

      2017-08-18

      The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

    17. Antiviral resistance and the control of pandemic influenza.

      Directory of Open Access Journals (Sweden)

      Marc Lipsitch

      2007-01-01

      Full Text Available The response to the next influenza pandemic will likely include extensive use of antiviral drugs (mainly oseltamivir, combined with other transmission-reducing measures. Animal and in vitro studies suggest that some strains of influenza may become resistant to oseltamivir while maintaining infectiousness (fitness. Use of antiviral agents on the scale anticipated for the control of pandemic influenza will create an unprecedented selective pressure for the emergence and spread of these strains. Nonetheless, antiviral resistance has received little attention when evaluating these plans.We designed and analyzed a deterministic compartmental model of the transmission of oseltamivir-sensitive and -resistant influenza infections during a pandemic. The model predicts that even if antiviral treatment or prophylaxis leads to the emergence of a transmissible resistant strain in as few as 1 in 50,000 treated persons and 1 in 500,000 prophylaxed persons, widespread use of antivirals may strongly promote the spread of resistant strains at the population level, leading to a prevalence of tens of percent by the end of a pandemic. On the other hand, even in circumstances in which a resistant strain spreads widely, the use of antivirals may significantly delay and/or reduce the total size of the pandemic. If resistant strains carry some fitness cost, then, despite widespread emergence of resistance, antivirals could slow pandemic spread by months or more, and buy time for vaccine development; this delay would be prolonged by nondrug control measures (e.g., social distancing that reduce transmission, or use of a stockpiled suboptimal vaccine. Surprisingly, the model suggests that such nondrug control measures would increase the proportion of the epidemic caused by resistant strains.The benefits of antiviral drug use to control an influenza pandemic may be reduced, although not completely offset, by drug resistance in the virus. Therefore, the risk of resistance

    18. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

      Directory of Open Access Journals (Sweden)

      Juan D Unciti-Broceta

      2015-06-01

      Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

    19. Age-Dependent Cellular and Behavioral Deficits Induced by Molecularly Targeted Drugs Are Reversible.

      Science.gov (United States)

      Scafidi, Joseph; Ritter, Jonathan; Talbot, Brooke M; Edwards, Jorge; Chew, Li-Jin; Gallo, Vittorio

      2018-04-15

      Newly developed targeted anticancer drugs inhibit signaling pathways commonly altered in adult and pediatric cancers. However, as these pathways are also essential for normal brain development, concerns have emerged of neurologic sequelae resulting specifically from their application in pediatric cancers. The neural substrates and age dependency of these drug-induced effects in vivo are unknown, and their long-term behavioral consequences have not been characterized. This study defines the age-dependent cellular and behavioral effects of these drugs on normally developing brains and determines their reversibility with post-drug intervention. Mice at different postnatal ages received short courses of molecularly targeted drugs in regimens analagous to clinical treatment. Analysis of rapidly developing brain structures important for sensorimotor and cognitive function showed that, while adult administration was without effect, earlier neonatal administration of targeted therapies attenuated white matter oligodendroglia and hippocampal neuronal development more profoundly than later administration, leading to long-lasting behavioral deficits. This functional impairment was reversed by rehabilitation with physical and cognitive enrichment. Our findings demonstrate age-dependent, reversible effects of these drugs on brain development, which are important considerations as treatment options expand for pediatric cancers. Significance: Targeted therapeutics elicit age-dependent long-term consequences on the developing brain that can be ameliorated with environmental enrichment. Cancer Res; 78(8); 2081-95. ©2018 AACR . ©2018 American Association for Cancer Research.

    20. In silico tools used for compound selection during target-based drug discovery and development.

      Science.gov (United States)

      Caldwell, Gary W

      2015-01-01

      The target-based drug discovery process, including target selection, screening, hit-to-lead (H2L) and lead optimization stage gates, is the most common approach used in drug development. The full integration of in vitro and/or in vivo data with in silico tools across the entire process would be beneficial to R&D productivity by developing effective selection criteria and drug-design optimization strategies. This review focuses on understanding the impact and extent in the past 5 years of in silico tools on the various stage gates of the target-based drug discovery approach. There are a large number of in silico tools available for establishing selection criteria and drug-design optimization strategies in the target-based approach. However, the inconsistent use of in vitro and/or in vivo data integrated with predictive in silico multiparameter models throughout the process is contributing to R&D productivity issues. In particular, the lack of reliable in silico tools at the H2L stage gate is contributing to the suboptimal selection of viable lead compounds. It is suggested that further development of in silico multiparameter models and organizing biologists, medicinal and computational chemists into one team with a single accountable objective to expand the utilization of in silico tools in all phases of drug discovery would improve R&D productivity.