WorldWideScience

Sample records for antiviral activities affecting

  1. Antiviral Drug Research Proposal Activity

    Directory of Open Access Journals (Sweden)

    Lisa Injaian

    2011-03-01

    Full Text Available The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.

  2. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  3. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  4. Antiviral activities of whey proteins.

    Science.gov (United States)

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Wang, Yan; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Xia, Jiang

    2015-09-01

    Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe(3+)-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity. PMID:26198883

  5. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans.

    Science.gov (United States)

    To, Kelvin K W; Mok, Ka-Yi; Chan, Andy S F; Cheung, Nam N; Wang, Pui; Lui, Yin-Ming; Chan, Jasper F W; Chen, Honglin; Chan, Kwok-Hung; Kao, Richard Y T; Yuen, Kwok-Yung

    2016-08-01

    Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo. PMID:27259985

  6. Antiviral activity of silymarin against chikungunya virus.

    Science.gov (United States)

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  7. Antiviral activity of silymarin against chikungunya virus

    OpenAIRE

    Rafidah Lani; Pouya Hassandarvish; Chun Wei Chiam; