WorldWideScience

Sample records for antiviral drug targets

  1. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  2. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    Science.gov (United States)

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  3. Emerging antiviral drugs.

    Science.gov (United States)

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025.

  4. Antiviral Drug Research Proposal Activity

    Directory of Open Access Journals (Sweden)

    Lisa Injaian

    2011-03-01

    Full Text Available The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.

  5. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines...

  6. [Renal toxicity of antiviral drugs].

    Science.gov (United States)

    Frasca', Giovanni M; Balestra, Emilio; Tavio, Marcello; Morroni, Manrico; Manarini, Gloria; Brigante, Fabiana

    2012-01-01

    Highly effective and powerful antiviral drugs have been introduced into clinical practice in recent years which are associated with an increased incidence of nephrotoxicity. The need of combining several drugs, the fragility of the patients treated, and the high susceptibility of the kidney are all factors contributing to renal injury. Many pathogenetic mechanisms are involved in the nephrotoxicity of antiviral drugs, including drug interaction with transport proteins in the tubular cell; direct cytotoxicity due to a high intracellular drug concentration; mitochondrial injury; and intrarenal obstruction or stone formation due to the low solubility of drugs at a normal urinary pH. As a result, various clinical pictures may be observed in patients treated with antiviral drugs, ranging from tubular dysfunction (Fanconi syndrome, renal tubular acidosis, nephrogenic diabetes insipidus) to acute renal failure (induced by tubular necrosis or crystal nephropathy) and kidney stones. Careful attention should be paid to prevent renal toxicity by evaluating the glomerular filtration rate before therapy and adjusting the drug dosage accordingly, avoiding the combination with other nephrotoxic drugs, and monitoring renal parameters on a regular basis while treating patients.

  7. Influenza Round Table: Antiviral Drugs

    Centers for Disease Control (CDC) Podcasts

    2009-11-04

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used.  Created: 11/4/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 11/4/2009.

  8. Targeted delivery of macromolecular drugs: asialoglycoprotein receptor (ASGPR) expression by selected hepatoma cell lines used in antiviral drug development.

    Science.gov (United States)

    Li, Yan; Huang, Guifang; Diakur, James; Wiebe, Leonard I

    2008-10-01

    The asialoglycoprotein receptor (ASGPR), an endocytotic cell surface receptor expressed by hepatocytes, is triggered by triantennary binding to galactose residues of macromolecules such as asialoorosomucoid (ASOR). The capacity of this receptor to import large molecules across the cellular plasma membrane makes it an enticing target for receptor-mediated drug delivery to hepatocytes and hepatoma cells via ASGPR-mediated endocytosis. This study describes the preparation and characterization of (125)I-ASOR, and its utility in the assessment of ASGPR expression by HepG2, HepAD38 and Huh5-2 human hepatoma cell lines. ASOR was prepared from human orosomucoid, using acid hydrolysis to remove sialic acid residues, then radioiodinated using iodogen. (125)I-ASOR was purified by gel column chromatography and characterized by SDS-PAGE electrophoresis. The ASOR yield by acid hydrolysis was 75%, with approximately 87 % of the sialic acid residues removed. Electrophoresis and gel chromatography demonstrated substantial differences in (125)I-ASOR quality depending on the method of radioiodination. ASGPR densities per cell were estimated at 76,000 (HepG2), 17,000 (HepAD38) and 3,000 (Huh-5-2). (125)I-ASOR binding to ASGPR on HepG2 cells was confirmed through galactose- and EDTA- challenge studies. It is concluded that (125)I-ASOR is a facilely-prepared, stable assay reagent for ASGPR expression if appropriately prepared, and that HepG2 cells, but not HepAD38 or Huh-5-2 cells, are suitable for studies exploiting the endocytotic ASGPR.

  9. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Newsletters What You Should Know About Flu Antiviral Drugs Language: ... that can be used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines ( ...

  10. TARGETING OF ANTIVIRAL DRUGS TO LYMPHOCYTES-T4 - ANTI-HIV ACTIVITY OF NEOGLYCOPROTEIN AZTMP CONJUGATES INVITRO

    NARCIS (Netherlands)

    MOLEMA, G; JANSEN, RW; PAUWELS, R; DECLERCQ, E; MEIJER, DKF

    1990-01-01

    The delivery of the anti-HIV agent 3'-azido-3'-deoxythymidine (AZT), in its 5'-monophosphate form, (in)to human T-lymphocyte MT-4 cells in vitro through covalent coupling to neoglycoproteins was investigated. In vivo application of this drug targeting concept may lead to increased efficacy and/or di

  11. Antiviral drug discovery against SARS-CoV.

    Science.gov (United States)

    Wu, Yu-Shan; Lin, Wen-Hsing; Hsu, John T-A; Hsieh, Hsing-Pang

    2006-01-01

    Severe Acute Respiratory Syndrome (SARS) is a life-threatening infectious disease caused by SARS-CoV. In the 2003 outbreak, it infected more than 8,000 people worldwide and claimed the lives of more than 900 victims. The high mortality rate resulted, at least in part, from the absence of definitive treatment protocols or therapeutic agents. Although the virus spreading has been contained, due preparedness and planning, including the successful development of antiviral drugs against SARS-CoV, is necessary for possible reappearance of SARS. In this review, we have discussed currently available strategies for antiviral drug discovery and how these technologies have been utilized to identify potential antiviral agents for the inhibition of SARS-CoV replication. Moreover, progress in the drug development based on different molecular targets is also summarized, including 1) Compounds that block the S protein-ACE2-mediated viral entry; 2) Compounds targeting SARS-CoV M(pro); 3) Compounds targeting papain-like protease 2 (PLP2); 4) Compounds targeting SARS-CoV RdRp; 5) Compounds targeting SARS-CoV helicase; 6) Active compounds with unspecified targets; and 7) Research on siRNA. This review aims to provide a comprehensive account of drug discovery on SARS. The experiences with the SARS outbreak and drug discovery would certainly be an important lesson for the drug development for any new viral outbreaks that may emerge in the future.

  12. Antiviral drugs for viruses other than human immunodeficiency virus.

    Science.gov (United States)

    Razonable, Raymund R

    2011-10-01

    Most viral diseases, with the exception of those caused by human immunodeficiency virus, are self-limited illnesses that do not require specific antiviral therapy. The currently available antiviral drugs target 3 main groups of viruses: herpes, hepatitis, and influenza viruses. With the exception of the antisense molecule fomivirsen, all antiherpes drugs inhibit viral replication by serving as competitive substrates for viral DNA polymerase. Drugs for the treatment of influenza inhibit the ion channel M(2) protein or the enzyme neuraminidase. Combination therapy with Interferon-α and ribavirin remains the backbone treatment for chronic hepatitis C; the addition of serine protease inhibitors improves the treatment outcome of patients infected with hepatitis C virus genotype 1. Chronic hepatitis B can be treated with interferon or a combination of nucleos(t)ide analogues. Notably, almost all the nucleos(t) ide analogues for the treatment of chronic hepatitis B possess anti-human immunodeficiency virus properties, and they inhibit replication of hepatitis B virus by serving as competitive substrates for its DNA polymerase. Some antiviral drugs possess multiple potential clinical applications, such as ribavirin for the treatment of chronic hepatitis C and respiratory syncytial virus and cidofovir for the treatment of cytomegalovirus and other DNA viruses. Drug resistance is an emerging threat to the clinical utility of antiviral drugs. The major mechanisms for drug resistance are mutations in the viral DNA polymerase gene or in genes that encode for the viral kinases required for the activation of certain drugs such as acyclovir and ganciclovir. Widespread antiviral resistance has limited the clinical utility of M(2) inhibitors for the prevention and treatment of influenza infections. This article provides an overview of clinically available antiviral drugs for the primary care physician, with a special focus on pharmacology, clinical uses, and adverse effects.

  13. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    Science.gov (United States)

    ... PATIENTS and their FAMILIES BELL’S PALSY: TREATMENT WITH STEROIDS AND ANTIVIRAL DRUGS This information sheet is provided to help you understand the role of steroids and antiviral drugs for treating Bell’s palsy. Neurologists ...

  14. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    Directory of Open Access Journals (Sweden)

    Elsa B. Damonte

    2012-09-01

    Full Text Available Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  15. Host cell factors as antiviral targets in arenavirus infection.

    Science.gov (United States)

    Linero, Florencia N; Sepúlveda, Claudia S; Giovannoni, Federico; Castilla, Viviana; García, Cybele C; Scolaro, Luis A; Damonte, Elsa B

    2012-09-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  16. 5th Antiviral Drug Discovery and Development Summit.

    Science.gov (United States)

    Blair, Wade; Perros, Manos

    2004-08-01

    The 5th Antiviral Drug Discovery and Development Summit provided an up-to-date snapshot of the ongoing developments in the area. The topics covered ranged from updates on recently launched drugs (Kaletra), Fuzeon) and new investigational inhibitors (T-1249, Reverset, UK-427857, L-870810, PA-457, remofovir, VX-950), to the discovery of new antiviral targets and advances in technologies that may provide the substrate for the next generation of therapeutics. It is apparent from the range of presentations that much of today's efforts are focused on developing new classes of HIV inhibitors (gp41, integrase), while there is also considerable progress in hepatitis C, where a number of inhibitors have or should reach proof-of-concept studies in the coming months. Here we provide the highlights of this meeting, with particular emphasis on the new developments in HIV and hepatitis C virus.

  17. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication

    Science.gov (United States)

    Sacramento, Carolina Q.; de Melo, Gabrielle R.; de Freitas, Caroline S.; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C.; Barbosa-Lima, Giselle; Abrantes, Juliana L.; Vieira, Yasmine Rangel; Bastos, Mônica M.; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A.; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K.; Bozza, Fernando A.; Bozza, Patrícia T.; Boechat, Nubia; Thompson, Fabiano L.; de Filippis, Ana M. B.; Brüning, Karin; Souza, Thiago Moreno L.

    2017-01-01

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV. PMID:28098253

  18. Specifically targeted antiviral therapy for hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hepatitis C virus (HCV) infection affects 180 million people worldwide with the predominant prevalence being infection with genotype 1, followed by genotypes 2 and 3. Standard anti-HCV therapy currently aims to enhance natural immune responses to the virus, whereas new therapeutic concepts directly target HCV RNA and viral enzymes or influence host-virus interactions. Novel treatment options now in development are focused on inhibitors of HCV-specific enzymes, NS3 protease and NS5B polymerase.These agents acting in concert represent the concept of specifically targeted antiviral therapy for HCV (STAT-C).STAT-C is an attractive strategy in which the main goal is to increase the effectiveness of antiviral responses across all genotypes, with shorter treatment duration and better tolerability. However, the emergence of resistant mutations that limit the use of these compounds in monotherapy complicates the regimens. Thus, a predictable scenario for HCV treatment in the future will be combinations of drugs with distinct mechanisms of action. For now, it seems that interferon will remain a fundamental component of any new anti-HCV therapeutic regimens in the near future;therefore, there is pressure to develop forms of interferon that are more effective, less toxic, and more convenient than pegylated interferon.

  19. HIV/HCV Antiviral Drug Interactions in the Era of Direct-acting Antivirals

    Science.gov (United States)

    Rice, Donald P.; Faragon, John J.; Banks, Sarah; Chirch, Lisa M.

    2016-01-01

    Abstract Therapy for human immunodeficiency virus (HIV) and chronic hepatitis C has evolved over the past decade, resulting in better control of infection and clinical outcomes; however, drug-drug interactions remain a significant hazard. Joint recommendations from the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America regarding drug-drug interactions between HIV antiretroviral agents and direct-acting antiviral agents for treatment of hepatitis C virus (HCV) infection are reviewed here. This review is oriented to facilitate appropriate selection of an antiviral therapy regimen for HCV infection based on the choice of antiretroviral therapy being administered and, if necessary, switching antiretroviral regimens. PMID:27777891

  20. Hepatitis C Virus and Antiviral Drug Resistance

    Science.gov (United States)

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  1. 75 FR 16151 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-31

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  2. 78 FR 57166 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-09-17

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  3. 76 FR 62418 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  4. Antiviral drug resistance of herpes simplex virus

    NARCIS (Netherlands)

    Stranska, Ruzena

    2004-01-01

    Infections with herpes simplex virus (HSV) usually have an asymptomatic or benign course. However, severe infections do occur, particularly in HIV/AIDS patients or transplant recipients, and may be life-threatening unless adequate antiviral therapy is given. Since its introduction in the early 1980

  5. INVESTMENT IN ANTIVIRAL DRUGS : A REAL OPTIONS APPROACH

    NARCIS (Netherlands)

    Attema, Arthur E.; Lugner, Anna K.; Feenstra, Talitha L.

    2010-01-01

    Real options analysis is a promising approach to model investment under uncertainty. We employ this approach to value stockpiling of antiviral drugs as a precautionary measure against a possible influenza pandemic. Modifications of the real options approach to include risk attitude and deviations fr

  6. H1N1 Flu and Antiviral Drugs

    Centers for Disease Control (CDC) Podcasts

    2009-05-02

    This podcast discusses the use of antiviral drugs for treating and preventing the H1N1 flu virus.  Created: 5/2/2009 by Coordinating Center for Infectious Diseases, National Center for Immunization and Respiratory Diseases, Influenza Division (CCID/NCIRD/ID).   Date Released: 5/2/2009.

  7. Flu Resistance to Antiviral Drug in North Carolina

    Centers for Disease Control (CDC) Podcasts

    2011-12-19

    Dr. Katrina Sleeman, Associate Service Fellow at CDC, discusses resistance to an antiviral flu drug in North Carolina.  Created: 12/19/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/19/2011.

  8. Chemokine receptors as new molecular targets for antiviral therapy.

    Science.gov (United States)

    Santoro, F; Vassena, L; Lusso, P

    2004-04-01

    Extraordinary advancements have been made over the past decade in our understanding of the molecular mechanism of human immunodeficiency virus (HIV) entry into cells. The external HIV envelope glycoprotein, gp120, sequentially interacts with two cellular receptor molecules, the CD4 glycoprotein and a chemokine receptor, such as CCR5 or CXCR4, leading to the activation of the fusogenic domain of the transmembrane viral glycoprotein, gp41, which changes its conformation to create a hairpin structure that eventually triggers fusion between the viral and cellular membranes. Each of these discrete steps in the viral entry process represents a potential target for new antiviral agents. Current efforts to develop safe and effective HlV entry inhibitors are focused on naturally occurring proteins (e.g., chemokines, antibodies), engineered or modified derivatives of natural proteins (e.g., multimerized soluble CD4, gp41--or chemokine--derived synthetic peptides), as well as small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design. The recent introduction in therapy of the first fusion inhibitor, the gp41-derived synthetic peptide T20, heralds a new era in the treatment of AIDS, which will hopefully lead to more effective multi-drug regimens with reduced adverse effects for the patients.

  9. Indian marine bivalves: Potential source of antiviral drugs

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ansari, Z.A.; Ingole, B.S.; Bichurina, M.A.; Sovetova, M.; Boikov, Y.A.

    in large quantities by traditional methods and sold live in the market for human consumption. The economically important sp e cies of marine bivalves are green mussel ( Perna viridis ), e s tuarine oyster ( Crassostrea madrasensis ), giant oyster... in developing an effecti ve drug has been the unique characteristics of antigenic variation of virus resulting in the emergence of new variant virus strains 14 . There are a number of antiviral drugs introduced in the market such as tricyclic sy m- metric...

  10. Anti-Viral Drugs for Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Chor Wing Sing

    2010-10-01

    Full Text Available There are many stages in the development of a new drug for viral infection and such processes are even further complicated for adenovirus by the fact that there are at least 51 serotypes, forming six distinct groups (A–F, with different degree of infectivity. This review attempts to address the importance of developing pharmaceuticals for adenovirus and also review recent development in drug discovery for adenovirus, including newer strategies such as microRNA approaches. Different drug screening strategies will also be discussed.

  11. Viral Response to Specifically Targeted Antiviral Therapy for Hepatitis C and the Implications for Treatment Success

    Directory of Open Access Journals (Sweden)

    Curtis L Cooper

    2010-01-01

    Full Text Available Currently, hepatitis C virus (HCV antiviral therapy is characterized by long duration, a multitude of side effects, difficult administration and suboptimal success; clearly, alternatives are needed. Collectively, specifically targeted antiviral therapy for HCV (STAT-C molecules achieve rapid viral suppression and very high rapid virological response rates, and improve sustained virological response rates. The attrition rate of agents within this class has been high due to various toxicities. Regardless, several STAT-C molecules are poised to become the standard of care for HCV treatment in the foreseeable future. Optimism must be tempered with concerns related to the rapid development of drug resistance with resulting HCV rebound. Strategies including induction dosing with interferon and ribavirin, use of combination high-potency STAT-C molecules and an intensive emphasis on adherence to HCV antiviral therapy will be critical to the success of this promising advance in HCV therapy.

  12. Optimal Control of Hepatitis C Antiviral Treatment Programme Delivery for Prevention amongst a Population of Injecting Drug Users

    OpenAIRE

    Martin, Natasha K.; Pitcher, Ashley B.; Vickerman, Peter; Vassall, Anna; Hickman, Matthew

    2011-01-01

    In most developed countries, HCV is primarily transmitted by injecting drug users (IDUs). HCV antiviral treatment is effective, and deemed cost-effective for those with no re-infection risk. However, few active IDUs are currently treated. Previous modelling studies have shown antiviral treatment for active IDUs could reduce HCV prevalence, and there is emerging interest in developing targeted IDU treatment programmes. However, the optimal timing and scale-up of treatment is unknown, given the...

  13. Optimal Control of Hepatitis C Antiviral Treatment Programme Delivery for Prevention amongst a Population of Injecting Drug Users

    OpenAIRE

    Martin, NK; Pitcher, AB; Vickerman, P.; Vassall, A; Hickman, M

    2011-01-01

    : In most developed countries, HCV is primarily transmitted by injecting drug users (IDUs). HCV antiviral treatment is effective, and deemed cost-effective for those with no re-infection risk. However, few active IDUs are currently treated. Previous modelling studies have shown antiviral treatment for active IDUs could reduce HCV prevalence, and there is emerging interest in developing targeted IDU treatment programmes. However, the optimal timing and scale-up of treatment is unknown, given t...

  14. New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus.

    Science.gov (United States)

    Durantel, David; Zoulim, Fabien

    2016-04-01

    Current therapies of chronic hepatitis B (CHB) remain limited to pegylated-interferon-alpha (PegIFN-α) or any of the five approved nucleos(t)ide analogues (NUC) treatments. While viral suppression can be achieved in the majority of patients with the high-barrier-to-resistance new-generation of NUC, i.e. entecavir and tenofovir, HBsAg loss is achieved by PegIFN-α and/or NUC in only 10% of patients, after a 5-year follow-up. Attempts to improve the response by administering two different NUC or a combination of NUC and PegIFN-α have not provided a dramatic increase in the rate of functional cure. Because of this and the need of long-term NUC administration, there is a renewed interest regarding the understanding of various steps of the HBV replication cycle, as well as specific virus-host cell interactions, in order to define new targets and develop new antiviral drugs. This includes a direct inhibition of viral replication with entry inhibitors, drugs targeting cccDNA, siRNA targeting viral transcripts, capsid assembly modulators, and approaches targeting the secretion of viral envelope proteins. Restoration of immune responses is a complementary approach. The restoration of innate immunity against HBV can be achieved, with TLR agonists or specific antiviral cytokine delivery. Restoration of adaptive immunity may be achieved with inhibitors of negative checkpoint regulators, therapeutic vaccines, or autologous transfer of engineered HBV-specific T cells. Novel targets and compounds will readily be evaluated using both relevant and novel in vitro and in vivo models of HBV infection. The addition of one or several new drugs to current therapies should offer the prospect of a markedly improved response to treatments and an increased rate of functional cure. This should lead to a reduced risk of antiviral drug resistance, and to a decreased incidence of cirrhosis and hepatocellular carcinoma (HCC).

  15. The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family

    NARCIS (Netherlands)

    van der Linden, Lonneke; Vives-Adrián, Laia; Selisko, Barbara; Ferrer-Orta, Cristina; Liu, Xinran; Lanke, Kjerstin; Ulferts, Rachel; De Palma, Armando M; Tanchis, Federica; Goris, Nesya; Lefebvre, David; De Clercq, Kris; Leyssen, Pieter; Lacroix, Céline; Pürstinger, Gerhard; Coutard, Bruno; Canard, Bruno; Boehr, David D; Arnold, Jamie J; Cameron, Craig E; Verdaguer, Nuria; Neyts, Johan; van Kuppeveld, Frank J M

    2015-01-01

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-b

  16. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients

    Directory of Open Access Journals (Sweden)

    Katharina Göhring

    2015-01-01

    Full Text Available In pediatric and adult patients after stem cell transplantation (SCT disseminated infections caused by human cytomegalovirus (HCMV can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV, foscarnet (PFA and cidofovir (CDV are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97 and the polymerase-gene (UL54. Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood.

  17. Flexibility as a Strategy in Nucleoside Antiviral Drug Design.

    Science.gov (United States)

    Peters, H L; Ku, T C; Seley-Radtke, K L

    2015-01-01

    As far back as Melville Wolfrom's acyclic sugar synthesis in the 1960's, synthesis of flexible nucleoside analogues have been an area of interest. This concept, however, went against years of enzyme-substrate binding theory. Hence, acyclic methodology in antiviral drug design did not take off until the discovery and subsequent FDA approval of such analogues as Acyclovir and Tenofovir. More recently, the observation that flexible nucleosides could overcome drug resistance spawned a renewed interest in the field of nucleoside drug design. The next generation of flexible nucleosides shifted the focus from the sugar moiety to the nucleobase. With analogues such as Seley-Radtke "fleximers", and Herdewijn's C5 substituted 2'-deoxyuridines, the area of base flexibility has seen great expansion. More recently, the marriage of these methodologies with acyclic sugars has resulted in a series of acyclic flex-base nucleosides with a wide range of antiviral properties, including some of the first to exhibit anti-coronavirus activity. Various flexible nucleosides and their corresponding nucleobases will be compared in this review.

  18. In vitro comparison of antiviral drugs against feline herpesvirus 1

    Directory of Open Access Journals (Sweden)

    Garré B

    2006-04-01

    Full Text Available Abstract Background Feline herpesvirus 1 (FHV-1 is a common cause of respiratory and ocular disease in cats. Especially in young kittens that have not yet reached the age of vaccination, but already lost maternal immunity, severe disease may occur. Therefore, there is a need for an effective antiviral treatment. In the present study, the efficacy of six antiviral drugs, i.e. acyclovir, ganciclovir, cidofovir, foscarnet, adefovir and 9-(2-phosphonylmethoxyethyl-2, 6-diaminopurine (PMEDAP, against FHV-1 was compared in Crandell-Rees feline kidney (CRFK cells using reduction in plaque number and plaque size as parameters. Results The capacity to reduce the number of plaques was most pronounced for ganciclovir, PMEDAP and cidofovir. IC50 (NUMBER values were 3.2 μg/ml (12.5 μM, 4.8 μg/ml (14.3 μM and 6 μg/ml (21.5 μM, respectively. Adefovir and foscarnet were intermediately efficient with an IC50 (NUMBER of 20 μg/ml (73.2 μM and 27 μg/ml (140.6 μM, respectively. Acyclovir was least efficient (IC50 (NUMBER of 56 μg/ml or 248.7 μM. All antiviral drugs were able to significantly reduce plaque size when compared with the untreated control. As observed for the reduction in plaque number, ganciclovir, PMEDAP and cidofovir were most potent in reducing plaque size. IC50 (SIZE values were 0.4 μg/ml (1.7 μM, 0.9 μg/ml (2.7 μM and 0.2 μg/ml (0.7 μM, respectively. Adefovir and foscarnet were intermediately potent, with an IC50 (SIZE of 4 μg/ml (14.6 μM and 7 μg/ml (36.4 μM, respectively. Acyclovir was least potent (IC50 (SIZE of 15 μg/ml or 66.6 μM. The results demonstrate that the IC50 (SIZE values were notably lower than the IC50 (NUMBER values. The most remarkable effect was observed for cidofovir and ganciclovir. None of the products were toxic for CRFK cells at antiviral concentrations. Conclusion In conclusion, measuring reduction in plaque number and plaque size are two valuable and complementary means of assessing the efficacy of

  19. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    Directory of Open Access Journals (Sweden)

    Kelly eMulder

    2013-10-01

    Full Text Available Cationic antimicrobial peptides (AMPs and host defense peptides (HDPs show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their bio-chemical features, selectivity against extra targets and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the development of production and nano-delivery systems for both classes of cationic peptides and perspectives on improving them will be considered.

  20. Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions.

    Science.gov (United States)

    Chang, Jinhong; Block, Timothy M; Guo, Ju-Tao

    2013-09-01

    Endoplasmic reticulum (ER)-resident α-glucosidases I and II sequentially trim the three terminal glucose moieties on N-linked glycans attached to nascent glycoproteins. These reactions are the first steps of N-linked glycan processing and are essential for proper folding and function of many glycoproteins. Because most viral envelope glycoproteins contain N-linked glycans, inhibition of ER α-glucosidases with derivatives of 1-deoxynojirimycin (DNJ) or castanospermine (CAST), two well-studied pharmacophores of α-glucosidase inhibitors, efficiently disrupts the morphogenesis of a broad spectrum of enveloped viruses. Moreover, both DNJ and CAST derivatives have been demonstrated to prevent the death of mice infected with several distinct flaviviruses and filoviruses and suppress the multiplication of several other species of viruses in infected animals. N-Butyl derivative of DNJ (NB-DNJ) and 6 O-bytanoyl prodrug of CAST (Bu-CAST) have been evaluated in human clinical trials for their antiviral activities against human immunodeficiency virus and hepatitis C virus, and there is an ongoing trial of treating dengue patients with Bu-CAST. This article summarizes the current status of ER α-glucosidase-targeted antiviral therapy and proposes strategies for development of more efficacious and specific ER α-glucosidase inhibitors as broad-spectrum, drug resistance-refractory antiviral therapeutics. These host function-targeted, broad-spectrum antiviral agents do not rely on time-consuming etiologic diagnosis, and should therefore be particularly promising in the management of viral hemorrhagic fever and respiratory tract viral infections, medical conditions that can be caused by many different enveloped RNA viruses, with a short window for medical intervention.

  1. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  2. Curious discoveries in antiviral drug development: the role of serendipity.

    Science.gov (United States)

    De Clercq, Erik

    2015-07-01

    Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses.

  3. The Range of Application of Domestic Antiviral Drug in Рediatrics

    Directory of Open Access Journals (Sweden)

    O. V. Shamsheva

    2015-01-01

    Full Text Available The article presents the results of studies of the effectiveness and safety of domestic antiviral drug Аrbidol in children. Arbidol demonstrated antiviral activity not only against influenza viruses, and other respiratory viruses (respiratory syncytial virus, parainfluenza, rhinovirus, coronavirus, rotavirus, and others.

  4. The science of direct-acting antiviral and host-targeted agent therapy.

    Science.gov (United States)

    Pawlotsky, Jean-Michel

    2012-01-01

    Direct-acting antiviral drugs targeting two major steps of the HCV life cycle, polyprotein processing and replication, and cyclophilin inhibitors, that target a host cell protein required to interact with the replication complex, have reached clinical development. In order to achieve a sustained virological response, that is, a cure of the HCV infection, it is necessary to shut down virus production, to maintain viral inhibition throughout treatment and to induce a significant, slower second-phase decline in HCV RNA levels that leads to definitive clearance of infected cells. Recent findings suggest that the interferon era is coming to an end in hepatitis C therapy and HCV infection can be cured by all-oral interferon-free treatment regimens within 12 to 24 weeks. Further results are awaited that will allow the establishment of an ideal first-line all-oral, interferon-free treatment regimen for patients with chronic HCV infection.

  5. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents.

    Science.gov (United States)

    Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Miguel A; Martinez, Javier P; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Maga, Giovanni; Botta, Maurizio

    2016-05-10

    Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target.

  6. Detection of the antiviral drug oseltamivir in aquatic environments.

    Directory of Open Access Journals (Sweden)

    Hanna Söderström

    Full Text Available Oseltamivir (Tamiflu is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC, is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where oseltamivir is prescribed to patients for therapeutic use. The country where oseltamivir is used most is Japan, where it is used to treat seasonal flu. We measured the levels of OC in water samples from the Yodo River system in the Kyoto and Osaka prefectures, Japan, taken before and during the flu-season 2007/8. No OC was detected before the flu-season but 2-58 ng L(-1 was detected in the samples taken during the flu season. This study shows, for the first time, that low levels of oseltamivir can be found in the aquatic environment. Therefore the natural reservoir of influenza virus, dabbling ducks, is exposed to oseltamivir, which could promote the evolution of viral resistance.

  7. Drug-class specific impact of antivirals on the reproductive capacity of HIV.

    Directory of Open Access Journals (Sweden)

    Max von Kleist

    2010-03-01

    Full Text Available Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity-the reproductive capacity-that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro-in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently.

  8. Effect of combinations of antiviral drugs on herpes simplex encephalitis

    Directory of Open Access Journals (Sweden)

    Bryan M Gebhardt

    2009-12-01

    Full Text Available Bryan M Gebhardt1, Federico Focher2, Richard Eberle3, Andrzej Manikowski4, George E Wright41LSU Eye Center, Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; 2Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy; 3Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA; 4GLSynthesis Inc., Worcester, MA, USAAbstract: 2-Phenylamino-6-oxo-9-(4-hydroxybutylpurine (HBPG is a thymidine kinase inhibitor that prevents encephalitic death in mice caused by herpes simplex virus (HSV types 1 and 2, although its potency is somewhat less than that of acyclovir (ACV. The present study was undertaken to determine the effect of combinations of HBPG and either ACV, phosphonoformate (PFA, or cidofovir (CDF against HSV encephalitis. BALB/c mice were given ocular infections with HSV-1 or HSV-2, and treated twice daily intraperitoneally for five days with HBPG, alone or in combination with ACV, PFA, or CDF. Animals were observed daily for up to 30 days, and the day of death of each was recorded. All of the combinations showed additivity, and the combination of HBPG + ACV appeared to be synergistic, ie, protected more mice against HSV-1 encephalitis compared with each drug given alone. Delay of treatment with HBPG for up to two days was still effective in preventing HSV-2 encephalitis. The combination of the thymidine kinase inhibitor HBPG and the antiherpes drug ACV may have synergistic activity against HSV encephalitis. The development of a potent and safe combination therapy for the prevention and/or treatment of HSV infection of the central nervous system can improve the outcome of this infection in humans.Keywords: antivirals, herpetic encephalitis

  9. SOME ASPECTS OF THE MARKETING STUDIES FOR THE PHARMACEUTICAL MARKET OF ANTIVIRAL DRUGS

    Directory of Open Access Journals (Sweden)

    A. G. Salnikova

    2015-01-01

    Full Text Available Antiviral drugs are widely used in medicinal practice. They suppress the originator and stimulate the protection of an organism. The drugs are used for the treatment of flu and ARVI, herpetic infections, virus hepatitis, HIV-infection. Contemporary pharmaceutical market is represented by a wide range of antiviral drugs. Marketing studies are conducted to develop strategies, used for the enhancement of pharmacy organization activity efficiency. Conduction of the marketing researches of pharmaceutical market is the purpose of this study. We have used State Registry of Drugs, State Record of Drugs, List of vital drugs, questionnaires of pharmaceutical workers during our work. Historical, sociological, mathematical methods, and a method of expert evaluation were used in the paper. As the result of the study we have made the following conclusions. We have studied and generalized the literature data about classification and application of antiviral drugs, marketing, competition. The assortment of antiviral drugs on the pharmaceutical market of the Russian Federation was also studied. We have conducted an analysis for the obtainment of the information about antiviral drugs by pharmaceutical workers. We have determined the competitiveness of antiviral drugs, and on the basis of the research conducted we have submitted an offer for pharmaceutical organizations to form the range of antiviral drugs.

  10. Magnetic targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Timothy Wiedmann

    2009-10-01

    Full Text Available Lung cancer is the most common cause of death from cancer in both men and women. Treatment by intravenous or oral administration of chemotherapy agents results in serious and often treatment-limiting side effects. Delivery of drugs directly to the lung by inhalation of an aerosol holds the promise of achieving a higher concentration in the lung with lower blood levels. To further enhance the selective lung deposition, it may be possible to target deposition by using external magnetic fields to direct the delivery of drug coupled to magnetic particles. Moreover, alternating magnetic fields can be used to induce particle heating, which in turn controls the drug release rate with the appropriate thermal sensitive material.With this goal, superparamagetic nanoparticles (SPNP were prepared and characterized, and enhanced magnetic deposition was demonstrated in vitro and in vivo. SPNPs were also incorporated into a lipid-based/SPNP aerosol formulation, and drug release was shown to be controlled by thermal activation. Because of the inherent imaging potential of SPNPs, this use of nanotechnology offers the possibility of coupling the diagnosis of lung cancer to drug release, which perhaps will ultimately provide the “magic bullet” that Paul Ehrlich originally sought.

  11. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery.

    Directory of Open Access Journals (Sweden)

    Dhara A Patel

    Full Text Available Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE activity in a fully automated and robust format (Z'>0.7. Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV. The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify

  12. Antiviral antibodies target adenovirus to phagolysosomes and amplify the innate immune response.

    Science.gov (United States)

    Zaiss, Anne K; Vilaysane, Akosua; Cotter, Matthew J; Clark, Sharon A; Meijndert, H Christopher; Colarusso, Pina; Yates, Robin M; Petrilli, Virginie; Tschopp, Jurg; Muruve, Daniel A

    2009-06-01

    Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.

  13. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  14. The Future of HCV Therapy: NS4B as an Antiviral Target

    Directory of Open Access Journals (Sweden)

    Hadas Dvory-Sobol

    2010-11-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a major worldwide cause of liver disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 170 million individuals are infected with HCV, with three to four million new cases each year. The current standard of care, combination treatment with interferon and ribavirin, eradicates the virus in only about 50% of chronically infected patients. Notably, neither of these drugs directly target HCV. Many new antiviral therapies that specifically target hepatitis C (e.g. NS3 protease or NS5B polymerase inhibitors are therefore in development, with a significant number having advanced into clinical trials. The nonstructural 4B (NS4B protein, is among the least characterized of the HCV structural and nonstructural proteins and has been subjected to few pharmacological studies. NS4B is an integral membrane protein with at least four predicted transmembrane (TM domains. A variety of functions have been postulated for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. This review summarizes potential targets within the nonstructural protein NS4B, with a focus on novel classes of NS4B inhibitors.

  15. Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate.

    Science.gov (United States)

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-09-28

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~70%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (pACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug.

  16. Design Features of Drug-Drug Interaction Trials Between Antivirals and Oral Contraceptives.

    Science.gov (United States)

    Ayala, Ruben C; Arya, Vikram; Younis, Islam R

    2016-05-01

    The aim of this work was to explore the major design features of drug-drug interaction trials between antiviral medications (AVs) and oral contraceptives (OCs). Information on these trials (n = 27) was collected from approved drug labels and clinical pharmacology reviews conducted by the U.S. Food and Drug Administration. The primary objective of all trials was to evaluate changes in OC exposure following the coadministration of AVs. In addition, an evaluation of potential pharmacodynamic interaction was performed in 10 of these trials. Twenty-two trials were open label with a fixed-sequence design, and 5 trials used a double-blind crossover design. The trials were conducted using one, two, or three 28-day ovulatory cycles in 10, 8, and 9 trials, respectively. Only 1 trial enrolled HIV-infected women. The median number of women in a trial was 20 (range, 12 to 52). Norethindrone/ethinyl estradiol (EE) combination was the most commonly used OC (n = 16, 59%) followed by norgestimate/EE (n = 9, 33%). Labeling recommendations were based on exposure changes in 25 cases and on safety observations in the trial in 2 cases. In conclusion, a wide variety of trial designs was used, and there is no preferred design. The answer to the exposure question can be achieved using multiple designs.

  17. Photolysis of three antiviral drugs acyclovir, zidovudine and lamivudine in surface freshwater and seawater.

    Science.gov (United States)

    Zhou, Chengzhi; Chen, Jingwen; Xie, Qing; Wei, Xiaoxuan; Zhang, Ya-nan; Fu, Zhiqiang

    2015-11-01

    Photodegradation is an important elimination process for many pharmaceuticals in surface waters. In this study, photodegradation of three antiviral drugs, acyclovir, zidovudine, and lamivudine, was investigated in pure water, freshwater, and seawater under the irradiation of simulated sunlight. Results showed that zidovudine was easily transformed via direct photolysis, while acyclovir and lamivudine were mainly transformed via indirect photolysis. We found that in freshwater, nitrate enhanced the photodegradation of the three antiviral drugs, bicarbonate promoted the photodegradation of acyclovir, and dissolved organic matter (DOM) accelerated the photolysis of acyclovir and lamivudine. In seawater, the photolysis of acyclovir was not susceptible to Cl(-), Br(-) and ionic strength; however, the photolysis of zidovudine was inhibited by Cl(-) and Br(-), and the photolysis of lamivudine was enhanced by Cl(-), Br(-) and ionic strength. Second-order reaction rate constants for the three antiviral drugs with (1)O2 (k1O2) and OH (kOH) were also measured. These results are important for fate and ecological risk assessment of the antiviral drugs in natural waters.

  18. [Preliminary screening for antiviral AIDS drugs. VI. Report for fiscal year 1993].

    Science.gov (United States)

    Ushijima, H; Takahashi, K; Kunisada, T; Moritugu, Y; Kobayashi, N; Noguchi, Y; Matsuyama, M; Akiyoshi, K; Noro, S; Sawada, H; Sakurada, N; Yamada, A; Ishizaki, T; Kamimura, N; Yoshida, Y; Ono, T; Ohtomo, N; Morishita, T; Kobayashi, S; Miyake, T; Ishiwara, Y; Suzuki, R; Saito, T; Etoh, S; Mise, K

    1996-01-01

    Preliminary screening of antiviral AIDS drugs has been carried out using three different in vitro assay systems. Among 138 samples tested, two were found to inhibit the growth of HIV in vitro. Neither of the positive samples has hopeful signs, as the ranges of effective doses of the samples are very narrow.

  19. [Preliminary screening for antiviral AIDS drugs. VII. Report for fiscal year 1994].

    Science.gov (United States)

    Ohmuki, N; Kazama, K; Sadamasu, T; Sekine, H; Ohta, K; Kudoh, Y; Kobayashi, N; Noguchi, Y; Matsuyama, M; Akiyoshi, K; Noro, S; Sawada, H; Kimura, H; Yamada, A; Ishizaki, T; Kamimura, N; Yoshida, Y; Ono, T; Tachibana, N; Morishita, T; Kobayashi, S; Miyake, T; Ishiwara, Y; Ishikawa, N; Moritugu, Y

    1996-01-01

    Preliminary screening of antiviral AIDS drugs has been carried out using three different in vitro assay systems. Among 246 samples of different origin tested, six were shown to inhibit the growth of HIV in vitro. Two of the positive samples have hopeful signs, as the ranges of effective doses are wider than those of most of positive samples which had been found by us.

  20. Phyllanthus species versus antiviral drugs for chronic hepatitis B virus infection

    DEFF Research Database (Denmark)

    Yun, Xia; Luo, Hui; Liu, Jian Ping

    2013-01-01

    Phyllanthus species for patients with chronic hepatitis B virus (HBV) infection have been assessed in clinical trials, but no consensus regarding their usefulness exists. When compared with placebo or no intervention, we were unable to identify convincing evidence that phyllanthus species...... are beneficial in patients with chronic hepatitis B. Some randomised clinical trials have compared phyllanthus species versus antiviral drugs....

  1. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Wilson, Ian A.

    2016-12-21

    The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Å from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.

  2. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoguang [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Department of Medical Microbiology, Harbin Medical University, Harbin 150086 (China); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Qian, Hua [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Miyamoto, Fusako [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Naito, Takeshi [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kawaji, Kumi [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Kajiwara, Kazumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); JST Innovation Plaza Kyoto, Japan Science and Technology Agency, Nishigyo-ku, Kyoto 615-8245 (Japan); Hattori, Toshio [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Matsuoka, Masao [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  3. Broad-spectrum antiviral agents

    Directory of Open Access Journals (Sweden)

    Jun-Da eZhu

    2015-05-01

    Full Text Available Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents.

  4. Caulerpin as a potential antiviral drug against herpes simplex virus type 1

    Directory of Open Access Journals (Sweden)

    Nathália Regina Porto Vieira Macedo

    2012-08-01

    Full Text Available About 80% of the human adult population is infected with HSV-1. Although there are many anti-HSV-1 drugs available (acyclovir, ganciclovir, valaciclovir, foscarnet, their continuous use promotes the selection of resistant strains, mainly in ACV patients. In addition to resistance, the drugs also have toxicity, particularly when administration is prolonged. The study of new molecules isolated from green algae with potential antiviral activity represents a good opportunity for the development of antiviral drugs. Caulerpin, the major product from the marine algae Caulerpa Lamouroux (Caulerpales, is known for its biological activities such as antioxidant, antifungal, acetylcholinesterase inhibitor (AChE and antibacterial activity. In this work, we show that caulerpin could be an alternative to acyclovir as an anti-HSV-1 drug that inhibits the alpha and beta phases of the replication cycle.

  5. Pharmacokinetic Characteristics, Pharmacodynamic Effect and In Vivo Antiviral Efficacy of Liver-Targeted Interferon Alpha

    Science.gov (United States)

    Rycroft, Daniel; Sosabowski, Jane; Coulstock, Edward; Davies, Marie; Morrey, John; Friel, Sarah; Kelly, Fiona; Hamatake, Robert; Ovečka, Milan; Prince, Rob; Goodall, Laura; Sepp, Armin; Walker, Adam

    2015-01-01

    Interferon alpha (IFNα) is used for the treatment of hepatitis B virus infection, and whilst efficacious, it is associated with multiple adverse events caused by systemic exposure to interferon. We therefore hypothesise that targeting IFN directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. Furthermore we investigated whether directing IFN to the reservoir of infection in the liver may improve antiviral efficacy by increasing local concentration in target organs and tissues. Our previous results show that the mIFNα2 fused to an ASGPR specific liver targeting antibody, DOM26h-196-61, results in a fusion protein which retains the activity of both fusion partners when measured in vitro. In vivo targeting of the liver by mIFNα2-DOM26h-196-61, hereafter referred to as targeted mIFNα2, was observed in microSPECT imaging studies in mice. In this study we show by pharmacokinetic analysis that antibody mediated liver-targeting results in increased uptake and exposure of targeted mIFNα2 in target tissues, and correspondingly reduced uptake and exposure in systemic circulation, clearance organs and non-target tissues. We also show that cytokine activity and antiviral activity of liver-targeted IFN is observed in vivo, but that, contrary to expectations, liver-targeting of mIFNα2 using ASGPR specific dAbs actually leads to a reduced pharmacodynamic effect in target organs and lower antiviral activity in vivo when compared to non-targeted mIFNα2-dAb fusions. PMID:25689509

  6. Pharmacokinetic characteristics, pharmacodynamic effect and in vivo antiviral efficacy of liver-targeted interferon alpha.

    Directory of Open Access Journals (Sweden)

    Daniel Rycroft

    Full Text Available Interferon alpha (IFNα is used for the treatment of hepatitis B virus infection, and whilst efficacious, it is associated with multiple adverse events caused by systemic exposure to interferon. We therefore hypothesise that targeting IFN directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. Furthermore we investigated whether directing IFN to the reservoir of infection in the liver may improve antiviral efficacy by increasing local concentration in target organs and tissues. Our previous results show that the mIFNα2 fused to an ASGPR specific liver targeting antibody, DOM26h-196-61, results in a fusion protein which retains the activity of both fusion partners when measured in vitro. In vivo targeting of the liver by mIFNα2-DOM26h-196-61, hereafter referred to as targeted mIFNα2, was observed in microSPECT imaging studies in mice. In this study we show by pharmacokinetic analysis that antibody mediated liver-targeting results in increased uptake and exposure of targeted mIFNα2 in target tissues, and correspondingly reduced uptake and exposure in systemic circulation, clearance organs and non-target tissues. We also show that cytokine activity and antiviral activity of liver-targeted IFN is observed in vivo, but that, contrary to expectations, liver-targeting of mIFNα2 using ASGPR specific dAbs actually leads to a reduced pharmacodynamic effect in target organs and lower antiviral activity in vivo when compared to non-targeted mIFNα2-dAb fusions.

  7. Synthesis and biological activity of hydroxycinnamoyl containing antiviral drugs

    Directory of Open Access Journals (Sweden)

    Chochkova Maya G.

    2014-01-01

    Full Text Available Seven N-hydroxycinnamoyl amides were synthesized by EDC/HOBt coupling of the corresponding substituted cinnamic acids (p-coumaric-, ferulic-, sinapic- and caffeic acids with influenza antivirals (amantadine, rimantadine and oseltamivir. DPPH (1,1-diphenyl-2-picrylhydrazyl scavenging abilities and the inhibitory effect on mushroom tyrosinase activity (using L-tyrosine as the substrate were investigated in vitro. Amongst the synthesized compounds, N-[(E-3-(3’,4’-dihydroxyphenyl-2-propenoyl]oseltamivir (1 and N-[(E-3-(3’,4’-dihydroxyphenyl-2-propenoyl]rimantadine (4, containing catechol moiety, exhibited the most potent DPPH radical-scavenging activity. Amide (1 displayed also tyrosinase inhibitory effect toward L-tyrosine as the substrate (~50%. Due to its biological activities revealed so far compound (1 can be considered as a promising candidate for a cosmetic ingredient. The synthesized compounds were also investigated for their in vitro inhibitory activity against the replication of influenza virus A (H3N2.

  8. Targeting the proteolytic processing of the viral glycoprotein precursor is a promising novel antiviral strategy against arenaviruses.

    Science.gov (United States)

    Rojek, Jillian M; Pasqual, Giulia; Sanchez, Ana B; Nguyen, Ngoc-Thao; de la Torre, Juan-Carlos; Kunz, Stefan

    2010-01-01

    A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.

  9. Target Oriented Drugs against Leishmania.

    Science.gov (United States)

    1980-01-31

    the leishmanial source. Leishmanial strains L32 Leishmania tropica LRC L32 L137 Leishmania tropica LRC L137 L52 Leishmania donovani LRC L52 These...RESOLUTION TEST CHAR] 0REPORT NUMBER I TARGET ORIENTED DRUGS AGAINST LEISHMANIA (First Annual Summary Report) 0URI ZEHAVI, PhD and JOSEPH EL-ON, PhD...GOVT ACCESSION NO. 3. RE PIENT.S CATALOG NUMBER A....*( - ) S. TYPE OF REPORT & PERIOD COVERED TARGET ORIENTED DRUGS AGAINST LEISHMANIA 6 FIRST

  10. The chemical bases of the various AIDS epidemics: recreational drugs, anti-viral chemotherapy and malnutrition.

    Science.gov (United States)

    Duesberg, Peter; Koehnlein, Claus; Rasnick, David

    2003-06-01

    In 1981 a new epidemic of about two-dozen heterogeneous diseases began to strike non-randomly growing numbers of male homosexuals and mostly male intravenous drug users in the US and Europe. Assuming immunodeficiency as the common denominator the US Centers for Disease Control (CDC) termed the epidemic, AIDS, for acquired immunodeficiency syndrome. From 1981-1984 leading researchers including those from the CDC proposed that recreational drug use was the cause of AIDS, because of exact correlations and of drug-specific diseases. However, in 1984 US government researchers proposed that a virus, now termed human immunodeficiency virus (HIV), is the cause of the non-random epidemics of the US and Europe but also of a new, sexually random epidemic in Africa. The virus-AIDS hypothesis was instantly accepted, but it is burdened with numerous paradoxes, none of which could be resolved by 2003: Why is there no HIV in most AIDS patients, only antibodies against it? Why would HIV take 10 years from infection to AIDS? Why is AIDS not self-limiting via antiviral immunity? Why is there no vaccine against AIDS? Why is AIDS in the US and Europe not random like other viral epidemics? Why did AIDS not rise and then decline exponentially owing to antiviral immunity like all other viral epidemics? Why is AIDS not contagious? Why would only HIV carriers get AIDS who use either recreational or anti-HIV drugs or are subject to malnutrition? Why is the mortality of HIV-antibody-positives treated with anti-HIV drugs 7-9%, but that of all (mostly untreated) HIV-positives globally is only 1.4%? Here we propose that AIDS is a collection of chemical epidemics, caused by recreational drugs, anti-HIV drugs, and malnutrition. According to this hypothesis AIDS is not contagious, not immunogenic, not treatable by vaccines or antiviral drugs, and HIV is just a passenger virus. The hypothesis explains why AIDS epidemics strike non-randomly if caused by drugs and randomly if caused by malnutrition

  11. The chemical bases of the various AIDS epidemics: recreational drugs, anti-viral chemotherapy and malnutrition

    Indian Academy of Sciences (India)

    Peter Duesberg; Claus Koehnlein; David Rasnick

    2003-06-01

    In 1981 a new epidemic of about two-dozen heterogeneous diseases began to strike non-randomly growing numbers of male homosexuals and mostly male intravenous drug users in the US and Europe. Assuming immunodeficiency as the common denominator the US Centers for Disease Control (CDC) termed the epidemic, AIDS, for acquired immunodeficiency syndrome. From 1981–1984 leading researchers including those from the CDC proposed that recreational drug use was the cause of AIDS, because of exact correlations and of drug-specific diseases. However, in 1984 US government researchers proposed that a virus, now termed human immunodeficiency virus (HIV), is the cause of the non-random epidemics of the US and Europe but also of a new, sexually random epidemic in Africa. The virus-AIDS hypothesis was instantly accepted, but it is burdened with numerous paradoxes, none of which could be resolved by 2003: Why is there no HIV in most AIDS patients, only antibodies against it? Why would HIV take 10 years from infection to AIDS? Why is AIDS not self-limiting via antiviral immunity? Why is there no vaccine against AIDS? Why is AIDS in the US and Europe not random like other viral epidemics? Why did AIDS not rise and then decline exponentially owing to antiviral immunity like all other viral epidemics? Why is AIDS not contagious? Why would only HIV carriers get AIDS who use either recreational or anti-HIV drugs or are subject to malnutrition? Why is the mortality of HIV-antibody-positives treated with anti-HIV drugs 7–9%, but that of all (mostly untreated) HIV-positives globally is only 1.4%? Here we propose that AIDS is a collection of chemical epidemics, caused by recreational drugs, anti-HIV drugs, and malnutrition. According to this hypothesis AIDS is not contagious, not immunogenic, not treatable by vaccines or antiviral drugs, and HIV is just a passenger virus. The hypothesis explains why AIDS epidemics strike non-randomly if caused by drugs and randomly if caused by

  12. A Survey of Antiviral Drugs for Bioweapons: Review

    Science.gov (United States)

    2005-01-01

    treatment was started 15 h before viral challenge (Neumann-Haefelin et al., 1975). Cidofovir The group of drugs known as acyclic nucleoside phosphonates...mice at a dose of 5–100 mg/kg/day. (S)-HPMPC ( cidofovir ) has an activity spectrum similar to (S)-HPMPA, however it is less toxic, so it has surpassed its... cidofovir is effective against over 30 different strains of variola virus with IC50s below 30 µg/ml. Cidofovir has been licensed (as Vistide) for treating

  13. [Preliminary screening for antiviral AIDS drugs. VIII. Report for fiscal year 1995].

    Science.gov (United States)

    Morishita, T; Kobayashi, S; Sato, K; Sakae, K; Ishikawa, N; Kobayashi, N; Noguchi, Y; Akiyoshi, K; Suga, T; Ogawa, A; Noro, S; Sawada, H; Kimura, H; Yamada, A; Ishizaki, T; Kamimura, N; Iwashima, A; Ono, T; Tachibana, N; Sekine, H; Ohnuki, N; Kazama, K; Sadamasu, K; Ohta, K; Mise, K

    1997-01-01

    Preliminary screening of antiviral AIDS drugs has been carried out using three different in vitro assay systems. Among 96 samples of different origin tested, two were shown to inhibit the growth of HIV in vitro. One of the positive samples (plant origin) has hopeful signs, as the ranges of effective doses are wider than those of most of positive samples which had been found by us.

  14. The anti-obesity drug orlistat reveals anti-viral activity.

    Science.gov (United States)

    Ammer, Elisabeth; Nietzsche, Sandor; Rien, Christian; Kühnl, Alexander; Mader, Theresa; Heller, Regine; Sauerbrei, Andreas; Henke, Andreas

    2015-12-01

    The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways.

  15. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    2016-01-01

    Full Text Available The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans-H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment ("Duals" or from two segments ("Doubles"; 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3, the hedge-factor is maximal (= n- 1 when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for

  16. Behavior of antibiotics and antiviral drugs in sewage treatment plants and risk associated with their widespread use under pandemic condition

    OpenAIRE

    Ghosh, Gopal Chandra

    2009-01-01

    The concern for pharmaceutically active compounds (PhACs) as contaminants in the environment and the need to assess their environmental risk have greatly increased since the early nineties. Among PhACs, antibiotics and antiviral drugs are of important concern due to their role in growing antibiotic and antiviral drugs resistance among pathogenic bacteria and influenza viruses, respectively. Besides resistance issue, the compounds may upset sensitive ecosystems as they are designed to be highl...

  17. Interaction Research on the Antiviral Molecule Dufulin Targeting on Southern Rice Black Streaked Dwarf Virus P9-1 Nonstructural Protein

    Directory of Open Access Journals (Sweden)

    Zhenchao Wang

    2015-03-01

    Full Text Available ern rice black streaked dwarf virus (SRBSDV causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL, an ideal anti-SRBSDV molecule, and investigated the interactions of DFL targeting on the nonstructural protein P9-1. The biological sequence information and bonding characterization of DFL to four kinds of P9-1 protein were described with fluorescence titration (FT and microscale thermophoresis (MST assays. The sequence analysis indicated that P9-1 had highly-conserved C- and N-terminal amino acid residues and a hypervariable region that differed from 131 aa to 160 aa. Consequently, wild-type (WT-His-P9-1, 23 C-terminal residues truncated (TR-ΔC23-His-P9-1, 6 N-terminal residues truncated (TR-ΔN6-His-P9-1, and Ser138 site-directed (MU-138-His-P9-1 mutant proteins were expressed. The FT and MST assay results indicated that DFL bounded to WT-His-P9-1 with micromole affinity and the 23 C-terminal amino acids were the potential targeting site. This system, which combines a complete sequence analysis, mutant protein expression, and binding action evaluating system, could further advance the understanding of the interaction abilities between antiviral drugs and their targets.

  18. Amorphous polymeric binary blend pH-responsive nanoparticles for dissolution enhancement of antiviral drug

    Directory of Open Access Journals (Sweden)

    Deep R. Naik

    2016-09-01

    Full Text Available The aim of this study was to develop and optimize a nanoparticulate carrier based on polymeric blends of cellulose acetate butyrate (CAB and poly(vinyl pyrrolidone (PVP to enhance dissolution profile of an antiviral drug. These nanoparticles are studied by means of X-ray powder diffraction, FTIR and DSC while the morphology evaluated using SEM analysis. Drug-loaded nanoparticles were produced in spherical shape with sizes and encapsulation efficiency ranging from 322 to 434 nm and 50% to 70% respectively. The effects of different CAB/PVP ratios, concentration of drug and emulsifier on the nanoparticle size, drug encapsulation and in vitro release were studied in detail. In vitro release along with mechanism and kinetics were studied in different pHs indicating that the release of drug from nanoparticles was pH-responsive. All the nanoparticles displayed a slowed release pattern with the reduced burst release. The mechanism and kinetics of the drug delivery system was also systematically studied using various models such as zero order, first order, Higuchi model and Korsmeyer–Peppas. The results indicate that the new CAB/PVP nanoparticles have a promising potential to serve as an antiviral controlled delivery system.

  19. Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity

    Directory of Open Access Journals (Sweden)

    Strebel Klaus

    2007-08-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins constitute a family of cytidine deaminases that provide intracellular resistance to retrovirus replication and to transposition of endogenous retroelements. A3A has significant homology to the C-terminus of A3G but has only a single cytidine deaminase active site (CDA, unlike A3G, which has a second N-terminal CDA previously found to be important for Vif sensitivity and virus encapsidation. A3A is packaged into HIV-1 virions but, unlike A3G, does not have antiviral properties. Here, we investigated the reason for the lack of A3A antiviral activity. Results Sequence alignment of A3G and A3A revealed significant homology of A3A to the C-terminal region of A3G. However, while A3G co-purified with detergent-resistant viral nucleoprotein complexes (NPC, virus-associated A3A was highly detergent-sensitive leading us to speculate that the ability to assemble into NPC may be a property conveyed by the A3G N-terminus. To test this model, we constructed an A3G-3A chimeric protein, in which the N-terminal half of A3G was fused to A3A. Interestingly, the A3G-3A chimera was packaged into HIV-1 particles and, unlike A3A, associated with the viral NPC. Furthermore, the A3G-3A chimera displayed strong antiviral activity against HIV-1 and was sensitive to inhibition by HIV-1 Vif. Conclusion Our results suggest that the A3G N-terminal domain carries determinants important for targeting the protein to viral NPCs. Transfer of this domain to A3A results in A3A targeting to viral NPCs and confers antiviral activity.

  20. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs

    Science.gov (United States)

    Komarova, Natalia L.; Levy, David N.; Wodarz, Dominik

    2013-07-01

    Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.

  1. Letermovir and inhibitors of the terminase complex: a promising new class of investigational antiviral drugs against human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Melendez DP

    2015-08-01

    Full Text Available Dante P Melendez,1,2 Raymund R Razonable1,2 1Division of Infectious Diseases, 2William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA Abstract: Infection with cytomegalovirus is prevalent in immunosuppressed patients. In solid organ transplant and hematopoietic stem cell transplant recipients, cytomegalovirus infection is associated with high morbidity and preventable mortality. Prevention and treatment of cytomegalovirus with currently approved antiviral drugs is often associated with side effects that sometimes preclude their use. Moreover, cytomegalovirus has developed mutations that confer resistance to standard antiviral drugs. During the last decade, there have been calls to develop novel antiviral drugs that could provide better options for prevention and treatment of cytomegalovirus. Letermovir (AIC246 is a highly specific antiviral drug that is currently undergoing clinical development for the management of cytomegalovirus infection. It acts by inhibiting the viral terminase complex. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. Herein, we present a comprehensive review on letermovir, from its postulated novel mechanism of action to the results of most recent clinical studies. Keywords: cytomegalovirus, letermovir, AIC246, terminase, antivirals, transplantation 

  2. Evaluation and validation of drug targets

    Institute of Scientific and Technical Information of China (English)

    Guan-huaDU

    2004-01-01

    Drug target is one of the key factors for discovering and developing new drugs. To find and validate drug targets is a crucial technique required in drug discovery by the strategy of high throughput screening. Based on the knowledge of molecular biology, human genomics and proteomics, it has been predicted that 5000 to 10000 drug targets exist in human. So, it is important orocedure to evaluate and validate the drug targets.

  3. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    Science.gov (United States)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  4. Viral dependence on cellular ion channels - an emerging anti-viral target?

    Science.gov (United States)

    Hover, Samantha; Foster, Becky; Barr, John; Mankouri, Jamel

    2017-01-22

    The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus-egress and the maintenance of a cellular environment conducive to virus persistence are in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus lifecycles. Here we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad ranging anti-viral therapeutic strategy.

  5. The Use of Antiviral Drugs for Influenza: Recommended Guidelines for Practitioners

    Directory of Open Access Journals (Sweden)

    Upton D Allen

    2006-01-01

    Full Text Available The present document outlines current guidelines and supporting literature relating to the use of antiviral drugs for chemoprophylaxis and influenza illness therapy in paediatric and adult settings. The focus is on the management of influenza in interpandemic periods. Where appropriate, the areas in need of additional research are identified. It will be necessary to update aspects of these guidelines as new information emerges. The recommendations that follow represent the results of a joint effort supported by the Canadian Paediatric Society and the Association of Medical Microbiology and Infectious Disease Canada.

  6. Antibiotic drugs targeting bacterial RNAs

    Directory of Open Access Journals (Sweden)

    Weiling Hong

    2014-08-01

    Full Text Available RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.

  7. Human rhinovirus 3C protease as a potential target for the development of antiviral agents.

    Science.gov (United States)

    Wanga, Q May; Chen, Shu-Hui

    2007-02-01

    As the major cause of the common cold in children and adults, human rhinoviruses (HRVs) are a group of small single-stranded positive-sense RNA viruses. HRVs translate their genetic information into a polyprotein precursor that is mainly processed by a virally encoded 3C protease (3Cpro) to generate functional viral proteins and enzymes. It has been shown that the enzymatic activity of HRV 3Cpro is essential to viral replication. The 3Cpro is distinguished from most other proteases by the fact that it has a cysteine nucleophile but with a chymotrypsin-like serine protease folding. This unique protein structure together with its essential role in viral replication made the 3Cpro an excellent target for antiviral intervention. In recent years, considerable efforts have been made in the development of antiviral compounds targeting this enzyme. To further facilitate the design of potent 3C protease inhibitors for therapeutic use, this review summarizes the biochemical and structural characterization conducted on HRV 3C protease along with the recent progress on the development of 3C protease inhibitors.

  8. Prevention and Treatment of KSHV-associated Diseases with Antiviral Drugs

    Institute of Scientific and Technical Information of China (English)

    Ren-rong TIAN; Qing-jiao LIAO; Xulin CHEN

    2008-01-01

    s Kaposi's sarcoma-associated herpesvirus (KSHV) was first identified as the etiologic agent of Kaposi's sarcoma (KS) in 1994.KSHV infection is necessary,but not sufficient for the development of Kaposi sarcoma (KS),primary effusion lymphoma (PEL),and multicentric Castleman disease (MCD).Advances in the prevention and treatment of KSHV-associated Diseases have been achieved,even though current treatment options are ineffective,or toxic to many affected persons.The identification of new targets for potential future therapies and the randomized trial to evaluate the efficacy of new antivirals are required.

  9. NEW DRUG TARGETING TREATMENT - GLIVEC

    Institute of Scientific and Technical Information of China (English)

    SUN Xue-mei(孙雪梅); BRADY Ben

    2003-01-01

    This review evaluates the role of Glivec in the treatment of chronic myelogenous leukemia and other malignant tumors. Preclinical and clinical evidence showed that Glivec demonstrated a potent and specific inhibition on BCR-ABL positive leukemias and other malignant tumors in which overexpression of c-kit and PDGFR-β played a major role in their pathogenesis. Glivec has induced complete hematologic responses in up to 98% of patients evaluated in clinical trials. It's a very successful drug that supported the idea of targeted therapy through inhibition of tyrosine kinases. Although it's still in the early stages of clinical development and the resistance to Glivec remains to be a problem needed further study, a great deal has been learned from these research and observation. And with the increasing data, molecular targeting therapy will play much more important role in the treatment of malignant tumors. With the better understanding of the pathogenesis of malignant tumors, well-designed drugs targeting the specific molecular abnormalities with higher efficacy and lower side effect will benefit numerous patients with malignant tumors.

  10. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus.

    Science.gov (United States)

    Saudi, Milind; Zmurko, Joanna; Kaptein, Suzanne; Rozenski, Jef; Gadakh, Bharat; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Van Aerschot, Arthur

    2016-10-04

    High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 μM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 μM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 μM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 μM, with compound 6n being the most potent for this series with an EC50 0.4 μM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity.

  11. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  12. A method for evaluating antiviral drug susceptibility of Epstein-Barr virus

    Directory of Open Access Journals (Sweden)

    Charlotte A Romain

    2010-01-01

    Full Text Available Charlotte A Romain1, Henry H Balfour Jr1,2, Heather E Vezina1,3, Carol J Holman11Department of Laboratory Medicine and Pathology, 2Department of Pediatrics, 3Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USAAbstract: We developed an in vitro Epstein-Barr virus (EBV drug susceptibility assay using P3HR1 cells or lymphoblastoid cells from subjects with infectious mononucleosis, which were grown in the presence of various concentrations of acyclovir (ACV, ganciclovir (GCV or R-9-[4-hydroxy-2-(hydroxymethylbutyl]guanine (H2G and 12-O-tetradecanoyl-phorbol-13-acetate (TPA. On day 7, total cellular DNA was extracted and EBV DNA was detected using an in-house quantitative real-time polymerase chain reaction (PCR method. All three drugs had in vitro activity against EBV in both the laboratory standard producer cell line P3HR1 and in subject-derived lymphoblastoid cell lines. The median 50% inhibitory concentrations (IC50s in P3HR1 cells were: ACV, 3.4 μM; GCV, 2.6 μM; and H2G, 2.7 μM and in 3 subject-derived cells were: ACV, 2.5 μM; GCV, 1.7 μM; and H2G, 1.9 μM. Our assay can be used to screen candidate anti-EBV drugs. Because we can measure the IC50 of patients’ strains of EBV, this assay may also be useful for monitoring viral resistance especially in immunocompomised hosts receiving antiviral drugs for prevention or treatment of EBV diseases.Keywords: Epstein-Barr virus, ganciclovir, acyclovir, valomaciclovir, H2G, antivirals

  13. A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion.

    Directory of Open Access Journals (Sweden)

    Frederic Vigant

    Full Text Available LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50 ≤ 0.5 µM, and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen ((1O2 quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated (1O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. (1O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced (1O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001's mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001's limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR studies led to a novel class of compounds (oxazolidine-2,4-dithiones with (1 100-fold improved in vitro potency (IC50<10 nM, (2 red-shifted absorption spectra (for better tissue penetration, (3 increased quantum yield (efficiency of (1O2 generation, and (4 10-100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p≤0

  14. Drug targeting through pilosebaceous route.

    Science.gov (United States)

    Chourasia, Rashmi; Jain, Sanjay K

    2009-10-01

    Local skin targeting is of interest for the pharmaceutical and the cosmetic industry. A topically applied substance has basically three possibilities to penetrate into the skin: transcellular, intercellular, and follicular. The transfollicular path has been largely ignored because hair follicles constitute only 0.1% of the total skin. The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. Nonetheless, the hair follicle has great potential for skin treatment, owing to its deep extension into the dermis and thus provides much deeper penetration and absorption of compounds beneath the skin than seen with the transdermal route. In the case of skin diseases and of cosmetic products, delivery to sweat glands or to the pilosebaceous unit is essential for the effectiveness of the drug. Increased accumulation in the pilosebaceous unit could treat alopecia, acne and skin cancer more efficiently and improve the effect of cosmetic substances and nutrients. Therefore, we review herein various drug delivery systems, including liposomes, niosomes, microspheres, nanoparticles, nanoemulsions, lipid nanocarriers, gene therapy and discuss the results of recent researches. We also review the drugs which have been investigated for pilosebaceous delivery.

  15. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin....... Curiously, the therapeutic window of ribavirin was vastly improved in several of these polymers suggesting altered pharmacodynamics. The applicability of liver-targeting sugar moieties is likewise tested in a similarly methodical approach. The same technique of synthesis was applied with zidovudine to make...

  16. Optimal design and validation of antiviral siRNA for targeting hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Jie FU; Zhong-ming TANG; Xin GAO; Fan ZHAO; Hui ZHONG; Mao-rong WEN; Xiao SUN; Hai-feng SONG; Xiao-hong QIAN

    2008-01-01

    Aim: Optimal design of antiviral short-interfering RNA (siRNA) targeting highly divergent hepatitis B virus (HBV) was validated by quantitative structure-activity relationship (QSAR) analysis. Methods: The potency of 23 synthetic siRNAs targeting 23 sites throughout HBV pregenomic RNA were evaluated at 10 nmol/L by determining the inhibition on the expression of S/P/pregenomic mRNA and hepatitis B surface antigen (HBsAg) quantitatively in HepG2.2.15 cells. Genotype homology within HBV genomes was identified through plentiful computational analysis and the multiple linear regression analysis was made to validate the relationship between the functional siRNAs and primary characteristics. Based on the preliminary results, relationships between different determined endpoints [S/P mRNA, HBsAg, C/P mRNA, hepatitis B e antigen (HBeAg) and viral DNA load] and siRNA efficacy evaluation were investigated. Results: Genotype homology, open reading frame (ORF) S/E X and C had tight correlation with the ability of siRNAs on inhibiting the expression of S/P/Pregenomic mRNA and HBsAg (P<0.01), of which, ORF C was negatively correlated with the siRNA potency (P<0.05). Further study showed that siRNA potency evaluation was influenced by different determined endpoints. P-target siRNAs showed significant inhibition on the S mRNA and HBsAg expression. S-target siRNAs inhibited the expression of S mRNA and HBsAg strongly. X-target siRNAs played active roles in inhibiting all 5 determined endpoints. C-target siRNAs blocked the expression of C mRNA, HBeAg and viral DNA load significantly. Conclusion: The antiviral potency of siRNA was relevant to its primary characteristics and determined endpoints were important for siRNA efficacy evaluation for complex genome with overlapping ORF, which was helpful for siRNA optimal design.

  17. Antiviral drug susceptibilities of seasonal human influenza viruses in Lebanon, 2008-09 season.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Wakim, Rima; Tabet, Carelle; Medlej, Fouad; Reda, Mariam; Baranovich, Tatiana; Suzuki, Yasushi; Dapat, Clyde; Caperig-Dapat, Isolde; Dbaibo, Ghassan S; Suzuki, Hiroshi

    2010-07-01

    The emergence of antiviral drug-resistant strains of the influenza virus in addition to the rapid spread of the recent pandemic A(H1N1) 2009 virus highlight the importance of surveillance of influenza in identifying new variants as they appear. In this study, genetic characteristics and antiviral susceptibility patterns of influenza samples collected in Lebanon during the 2008-09 season were investigated. Forty influenza virus samples were isolated from 89 nasopharyngeal swabs obtained from patients with influenza-like illness. Of these samples, 33 (82.5%) were A(H3N2), 3 (7.5%) were A(H1N1), and 4 (10%) were B. All the H3N2 viruses were resistant to amantadine but were sensitive to oseltamivir and zanamivir; while all the H1N1 viruses were resistant to oseltamivir (possessed H275Y mutation, N1 numbering, in their NA) but were sensitive to amantadine and zanamivir. In the case of influenza B, both Victoria and Yamagata lineages were identified (three and one isolates each, respectively) and they showed decreased susceptibility to oseltamivir and zanamivir when compared to influenza A viruses. Influenza circulation patterns in Lebanon were very similar to those in Europe during the same season. Continued surveillance is important to fully elucidate influenza patterns in Lebanon and the Middle East in general, especially in light of the current influenza pandemic.

  18. The Use of Antiviral Drugs for Influenza: Guidance for Practitioners 2012/2013

    Directory of Open Access Journals (Sweden)

    Fred Y Aoki

    2012-01-01

    Seasonal influenza in 2012/2013 is predicted to be caused by two human influenza A and one influenza B strain, all of which are anticipated to remain generally susceptible to oseltamivir.The predicted strains are A/California/7/2009 (H1N1 pdm09-like, A/Victoria/361/2011 (H3N2-like and B/Wisconsin/1/2010-like (Yamagata lineage. All are included in the seasonal influenza vaccine and are susceptible to oseltamivir.Swine-variant H3N2v, which has rarely caused infection in humans exposed to infected swine within the past year in the United States, is susceptible to oseltamivir. It is not included in the current seasonal influenza vaccine.It is still considered that initiation of antiviral therapy more than 36 h to 48 h after onset of symptoms is beneficial in patients hospitalized with complicated influenza and severe illness.Oseltamivir continues to be recommended for the treatment of influenza in pregnant women.The use of antiviral drugs among measures to control outbreaks of influenza in closed facilities such as correctional institutions is now included in the present document.

  19. Aquaporins as potential drug targets

    Institute of Scientific and Technical Information of China (English)

    Fang WANG; Xue-chao FENG; Yong-ming LI; Hong YANG; Tong-hui MA

    2006-01-01

    The aquaporins (AQP) are a family of integral membrane proteins that selectively transport water and,in some cases,small neutral solutes such as glycerol and urea.Thirteen mammalian AQP have been molecularly identified and localized to various epithelial,endothelial and other tissues.Phenotype studies of transgenic mouse models of AQP knockout,mutation,and in some cases humans with AQP mutations have demonstrated essential roles for AQP in mammalian physiology and pathophysiology,including urinary concentrating function,exocrine glandular fluid secretion,brain edema formation,regulation of intracranial and intraocular pressure,skin hydration,fat metabolism,tumor angiogenesis and cell migration.These studies suggest that AQP may be potential drug targets for not only new diuretic reagents for various forms of pathological water retention,but also targets for novel therapy of brain edema,inflammatory disease,glaucoma,obesity,and cancer.However,potent AQP modulators for in vivo application remain to be discovered.

  20. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes.

    Science.gov (United States)

    Yu, Debin; Zhao, Mingzhi; Dong, Liwei; Zhao, Lu; Zou, Mingwei; Sun, Hetong; Zhang, Mengying; Liu, Hongyu; Zou, Zhihua

    2016-01-01

    Type III interferons (IFNs) (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4) are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the expression of the antiviral genes MxA and OAS and two of them, analog-6 and -7, displayed an unexpected high potency that is higher than that of type I IFN (IFN-α2a) in activating the IFN-stimulated response element (ISRE)-luciferase reporter. Importantly, both analog-6 and -7 effectively inhibited replication of hepatitis C virus in Huh-7.5.1 cells, with an IC50 that is comparable to that of IFN-α2a; and consistent with the roles of IFN-λ in mucosal epithelia, both analogs potently inhibited replication of H3N2 influenza A virus in A549 cells. Together, these studies identified two IFN-λ analogs as candidates to be developed as novel antiviral biologics.

  1. Antiepileptic drugs: newer targets and new drugs

    Directory of Open Access Journals (Sweden)

    Vihang S. Chawan

    2016-06-01

    Full Text Available Epilepsy is a common neurological disorder affecting 0.5-1% of the population in India. Majority of patients respond to currently available antiepileptic drugs (AEDs, but a small percentage of patients have shown poor and inadequate response to AEDs in addition to various side effects and drug interactions while on therapy. Thus there is a need to develop more effective AEDs in drug resistant epilepsy which have a better safety profile with minimal adverse effects. The United States food and drug administration (USFDA has approved eslicarbazepine acetate, ezogabine, perampanel and brivaracetam which have shown a promising future as better AEDs and drugs like ganaxolone, intranasal diazepam, ICA- 105665, valnoctamide, VX-765, naluzotan are in the pipeline. [Int J Basic Clin Pharmacol 2016; 5(3.000: 587-592

  2. Antiviral activity of KR-23502 targeting nuclear export of influenza B virus ribonucleoproteins.

    Science.gov (United States)

    Jang, Yejin; Lee, Hye Won; Shin, Jin Soo; Go, Yun Young; Kim, Chonsaeng; Shin, Daeho; Malpani, Yashwardhan; Han, Soo Bong; Jung, Young-Sik; Kim, Meehyein

    2016-10-01

    The spiro compound 5,6-dimethyl-3H,3'H-spiro(benzofuran-2,1'-isobenzofuran)-3,3'-dione (KR-23502) has antiviral activity against influenza A and more potently B viruses. The aim of this study is to elucidate its mechanism of action. Subcellular localization and time-course expression of influenza B viral proteins, nucleoprotein (NP) and matrix protein 1 (M1), showed that KR-23502 reduced their amounts within 5 h post-infection. Early steps of virus life cycle, including virus entry, nuclear localization of NP and viral RNA-dependent RNA replication, were not affected by KR-23502. Instead it interrupted a later event corresponding to nuclear export of NP and M1 proteins. Delivery of viral ribonucleoprotein (vRNP)-M1 complex has been known to be mediated by the viral nuclear export protein (NEP) through interaction with cellular chromosomal maintenance 1 (CRM1) protein. In this study, we experimentally demonstrated that the compound targets the nuclear export of vRNP. Moreover, a single mutation (aspartate to glycine) at amino acid position 54 in M1 [M1(D54G)] was detected after 18 passages in the presence of KR-23502 with a 2-fold increase in 50% effective concentration indicating that this compound has a relatively high genetic barrier to resistance. Interestingly, it was observed that proteasome-mediated degradation of M1(D54G) was attenuated by KR-23502. In conclusion, we suggest that KR-23502 shows its anti-influenza activity by downregulating NEP/CRM1-mediated nuclear export of influenza vRNP and M1. KR-23502 provides a core chemical skeleton for further structure-based design of novel antivirals against influenza viruses.

  3. Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Cameron R Stewart

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (siRNAs in chicken cells (i mode of synthesis and (ii nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5'-UGUGU-3' is a key determinant in inducing high levels of expression of IFN-α, -β, -λ and interleukin 1-β in chicken cells. Positioning of this 5'-UGUGU-3' motif at the 5'-end of the sense strand of siRNAs, but not the 3'-end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257 tagged with 5'-UGUGU-3' induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics.

  4. Synthesis and Antiviral Evaluation of 6-(Trifluoromethylbenzyl) and 6-(Fluorobenzyl) Analogues of HIV Drugs Emivirine and GCA-186

    DEFF Research Database (Denmark)

    El-Brollosy, Nasser R.; Sørensen, Esben R.; Pedersen, Erik Bjerreg.;

    2008-01-01

    The present study describes the synthesis and antiviral evaluation of a series of novel 6-(3-trifluoromethylbenzyl) and 6-(fluorobenzyl) analogues of the HIV drugs emivirine and GCA-186. The objective was to investigate whether the fluoro or trifluoromethyl substituents could lead to an improved ...

  5. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes

    Directory of Open Access Journals (Sweden)

    Yu D

    2016-01-01

    Full Text Available Debin Yu,1 Mingzhi Zhao,2 Liwei Dong,1 Lu Zhao,1 Mingwei Zou,3 Hetong Sun,4 Mengying Zhang,4 Hongyu Liu,4 Zhihua Zou1 1National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 2State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA; 4Prosit Sole Biotechnology, Co., Ltd., Beijing, People’s Republic of China Abstract: Type III interferons (IFNs (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the

  6. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

    Science.gov (United States)

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  7. Properties of protein drug target classes.

    Directory of Open Access Journals (Sweden)

    Simon C Bull

    Full Text Available Accurate identification of drug targets is a crucial part of any drug development program. We mined the human proteome to discover properties of proteins that may be important in determining their suitability for pharmaceutical modulation. Data was gathered concerning each protein's sequence, post-translational modifications, secondary structure, germline variants, expression profile and drug target status. The data was then analysed to determine features for which the target and non-target proteins had significantly different values. This analysis was repeated for subsets of the proteome consisting of all G-protein coupled receptors, ion channels, kinases and proteases, as well as proteins that are implicated in cancer. Machine learning was used to quantify the proteins in each dataset in terms of their potential to serve as a drug target. This was accomplished by first inducing a random forest that could distinguish between its targets and non-targets, and then using the random forest to quantify the drug target likeness of the non-targets. The properties that can best differentiate targets from non-targets were primarily those that are directly related to a protein's sequence (e.g. secondary structure. Germline variants, expression levels and interactions between proteins had minimal discriminative power. Overall, the best indicators of drug target likeness were found to be the proteins' hydrophobicities, in vivo half-lives, propensity for being membrane bound and the fraction of non-polar amino acids in their sequences. In terms of predicting potential targets, datasets of proteases, ion channels and cancer proteins were able to induce random forests that were highly capable of distinguishing between targets and non-targets. The non-target proteins predicted to be targets by these random forests comprise the set of the most suitable potential future drug targets, and should therefore be prioritised when building a drug development programme.

  8. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors.

    Science.gov (United States)

    Chauvin, Benoit; Drouot, Sylvain; Barrail-Tran, Aurélie; Taburet, Anne-Marie

    2013-10-01

    The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the

  9. Optimal control of hepatitis C antiviral treatment programme delivery for prevention amongst a population of injecting drug users.

    Directory of Open Access Journals (Sweden)

    Natasha K Martin

    Full Text Available In most developed countries, HCV is primarily transmitted by injecting drug users (IDUs. HCV antiviral treatment is effective, and deemed cost-effective for those with no re-infection risk. However, few active IDUs are currently treated. Previous modelling studies have shown antiviral treatment for active IDUs could reduce HCV prevalence, and there is emerging interest in developing targeted IDU treatment programmes. However, the optimal timing and scale-up of treatment is unknown, given the real-world constraints commonly existing for health programmes. We explore how the optimal programme is affected by a variety of policy objectives, budget constraints, and prevalence settings. We develop a model of HCV transmission and treatment amongst active IDUs, determine the optimal treatment programme strategy over 10 years for two baseline chronic HCV prevalence scenarios (30% and 45%, a range of maximum annual budgets (£50,000-300,000 per 1,000 IDUs, and a variety of objectives: minimising health service costs and health utility losses; minimising prevalence at 10 years; minimising health service costs and health utility losses with a final time prevalence target; minimising health service costs with a final time prevalence target but neglecting health utility losses. The largest programme allowed for a given budget is the programme which minimises both prevalence at 10 years, and HCV health utility loss and heath service costs, with higher budgets resulting in greater cost-effectiveness (measured by cost per QALY gained compared to no treatment. However, if the objective is to achieve a 20% relative prevalence reduction at 10 years, while minimising both health service costs and losses in health utility, the optimal treatment strategy is an immediate expansion of coverage over 5-8 years, and is less cost-effective. By contrast, if the objective is only to minimise costs to the health service while attaining the 20% prevalence reduction, the

  10. Thieno[2,3-b]pyridine derivatives: a new class of antiviral drugs against Mayaro virus.

    Science.gov (United States)

    Amorim, Raquel; de Meneses, Marcelo Damião Ferreira; Borges, Julio Cesar; da Silva Pinheiro, Luiz Carlos; Caldas, Lucio Ayres; Cirne-Santos, Claudio Cesar; de Mello, Marcos Vinícius Palmeira; de Souza, Alessandra Mendonça Teles; Castro, Helena Carla; de Palmer Paixão, Izabel Christina Nunes; Campos, Renata de Mendonça; Bergmann, Ingrid E; Malirat, Viviana; Bernardino, Alice Maria Rolim; Rebello, Moacyr Alcoforado; Ferreira, Davis Fernandes

    2017-02-17

    Mayaro virus (MAYV) is an arthropod-borne virus and a member of the family Togaviridae, genus Alphavirus. Its infection leads to an acute illness accompanied by long-lasting arthralgia. To date, there are no antiviral drugs or vaccines against infection with MAYV and resources for the prevention or treatment of other alphaviruses are very limited. MAYV has served as a model to study the antiviral potential of several substances on alphavirus replication. In this work we evaluated the antiviral effect of seven new derivatives of thieno[2,3-b]pyridine against MAYV replication in a mammalian cell line. All derivatives were able to reduce viral production effectively at concentrations that were non-toxic for Vero cells. Molecular modeling assays predicted low toxicity risk and good oral bioavailability of the substances in humans. One of the molecules, selected for further study, demonstrated a strong anti-MAYV effect at early stages of replication, as it protected pre-treated cells and also during the late stages, affecting virus morphogenesis. This study is the first to demonstrate the antiviral effect of thienopyridine derivatives on MAYV replication in vitro, suggesting the potential application of these substances as antiviral molecules against alphaviruses. Additional in vivo research will be needed to expand the putative therapeutic applications.

  11. Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance.

    Science.gov (United States)

    Basta, Holly A; Ashraf, Shamaila; Sgro, Jean-Yves; Bochkov, Yury A; Gern, James E; Palmenberg, Ann C

    2014-01-05

    Human rhinoviruses of the RV-C species are recently discovered pathogens with greater clinical significance than isolates in the RV-A+B species. The RV-C cannot be propagated in typical culture systems; so much of the virology is necessarily derivative, relying on comparative genomics, relative to the better studied RV-A+B. We developed a bioinformatics-based structural model for a C15 isolate. The model showed the VP1-3 capsid proteins retain their fundamental cores relative to the RV-A+B, but conserved, internal RV-C residues affect the shape and charge of the VP1 hydrophobic pocket that confers antiviral drug susceptibility. When predictions of the model were tested in organ cultures or ALI systems with recombinant C15 virus, there was a resistance to capsid-binding drugs, including pleconaril, BTA-188, WIN56291, WIN52035 and WIN52084. Unique to all RV-C, the model predicts conserved amino acids within the pocket and capsid surface pore leading to the pocket may correlate with this activity.

  12. Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase

    Directory of Open Access Journals (Sweden)

    Carlos von Plessing Rossel

    2000-12-01

    Full Text Available Complexation between acyclovir (ACV, an antiviral drug used for the treatment of herpes simplex virus infection, and beta-cyclodextrin (beta-CD was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (¹H-NMR. In the solid state, X-ray diffraction, differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA and dissolution studies were used. Solubility studies suggested the existence of a 1:1 complex between ACV and beta-CD. ¹H-NMR spectroscopy studies showed that the complex formed occurs with a stoichiometry ratio of 1:1. Powder X-ray diffraction indicated that ACV exists in a semicrystalline state in the complexed form with beta-CD. DSC studies showed the existence of a complex of ACV with beta-CD. The TGA studies confirmed the DSC results of the complex. Solubility of ACV in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.

  13. Sensitivity of a ribavirin resistant mutant of hepatitis C virus to other antiviral drugs.

    Directory of Open Access Journals (Sweden)

    Kathleen B Mihalik

    Full Text Available BACKGROUND: While ribavirin mono-therapy regimens have minimal effect on patients with chronic hepatitis C virus (HCV infections, they can be efficacious when combined with interferon. Clinical studies show that interferon-free combination therapies containing ribavirin are also efficacious, suggesting that an interferon-free therapy could be adopted in the near future. However, generation of drug resistant mutants and cross resistance to other drugs could impair the efficacy of the treatment. Therefore, understanding the mechanism of HCV resistance to ribavirin and cross resistance to other antiviral drugs could be of major importance. METHODS: We tested the ability of a J6/JFH1 derived HCV ribavirin resistant mutant to grow in tissue cultured Huh7D cells in the presence of the mutagen 5-Fluorouracil and the nucleoside analog 2'-C-Methylcytidine. Virus replication was assessed by detecting HCV antigens by immunofluorescence and by titrating virus present in the supernatants. Recovered viruses were amplified by RT-PCR and sequenced. RESULTS: The sensitivity of HCV-RR relative to parental J6/JFH1 to the tested drugs varied. HCV-RR was more resistant than J6/JFH1 to 5-Fluorouracil but was not more resistant than J6/JFH1 to 2'-C-Methylcytidine. Growth of HCV-RR in 5-Fluorouracil allowed the selection of an HCV-RR derived mutant resistant to 5-Fluorouracil (HCV-5FU. HCV-5FU grows to moderate levels in the presence of high concentrations of 5-Fluorouracil and to parental levels in the absence of the drug. Sequence of its genome shows that HCV-5FU accumulated multiple synonymous and non-synonymous mutations. CONCLUSIONS: These results indicate that determinants of resistance to ribavirin could also confer resistance to other anti-HCV drugs, shedding light toward understanding the mechanism of action of ribavirin and highlighting the importance of combination drug selection for HCV treatment. The results also show that it is possible to select a 5

  14. Automated High Throughput Drug Target Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  15. Application of electrolysis for inactivation of an antiviral drug that is one of possible selection pressure to drug-resistant influenza viruses.

    Science.gov (United States)

    Kobayashi, Toyohide; Hirose, Jun; Wu, Hong; Sano, Kouichi; Katsumata, Takahiro; Tsujibo, Hiroshi; Nakano, Takashi

    2013-12-01

    The recent development of antiviral drugs has led to concern that the release of the chemicals in surface water due to expanded medical use could induce drug-resistant mutant viruses in zoonosis. Many researchers have noted that the appearance of an oseltamivir (Tamiflu(®))-resistant avian influenza mutant virus, which may spread to humans, could be induced by oseltamivir contamination of surface water. Although past studies have reported electrolysis as a possible method for degradation of antineoplastics and antibacterials in water, the validity of the method for treatment of antiviral drugs is unknown. In this study, electrolysis was used to degrade an antiviral prodrug, oseltamivir, and a stable active form, oseltamivir carboxylate, and the degradation process was monitored with HPLC-UV and the neuraminidase inhibitory assay. HPLC-UV-detectable oseltamivir and oseltamivir carboxylate were decomposed by electrolysis within 60 min, and inhibitory activity of neuraminidase decreased below the detection limit of the assay used. Cytotoxic and genotoxic activity were not detected in electrolyzed fluid. These results indicate that electrolysis is a possible treatment for inactivation of the antiviral drug oseltamivir.

  16. De novo computer-aided design of novel antiviral agents.

    Science.gov (United States)

    Massarotti, Alberto; Coluccia, Antonio; Sorba, Giovanni; Silvestri, Romano; Brancale, Andrea

    2012-01-01

    Computer-aided drug design techniques have become an integral part of the drug discovery process. In particular, de novo methodologies can be useful to identify putative ligands for a specific target relying only on the structural information of the target itself. Here we discuss the basic de novo approaches available and their application in antiviral drug design.:

  17. Aciclovir + hydrocortisone. Herpes labialis: a topical antiviral drug perhaps, but not a steroid.

    Science.gov (United States)

    2011-09-01

    Management of episodes of herpes labialis (cold sores) in otherwise healthy individuals is mainly based on hygiene measures intended to avoid transmitting the virus. At best, topical treatment with aciclovir, an antiviral drug, simply reduces the duration of the episode. A cream containing 5% aciclovir and 1% hydrocortisone has been authorised in France for symptomatic treatment of herpes labialis in adults and adolescents 12 years of age and older. In a double-blind randomised trial comparing the combination versus topical aciclovir alone in 1443 adults, the cream did not significantly reduce the number of patients whose lesions became ulcerated, or the duration of the episode. In another comparative double-blind randomised trial in 107 immunocompromised patients, the efficacy of the aciclovir and hydrocortisone combination did not differ from that of aciclovir alone. Whatever the mode of administration, corticosteroids might aggravate infections. In clinical trials involving immunocompetent adults or adolescents, most adverse effects associated with the hydrocortisone + aciclovir combination were local and mild. Hypersensitivity reactions are possible, however. This combination should be avoided during pregnancy, given the mild nature of herpes labialis and concerns over the risks of corticosteroids for the unborn child. In practice, there is no firm evidence that the aciclovir + hydrocortisone combination is more effective than aciclovir alone. Given the inherent risks associated with hydrocortisone, it is better to recommend simple hygiene measures and, possibly, aciclovir alone.

  18. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.

    Science.gov (United States)

    Islam, Md Mahmudul; Hameed, H M Adnan; Mugweru, Julius; Chhotaray, Chiranjibi; Wang, Changwei; Tan, Yaoju; Liu, Jianxiong; Li, Xinjie; Tan, Shouyong; Ojima, Iwao; Yew, Wing Wai; Nuermberger, Eric; Lamichhane, Gyanu; Zhang, Tianyu

    2017-01-20

    Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.

  19. The antiviral drug acyclovir is a slow-binding inhibitor of (D)-amino acid oxidase.

    Science.gov (United States)

    Katane, Masumi; Matsuda, Satsuki; Saitoh, Yasuaki; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2013-08-20

    d-Amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for d-amino acids, including d-serine and d-alanine, which are believed to be coagonists of the N-methyl-d-aspartate (NMDA) receptor. To identify a new class of DAO inhibitor(s) that can be used to elucidate the molecular details of the active site environment of DAO, manifold biologically active compounds of microbial origin and pre-existing drugs were screened for their ability to inhibit DAO activity, and several compounds were identified as candidates. One of these compounds, acyclovir (ACV), a well-known antiviral drug used for the treatment of herpesvirus infections, was characterized and evaluated as a novel DAO inhibitor in vitro. Analysis showed that ACV acts on DAO as a reversible slow-binding inhibitor, and interestingly, the time required to achieve equilibrium between DAO, ACV, and the DAO/ACV complex was highly dependent on temperature. The binding mechanism of ACV to DAO was investigated in detail by several approaches, including kinetic analysis, structural modeling of DAO complexed with ACV, and site-specific mutagenesis of an active site residue postulated to be involved in the binding of ACV. The results confirm that ACV is a novel, active site-directed inhibitor of DAO that can be a valuable tool for investigating the structure-function relationships of DAO, including the molecular details of the active site environment of DAO. In particular, it appears that ACV can serve as an active site probe to study the structural basis of temperature-induced conformational changes of DAO.

  20. TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1.

    Directory of Open Access Journals (Sweden)

    Younglang Lee

    Full Text Available The innate immune response is a host defense mechanism against infection by viruses and bacteria. Type I interferons (IFNα/β play a crucial role in innate immunity. If not tightly regulated under normal conditions and during immune responses, IFN production can become aberrant, leading to inflammatory and autoimmune diseases. In this study, we identified TRIM11 (tripartite motif containing 11 as a novel negative regulator of IFNβ production. Ectopic expression of TRIM11 decreased IFNβ promoter activity induced by poly (I:C stimulation or overexpression of RIG-I (retinoic acid-inducible gene-I signaling cascade components RIG-IN (constitutively active form of RIG-I, MAVS (mitochondrial antiviral signaling protein, or TBK1 (TANK-binding kinase-1. Conversely, TRIM11 knockdown enhanced IFNβ promoter activity induced by these stimuli. Moreover, TRIM11 overexpression inhibited the phosphorylation and dimerization of IRF3 and expression of IFNβ mRNA. By contrast, TRIM11 knockdown increased the IRF3 phosphorylation and IFNβ mRNA expression. We also found that TRIM11 and TBK1, a key kinase that phosphorylates IRF3 in the RIG-I pathway, interacted with each other through CC and CC2 domain, respectively. This interaction was enhanced in the presence of the TBK1 adaptor proteins, NAP1 (NF-κB activating kinase-associated protein-1, SINTBAD (similar to NAP1 TBK1 adaptor or TANK (TRAF family member-associated NF-κB activator. Consistent with its inhibitory role in RIG-I-mediated IFNβ signaling, TRIM11 overexpression enhanced viral infectivity, whereas TRIM11 knockdown produced the opposite effect. Collectively, our results suggest that TRIM11 inhibits RIG-I-mediated IFNβ production by targeting the TBK1 signaling complex.

  1. TRAF5 is a downstream target of MAVS in antiviral innate immune signaling.

    Directory of Open Access Journals (Sweden)

    Eric D Tang

    Full Text Available The recognition of nucleic acids by the innate immune system during viral infection results in the production of type I interferons and the activation of antiviral immune responses. The RNA helicases RIG-I and MDA-5 recognize distinct types of cytosolic RNA species and signal through the mitochondrial protein MAVS to stimulate the phosphorylation and activation of the transcription factors IRF3 and IRF7, thereby inducing type I interferon expression. Alternatively, the activation of NF-kappaB leads to proinflammatory cytokine production. The function of MAVS is dependent on both its C-terminal transmembrane (TM domain and N-terminal caspase recruitment domain (CARD. The TM domain mediates MAVS dimerization in response to viral RNA, allowing the CARD to bind to and activate the downstream effector TRAF3. Notably, dimerization of the MAVS CARD alone is sufficient to activate IRF3, IRF7, and NF-kappaB. However, TRAF3-deficient cells display only a partial reduction in interferon production in response to RNA virus infection and are not defective in NF-kappaB activation. Here we find that the related ubiquitin ligase TRAF5 is a downstream target of MAVS that mediates both IRF3 and NF-kappaB activation. The TM domain of MAVS allows it to dimerize and thereby associate with TRAF5 and induce its ubiquitination in a CARD-dependent manner. Also, NEMO is recruited to the dimerized MAVS CARD domain in a TRAF3 and TRAF5-dependent manner. Thus, our findings reveal a possible function for TRAF5 in mediating the activation of IRF3 and NF-kappaB downstream of MAVS through the recruitment of NEMO. TRAF5 may be a key molecule in the innate response against viral infection.

  2. Discovering drug targets through the web.

    Science.gov (United States)

    Wishart, David S

    2007-03-01

    Traditionally, drug-target discovery is a "wet-bench" experimental process, depending on carefully designed genetic screens, biochemical tests and cellular assays to identify proteins and genes that are associated with a particular disease or condition. However, recent advances in DNA sequencing, transcript profiling, protein identification and protein quantification are leading to a flood of genomic and proteomic data that is, or potentially could be, linked to disease data. The quantity of data generated by these high throughput methods is forcing scientists to re-think the way they do traditional drug-target discovery. In particular it is leading them more and more towards identifying potential drug targets using computers. In fact, drug-target identification is now being done as much on the desk-top as on the bench-top. This review focuses on describing how drug-target discovery can be done in silico (i.e. via computer) using a variety of bioinformatic resources that are freely available on the web. Specifically, it highlights a number of web-accessible sequence databases, automated genome annotation tools, text mining tools; and integrated drug/sequence databases that can be used to identify drug targets for both endogenous (genetic and epigenetic) diseases as well as exogenous (infectious) diseases.

  3. Antiviral Strategies for Pandemic and Seasonal Influenza

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2010-08-01

    Full Text Available While vaccines are the primary public health response to seasonal and pandemic flu, short of a universal vaccine there are inherent limitations to this approach. Antiviral drugs provide valuable alternative options for treatment and prophylaxis of influenza. Here, we will review drugs and drug candidates against influenza with an emphasis on the recent progress of a host-targeting entry-blocker drug candidate, DAS181, a sialidase fusion protein.

  4. Targeted antigen delivery to dendritic cells elicits robust antiviral T cell-mediated immunity in the liver

    Science.gov (United States)

    Volckmar, Julia; Gereke, Marcus; Ebensen, Thomas; Riese, Peggy; Philipsen, Lars; Lienenklaus, Stefan; Wohlleber, Dirk; Klopfleisch, Robert; Stegemann-Koniszewski, Sabine; Müller, Andreas J.; Gruber, Achim D.; Knolle, Percy; Guzman, Carlos A.; Bruder, Dunja

    2017-01-01

    Hepatotropic viruses such as hepatitis C virus cause life-threatening chronic liver infections in millions of people worldwide. Targeted in vivo antigen-delivery to cross-presenting dendritic cells (DCs) has proven to be extraordinarily efficient in stimulating antigen-specific T cell responses. To determine whether this approach would as well be suitable to induce local antiviral effector T cells in the liver we compared different vaccine formulations based on either the targeting of DEC-205 or TLR2/6 on cross-presenting DCs or formulations not involving in vivo DC targeting. As read-outs we used in vivo hepatotropic adenovirus challenge, histology and automated multidimensional fluorescence microscopy (MELC). We show that targeted in vivo antigen delivery to cross-presenting DCs is highly effective in inducing antiviral CTLs capable of eliminating virus-infected hepatocytes, while control vaccine formulation not involving DC targeting failed to induce immunity against hepatotropic virus. Moreover, we observed distinct patterns of CD8+ T cell interaction with virus-infected and apoptotic hepatocytes in the two DC-targeting groups suggesting that the different vaccine formulations may stimulate distinct types of effector functions. Our findings represent an important step toward the future development of vaccines against hepatotropic viruses and the treatment of patients with hepatic virus infection after liver transplantation to avoid reinfection. PMID:28266658

  5. Drug Repurposing: Far Beyond New Targets for Old Drugs

    DEFF Research Database (Denmark)

    Oprea, Tudor; Mestres, J.

    2012-01-01

    Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach is of ...... relevance to the disease in question and the intellectual property landscape. These activities go far beyond the identification of new targets for old drugs.......Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach...... is of interest primarily because we continue to face significant gaps in the drug–target interactions matrix and to accumulate safety and efficacy data during clinical studies. Collecting and making publicly available as much data as possible on the target profile of drugs offer opportunities for drug...

  6. Drug targeting using solid lipid nanoparticles.

    Science.gov (United States)

    Rostami, Elham; Kashanian, Soheila; Azandaryani, Abbas H; Faramarzi, Hossain; Dolatabadi, Jafar Ezzati Nazhad; Omidfar, Kobra

    2014-07-01

    The present review aims to show the features of solid lipid nanoparticles (SLNs) which are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery and research. Because of some unique features of SLNs such as their unique size dependent properties it offers possibility to develop new therapeutics. A common denominator of all these SLN-based platforms is to deliver drugs into specific tissues or cells in a pathological setting with minimal adverse effects on bystander cells. SLNs are capable to incorporate drugs into nanocarriers which lead to a new prototype in drug delivery which maybe used for drug targeting. Hence solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence attracted wide attention of researchers. This review presents a broad treatment of targeted solid lipid nanoparticles discussing their types such as antibody SLN, magnetic SLN, pH sensitive SLN and cationic SLN.

  7. NIOSOMES- A NOVEL DRUG CARRIER FOR DRUG TARGETING

    Directory of Open Access Journals (Sweden)

    A.KRISHNA SAILAJA

    2016-02-01

    Full Text Available Niosomes are vesicular drug delivery systems made of cholesterol and non ionic surfactants. Various novel drug delivery systems available for targeting of drugs include liposomes, nanoparticles, and resealed erythrocytes. Because of the instability and higher cost liposomes are less preferred over niosomes. The application of vesicular systems in cosmetics and for therapeutic purpose may offer several advantages for niosomes. They improve the therapeutic performance of the drug molecules by delayed clearance from the circulation, protecting the drug from biological environment and restricting effects to target cells. Niosomes have great drug delivery potential for targeted delivery of anti-cancer, anti-infective agents. Drug delivery potential of niosome can enhance by using novel concepts like proniosomes and aspasome. Niosomes also serve better aid in diagnostic imaging and as a vaccine adjuvant. Thus these areas need further exploration and research so as to bring out commercially available niosomal preparation. This article mainly focuses on the significance, advantages over other drug delivery systems, manufacturing methods, characterization methods, current research in niosomal drug delivery and their limitations.

  8. Development of Methods for Carrier-Mediated Targeted Delivery of Antiviral Compounds Using Monoclonal Antibodies

    Science.gov (United States)

    1987-04-01

    Conclusions Ribavirin and the S’-hemlsucclnate derivative of ribavirin were found to have highly significant in vitro antiviral activity against Punto Toro...for later characterization. Cooling equipment with programmable, controlled cooling rates, generally around l°C/minute, is ideal for freezing

  9. Mathematical modelling of magnetically targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Grief, Andrew D. [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: andrew.grief@nottingham.ac.uk; Richardson, Giles [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: giles.richardson@nottingham.ac.uk

    2005-05-15

    A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal regions using an externally applied field.

  10. Targeted Delivery of Protein Drugs by Nanocarriers

    Directory of Open Access Journals (Sweden)

    Antonella Battisti

    2010-03-01

    Full Text Available Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  11. Atypical GTPases as drug targets.

    Science.gov (United States)

    Soundararajan, Meera; Eswaran, Jeyanthy

    2012-01-01

    The Ras GTPases are the founding members of large Ras superfamily, which constitutes more than 150 of these important class of enzymes. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. There are a number of GTPases that have been identified recently, which do not confine to this prototype termed as "atypical GTPases" but have proved to play a remarkable role in vital cellular functions. In this review, we provide an overview of the crucial physiological functions mediated by RGK and Centaurin class of multi domain atypical GTPases. Moreover, the recently available atypical GTPase structures of the two families, regulation, physiological functions and their critical roles in various diseases will be discussed. In summary, this review will highlight the emerging atypical GTPase family which allows us to understand novel regulatory mechanisms and thus providing new avenues for drug discovery programs.

  12. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly.

    Science.gov (United States)

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-08-25

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (Ank(GAG)1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder Ank(GAG)1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)Ank(GAG)1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)Ank(GAG)1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)Ank(GAG)1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)Ank(GAG)1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy.

  13. Experimental and computational studies on the effects of valganciclovir as an antiviral drug on calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Pourfoulad, Mehdi; Moghadam, Neda Hosseinpour

    2017-01-02

    DNA-binding properties of an antiviral drug, valganciclovir (valcyte) was studied by using emission, absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, and computational studies. The drug bound to calf thymus DNA (ct-DNA) in a groove-binding mode. The calculated binding constant of UV-vis, Ka, is comparable to groove-binding drugs. Competitive fluorimetric studies with Hoechst 33258 showed that valcyte could displace the DNA-bound Hoechst 33258. The drug could not displace intercalated methylene blue from DNA double helix. Furthermore, the induced detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity confirm the groove-binding mode. In addition, an integrated molecular docking was employed to further investigate the binding interactions between valcyte and calf thymus DNA.

  14. Fluid mechanics aspects of magnetic drug targeting.

    Science.gov (United States)

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.

  15. Ophthalmic antiviral chemotherapy : An overview

    Directory of Open Access Journals (Sweden)

    Athmanathan Sreedharan

    1997-01-01

    Full Text Available Antiviral drug development has been slow due to many factors. One such factor is the difficulty to block the viral replication in the cell without adversely affecting the host cell metabolic activity. Most of the antiviral compounds are analogs of purines and pyramidines. Currently available antiviral drugs mainly inhibit viral nucleic acid synthesis, hence act only on actively replicating viruses. This article presents an overview of some of the commonly used antiviral agents in clinical ophthalmology.

  16. Therapy of Chronic Hepatitis C in the Era of Nanotechnology: Drug Delivery Systems and Liver Targeting.

    Science.gov (United States)

    Cuestas, Maria Lujan

    2017-01-01

    Since the British scientist Michael Houghton along with George Kuo, Qui-Lim Choo (Chiron Corporation Emeryville), and Daniel W. Bradley (Centers for Disease Control and Prevention) codiscovered the causative agent of hepatitis C in 1989, so much progress has been made for the screening of blood donors and management of this chronic liver disease. In this regard, direct-acting antiviral agents (DAAs) have emerged as the potential "cure" of this slowly progressing and devastating disease. However, improvements are still clearly required since the anti-hepatitis C drugs currently available in the market are so extremely expensive (i.e. $94,500 for a 12-week course of treatment), that many patients will have a denied access to such drugs by their insurers. In the last few years, nanotechnology has emerged as a new platform for drug development, contributing significantly to the improvement of the administration and delivery of many drugs. Additionally, nanotechnologies can provide unique solutions even in poorer societies. This manuscript reviews the current knowledges on the available anti-hepatitis C drugs and the new drug candidates being investigated as well, and introduces the recent advances in nanocarrier-based delivery systems. Finally, the challenges in the development of drug delivery systems for the targeting of antiviral drugs to the liver are also discussed.

  17. Marine natural seaweed products as potential antiviral drugs against Bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    Ana Maria Viana Pinto

    2012-08-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an etiologic agent that causes important economic losses in the world. It is endemic in cattle herds in most parts of the world. The purpose of this study was to evaluate the in vitro cytotoxic effect and antiviral properties of several marine natural products obtained from seaweeds: the indole alkaloid caulerpin (CAV, 1 and three diterpenes: 6-hydroxydichotoma-3,14-diene-1,17-dial (DA, 2, 10,18-diacetoxy-8-hydroxy-2,6-dolabelladiene (DB1, 3 and 8,10,18-trihydroxy-2,6-dolabelladiene (DB3, 4. The screening to evaluate the cytotoxicity of compounds did not show toxic effects to MDBK cells. The antiviral activity of the compounds was measured by the inhibition of the cytopathic effect on infected cells by plaque assay (PA and EC50 values were calculated for CAV (EC=2,0± 5.8, DA (EC 2,8± 7.7, DB1 (EC 2,0±9.7, and DB3 (EC 2,3±7.4. Acyclovir (EC50 322± 5.9 was used in all experiments as the control standard. Although the results of the antiviral activity suggest that all compounds are promising as antiviral agents against BVDV, the Selectivity Index suggests that DB1 is the safest of the compounds tested.

  18. Profile and behavior of antiviral drugs in aquatic environments of the Pearl River Delta, China.

    Science.gov (United States)

    Peng, Xianzhi; Wang, Chunwei; Zhang, Kun; Wang, Zhifang; Huang, Qiuxin; Yu, Yiyi; Ou, Weihui

    2014-01-01

    Occurrence and behavior of six antiviral pharmaceuticals (acyclovir, ganciclovir, oseltamivir, ribavirin, stavudine and zidovudine) and one active metabolite oseltamivir carboxylate were investigated in wastewater, landfill leachate, river water, reservoir and well water in the vicinity of municipal landfills in the Pearl River Delta, China. Acyclovir was the only antiviral detected in the wastewater at 177-406 (mean=238) and 114-205 (mean=154) ng L(-1) in the influent and final effluent, respectively. Aerobic biodegradation appeared to be the main process for the elimination of acyclovir in the wastewater. Acyclovir was also the only antiviral quantitatively detected in the Pearl River and its tributaries, with a maximum concentration up to 113 ng L(-1). Treated wastewater was a major source of acyclovir in the rivers. The highest concentration of acyclovir was observed in winter in the river water and the dilution effect by precipitation was suggested to be the dominant factor impacting the seasonal pattern of acyclovir in the rivers. No antivirals were quantitatively detected in the well water whereas acyclovir was frequently detected in the reservoirs at a maximal concentration of 33.6 ng L(-1) in the vicinity of the municipal landfills. However, source identification and fate of acyclovir in the reservoirs pend on further research.

  19. Biological characteristics of dengue virus and potential targets for drug design

    Institute of Scientific and Technical Information of China (English)

    Rui-feng Qi; Ling Zhang; Cheng-wu Chi

    2008-01-01

    Dengue infection is a major cause of morbidity in tropical and subtropical regions, bringing nearly 40% of the world population at risk and causing more than 20,000 deaths per year. But there is neither a vaccine for dengue disease nor antiviral drugs to treat the infection. In recent years, dengue infection has been particularly prevalent in India, Southeast Asia, Brazil, and Guangdong Province, China. In this article, we present a brief summary of the biological characteristics of dengue virus and associated flaviviruses, and outline the progress on studies of vaccines and drugs based on potential targets of the dengue virus.

  20. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  1. the denver tube Combined with antiviral drugs In the treatment of HBV-related Cirrhosis with Refractory ascites:a Report of three Cases

    Institute of Scientific and Technical Information of China (English)

    Xiao-jin Wang; Li-qin Shi; Qing-chun Fu; Liu-da Ni; Feng Zhou; Jin-wei Chen; Cheng-wei Chen

    2014-01-01

    Treatment of nucleos(t)ide antiviral drugs for decompensated HBV-related cirrhosis can signiifcantly improve the prognosis. But those patients with refractory ascites possibly deteriorate due to the complications of ascites before any beneift from anti-viral drugs could be observed. Therefore, it is important to ifnd a way to help the patients with HBV-related cirrhosis and refractory ascites to receive the full beneifts from antiviral therapy. Peritoneovenous shunt (PVS) using Denver tube enables ascites to continuously bypass into systemic circulation, thereby reducing ascites and albumin input and improving quality of life. We report herein 3 cases of decompensated HBV-related cirrhosis with refractory ascites, PVS using Denver tube was combined with lamivudine for antiviral treatment before and after. Then, ascites was alleviated significantly or disapeared and viral responsed well. All patients achieved a satisfactory long-term survival from 6.7 to 14.7 years. It was suggested that the Denver shunt could be used as an adjuvant method to antiviral drugs for decompensated HBV-related cirrhosis with refractory ascites to help the patients reap the full beneifts and maximize efifcacy of antiviral treatment.

  2. Targeting molecular networks for drug research

    Directory of Open Access Journals (Sweden)

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  3. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    . Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development...

  4. Drug-induced regulation of target expression

    DEFF Research Database (Denmark)

    Iskar, Murat; Campillos, Monica; Kuhn, Michael;

    2010-01-01

    further newly identified drug-induced differential regulation of Lanosterol 14-alpha demethylase, Endoplasmin, DNA topoisomerase 2-alpha and Calmodulin 1. The feedback regulation in these and other targets is likely to be relevant for the success or failure of the molecular intervention....

  5. Amphotericin B formulations and drug targeting.

    Science.gov (United States)

    Torrado, J J; Espada, R; Ballesteros, M P; Torrado-Santiago, S

    2008-07-01

    Amphotericin B is a low-soluble polyene antibiotic which is able to self-aggregate. The aggregation state can modify its activity and pharmacokinetical characteristics. In spite of its high toxicity it is still widely employed for the treatment of systemic fungal infections and parasitic disease and different formulations are marketed. Some of these formulations, such as liposomal formulations, can be considered as classical examples of drug targeting. The pharmacokinetics, toxicity and activity are clearly dependent on the type of amphotericin B formulation. New drug delivery systems such as liposomes, nanospheres and microspheres can result in higher concentrations of AMB in the liver and spleen, but lower concentrations in kidney and lungs, so decreasing its toxicity. Moreover, the administration of these drug delivery systems can enhance the drug accessibility to organs and tissues (e.g., bone marrow) otherwise inaccessible to the free drug. During the last few years, new AMB formulations (AmBisome, Abelcet, and Amphotec) with an improved efficacy/toxicity ratio have been marketed. This review compares the different formulations of amphotericin B in terms of pharmacokinetics, toxicity and activity and discusses the possible drug targeting effect of some of these new formulations.

  6. New targets for drug discovery against malaria.

    Directory of Open Access Journals (Sweden)

    Guido Santos

    Full Text Available A mathematical model which predicts the intraerythrocytic stages of Plasmodium falciparum infection was developed using data from malaria-infected mice. Variables selected accounted for levels of healthy red blood cells, merozoite (Plasmodium asexual phase infected red blood cells, gametocyte (Plasmodium sexual phase infected red blood cells and a phenomenological variable which accounts for the mean activity of the immune system of the host. The model built was able to reproduce the behavior of three different scenarios of malaria. It predicts the later dynamics of malaria-infected humans well after the first peak of parasitemia, the qualitative response of malaria-infected monkeys to vaccination and the changes observed in malaria-infected mice when they are treated with antimalarial drugs. The mathematical model was used to identify new targets to be focused on drug design. Optimization methodologies were applied to identify five targets for minimizing the parasite load; four of the targets thus identified have never before been taken into account in drug design. The potential targets include: 1 increasing the death rate of the gametocytes, 2 decreasing the invasion rate of the red blood cells by the merozoites, 3 increasing the transformation of merozoites into gametocytes, 4 decreasing the activation of the immune system by the gametocytes, and finally 5 a combination of the previous target with decreasing the recycling rate of the red blood cells. The first target is already used in current therapies, whereas the remainders are proposals for potential new targets. Furthermore, the combined target (the simultaneous decrease of the activation of IS by gRBC and the decrease of the influence of IS on the recycling of hRBC is interesting, since this combination does not affect the parasite directly. Thus, it is not expected to generate selective pressure on the parasites, which means that it would not produce resistance in Plasmodium.

  7. Drug–drug interactions during antiviral therapy for chronic hepatitis C

    OpenAIRE

    Kiser, Jennifer J.; Burton, James R.; Everson, Gregory T.

    2013-01-01

    The emergence of direct-acting antiviral agents (DAAs) for HCV infection represents a major advance in treatment. The NS3 protease inhibitors, boceprevir and telaprevir, were the first DAAs to receive regulatory approval. When combined with PEG-IFN and ribavirin, these agents increase rates of sustained virologic response in HCV genotype 1 to ~70%. However, this treatment regimen is associated with several toxicities. In addition, both boceprevir and telaprevir are substrates for and inhibito...

  8. Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets

    Directory of Open Access Journals (Sweden)

    Suhas Vasaikar

    2016-11-01

    Full Text Available In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach as one of the factors. Although a number of drugs have been developed with an emphasis on a single protein target, yet identification of valid target is complex. The approach focuses on an in vitro single target, which overlooks the complexity of cell and makes process of validation drug targets uncertain. Thus, it is imperative to search for alternatives rather than looking at success stories of target-based drug discovery. It would be beneficial if the drugs were developed to target multiple components. New approaches like reverse engineering and translational research need to take into account both system and target-based approach. This review evaluates the strengths and limitations of known drug discovery approaches and proposes alternative approaches for increasing efficiency against treatment.

  9. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus.

    Science.gov (United States)

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2017-04-15

    We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy.IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species.

  10. Targeted proteins for diabetes drug design

    Science.gov (United States)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  11. Strategies to improve intracellular drug delivery by targeted liposomes

    NARCIS (Netherlands)

    Fretz, M.M.

    2007-01-01

    Biotechnological advances increased the number of novel macromolecular drugs and new drug targets. The latter are mostly found intracellular. Unfortunately, most of the new macromolecular drugs rely on drug delivery tools for their intracellular delivery because their unfavourable physicochemical pr

  12. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Science.gov (United States)

    Robertson, Kevin A; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J; Enright, Anton J; Yamamoto, Mami; Pradeepa, Madapura M; Lennox, Kimberly A; Behlke, Mark A; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-03-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  13. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family.

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-03-01

    Full Text Available The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71 for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylenebis(oxy]bis(5-nitro-benzonitrile with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family. Surprisingly, coxsackievirus B3 (CVB3 and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight

  14. Reduction of CCR5 with low-dose rapamycin enhances the antiviral activity of vicriviroc against both sensitive and drug-resistant HIV-1

    OpenAIRE

    2008-01-01

    Vicriviroc (VCV) is a chemokine (C-C motif) receptor 5 (CCR5) antagonist with potent anti-HIV activity that currently is being evaluated in phase III clinical trials. In the present study, donor CCR5 density (CCR5 receptors/CD4 lymphocytes) inversely correlated with VCV antiviral activity (Spearman's correlation test; r = 0.746, P = 0.0034). Low doses of the transplant drug rapamycin (RAPA) reduced CCR5 density and enhanced VCV antiviral activity. In drug interaction studies, the RAPA/VCV com...

  15. Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host-targeting agents.

    Science.gov (United States)

    Shahidi, Mahsa; Tay, Enoch S E; Read, Scott A; Ramezani-Moghadam, Mehdi; Chayama, Kazuaki; George, Jacob; Douglas, Mark W

    2014-11-01

    Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.

  16. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  17. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases.

    Science.gov (United States)

    Chen, Jieliang; Zhang, Wen; Lin, Junyu; Wang, Fan; Wu, Min; Chen, Cuncun; Zheng, Ye; Peng, Xiuhua; Li, Jianhua; Yuan, Zhenghong

    2014-02-01

    The hepatitis B virus (HBV) is a DNA virus that can cause chronic hepatitis B (CHB) in humans. Current therapies for CHB infection are limited in efficacy and do not target the pre-existing viral genomic DNA, which are present in the nucleus as a covalently closed circular DNA (cccDNA) form. The transcription activator-like (TAL) effector nucleases (TALENs) are newly developed enzymes that can cleave sequence-specific DNA targets. Here, TALENs targeting the conserved regions of the viral genomic DNA among different HBV genotypes were constructed. The expression of TALENs in Huh7 cells transfected with monomeric linear full-length HBV DNA significantly reduced the viral production of HBeAg, HBsAg, HBcAg, and pgRNA, resulted in a decreased cccDNA level and misrepaired cccDNAs without apparent cytotoxic effects. The anti-HBV effect of TALENs was further demonstrated in a hydrodynamic injection-based mouse model. In addition, an enhanced antiviral effect with combinations of TALENs and interferon-α (IFN-α) treatment was observed and expression of TALENs restored HBV suppressed IFN-stimulated response element-directed transcription. Taken together, these data indicate that TALENs can specifically target and successfully inactivate the HBV genome and are potently synergistic with IFN-α, thus providing a potential therapeutic strategy for treating CHB infection.

  18. Malaria heat shock proteins: drug targets that chaperone other drug targets.

    Science.gov (United States)

    Pesce, E-R; Cockburn, I L; Goble, J L; Stephens, L L; Blatch, G L

    2010-06-01

    Ongoing research into the chaperone systems of malaria parasites, and particularly of Plasmodium falciparum, suggests that heat shock proteins (Hsps) could potentially be an excellent class of drug targets. The P. falciparum genome encodes a vast range and large number of chaperones, including 43 Hsp40, six Hsp70, and three Hsp90 proteins (PfHsp40s, PfHsp70s and PfHsp90s), which are involved in a number of fundamental cellular processes including protein folding and assembly, protein translocation, signal transduction and the cellular stress response. Despite the fact that Hsps are relatively conserved across different species, PfHsps do exhibit a considerable number of unique structural and functional features. One PfHsp90 is thought to be sufficiently different to human Hsp90 to allow for selective targeting. PfHsp70s could potentially be used as drug targets in two ways: either by the specific inhibition of Hsp70s by small molecule modulators, as well as disruption of the interactions between Hsp70s and co-chaperones such as the Hsp70/Hsp90 organising protein (Hop) and Hsp40s. Of the many PfHsp40s present on the parasite, there are certain unique or essential members which are considered to have good potential as drug targets. This review critically evaluates the potential of Hsps as malaria drug targets, as well as the use of chaperones as aids in the heterologous expression of other potential malarial drug targets.

  19. Diversity of Pharmacological Properties in Chinese and European Medicinal Plants: Cytotoxicity, Antiviral and Antitrypanosomal Screening of 82 Herbal Drugs

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2011-09-01

    Full Text Available In an extensive screening, the antiviral, antitrypanosomal and anticancer properties of extracts from 82 plants used in traditional Chinese medicine and European phytomedicine were determined. Several promising plants that were highly effective against hepatitis B virus (HBV, bovine viral diarrhoea virus (BVDV—a flavivirus used here as a surrogate in vitro model of hepatitis C virus, trypanosomes (Trypanosoma brucei brucei and several cancer cell lines were identified. Six aqueous extracts from Celosia cristata, Ophioglossum vulgatum, Houttuynia cordata, Selaginella tamariscina, Alpinia galanga and Alpinia oxyphylla showed significant antiviral effects against BVDV without toxic effects on host embryonic bovine trachea (EBTr cells, while Evodia lepta, Hedyotis diffusa and Glycyrrhiza spp. demonstrated promising activities against the HBV without toxic effects on host human hepatoblastoma cells transfected with HBV-DNA (HepG2 2.2.15 cells. Seven organic extracts from Alpinia oxyphylla, Coptis chinensis, Kadsura longipedunculata, Arctium lappa, Panax ginseng, Panax notoginseng and Saposhnikovia divaricata inhibited T. b. brucei. Moreover, among fifteen water extracts that combined high antiproliferative activity (IC50 0.5–20 µg/mL and low acute in vitro toxicity (0–10% reduction in cell viability at IC50, Coptis chinensis presented the best beneficial characteristics. In conclusion, traditional herbal medicine from Europe and China still has a potential for new therapeutic targets and therapeutic applications.

  20. 75 FR 20429 - Amended Authorizations of Emergency Use of Certain Antiviral Drugs Zanamivir and Oseltamivir...

    Science.gov (United States)

    2010-04-19

    ... time. Emergence of resistance mutations could decrease drug effectiveness. Other factors (for example... Committee on Immunization Practices. Influenza viruses change over time. Emergence of resistance mutations could decrease drug effectiveness. Other factors (for example, changes in viral virulence) might...

  1. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bruno S. Pascoalino

    2016-10-01

    Full Text Available Background The recent epidemics of Zika virus (ZIKV implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4% were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.

  2. A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins.

    Science.gov (United States)

    Suryawanshi, Gajendra W; Hoffmann, Alexander

    2015-12-07

    Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif׳s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that target

  3. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5......-hydroxytrypamine (5-HT)(1F) receptor agonists, which are in late-stage development. Nitric oxide antagonists are also in development. New forms of administration of sumatriptan might improve efficacy and reduce side effects. Botulinum toxin A has recently been approved for the prophylaxis of chronic migraine....... Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development...

  4. New drugs and treatment targets in psoriasis.

    Science.gov (United States)

    Kofoed, Kristian; Skov, Lone; Zachariae, Claus

    2015-02-01

    In recent years, the increased understanding of the pathophysiology of psoriasis has resulted in several new treatments. The success of ustekinumab proved the importance of the IL-23/T helper cell 17 axis in psoriatic diseases. Several new biologics targeting this axis will reach the clinic in the next years. Biologics are costly, require injections, and some patients experience tacaphylaxis, thus, the development of orally available, small-molecule inhibitors is desirable. Among small-molecules under investigation are A3 adenosine receptor agonists, Janus kinase inhibitors, and phosphodiesterase inhibitors. We review published clinical trials, and conference abstracts presented during the last years, concerned with new drugs under development for the treatment of psoriasis. In conclusion, our psoriasis armamentarium will be filled with several new effective therapeutic options the coming years. We need to be aware of the limitations of drug safety data when selecting new novel treatments. Monitoring and clinical registries are still important tools.

  5. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses.

    Science.gov (United States)

    Sleeman, Katrina; Mishin, Vasiliy P; Deyde, Varough M; Furuta, Yousuke; Klimov, Alexander I; Gubareva, Larisa V

    2010-06-01

    Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic (pdm) potential (swine triple reassortants, H2N2, H4N2, avian H7N2, and avian H5N1), including viruses which are resistant to the currently licensed anti-influenza drugs. All viruses were tested in a plaque reduction assay with MDCK cells, and a subset was also tested in both yield reduction and focus inhibition (FI) assays. For the majority of viruses tested, favipiravir significantly inhibited plaque formation at 3.2 muM (0.5 microg/ml) (50% effective concentrations [EC(50)s] of 0.19 to 22.48 muM and 0.03 to 3.53 microg/ml), and for all viruses, with the exception of a single dually resistant 2009 A(H1N1) virus, complete inhibition of plaque formation was seen at 3.2 muM (0.5 microg/ml). Due to the 2009 pandemic and increased drug resistance in circulating seasonal influenza viruses, there is an urgent need for new drugs which target influenza. This study demonstrates that favipiravir inhibits in vitro replication of a wide range of influenza viruses, including those resistant to currently available drugs.

  6. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1–6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Lize Cuypers

    2015-09-01

    Full Text Available Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1–6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity and an additional 24% as pan-genotypic conserved (≥95%. Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%–0.46% and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15, 33% (3/9, and 14% (2/14 of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%. NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may

  7. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1–6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance

    Science.gov (United States)

    Cuypers, Lize; Li, Guangdi; Libin, Pieter; Piampongsant, Supinya; Vandamme, Anne-Mieke; Theys, Kristof

    2015-01-01

    Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1–6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%–0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be

  8. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  9. Novel Approaches for Targeting Antiviral Agents in the Treatment of Arena-, Bunya-, Flavi-, and Retroviral Infections

    Science.gov (United States)

    1989-05-22

    a variety of viral proteins including hepatitis B surface antigen, vesicular stomatitis virus glycoproteins, and adenovirus capsid proteins...infections. Moreover, this model could be used to establish a base from which therapeutic strategies to be employed in other more costly feline and primate...treatment of human AIDS. Most of the animal models (primate, bovine or feline ) considered relevant are too expensive for routine drug evaluation and too

  10. Crystal Structures, Thermal Analysis, and Dissolution Behavior of New Solid Forms of the Antiviral Drug Arbidol with Dicarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Alex N. Manin

    2015-12-01

    Full Text Available Salts of the antiviral drug arbidol (umifenovir (Arb with maleate (Mlc and fumarate (Fum anions have been obtained, and their crystal structures have been described. The crystal structure of arbidol maleate has been redetermined by single crystal X-ray diffraction at 180K. A new arbidol cocrystal in zwitterion form with succinic acid (Suc has also been found and characterized. The arbidol zwitterion was not previously seen in any of the drug crystal forms, and the [Arb + Suc] cocrystal seems to be the first found instance. Analysis of the conformational preferences of the arbidol molecule in the crystal structures has shown that it adopts two types of conformations, namely “open” and “closed” ones. Thermal stability of the arbidol salts and cocrystal have been analyzed by means of differential scanning calorimetry, thermogravimetric, and mass-spectrometry analysis. The dissolution study of the arbidol salts and cocrystal performed in aqueous buffer solutions with pH 1.2 and 6.8 has shown that both the salts and the cocrystal dissolve incongruently to form an arbidol hydrochloride monohydrate at pH 1.2 and an arbidol base at pH 6.8, respectively. The cocrystal reaches the highest solubility level in both pH 1.2 and pH 6.8 solutions.

  11. Antiviral Information Management System (AIMS): a prototype for operational innovation in drug development.

    Science.gov (United States)

    Jadhav, Pravin R; Neal, Lauren; Florian, Jeff; Chen, Ying; Naeger, Lisa; Robertson, Sarah; Soon, Guoxing; Birnkrant, Debra

    2010-09-01

    This article presents a prototype for an operational innovation in knowledge management (KM). These operational innovations are geared toward managing knowledge efficiently and accessing all available information by embracing advances in bioinformatics and allied fields. The specific components of the proposed KM system are (1) a database to archive hepatitis C virus (HCV) treatment data in a structured format and retrieve information in a query-capable manner and (2) an automated analysis tool to inform trial design elements for HCV drug development. The proposed framework is intended to benefit drug development by increasing efficiency of dose selection and improving the consistency of advice from US Food and Drug Administration (FDA). It is also hoped that the framework will encourage collaboration among FDA, industry, and academic scientists to guide the HCV drug development process using model-based quantitative analysis techniques.

  12. Inhibition of Hepatitis C Virus-Like Particle Binding to Target Cells by Antiviral Antibodies in Acute and Chronic Hepatitis C

    Science.gov (United States)

    Steinmann, Daniel; Barth, Heidi; Gissler, Bettina; Schürmann, Peter; Adah, Mohammed I.; Gerlach, J. Tilman; Pape, Gerd R.; Depla, Erik; Jacobs, Dirk; Maertens, Geert; Patel, Arvind H.; Inchauspé, Geneviève; Liang, T. Jake; Blum, Hubert E.; Baumert, Thomas F.

    2004-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic viral hepatitis worldwide. The study of antibody-mediated virus neutralization has been hampered by the lack of an efficient and high-throughput cell culture system for the study of virus neutralization. The HCV structural proteins have been shown to assemble into noninfectious HCV-like particles (HCV-LPs). Similar to serum-derived virions, HCV-LPs bind and enter human hepatocytes and hepatoma cell lines. In this study, we developed an HCV-LP-based model system for a systematic functional analysis of antiviral antibodies from patients with acute or chronic hepatitis C. We demonstrate that cellular HCV-LP binding was specifically inhibited by antiviral antibodies from patients with acute or chronic hepatitis C in a dose-dependent manner. Using a library of homologous overlapping envelope peptides covering the entire HCV envelope, we identified an epitope in the N-terminal E2 region (SQKIQLVNTNGSWHI; amino acid positions 408 to 422) as one target of human antiviral antibodies inhibiting cellular particle binding. Using a large panel of serum samples from patients with acute and chronic hepatitis C, we demonstrated that the presence of antibodies with inhibition of binding activity was not associated with viral clearance. In conclusion, antibody-mediated inhibition of cellular HCV-LP binding represents a convenient system for the functional characterization of human anti-HCV antibodies, allowing the mapping of envelope neutralization epitopes targeted by naturally occurring antiviral antibodies. PMID:15308699

  13. Synthesis of Nucleoside Analogues with Potential Antiviral Activity against Negative Strand RNA Virus Targets

    Science.gov (United States)

    1989-11-01

    75 out by the same enzyme responsible for the first phosphorylation. The primary target for their activity is the DNA polymerisation reaction against...was the 229 first nucleoside analogue to have clinical usage for the treatment of herpetic eye infections. It was closely followed by 5...sequence and also to see whether it was possible to make an acid chloride in the presence of hydroxyl groups or whether polymerisation or other side

  14. Using an Old Drug to Target a New Drug Site: Application of Disulfiram to Target the Zn-Site in HCV NS5A Protein.

    Science.gov (United States)

    Lee, Yu-Ming; Duh, Yulander; Wang, Shih-Ting; Lai, Michael M C; Yuan, Hanna S; Lim, Carmay

    2016-03-23

    In viral proteins, labile Zn-sites, where Zn(2+) is crucial for maintaining the native protein structure but the Zn-bound cysteines are reactive, are promising drug targets. Here, we aim to (i) identify labile Zn-sites in viral proteins using guidelines established from our previous work and (ii) assess if clinically safe Zn-ejecting agents could eject Zn(2+) from the predicted target site and thus inhibit viral replication. As proof-of-concept, we identified a labile Zn-site in the hepatitis C virus (HCV) NS5A protein and showed that the antialcoholism drug, disulfiram, could inhibit HCV replication to a similar extent as the clinically used antiviral agent, ribavirin. The discovery of a novel viral target and a new role for disulfiram in inhibiting HCV replication will enhance the therapeutic armamentarium against HCV. The strategy presented can also be applied to identify labile sites in other bacterial or viral proteins that can be targeted by disulfiram or other clinically safe Zn-ejectors.

  15. New Drugs and Treatment Targets in Psoriasis

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Skov, Lone; Zachariae, Claus

    2015-01-01

    In recent years, the increased understanding of the pathophysiology of psoriasis has resulted in several new treatments. The success of ustekinumab proved the importance of the IL-23/T helper cell 17 axis in psoriatic diseases. Several new biologics targeting this axis will reach the clinic...... in the next years. Biologics are costly, require injections, and some patients experience tacaphylaxis, thus, the development of orally available, small-molecule inhibitors is desirable. Among small-molecules under investigation are A3 adenosine receptor agonists, Janus kinase inhibitors......, and phosphodiesterase inhibitors. We review published clinical trials, and conference abstracts presented during the last years, concerned with new drugs under development for the treatment of psoriasis. In conclusion, our psoriasis armamentarium will be filled with several new effective therapeutic options the coming...

  16. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  17. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    Science.gov (United States)

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue.

  18. Exploiting Genetic Interference for Antiviral Therapy.

    Science.gov (United States)

    Tanner, Elizabeth J; Kirkegaard, Karla A; Weinberger, Leor S

    2016-05-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  19. Dynamics of target-mediated drug disposition.

    Science.gov (United States)

    Peletier, Lambertus A; Gabrielsson, Johan

    2009-12-08

    We present a mathematical analysis of the basic model underlying target-mediated drug disposition (TMDD) in which a ligand is supplied through an initial bolus or through a constant rate infusion and forms a complex with a receptor (target), which is supplied and removed continuously. Ligand and complex may be eliminated according to first-order processes. We assume that the total receptor pool (free and bound) is constant in time and we give a geometrical description of the evolution of the concentrations of ligand, receptor and receptor-ligand complex which offers a transparent way to compare the full model with simpler models such as the quasi-steady-state (QSS) model, the quasi-equilibrium (QE) model and the empirical Michaelis-Menten (MM) model; we also give precise conditions on the parameters in the TMDD model for the validity of these reduced models. We relate characteristic properties of time courses to parameter regimes and, in particular, we identify and explain non-monotone dependence of the time-to-steady-state on the infusion rate. Finally, we discuss how the volume of the central compartment may be overestimated because of singular initial behaviour of the time course of the ligand concentration.

  20. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Yoshiki [School of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan; Nakajim, Syo [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Ohash, Hirofumi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya, Japan; Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Perelson, Alan S. [Los Alamos National Laboratory; Iwami, Shingo [Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan: PRESTO, JST, Saitama, Japan: CREST, JST, Saitama, Japan; Watashi, Koichi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  1. Cyclophilin and Viruses: Cyclophilin as a Cofactor for Viral Infection and Possible Anti-Viral Target

    Directory of Open Access Journals (Sweden)

    Koichi Watashi

    2007-01-01

    Full Text Available Cyclophilin (CyP is a peptidyl prolyl cis/trans isomerase, catalyzing the cis-trans isomerization of proline residues in proteins. CyP plays key roles in several different aspects of cellular physiology including the immune response, transcription, mitochondrial function, cell death, and chemotaxis. In addition to these cellular events, a number of reports demonstrated that CyP plays a critical role in the life cycle of viruses, especially human immunodefi ciency virus (HIV and hepatitis C virus (HCV. These two viruses are signifi cant causes of morbidity and mortality worldwide, but current therapies are often insufficient. CyP may provide a novel therapeutic target for the management and/or cure of these diseases, in particular HCV.

  2. Drug target identification using side-effect similarity

    DEFF Research Database (Denmark)

    Campillos, Monica; Kuhn, Michael; Gavin, Anne-Claude;

    2008-01-01

    Targets for drugs have so far been predicted on the basis of molecular or cellular features, for example, by exploiting similarity in chemical structure or in activity across cell lines. We used phenotypic side-effect similarities to infer whether two drugs share a target. Applied to 746 marketed...... drugs, a network of 1018 side effect-driven drug-drug relations became apparent, 261 of which are formed by chemically dissimilar drugs from different therapeutic indications. We experimentally tested 20 of these unexpected drug-drug relations and validated 13 implied drug-target relations by in vitro...... binding assays, of which 11 reveal inhibition constants equal to less than 10 micromolar. Nine of these were tested and confirmed in cell assays, documenting the feasibility of using phenotypic information to infer molecular interactions and hinting at new uses of marketed drugs....

  3. MicroRNA-223 Promotes Type I Interferon Production in Antiviral Innate Immunity by Targeting Forkhead Box Protein O3 (FOXO3).

    Science.gov (United States)

    Chen, Luoquan; Song, Yinjing; He, Li; Wan, Xiaopeng; Lai, Lihua; Dai, Feng; Liu, Yang; Wang, Qingqing

    2016-07-08

    Effective recognition of viral infection and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs. Previous reports have shown that some microRNAs are induced during virus infection and participate in the regulation of the innate antiviral response. However, whether the type I IFN response is regulated by miR-223 is still unknown. Here, we reported that vesicular stomatitis virus (VSV) infection induced significant up-regulation of miR-223 in murine macrophages. We observed that miR-223 overexpression up-regulated type I IFN expression levels in VSV-infected macrophages. We also demonstrated that miR-223 directly targets FOXO3 to regulate the type I IFN production. Furthermore, type I IFN, which is triggered by VSV infection, is responsible for the up-regulation of miR-223, thus forming a positive regulatory loop for type I IFN production. Our results uncovered a novel mechanism of miR-223-mediated regulation of type I IFN production in the antiviral innate immunity for the first time.

  4. Dengue virus cell entry : Unraveling the role of antibodies, maturation status, and antiviral drugs

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa

    2014-01-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus-induced disease during a heterologous re-infection. Pre-existing cross-reactive anti-dengue antibodies are generally believed to bind to the newly infecting DENV and target the antibody-virus

  5. A computational chemistry perspective on the current status and future direction of hepatitis B antiviral drug discovery.

    Science.gov (United States)

    Morgnanesi, Dante; Heinrichs, Eric J; Mele, Anthony R; Wilkinson, Sean; Zhou, Suzanne; Kulp, John L

    2015-11-01

    Computational chemical biology, applied to research on hepatitis B virus (HBV), has two major branches: bioinformatics (statistical models) and first-principle methods (molecular physics). While bioinformatics focuses on statistical tools and biological databases, molecular physics uses mathematics and chemical theory to study the interactions of biomolecules. Three computational techniques most commonly used in HBV research are homology modeling, molecular docking, and molecular dynamics. Homology modeling is a computational simulation to predict protein structure and has been used to construct conformers of the viral polymerase (reverse transcriptase domain and RNase H domain) and the HBV X protein. Molecular docking is used to predict the most likely orientation of a ligand when it is bound to a protein, as well as determining an energy score of the docked conformation. Molecular dynamics is a simulation that analyzes biomolecule motions and determines conformation and stability patterns. All of these modeling techniques have aided in the understanding of resistance mutations on HBV non-nucleos(t)ide reverse-transcriptase inhibitor binding. Finally, bioinformatics can be used to study the DNA and RNA protein sequences of viruses to both analyze drug resistance and to genotype the viral genomes. Overall, with these techniques, and others, computational chemical biology is becoming more and more necessary in hepatitis B research. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."

  6. Photocatalytic degradation of the antiviral drug Tamiflu by UV-A/TiO2: Kinetics and mechanisms.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Wang, Zheng-Ming; Hu, Hong-Ying; Negishi, Nobuaki; Torimura, Masaki

    2015-07-01

    The photocatalytic degradation of the antiviral drug Tamiflu (oseltamivir phosphate, OP) by TiO2 - P25, ST-01 and ATO was investigated in aqueous solution under ultraviolet (UV-A) irradiation. The photocatalysis of OP is well described by pseudo-first-order kinetics with r2>98.0% for all cases. The kinetic constant of P25 with 80% anatase and 20% rutile (0.040 min(-1)) is 4 and 10 times higher than that of ATO and ST-01 with 100% purity of anatase, respectively. We examined the effects of the catalyst loading and initial OP concentration on the photodegradation of OP, and used potassium iodine, isopropanol, and calcium fluorine as radical quenchers to evaluate the contributions of the hydroxyl radical (OH) and photo hole (h+) in the photodegradation. Results confirmed that 80% of the contribution came from the OH species. Although more than 95% of the OP (21 μM) was removed after 80 min of UV-A irradiation with 20 and 100 mg L(-1) P25, the removal efficiencies of total organic carbon (TOC) were only 45.6% and 67.0%, respectively, after 360 min UV-A irradiation. Based on an intermediate analysis by HPLC coupled with a triple quadrupole spectrometer and an ion trap mass spectrometer, typical intermediate species such as hydration derivatives, hydroxyl substitutes and keto-derivatives were identified and possible degradation pathways of OP by P25 were proposed.

  7. DNA interaction studies of a platinum (II) complex containing an antiviral drug, ribavirin: the effect of metal on DNA binding.

    Science.gov (United States)

    Shahabadi, Nahid; Mirzaei kalar, Zeinab; Moghadam, Neda Hosseinpour

    2012-10-01

    The water-soluble Pt (II) complex, [PtCl (DMSO)(N(4)N(7)-ribavirin)]· H(2)O (ribavirin is an antiviral drug) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, K(b), was 7.2×10(5) M(-1). In fluorimetric studies, the enthalpy (ΔH0) changes of the reaction between the Pt (II) complex with CT-DNA showed hydrophobic interaction. In addition, CD study showed stabilization of the right-handed B form of CT-DNA. All these results prove that the complex interacts with CT-DNA via intercalative mode of binding. In comparison with the previous study of the DNA interaction with ribavirin, these results show that platinum complex has greater affinity to CT-DNA.

  8. Identifying drug-target proteins based on network features

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Proteins rarely function in isolation inside and outside cells, but operate as part of a highly intercon- nected cellular network called the interaction network. Therefore, the analysis of the properties of drug-target proteins in the biological network is especially helpful for understanding the mechanism of drug action in terms of informatics. At present, no detailed characterization and description of the topological features of drug-target proteins have been available in the human protein-protein interac- tion network. In this work, by mapping the drug-targets in DrugBank onto the interaction network of human proteins, five topological indices of drug-targets were analyzed and compared with those of the whole protein interactome set and the non-drug-target set. The experimental results showed that drug-target proteins have higher connectivity and quicker communication with each other in the PPI network. Based on these features, all proteins in the interaction network were ranked. The results showed that, of the top 100 proteins, 48 are covered by DrugBank; of the remaining 52 proteins, 9 are drug-target proteins covered by the TTD, Matador and other databases, while others have been dem- onstrated to be drug-target proteins in the literature.

  9. Identifying drug-target proteins based on network features

    Institute of Scientific and Technical Information of China (English)

    ZHU MingZhu; GAO Lei; LI Xia; LIU ZhiCheng

    2009-01-01

    Proteins rarely function in isolation Inside and outside cells, but operate as part of a highly Intercon-nected cellular network called the interaction network. Therefore, the analysis of the properties of drug-target proteins in the biological network is especially helpful for understanding the mechanism of drug action In terms of informatice. At present, no detailed characterization and description of the topological features of drug-target proteins have been available in the human protein-protein interac-tion network. In this work, by mapping the drug-targets in DrugBank onto the interaction network of human proteins, five topological indices of drug-targets were analyzed and compared with those of the whole protein interactome set and the non-drug-target set. The experimental results showed that drug-target proteins have higher connectivity and quicker communication with each other in the PPI network. Based on these features, all proteins In the interaction network were ranked. The results showed that, of the top 100 proteins, 48 are covered by DrugBank; of the remaining 52 proteins, 9 are drug-target proteins covered by the TTD, Matador and other databases, while others have been dem-onstrated to be drug-target proteins in the literature.

  10. The antiviral drug valacyclovir successfully suppresses salivary gland hypertrophy virus (SGHV in laboratory colonies of Glossina pallidipes.

    Directory of Open Access Journals (Sweden)

    Adly M M Abd-Alla

    Full Text Available Many species of tsetse flies are infected with a virus that causes salivary gland hypertrophy (SGH symptoms associated with a reduced fecundity and fertility. A high prevalence of SGH has been correlated with the collapse of two laboratory colonies of Glossina pallidipes and colony maintenance problems in a mass rearing facility in Ethiopia. Mass-production of G. pallidipes is crucial for programs of tsetse control including the sterile insect technique (SIT, and therefore requires a management strategy for this virus. Based on the homology of DNA polymerase between salivary gland hypertrophy virus and herpes viruses at the amino acid level, two antiviral drugs, valacyclovir and acyclovir, classically used against herpes viruses were selected and tested for their toxicity on tsetse flies and their impact on virus replication. While long term per os administration of acyclovir resulted in a significant reduction of productivity of the colonies, no negative effect was observed in colonies fed with valacyclovir-treated blood. Furthermore, treatment of a tsetse colony with valacyclovir for 83 weeks resulted in a significant reduction of viral loads and consequently suppression of SGH symptoms. The combination of initial selection of SGHV-negative flies by non-destructive PCR, a clean feeding system, and valacyclovir treatment resulted in a colony that was free of SGH syndromes in 33 weeks. This is the first report of the use of a drug to control a viral infection in an insect and of the demonstration that valacyclovir can be used to suppress SGH in colonies of G. pallidipes.

  11. Potential for Drug-Drug Interactions between Antiretrovirals and HCV Direct Acting Antivirals in a Large Cohort of HIV/HCV Coinfected Patients.

    Directory of Open Access Journals (Sweden)

    Isabelle Poizot-Martin

    Full Text Available Development of direct acting antivirals (DAA offers new benefits for patients with chronic hepatitis C. The combination of these drugs with antiretroviral treatment (cART is a real challenge in HIV/HCV coinfected patients. The aim of this study was to describe potential drug-drug interactions between DAAs and antiretroviral drugs in a cohort of HIV/HCV coinfected patients.Cross-sectional study of all HIV/HCV coinfected patients attending at least one visit in 2012 in the multicenter French Dat'AIDS cohort. A simulation of drug-drug interactions between antiretroviral treatment and DAAs available in 2015 was performed.Of 16,634 HIV-infected patients, 2,511 had detectable anti-HCV antibodies, of whom 1,196 had a detectable HCV-RNA and were not receiving HCV treatment at the time of analysis. 97.1% of these patients were receiving cART and 81.2% had a plasma HIV RNA <50 copies/mL. cART included combinations of nucleoside reverse transcriptase inhibitors with a boosted protease inhibitor in 43.6%, a non-nucleoside reverse transcriptase inhibitor in 17.3%, an integrase inhibitor in 15.4% and various combinations or antiretroviral drugs in 23.7% of patients. A previous treatment against HCV had been administered in 64.4% of patients. Contraindicated associations/potential interactions were expected between cART and respectively sofosbuvir (0.2%/0%, sofosbuvir/ledipasvir (0.2%/67.6%, daclatasvir (0%/49.4%, ombitasvir/boosted paritaprevir (with or without dasabuvir (34.4%/52.2% and simeprevir (78.8%/0%.Significant potential drug-drug interactions are expected between cART and the currently available DAAs in the majority of HIV/HCV coinfected patients. Sofosbuvir/ledipasvir and sofosbuvir/daclatasvir with or without ribavirin appeared the most suitable combinations in our population. A close collaboration between hepatologists and HIV/AIDS specialists appears necessary for the management of HCV treatment concomitantly to cART.

  12. Deep-Learning-Based Drug-Target Interaction Prediction.

    Science.gov (United States)

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-03-13

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  13. Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N-methanocarbathymidine

    Directory of Open Access Journals (Sweden)

    Moyer Richard W

    2008-03-01

    Full Text Available Abstract Background The vaccinia virus (VV F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo. Although the crystal structure for this enzyme has been determined, its potential as a target for antiviral therapy is unclear. Results The F2L gene was replaced with GFP in the WR strain of VV to assess its effect on viral replication. The resulting virus replicated well in cell culture and its replication kinetics were almost indistinguishable from those of the wt virus and attained similar titers. The virus also appeared to be as pathogenic as the WR strain suggesting that it also replicated well in mice. Cells infected with the dUTPase mutant would be predicted to affect pyrimidine deoxynucleotide pools and might be expected to exhibit altered susceptibility to pyrimidine analogs. The antiviral activity of cidofovir and four thymidine analogs were evaluated both in the mutant and the parent strain of this virus. The dUTPase knockout remained fully susceptible to cidofovir and idoxuridine, but was hypersensitive to the drug (N-methanocarbathymidine, suggesting that pyrimidine metabolism was altered in cells infected with the mutant virus. The absence of dUTPase should reduce cellular dUMP pools and may result in a reduced conversion to dTMP by thymidylate synthetase or an increased reliance on the salvage of thymidine by the viral thymidine kinase. Conclusion We confirmed that F2L was not required for replication in cell culture and determined that it does not play a significant role on virulence of the virus in intranasally infected mice. The recombinant virus is hypersensitive

  14. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  15. Target based drug design - a reality in virtual sphere.

    Science.gov (United States)

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  16. Assessing drug target association using semantic linked data.

    Directory of Open Access Journals (Sweden)

    Bin Chen

    Full Text Available The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug target pairs (for example drugs which change gene expression level are also identified but not as strongly as direct pairs. We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured their similarity using a [Formula: see text] score matrix. The similarity network indicates that drugs from the same disease area tend to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web service is freely available at: http://chem2bio2rdf.org/slap.

  17. Assessing drug target association using semantic linked data.

    Science.gov (United States)

    Chen, Bin; Ding, Ying; Wild, David J

    2012-01-01

    The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug target pairs (for example drugs which change gene expression level) are also identified but not as strongly as direct pairs. We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured their similarity using a [Formula: see text] score matrix. The similarity network indicates that drugs from the same disease area tend to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web service is freely available at: http://chem2bio2rdf.org/slap.

  18. High-throughput screening normalized to biological response: application to antiviral drug discovery.

    Science.gov (United States)

    Patel, Dhara A; Patel, Anand C; Nolan, William C; Huang, Guangming; Romero, Arthur G; Charlton, Nichole; Agapov, Eugene; Zhang, Yong; Holtzman, Michael J

    2014-01-01

    The process of conducting cell-based phenotypic screens can result in data sets from small libraries or portions of large libraries, making accurate hit picking from multiple data sets important for efficient drug discovery. Here, we describe a screen design and data analysis approach that allow for normalization not only between quadrants and plates but also between screens or batches in a robust, quantitative fashion, enabling hit selection from multiple data sets. We independently screened the MicroSource Spectrum and NCI Diversity Set II libraries using a cell-based phenotypic high-throughput screening (HTS) assay that uses an interferon-stimulated response element (ISRE)-driven luciferase-reporter assay to identify interferon (IFN) signal enhancers. Inclusion of a per-plate, per-quadrant IFN dose-response standard curve enabled conversion of ISRE activity to effective IFN concentrations. We identified 45 hits based on a combined z score ≥2.5 from the two libraries, and 25 of 35 available hits were validated in a compound concentration-response assay when tested using fresh compound. The results provide a basis for further analysis of chemical structure in relation to biological function. Together, the results establish an HTS method that can be extended to screening for any class of compounds that influence a quantifiable biological response for which a standard is available.

  19. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  20. Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery

    Institute of Scientific and Technical Information of China (English)

    LIU Han-dan; XU Wei; WANG Shi-gang; KE Zun-ji

    2008-01-01

    Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug delivery is a method of carrying drug-loaded magnetic nanoparticles to a target tissue target under the applied magnetic field. This method increases the drug concentration in the target while reducing the adverse side-effects. Although there have been some theoretical analyses for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel. A mathematical model is presented to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. In this model, magnetic force and asymmetrical force are added, and an angular momentum equation of magnetic nanoparticles in the applied magnetic field is modeled. Engineering approximations are achieved by retaining the physically most significant items in the model due to the mathematical complexity of the motion equations. Numerical simulations are performed to obtain better insight into the theoretical model with computational fluid dynamics. Simulation results demonstrate the important parameters leading to adequate drug delivery to the target site depending on the magnetic field intensity, which coincident with those of animal experiments. Results of the analysis provide important information and suggest strategies for improving delivery in clinical application.

  1. Anti-diabetic drugs, insulin and metformin, have no direct interaction with hepatitis C virus infection or anti-viral interferon response

    Directory of Open Access Journals (Sweden)

    Mohamad S. Hakim

    2014-01-01

    Full Text Available Hepatitis C virus (HCV infection is associated with insulin resistance (IR and type 2 diabetes (T2D. Chronic HCV patients with IR and T2D appear to have a decreased response to the standard pegylated-interferon-alpha and ribavirin (PEG-IFN/RBV anti-viral therapy. Insulin and metformin are anti-diabetic drugs regularly used in the clinic. A previous in vitro study has shown a negative effect of insulin on interferon signaling. In the clinic, adding metformin to PEG-IFN/RBV therapy was reported to increase the response rate in chronic HCV patients and it has been suggested this effect derives from an improved anti-viral action of interferon. The goal of this study was to further investigate the molecular insight of insulin and metformin interaction with HCV infection and the anti-viral action of interferon. We used two cell culture models of HCV infection. One is a sub-genomic model that assays viral replication through luciferase reporter gene expression. The other one is a full-length infectious model derived from the JFH1 genotype 2a isolate. We found that both insulin and metformin do not affect HCV infection. Insulin and metformin also do not influence the anti-viral potency of interferon. In addition, there is no direct interaction between these two drugs and interferon signaling. Our results do not confirm the previous laboratory observation that insulin interferes with interferon signaling and suggest that classical nutritional signaling through mTOR may be not involved in HCV replication. If metformin indeed can increase the response rate to interferon therapy in patients, our data indicate that this could be mediated via an indirect mechanisms.

  2. Reduction of CCR5 with low-dose rapamycin enhances the antiviral activity of vicriviroc against both sensitive and drug-resistant HIV-1.

    Science.gov (United States)

    Heredia, Alonso; Latinovic, Olga; Gallo, Robert C; Melikyan, Gregory; Reitz, Marv; Le, Nhut; Redfield, Robert R

    2008-12-23

    Vicriviroc (VCV) is a chemokine (C-C motif) receptor 5 (CCR5) antagonist with potent anti-HIV activity that currently is being evaluated in phase III clinical trials. In the present study, donor CCR5 density (CCR5 receptors/CD4 lymphocytes) inversely correlated with VCV antiviral activity (Spearman's correlation test; r = 0.746, P = 0.0034). Low doses of the transplant drug rapamycin (RAPA) reduced CCR5 density and enhanced VCV antiviral activity. In drug interaction studies, the RAPA/VCV combination had considerable antiviral synergy (combination indexes of 0.1-0.04) in both multicycle and single-cycle infection of lymphocytes. The synergy between RAPA and VCV translated into dose reduction indexes of 8- to 41-fold reductions for RAPA and 19- to 658-fold reductions for VCV. RAPA enhanced VCV antiviral activity against both B and non-B clade isolates, potently suppressing clade G viruses with reported reduced sensitivities to VCV and to the licensed CCR5 antagonist maraviroc. Importantly, RAPA reduction of CCR5 density in lymphocytes sensitized VCV-resistant strains to VCV, inhibiting virus production by approximately 90%. We further demonstrated the role of CCR5 density on VCV activity against resistant virus in donor lymphocytes and in cell lines expressing varying CCR5 densities. Together, these results suggest that low doses of RAPA may increase the durability of VCV-containing regimens in patients by enhancing VCV viral suppression, by allowing the use of lower doses of VCV with reduced potential for toxicity, and by controlling emerging VCV-resistant variants.

  3. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices.

    Science.gov (United States)

    Terzopoulou, Zoi; Papageorgiou, Myrsini; Kyzas, George Z; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPMEf) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Qmax) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPMEf. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1-13.6 and 33.3-43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects.

  4. Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter.

    Science.gov (United States)

    Gilbert, Ian H

    2014-01-01

    Target-based approaches for human African trypanosomiasis (HAT) and related parasites can be a valuable route for drug discovery for these diseases. However, care needs to be taken in selection of both the actual drug target and the chemical matter that is developed. In this article, potential criteria to aid target selection are described. Then the physiochemical properties of typical oral drugs are discussed and compared to those of known anti-parasitics.

  5. Targeted drug-carrying bacteriophages as antibacterial nanomedicines.

    Science.gov (United States)

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-06-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of approximately 20,000 compared to the free drug.

  6. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  7. Drug efflux pump deficiency and drug target resistance masking in growing bacteria

    Science.gov (United States)

    Fange, David; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    Recent experiments have shown that drug efflux pump deficiency not only increases the susceptibility of pathogens to antibiotics, but also seems to “mask” the effects of mutations, that decrease the affinities of drugs to their intracellular targets, on the growth rates of drug-exposed bacteria. That is, in the presence of drugs, the growth rates of drug-exposed WT and target mutated strains are the same in a drug efflux pump deficient background, but the mutants grow faster than WT in a drug efflux pump proficient background. Here, we explain the mechanism of target resistance masking and show that it occurs in response to drug efflux pump inhibition among pathogens with high-affinity drug binding targets, low cell-membrane drug-permeability and insignificant intracellular drug degradation. We demonstrate that target resistance masking is fundamentally linked to growth-bistability, i.e., the existence of 2 different steady state growth rates for one and the same drug concentration in the growth medium. We speculate that target resistance masking provides a hitherto unknown mechanism for slowing down the evolution of target resistance among pathogens. PMID:19416855

  8. Evaluation of Giardia lamblia thioredoxin reductase as drug activating enzyme and as drug target

    Directory of Open Access Journals (Sweden)

    David Leitsch

    2016-12-01

    Our results constitute first direct evidence for the notion that TrxR is an activator of metronidazole and furazolidone but rather question that it is a relevant drug target of presently used antigiardial drugs.

  9. Smallpox Antiviral Drug

    Science.gov (United States)

    2007-01-01

    strategies is essential. ACKNOWLEDGMENTS We thank Robert Jordan, Sean Amberg, and Tove’ Bolken for critical reviews of the manuscript. REFERENCES...part II. Adverse events. Clin Infect Dis 37:251–271. Ghosn J, Chaix ML, Peytavin G, Rey E, Bresson JL, Goujard C, Katlama C, Viard JP, Treluyer JM

  10. Hemozoin Formation as a Target for Antimalarial Drug Design

    Science.gov (United States)

    2005-02-01

    AD Award Number: DAMD17-03-1-0030 TITLE: Hemozoin Formation as a Target for Antimalarial Drug Design PRINCIPAL INVESTIGATOR: Michael K. Riscoe, Ph.D...Formation as a Target for Antimalarial Drug Design DAMD17-03-1-0030 6. A UTHOR(S) Michael K. Riscoe, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS...Report: by Principal Investigator - Michael K. Riscoe, Ph.D. DAMD1 7-03-1-0030: "Hemozoin Formation as a Target for Antimalarial Drug Design " INTRODUCTION

  11. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    Science.gov (United States)

    Maity, Amit Ranjan; Stepensky, David

    2016-01-01

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  12. Chemical proteomics: terra incognita for novel drug target profiling

    Institute of Scientific and Technical Information of China (English)

    Fuqiang Huang; Boya Zhang; Shengtao Zhou; Xia Zhao; Ce Bian; Yuquan Wei

    2012-01-01

    The growing demand for new therapeutic strategies in the medical and pharmaceutic fields has resulted in a pressing need for novel druggable targets.Paradoxically,however,the targets of certain drugs that are already widely used in clinical practice have largely not been annotated.Because the pharmacologic effects of a drug can only be appreciated when its interactions with cellular components are clearly delineated,an integrated deconvolution of drug-target interactions for each drug is necessary.The emerging field of chemical proteomics represents a powerful mass spectrometry (MS)-based affinity chromatography approach for identifying proteome-wide small molecule-protein interactions and mapping these interactions to signaling and metabolic pathways.This technique could comprehensively characterize drug targets,profile the toxicity of known drugs,and identify possible off-target activities.With the use of this technique,candidate drug molecules could be optimized,and predictable side effects might consequently be avoided.Herein,we provide a holistic overview of the major chemical proteomic approaches and highlight recent advances in this area as well as its potential applications in drug discovery.

  13. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    Science.gov (United States)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  14. Chemical signatures and new drug targets for gametocytocidal drug development

    Science.gov (United States)

    Sun, Wei; Tanaka, Takeshi Q.; Magle, Crystal T.; Huang, Wenwei; Southall, Noel; Huang, Ruili; Dehdashti, Seameen J.; McKew, John C.; Williamson, Kim C.; Zheng, Wei

    2014-01-01

    Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 malaria transmission-blocking reagents.

  15. A review on target drug delivery:magnetic microspheres

    Institute of Scientific and Technical Information of China (English)

    Amit Chandna; Deepa Batra; Satinder Kakar; Ramandeep Singh

    2013-01-01

    Novel drug delivery system aims to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the active entity to the site of action.A number of novel drug delivery systems have emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery, magnetic micro carriers being one of them. Magnetic microsphere is newer approach in pharmaceutical field.Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body.Its use is limited by toxicity and side effects.The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects.This kind of delivery system is very much important which localises the drug to the disease site.In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug.Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species.Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  16. Enhanced cellular transport and drug targeting using dendritic nanostructures

    Science.gov (United States)

    Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2003-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  17. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  18. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  19. Drug targeting to tumors using HPMA copolymers

    NARCIS (Netherlands)

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Re

  20. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Directory of Open Access Journals (Sweden)

    Huile Gao

    2016-07-01

    Full Text Available Due to the ability of the blood–brain barrier (BBB to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier (BBTB, and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  1. Leveraging big data to transform target selection and drug discovery

    Science.gov (United States)

    Butte, AJ

    2016-01-01

    The advances of genomics, sequencing, and high throughput technologies have led to the creation of large volumes of diverse datasets for drug discovery. Analyzing these datasets to better understand disease and discover new drugs is becoming more common. Recent open data initiatives in basic and clinical research have dramatically increased the types of data available to the public. The past few years have witnessed successful use of big data in many sectors across the whole drug discovery pipeline. In this review, we will highlight the state of the art in leveraging big data to identify new targets, drug indications, and drug response biomarkers in this era of precision medicine. PMID:26659699

  2. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  3. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    Science.gov (United States)

    2015-04-01

    AWARD NUMBER: W81XWH-13-1-0429 TITLE: Using "Click Chemistry" to Identify Potential Drug Targets in Plasmodium PRINCIPAL INVESTIGATOR: Dr. Purnima...SUBTITLE Sa. CONTRACT NUMBER W81XWH-1 3-1-0429 Using "Click Chemistry" to Identify Potential Drug Targets in Plasmodium 5b. GRANT NUMBER 5c. PROGRAM...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Sporozo ite infection of the liver is the first obl igate step of the Plasmodium

  4. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    Science.gov (United States)

    2016-06-01

    AWARD NUMBER: W81XWH-13-1-0429 TITLE: Using "Click Chemistry " to Identify Potential Drug Targets in Plasmodium PRINCIPAL INVESTIGATOR...29Mar2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0429 Using click chemistry to identify potential drug targets in Plasmodium 5b...Al-Tsp derivatives begins. Two classes of Tsp derivatives (Al-Tsp) are appropriate for click chemistry (Fig. 1). Class I derivatives carry a

  5. Advanced drug delivery and targeting technologies for the ocular diseases

    OpenAIRE

    Barar, Jaleh; AGHANEJAD, Ayuob; Fathi, Marziyeh; Omidi, Yadollah

    2016-01-01

    Introduction: Ocular targeted therapy has enormously been advanced by implementation of new methods of drug delivery and targeting using implantable drug delivery systems (DDSs) or devices (DDDs), stimuli-responsive advanced biomaterials, multimodal nanomedicines, cell therapy modalities and medical bioMEMs. These technologies tackle several ocular diseases such as inflammation-based diseases (e.g., scleritis, keratitis, uveitis, iritis, conjunctivitis, chorioretinitis, choroiditis, retinitis...

  6. Brain targeted transcranial route of drug delivery of diazepam

    OpenAIRE

    2006-01-01

    The term transcranial route means the brain targeted transfer of drug molecules across the cranium through the layers of the skin and skin appendages of the head, arteries and veins of the skin of the head, the cranial bones along with the diploe, the cranial bone sutures, the meninges and specifically through the emissary veins. The administration of drugs through the scalp in ayurvedic system for the diseases associated with the brain was evaluated with a view to develop a novel targeted ro...

  7. Drug targeting to tumors using HPMA copolymers

    OpenAIRE

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Retention (EPR) effect, they localize to tumors both effectively and selectively. As a consequence, the concentrations of attached active agents in tumors can be increased, and their accumulation in ...

  8. CNIO cancer conference: targeted search for anticancer drugs.

    Science.gov (United States)

    Fischer, Peter M

    2003-06-01

    The topics discussed at the conference covered many aspects of cancer research, from the genetic search for new targets, target validation and drug discovery, all the way to preclinical and clinical development of oncology drugs. Here the presentations on new metabolic, angiogenic, cell cycle and other molecular targets, as well as recent developments with experimental drugs with action on some of these targets, are summarised. Particular emphasis is placed on the emerging realisation that changes in the metabolic phenotype lie at the heart of cellular transformation. New insights into the biological links between cancer cell metabolism and the balance between survival and death signalling are likely to lead to the identification of a new category of anticancer targets.

  9. REVIEW ON ADVANCES IN COLON TARGETED DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Sunena Sethi, SL Harikumar* and Nirmala

    2012-09-01

    Full Text Available The colon is the terminal part of the GIT which has gained in recent years as a potential site for delivery of various novel therapeutic drugs, i.e. peptides. However, colon is rich in microflora which can be used to target the drug release in the colon. Colon is a site where both local and systemic drug delivery can take place. Local delivery allows the topical treatment of inflammatory bowel disease. If drug can be targeted directly into the colon, treatment can become more effective and side effects can be minimized. These systemic side effects can be minimized by primary approaches for CDDS (Colon specific drug delivery namely prodrugs, pH and time dependent systems and microbially triggered system which gained limited success and have limitations as compared with recently new CDDS namely pressure controlled colon delivery capsules (PCDCS, CODESTM (Novel colon targeted delivery system osmotic controlled drug delivery system, Pulsincap system, time clock system, chronotropic system. This review is to understand the pharmaceutical approaches to colon targeted drug delivery systems for better therapeutic action without compromising on drug degradation (or its low bioavailability.

  10. Is RGS-2 a new drug development target in cardiovascular disease?

    Science.gov (United States)

    Doggrell, Sheila A

    2004-08-01

    Hypertension is the most common cardiovascular disease. The regulator of G-protein signalling (RGS) proteins modify the activity of G proteins, and mice deficient in RGS-2 are hypertensive. On vascular smooth muscle, RGS-2 is involved in cross-talk between the nitric oxide (NO)-relaxation pathway and thrombin-contraction pathway. RGS-2 binds to the cGMP-dependent protein kinase I-alpha from the NO relaxation pathway to terminate protease-activated receptor-1 signalling. It has been suggested that RGS-2 is a new drug development target for hypertension. Mice deficient in RGS-2 also have impaired antiviral immunity. It is difficult to envisage how RGS-2 could be targeted to have effects on the cardiovascular system without affecting immunity. Also, it is not clear whether or not targeting RGS-2 will have advantages over targeting receptors. Only an increased understanding of the physiological and pathological role of RGS-2 will help us resolve these issues.

  11. RNAi--a tool for target finding in new drug development.

    Science.gov (United States)

    Gomase, Virendra S; Tagore, Somnath

    2008-03-01

    RNAi (RNA interference) refers to the introduction of homologous double stranded RNA (dsRNA) to specifically target a gene's product, resulting in null or hypomorphic phenotypes. Long double-stranded RNAs (dsRNAs; typically >200 nt) can be used to silence the expression of target genes in a variety of organisms and cell types (e.g., worms, fruit flies, and plants). The long dsRNAs enter a cellular pathway that is commonly referred to as the RNA interference (RNAi) pathway. RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes. RNAi plays a very important role in endogenous cellular processes, such as heterochromatin formation, developmental control and serves as an antiviral defense mechanism. RNAi has shown great potential for use as a tool for target finding in new drug development, molecular biological discovery, analysis and therapeutics. RNAi pathway is involved in post-transcription silencing, transcriptional silencing and epigenetic silencing as well as its use as a tool for forward genetics and therapeutics.

  12. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination.

    Science.gov (United States)

    Zhang, Jing; Hu, Ming-Ming; Wang, Yan-Yi; Shu, Hong-Bing

    2012-08-17

    Viral infection activates several transcription factors including NF-κB and IRF3, which collaborate to induce type I interferons (IFNs) and innate antiviral response. MITA (also called STING) is a critical adaptor protein that links virus-sensing receptors to IRF3 activation upon infection by both RNA and DNA pathogens. Here we show that the E3 ubiquitin ligase tripartite motif protein 32 (TRIM32) ubiquitinated MITA and dramatically enhanced MITA-mediated induction of IFN-β. Overexpression of TRIM32 potentiated virus-triggered IFNB1 expression and cellular antiviral response. Consistently, knockdown of TRIM32 had opposite effects. TRIM32 interacted with MITA, and was located at the mitochondria and endoplasmic reticulum. TRIM32 targeted MITA for K63-linked ubiquitination at K20/150/224/236 through its E3 ubiquitin ligase activity, which promoted the interaction of MITA with TBK1. These findings suggest that TRIM32 is an important regulatory protein for innate immunity against both RNA and DNA viruses by targeting MITA for K63-linked ubiquitination and downstream activation.

  13. Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI. However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap. Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1 some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2 in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects.

  14. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M.; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  15. Targeting autophagic pathways for cancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Jin-Ku Bao; Jin-Ming Yang; Yan Cheng

    2013-01-01

    Autophagy,an evolutionarily conserved lysosomal degradation process,has drawn an increasing amount of attention in recent years for its role in a variety of human diseases,such as cancer.Notably,autophagy plays an important role in regulating several survival and death signaling pathways that determine cell fate in cancer.To date,substantial evidence has demonstrated that some key autophagic mediators,such as autophagy-related genes (ATGs),PI3K,mTOR,p53,and Beclin-1,may play crucial roles in modulating autophagic activity in cancer initiation and progression.Because autophagy-modulating agents such as rapamycin and chloroquine have already been used clinically to treat cancer,it is conceivable that targeting autophagic pathways may provide a new opportunity for discovery and development of more novel cancer therapeutics.With a deeper understanding of the regulatory mechanisms governing autophagy,we will have a better opportunity to facilitate the exploitation of autophagy as a target for therapeutic intervention in cancer.This review discusses the current status of targeting autophagic pathways as a potential cancer therapy.

  16. Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections

    Science.gov (United States)

    2012-10-01

    COVERED 26 September 2011 25 September 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Identification of New Drug Targets in Multi-Drug Resistant...will be necessary for the fragment based screening and subsequent design of new drug lead compounds. To accompany and validate the structural studies

  17. Drug targeting systems for cancer therapy: nanotechnological approach.

    Science.gov (United States)

    Tigli Aydin, R Seda

    2015-01-01

    Progress in cancer treatment remains challenging because of the great nature of tumor cells to be drug resistant. However, advances in the field of nanotechnology have enabled the delivery of drugs for cancer treatment by passively and actively targeting to tumor cells with nanoparticles. Dramatic improvements in nanotherapeutics, as applied to cancer, have rapidly accelerated clinical investigations. In this review, drug-targeting systems using nanotechnology and approved and clinically investigated nanoparticles for cancer therapy are discussed. In addition, the rationale for a nanotechnological approach to cancer therapy is emphasized because of its promising advances in the treatment of cancer patients.

  18. Drug-Drug Interaction between the Direct-Acting Antiviral Regimen of Ombitasvir-Paritaprevir-Ritonavir plus Dasabuvir and the HIV Antiretroviral Agent Dolutegravir or Abacavir plus Lamivudine.

    Science.gov (United States)

    Khatri, Amit; Trinh, Roger; Zhao, Weihan; Podsadecki, Thomas; Menon, Rajeev

    2016-10-01

    The direct-acting antiviral regimen of 25 mg ombitasvir-150 mg paritaprevir-100 mg ritonavir once daily (QD) plus 250 mg dasabuvir twice daily (BID) is approved for the treatment of hepatitis C virus genotype 1 infection, including patients coinfected with human immunodeficiency virus. This study was performed to evaluate the pharmacokinetic, safety, and tolerability effects of coadministering the regimen of 3 direct-acting antivirals with two antiretroviral therapies (dolutegravir or abacavir plus lamivudine). Healthy volunteers (n = 24) enrolled in this phase I, single-center, open-label, multiple-dose study received 50 mg dolutegravir QD for 7 days or 300 mg abacavir plus 300 mg lamivudine QD for 4 days, the 3-direct-acting-antiviral regimen for 14 days, followed by the 3-direct-acting-antiviral regimen with dolutegravir or abacavir plus lamivudine for 10 days. Pharmacokinetic parameters were calculated to compare combination therapy with 3-direct-acting-antiviral or antiretroviral therapy alone, and safety/tolerability were assessed throughout the study. Coadministration of the 3-direct-acting-antiviral regimen increased the geometric mean maximum plasma concentration (Cmax) and the area under the curve (AUC) of dolutegravir by 22% (central value ratio [90% confidence intervals], 1.219 [1.153, 1.288]) and 38% (1.380 [1.295, 1.469]), respectively. Abacavir geometric mean Cmax and AUC values decreased by 13% (0.873 [0.777, 0.979]) and 6% (0.943 [0.901, 0.986]), while those for lamivudine decreased by 22% (0.778 [0.719, 0.842]) and 12% (0.876 [0.821, 0.934]). For the 3-direct-acting-antiviral regimen, geometric mean Cmax and AUC during coadministration were within 18% of measurements made during administration of the 3-direct-acting-antiviral regimen alone, although trough concentrations for paritaprevir were 34% (0.664 [0.585, 0.754]) and 27% (0.729 [0.627, 0.847]) lower with dolutegravir and abacavir-lamivudine, respectively. All study treatments were generally

  19. Antiviral drug valacyclovir treatment combined with a clean feeding system enhances the suppression of salivary gland hypertrophy in laboratory colonies of Glossina pallidipes

    Science.gov (United States)

    2014-01-01

    Background Hytrosaviridae cause salivary gland hypertrophy (SGH) syndrome in some infected tsetse flies (Diptera: Glossinidae). Infected male and female G. pallidipes with SGH have a reduced fecundity and fertility. Due to the deleterious impact of the virus on G. pallidipes colonies, adding the antiviral drug valacyclovir to the blood diet and changing the feeding regime to a clean feeding system (each fly receives for each feeding a fresh clean blood meal) have been investigated to develop virus management strategies. Although both approaches used alone successfully reduced the virus load and the SGH prevalence in small experimental groups, considerable time was needed to obtain the desired SGH reduction and both systems were only demonstrated with colonies that had a low initial virus prevalence (SGH ≤ 10%). As problems with SGH are often only recognized once the incidence is already high, it was necessary to demonstrate that this combination would also work for high prevalence colonies. Findings Combining both methods at colony level successfully suppressed the SGH in G. pallidipes colonies that had a high initial virus prevalence (average SGH of 24%). Six months after starting the combined treatment SGH symptoms were eliminated from the treated colony, in contrast to 28 months required to obtain the same results using clean feeding alone and 21 months using antiviral drug alone. Conclusions Combining valacyclovir treatment with the clean feeding system provides faster control of SGH in tsetse than either method alone and is effective even when the initial SGH prevalence is high. PMID:24886248

  20. Large-scale Direct Targeting for Drug Repositioning and Discovery

    Science.gov (United States)

    Zheng, Chunli; Guo, Zihu; Huang, Chao; Wu, Ziyin; Li, Yan; Chen, Xuetong; Fu, Yingxue; Ru, Jinlong; Ali Shar, Piar; Wang, Yuan; Wang, Yonghua

    2015-01-01

    A system-level identification of drug-target direct interactions is vital to drug repositioning and discovery. However, the biological means on a large scale remains challenging and expensive even nowadays. The available computational models mainly focus on predicting indirect interactions or direct interactions on a small scale. To address these problems, in this work, a novel algorithm termed weighted ensemble similarity (WES) has been developed to identify drug direct targets based on a large-scale of 98,327 drug-target relationships. WES includes: (1) identifying the key ligand structural features that are highly-related to the pharmacological properties in a framework of ensemble; (2) determining a drug’s affiliation of a target by evaluation of the overall similarity (ensemble) rather than a single ligand judgment; and (3) integrating the standardized ensemble similarities (Z score) by Bayesian network and multi-variate kernel approach to make predictions. All these lead WES to predict drug direct targets with external and experimental test accuracies of 70% and 71%, respectively. This shows that the WES method provides a potential in silico model for drug repositioning and discovery. PMID:26155766

  1. Network output controllability-based method for drug target identification.

    Science.gov (United States)

    Wu, Lin; Shen, Yichao; Li, Min; Wu, Fang-Xiang

    2015-03-01

    Biomolecules do not perform their functions alone, but interactively with one another to form so called biomolecular networks. It is well known that a complex disease stems from the malfunctions of corresponding biomolecular networks. Therefore, one of important tasks is to identify drug targets from biomolecular networks. In this study, the drug target identification is formulated as a problem of finding steering nodes in biomolecular networks while the concept of network output controllability is applied to the problem of drug target identification. By applying control signals to these steering nodes, the biomolecular networks are expected to be transited from one state to another. A graph-theoretic algorithm has been proposed to find a minimum set of steering nodes in biomolecular networks which can be a potential set of drug targets. Application results of the method to real biomolecular networks show that identified potential drug targets are in agreement with existing research results. This indicates that the method can generate testable predictions and provide insights into experimental design of drug discovery.

  2. A Review of Computational Methods for Predicting Drug Targets.

    Science.gov (United States)

    Huang, Guohua; Yan, Fengxia; Tan, Duoduo

    2016-11-14

    Drug discovery and development is not only a time-consuming and labor-intensive process but also full of risk. Identifying targets of small molecules helps evaluate safety of drugs and find new therapeutic applications. The biotechnology measures a wide variety of properties related to drug and targets from different perspectives, thus generating a large body of data. This undoubtedly provides a solid foundation to explore relationships between drugs and targets. A large number of computational techniques have recently been developed for drug target prediction. In this paper, we summarize these computational methods and classify them into structure-based, molecular activity-based, side-effect-based and multi-omics-based predictions according to the used data for inference. The multi-omics-based methods are further grouped into two types: classifier-based and network-based predictions. Furthermore,the advantages and limitations of each type of methods are discussed. Finally, we point out the future directions of computational predictions for drug targets.

  3. Targeted drug delivery using genetically engineered diatom biosilica.

    Science.gov (United States)

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  4. Coating nanoparticles with cell membranes for targeted drug delivery.

    Science.gov (United States)

    Gao, Weiwei; Zhang, Liangfang

    2015-01-01

    Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.

  5. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS

    Directory of Open Access Journals (Sweden)

    Penghua Wang

    2013-04-01

    Full Text Available RNA viruses are sensed by RIG-I-like receptors (RLRs, which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.

  6. High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−RNA and (+RNA of influenza A virus in cell culture

    Directory of Open Access Journals (Sweden)

    Asya S. Levina

    2016-08-01

    Full Text Available Background: The development of new antiviral drugs based on nucleic acids is under scrutiny. An important problem in this aspect is to find the most vulnerable conservative regions in the viral genome as targets for the action of these agents. Another challenge is the development of an efficient system for their delivery into cells. To solve this problem, we proposed a TiO2·PL–DNA nanocomposite consisting of titanium dioxide nanoparticles and polylysine (PL-containing oligonucleotides.Results: The TiO2·PL–DNA nanocomposites bearing the DNA fragments targeted to different conservative regions of (−RNA and (+RNA of segment 5 of influenza A virus (IAV were studied for their antiviral activity in MDCK cells infected with the H1N1, H5N1, and H3N2 virus subtypes. Within the negative strand of each of the studied strains, the efficiency of DNA fragments increased in the direction of its 3’-end. Thus, the DNA fragment aimed at the 3’-noncoding region of (−RNA was the most efficient and inhibited the reproduction of different IAV subtypes by 3–4 orders of magnitude. Although to a lesser extent, the DNA fragments targeted at the AUG region of (+RNA and the corresponding region of (−RNA were also active. For all studied viral subtypes, the nanocomposites bearing the DNA fragments targeted to (−RNA appeared to be more efficient than those containing fragments aimed at the corresponding (+RNA regions.Conclusion: The proposed TiO2·PL–DNA nanocomposites can be successfully used for highly efficient and site-specific inhibition of influenza A virus of different subtypes. Some patterns of localization of the most vulnerable regions in IAV segment 5 for the action of DNA-based drugs were found. The (−RNA strand of IAV segment 5 appeared to be more sensitive as compared to (+RNA.

  7. Improved nanoparticles preparation and drug release for liver targeted delivery

    Directory of Open Access Journals (Sweden)

    Qiao Weili

    2009-05-01

    Full Text Available "nTargeted delivery of drugs and proteins to liver can be achieved via asialoglycoprotein receptor, which can recognize and combine the galactose- and N-acetygalatosamine-terminated glycoproteins. Glycosyl is usually conjugated with drugs directly to fabricate prodrugs or with nanoparticles encapsulated drugs via forming covalent bonds, while the covalent bonds may lead to some shortages for drug release. Therefore, we have a hypothesis that we can prepare nanoparticles for efficient targeting by glycosylation using galactosylated poly (L-glutamic acid (Gal-PLGA as a carrier to entrap the model drugs in nanoparticles core physically rather than forming covalent drug conjugation. The means of incorporation of drug in nanoparticles may improve drug release to maintain its activity, raise its therapeutic index and diminish the adverse effect. Based on previous researches, it is achievable to obtain nanoparticles that we hypothesize to prepare. Due to their nanometer-size and galactosyl, the nanoparticles may be a potential delivery system for passive and active targeting to liver parenchymal cells for therapy of hepatitis and liver cancer.

  8. How do antimalarial drugs reach their intracellular targets?

    Directory of Open Access Journals (Sweden)

    Katherine eBasore

    2015-05-01

    Full Text Available Drugs represent the primary treatment available for human malaria, as caused by Plasmodium spp. Currently approved drugs and antimalarial drug leads generally work against parasite enzymes or activities within infected erythrocytes. To reach their specific targets, these chemicals must cross at least three membranes beginning with the host cell membrane. Uptake at each membrane may involve partitioning and diffusion through the lipid bilayer or facilitated transport through channels or carriers. Here, we review the features of available antimalarials and examine whether transporters may be required for their uptake. Our computational analysis suggests that most antimalarials have high intrinsic membrane permeability, obviating the need for uptake via transporters; a subset of compounds appear to require facilitated uptake. We also review parasite and host transporters that may contribute to drug uptake. Broad permeability channels at the erythrocyte and parasitophorous vacuolar membranes of infected cells relax permeability constraints on antimalarial drug design; however, this uptake mechanism is prone to acquired resistance as the parasite may alter channel activity to reduce drug uptake. A better understanding of how antimalarial drugs reach their intracellular targets is critical to prioritizing drug leads for antimalarial development and may reveal new targets for therapeutic intervention.

  9. Novel colon targeted drug delivery system using natural polymers

    Directory of Open Access Journals (Sweden)

    Ravi V

    2008-01-01

    Full Text Available A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs.

  10. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  11. Cytotoxicity of liver targeted drug-loaded alginate nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitu-tion degree of GA were analyzed by 1H NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 ± 11 nm. The drug release was shown to last 20 days, and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct kill-ing effect on 7703 hepatocellular carcinoma cells.

  12. Cytotoxicity of liver targeted drug-loaded aiginate nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChuangNian; WANG Wei; WANG ChunHong; TIAN Qin; HUANG Wei; YUAN Zhi; CHEN XueSi

    2009-01-01

    In this study,novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method.Glycyrrhetinic acid (GA,a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system,and the structure of GA-ALG and the substitution degree of GA were analyzed by 1H NMR,FT-IR and elemental analysis.The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro.Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214±11 nm.The drug release was shown to last 20 days,and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct killing effect on 7703 hepatocellular carcinoma cells.

  13. In silico study of rotavirus VP7 surface accessible conserved regions for antiviral drug/vaccine design.

    Directory of Open Access Journals (Sweden)

    Ambarnil Ghosh

    Full Text Available BACKGROUND: Rotaviral diarrhoea kills about half a million children annually in developing countries and accounts for one third of diarrhea related hospitalizations. Drugs and vaccines against the rotavirus are handicapped, as in all viral diseases, by the rapid mutational changes that take place in the DNA and protein sequences rendering most of these ineffective. As of now only two vaccines are licensed and approved by the WHO (World Health Organization, but display reduced efficiencies in the underdeveloped countries where the disease is more prevalent. We approached this issue by trying to identify regions of surface exposed conserved segments on the surface glycoproteins of the virion, which may then be targeted by specific peptide vaccines. We had developed a bioinformatics protocol for these kinds of problems with reference to the influenza neuraminidase protein, which we have refined and expanded to analyze the rotavirus issue. RESULTS: Our analysis of 433 VP7 (Viral Protein 7 from rotavirus surface protein sequences across 17 subtypes encompassing mammalian hosts using a 20D Graphical Representation and Numerical Characterization method, identified four possible highly conserved peptide segments. Solvent accessibility prediction servers were used to identify that these are predominantly surface situated. These regions analyzed through selected epitope prediction servers for their epitopic properties towards possible T-cell and B-cell activation showed good results as epitopic candidates (only dry lab confirmation. CONCLUSIONS: The main reasons for the development of alternative vaccine strategies for the rotavirus are the failure of current vaccines and high production costs that inhibit their application in developing countries. We expect that it would be possible to use the protein surface exposed regions identified in our study as targets for peptide vaccines and drug designs for stable immunity against divergent strains of the

  14. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Terzopoulou, Zoi [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Papageorgiou, Myrsini [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece); Kyzas, George Z.; Bikiaris, Dimitrios N. [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece)

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME{sub f}) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q{sub max}) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME{sub f}. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of

  15. Meningococcal disease and future drug targets

    DEFF Research Database (Denmark)

    Colding, Hanne; Hartzen, S H; Penkowa, Milena;

    2011-01-01

    Neisseria meningitidis (N. meningitidis) causes sepsis, epidemic meningitis, and sometimes also meningoencephalitis. Despite early antibiotic treatment, mortality and morbidity remain significant. We present recent studies on meningococcal disease with focus on the pathophysiology caused by bacte......Neisseria meningitidis (N. meningitidis) causes sepsis, epidemic meningitis, and sometimes also meningoencephalitis. Despite early antibiotic treatment, mortality and morbidity remain significant. We present recent studies on meningococcal disease with focus on the pathophysiology caused......-host interactions are key determinants of the clinical course and risk of fatal outcome. Accordingly, successful treatment of severe meningococcal disease requires not only antibiotics but also adjuvants targeting the released endotoxins and the host immune/inflammatory responses. This review highlights the most...

  16. Efficacy of combined antiviral therapy with pegylated interferon α-2a and ribavirin for chronic hepatitis C infection in intravenous drug users

    Directory of Open Access Journals (Sweden)

    Ružić Maja

    2010-01-01

    Full Text Available Introduction. Hepatitis C Virus infection represents not just a medical, but also a socio-economic problem. It is estimated that among 170 million infected, 60% belongs to the category of intravenous drug users (IDUs. Objective. The aim of this paper was to compare the response to the combined therapy of pegylated interferon alfa 2a and ribavirin, in the group of patients with HCV infection who were intravenous drug users (IDUs and in patients who were identified in the other way of transmission of HCV. Also to identify the influence of the therapy on diseases of addiction, during the course of HCV infection and on the effects of the combined therapy of pegylated interferon alfa 2a and ribavirin. Methods. We conducted a retrospective-prospective study, on 60 patients, treated with combined antiviral therapy-pegylated interferon alfa 2a and ribavirin. 30 patients were from the group of IDUs, and 30 patients from other epidemiological groups. Results. There were significant differences between the age of the patients (30.2±7.1 vs. 39.3±11.2 years; p=0.002, but no significant difference in the duration of the HCV infection between the two groups of patients (8.9±7.4 vs. 13.1±7.0 years; p>0.05. A large number of the patients in the group of IDUs had a problem with the abstinence of the drug abuse. In this group, there was the influence of alcohol (30% and other substances with potential hepatotoxicity: marihuana (23.3% and psycho-active drugs (73.6%. Staging of the liver fibrosis was not influenced by those two parameters and was similar in both groups (p>0.05. The genotype 3a was dominant in intravenous drug users (50.0% and genotype 1b in the control group of the patients (76.6%. In both groups, SVR was achieved at a higher percentage (86% vs. 70.00%; p>0.05, but among the intravenous drug users the relapses of HCV infection were at a lower percentage (3.3% vs. 20.0%; p=0.044. Side effects were noticed in solitary cases in both of the examined

  17. Drug treatment and novel drug target against Cryptosporidium

    Directory of Open Access Journals (Sweden)

    Gargala G.

    2008-09-01

    Full Text Available Cryptosporidiosis emergence triggered the screening of many compounds for potential anti-cryptosporidial activity in which the majority were ineffective. The outbreak of cryptosporidiosis which occurred in Milwaukee in 1993 was not only the first significant emergence of Cryptosporidium spp. as a major human pathogen but also a huge waterborne outbreak thickening thousands of people from a major city in North America. Since then, outbreaks of cryptosporidiosis are regularly occurring throughout the world. New drugs against this parasite became consequently urgently needed. Among the most commonly used treatments against cryptosporidiosis are paromomycin, and azithromycin, which are partially effective. Nitazoxanide (NTZ’s effectiveness was demonstrated in vitro, and in vivo using several animal models and finally in clinical trials. It significantly shortened the duration of diarrhea and decreased mortality in adults and in malnourished children. NTZ is not effective without an appropriate immune response. In AIDS patients, combination therapy restoring immunity along with antimicrobial treatment of Cryptosporidium infection is necessary. Recent investigations focused on the potential of molecular-based immunotherapy against this parasite. Others tested the effects of probiotic bacteria, but were unable to demonstrate eradication of C. parvum. New synthetic isoflavone derivatives demonstrated excellent activity against C. parvum in vitro and in a gerbil model of infection. Newly synthesized nitroor non nitro- thiazolide compounds, derived from NTZ, have been recently shown to be at least as effective as NTZ against C. parvum in vitro development and are promising new therapeutic agents.

  18. Drug Elucidation: Invertebrate Genetics Sheds New Light on the Molecular Targets of CNS Drugs

    Directory of Open Access Journals (Sweden)

    Donard S. Dwyer

    2014-07-01

    Full Text Available Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.

  19. The sodium channel as a target for local anesthetic drugs

    Directory of Open Access Journals (Sweden)

    Harry A Fozzard

    2011-11-01

    Full Text Available Na channels are the source of excitatory currents for the nervous system and muscle. They are the target for a class of drugs called local anesthetics (LA, which have been used for local and regional anesthesia and for excitatory dysfunction problems such as epilepsy and cardiac arrhythmia. LA drugs are prototypes for new analgesic drugs. The LA drug binding site has been localized to the inner pore of the channel, where drugs interact mainly with a phenylalanine in domain IV S6. Drug affinity is both voltage- and use-dependent. Voltage-dependency is the result of changes in the conformation of the inner pore during channel activation and opening, allowing high energy interaction of drugs with the phenylalanine. LA drugs also reduce the gating current of Na channels, which represents the movement of charged residues in the voltage sensors. Specifically, drug binding to phenylalanine locks the domain III S4 in its outward (activated position, and slows recovery of the domain IV S4. Although strongly affecting gating, LA drugs almost certainly also block by steric occlusion of the pore. Molecular definition of the binding and blocking interactions may help in new drug development.

  20. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  1. Process Modeling of Ferrofluids Flowfor Magnetic Targeting Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    LIU Handan; WANG Shigang; XU Wei

    2009-01-01

    Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging conftrms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.

  2. 丙型肝炎直接抗病毒药物的代谢及药物相互作用%Metabolism and drug interactions of direct-acting antiviral agents for hepatitis C

    Institute of Scientific and Technical Information of China (English)

    周双男; 张敏

    2016-01-01

    直接抗病毒药物(direct-acting antiviral agents,DAAs)的抗HCV疗效显著,但须关注DAAs的不良反应、安全性检测以及与其他药物的相互作用.本文对DAAs的代谢及其与其他药物的相互作用进行综述.%Direct-acting antiviral agents (DAAs) are highly effective in patients with hepatitis C. However, the adverse reactions, safety and drug interactions of the DAAs should be paid much attention. This review focuses on the metabolism and drug interactions of DAAs.

  3. Identification and visualization of CD8+ T cell mediated IFN-γ signaling in target cells during an antiviral immune response in the brain.

    Directory of Open Access Journals (Sweden)

    Mariana Puntel

    Full Text Available CD8(+ T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8(+ T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre. Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8(+ T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8(+ T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses.

  4. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dongsheng [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Liu Shao [Xiangya Hospital, Central South University, Changsha 410008 (China); Xu Qingsong [School of Mathematical Sciences and Computing Technology, Central South University, Changsha 410083 (China); Lu Hongmei; Huang Jianhua [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Hu Qiannan [Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071 (China); Liang Yizeng, E-mail: yizeng_liang@263.net [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Drug-target interactions are predicted using an extended SAR methodology. Black-Right-Pointing-Pointer A drug-target interaction is regarded as an event triggered by many factors. Black-Right-Pointing-Pointer Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. Black-Right-Pointing-Pointer Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug-target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug-target interactions in a timely manner. In this article, we aim at extending current structure-activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug-target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug-target

  5. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy.

    Science.gov (United States)

    Lupberger, Joachim; Zeisel, Mirjam B; Xiao, Fei; Thumann, Christine; Fofana, Isabel; Zona, Laetitia; Davis, Christopher; Mee, Christopher J; Turek, Marine; Gorke, Sebastian; Royer, Cathy; Fischer, Benoit; Zahid, Muhammad N; Lavillette, Dimitri; Fresquet, Judith; Cosset, François-Loïc; Rothenberg, S Michael; Pietschmann, Thomas; Patel, Arvind H; Pessaux, Patrick; Doffoël, Michel; Raffelsberger, Wolfgang; Poch, Olivier; McKeating, Jane A; Brino, Laurent; Baumert, Thomas F

    2011-05-01

    Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81-claudin-1 co-receptor associations and viral glycoprotein-dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.

  6. Computational design of nanoparticle drug delivery systems for selective targeting.

    Science.gov (United States)

    Duncan, Gregg A; Bevan, Michael A

    2015-10-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.

  7. Use of antiviral drugs to reduce household transmission of pandemic (H1N1) 2009, United Kingdom.

    Science.gov (United States)

    Pebody, Richard G; Harris, Ross; Kafatos, George; Chamberland, Mary; Campbell, Colin; Nguyen-Van-Tam, Jonathan S; McLean, Estelle; Andrews, Nick; White, Peter J; Wynne-Evans, Edward; Green, Jon; Ellis, Joanna; Wreghitt, Tim; Bracebridge, Sam; Ihekweazu, Chikwe; Oliver, Isabel; Smith, Gillian; Hawkins, Colin; Salmon, Roland; Smyth, Bryan; McMenamin, Jim; Zambon, Maria; Phin, Nick; Watson, John M

    2011-06-01

    The United Kingdom implemented a containment strategy for pandemic (H1N1) 2009 through administering antiviral agents (AVs) to patients and their close contacts. This observational household cohort study describes the effect of AVs on household transmission. We followed 285 confirmed primary cases in 259 households with 761 contacts. At 2 weeks, the confirmed secondary attack rate (SAR) was 8.1% (62/761) and significantly higher in persons 50 years of age (18.9% vs. 1.2%, psecondary case-patients, 45 had not received AV prophylaxis. The effectiveness of AV prophylaxis in preventing infection was 92%.

  8. Targeted drug delivery by ultrasound-triggered margination of microbubbles

    CERN Document Server

    Guckenberger, Achim

    2016-01-01

    The ideal agent for targeted drug delivery should stay away from the biochemically active walls of the blood vessels during circulation. However, upon reaching its target it should attain a near-wall position. Though seemingly contradictory, we show that coated microbubbles (ultrasound contrast agents) possess precisely these two properties. Using numerical simulations we find that application of a localized ultrasound pulse at the target organ triggers their rapid migration from the vessel center toward the endothelial wall. This ultrasound-triggered margination is due to hydrodynamic interactions between the red blood cells and the oscillating bubbles. Importantly, we find that the effect is very robust, existing even if the duration in the stiff state is five times lower than the opposing time in the soft state. Our results might also explain why recent in-vivo studies found strongly enhanced drug uptake by co-administration of microbubbles with classical drug delivery agents.

  9. [The new era of epithelium-targeted drug development].

    Science.gov (United States)

    Shimizu, Yoshimi; Nagase, Shotaro; Yagi, Kiyohito; Kondoh, Masuo

    2014-01-01

    Epithelium plays pivotal roles in biological barrier separating the inside of body and the outside environment. Ninety percent of malignant tumors are derived from epithelium. Most pathological microorganisms invade into the body from mucosal epithelium. Thus, epithelium is potential targets for drug development. Claudins (CLs), a family of tetra-transmembrane protein consisting of over 20 members, are structural and functional components of tight junction-seals in epithelium. Modulation of CL-seals enhanced mucosal absorption of drugs. CLs are often over-expressed in malignant tumors. CL-4 expression is increased in the epithelial cells covering the mucosal immune tissues. Very recently, CLs are also expected to be targets for traumatic brain injury and regenerative therapy. In this review, we overview the past, the present and the future of CLs-targeted drug development.

  10. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    Directory of Open Access Journals (Sweden)

    Shanshan Wang

    2015-12-01

    Full Text Available Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS. The complexity of glioma, especially the existence of the blood-brain barrier (BBB, makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications.

  11. Nanobiotechnology-based drug delivery in brain targeting.

    Science.gov (United States)

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity

  12. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  13. Identifying problematic drugs based on the characteristics of their targets

    Directory of Open Access Journals (Sweden)

    Tiago Jose eDa Silva Lopes

    2015-09-01

    Full Text Available Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60%¬–70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  14. Novel Drugs that Target ErbB2

    Science.gov (United States)

    2012-05-01

    of pharmacological properties including antiviral, antibacterial , anti-inflammatory, antimalarial and anticancer activities (1, 2). BA also inhibits...47). Gel mobility shift assays showed that BA also decreased formation of a retarded band containing Sp proteins bound to a GC-rich...analogues exhibit a broad spectrum of pharmacologic properties including antiviral, antibacterial , anti-inflam- matory, antimalarial, and anticancer

  15. A smart multifunctional drug delivery nanoplatform for targeting cancer cells

    Science.gov (United States)

    Hoop, M.; Mushtaq, F.; Hurter, C.; Chen, X.-Z.; Nelson, B. J.; Pané, S.

    2016-06-01

    Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of most tumors. Approximately a 2.5 times higher drug release from Ni nanotubes at pH = 6 is achieved compared to that at pH = 7.4. The outside of the Ni tube is coated with gold. A fluorescein isothiocyanate (FITC) labeled thiol-ssDNA, a biological marker, was conjugated on its surface by thiol-gold click chemistry, which enables traceability. The Ni nanotube allows the propulsion of the device by means of external magnetic fields. As the proposed nanoarchitecture integrates different functional building blocks, our drug delivery nanoplatform can be employed for carrying molecular drug conjugates and for performing targeted combinatorial therapies, which can provide an alternative and supplementary solution to current drug delivery technologies.Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of

  16. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.;

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers....... This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions....

  17. Novel targeted bladder drug-delivery systems: a review

    Directory of Open Access Journals (Sweden)

    Zacchè MM

    2015-11-01

    Full Text Available Martino Maria Zacchè, Sushma Srikrishna, Linda Cardozo Department of Urogynaecology, King's College Hospital, London, UK Abstract: The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD. Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin, nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy. Keywords: drug targeting, drug-delivery system, bladder disorders

  18. [Development of drug delivery systems for targeting to macrophages].

    Science.gov (United States)

    Chono, Sumio

    2007-09-01

    Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.

  19. Potential of magnetic nanoparticles for targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Yang HW

    2012-08-01

    Full Text Available Hung-Wei Yang,1,2 Mu-Yi Hua,1 Hao-Li Liu,3 Chiung-Yin Huang,2 Kuo-Chen Wei21Molecular Medicine Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 2Department of Neurosurgery, Chang Gung University and Memorial Hospital, 3Department of Electrical Engineering, Chang Gung University, Taoyuan, TaiwanAbstract: Nanoparticles (NPs play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some

  20. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia

    DEFF Research Database (Denmark)

    Marstrand, T T; Borup, R; Willer, A

    2010-01-01

    regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost...

  1. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes

    OpenAIRE

    Heister, E; Neves, V.; Lamprecht, C.; Silva, SRP; Coley, HM; Mcfadden, J.

    2012-01-01

    We have designed a drug delivery system for the anti-cancer drugs doxorubicin and mitoxantrone based on carbon nanotubes, which is stable under biological conditions, allows for sustained release, and promotes selectivity through an active targeting scheme. Carbon nanotubes are particularly promising for this area of application due to their high surface area, allowing for high drug loading, and their unique interaction with cellular membranes. We have taken a systematic approach to PEG conju...

  2. Development of a novel Dengue-1 virus replicon system expressing secretory Gaussia luciferase for analysis of viral replication and discovery of antiviral drugs.

    Science.gov (United States)

    Kato, Fumihiro; Kobayashi, Takeshi; Tajima, Shigeru; Takasaki, Tomohiko; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2014-01-01

    Replicon systems have been used for high-throughput screening of anti-dengue virus (anti-DENV) inhibitors and for understanding mechanisms of viral replication. In the present study, we constructed novel DENV-1 replicons encoding Gaussia luciferase that was secreted into the culture medium. Two types of constructs were generated: RNA-based and DNA-based. Each type was translated in an internal ribosome entry site (IRES)-dependent or IRES-independent manner. Among these constructs, the DNA-based replicon employing IRES-dependent translation (DGL2) produced the highest titer. Luciferase levels in the culture medium revealed that the DGL2 replicon was inhibited by ribavirin (a well-known DENV inhibitor) at levels similar to those measured for drug inhibition of multi-round DENV-1 infection. These results indicate that the DNA-based IRES-driven DENV-1 replicon may facilitate studies on viral replication and antiviral compound discovery.

  3. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    Science.gov (United States)

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed.

  4. Nanofabricated biomimetic structures for smart targeting and drug delivery

    NARCIS (Netherlands)

    Dudia, Alma; Kanger, Johannes S.; Subramaniam, Vinod

    2005-01-01

    We present a new approach to hybrid artificial cells (AC) designed for specific targeting and active drug delivery by combining an impermeable non-biological scaffold with an artificial bilayer lipid membrane (BLM) that supports the functioning bio-molecules required to provide AC functionality. We

  5. Current and future drug targets in weight management

    NARCIS (Netherlands)

    Witkamp, R.F.

    2011-01-01

    Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investi

  6. Mitochondrial chaperones may be targets for anti-cancer drugs

    Science.gov (United States)

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  7. Spherons as a drug target in Alzheimer's disease.

    Science.gov (United States)

    Averback, P

    1998-10-01

    Spherons are unique brain entities that are causally linked to the amyloid plaques (SPs [senile plaques]) of Alzheimer's disease (AD). SPs are the quantitatively major tissue abnormality of AD. Spherons increase in size (but not in number) gradually throughout life until they reach a size range where they burst and form SPs. Drugs targeted at attenuating the process of spheron transformation into SPs are a logical approach to AD therapy. There are 20 criteria of validity for an SP causal entity that are satisfied by spherons-and no more than a few of these 20 criteria are satisfied by any other known hypothesis. These criteria of validity are reviewed, in addition to common difficulties in understanding spheron theory and a number of common-sense considerations in AD therapeutic research. Spheron-based drug therapy in AD potentially can retard the process of spheron bursting and subsequent plaque formation by: 1) blocking the formation of SPs; 2) reducing the size of SPs; 3) delaying spheron breakdown; and 4) retarding spheron growth. Isolated spherons from human brain are intact human drug targets and can be used as human in vitro or in vivo screening targets. The paramount importance of spherons as a target for drug therapy in AD is emphasized by considering that regardless of any other type of real or potential therapy, there still already exists in every middle-aged adult a full population of spherons in the brain, filled with more than enough amyloid to bring about full-blown AD.

  8. Glial cells as drug targets : What does it take?

    NARCIS (Netherlands)

    Moller, Thomas; Boddeke, Hendrikus W. G. M.

    2016-01-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development time

  9. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    Directory of Open Access Journals (Sweden)

    Atsuya Yamashita

    2015-11-01

    Full Text Available The current treatments of chronic hepatitis B (CHB face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV. We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95% and low cytotoxicity (66% to 77%. Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy-phenol (compound 1 and 3,4,5-tribromo-2-(2,4-dibromophenoxy-phenol (compound 2, which are classified as polybrominated diphenyl ethers (PBDEs, were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs.

  10. Folate receptor targeted liposomes encapsulating anti-cancer drugs.

    Science.gov (United States)

    Chaudhury, Anumita; Das, Surajit

    2015-01-01

    Among all available lipid based nanoparticulate systems, the success of liposomal drug delivery system is evident by the number of liposomal products available in the market or under advanced stages of preclinical and clinical trials. Liposome has the ability to deliver chemotherapeutic agents to the targeted tissues or even inside the cancerous cells by enhanced intracellular penetration or improved tumour targeting. In the last decade, folate receptor mediated tumour targeting has emerged as an attractive alternative method of active targeting of cancer cells through liposomes due to its numerous advantages over other targeting methods. Folate receptors, also known as folate binding proteins, allow the binding and internalization of folate or folic acid into the cells by a method called folate receptor mediated endocytosis. They have restricted presence in normal cells and are mostly expressed during malignant transformation. In this review article, folate receptor targeting capability of liposomes has been described. This review article has focussed on the different cancer drugs which have been encapsulated in folate receptor targeted liposomes and their in vitro as well as in vivo efficacies in several tumour models.

  11. Wzy-dependent bacterial capsules as potential drug targets.

    Science.gov (United States)

    Ericsson, Daniel J; Standish, Alistair; Kobe, Bostjan; Morona, Renato

    2012-10-01

    The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.

  12. Leishmaniasis:Current status of available drugs and new potential drug targets

    Institute of Scientific and Technical Information of China (English)

    Nisha Singh; Manish Kumar; Rakesh Kumar Singh

    2012-01-01

    The control ofLeishmania infection relies primarily on chemotherapy till date. Resistance to pentavalent antimonials, which have been the recommended drugs to treat cutaneous and visceral leishmaniasis, is now widespread in Indian subcontinents. New drug formulations like amphotericinB, its lipid formulations, and miltefosine have shown great efficacy to treat leishmaniasis but their high cost and therapeutic complications limit their usefulness. In addition, irregular and inappropriate uses of these second line drugs in endemic regions like state of Bihar, India threaten resistance development in the parasite. In context to the limited drug options and unavailability of either preventive or prophylactic candidates, there is a pressing need to develop true antileishmanial drugs to reduce the disease burden of this debilitating endemic disease. Notwithstanding significant progress of leishmanial research during last few decades, identification and characterization of novel drugs and drug targets are far from satisfactory. This review will initially describe current drug regimens and later will provide an overview on few important biochemical and enzymatic machineries that could be utilized as putative drug targets for generation of true antileishmanial drugs.

  13. Cancer targeted therapeutics: From molecules to drug delivery vehicles.

    Science.gov (United States)

    Liu, Daxing; Auguste, Debra T

    2015-12-10

    The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites.

  14. The tuberculosis drug discovery and development pipeline and emerging drug targets.

    Science.gov (United States)

    Mdluli, Khisimuzi; Kaneko, Takushi; Upton, Anna

    2015-01-29

    The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal.

  15. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    NARCIS (Netherlands)

    Witte, W.E.; Wong, Y.C.; Nederpelt, I.; Heitman, L.H.; Danhof, M.; Graaf, van der P.H.; Gilissen, R.A.; de, Lange E.C.

    2016-01-01

    INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target

  16. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  17. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  18. Combinatorial approaches for the identification of brain drug delivery targets.

    Science.gov (United States)

    Stutz, Charles C; Zhang, Xiaobin; Shusta, Eric V

    2014-01-01

    The blood-brain barrier (BBB) represents a large obstacle for the treatment of central nervous system diseases. Targeting endogenous nutrient transporters that transcytose the BBB is one promising approach to selectively and noninvasively deliver a drug payload to the brain. The main limitations of the currently employed transcytosing receptors are their ubiquitous expression in the peripheral vasculature and the inherent low levels of transcytosis mediated by such systems. In this review, approaches designed to increase the repertoire of transcytosing receptors which can be targeted for the purpose of drug delivery are discussed. In particular, combinatorial protein libraries can be screened on BBB cells in vitro or in vivo to isolate targeting peptides or antibodies that can trigger transcytosis. Once these targeting reagents are discovered, the cognate BBB transcytosis system can be identified using techniques such as expression cloning or immunoprecipitation coupled with mass spectrometry. Continued technological advances in BBB genomics and proteomics, membrane protein manipulation, and in vitro BBB technology promise to further advance the capability to identify and optimize peptides and antibodies capable of mediating drug transport across the BBB.

  19. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine.

    Science.gov (United States)

    Müller, Fabian; König, Jörg; Hoier, Eva; Mandery, Kathrin; Fromm, Martin F

    2013-09-15

    The antiviral lamivudine is cleared predominantly by the kidney with a relevant contribution of renal tubular secretion. It is not clear which drug transporters mediate lamivudine renal secretion. Our aim was to investigate lamivudine as substrate of the renal drug transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins MATE1 and MATE2-K. Uptake experiments were performed in OCT2, MATE1, or MATE2-K single-transfected human embryonic kidney 293 (HEK) cells. Transcellular transport experiments were performed in OCT2 and/or MATE1 single- or double-transfected Madin-Darby canine kidney II (MDCK) cells grown on transwell filters. Lamivudine uptake was significantly increased in HEK-OCT2, HEK-MATE1, and HEK-MATE2-K cells compared to control cells. In transcellular experiments, OCT2 located in the basolateral membrane had no effect on transcellular lamivudine transport. MATE1 located in the apical membrane decreased intracellular concentrations and increased transcellular transport of lamivudine from the basal to the apical compartment. MATE1- or MATE2-K-mediated transport was increased by an oppositely directed pH gradient. Several simultaneously administered drugs inhibited OCT2- or MATE2-K-mediated lamivudine uptake. The strongest inhibitors were carvedilol for OCT2 and trimethoprim for MATE2-K (inhibition by 96.3 and 83.7% at 15 μM, respectively, ptransport in OCT2-MATE1 double-transfected cells was inhibited by trimethoprim with an IC₅₀ value of 6.9 μM. Lamivudine is a substrate of renal drug transporters OCT2, MATE1, and MATE2-K. Concomitant administration of drugs that inhibit these transporters could decrease renal clearance of lamivudine.

  20. Rhamnogalacturonan-I based microcapsules for targeted drug release

    DEFF Research Database (Denmark)

    Svagan, Anna J.; Kusic, Anja; De Gobba, Cristian;

    2016-01-01

    Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms...... such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were...

  1. NIOSOMES: A ROLE IN TARGETED DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Soumya Singh

    2013-02-01

    Full Text Available Niosomes are non-ionic surfactant vesicles inclosing an aqueous phase and a wide range of molecules could be encapsulated within aqueous spaces of lipid membrane vesicles. They are microscopic lamellar structures formed on the admixture of a non-ionic surfactant, cholesterol and phosphate with subsequent hydration in aqueous media. Niosomes belongs to novel drug delivery system which offers a large number of advantages over other conventional and vesicular delivery systems. Namely they are the targeted drug delivery system which showing reduction of dose, stability and compatibility of non-ionic surfactants, easy modification, delayed clearance, suitability for a wide range of Active Pharmaceutical Agents.

  2. Drugs that target pathogen public goods are robust against evolved drug resistance.

    Science.gov (United States)

    Pepper, John W

    2012-11-01

    Pathogen drug resistance is a central problem in medicine and public health. It arises through somatic evolution, by mutation and selection among pathogen cells within a host. Here, we examine the hypothesis that evolution of drug resistance could be reduced by developing drugs that target the secreted metabolites produced by pathogen cells instead of directly targeting the cells themselves. Using an agent-based computational model of an evolving population of pathogen cells, we test this hypothesis and find support for it. We also use our model to explain this effect within the framework of standard evolutionary theory. We find that in our model, the drugs most robust against evolved drug resistance are those that target the most widely shared external products, or 'public goods', of pathogen cells. We also show that these drugs exert a weak selective pressure for resistance because they create only a weak correlation between drug resistance and cell fitness. The same principles apply to design of vaccines that are robust against vaccine escape. Because our theoretical results have crucial practical implications, they should be tested by empirical experiments.

  3. Bacterial Transcription as a Target for Antibacterial Drug Development.

    Science.gov (United States)

    Ma, Cong; Yang, Xiao; Lewis, Peter J

    2016-03-01

    Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.

  4. Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yao Hailan

    2012-08-01

    Full Text Available Abstract Background Coxsackievirus B3 is an important infectious agent of viral myocarditis, pancreatitis and aseptic meningitis, but there are no specific antiviral therapeutic reagents in clinical use. RNA interference-based technology has been developed to prevent the viral infection. Methods To evaluate the impact of RNA interference on viral replication, cytopathogenicity and animal survival, short hairpin RNAs targeting the viral 2B region (shRNA-2B expressed by a recombinant vector (pGCL-2B or a recombinant lentivirus (Lenti-2B were tansfected in HeLa cells or transduced in mice infected with CVB3. Results ShRNA-2B exhibited a significant effect on inhibition of viral production in HeLa cells. Furthermore, shRNA-2B improved mouse survival rate, reduced the viral tissues titers and attenuated tissue damage compared with those of the shRNA-NC treated control group. Lenti-2B displayed more effective role in inhibition of viral replication than pGCL-2B in vivo. Conclusions Coxsackievirus B3 2B is an effective target of gene silencing against coxsackievirus B3 infection, suggesting that shRNA-2B is a potential agent for further development into a treatment for enterviral diseases.

  5. Acid-base characterization, coordination properties towards copper(II) ions and DNA interaction studies of ribavirin, an antiviral drug.

    Science.gov (United States)

    Nagaj, Justyna; Starosta, Radosław; Jeżowska-Bojczuk, Małgorzata

    2015-01-01

    We have studied processes of copper(II) ion binding by ribavirin, an antiviral agent used in treating hepatitis C, which is accompanied usually by an increased copper level in the serum and liver tissue. Protonation equilibria and Cu(II) binding were investigated using the UV-visible, EPR and NMR spectroscopic techniques as well as the DFT (density functional theory) calculations. The spectroscopic data suggest that the first complex is formed in the water solution at pH as low as 0.5. In this compound Cu(II) ion is bound to one of the nitrogen atoms from the triazole ring. Above pH6.0, the metal ion is surrounded by two nitrogen and two oxygen atoms from two ligand molecules. The DFT calculations allowed to determine the exact structure of this complex. We found that in the lowest energy isomer two molecules of the ligand coordinate via O and N4 atoms in trans positions. The hypothetical oxidative properties of the investigated system were also examined. It proved not to generate plasmid DNA scission products. However, the calf thymus (CT)-DNA binding studies showed that it reacts with ribavirin and its cupric complex. Moreover, the interaction with the complex is much more efficient.

  6. Application of "hydrogen bonding interaction" in new drug development: design, synthesis, antiviral activity, and SARs of thiourea derivatives.

    Science.gov (United States)

    Lu, Aidang; Wang, Ziwen; Zhou, Zhenghong; Chen, Jianxin; Wang, Qingmin

    2015-02-11

    A series of simple thiourea derivatives were designed based on the structure of natural product harmine and lead compound and synthesized from amines in one step. The antiviral activity of these thiourea derivatives was evaluated. Most of them exhibited significantly higher anti-TMV activity than commercial plant virucides ribavirin, harmine, and lead compound. The hydrogen bond was found to be important but not the more the better. The optimal compound (R,R)-20 showed the best anti-TMV activity in vitro and in vivo (in vitro activity, 75%/500 μg/mL and 39%/100 μg/mL; inactivation activity, 71%/500 μg/mL and 35%/100 μg/mL; curative activity, 73%/500 μg/mL and 37%/100 μg/mL; protection activity, 69%/500 μg/mL and 33%/100 μg/mL), which is significantly higher than that of Ningnanmycin. The systematic study provides strong evidence that these simple thiourea derivatives could become potential TMV inhibitors.

  7. Approaches of targeting Rho GTPases in cancer drug discovery

    Science.gov (United States)

    Lin, Yuan; Zheng, Yi

    2016-01-01

    Introduction Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed “undruggable” because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. Areas covered This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, i.e. RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases and posttranslational modifications at a molecular level. Expert opinion To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents. PMID:26087073

  8. Ion channels as drug targets in central nervous system disorders.

    Science.gov (United States)

    Waszkielewicz, A M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.

  9. Drug delivery application of extracellular vesicles; insight into production, drug loading, targeting, and pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Masaharu Somiya

    2017-01-01

    Full Text Available Extracellular vesicles (EVs are secreted from any types of cells and shuttle between donor cells and recipient cells. Since EVs deliver their cargos such as proteins, nucleic acids, and other molecules for intercellular communication, they are considered as novel mode of drug delivery vesicles. EVs possess advantages such as inherent targeting ability and non-toxicity over conventional nanocarriers. Much efforts have so far been made for the application of EVs as a drug delivery carrier, however, basic techniques, such as mass-scale production, drug loading, and engineering of EVs are still limited. In this review, we summarize following four points. First, recent progress on the production method for EVs is described. Second, current techniques of drug loading methods are summarized. Third, targeting approach to specifically deliver cargo molecules for diseased sites by engineered EVs is discussed. Lastly, strategies to control pharmacokinetics and improve biodistribution are discussed.

  10. Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Zhiqiang Shen

    2016-03-01

    Full Text Available The size, shape, stiffness (composition and surface properties of nanoparticles (NPs have been recognized as key design parameters for NP-mediated drug delivery platforms. Among them, the surface functionalization of NPs is of great significance for targeted drug delivery. For instance, targeting moieties are covalently coated on the surface of NPs to improve their selectively and affinity to cancer cells. However, due to a broad range of possible choices of surface decorating molecules, it is difficult to choose the proper one for targeted functions. In this work, we will review several representative experimental and computational studies in selecting the proper surface functional groups. Experimental studies reveal that: (1 the NPs with surface decorated amphiphilic polymers can enter the cell interior through penetrating pathway; (2 the NPs with tunable stiffness and identical surface chemistry can be selectively accepted by the diseased cells according to their stiffness; and (3 the NPs grafted with pH-responsive polymers can be accepted or rejected by the cells due to the local pH environment. In addition, we show that computer simulations could be useful to understand the detailed physical mechanisms behind these phenomena and guide the design of next-generation NP-based drug carriers with high selectivity, affinity, and low toxicity. For example, the detailed free energy analysis and molecular dynamics simulation reveals that amphiphilic polymer-decorated NPs can penetrate into the cell membrane through the “snorkeling” mechanism, by maximizing the interaction energy between the hydrophobic ligands and lipid tails. We anticipate that this work will inspire future studies in the design of environment-responsive NPs for targeted drug delivery.

  11. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    Science.gov (United States)

    Olmstead, Andrea D; Knecht, Wolfgang; Lazarov, Ina; Dixit, Surjit B; Jean, François

    2012-01-01

    HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of

  12. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    Directory of Open Access Journals (Sweden)

    Andrea D Olmstead

    2012-01-01

    Full Text Available HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV, whose assembly and pathogenesis depend on interaction with lipid droplets (LDs. One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1--or site-1 protease (S1P. SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs, which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow

  13. HCV Drug Resistance Challenges in Japan: The Role of Pre-Existing Variants and Emerging Resistant Strains in Direct Acting Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Kazuaki Chayama

    2015-10-01

    Full Text Available Sustained virological response (SVR rates have increased dramatically following the approval of direct acting antiviral (DAA therapies. While individual DAAs have a low barrier to resistance, most patients can be successfully treated using DAA combination therapy. However, DAAs are vulnerable to drug resistance, and resistance-associated variants (RAVs may occur naturally prior to DAA therapy or may emerge following drug exposure. While most RAVs are quickly lost in the absence of DAAs, compensatory mutations may reinforce fitness. However, the presence of RAVs does not necessarily preclude successful treatment. Although developments in hepatitis C virus (HCV therapy in Asia have largely paralleled those in the United States, Japan’s July 2014 approval of asunaprevir plus daclatasvir combination therapy as the first all-oral interferon-free therapy was not repeated in the United States. Instead, two different combination therapies were approved: sofosbuvir/ledipasvir and paritaprevir/ritonavir/ombitasvir/dasabuvir. This divergence in treatment approaches may lead to differences in resistance challenges faced by Japan and the US. However, the recent approval of sofosbuvir plus ledipasvir in Japan and the recent submissions of petitions for approval of paritaprevir/ritonavir plus ombitasvir suggest a trend towards a new consensus on emerging DAA regimens.

  14. Broad-Spectrum Antiviral Activity of Small Interfering RNA Targeting the Conserved RNA Termini of Lassa Virus▿

    OpenAIRE

    Müller, Stefanie; Günther, Stephan

    2007-01-01

    Small interfering RNAs targeting the conserved RNA termini upstream of NP and L gene were found to reduce reporter gene expression from Lassa virus replicon and Lassa virus mRNA expression construct and to inhibit replication of different Lassa virus strains, lymphocytic choriomeningitis virus, and Mopeia virus in cell culture.

  15. New alginic acid–atenolol microparticles for inhalatory drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ceschan, Nazareth Eliana; Bucalá, Verónica [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca (Argentina); Ramírez-Rigo, María Verónica, E-mail: vrrigo@plapiqui.edu.ar [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca (Argentina)

    2014-08-01

    The inhalatory route allows drug delivery for local or systemic treatments in a noninvasively way. The current tendency of inhalable systems is oriented to dry powder inhalers due to their advantages in terms of stability and efficiency. In this work, microparticles of atenolol (AT, basic antihypertensive drug) and alginic acid (AA, acid biocompatible polyelectrolyte) were obtained by spray drying. Several formulations, varying the relative composition AT/AA and the total solid content of the atomized dispersions, were tested. The powders were characterized by: Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Powder X-ray Diffraction, while also the following properties were measured: drug load efficiency, flow properties, particles size and density, moisture content, hygroscopicity and morphology. The ionic interaction between AA and AT was demonstrated, then the new chemical entity could improve the drug targeting to the respiratory membrane and increase its time residence due to the mucoadhesive properties of the AA polymeric chains. Powders exhibited high load efficiencies, low moisture contents, adequate mean aerodynamic diameters and high cumulative fraction of respirable particles (lower than 10 μm). - Highlights: • Novel particulate material to target atenolol to the respiratory membrane was developed. • Crumbled microparticles were obtained by spray drying of alginic–atenolol dispersions. • Ionic interaction between alginic acid and atenolol was demonstrated in the product. • Amorphous solids with low moisture content and high load efficiency were produced. • Relationships between the feed formulation and the product characteristics were found.

  16. Integral membrane pyrophosphatases: a novel drug target for human pathogens?

    Directory of Open Access Journals (Sweden)

    Henri Xhaard

    2016-03-01

    Full Text Available Membrane-integral pyrophosphatases (mPPases are found in several human pathogens, including Plasmodium species, the protozoan parasites that cause malaria. These enzymes hydrolyze pyrophosphate and couple this to the pumping of ions (H+ and/or Na+ across a membrane to generate an electrochemical gradient. mPPases play an important role in stress tolerance in plants, protozoan parasites, and bacteria. The solved structures of mPPases from Vigna radiata and Thermotoga maritima open the possibility of using structure-based drug design to generate novel molecules or repurpose known molecules against this enzyme. Here, we review the current state of knowledge regarding mPPases, focusing on their structure, the proposed mechanism of action, and their role in human pathogens. We also summarize different methodologies in structure-based drug design and propose an example region on the mPPase structure that can be exploited by these structure-based methods for drug targeting. Since mPPases are not found in animals and humans, this enzyme is a promising potential drug target against livestock and human pathogens.

  17. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J. (Abbott)

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  18. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    Science.gov (United States)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  19. Reprofiled drug targets ancient protozoans: drug discovery for parasitic diarrheal diseases.

    Science.gov (United States)

    Debnath, Anjan; Ndao, Momar; Reed, Sharon L

    2013-01-01

    Recently, we developed a novel automated, high throughput screening (HTS) methodology for the anaerobic intestinal parasite Entamoeba histolytica. We validated this HTS platform by screening a chemical library containing US Food and Drug Administration (FDA)-approved drugs and bioactive compounds. We identified an FDA-approved drug, auranofin, as most active against E. histolytica both in vitro and in vivo. Our cell culture and animal studies indicated that thioredoxin reductase, an enzyme involved in reactive oxygen species detoxification, was the target for auranofin in E. histolytica. Here, we discuss the rationale for drug development for three parasites which are major causes of diarrhea worldwide, E. histolytica, Giardia lamblia and Cryptosporidium parvum and extend our current finding of antiparasitic activity of auranofin to Entamoeba cysts, G. lamblia and C. parvum. These studies support the use of HTS assays and reprofiling FDA-approved drugs for new therapy for neglected tropical diseases.

  20. Prediction of off-target drug effects through data fusion.

    Science.gov (United States)

    Yera, Emmanuel R; Cleves, Ann E; Jain, Ajay N

    2014-01-01

    We present a probabilistic data fusion framework that combines multiple computational approaches for drawing relationships between drugs and targets. The approach has special relevance to identifying surprising unintended biological targets of drugs. Comparisons between molecules are made based on 2D topological structural considerations, based on 3D surface characteristics, and based on English descriptions of clinical effects. Similarity computations within each modality were transformed into probability scores. Given a new molecule along with a set of molecules sharing some biological effect, a single score based on comparison to the known set is produced, reflecting either 2D similarity, 3D similarity, clinical effects similarity or their combination. The methods were validated within acurated structural pharmacology database (SPDB) and further tested by blind application to data derived from the ChEMBL database. For prediction of off-target effects, 3D-similarity performed best as a single modality, but combining all methods produced performance gains. Striking examples of structurally surprising off-target predictions are presented.

  1. p21-activated kinase family: promising new drug targets

    Directory of Open Access Journals (Sweden)

    Huynh N

    2015-05-01

    Full Text Available Nhi Huynh, Hong He Department of Surgery, University of Melbourne, Austin Health, Melbourne, VIC, Australia Abstract: The p21-activated kinase (PAK family of serine/threonine protein kinases are downstream effectors of the Rho family of GTPases. PAKs are frequently upregulated in human diseases, including various cancers, and their overexpression correlates with disease progression. Current research findings have validated important roles for PAKs in cell proliferation, survival, gene transcription, transformation, and cytoskeletal remodeling. PAKs are shown to act as a converging node for many signaling pathways that regulate these cellular processes. Therefore, PAKs have emerged as attractive targets for treatment of disease. This review discusses the physiological and pathological roles of PAKs, validation of PAKs as new promising drug targets, and current challenges and advances in the development of PAK-targeted anticancer therapy, with a focus on PAKs and human cancers. Keywords: p21-activated kinase, cancer, inhibitor

  2. Salinomycin as a Drug for Targeting Human Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Cord Naujokat

    2012-01-01

    Full Text Available Cancer stem cells (CSCs represent a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of malignant cells that comprise a tumor. CSCs possess multiple intrinsic mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs, and radiation therapy, allowing them to survive standard cancer therapies and to initiate tumor recurrence and metastasis. Various molecular complexes and pathways that confer resistance and survival of CSCs, including expression of ATP-binding cassette (ABC drug transporters, activation of the Wnt/β-catenin, Hedgehog, Notch and PI3K/Akt/mTOR signaling pathways, and acquisition of epithelial-mesenchymal transition (EMT, have been identified recently. Salinomycin, a polyether ionophore antibiotic isolated from Streptomyces albus, has been shown to kill CSCs in different types of human cancers, most likely by interfering with ABC drug transporters, the Wnt/β-catenin signaling pathway, and other CSC pathways. Promising results from preclinical trials in human xenograft mice and a few clinical pilote studies reveal that salinomycin is able to effectively eliminate CSCs and to induce partial clinical regression of heavily pretreated and therapy-resistant cancers. The ability of salinomycin to kill both CSCs and therapy-resistant cancer cells may define the compound as a novel and an effective anticancer drug.

  3. Internalized compartments encapsulated nanogels for targeted drug delivery

    Science.gov (United States)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The

  4. Recent advances in antiviral therapy.

    OpenAIRE

    Kinchington, D

    1999-01-01

    In the early 1980s many institutions in Britain were seriously considering whether there was a need for specialist departments of virology. The arrival of HIV changed that perception and since then virology and antiviral chemotherapy have become two very active areas of bio-medical research. Cloning and sequencing have provided tools to identify viral enzymes and have brought the day of the "designer drug" nearer to reality. At the other end of the spectrum of drug discovery, huge numbers of ...

  5. Iron Acquisition Pathways as Targets for Antitubercular Drugs.

    Science.gov (United States)

    Meneghetti, Fiorella; Villa, Stefania; Gelain, Arianna; Barlocco, Daniela; Chiarelli, Laurent Roberto; Pasca, Maria Rosalia; Costantino, Luca

    2016-01-01

    Tuberculosis nowadays ranks as the second leading cause of death from an infectious disease worldwide. In the last twenty years, this disease has again started to spread mainly for the appearance of multi-drug resistant forms. Therefore, new targets are needed to address the growing emergence of bacterial resistance and for antitubercular drug development. Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis, because it serves as cofactor in many essential biological processes, including DNA biosynthesis and cellular respiration. Bacteria acquire iron chelating non-heme iron from the host using the siderophore mycobactins and carboxymycobactins and by the uptake of heme iron released by damaged red blood cells, through several acquisition systems. Drug discovery focused its efforts on the inhibition of MbtI and MbtA, which are are two enzymes involved in the mycobactin biosynthetic pathway. In particular, MbtI inhibitors have been studied in vitro, while MbtA inhibitors showed activity also in infected mice. Another class of compounds, MmpL3 inhibitors, showed antitubercular activity in vitro and in vivo, but their mechanism of action seems to be off-target. Some compounds inhibiting 4'-phosphopantetheinyl transferase were discovered but not tested on in vivo assays. The available data reported in this study based on inhibitors and gene deletion studies, suggest that targeting iron acquisition systems could be considered a promising antitubercular strategy. Due to their redundancy, the relative importance of each pathway for Mycobacterium tuberculosis survival has still to be determined. Thus, in vivo studies with new, potent and specific inhibitors are needed to highlight target selection.

  6. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Chakkarapani, Prabu [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Subbiah, Latha, E-mail: lathasuba2010@gmail.com [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Palanisamy, Selvamani; Bibiana, Arputha [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO{sub 3}-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO{sub 3}-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 µm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy. - Highlights: • Development of methotrexate magnetic microcapsules (MMC) by layer-by-layer method. • Characterization of physicochemical, pharmaceutical and magnetic properties of MMC. • Multiple layers of alternative polyelectrolytes prolongs methotrexate release time. • MMC is capable for targeted and sustained release rheumatoid arthritis therapy.

  7. Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection

    Science.gov (United States)

    Nath Chatterjee, Amar; Roy, Priti Kumar

    2012-02-01

    Recent development in antiretroviral treatment against HIV can help AIDS patients to fight against HIV. But the question that whether the disease is to be partially or totally eradicated from HIV infected individuals still remains unsolved. Usually, the most effective treatment for the disease is HAART which can only control the disease progression. But as the immune system becomes weak, the patients can not fight against other diseases. Immune cells are activated and proliferated by IL-2 after the identification of antigen. IL-2 production is impaired in HIV positive patients and intermitted administration of immune activator IL-2 together with HAART which is a more effective treatment to fight against the disease. Thus, its expediency is essential and is yet to be explored. In this article we anticipated a mathematical model of the effect of IL-2 together with RTIs therapy in HIV positive patients. Our analytical as well as numerical study shows that the optimal schedule of treatment for best result is to be obtained by systematic drug therapy. But at the last stage of treatment, the infection level raises again due to minimisation of drug dosage. Thus we study the perfect adherence of the drugs and found out if RTIs are taken with sufficient interval then for fixed interval of IL-2 therapy, certain amount of drug dosages may be able to sustain the immune system at pre-infection stage and the infected CD4+T cells are going towards extinction.

  8. Application of RNAi to Genomic Drug Target Validation in Schistosomes.

    Directory of Open Access Journals (Sweden)

    Alessandra Guidi

    2015-05-01

    Full Text Available Concerns over the possibility of resistance developing to praziquantel (PZQ, has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2 (Sm-Calm, that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310 (Sm-aPKC resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600 and p38-MAPK, Sm-MAPK p38 (Smp_133020 resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC. For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability

  9. Pleiotropic effects of statins: new therapeutic targets in drug design.

    Science.gov (United States)

    Bedi, Onkar; Dhawan, Veena; Sharma, P L; Kumar, Puneet

    2016-07-01

    The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.

  10. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yadavalli, Tejabhiram, E-mail: tejabhiram@gmail.com [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Ramasamy, Shivaraman [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); School of Physics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal [Nanotechnology Research Centre, SRM University, Chennai 603203 (India); Chennakesavulu, Ramasamy [Department of Pharmacy practice, SRM College of Pharmacy, Chennai 603203 (India)

    2015-04-15

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation. - Highlights: • The use of gadolinium doped nickel ferrite with the suggested doping level. • The use of PNIPMA–chitosan polymer with folic acid and fluorescein as a drug carrier complex. • Magnetic hyperthermia studies of gadolinium doped nickel ferrites are being reported for the first time. • Proton relaxivity studies which indicate the MRI contrasting properties on the reported system are new. • Use of curcumin, a hydrophobic Indian spice as a cancer killing agent inside the reported magnetic polymer complex.

  11. Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery

    Science.gov (United States)

    Chu, Hsiao Mei Annie

    2011-12-01

    Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and

  12. Quantification of biodegradable PLGA nanoparticles for drug targeting

    Directory of Open Access Journals (Sweden)

    Nadira Ibrišimović

    2010-11-01

    Full Text Available Objective. The aim of this work was the development of appropriate analytical methods and assays for determining and monitoring composition and degradation of nanoparticles built from PLGA (poly D, L-lactid-co-glycolid, which can be reloaded with different drugs. A sensitive and precise method for monitoring of nanoparticle degradation in vitro was developed and optimized. Nanoparticles allow a selective enrichment of different drugs and knowledge of the nature and type of their degradation is essential for characterization and control of drug release and dosage. Materials and methods. The first method developed during this work to quantify the PLGA polymer matrix use advantage of the chemical reaction of aliphatic carboxylic acids with ferric chloride (FeCl3 thus quantifying both degradation products of PLGA, lactic and glycol acids, at the same time. A second assay method of choice was to react to the polymer hydrolysate with lactate dehydrogenase, thus assaying selectively the lactic acid part. Results. During development of both of described methods was possible to determine dynamic range for PLGA matrix and nanoparticles, as well as to characterize impact of Pluronic F-68 and glycolic acid on lactate dehydrogenase activity. Conclusion. During our work we were able to develop two sensitive methods for monitoring of biodegradation of polymers which are consecutively used as a nanoparticle matrix in drug targeting.

  13. Study on the interaction of the antiviral drug, zidovudine with DNA using neutral red (NR) and methylene blue (MB) dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shahabadi, Nahid, E-mail: nahidshahabadi@yahoo.com [Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moghadam, Neda Hossein pour [Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-02-15

    The interaction between the drug, zidovudine and calf thymus DNA (CT-DNA) in physiological buffer (pH 7.4) was investigated using neutral red (NR) and methylene blue (MB) dyes as a spectral probes by UV-vis absorption and fluorescence spectroscopy, as well as circular dichroism (CD) spectroscopy. The experimental results showed that the conformational changes in DNA helix induced by zidovudine are the reason for the fluorescence quenching of the DNA-NR system. In addition, by increasing zidovudine to DNA-MB solution, the fluorescence has no change. From the experimental results, it was found that zidovudine can cause structural changes on CT-DNA and bind with DNA via groove binding mode. At the same time, the paper proved that conformational changes of DNA can also lead to the fluorescence decrease of DNA-probe systems. - Highlights: Black-Right-Pointing-Pointer Search for new molecular structures which exhibit effective antitumor activities among popular drugs. Black-Right-Pointing-Pointer The DRUG can bind to DNA via groove binding mode. Black-Right-Pointing-Pointer Several spectroscopic techniques have been used in this research.

  14. Drug-target and disease networks: polypharmacology in the post-genomic era

    OpenAIRE

    Masoudi-Nejad, Ali; Mousavian, Zaynab; Bozorgmehr, Joseph H.

    2013-01-01

    With the growing understanding of complex diseases, the focus of drug discovery has shifted away from the well-accepted “one target, one drug” model, to a new “multi-target, multi-drug” model, aimed at systemically modulating multiple targets. Identification of the interaction between drugs and target proteins plays an important role in genomic drug discovery, in order to discover new drugs or novel targets for existing drugs. Due to the laborious and costly experimental process of drug-targe...

  15. Magnetically responsive microparticles for targeted drug and radionuclide delivery.

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-02-16

    We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 {micro}m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 {micro}m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 {micro}m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial

  16. Adsorption removal of antiviral drug oseltamivir and its metabolite oseltamivir carboxylate by carbon nanotubes: Effects of carbon nanotube properties and media.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Wang, Zheng-Ming; Niu, Li-Xia; Wang, Chao; Sun, Ming-Chao; Hu, Hong-Ying

    2015-10-01

    This investigation evaluated the adsorption behavior of the antiviral drugs of oseltamivir (OE) and its metabolites (i.e., oseltamivir carboxylate (OC)) on three types of carbon nanotubes (CNTs) including single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and carboxylated SWCNT (SWCNT-COOH). CNTs can efficiently remove more than 90% of the OE and OC from aqueous solution when the initial concentration was lower than 10(-4) mmol/L. The Polanyi-Manes model depicted the adsorption isotherms of OE and OC on CNTs better than the Langmuir and Freundlich models. The properties of OE/OC and the characteristics of CNTs, particularly the oxygen functional groups (e.g., SWCNT-COOH) played important roles during the adsorption processes. OE showed a higher adsorption affinity than OC. By comparing the different adsorbates adsorption on each CNT and each adsorbate adsorption on different CNTs, the adsorption mechanisms of hydrophobic interaction, electrostatic interaction, van der Waals force, and H-bonding were proposed as the contributing factors for OE and OC adsorption on CNTs. Particularly, for verifying the contribution of electrostatic interaction, the changes of adsorption partition efficiency (Kd) of OE and OC on CNTs were evaluated by varying pH from 2 to 11 and the importance of isoelectric point (pHIEP) of CNTs on OE and OC adsorption was addressed.

  17. Potent Antiviral HIV-1 Protease Inhibitor GRL-02031 Adapts to the Structures of Drug Resistant Mutants with Its P1;#8242;-Pyrrolidinone Ring

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Chung E.; Yu, XiaXia; Zhang, Ying; Tie, Yunfeng; Wang, Yuan-Fang; Yashchuk, Sofiya; Ghosh, Arun K.; Harrison, Robert W.; Weber, Irene T. (GSU); (Purdue); (GSI); (CDC)

    2012-11-14

    GRL-02031 (1) is an HIV-1 protease (PR) inhibitor containing a novel P1' (R)-aminomethyl-2-pyrrolidinone group. Crystal structures at resolutions of 1.25-1.55 {angstrom} were analyzed for complexes of 1 with the PR containing major drug resistant mutations, PR{sub I47V}, PR{sub L76V}, PR{sub V82A}, and PR{sub N88D}. Mutations of I47V and V82A alter residues in the inhibitor-binding site, while L76V and N88D are distal mutations having no direct contact with the inhibitor. Substitution of a smaller amino acid in PR{sub I47V} and PR{sub L76V} and the altered charge of PR{sub N88D} are associated with significant local structural changes compared to the wild-type PR{sub WT}, while substitution of alanine in PR{sub V82A} increases the size of the S1' subsite. The P1' pyrrolidinone group of 1 accommodates to these local changes by assuming two different conformations. Overall, the conformation and interactions of 1 with PR mutants resemble those of PR{sub WT} with similar inhibition constants in good agreement with the antiviral potency on multidrug resistant HIV-1.

  18. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products.

    Science.gov (United States)

    Prasse, Carsten; Wagner, Manfred; Schulz, Ralf; Ternes, Thomas A

    2012-02-21

    The oxidation of the antiviral drug acyclovir (ACV) and its main biotransformation product carboxy-acyclovir (carboxy-ACV) by ozone was investigated. Both compounds have recently been detected in surface water, and carboxy-ACV has also been detected in drinking water. The experiments revealed a strong pH dependence of the oxidation of ACV and carboxy-ACV with reaction rate constants increasing by 4 orders of magnitude between the protonated, positively charged form (k(ox,PH(+)), ∼2.5 × 10(2) M(-1) s(-1)) and the deprotonated, negatively charged form (k(ox,P(-)), 3.4 × 10(6) M(-1) s(-1)). At pH 8 a single oxidation product was formed which was identified via LC-LTQ-Orbitrap MS and NMR as N-(4-carbamoyl-2-imino-5-oxoimidazolidin)formamido-N-methoxyacetic acid (COFA). Using Vibrio fischeri , an acute bacterial toxicity was found for COFA while carboxy-ACV revealed no toxic effects. Ozonation experiments with guanine and guanosine at pH 8 led to the formation of the respective 2-imino-5-oxoimidazolidines, confirming that guanine derivatives such as carboxy-ACV are undergoing the same reactions during ozonation. Furthermore, COFA was detected in finished drinking water of a German waterworks after ozonation and subsequent activated carbon treatment.

  19. Brain targeted transcranial route of drug delivery of diazepam

    Directory of Open Access Journals (Sweden)

    Pathirana W

    2006-01-01

    Full Text Available The term transcranial route means the brain targeted transfer of drug molecules across the cranium through the layers of the skin and skin appendages of the head, arteries and veins of the skin of the head, the cranial bones along with the diploe, the cranial bone sutures, the meninges and specifically through the emissary veins. The administration of drugs through the scalp in ayurvedic system for the diseases associated with the brain was evaluated with a view to develop a novel targeted route for central nervous system drugs. It is expected to circumvent the systemic side effects of oral route. Diazepam was dissolved in an oil medium and applied on scalp as practiced in the ayurvedic system. Thirty rats were tested on the rotating rotarod for muscle relaxant effect of diazepam. Five groups of rats tested were the control, diazepam i.v. injected (280 µg/0.1 ml group, two groups treated with transcranial diazepam oil solution (1.5 mg/0.2 ml and the transcranial blank vehicle treated groups. Holding time in triplicate for each rat on the rotating rotarod was measured. The holding times following each treatment was statistically compared (one-way ANOVA. The pooled average times for the control, diazepam i.v. injected, diazepam oil solution transcranial treated two groups and the blank vehicle treated groups were 35.45, 4.73, 16.5, 15.39 and 33.23 seconds respectively. The two groups subjected to the brain targeted transcranial route showed a statistically significant decrease (50% drop in the holding time against the control group indicating the centrally acting muscle relaxant effect due to absorption of diazepam into the brain through the proposed route.

  20. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  1. TRPV1: A Target for Rational Drug Design

    Directory of Open Access Journals (Sweden)

    Vincenzo Carnevale

    2016-08-01

    Full Text Available Transient Receptor Potential Vanilloid 1 (TRPV1 is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX. Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures.

  2. Discovering the first microRNA-targeted drug

    DEFF Research Database (Denmark)

    Lindow, Morten; Kauppinen, Sakari

    2012-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of nearly every biological process in the cell and play key roles in the pathogenesis of human disease. As a result, there are many drug discovery programs that focus on developing miRNA-based therapeutics. The most advanced...... of these programs targets the liver-expressed miRNA-122 using the locked nucleic acid (LNA)–modified antisense oligonucleotide miravirsen. Here, we describe the discovery of miravirsen, which is currently in phase 2 clinical trials for treatment of hepatitis C virus (HCV) infection....

  3. Mining nematode genome data for novel drug targets.

    Science.gov (United States)

    Foster, Jeremy M; Zhang, Yinhua; Kumar, Sanjay; Carlow, Clotilde K S

    2005-03-01

    Expressed sequence tag projects have currently produced over 400 000 partial gene sequences from more than 30 nematode species and the full genomic sequences of selected nematodes are being determined. In addition, functional analyses in the model nematode Caenorhabditis elegans have addressed the role of almost all genes predicted by the genome sequence. This recent explosion in the amount of available nematode DNA sequences, coupled with new gene function data, provides an unprecedented opportunity to identify pre-validated drug targets through efficient mining of nematode genomic databases. This article describes the various information sources available and strategies that can expedite this process.

  4. Development of modified pulsincap drug delivery system of metronidazole for drug targeting

    Directory of Open Access Journals (Sweden)

    Abraham Sindhu

    2007-01-01

    Full Text Available A modified Pulsincap dosage form of metronidazole was developed to target drug release in the colon. Bodies of hard gelatin capsules were treated with formaldehyde keeping the caps as such. Metronidazole pellets prepared by extrusion-spheronization method were incorporated into these specialized capsule shells and plugged with polymers guar gum, hydroxypropylmethylcellulose 10K, carboxymethylcellulose sodium and sodium alginate separately at concentrations 20 mg, 30 mg and 40 mg. The filled capsules were completely coated with 5% cellulose acetate phthalate to prevent variable gastric emptying. All the formulations were assayed to determine drug content and the ability of the modified Pulsincap to provide colon-specific drug delivery was assessed by in vitro drug release studies in buffer pH 1.2 for 2 h, pH 7.4 (simulated intestinal fluid for 3 h and pH 6.8 (stimulated colonic fluid for 7 h. The results indicated that significant drug release occurred only after 5 h from the start of experiment. Thus, metronidazole could be successfully colon targeted by the use of the modified Pulsincap, thereby reducing systemic side effects.

  5. Self-interest versus group-interest in antiviral control.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    Full Text Available Antiviral agents have been hailed to hold considerable promise for the treatment and prevention of emerging viral diseases like H5N1 avian influenza and SARS. However, antiviral drugs are not completely harmless, and the conditions under which individuals are willing to participate in a large-scale antiviral drug treatment program are as yet unknown. We provide population dynamical and game theoretical analyses of large-scale prophylactic antiviral treatment programs. Throughout we compare the antiviral control strategy that is optimal from the public health perspective with the control strategy that would evolve if individuals make their own, rational decisions. To this end we investigate the conditions under which a large-scale antiviral control program can prevent an epidemic, and we analyze at what point in an unfolding epidemic the risk of infection starts to outweigh the cost of antiviral treatment. This enables investigation of how the optimal control strategy is moulded by the efficacy of antiviral drugs, the risk of mortality by antiviral prophylaxis, and the transmissibility of the pathogen. Our analyses show that there can be a strong incentive for an individual to take less antiviral drugs than is optimal from the public health perspective. In particular, when public health asks for early and aggressive control to prevent or curb an emerging pathogen, for the individual antiviral drug treatment is attractive only when the risk of infection has become non-negligible. It is even possible that from a public health perspective a situation in which everybody takes antiviral drugs is optimal, while the process of individual choice leads to a situation where nobody is willing to take antiviral drugs.

  6. Study on the interaction of antiviral drug 'Tenofovir' with human serum albumin by spectral and molecular modeling methods

    Science.gov (United States)

    Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan

    2015-03-01

    This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.

  7. Pharmaceutical technology at the service of targeted drug delivery.

    Science.gov (United States)

    Allémann, Eric; Delie, Florence; Lange, Norbert

    2012-01-01

    Research in pharmaceutical technology has drifted from formulation of systems with improved drug absorption and bioavailability to systems targeting molecular sites of diseases. The research unit of Pharmaceutical Technology from the University of Geneva focuses on the development of systems for both diagnostic and therapeutic purposes. Three types of constructs for targeting are reviewed. With a fine-tuning of size and surface composition, polymeric nanoparticles are developed to improve detection of micrometastasis by fluorescence imaging. Furthermore, surface coating with specific antibodies increase the therapeutic efficiency of the encapsulated chemotherapeutic agent for tumor treatment in animal models. Constructs that are activated by remote sources of energy are investigated in the unit. For instance, microbubbles bearing specific antibody fragments at their surface are useful contrast agents for ultrasound molecular imaging. Microbubbles, if combined with a thrombolytic drug and ultrasound, improve clot lysis, which is promising for stroke treatments. Enzymatically activated prodrug scaffolds are also under development. With this approach, intrinsic enzymatic activity of a diseased tissue activates the formulations. This concept led to the development of theranostic agents that can be used for both diagnostic and therapeutic purposes.

  8. Drug-target interaction prediction by random walk on the heterogeneous network.

    Science.gov (United States)

    Chen, Xing; Liu, Ming-Xi; Yan, Gui-Ying

    2012-07-01

    Predicting potential drug-target interactions from heterogeneous biological data is critical not only for better understanding of the various interactions and biological processes, but also for the development of novel drugs and the improvement of human medicines. In this paper, the method of Network-based Random Walk with Restart on the Heterogeneous network (NRWRH) is developed to predict potential drug-target interactions on a large scale under the hypothesis that similar drugs often target similar target proteins and the framework of Random Walk. Compared with traditional supervised or semi-supervised methods, NRWRH makes full use of the tool of the network for data integration to predict drug-target associations. It integrates three different networks (protein-protein similarity network, drug-drug similarity network, and known drug-target interaction networks) into a heterogeneous network by known drug-target interactions and implements the random walk on this heterogeneous network. When applied to four classes of important drug-target interactions including enzymes, ion channels, GPCRs and nuclear receptors, NRWRH significantly improves previous methods in terms of cross-validation and potential drug-target interaction prediction. Excellent performance enables us to suggest a number of new potential drug-target interactions for drug development.

  9. Molecular drug targets and structure based drug design: A holistic approach

    OpenAIRE

    Singh, Shailza; Malik, Balwant Kumar; Sharma, Durlabh Kumar

    2006-01-01

    Access to the complete human genome sequence as well as to the complete sequences of pathogenic organisms provides information that can result in an avalanche of therapeutic targets. Structure-based design is one of the first techniques to be used in drug design. Structure based design refers specifically to finding and complementing the 3D structure (binding and/or active site) of a target molecule such as a receptor protein. The aim of this review is to give an outline of studies in the fie...

  10. Nanomaterials for the Local and Targeted Delivery of Osteoarthritis Drugs

    Directory of Open Access Journals (Sweden)

    Parthiban Chinnagounder Periyasamy

    2012-01-01

    Full Text Available Nanotechnology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macrosystems for specific applications. Although the debate regarding the safety of synthetic nanomaterials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nanoscale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA. Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nanotechnological formulations. We describe the different nanodrug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nanomaterials and aims at drawing new perspectives on the use of existing nanotechnological formulations for the treatment of osteoarthritis.

  11. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design.

    Science.gov (United States)

    Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Betancourt-Conde, Irene; Aguirre-Raudry, Miriam; Vázquez-Raygoza, Alejandra; Luevano-De la Cruz, Artemisa; Favela-Candia, Alejandro; Sarabia-Sanchez, Marie; Ríos-Soto, Lluvia; Méndez-Hernández, Edna; Cisneros-Martínez, Jorge; Palacio-Gastélum, Marcelo Gómez; Valdez-Solana, Mónica; Hernández-Rivera, Jessica; De Lira-Sánchez, Jaime; Campos-Almazán, Mara; Téllez-Valencia, Alfredo

    2016-01-01

    Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.

  12. The Possible Potential Therapeutic Targets for Drug Induced Gingival Overgrowth

    Directory of Open Access Journals (Sweden)

    Tamilselvan Subramani

    2013-01-01

    Full Text Available Gingival overgrowth is a side effect of certain medications. The most fibrotic drug-induced lesions develop in response to therapy with phenytoin, the least fibrotic lesions are caused by cyclosporin A, and the intermediate fibrosis occurs in nifedipine-induced gingival overgrowth. Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, activated gingival fibroblasts synthesize and remodel newly created extracellular matrix. Proteins such as transforming growth factor (TGF, endothelin-1 (ET-1, angiotensin II (Ang II, connective tissue growth factor (CCN2/CTGF, insulin-like growth factor (IGF, and platelet-derived growth factor (PDGF appear to act in a network that contributes to the development of gingival fibrosis. Since inflammation is the prerequisite for gingival overgrowth, mast cells and its protease enzymes also play a vital role in the pathogenesis of gingival fibrosis. Drugs targeting these proteins are currently under consideration as antifibrotic treatments. This review summarizes recent observations concerning the contribution of TGF-β, CTGF, IGF, PDGF, ET-1, Ang II, and mast cell chymase and tryptase enzymes to fibroblast activation in gingival fibrosis and the potential utility of agents blocking these proteins in affecting the outcome of drug-induced gingival overgrowth.

  13. Enhanced molecular dynamics sampling of drug target conformations.

    Science.gov (United States)

    Rodriguez-Bussey, Isela G; Doshi, Urmi; Hamelberg, Donald

    2016-01-01

    Computational docking and virtual screening are two main important methods employed in structure-based drug design. Unlike the traditional approach that allows docking of a flexible ligand against a handful of receptor structures, receptor flexibility has now been appreciated and increasingly incorporated in computer-aided docking. Using a diverse set of receptor conformations increases the chances of finding potential drugs and inhibitors. Molecular dynamics (MD) is greatly useful to generate various receptor conformations. However, the diversity of the structures of the receptor, which is usually much larger than the ligand, depends on the sampling efficiency of MD. Enhanced sampling methods based on accelerated molecular dynamics (aMD) can alleviate the sampling limitation of conventional MD and aid in representation of the phase space to a much greater extent. RaMD-db, a variant of aMD that applies boost potential to the rotatable dihedrals and non-bonded diffusive degrees of freedom has been proven to reproduce the equilibrium properties more accurately and efficiently than aMD. Here, we discuss recent advances in the aMD methodology and review the applicability of RaMD-db as an enhanced sampling method. RaMD-db is shown to be able to generate a broad distribution of structures of a drug target, Cyclophilin A. These structures that have never been observed previously in very long conventional MD can be further used for structure-based computer-aided drug discovery, and docking, and thus, in the identification and design of potential novel inhibitors.

  14. Micro RNA, A Review: Pharmacogenomic drug targets for complex diseases

    Directory of Open Access Journals (Sweden)

    Ritesh Bajaj

    2010-01-01

    Full Text Available Micro RNAs (miRNAs are non-coding RNAs that can regulate gene expression to target several mRNAs in a gene regulatory network. MiRNA related Single Nucleotide Polymorphisms (S.N.P.s represent a newly identified type of genetic variability that can be of influence to the risk of certain human diseases and also affect how drugs can be activated and metabolized by patients. This will help in personalized medicines which are used for adminis-trating the correct dosage of drug and drug efficacy. miRNA deregulated expression has been extensively de-scribed in a variety of diseases such as Cancer, Obesity , Diabetes, Schizophrenia and control and self renewal of stem cells. MiRNA can function as oncogenes and/or tumor suppressors. MiRNAs may act as key regulators of processes as diverse as early development, cell proliferation and cell death, apoptosis and fat metabolism and cell differentiation .miRNA expression have shown their role in brain development chronic lymphocytic leukemia, colonic adeno carcinoma, Burkiff′s lymphoma and viral infection. These show their links with viral disease, neu-rodevelopment and cancer. It has been shown that they play a key role in melanoma metastasis. These may be differentially expressed in malignant cells compared to normal cells altering the regulation of expression of many important genes. MiRNA expression has been used for prognosis and early diagnosis of these complex diseases. The present paper focuses on the role of miRNAs in various complex diseases, which will help in improving the drug discovery process and personalized medicines.

  15. Schizophrenia drug discovery and development in an evolving era: are new drug targets fulfilling expectations?

    Science.gov (United States)

    Dunlop, John; Brandon, Nicholas J

    2015-02-01

    Current therapeutics for schizophrenia, the typical and atypical antipsychotic class of drugs, derive their therapeutic benefit predominantly by antagonism of the dopamine D2 receptor subtype and have robust clinical benefit on positive symptoms of the disease with limited to no impact on negative symptoms and cognitive impairment. Driven by these therapeutic limitations of current treatments and the recognition that transmitter systems beyond the dopaminergic system in particular glutamatergic transmission contribute to the etiology of schizophrenia significant recent efforts have focused on the discovery and development of novel treatments for schizophrenia with mechanisms of action that are distinct from current drugs. Specifically, compounds selectively targeting the metabotropic glutamate receptor 2/3 subtype, phosphodiesterase subtype 10, glycine transporter subtype 1 and the alpha7 nicotinic acetylcholine receptor have been the subject of intense drug discovery and development efforts. Here we review recent clinical experience with the most advanced drug candidates targeting each of these novel mechanisms and discuss whether these new agents are living up to expectations.

  16. Conformational Analysis, Molecular Structure and Solid State Simulation of the Antiviral Drug Acyclovir (Zovirax Using Density Functional Theory Methods

    Directory of Open Access Journals (Sweden)

    Margarita Clara Alvarez-Ros

    2014-06-01

    Full Text Available The five tautomers of the drug acyclovir (ACV were determined and optimised at the MP2 and B3LYP quantum chemical levels of theory. The stability of the tautomers was correlated with different parameters. On the most stable tautomer N1 was carried out a comprehensive conformational analysis, and the whole conformational parameters (R, β, Φ, φ1, φ2, φ3, φ4, φ5 were studied as well as the NBO Natural atomic charges. The calculations were carried out with full relaxation of all geometrical parameters. The search located at least 78 stable structures within 8.5 kcal/mol electronic energy range of the global minimum, and classified in two groups according to the positive or negative value of the torsional angle j1. In the nitrogen atoms and in the O2' and O5' oxygen atoms of the most stable conformer appear a higher reactivity than in the natural nucleoside deoxyguanosine. The solid state was simulated through a dimer and tetramer forms and the structural parameters were compared with the X-ray crystal data available. Several general conclusions were emphasized.

  17. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18

    Directory of Open Access Journals (Sweden)

    Sehgal SA

    2014-05-01

    Full Text Available Sheikh Arslan Sehgal, Mubashir Hassan, Sajid Rashid National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan Abstract: Migraine, a complex debilitating neurological disorder is strongly associated with potassium channel subfamily K member 18 (KCNK18. Research has emphasized that high levels of KCNK18 may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like migraine. In the present study, a hybrid approach of molecular docking and virtual screening were followed by pharmacophore identification and structure modeling. Screening was performed using a two-dimensional similarity search against recommended migraine drugs, keeping in view the physicochemical properties of drugs. LigandScout tool was used for exploring pharmacophore properties and designing novel molecules. Here, we report the screening of four novel compounds that have showed maximum binding affinity against KCNK18, obtained through the ZINC database, and Drug and Drug-Like libraries. Docking studies revealed that Asp-46, Ile-324, Ile-44, Gly-118, Leu-338, Val-113, and Phe-41 are critical residues for receptor–ligand interaction. A virtual screening approach coupled with docking energies and druglikeness rules illustrated that ergotamine and PB-414901692 are potential inhibitor compounds for targeting KCNK18. We propose that selected compounds may be more potent than the previously listed drug analogs based on the binding energy values. Further analysis of these inhibitors through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful for designing novel therapeutic targets to cure migraine. Keywords: migraine, bioinformatics, modeling and docking, KCNK18, TRESK, virtual screening, pharmacoinformatics

  18. New approaches for the identification of drug targets in protozoan parasites.

    Science.gov (United States)

    Müller, Joachim; Hemphill, Andrew

    2013-01-01

    Antiparasitic chemotherapy is an important issue for drug development. Traditionally, novel compounds with antiprotozoan activities have been identified by screening of compound libraries in high-throughput systems. More recently developed approaches employ target-based drug design supported by genomics and proteomics of protozoan parasites. In this chapter, the drug targets in protozoan parasites are reviewed. The gene-expression machinery has been among the first targets for antiparasitic drugs and is still under investigation as a target for novel compounds. Other targets include cytoskeletal proteins, proteins involved in intracellular signaling, membranes, and enzymes participating in intermediary metabolism. In apicomplexan parasites, the apicoplast is a suitable target for established and novel drugs. Some drugs act on multiple subcellular targets. Drugs with nitro groups generate free radicals under anaerobic growth conditions, and drugs with peroxide groups generate radicals under aerobic growth conditions, both affecting multiple cellular pathways. Mefloquine and thiazolides are presented as examples for antiprotozoan compounds with multiple (side) effects. The classic approach of drug discovery employing high-throughput physiological screenings followed by identification of drug targets has yielded the mainstream of current antiprotozoal drugs. Target-based drug design supported by genomics and proteomics of protozoan parasites has not produced any antiparasitic drug so far. The reason for this is discussed and a synthesis of both methods is proposed.

  19. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.

    Science.gov (United States)

    Shen, Zheyu; Li, Yan; Kohama, Kazuhiro; Oneill, Brian; Bi, Jingxiu

    2011-01-01

    Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2h were incubated for 70h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug

  20. Advanced drug delivery and targeting technologies for the ocular diseases

    Science.gov (United States)

    Barar, Jaleh; Aghanejad, Ayuob; Fathi, Marziyeh; Omidi, Yadollah

    2016-01-01

    Introduction: Ocular targeted therapy has enormously been advanced by implementation of new methods of drug delivery and targeting using implantable drug delivery systems (DDSs) or devices (DDDs), stimuli-responsive advanced biomaterials, multimodal nanomedicines, cell therapy modalities and medical bioMEMs. These technologies tackle several ocular diseases such as inflammation-based diseases (e.g., scleritis, keratitis, uveitis, iritis, conjunctivitis, chorioretinitis, choroiditis, retinitis, retinochoroiditis), ocular hypertension and neuropathy, age-related macular degeneration and mucopolysaccharidosis (MPS) due to accumulation of glycosaminoglycans (GAGs). Such therapies appear to provide ultimate treatments, even though much more effective, yet biocompatible, noninvasive therapies are needed to control some disabling ocular diseases/disorders. Methods: In the current study, we have reviewed and discussed recent advancements on ocular targeted therapies. Results: On the ground that the pharmacokinetic and pharmacodynamic analyses of ophthalmic drugs need special techniques, most of ocular DDSs/devices developments have been designed to localized therapy within the eye. Application of advanced DDSs such as Subconjunctival insert/implants (e.g., latanoprost implant, Gamunex-C), episcleral implant (e.g., LX201), cationic emulsions (e.g., Cationorm™, Vekacia™, Cyclokat™), intac/punctal plug DDSs (latanoprost punctal plug delivery system, L-PPDS), and intravitreal implants (I-vitaion™, NT-501, NT- 503, MicroPump, Thethadur, IB-20089 Verisome™, Cortiject, DE-102, Retisert™, Iluvein™ and Ozurdex™) have significantly improved the treatment of ocular diseases. However, most of these DDSs/devices are applied invasively and even need surgical procedures. Of these, use of de novo technologies such as advanced stimuli-responsive nanomaterials, multimodal nanosystems (NSs)/nanoconjugates (NCs), biomacromolecualr scaffolds, and bioengineered cell therapies

  1. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs

    Science.gov (United States)

    Pierce, Christopher G.; Lopez-Ribot, Jose L.

    2014-01-01

    Introduction Targeting pathogenetic mechanisms rather than essential processes represents a very attractive alternative for the development of new antibiotics. This may be particularly important in the case of antimycotics, due to the urgent need for novel antifungal drugs and the paucity of selective fungal targets. The opportunistic pathogenic fungus Candida albicans is the main etiological agent of candidiasis, the most common human fungal infection. These infections carry unacceptably high mortality rates, a clear reflection of the many shortcomings of current antifungal therapy, including the limited armamentarium of antifungal agents, their toxicity, and the emergence of resistance. Moreover the antifungal pipeline is mostly dry. Areas covered This review covers some of the most recent progress towards understanding C. albicans pathogenetic processes and how to harness this information for the development of anti-virulence agents. The two principal areas covered are filamentation and biofilm formation, as C. albicans pathogenicity is intimately linked to its ability to undergo morphogenetic conversions between yeast and filamentous morphologies and to its ability to form biofilms. Expert opinion We argue that filamentation and biofilm formation represent high value targets, yet clinically unexploited, for the development of novel anti-virulence approaches against candidiasis. Although this has proved a difficult task despite increasing understanding at the molecular level of C. albicans virulence, we highlight new opportunities and prospects for antifungal drug development targeting these two important biological processes. PMID:23738751

  2. A quantitative measurement of antiviral activity of anti-human immunodeficiency virus type 1 drugs against simian immunodeficiency virus infection: dose-response curve slope strongly influences class-specific inhibitory potential.

    Science.gov (United States)

    Deng, Kai; Zink, M Christine; Clements, Janice E; Siliciano, Robert F

    2012-10-01

    Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful information for regimen selection in treating SIV-infected animals in models of therapy and virus eradication.

  3. Nanoscale Quantifying the Effects of Targeted Drug on Chemotherapy in Lymphoma Treatment Using Atomic Force Microscopy.

    Science.gov (United States)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2016-10-01

    The applications of targeted drugs in treating cancers have significantly improved the survival rates of patients. However, in the clinical practice, targeted drugs are commonly combined with chemotherapy drugs, causing that the exact contribution of targeted drugs to the clinical outcome is difficult to evaluate. Quantitatively investigating the effects of targeted drugs on chemotherapy drugs on cancer cells is useful for us to understand drug actions and design better drugs. The advent of atomic force microscopy (AFM) provides a powerful tool for probing the nanoscale physiological activities of single live cells. In this paper, the detailed changes in cell morphology and mechanical properties were quantified on single lymphoma cells during the actions of rituximab (a monoclonal antibody targeted drug) and two chemotherapy drugs (cisplatin and cytarabine) by AFM. AFM imaging revealed the distinct changes of cellular ultramicrostructures induced by the drugs. The changes of cellular mechanical properties after the drug stimulations were measured by AFM indenting. The statistical histograms of cellular surface roughness and mechanical properties quantitatively showed that rituximab could remarkably strengthen the killing effects of chemotherapy drugs. The study offers a new way to quantify the synergistic interactions between targeted drugs and chemotherapy drugs at the nanoscale, which will have potential impacts on predicting the efficacies of drug combinations before clinical treatments.

  4. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.

    Science.gov (United States)

    Chen, Zhipeng; Zhang, Liujie; Song, Yang; He, Jiayu; Wu, Li; Zhao, Can; Xiao, Yanyu; Li, Wei; Cai, Baochang; Cheng, Haibo; Li, Weidong

    2015-06-01

    The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery. The intelligent chitosan nanoparticles possess various functions such as stealth, hepatocyte targeting, multistage pH-response, lysosomal escape and mitochondrial targeting, which lead to targeted drug release after the progressively shedding of functional groups, thus realize the efficient intracellular delivery and mitochondrial localization, inhibit the growth of tumor, elevate the antitumor efficacy, and reduce the toxicity of anticancer drugs. It provides a safe and efficient nanocarrier platform for mitochondria targeting anticancer drug delivery.

  5. Influenza A(H1N1)pdm09 resistance and cross-decreased susceptibility to oseltamivir and zanamivir antiviral drugs.

    Science.gov (United States)

    Correia, Vanessa; Santos, Luis A; Gíria, Marta; Almeida-Santos, Maria M; Rebelo-de-Andrade, Helena

    2015-01-01

    Neuraminidase inhibitors (NAIs) oseltamivir and zanamivir are currently the only effective antiviral drugs available worldwide for the management of influenza. The potential development of resistance is continually threatening their use, rationalizing and highlighting the need for a close and sustained evaluation of virus susceptibility. This study aimed to analyze and characterize the phenotypic and genotypic NAIs susceptibility profiles of A(H1N1)pdm09 viruses circulating in Portugal from 2009 to 2010/2011. A total of 144 cases of A(H1N1)pdm09 virus infection from community and hospitalized patients were studied, including three suspected cases of clinical resistance to oseltamivir. Oseltamivir resistance was confirmed for two of the suspected cases. Neuraminidase (NA) H275Y resistant marker was found in viruses from both cases but for one it was only present in 26.2% of virus population, raising questions about the minimal percentage of resistant virus that should be considered relevant. Cross-decreased susceptibility to oseltamivir and zanamivir (2-4 IC50 fold-change) was detected on viruses from two potentially linked community patients from 2009. Both viruses harbored the NA I223V mutation. NA Y155H mutation was found in 18 statistical non-outlier viruses from 2009, having no impact on virus susceptibility. The mutations at NA N369K and V241I may have contributed to the significantly higher baseline IC50 value obtained to oseltamivir for 2010/2011 viruses, compared to viruses from the pandemic period. These results may contribute to a better understanding of the relationship between phenotype and genotype, which is currently challenging, and to the global assessment of A(H1N1)pdm09 virus susceptibility profile and baseline level to NAIs.

  6. Autophagy modulation as a target for anticancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Xin LI; Huai-long XU; Yong-xi LIU; Na AN; Si ZHAO; Jin-ku BAO

    2013-01-01

    Autophagy,an evolutionarily conserved catabolic process involving the engulfment and degradation of non-essential or abnormal cellular organelles and proteins,is crucial for homeostatic maintenance in living cells.This highly regulated,multi-step process has been implicated in diverse diseases including cancer.Autophagy can function as either a promoter or a suppressor of cancer,which makes it a promising and challenging therapeutic target.Herein,we overview the regulatory mechanisms and dual roles of autophagy in cancer.We also describe some of the representative agents that exert their anticancer effects by regulating autophagy.Additionally,some emerging strategies aimed at modulating autophagy are discussed as having the potential for future anticancer drug discovery.In summary,these findings will provide valuable information to better utilize autophagy in the future development of anticancer therapeutics that meet clinical requirements.

  7. Current drug treatments targeting dopamine D3 receptor.

    Science.gov (United States)

    Leggio, Gian Marco; Bucolo, Claudio; Platania, Chiara Bianca Maria; Salomone, Salvatore; Drago, Filippo

    2016-09-01

    Dopamine receptors (DR) have been extensively studied, but only in recent years they became object of investigation to elucidate the specific role of different subtypes (D1R, D2R, D3R, D4R, D5R) in neural transmission and circuitry. D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D2R and D4R) differ in signal transduction, binding profile, localization in the central nervous system and physiological effects. D3R is involved in a number of pathological conditions, including schizophrenia, Parkinson's disease, addiction, anxiety, depression and glaucoma. Development of selective D3R ligands has been so far challenging, due to the high sequence identity and homology shared by D2R and D3R. As a consequence, despite a rational design of selective DR ligands has been carried out, none of currently available medicines selectively target a given D2-like receptor subtype. The availability of the D3R ligand [(11)C]-(+)-PHNO for positron emission tomography studies in animal models as well as in humans, allows researchers to estimate the expression of D3R in vivo; displacement of [(11)C]-(+)-PHNO binding by concurrent drug treatments is used to estimate the in vivo occupancy of D3R. Here we provide an overview of studies indicating D3R as a target for pharmacological therapy, and a review of market approved drugs endowed with significant affinity at D3R that are used to treat disorders where D3R plays a relevant role.

  8. Discovery of the target for immunomodulatory drugs (IMiDs).

    Science.gov (United States)

    Ito, Takumi; Ando, Hideki; Handa, Hiroshi

    2016-05-01

    Half a century ago, the sedative thalidomide caused a serious drug disaster because of its teratogenicity and was withdrawn from the market. However, thalidomide, which has returned to the market, is now used for the treatment of leprosy and multiple myeloma (MM) under strict control. The mechanism of thalidomide action had been a long-standing question. We developed a new affinity bead technology and identified cereblon (CRBN) as a thalidomide-binding protein. We found that CRBN functions as a substrate receptor of an E3 cullin-Ring ligase complex 4 (CRL4) and is a primary target of thalidomide teratogenicity. Recently, new thalidomide derivatives, called immunomodulatory drugs (IMiDs), have been developed by Celgene. Among them, lenalidomide (Len) and pomalidomide (Pom) were shown to exert strong therapeutic effects against MM. It was found that Len and Pom both bind CRBN-CRL4 and recruit neomorphic substrates (Ikaros and Aiolos). More recently it was reported that casein kinase 1a (Ck1a) was identified as a substrate for CRBN-CRL4 in the presence of Len, but not Pom. Ck1a breakdown explains why Len is specifically effective for myelodysplastic syndrome with 5q deletion. It is now proposed that binding of IMiDs to CRBN appears to alter the substrate specificity of CRBN-CRL4. In this review, we introduce recent findings on IMiDs.

  9. Adipokines as drug targets in diabetes and underlying disturbances.

    Science.gov (United States)

    Andrade-Oliveira, Vinícius; Câmara, Niels O S; Moraes-Vieira, Pedro M

    2015-01-01

    Diabetes and obesity are worldwide health problems. White fat dynamically participates in hormonal and inflammatory regulation. White adipose tissue is recognized as a multifactorial organ that secretes several adipose-derived factors that have been collectively termed "adipokines." Adipokines are pleiotropic molecules that gather factors such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflammatory cytokines, including TNF and IL-1β, among others. Multiple roles in metabolic and inflammatory responses have been assigned to these molecules. Several adipokines contribute to the self-styled "low-grade inflammatory state" of obese and insulin-resistant subjects, inducing the accumulation of metabolic anomalies within these individuals, including autoimmune and inflammatory diseases. Thus, adipokines are an interesting drug target to treat autoimmune diseases, obesity, insulin resistance, and adipose tissue inflammation. The aim of this review is to present an overview of the roles of adipokines in different immune and nonimmune cells, which will contribute to diabetes as well as to adipose tissue inflammation and insulin resistance development. We describe how adipokines regulate inflammation in these diseases and their therapeutic implications. We also survey current attempts to exploit adipokines for clinical applications, which hold potential as novel approaches to drug development in several immune-mediated diseases.

  10. TRPV1: A Potential Drug Target for Treating Various Diseases

    Directory of Open Access Journals (Sweden)

    Rafael Brito

    2014-05-01

    Full Text Available Transient receptor potential vanilloid 1 (TRPV1 is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.

  11. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate

    Directory of Open Access Journals (Sweden)

    Miguel Angel Moreno

    2014-12-01

    Full Text Available Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.

  12. Metabotropic glutamate receptors and interacting proteins: evolving drug targets.

    Science.gov (United States)

    Enz, Ralf

    2012-01-01

    The correct targeting, localization, regulation and signaling of metabotropic glutamate receptors (mGluRs) represent major mechanisms underlying the complex function of neuronal networks. These tasks are accomplished by the formation of synaptic signal complexes that integrate functionally related proteins such as neurotransmitter receptors, enzymes and scaffold proteins. By these means, proteins interacting with mGluRs are important regulators of glutamatergic neurotransmission. Most described mGluR interaction partners bind to the intracellular C-termini of the receptors. These domains are extensively spliced and phosphorylated, resulting in a high variability of binding surfaces offered to interacting proteins. Malfunction of mGluRs and associated proteins are linked to neurodegenerative and neuropsychiatric disorders including addiction, depression, epilepsy, schizophrenia, Alzheimer's, Huntington's and Parkinson's disease. MGluR associated signal complexes are dynamic structures that assemble and disassemble in response to the neuronal fate. This, in principle, allows therapeutic intervention, defining mGluRs and interacting proteins as promising drug targets. In the last years, several studies elucidated the geometry of mGluRs in contact with regulatory proteins, providing a solid fundament for the development of new therapeutic strategies. Here, I will give an overview of human disorders directly associated with mGluR malfunction, provide an up-to-date summary of mGluR interacting proteins and highlight recently described structures of mGluR domains in contact with binding partners.

  13. Optimized shapes of magnetic arrays for drug targeting applications

    Science.gov (United States)

    Barnsley, Lester C.; Carugo, Dario; Stride, Eleanor

    2016-06-01

    Arrays of permanent magnet elements have been utilized as light-weight, inexpensive sources for applying external magnetic fields in magnetic drug targeting applications, but they are extremely limited in the range of depths over which they can apply useful magnetic forces. In this paper, designs for optimized magnet arrays are presented, which were generated using an optimization routine to maximize the magnetic force available from an arbitrary arrangement of magnetized elements, depending on a set of design parameters including the depth of targeting (up to 50 mm from the magnet) and direction of force required. A method for assembling arrays in practice is considered, quantifying the difficulty of assembly and suggesting a means for easing this difficulty without a significant compromise to the applied field or force. Finite element simulations of in vitro magnetic retention experiments were run to demonstrate the capability of a subset of arrays to retain magnetic microparticles against flow. The results suggest that, depending on the choice of array, a useful proportion of particles (more than 10% ) could be retained at flow velocities up to 100 mm s-1 or to depths as far as 50 mm from the magnet. Finally, the optimization routine was used to generate a design for a Halbach array optimized to deliver magnetic force to a depth of 50 mm inside the brain.

  14. Leptin signaling molecular actions and drug target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jiang N

    2014-11-01

    leptin and Ob-R in cancer cells compared to normal cells, makes leptin an ideal drug target for the prevention and treatment of HCC, especially in obese patients. Keywords: hepatocellular carcinoma, leptin, leptin antagonist, leptin signaling, tumor angiogenesis, drug target

  15. PBIT: pipeline builder for identification of drug targets for infectious diseases.

    Science.gov (United States)

    Shende, Gauri; Haldankar, Harshala; Barai, Ram Shankar; Bharmal, Mohammed Husain; Shetty, Vinit; Idicula-Thomas, Susan

    2016-12-30

    PBIT (Pipeline Builder for Identification of drug Targets) is an online webserver that has been developed for screening of microbial proteomes for critical features of human drug targets such as being non-homologous to human proteome as well as the human gut microbiota, essential for the pathogen's survival, participation in pathogen-specific pathways etc. The tool has been validated by analyzing 57 putative targets of Candida albicans documented in literature. PBIT integrates various in silico approaches known for drug target identification and will facilitate high-throughput prediction of drug targets for infectious diseases, including multi-pathogenic infections.

  16. Comparative study of infantile diarrhea Ning combined with antiviral drug and single use of antiviral drugs in the treatment of diarrhea in children%小儿腹泻宁联合抗病毒药物与单用抗病毒药物治疗小儿腹泻的对比研究

    Institute of Scientific and Technical Information of China (English)

    舒航

    2015-01-01

    Objective To explore the comparative study of infantile diarrhea Ning combined with antiviral drug and single use of antiviral drugs in the treatment of diarrhea in children.Methods 100 cases of infantile diarrhea in children from 2013 May -2014 year in June to pediatric clinic of our hospital, all patients were randomly divided into observation group and control group with 50 cases in each group. The clinical efficacy of the two groups of children with stool, recovery time, vomiting, time and the temperature recovery time and adverse reaction were compared.ResultsThe clinical total effective rate of observation group was 94.00%, significantly higher than the control group 82.00%, two groups, the difference was statistically significant (P<0.05). Stool observation group with recovery time, vomiting, time and the temperature recovery time was significantly lower than the control group, the two groups, the difference was statistically significant (P<0.05). Two groups of children with severe adverse reaction hadn. occurred.Conclusion Diarrhea in children with infantile diarrhea Ning combined with antiviral drug treatment, can significantly improve the clinical efficacy, shorten the recovery time of clinical symptoms.%目的 探讨小儿腹泻宁联合抗病毒药物治疗小儿腹泻与单用抗病毒药物治疗的不同疗效.方法 选取2013年5月~2014年6月来我院儿科就诊的小儿腹泻患儿100例,所有患儿随机分为观察组及对照组各50例.对两组患儿的临床疗效,大便性状恢复时间,呕吐时间及体温恢复时间及不良反应情况进行比较.结果 观察组的临床总有效率为94.00%,明显高于对照组的82.00%,两组比较,差异有统计学意义(P<0.05).观察组患儿的大便性状恢复,体温恢复及呕吐的时间显著低于对照组,两组比较,差异有统计学意义(P<0.05).两组患儿治疗期间皆无严重不良反应发生.结论 小儿腹泻宁联合抗病毒药物治疗小儿腹泻临床疗效

  17. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Directory of Open Access Journals (Sweden)

    Kanika Madaan

    2014-01-01

    Full Text Available Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

  18. Metabolism of phosphatidylinositol 4-kinase IIIα-dependent PI4P Is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity.

    Directory of Open Access Journals (Sweden)

    Annalisa Bianco

    Full Text Available 4-anilino quinazolines have been identified as inhibitors of HCV replication. The target of this class of compounds was proposed to be the viral protein NS5A, although unequivocal proof has never been presented. A 4-anilino quinazoline moiety is often found in kinase inhibitors, leading us to formulate the hypothesis that the anti-HCV activity displayed by these compounds might be due to inhibition of a cellular kinase. Type III phosphatidylinositol 4-kinase α (PI4KIIIα has recently been identified as a host factor for HCV replication. We therefore evaluated AL-9, a compound prototypical of the 4-anilino quinazoline class, on selected phosphatidylinositol kinases. AL-9 inhibited purified PI4KIIIα and, to a lesser extent, PI4KIIIβ. In Huh7.5 cells, PI4KIIIα is responsible for the phosphatidylinositol-4 phosphate (PI4P pool present in the plasma membrane. Accordingly, we observed a gradual decrease of PI4P in the plasma membrane upon incubation with AL-9, indicating that this agent inhibits PI4KIIIα also in living cells. Conversely, AL-9 did not affect the level of PI4P in the Golgi membrane, suggesting that the PI4KIIIβ isoform was not significantly inhibited under our experimental conditions. Incubation of cells expressing HCV proteins with AL-9 induced abnormally large clusters of NS5A, a phenomenon previously observed upon silencing PI4KIIIα by RNA interference. In light of our findings, we propose that the antiviral effect of 4-anilino quinazoline compounds is mediated by the inhibition of PI4KIIIα and the consequent depletion of PI4P required for the HCV membranous web. In addition, we noted that HCV has a profound effect on cellular PI4P distribution, causing significant enrichment of PI4P in the HCV-membranous web and a concomitant depletion of PI4P in the plasma membrane. This observation implies that HCV--by recruiting PI4KIIIα in the RNA replication complex--hijacks PI4P metabolism, ultimately resulting in a markedly altered

  19. From laptop to benchtop to bedside: Structure-based Drug Design on Protein Targets

    OpenAIRE

    Chen, Lu; Morrow, John K.; Tran, Hoang T.; Phatak, Sharangdhar S.; Du-Cuny, Lei; Zhang, Shuxing

    2012-01-01

    As an important aspect of computer-aided drug design, structure-based drug design brought a new horizon to pharmaceutical development. This in silico method permeates all aspects of drug discovery today, including lead identification, lead optimization, ADMET prediction and drug repurposing. Structure-based drug design has resulted in fruitful successes drug discovery targeting protein-ligand and protein-protein interactions. Meanwhile, challenges, noted by low accuracy and combinatoric issue...

  20. Evaluation of the in vitro skin permeation of antiviral drugs from penciclovir 1% cream and acyclovir 5% cream used to treat herpes simplex virus infection

    Directory of Open Access Journals (Sweden)

    Bader Marlene

    2009-04-01

    Full Text Available Abstract Background Herpes simplex virus infection (HSV is a common and ubiquitous infection of the skin which causes mucocutaneous lesions called cold sores (herpes labialis or fever blisters. It is estimated that approximately 80% of the population worldwide are carriers of the Herpes simplex virus, approximately 40% suffer from recurrent recurrent infections. This study evaluates the in vitro skin permeation and penetration of penciclovir and acyclovir from commercialized creams for the treatment of herpes labialis (cold sores, using non viable excised human abdominal skin samples, which were exposed to 5 mg/cm2 of acyclovir 5% cream or penciclovir 1% cream. Methods After 24 h of cream application, excess cream was washed off and layers of stratum corneum were removed by successive tape stripping. Amounts of active ingredients having penetrated through the skin were measured, as well as the amounts in the washed-off cream, in skin strips and creams remaining in the skin. Molecular modelling was used to evaluate physico-chemical differences between the drugs. Western blot analysis enabled to determine whether the marker of basal cells keratin 5 could be detected in the various tape strips. Results Application of penciclovir 1% cream yielded higher concentration of drug in the deeper layers of the epidermis as well as a higher drug flux through the skin. Molecular modelling showed two higher hydrophobic moieties for acyclovir. Presence of the basal cell marker keratin 5 was underscored in the deeper tape strips from the skin, giving evidence that both drugs can reach their target cells. Conclusion Penciclovir 1% cream has the tendency to facilitate the diffusion of the drug through the stratum corneum into the deeper epidermis layers, in which it could reach the target basal cells at effective therapeutical concentration. The small difference in the surface properties between both molecules might also contribute to favour the passage of

  1. Antiviral potential of lactic acid bacteria and their bacteriocins.

    Science.gov (United States)

    Al Kassaa, I; Hober, D; Hamze, M; Chihib, N E; Drider, D

    2014-12-01

    Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic-virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

  2. Identification and Characterization of Genes Involved in Leishmania Pathogenesis: The Potential for Drug Target Selection

    Directory of Open Access Journals (Sweden)

    Robert Duncan

    2011-01-01

    Full Text Available Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce virulence as evidence for potential drug targets is presented.

  3. A series of case studies: practical methodology for identifying antinociceptive multi-target drugs.

    Science.gov (United States)

    Pang, Min-Hee; Kim, Yuntae; Jung, Kyung Woon; Cho, Sunyoung; Lee, Doo H

    2012-05-01

    Since the introduction of drug discovery based on single targets, the number of newly developed drugs has steadily declined, and the reliablility of the current drug-discovery paradigm has been unceasingly questioned. As an alternative, an emerging approach pursuing multi-targeting drugs has arisen to reflect multifactorial diseases caused by the complex networks of various mechanisms. The purpose of this paper is to review multi-target drugs and introduce our progress in establishing a practical methodology for identifying antinociceptive multi-target drugs. We have adopted a system of ex vivo efficacy screening using long-term potentiation in rat spinal cord as a surrogate biomarker for neuropathic pain. A bait-target approach is also adopted to lure an unknown target combination that induces synergistic mechanisms.

  4. Identifying the Right Disease Targets to Develop Better Drugs, Faster | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... JavaScript on. Identifying the Right Disease Targets to Develop Better Drugs, Faster Past Issues / Spring 2014 Table ... a-dozen pharmaceutical companies are now racing to develop drugs that lower cholesterol by blocking PCSK9. Are ...

  5. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.

    Science.gov (United States)

    Zhang, Zhong-Yin

    2017-01-17

    Protein tyrosine phosphatases (PTPs) are essential signaling enzymes that, together with protein tyrosine kinases, regulate tyrosine phosphorylation inside the cell. Proper level of tyrosine phosphorylation is important for a diverse array of cellular processes, such as proliferation, metabolism, motility, and survival. Aberrant tyrosine phosphorylation, resulting from alteration of PTP expression, misregulation, and mutation, has been linked to the etiology of many human ailments including cancer, diabetes/obesity, autoimmune disorders, and infectious diseases. However, despite the fact that PTPs have been garnering attention as compelling drug targets, they remain a largely underexploited resource for therapeutic intervention. Indeed, PTPs have been widely dismissed as "undruggable", due to concerns that (1) the highly conserved active site (i.e., pTyr-binding pocket) makes it difficult to achieve inhibitor selectivity among closely related family members, and (2) the positive-charged active site prefers negatively charged molecules, which usually lack cell permeability. To address the issue of selectivity, we advanced a novel paradigm for the acquisition of highly potent and selective PTP inhibitors through generation of bivalent ligands that interact with both PTP active site and adjacent unique peripheral pockets. To overcome the bioavailability issue, we have identified nonhydrolyzable pTyr mimetics that are sufficiently polar to bind the PTP active site, yet still capable of efficiently penetrating cell membranes. We show that these pTyr mimetics interact in the desired inhibitory fashion with the PTP active site and tethering them to appropriate molecular fragments to engage less conserved interactions outside of PTP active site can increase PTP inhibitor potency and selectivity. We demonstrate through three pTyr mimetics fragment-based approaches that it is completely feasible to obtain highly potent and selective PTP inhibitors with robust in vivo

  6. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions using Drug Structure and Protein Sequence Information.

    Science.gov (United States)

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei

    2016-11-14

    Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drug-target interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-the-art Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development.

  7. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Directory of Open Access Journals (Sweden)

    Claudiu T. Supuran

    2016-06-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3 × 105 s−1 and kcat/KM values of (4.7–8.5 × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM. The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM. Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets.

  8. Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0495 TITLE: Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis 5b. GRANT...controlled nanocarriers as a novel and potentially paradigm-shifting strategy for targeted drug delivery to achieve hemostasis during bleeding. We have

  9. Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast

    OpenAIRE

    2008-01-01

    To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 comp...

  10. Combating Drug Abuse by Targeting Toll-Like Receptor 4 (TLR)

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0345 PROJECT TITLE: Combating drug abuse by targeting toll-like receptor 4 (TLR) PRINCIPAL INVESTIGATOR: Dr. Linda...5a. CONTRACT NUMBER not applicable Combating drug abuse by targeting toll-like receptor 4 (TLR) 5b. GRANT NUMBER W81XWH-12-1-0345 5c. PROGRAM...naltrexone; drug abuse ; glial activation; therapeutic approach to treating drug abuse ; opioids; cocaine 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  11. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    OpenAIRE

    Asrar Alam

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes...

  12. Drug-target interaction prediction: databases, web servers and computational models.

    Science.gov (United States)

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xiaotian; Zhang, Xu; Dai, Feng; Yin, Jian; Zhang, Yongdong

    2016-07-01

    Identification of drug-target interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drug-target interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drug-target associations on a large scale. In this review, databases and web servers involved in drug-target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drug-target interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drug-target interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drug-target interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data.

  13. Targeted lipid based drug conjugates: a novel strategy for drug delivery.

    Science.gov (United States)

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Kwatra, Deep; Earla, Ravinder; Samanta, Swapan K; Pal, Dhananjay; Mitra, Ashim K

    2012-09-15

    A majority of studies involving prodrugs are directed to overcome low bioavailability of the parent drug. The aim of this study is to increase the bioavailability of acyclovir (ACV) by designing a novel prodrug delivery system which is more lipophilic, and at the same time site specific. In this study, a lipid raft has been conjugated to the parent drug molecule to impart lipophilicity. Simultaneously a targeting moiety that can be recognized by a specific transporter/receptor in the cell membrane has also been tethered to the other terminal of lipid raft. Targeted lipid prodrugs i.e., biotin-ricinoleicacid-acyclovir (B-R-ACV) and biotin-12hydroxystearicacid-acyclovir (B-12HS-ACV) were synthesized with ricinoleicacid and 12hydroxystearicacid as the lipophilic rafts and biotin as the targeting moiety. Biotin-ACV (B-ACV), ricinoleicacid-ACV (R-ACV) and 12hydroxystearicacid-ACV (12HS-ACV) were also synthesized to delineate the individual effects of the targeting and the lipid moieties. Cellular accumulation studies were performed in confluent MDCK-MDR1 and Caco-2 cells. The targeted lipid prodrugs B-R-ACV and B-12HS-ACV exhibited much higher cellular accumulation than B-ACV, R-ACV and 12HS-ACV in both cell lines. This result indicates that both the targeting and the lipid moiety act synergistically toward cellular uptake. The biotin conjugated prodrugs caused a decrease in the uptake of [(3)H] biotin suggesting the role of sodium dependent multivitamin transporter (SMVT) in uptake. The affinity of these targeted lipid prodrugs toward SMVT was studied in MDCK-MDR1 cells. Both the targeted lipid prodrugs B-R-ACV (20.25 ± 1.74 μM) and B-12HS-ACV (23.99 ± 3.20 μM) demonstrated higher affinity towards SMVT than B-ACV (30.90 ± 4.19 μM). Further, dose dependent studies revealed a concentration dependent inhibitory effect on [(3)H] biotin uptake in the presence of biotinylated prodrugs. Transepithelial transport studies showed lowering of [(3)H] biotin permeability in

  14. The drug-target residence time model: a 10-year retrospective.

    Science.gov (United States)

    Copeland, Robert A

    2016-02-01

    The drug-target residence time model was first introduced in 2006 and has been broadly adopted across the chemical biology, biotechnology and pharmaceutical communities. While traditional in vitro methods view drug-target interactions exclusively in terms of equilibrium affinity, the residence time model takes into account the conformational dynamics of target macromolecules that affect drug binding and dissociation. The key tenet of this model is that the lifetime (or residence time) of the binary drug-target complex, and not the binding affinity per se, dictates much of the in vivo pharmacological activity. Here, this model is revisited and key applications of it over the past 10 years are highlighted.

  15. Neuropeptides as targets for the development of anticonvulsant drugs.

    Science.gov (United States)

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  16. Micro RNA, A Review: Pharmacogenomic drug targets for complex diseases

    Directory of Open Access Journals (Sweden)

    Sandhya Bawa

    2010-01-01

    Full Text Available

    Micro RNAs (miRNAs are non-coding RNAs that can regulate gene expression to target several mRNAs in a gene regulatory network. MiRNA related Single Nucleotide Polymorphisms (S.N.P.s represent a newly identified type of genetic variability that can be of influence to the risk of certain human diseases and also affect how drugs can be activated and metabolized by patients. This will help in personalized medicines which are used for administrating the correct dosage of drug and drug efficacy. miRNA deregulated expression has been extensively described in a variety of diseases such as Cancer, Obesity , Diabetes, Schizophrenia and control and self renewal of stem cells. MiRNA can function as oncogenes and/or tumor suppressors. MiRNAs may act as key regulators of processes as diverse as early development, cell proliferation and cell death, apoptosis and fat metabolism and cell differentiation .miRNA expression have shown their role in brain development chronic lymphocytic leukemia, colonic adeno carcinoma, Burkiff’s lymphoma and viral infection. These show their links with viral disease, neurodevelopment and cancer. It has been shown that they play a key role in melanoma metastasis. These may be

  17. Thiamin (Vitamin B1 Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets?

    Directory of Open Access Journals (Sweden)

    Qinglin Du, Honghai Wang, Jianping Xie

    2011-01-01

    Full Text Available Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1 is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP. Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics.

  18. For Some Skin Cancers, Targeted Drug Hits the Mark

    Science.gov (United States)

    ... Food and Drug Administration approved a drug called vismodegib (Erivedge™) for treating advanced cases of basal cell ... the trial that led to the approval of vismodegib appeared in the New England Journal of Medicine ...

  19. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.

    Science.gov (United States)

    Xiao, Xuan; Min, Jian-Liang; Lin, Wei-Zhong; Liu, Zi; Cheng, Xiang; Chou, Kuo-Chen

    2015-01-01

    Information about the interactions of drug compounds with proteins in cellular networking is very important for drug development. Unfortunately, all the existing predictors for identifying drug-protein interactions were trained by a skewed benchmark data-set where the number of non-interactive drug-protein pairs is overwhelmingly larger than that of the interactive ones. Using this kind of highly unbalanced benchmark data-set to train predictors would lead to the outcome that many interactive drug-protein pairs might be mispredicted as non-interactive. Since the minority interactive pairs often contain the most important information for drug design, it is necessary to minimize this kind of misprediction. In this study, we adopted the neighborhood cleaning rule and synthetic minority over-sampling technique to treat the skewed benchmark datasets and balance the positive and negative subsets. The new benchmark datasets thus obtained are called the optimized benchmark datasets, based on which a new predictor called iDrug-Target was developed that contains four sub-predictors: iDrug-GPCR, iDrug-Chl, iDrug-Ezy, and iDrug-NR, specialized for identifying the interactions of drug compounds with GPCRs (G-protein-coupled receptors), ion channels, enzymes, and NR (nuclear receptors), respectively. Rigorous cross-validations on a set of experiment-confirmed datasets have indicated that these new predictors remarkably outperformed the existing ones for the same purpose. To maximize users' convenience, a public accessible Web server for iDrug-Target has been established at http://www.jci-bioinfo.cn/iDrug-Target/ , by which users can easily get their desired results. It has not escaped our notice that the aforementioned strategy can be widely used in many other areas as well.

  20. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

    1. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cells

      Directory of Open Access Journals (Sweden)

      Javed Tariq

      2011-05-01

      Full Text Available Abstract Hepatitis C virus (HCV belonging to the family Flaviviridae has infected 3% of the population worldwide and 6% of the population in Pakistan. The only recommended standard treatment is pegylated INF-α plus ribavirin. Due to less compatibility of the standard treatment, thirteen medicinal plants were collected from different areas of Pakistan on the basis of undocumented antiviral reports against different viral infections. Medicinal plants were air dried, extracted and screened out against HCV by infecting HCV inoculums of 3a genotype in liver cells. RT-PCR results demonstrate that acetonic and methanolic extract of Acacia nilotica (AN showed more than 50% reduction at non toxic concentration. From the above results, it can be concluded that by selecting different molecular targets, specific structure-activity relationship can be achieved by doing mechanistic analysis. So, additional studies are required for the isolation and recognition of antiviral compound in AN to establish its importance as antiviral drug against HCV. For further research, we will scrutinize the synergistic effect of active antiviral compound in combination with standard PEG INF-α and ribavirin which may be helpful in exploring further gateways for antiviral therapy against HCV.

    2. Are Pharmaceuticals with Evolutionary Conserved Molecular Drug Targets More Potent to Cause Toxic Effects in Non-Target Organisms?

      Science.gov (United States)

      Furuhagen, Sara; Fuchs, Anne; Lundström Belleza, Elin; Breitholtz, Magnus; Gorokhova, Elena

      2014-01-01

      The ubiquitous use of pharmaceuticals has resulted in a continuous discharge into wastewater and pharmaceuticals and their metabolites are found in the environment. Due to their design towards specific drug targets, pharmaceuticals may be therapeutically active already at low environmental concentrations. Several human drug targets are evolutionary conserved in aquatic organisms, raising concerns about effects of these pharmaceuticals in non-target organisms. In this study, we hypothesized that the toxicity of a pharmaceutical towards a non-target invertebrate depends on the presence of the human drug target orthologs in this species. This was tested by assessing toxicity of pharmaceuticals with (miconazole and promethazine) and without (levonorgestrel) identified drug target orthologs in the cladoceran Daphnia magna. The toxicity was evaluated using general toxicity endpoints at individual (immobility, reproduction and development), biochemical (RNA and DNA content) and molecular (gene expression) levels. The results provide evidence for higher toxicity of miconazole and promethazine, i.e. the drugs with identified drug target orthologs. At the individual level, miconazole had the lowest effect concentrations for immobility and reproduction (0.3 and 0.022 mg L−1, respectively) followed by promethazine (1.6 and 0.18 mg L−1, respectively). At the biochemical level, individual RNA content was affected by miconazole and promethazine already at 0.0023 and 0.059 mg L−1, respectively. At the molecular level, gene expression for cuticle protein was significantly suppressed by exposure to both miconazole and promethazine; moreover, daphnids exposed to miconazole had significantly lower vitellogenin expression. Levonorgestrel did not have any effects on any endpoints in the concentrations tested. These results highlight the importance of considering drug target conservation in environmental risk assessments of pharmaceuticals. PMID:25140792

    3. Are pharmaceuticals with evolutionary conserved molecular drug targets more potent to cause toxic effects in non-target organisms?

      Science.gov (United States)

      Furuhagen, Sara; Fuchs, Anne; Lundström Belleza, Elin; Breitholtz, Magnus; Gorokhova, Elena

      2014-01-01

      The ubiquitous use of pharmaceuticals has resulted in a continuous discharge into wastewater and pharmaceuticals and their metabolites are found in the environment. Due to their design towards specific drug targets, pharmaceuticals may be therapeutically active already at low environmental concentrations. Several human drug targets are evolutionary conserved in aquatic organisms, raising concerns about effects of these pharmaceuticals in non-target organisms. In this study, we hypothesized that the toxicity of a pharmaceutical towards a non-target invertebrate depends on the presence of the human drug target orthologs in this species. This was tested by assessing toxicity of pharmaceuticals with (miconazole and promethazine) and without (levonorgestrel) identified drug target orthologs in the cladoceran Daphnia magna. The toxicity was evaluated using general toxicity endpoints at individual (immobility, reproduction and development), biochemical (RNA and DNA content) and molecular (gene expression) levels. The results provide evidence for higher toxicity of miconazole and promethazine, i.e. the drugs with identified drug target orthologs. At the individual level, miconazole had the lowest effect concentrations for immobility and reproduction (0.3 and 0.022 mg L-1, respectively) followed by promethazine (1.6 and 0.18 mg L-1, respectively). At the biochemical level, individual RNA content was affected by miconazole and promethazine already at 0.0023 and 0.059 mg L-1, respectively. At the molecular level, gene expression for cuticle protein was significantly suppressed by exposure to both miconazole and promethazine; moreover, daphnids exposed to miconazole had significantly lower vitellogenin expression. Levonorgestrel did not have any effects on any endpoints in the concentrations tested. These results highlight the importance of considering drug target conservation in environmental risk assessments of pharmaceuticals.

    4. Are pharmaceuticals with evolutionary conserved molecular drug targets more potent to cause toxic effects in non-target organisms?

      Directory of Open Access Journals (Sweden)

      Sara Furuhagen

      Full Text Available The ubiquitous use of pharmaceuticals has resulted in a continuous discharge into wastewater and pharmaceuticals and their metabolites are found in the environment. Due to their design towards specific drug targets, pharmaceuticals may be therapeutically active already at low environmental concentrations. Several human drug targets are evolutionary conserved in aquatic organisms, raising concerns about effects of these pharmaceuticals in non-target organisms. In this study, we hypothesized that the toxicity of a pharmaceutical towards a non-target invertebrate depends on the presence of the human drug target orthologs in this species. This was tested by assessing toxicity of pharmaceuticals with (miconazole and promethazine and without (levonorgestrel identified drug target orthologs in the cladoceran Daphnia magna. The toxicity was evaluated using general toxicity endpoints at individual (immobility, reproduction and development, biochemical (RNA and DNA content and molecular (gene expression levels. The results provide evidence for higher toxicity of miconazole and promethazine, i.e. the drugs with identified drug target orthologs. At the individual level, miconazole had the lowest effect concentrations for immobility and reproduction (0.3 and 0.022 mg L-1, respectively followed by promethazine (1.6 and 0.18 mg L-1, respectively. At the biochemical level, individual RNA content was affected by miconazole and promethazine already at 0.0023 and 0.059 mg L-1, respectively. At the molecular level, gene expression for cuticle protein was significantly suppressed by exposure to both miconazole and promethazine; moreover, daphnids exposed to miconazole had significantly lower vitellogenin expression. Levonorgestrel did not have any effects on any endpoints in the concentrations tested. These results highlight the importance of considering drug target conservation in environmental risk assessments of pharmaceuticals.

    5. ORAL COLON TARGETED DRUG DELIVERY SYSTEM: A REVIEW ON CURRENT AND NOVEL PERSPECTIVES

      Directory of Open Access Journals (Sweden)

      Asija Rajesh

      2012-10-01

      Full Text Available Small intestine is mostly the site for drug absorption but in some cases the drug needs to be targeted to colon due to some factors like local colonic disease, degradation related conditions, delayed release of drugs, systemic delivery of protein and peptide drugs etc. Colon targeted drug delivery is important and relatively new concept for the absorption of drugs because it offers almost neutral pH and long residence time, thereby increasing the drug absorption. Colon has proved to be a site for the absorption of poorly soluble drugs. For the successful targeting of drugs to colon the dosage form should be designed such that it prevents the drug release in upper GIT and releasing it in the colonic region. This review article discusses in brief about introduction of colon along with the novel and emerging technologies for colon targeting of drug molecule. Treatment of these diseases with colon-specific drug delivery system provides an interesting alternative over systemic drug administration because of lower dosing and fewer systemic side effects.

    6. Computer Aided Drug Design for Multi-Target Drug Design: SAR /QSAR, Molecular Docking and Pharmacophore Methods.

      Science.gov (United States)

      Abdolmaleki, Azizeh; Ghasemi, Jahan B; Ghasemi, Fatemeh

      2017-01-01

      Multi-target drugs against particular multiple targets get better protection, resistance profiles and curative influence by cooperative rules of a key beneficial target with resistance behavior and compensatory elements. Computational techniques can assist us in the efforts to design novel drugs (ligands) with a preferred bioactivity outline and alternative bioactive molecules at an early stage. A number of in silico methods have been explored extensively in order to facilitate the investigation of individual target agents and to propose a selective drug. A different, progressively more significant field which is used to predict the bioactivity of chemical compounds is the data mining method. Some of the previously mentioned methods have been investigated for multi-target drug design (MTDD) to find drug leads interact simultaneously with multiple targets. Several cheminformatics methods and structure-based approaches try to extract information from units working cooperatively in a biomolecular system to fulfill their task. To dominate the difficulties of the experimental specification of ligand-target structures, rational methods, namely molecular docking, SAR and QSAR are vital substitutes to obtain knowledge for each structure in atomic insight. These procedures are logically successful for the prediction of binding affinity and have shown promising potential in facilitating MTDD. Here, we review some of the important features of the multi-target therapeutics discoveries using the computational approach, highlighting the SAR, QSAR, docking and pharmacophore methods to discover interactions between drug-target that could be leveraged for curative benefits. A summary of each, followed by examples of its applications in drug design has been provided. Computational efficiency of each method has been represented according to its main strengths and limitations.

    7. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition

      DEFF Research Database (Denmark)

      Mollerup, Christian Brinch; Dalsgaard, Petur Weihe; Mardal, Marie;

      2016-01-01

      High-resolution mass spectrometry (HRMS) is widely used for the drug screening of biological samples in clinical and forensic laboratories. With the continuous addition of new psychoactive substances (NPS), keeping such methods updated is challenging. HRMS allows for combined targeted and non-targeted...... screening. The aims of the study were to apply a combined targeted and non-targeted screening approach to authentic driving-under-the-influence-of-drugs (DUID) samples (n = 44) and further validate the approach using whole-blood samples spiked with eleven low-dose synthetic benzodiazepine analogues (SBA......). Analytical data were acquired using ultra-high-performance liquid chromatography coupled with a time-of-flight mass spectrometer (UHPLC-TOF-MS) with data-independent acquisition (DIA). We present a combined targeted and non-targeted screening, where peak deconvolution and filtering reduced the number...

    8. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing

      DEFF Research Database (Denmark)

      Oprea, Tudor; Nielsen, Sonny Kim; Ursu, Oleg

      2011-01-01

      benefit from an integrated, semantic-web compliant computer-aided drug repurposing (CADR) effort, one that would enable deep data mining of associations between approved drugs (D), targets (T), clinical outcomes (CO) and SE. We report preliminary results from text mining and multivariate statistics, based...

    9. Containing pandemic influenza with antiviral agents.

      Science.gov (United States)

      Longini, Ira M; Halloran, M Elizabeth; Nizam, Azhar; Yang, Yang

      2004-04-01

      For the first wave of pandemic influenza or a bioterrorist influenza attack, antiviral agents would be one of the few options to contain the epidemic in the United States until adequate supplies of vaccine were available. The authors use stochastic epidemic simulations to investigate the effectiveness of targeted antiviral prophylaxis to contain influenza. In this strategy, close contacts of suspected index influenza cases take antiviral agents prophylactically. The authors compare targeted antiviral prophylaxis with vaccination strategies. They model an influenza pandemic or bioterrorist attack for an agent similar to influenza A virus (H2N2) that caused the Asian influenza pandemic of 1957-1958. In the absence of intervention, the model predicts an influenza illness attack rate of 33% of the population (95% confidence interval (CI): 30, 37) and an influenza death rate of 0.58 deaths/1,000 persons (95% Cl: 0.4, 0.8). With the use of targeted antiviral prophylaxis, if 80% of the exposed persons maintained prophylaxis for up to 8 weeks, the epidemic would be contained, and the model predicts a reduction to an illness attack rate of 2% (95% Cl: 0.2, 16) and a death rate of 0.04 deaths/1,000 persons (95% CI: 0.0003, 0.25). Such antiviral prophylaxis is nearly as effective as vaccinating 80% of the population. Vaccinating 80% of the children aged less than 19 years is almost as effective as vaccinating 80% of the population. Targeted antiviral prophylaxis has potential as an effective measure for containing influenza until adequate quantities of vaccine are available.

    10. In Vitro Antiviral Activity of Favipiravir (T-705) against Drug-Resistant Influenza and 2009 A(H1N1) Viruses▿

      OpenAIRE

      Sleeman, Katrina; Mishin, Vasiliy P.; Deyde, Varough M.; Furuta, Yousuke; Klimov, Alexander I.; Gubareva, Larisa V.

      2010-01-01

      Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic ...

    11. On the possibility of the unification of drug targeting systems. Studies with liposome transport to the mixtures of target antigens.

      Science.gov (United States)

      Trubetskoy, V S; Berdichevsky, V R; Efremov, E E; Torchilin, V P

      1987-03-15

      In order to make the drug targeting system more effective, simple and technological, we suggest creation of drug-bearing conjugates capable of simultaneous binding with different antigenic components of the target via specific antibodies. It is supposed that the targeted therapy should include sequential administration of the mixture of modified antibodies (or other specific vectors) against different components of affected tissue and, upon antibody accumulation in the desired region, administration of modified drugs or drug carrying systems which can recognize and bind with the target via accumulated antibodies due to the interaction between vector modifier and carrier modifier. Using as a model system monolayers consisting of the mixture of extracellular antigens and appropriated antibodies, it was shown that the treatment of the target with the mixture of biotinylated antibodies against all target components and subsequent binding with the target of biotinylated liposomes via avidin permits high liposome accumulation on the monolayer. The binding achieved is always higher than in the case of the utilization of single antibody-bearing liposomes. Besides, the system suggested is very simple and its components can be easily obtained on technological scale in standardized conditions.

    12. Self-interest versus group-interest in antiviral control

      NARCIS (Netherlands)

      Boven, M. van; Klinkenberg, D.; Pen, I.; Weissing, F.J.; Heesterbeek, J.A.P.

      2008-01-01

      Antiviral agents have been hailed to hold considerable promise for the treatment and prevention of emerging viral diseases like H5N1 avian influenza and SARS. However, antiviral drugs are not completely harmless, and the conditions under which individuals are willing to participate in a large-scale

    13. Current Status of Targets and Assays for Anti-HIV Drug Screening

      Institute of Scientific and Technical Information of China (English)

      2007-01-01

      HIV/AIDS is one of the most serious public health challenges globally. Despite the great efforts that are being devoted to prevent, treat and to better understand the disease, it is one of the main causes of morbidity and mortality worldwide. Currently, there are 30 drugs or combinations of drugs approved by FDA. Because of the side-effects, price and drug resistance, it is essential to discover new targets, to develop new technology and to find new anti-HIV drugs. This review summarizes the major targets and assays currently used in anti-HIV drug screening.

    14. The application of antitumor drug-targeting models on liver cancer.

      Science.gov (United States)

      Yan, Yan; Chen, Ningbo; Wang, Yunbing; Wang, Ke

      2016-06-01

      Hepatocarcinoma animal models, such as the induced tumor model, transplanted tumor model, gene animal model, are significant experimental tools for the evaluation of targeting drug delivery system as well as the pre-clinical studies of liver cancer. The application of antitumor drug-targeting models not only furnishes similar biological characteristics to human liver cancer but also offers guarantee of pharmacokinetic indicators of the liver-targeting preparations. In this article, we have reviewed some kinds of antitumor drug-targeting models of hepatoma and speculated that the research on this field would be capable of attaining a deeper level and expecting a superior achievement in the future.

    15. Target Nanoparticles for Therapy - SANS and DLS of Drug Carrier Liposomes and Polymer Nanoparticles

      Science.gov (United States)

      Nawroth, T.; Johnson, R.; Krebs, L.; Khoshakhlagh, P.; Langguth, P.; Hellmann, N.; Goerigk, G.; Boesecke, P.; Bravin, A.; Le Duc, G.; Szekely, N.; Schweins, R.

      2016-09-01

      T arget Nano-Pharmaceutics shall improve therapy and diagnosis of severe diseases, e.g. cancer, by individual targeting of drug-loaded nano-pharmaceuticals towards cancer cells, and drug uptake receptors in other diseases. Specific ligands, proteins or cofactors, which are recognized by the diseased cells or cells of food and drug uptake, are bound to the nanoparticle surface, and thus capable of directing the drug carriers. The strategy has two branches: a) for parenteral cancer medicine a ligand set (2-5 different, surface-linked) are selected according to the biopsy analysis of the patient tissue e.g. from tumor.; b) in the oral drug delivery part the drug transport is enforced by excipients/ detergents in combination with targeting materials for cellular receptors resulting in an induced drug uptake. Both targeting nanomaterials are characterized by a combination of SANS + DLS and SAXS or ASAXS in a feedback process during development by synthesis, nanoparticle assembly and formulation.

    16. Finding potential drug targets against Shigella flexneri through druggable proteome exploration.

      Directory of Open Access Journals (Sweden)

      Mohammad Uzzal Hossain

      2016-11-01

      Full Text Available Abstract:Background: Shigella flexneri is a gram negative bacteria that causes the infectious disease ‘shigellosis’. Shigella flexneri (S. flexneri is responsible for developing diarrhea, fever and stomach cramps in human. Antibiotics are mostly given to patients infected with shigella. Resistance to antibiotics can hinder its treatment significantly. Upon identification of essential therapeutic targets, vaccine and drug could be effective therapy for the treatment of shigellosis. Methods: The study was designed for the identification and qualitative characterization for potential drug targets from S. flexneri by using the subtractive genome analysis. A set of computational tools were used to identify essential proteins those are required for the survival of S. flexneri. Total proteome (13503 proteins of S. flexneri was retrieved from NCBI and further analyzed by subtractive channel analysis. After identification of the metabolic proteins we have also performed its qualitative characterization to pave the way for the identification of promising drug targets. Results: Subtractive analysis revealed that a list of 53 targets of S. flexneri were human non-homologous essential metabolic proteins that might be used for potential drug targets. We have also found that 11 drug targets are involved in unique pathway. Most of these proteins are cytoplasmic, can be used as broad spectrum drug targets, can interact with other proteins and show the druggable properties. The functionality and drug binding site analysis suggest a promising effective way to design the new drugs against S. flexneri. Conclusion: We have identified 13 potential novel drug and one vaccine target(s against S. flexneri. The outcome might also be used as module as well as circuit design in systems biology. Keywords: S. flexneri, drug target, therapeutics, metabolic proteins, proteome

    17. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing.

      Science.gov (United States)

      Oprea, Tudor I; Nielsen, Sonny Kim; Ursu, Oleg; Yang, Jeremy J; Taboureau, Olivier; Mathias, Stephen L; Kouskoumvekaki, Lrene; Sklar, Larry A; Bologa, Cristian G

      2011-03-14

      Finding new uses for old drugs is a strategy embraced by the pharmaceutical industry, with increasing participation from the academic sector. Drug repurposing efforts focus on identifying novel modes of action, but not in a systematic manner. With intensive data mining and curation, we aim to apply bio- and cheminformatics tools using the DRUGS database, containing 3,837 unique small molecules annotated on 1,750 proteins. These are likely to serve as drug targets and antitargets (i.e., associated with side effects, SE). The academic community, the pharmaceutical sector and clinicians alike could benefit from an integrated, semantic-web compliant computer-aided drug repurposing (CADR) effort, one that would enable deep data mining of associations between approved drugs (D), targets (T), clinical outcomes (CO) and SE. We report preliminary results from text mining and multivariate statistics, based on 7,684 approved drug labels, ADL (Dailymed) via text mining. From the ADL corresponding to 988 unique drugs, the "adverse reactions" section was mapped onto 174 SE, then clustered via principal component analysis into a 5x5 self-organizing map that was integrated into a Cytoscape network of SE-D-T-CO. This type of data can be used to streamline drug repurposing and may result in novel insights that can lead to the identification of novel drug actions.

    18. [Metabotropic glutamate receptors as targets for new drug development].

      Science.gov (United States)

      Arkhipov, V I; Kapralova, M V

      2011-01-01

      The review is devoted to experimental investigations of metabotropic glutamate receptors and the properties of drugs (ligands) belonging to agonists, antagonists, and modulators of the activity of these receptors. Possibilities of the treatment of neurodegenerative disorders, cognitive disturbances in schizophrenia patients, and narcotic dependency by using drugs of this class are considered.

    19. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals

      Directory of Open Access Journals (Sweden)

      Asma Ahmed

      2015-12-01

      Full Text Available There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.

    20. Preparation and Optimization of Nanoemulsions for targeting Drug Delivery

      Directory of Open Access Journals (Sweden)

      Navneet Sharma

      2013-12-01

      Full Text Available Nanoemulsions have appeared as a novel drug delivery system which allows sustained or controlled release of drug, biological active ingredient and genetic material. Nanoemulsion is a dispersion consisting of oil, surfactant and an aqueous phase, which is a isotropically clear and thermo-dynamically or kinetically stable liquid solution, usually with droplet diameter within the range of 10-500nm. Although interest in nano-emulsions was developed for more than two decades now, mainly for nanoparticle preparation, it is in the last few years that direct applications of nano-emulsions in consumer products are being developed, mainly in pharmacy and cosmetics. These recent applications have made that studies on optimization methods for nano-emulsion preparation be a requirement. The design of effective formulations for drugs has long been a major task, because drug efficacy can severely limited by instability or poor solubility in the vehicle. Nanoemulsion is being applied to enhance the solubility and bioavailability of water insoluble drugs. The nanosized droplets leading to an enormous increase in interfacial areas associated with nanoemulsion would influence the transport properties of the drug [1, 2]. Recently, there has been a considerable attraction for this formulation, for the delivery of hydrophilic as well as hydrophobic drug as drug carriers because of its improved drug solubilization capacity, long shelf life, ease of preparation and improvement of bioavailability of drugs. This review is focused on the most recent literature on developments of nano-emulsions as final application products and on the optimization of their preparation.

    1. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.

      Science.gov (United States)

      Aravind, Athulya; Jeyamohan, Prashanti; Nair, Remya; Veeranarayanan, Srivani; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

      2012-11-01

      Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery.

    2. A Modular Probe Strategy for Drug Localization, Target Identification and Target Occupancy Measurement on Single Cell Level.

      Science.gov (United States)

      Rutkowska, Anna; Thomson, Douglas W; Vappiani, Johanna; Werner, Thilo; Mueller, Katrin M; Dittus, Lars; Krause, Jana; Muelbaier, Marcel; Bergamini, Giovanna; Bantscheff, Marcus

      2016-09-16

      Late stage failures of candidate drug molecules are frequently caused by off-target effects or inefficient target engagement in vivo. In order to address these fundamental challenges in drug discovery, we developed a modular probe strategy based on bioorthogonal chemistry that enables the attachment of multiple reporters to the same probe in cell extracts and live cells. In a systematic evaluation, we identified the inverse electron demand Diels-Alder reaction between trans-cyclooctene labeled probe molecules and tetrazine-tagged reporters to be the most efficient bioorthogonal reaction for this strategy. Bioorthogonal biotinylation of the probe allows the identification of drug targets in a chemoproteomics competition binding assay using quantitative mass spectrometry. Attachment of a fluorescent reporter enables monitoring of spatial localization of probes as well as drug-target colocalization studies. Finally, direct target occupancy of unlabeled drugs can be determined at single cell resolution by competitive binding with fluorescently labeled probe molecules. The feasibility of the modular probe strategy is demonstrated with noncovalent PARP inhibitors.

    3. SimBoost: A Read-Across Approach for Drug-Target Interaction Prediction Using Gradient Boosting Machines

      OpenAIRE

      He, Tong

      2016-01-01

      Computational prediction of the interaction between drugs and targets is a standing challenge in drug discovery. High performance on binary drug-target benchmark datasets was reported for a number of methods. A possible drawback of binary data is that missing values and non-interacting drug-target pairs are not differentiated. In this paper, we present a method called SimBoost that predicts the continuous binding affinities of drugs and targets and thus incorporates the whole interaction spec...

    4. [Multimorbidity and multi-target-therapy with herbal drugs].

      Science.gov (United States)

      Saller, R; Rostock, M

      2012-12-12

      The active components of herbal drugs and substances are pleiotropic multi-ingredient compounds with multitarget properties including antiinflammatory effects. A pleiotropic inhibition of inflammation could play an important role in mutlimorbide patients as an attempt of prevention or retardation of metastasis. A large number of experimental data for European and non-European herbal drugs as well as various herbal drug combinations suggest such a possibility. Despite the so far small number of clinical studies, such an experimental herbal treatment could appear to be reasonable and acceptable, provided that there are data available on quality and safety of these herbal drugs by treatments of patients with various diseases. Besides, herbal drugs and substances play a growing role the treatment of patients with multimorbidity. Many of these herbal drugs have antiinflammatory effects beside their proved symptomatic efficacy in a lot of other diseases. The specific selection of herbal drugs that are efficacious in specific indications and additionally showed antiinflammatory effects offers the possibility of simultaneous antiinflammatory and specific efficacy. St. John's Wort and milk thistle belong to the oldest and to the best experimentally and clinically examined herbal remedies. The spectrum of internal and external uses of Hypercum perforatum as a multicompound herbal drug includes functional gastro-intestinal complaint and illness, skin disease, mucosal lesion, superficial injury, depressive upset and depression, somatoform disorders, restlessness, nervosity, convalescence, exhaustion and sleep disturbances respectively. The plurivalent character of the multicompound even enables a broad spectrum of activity. This might justify to prefer St. John's Wort to other drugs in a wide range of treatments: In multimorbide patients with depression or in depressive patients with coronary heart disease the anti-inflammatory effects could mean an additional advantage

    5. The use of microbubbles to target drug delivery

      Directory of Open Access Journals (Sweden)

      Porter Richard

      2004-11-01

      Full Text Available Abstract Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This review focuses on the characteristics of microbubbles that give them therapeutic properties and some important aspects of ultrasound parameters that are known to influence microbubble-mediated drug delivery. In addition, current studies involving this novel therapeutical application of microbubbles will be discussed.

    6. Nanoparticles laden in situ gelling system for ocular drug targeting

      Directory of Open Access Journals (Sweden)

      Divya Kumar

      2013-01-01

      Full Text Available Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development.

    7. Identification of drug targets by chemogenomic and metabolomic profiling in yeast

      KAUST Repository

      Wu, Manhong

      2012-12-01

      OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

    8. Targeting DDX3 in cancer: personalized drug development and delivery

      NARCIS (Netherlands)

      Bol, G.M.

      2013-01-01

      Cancer begins when a cell in an organ of our body starts to grow uncontrollably. Only recently has it become clear that targeting the cancer cells’ dependency on specific proteins, rather than their origin, has greater therapeutic potential. The vast majority of potential targets for cancer therapy

    9. Systems biology-embedded target validation: improving efficacy in drug discovery.

      Science.gov (United States)

      Vandamme, Drieke; Minke, Benedikt A; Fitzmaurice, William; Kholodenko, Boris N; Kolch, Walter

      2014-01-01

      The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment.

    10. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery.

      Science.gov (United States)

      Sheng, Jia; Gan, Jianhua; Huang, Zhen

      2013-09-01

      Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.

    11. Predicted essential proteins ofPlasmodium falciparum for potential drug targets

      Institute of Scientific and Technical Information of China (English)

      Qing-Feng He; Li Deng; Qin-Ying Xu; Zheng Shao

      2012-01-01

      ABSTRACT Objective:To identify novel drug targets for treatment ofPlasmodium falciparum.Methods:LocalBLASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets. Functional domains of novel drug targets were identified by InterPro and Pfam,3D structures of potential drug targets were predicated by theSWISS-MODELworkspace. Ligands and ligand-binding sites of the proteins were searched byEf-seek.Results:Three essential proteins were identified that might be considered as potential drug targets.AAN37254.1 belonged to1-deoxy-D-xylulose5-phosphate reductoisomerase,CAD50499.1 belonged to chorismate synthase,CAD51220.1 belonged toFAD binging3 family, but the function of CAD51220.1 was unknown. The3D structures, ligands and ligand-binding sites ofAAN37254.1 andCAD50499.1 were successfully predicated.Conclusions:Two of these potential drug targets are key enzymes in2-C-methyl-d-erythritol4-phosphate pathway and shikimate pathway, which are absent in humans, so these two essential proteins are good potential drug targets. The function and3D structures ofCAD50499.1 is still unknown, it still need further study.

    12. Delineation on Therapeutic Significance of Transporters as Molecular Targets of Drugs

      Institute of Scientific and Technical Information of China (English)

      KANAI Yoshikat; HE Xin; LIU Chang-xiao

      2011-01-01

      Transporters are membrane proteins mediating permeation of organic and inorganic solutes through the plasma membrane and membranes of intracellular organella.They play essential roles in the epithelial absorption and cellular uptake of nutrients as well as absorption,distribution,metabolism,and excretion of drugs.Because transporters contribute to determining the distribution of compounds in the body in concert with metabolic/synthetic enzymes,the drugs that affect the functions of transporters are expected to alter the distribution of compounds in the body and to ameliorate disrupted homeostasis.In this context,drugs targeting transporters have been used clinically.Such drugs include antidepressants targeting monoamine transporters,diuretics targeting inorganic ion transporters of renal tubules,and uricosuric agents targeting renal urate transporters.Now new transporter-targeting drugs designed based on post-genome drug development strategy have been in the process of clinical trials or basic/clinical researches.For example,the inhibitors of renal Na/glucose cotransporter SGLT2 have been proved for their efficacy in the treatment of diabetes mellitus.The cancer L-type amino acid transporter 1(LAT1)has been considered as a target of cancer diagnosis and therapeutics.The transporter-targeting drugs are expected to provide new rationale in the therapeutics of various diseases.

    13. Using compound similarity and functional domain composition for prediction of drug-target interaction networks.

      Science.gov (United States)

      Chen, Lei; He, Zhi-Song; Huang, Tao; Cai, Yu-Dong

      2010-11-01

      Study of interactions between drugs and target proteins is an essential step in genomic drug discovery. It is very hard to determine the compound-protein interactions or drug-target interactions by experiment alone. As supplementary, effective prediction model using machine learning or data mining methods can provide much help. In this study, a prediction method based on Nearest Neighbor Algorithm and a novel metric, which was obtained by combining compound similarity and functional domain composition, was proposed. The target proteins were divided into the following groups: enzymes, ion channels, G protein-coupled receptors, and nuclear receptors. As a result, four predictors with the optimal parameters were established. The overall prediction accuracies, evaluated by jackknife cross-validation test, for four groups of target proteins are 90.23%, 94.74%, 97.80%, and 97.51%, respectively, indicating that compound similarity and functional domain composition are very effective to predict drug-target interaction networks.

    14. PCR-based ordered genomic libraries: a new approach to drug target identification for Streptococcus pneumoniae.

      Science.gov (United States)

      Belanger, Aimee E; Lai, Angel; Brackman, Marcia A; LeBlanc, Donald J

      2002-08-01

      Described here are the development and validation of a novel approach to identify genes encoding drug targets in Streptococcus pneumoniae. The method relies on the use of an ordered genomic library composed of PCR amplicons that were generated under error-prone conditions so as to introduce random mutations into the DNA. Since some of the mutations occur in drug target-encoding genes and subsequently affect the binding of the drug to its respective cellular target, amplicons containing drug targets can be identified as those producing drug-resistant colonies when transformed into S. pneumoniae. Examination of the genetic content of the amplicon giving resistance coupled with bioinformatics and additional genetic approaches could be used to rapidly identify candidate drug target genes. The utility of this approach was verified by using a number of known antibiotics. For drugs with single protein targets, amplicons were identified that rendered S. pneumoniae drug resistant. Assessment of amplicon composition revealed that each of the relevant amplicons contained the gene encoding the known target for the particular drug tested. Fusidic acid-resistant mutants that resulted from the transformation of S. pneumoniae with amplicons containing fusA were further characterized by sequence analysis. A single mutation was found to occur in a region of the S. pneumoniae elongation factor G protein that is analogous to that already implicated in other bacteria as being associated with fusidic acid resistance. Thus, in addition to facilitating the identification of genes encoding drug targets, this method could provide strains that aid future mechanistic studies.

    15. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.

      Science.gov (United States)

      Maity, Amit Ranjan; Stepensky, David

      2015-12-30

      Targeting of drug delivery systems (DDSs) to specific intracellular organelles (i.e., subcellular targeting) has been investigated in numerous publications, but targeting efficiency of these systems is seldom reported. We searched scientific publications in the subcellular DDS targeting field and analyzed targeting efficiency and major formulation parameters that affect it. We identified 77 scientific publications that matched the search criteria. In the majority of these studies nanoparticle-based DDSs were applied, while liposomes, quantum dots and conjugates were used less frequently. The nucleus was the most common intracellular target, followed by mitochondrion, endoplasmic reticulum and Golgi apparatus. In 65% of the publications, DDSs surface was decorated with specific targeting residues, but the efficiency of this surface decoration was not analyzed in predominant majority of the studies. Moreover, only 23% of the analyzed publications contained quantitative data on DDSs subcellular targeting efficiency, while the majority of publications reported qualitative results only. From the analysis of publications in the subcellular targeting field, it appears that insufficient efforts are devoted to quantitative analysis of the major formulation parameters and of the DDSs' intracellular fate. Based on these findings, we provide recommendations for future studies in the field of organelle-specific drug delivery and targeting.

    16. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data.

      Directory of Open Access Journals (Sweden)

      Hua Yu

      Full Text Available In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF and Support Vector Machine (SVM. The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respectively. The consistence of the performances of the RF and SVM models demonstrates the reliability and robustness of the obtained models. In addition, the validated models were employed to systematically predict known/unknown drugs and targets involving the enzymes, ion channels, GPCRs, and nuclear receptors, which can be further mapped to functional ontologies such as target-disease associations and target-target interaction networks. This approach is expected to help fill the existing gap between chemical genomics and network pharmacology and thus accelerate the drug discovery processes.

    17. Hepatitis C Drugs: The End of the Pegylated Interferon Era and the Emergence of All-Oral, Interferon-Free Antiviral Regimens: A Concise Review

      Directory of Open Access Journals (Sweden)

      Alan Hoi Lun Yau

      2014-01-01

      Full Text Available Between 2001 and 2011, the standard of care for chronic hepatitis C virus (HCV infection was a combination of pegylated interferon (PEGIFN and ribavirin (RBV. In May 2011, boceprevir and telaprevir, two first-generation NS3/4A protease inhibitors, were approved in combination with PEG-IFN and RBV for 24 to 48 weeks in hepatitis C virus genotype 1 infections. In December 2013, simeprevir, a second-generation NS3/4A protease inhibitor, was approved for use with PEG-IFN and RBV for 12 weeks in genotype 1, while sofosbuvir, a NS5B nucleotide polymerase inhibitor, was approved for use with PEG-IFN and RBV for 12 weeks in genotypes 1 and 4, as well as with RBV alone for 12 weeks in genotype 2 and for 24 weeks in genotype 3. Sofosbuvir combined with simeprevir or an NS5A replication complex inhibitor (ledipasvir or daclatasvir with or without RBV for 12 weeks in genotype 1 resulted in a sustained virological response >90%, irrespective of previous treatment history or presence of cirrhosis. Similarly impressive sustained virological response rates have been shown with ABT-450/r (ritonavir-boosted NS3/4A protease inhibitor-based regimens in combination with other direct-acting antiviral agent(s with or without RBV for 12 weeks in genotype 1. The optimal all-oral interferon-free antiviral regimen likely entails a combination of an NS5B nucleotide polymerase inhibitor with either a second-generation NS3/4A protease inhibitor or an NS5A replication complex inhibitor with or without RBV. Further research is needed to determine the role of resistance testing, clarify the optimal follow-up duration post-treatment, and evaluate the antiviral efficacy and safety in difficult-to-cure patient populations.

    18. Targeted drug delivery to the brain using magnetic nanoparticles.

      Science.gov (United States)

      Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

      2015-01-01

      Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain.

    19. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

      Directory of Open Access Journals (Sweden)

      Brian C. Palmer

      2016-12-01

      Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

    20. Smart linkers in polymer-drug conjugates for tumor-targeted delivery.

      Science.gov (United States)

      Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei

      2016-01-01

      To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.

    1. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction

      Directory of Open Access Journals (Sweden)

      Ronald E. See

      2011-06-01

      Full Text Available Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of relapse. Here, we review the evidence for the role of orexins in modulating reward and drug-seeking in animal models of addiction and the potential for orexin receptors as specific targets for anti-relapse medication approaches.

    2. Advances in Bone-targeted Drug Delivery Systems for Neoadjuvant Chemotherapy for Osteosarcoma.

      Science.gov (United States)

      Li, Cheng-Jun; Liu, Xiao-Zhou; Zhang, Lei; Chen, Long-Bang; Shi, Xin; Wu, Su-Jia; Zhao, Jian-Ning

      2016-05-01

      Targeted therapy for osteosarcoma includes organ, cell and molecular biological targeting; of these, organ targeting is the most mature. Bone-targeted drug delivery systems are used to concentrate chemotherapeutic drugs in bone tissues, thus potentially resolving the problem of reaching the desired foci and minimizing the toxicity and adverse effects of neoadjuvant chemotherapy. Some progress has been made in bone-targeted drug delivery systems for treatment of osteosarcoma; however, most are still at an experimental stage and there is a long transitional period to clinical application. Therefore, determining how to combine new, polymolecular and multi-pathway targets is an important research aspect of designing new bone-targeted drug delivery systems in future studies. The purpose of this article was to review the status of research on targeted therapy for osteosarcoma and to summarize the progress made thus far in developing bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma with the aim of providing new ideas for highly effective therapeutic protocols with low toxicity for patients with osteosarcoma.

    3. Comparative genomics study for identification of putative drug targets in Salmonella typhi Ty2.

      Science.gov (United States)

      Batool, Nisha; Waqar, Maleeha; Batool, Sidra

      2016-01-15

      Typhoid presents a major health concern in developing countries with an estimated annual infection rate of 21 million. The disease is caused by Salmonella typhi, a pathogenic bacterium acquiring multiple drug resistance. We aim to identify proteins that could prove to be putative drug targets in the genome of S. typhi str. Ty2. We employed comparative and subtractive genomics to identify targets that are absent in humans and are essential to S. typhi Ty2. We concluded that 46 proteins essential to pathogen are absent in the host genome. Filtration on the basis of drug target prioritization singled out 20 potentially therapeutic targets. Their absence in the host and specificity to S. typhi Ty2 makes them ideal targets for treating typhoid in Homo sapiens. 3D structures of two of the final target enzymes, MurA and MurB have been predicted via homology modeling which are then used for a docking study.

    4. Bacterial Histidine Kinases as Novel Antibacterial Drug Targets

      NARCIS (Netherlands)

      Bem, A.E.; Velikova, N.R.; Pellicer, M.T.; Baarlen, van P.; Marina, A.; Wells, J.M.

      2015-01-01

      Bacterial histidine kinases (HKs) are promising targets for novel antibacterials. Bacterial HKs are part of bacterial two-component systems (TCSs), the main signal transduction pathways in bacteria, regulating various processes including virulence, secretion systems and antibiotic resistance. In thi

    5. The application of carbon nanotubes in target drug delivery systems for cancer therapies

      Directory of Open Access Journals (Sweden)

      Zhang Zhenzhong

      2011-01-01

      Full Text Available Abstract Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1 they themselves have target effects; (2 they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3 they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

    6. One for All? Hitting Multiple Alzheimer's Disease Targets with One Drug.

      Science.gov (United States)

      Hughes, Rebecca E; Nikolic, Katarina; Ramsay, Rona R

      2016-01-01

      HIGHLIGHTS Many AD target combinations are being explored for multi-target drug design.New databases and models increase the potential of computational drug designLiraglutide and other antidiabetics are strong candidates for repurposing to AD.Donecopride a dual 5-HT/AChE inhibitor shows promise in pre-clinical studies Alzheimer's Disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs (MTDs). Intended as an introduction for non-experts, this review describes the key MTD design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch, and the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer's Disease are rasagiline, originally developed for the treatment of Parkinson's Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.

    7. PDTD: a web-accessible protein database for drug target identification

      Directory of Open Access Journals (Sweden)

      Gao Zhenting

      2008-02-01

      Full Text Available Abstract Background Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD, and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. Description PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. Conclusion PDTD serves as a comprehensive and

    8. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines

      Directory of Open Access Journals (Sweden)

      Vaks Lilach

      2011-12-01

      Full Text Available Abstract Background Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. Results With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. Conclusion Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine.

    9. Optimal drug cocktail design: methods for targeting molecular ensembles and insights from theoretical model systems.

      Science.gov (United States)

      Radhakrishnan, Mala L; Tidor, Bruce

      2008-05-01

      Drug resistance is a significant obstacle in the effective treatment of diseases with rapidly mutating targets, such as AIDS, malaria, and certain forms of cancer. Such targets are remarkably efficient at exploring the space of functional mutants and at evolving to evade drug binding while still maintaining their biological role. To overcome this challenge, drug regimens must be active against potential target variants. Such a goal may be accomplished by one drug molecule that recognizes multiple variants or by a drug "cocktail"--a small collection of drug molecules that collectively binds all desired variants. Ideally, one wants the smallest cocktail possible due to the potential for increased toxicity with each additional drug. Therefore, the task of designing a regimen for multiple target variants can be framed as an optimization problem--find the smallest collection of molecules that together "covers" the relevant target variants. In this work, we formulate and apply this optimization framework to theoretical model target ensembles. These results are analyzed to develop an understanding of how the physical properties of a target ensemble relate to the properties of the optimal cocktail. We focus on electrostatic variation within target ensembles, as it is one important mechanism by which drug resistance is achieved. Using integer programming, we systematically designed optimal cocktails to cover model target ensembles. We found that certain drug molecules covered much larger regions of target space than others, a phenomenon explained by theory grounded in continuum electrostatics. Molecules within optimal cocktails were often dissimilar, such that each drug was responsible for binding variants with a certain electrostatic property in common. On average, the number of molecules in the optimal cocktails correlated with the number of variants, the differences in the variants' electrostatic properties at the binding interface, and the level of binding affinity

    10. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting.

      Science.gov (United States)

      Nakayama, Masamichi; Akimoto, Jun; Okano, Teruo

      2014-08-01

      Since the 1990s, nanoscale drug carriers have played a pivotal role in cancer chemotherapy, acting through passive drug delivery mechanisms and subsequent pharmaceutical action at tumor tissues with reduction of adverse effects. Polymeric micelles, as supramolecular assemblies of amphiphilic polymers, have been considerably developed as promising drug carrier candidates, and a number of clinical studies of anticancer drug-loaded polymeric micelle carriers for cancer chemotherapy applications are now in progress. However, these systems still face several issues; at present, the simultaneous control of target-selective delivery and release of incorporated drugs remains difficult. To resolve these points, the introduction of stimuli-responsive mechanisms to drug carrier systems is believed to be a promising approach to provide better solutions for future tumor drug targeting strategies. As possible trigger signals, biological acidic pH, light, heating/cooling and ultrasound actively play significant roles in signal-triggering drug release and carrier interaction with target cells. This review article summarizes several molecular designs for stimuli-responsive polymeric micelles in response to variation of pH, light and temperature and discusses their potentials as next-generation tumor drug targeting systems.

    11. Predict potential drug targets from the ion channel proteins based on SVM.

      Science.gov (United States)

      Huang, Chen; Zhang, Ruijie; Chen, Zhiqiang; Jiang, Yongshuai; Shang, Zhenwei; Sun, Peng; Zhang, Xuehong; Li, Xia

      2010-02-21

      The identification of molecular targets is a critical step in the drug discovery and development process. Ion channel proteins represent highly attractive drug targets implicated in a diverse range of disorders, in particular in the cardiovascular and central nervous systems. Due to the limits of experimental technique and low-throughput nature of patch-clamp electrophysiology, they remain a target class waiting to be exploited. In our study, we combined three types of protein features, primary sequence, secondary structure and subcellular localization to predict potential drug targets from ion channel proteins applying classical support vector machine (SVM) method. In addition, our prediction comprised two stages. In stage 1, we predicted ion channel target proteins based on whole-genome target protein characteristics. Firstly, we performed feature selection by Mann-Whitney U test, then made predictions to identify potential ion channel targets by SVM and designed a new evaluating indicator Q to prioritize results. In stage 2, we made a prediction based on known ion channel target protein characteristics. Genetic algorithm was used to select features and SVM was used to predict ion channel targets. Then, we integrated results of two stages, and found that five ion channel proteins appeared in both prediction results including CGMP-gated cation channel beta subunit and Gamma-aminobutyric acid receptor subunit alpha-5, etc., and four of which were relative to some nerve diseases. It suggests that these five proteins are potential targets for drug discovery and our prediction strategies are effective.

    12. Finding new drug targets for the treatment of migraine attacks

      DEFF Research Database (Denmark)

      Olesen, J; Olesen, Jes; Tfelt-Hansen, P

      2009-01-01

      No new preventive drugs specific to migraine have appeared for the last 20 years and existing acute therapies need improvement. Unfortunately, no animal models can predict the efficacy of new therapies for migraine. Because migraine attacks are fully reversible and can be aborted by therapy...

    13. Sensation Seeking and Targeting of Televised Anti-Drug PSAs.

      Science.gov (United States)

      Donohew, Lewis; And Others

      A study was conducted to determine how to reach out in an effective manner via televised public service announcements (PSAs) to particular at-risk audiences to motivate participation in drug abuse prevention programs. The subjects (207 young adults in Fayette County, Kentucky) responded to the M. Zuckerman sensation-seeking questionnaire. They…

    14. Molecular Communication Model for Targeted Drug Delivery in Multiple Disease Sites With Diversely Expressed Enzymes.

      Science.gov (United States)

      Chude-Okonkwo, Uche A K; Malekian, Reza; Maharaj, B T Sunil

      2016-04-01

      Targeted drug delivery (TDD) for disease therapy using liposomes as nanocarriers has received extensive attention in the literature. The liposome's ability to incorporate capabilities such as long circulation, stimuli responsiveness, and targeting characteristics, makes it a versatile nanocarrier. Timely drug release at the targeted site requires that trigger stimuli such as pH, light, and enzymes be uniquely overexpressed at the targeted site. However, in some cases, the targeted sites may not express trigger stimuli significantly, hence, achieving effective TDD at those sites is challenging. In this paper, we present a molecular communication-based TDD model for the delivery of therapeutic drugs to multiple sites that may or may not express trigger stimuli. The nanotransmitter and nanoreceiver models for the molecular communication system are presented. Here, the nanotransmitter and nanoreceiver are injected into the targeted body system's blood network. The compartmental pharmacokinetics model is employed to model the transportation of these therapeutic nanocarriers to the targeted sites where they are meant to anchor before the delivery process commences. We also provide analytical expressions for the delivered drug concentration. The effectiveness of the proposed model is investigated for drug delivery on tissue surfaces. Results show that the effectiveness of the proposed molecular communication-based TDD depends on parameters such as the total transmitter volume capacity, the receiver radius, the diffusion characteristic of the microenvironment of the targeted sites, and the concentration of the enzymes associated with the nanotransmitter and the nanoreceiver designs.

    15. Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthesis.

      Science.gov (United States)

      Mitra, Shouvik; Sasmal, Himadri Sekhar; Kundu, Tanay; Kandambeth, Sharath; Illath, Kavya S; Díaz Díaz, David; Banerjee, Rahul

      2017-03-03

      Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality and chemical stability. They could become a versa-tile candidate for targeted drug delivery. Despite their many advantages, there are limitations to use them for target specific drug delivery. We anticipated that these drawbacks could be overturned by judicious postsynthetic modification steps to use CONs for targeted drug delivery. The postsynthetic modification would not only produce the desired functionality, it would also help in exfoliation to CONs as well. In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in presence of p-toluenesulphonic acid (PTSA). The COFs were subjected to sequential postsynthetic modifications to yield functionalized targeted CONs for targeted delivery of 5-fluorouracil to the breast cancer cells. This postsynthetic modification resulted in simultaneous chemical delamination and functionalization to targeted CONs. Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis. Considering easy and facile COF synthesis, functionality based postsynthetic modifications and chemical delamination to CONs for potential advantageous targeted drug delivery, this process can have a significant impact in biomedical applications.

    16. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

      Directory of Open Access Journals (Sweden)

      Oula Penate Medina

      2011-01-01

      Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

    17. Central nervous system myeloid cells as drug targets: current status and translational challenges.

      Science.gov (United States)

      Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

      2016-02-01

      Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

    18. [Drug delivery systems to target the anterior segment of the eye: fundamental bases and clinical applications].

      Science.gov (United States)

      Behar-Cohen, F

      2002-05-01

      The development of new drug delivery systems to target the anterior segment of the eye may offer many advantages: to increase the biodisponibility of the drug, to allow the penetration of drug that cannot be formulated as solutions, to obtain constant and sustained drug release, to achieve higher local concentrations without systemic effects, to target more specifically one tissue or cell type, to reduce the frequency of instillation and therefore increase the observance and comfort of the patient while reducing side effects of frequent instillation. Several approaches are developed, aiming to increase the corneal contact time by modified formulation or reservoir systems, or by increasing the tissue permeability using iontophoresis. To date, no ocular drug delivery system is ideal for all purposes. To maximize treatment efficacy, careful evaluation of the specific pathological condition, the targeted Intraocular tissue and the location of the most severe pathology must be made before selecting the method of delivery most suitable for each individual patient.

    19. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

      Directory of Open Access Journals (Sweden)

      Asrar Alam

      2014-01-01

      Full Text Available Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets.

    20. Mutation of Glycosylation Sites in BST-2 Leads to Its Accumulation at Intracellular CD63-Positive Vesicles without Affecting Its Antiviral Activity against Multivesicular Body-Targeted HIV-1 and Hepatitis B Virus

      Directory of Open Access Journals (Sweden)

      Zhu Han

      2016-02-01

      Full Text Available BST-2/tetherin blocks the release of various enveloped viruses including HIV-1 with a “physical tethering” model. The detailed contribution of N-linked glycosylation to this model is controversial. Here, we confirmed that mutation of glycosylation sites exerted an effect of post-translational mis-trafficking, leading to an accumulation of BST-2 at intracellular CD63-positive vesicles. BST-2 with this phenotype potently inhibited the release of multivesicular body-targeted HIV-1 and hepatitis B virus, without affecting the co-localization of BST-2 with EEA1 and LAMP1. These results suggest that N-linked glycosylation of human BST-2 is dispensable for intracellular virion retention and imply that this recently discovered intracellular tethering function may be evolutionarily distinguished from the canonical antiviral function of BST-2 by tethering nascent virions at the cell surface.

    1. Targeting iron metabolism in drug discovery and delivery.

      Science.gov (United States)

      Crielaard, Bart J; Lammers, Twan; Rivella, Stefano

      2017-02-03

      Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.

    2. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease

      OpenAIRE

      Francesco Panza; Vincenzo Solfrizzi; Davide Seripa; Imbimbo, Bruno P.; Madia Lozupone; Andrea Santamato; Chiara Zecca; Maria Rosaria Barulli; Antonello Bellomo; Alberto Pilotto; Antonio Daniele; Antonio Greco; Giancarlo Logroscino

      2016-01-01

      The failure of several Phase II/III clinical trials in Alzheimer’s disease (AD) with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized f...

    3. Molecularly targeted therapy for advanced hepatocellularcarcinoma - a drug development crisis?

      Institute of Scientific and Technical Information of China (English)

      2016-01-01

      Hepatocellular carcinoma is the fastest growing causeof cancer related death globally. Sorafenib, a multitargetedkinase inhibitor, is the only drug proven toimprove outcomes in patients with advanced diseaseoffering modest survival benefit. Although comprehensivegenomic mapping has improved understanding of thegenetic aberrations in hepatocellular cancer (HCC), thisknowledge has not yet impacted clinical care. The lastfew years have seen the failure of several first and secondline phase Ⅲ clinical trials of novel molecularly targetedtherapies, warranting a change in the way new therapiesare investigated in HCC. Potential reasons for thesefailures include clinical and molecular heterogeneity, trialdesign and a lack of biomarkers. This review discussesthe current crisis in HCC drug development and how weshould learn from recent trial failures to develop a moreeffective personalised treatment paradigm for patientswith HCC.

    4. Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers

      Directory of Open Access Journals (Sweden)

      Tsai HC

      2013-11-01

      Full Text Available Hsieh-Chih Tsai,1,* Jeng-Yee Lin,2,* Faiza Maryani,1 Chun-Chiang Huang,1 Toyoko Imae1,31Graduate Institute of Applied Science and Technology, 2Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 3Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan *These authors contributed equally to this work Abstract: In this study, three types of hybrid nanotubes (NTs, ie, oxidized multiwalled carbon NTs (COOH MWCNTs, heparin (Hep-conjugated MWCNTs (Hep MWCNTs, and diblock copolymer polyglycolic acid (PGA-co-heparin conjugated to MWCNTs (PGA MWCNTs, were synthesized with improved biocompatibility and drug-loading capacity. Hydrophilic Hep substituents on MWCNTs improved biocompatibility and acted as nucleus-sensitive segments on the CNT carrier, whereas the addition of PGA enhanced drug-loading capacity. In the PGA MWCNT system, the amphiphilic copolymer (PGA-Hep formed micelles on the side walls of CNTs, as confirmed by electron microscopy. The PGA system encapsulated the hydrophobic drug with high efficiency compared to the COOH MWCNT and Hep MWCNT systems. This is because the drug was loaded onto the PGA MWCNTs through hydrophobic forces and onto the CNTs by ∏–∏ stacking interactions. Additionally, most of the current drug-carrier designs that target cancer cells release the drug in the lysosome or cytoplasm. However, nuclear-targeted drug release is expected to kill cancer cells more directly and efficiently. In our study, PGA MWCNT carriers effectively delivered the active anticancer drug doxorubicin into targeted nuclei. This study may provide an effective strategy for the development of carbon-based drug carriers for nuclear-targeted drug delivery. Keywords: carbon nanotube, amphiphilic copolymer, drug loading, nucleus targeting, cancer therapy

    5. New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery.

      Science.gov (United States)

      Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhang, Jin-Shan; Qiu, Ri-Xiang; Jiang, Lan; Zhou, Xing-Xing; Yu, Jiang-Xiu

      2013-08-01

      Ultrasound is a common used technique for clinical imaging. In recent years, with the advances in preparation technology of microbubbles and the innovations in ultrasound imaging, ultrasound is no longer confined to detection of tissue perfusion, but extends to specific ultrasound molecular imaging and target therapy gradually. With the development of research, ultrasound molecular imaging and target therapy have made great progresses. Targeted microbubbles for molecular imaging are achieved by binding target molecules, specific antibody or ligand to the surface of microbubbles to obtain specific imaging by attaching to target tissues. Meanwhile, it can also achieve targeting gene therapy or drug delivery by ultrasound targeted microbubble destruction (UTMD) mediating genes or drugs to specific target sites. UTMD has a number of advantages, such as target-specific, highly effective, non-invasivity, relatively low-cost and no radiation, and has broad application prospects, which is regarded as one hot spot in medical studies. We reviewed the new development and application of UTMD in gene therapy and drug delivery in this paper. With further development of technology and research, the gene or drug delivery system and related methods will be widely used in application and researches.

    6. Is PDE4 too difficult a drug target?

      Science.gov (United States)

      Higgs, Gerry

      2010-05-01

      The search for selective inhibitors of PDE4 as novel anti-inflammatory drugs has continued for more than 30 years. Although several compounds have demonstrated therapeutic effects in diseases such as asthma, COPD, atopic dermatitis and psoriasis, none have reached the market. A persistent challenge in the development of PDE4 inhibitors has been drug-induced gastrointestinal adverse effects, such as nausea. However, extensive clinical trials with well-tolerated doses of roflumilast (Daxas; Nycomed/Mitsubishi Tanabe Pharma Corp/Forest Laboratories Inc) in COPD, a disease that is generally unresponsive to existing therapies, have demonstrated significant therapeutic improvements. In addition, GlaxoSmithKline plc is developing 256066, an inhaled formulation of a PDE4 inhibitor that has demonstrated efficacy in trials in asthma, and apremilast from Celgene Corp has been reported to be effective for the treatment of psoriasis. Despite the challenges and complications that have been encountered during the development of PDE4 inhibitors, these drugs may provide a genuinely novel class of anti-inflammatory agents, and there are several compounds in development that could fulfill that promise.

    7. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery.

      Science.gov (United States)

      Thambi, Thavasyappan; You, Dong Gil; Han, Hwa Seung; Deepagan, V G; Jeon, Sang Min; Suh, Yung Doug; Choi, Ki Young; Kim, Kwangmeyung; Kwon, Ick Chan; Yi, Gi-Ra; Lee, Jun Young; Lee, Doo Sung; Park, Jae Hyung

      2014-11-01

      Bioreducible carboxymethyl dextran (CMD) derivatives are synthesized by the chemical modification of CMD with lithocholic acid (LCA) through a disulfide linkage. The hydrophobic nature of LCA allows the conjugates (CMD-SS-LCAs) to form self-assembled nanoparticles in aqueous conditions. Depending on the degree of LCA substitution, the particle diameters range from 163 to 242 nm. Doxorubicin (DOX), chosen as a model anticancer drug, is effectively encapsulated into the nanoparticles with high loading efficiency (>70%). In vitro optical imaging tests reveal that the fluorescence signal of DOX quenched in the bioreducible nanoparticles is highly recovered in the presence of glutathione (GSH), a tripeptide capable of reducing disulfide bonds in the intracellular compartments. Bioreducible nanoparticles rapidly release DOX when they are incubated with 10 mm GSH, whereas the drug release is greatly retarded in physiological buffer (pH 7.4). DOX-loaded bioreducible nanoparticles exhibit higher toxicity to SCC7 cancer cells than DOX-loaded nanoparticles without the disulfide bond. Confocal laser scanning microscopy observation demonstrate that bioreducible nanoparticles can effectively deliver DOX into the nuclei of SCC7 cells. In vivo biodistribution study indicates that Cy5.5-labeled CMD-SS-LCAs selectively accumulate at tumor sites after systemic administration into tumor-bearing mice. Notably, DOX-loaded bioreducible nanoparticles exhibit higher antitumor efficacy than reduction-insensitive control nanoparticles. Overall, it is evident that bioreducible CMD-SS-LCA nanoparticles are useful as a drug carrier for cancer therapy.

    8. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV: consequences of deficient interferon-dependent antiviral defense

      Directory of Open Access Journals (Sweden)

      Hubbard Gene B

      2011-01-01

      Full Text Available Abstract Background Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. Methods The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors Results We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The

    9. Targeted blood-to-brain drug delivery --10 key development criteria.

      Science.gov (United States)

      Gaillard, Pieter J; Visser, Corine C; Appeldoorn, Chantal C M; Rip, Jaap

      2012-09-01

      Drug delivery to the brain remains challenging due to the presence of the blood-brain barrier. In this review, 10 key development criteria are presented that are important for successful drug development to treat CNS diseases by targeted drug delivery systems. Although several routes of delivery are being investigated, such as intranasal delivery, direct injections into the brain or CSF, and transient opening of the blood-brain barrier, the focus of this review is on physiological strategies aiming to target endogenous transport mechanisms. Examples from literature, focusing on targeted drug delivery systems that are being commercially developed, will be discussed to illustrate the 10 key development criteria. The first four criteria apply to the targeting of the blood-brain barrier: (1) a proven inherently safe receptor biology, (2) a safe and human applicable ligand, (3) receptor specific binding, and (4) applicable for acute and chronic indications. Next to an efficient and safe targeting strategy, as captured in key criteria 1 to 4, a favorable pharmacokinetic profile is also important (key criterion 5). With regard to the drug carriers, two criteria are important: (6) no modification of active ingredient and (7) able to carry various classes of molecules. The final three criteria apply to the development of a drug from lab to clinic: (8) low costs and straightforward manufacturing, (9) activity in all animal models, and (10) strong intellectual property (IP) protection. Adhering to these 10 key development criteria will allow for a successful brain drug development.

    10. Investigation on a Potential Targeting Drug Delivery System Consisting of Folate, Mitoxantrone and Human Serum Albumin

      Institute of Scientific and Technical Information of China (English)

      ZHOU Qiu-Jua; BI Ya-Jing; XIANG Jun-Feng; TANG Ya-Lin; YANG Qian-Fan; XU Guang-Zhi

      2008-01-01

      A potential targeting drug delivery system consisting of folate (FA), the targeting molecule, human serum al- bumin (HSA), the carrier, and mitoxantrone (MTO), the medicine, has been designed. Data obtained by UV absorp-tion, fluorescence, and NMR techniques indicated the formation of ternary complexes and possible application to building a targeting drug delivery system by using FA, MTO and HSA. Furthermore, cytotoxicity assay indicated that the toxicity of the FA-HSA-MTO against PC-3 cell line was 79.95%, which was much higher than that of free MTO tested in totally the same conditions. About 30% increase of the toxicity should be owed to the targeting ef-fect of FA. Thus, the feasibility and validity of a novel targeting drug delivery system, FA-HSA-MTO, was con-firmed.

    11. Grants4Targets - an innovative approach to translate ideas from basic research into novel drugs.

      Science.gov (United States)

      Lessl, Monika; Schoepe, Stefanie; Sommer, Anette; Schneider, Martin; Asadullah, Khusru

      2011-04-01

      Collaborations between industry and academia are steadily gaining importance. To combine expertises Bayer Healthcare has set up a novel open innovation approach called Grants4Targets. Ideas on novel drug targets can easily be submitted to http://www.grants4targets.com. After a review process, grants are provided to perform focused experiments to further validate the proposed targets. In addition to financial support specific know-how on target validation and drug discovery is provided. Experienced scientists are nominated as project partners and, depending on the project, tools or specific models are provided. Around 280 applications have been received and 41 projects granted. According to our experience, this type of bridging fund combined with joint efforts provides a valuable tool to foster drug discovery collaborations.

    12. The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy

      OpenAIRE

      Zhao, Mei-Xia; Zhu, Bing-Jie

      2016-01-01

      Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of ...

    13. Genome-wide identification of structural variants in genes encoding drug targets

      DEFF Research Database (Denmark)

      Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

      2012-01-01

      The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding the...

    14. ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma

      NARCIS (Netherlands)

      Smit, Marjon A; Maddalo, Gianluca; Greig, Kylie; Raaijmakers, Linsey M; Possik, Patricia A; van Breukelen, Bas; Cappadona, Salvatore; Heck, Albert Jr; Altelaar, Adrianus; Peeper, Daniel S

      2014-01-01

      Treatment of BRAF mutant melanomas with specific BRAF inhibitors leads to tumor remission. However, most patients eventually relapse due to drug resistance. Therefore, we designed an integrated strategy using (phospho)proteomic and functional genomic platforms to identify drug targets whose inhibiti

    15. Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery.

      Science.gov (United States)

      Huang, Liang; Ao, Lijiao; Wang, Wei; Hu, Dehong; Sheng, Zonghai; Su, Wu

      2015-03-04

      A multifunctional drug delivery vehicle consisting of a tubular shaped silica host, a compact superparamagnetic iron oxide nanoparticle layer and a hyaluronic acid surface coating was developed as a theranostic platform, for in vivo MR imaging and magnetically guided/cancer targeted drug delivery.

    16. Protein target discovery of drug and its reactive intermediate metabolite by using proteomic strategy

      OpenAIRE

      Lianghai Hu; John Paul Fawcett; Jingkai Gu

      2012-01-01

      Identifying protein targets of bioactive compounds is an effective approach to discover unknown protein functions, identify molecular mechanisms of drug action, and obtain information for optimization of lead compounds. At the same time, metabolic activation of a drug can lead to cytotoxicities. Therefore, it is very important to systemically characterize the drug and its reactive intermediate. Mass spectrometry-based proteomic approach has emerged as the most efficient to study protein funct...

    17. Formulation, Evaluation and Optimization of Pectin- Bora Rice Beads for Colon Targeted Drug Delivery System

      Directory of Open Access Journals (Sweden)

      Kuldeep Hemraj Ramteke

      2014-03-01

      Full Text Available Purpose: The purpose of this research was to established new polysaccharide for the colon targeted drug delivery system, its formulation and in vitro and in vivo evaluation. Methods: Microspheres containing pectin and bora rice were prepared by ionotropic gelation technique using zinc acetate as cross linking agent and model drug used was glipizide. A 32 full factorial design was employed to study the effect of independent variables, polymer to drug ratio (A, and concentration of cross linking agent (B on dependent variables, particle size, swelling index, drug entrapment efficiency and percentage drug release. Results: Results of trial batches indicated that polymer to drug ratio and concentration of cross linking agent affects characteristics of beads. Beads were discrete, spherical and free flowing. Beads exhibited small particle size and showed higher percentage of drug entrapment efficiency. The optimized batch P2 exhibited satisfactory drug entrapment efficiency 68% and drug release was also controlled for more than 24 hours. The polymer to drug ratio had a more significant effect on the dependent variables. In vivo gamma scintigraphy study of optimized pectin-bora rice beads demonstrated degradation of beads whenever they reached to the colon. Conclusion: Bora rice is potential polysaccharide for colon targeted drug delivery system.

    18. Molecular diagnosis and treatment of drug-resistant hepatitis B virus.

      Science.gov (United States)

      Kim, Jeong Han; Park, Yong Kwang; Park, Eun-Sook; Kim, Kyun-Hwan

      2014-05-21

      Oral antiviral agents have been developed in the last two decades for the treatment of chronic hepatitis B (CHB). However, antiviral resistance remains an important challenge for long-term CHB therapy. All of the clinically available oral antiviral agents are nucleoside or nucleotide analogues that target the activity of viral reverse transcriptase (RT), and all are reported to have resistant mutations. Since the hepatitis B virus (HBV) RT, like other viral polymerases, lacks proofreading activity, the emergence of drug-resistance occurs readily under selective pressure from the administration of antiviral agents. The molecular diagnosis of drug-resistant HBV is based on sequence variations, and current diagnostic methods include sequencing, restriction fragment polymorphism analysis, and hybridization. Here, we will discuss the currently available molecular diagnosis tools, in vitro phenotypic assays for validation of drug-resistant HBV, and treatment options for drug-resistant HBV.

    19. Interactions of dendrimers with biological drug targets: reality or mystery - a gap in drug delivery and development research.

      Science.gov (United States)

      Ahmed, Shaimaa; Vepuri, Suresh B; Kalhapure, Rahul S; Govender, Thirumala

      2016-07-21

      Dendrimers have emerged as novel and efficient materials that can be used as therapeutic agents/drugs or as drug delivery carriers to enhance therapeutic outcomes. Molecular dendrimer interactions are central to their applications and realising their potential. The molecular interactions of dendrimers with drugs or other materials in drug delivery systems or drug conjugates have been extensively reported in the literature. However, despite the growing application of dendrimers as biologically active materials, research focusing on the mechanistic analysis of dendrimer interactions with therapeutic biological targets is currently lacking in the literature. This comprehensive review on dendrimers over the last 15 years therefore attempts to identify the reasons behind the apparent lack of dendrimer-receptor research and proposes approaches to address this issue. The structure, hierarchy and applications of dendrimers are briefly highlighted, followed by a review of their various applications, specifically as biologically active materials, with a focus on their interactions at the target site. It concludes with a technical guide to assist researchers on how to employ various molecular modelling and computational approaches for research on dendrimer interactions with biological targets at a molecular level. This review highlights the impact of a mechanistic analysis of dendrimer interactions on a molecular level, serves to guide and optimise their discovery as medicinal agents, and hopes to stimulate multidisciplinary research between scientific, experimental and molecular modelling research teams.

    20. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier

      NARCIS (Netherlands)

      Zuhorn, Inge; Georgieva, Julia V.; Hoekstra, Dick

      2015-01-01

      The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics in

    1. Notch signaling in glioblastoma: a developmental drug target?

      Directory of Open Access Journals (Sweden)

      Boulay Jean-Louis

      2010-11-01

      Full Text Available Abstract Malignant gliomas are among the most devastating tumors for which conventional therapies have not significantly improved patient outcome. Despite advances in imaging, surgery, chemotherapy and radiotherapy, survival is still less than 2 years from diagnosis and more targeted therapies are urgently needed. Notch signaling is central to the normal and neoplastic development of the central nervous system, playing important roles in proliferation, differentiation, apoptosis and cancer stem cell regulation. Notch is also involved in the regulation response to hypoxia and angiogenesis, which are typical tumor and more specifically glioblastoma multiforme (GBM features. Targeting Notch signaling is therefore a promising strategy for developing future therapies for the treatment of GBM. In this review we give an overview of the mechanisms of Notch signaling, its networking pathways in gliomas, and discuss its potential for designing novel therapeutic approaches.

    2. [New targets and new drugs in thoracic oncology].

      Science.gov (United States)

      Rouviere, D; Bousquet, E; Pons, E; Milia, J-D; Guibert, N; Mazieres, J

      2015-10-01

      A number of mechanisms that drive oncogenesis have been deciphered over the last 20 years. The main oncogenic factors in the field of thoracic oncology are mutations of EGFR, KRAS, and EML4-ALK translocation, which are most often reported in adenocarcinomas. However, new molecular targets have been highlighted recently including BRAF mutations, HER2 or PI3K, new translocations such as ROS1 or KIF5B-RET. Molecular abnormalities have also been identified in tumors other than adenocarcinoma (squamous and small cell carcinoma). Therapeutic strategies have been designed to inhibit these signaling pathways including monoclonal antibodies and tyrosine kinase inhibitors. Some of these molecules are now approved as therapies, others are currently undergoing testing in clinical trials. We here present a review of novel targeted agents for lung cancer.

    3. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

      Science.gov (United States)

      Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

      2012-02-01

      The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

    4. Mining predicted essential genes of Brugia malayi for nematode drug targets.

      Directory of Open Access Journals (Sweden)

      Sanjay Kumar

      Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

    5. Mining predicted essential genes of Brugia malayi for nematode drug targets.

      Science.gov (United States)

      Kumar, Sanjay; Chaudhary, Kshitiz; Foster, Jeremy M; Novelli, Jacopo F; Zhang, Yinhua; Wang, Shiliang; Spiro, David; Ghedin, Elodie; Carlow, Clotilde K S

      2007-01-01

      We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

    6. Targeted CNx Nanowire-Drug Complexes for Enhanced Chemotherapeutic Efficacy

      Science.gov (United States)

      2009-09-01

      Zhongrui Li‡ and Alexandru S. Biris‡ (2008). Temperature Measurement of Carbon Nanotubes Using Infrared Thermography Chemistry of Materials 20, 4011...The relative efficiency of conversion of nIR irradiation into heat for DNA-encased MWNTs relative to non-DNA-encased MWNTs and other materials is...successful, the use of aptamers. Details of the successful approach to building N-MWNTs with targeting molecule: Raw, carbon vapor deposition (CVD) MWNTs

      <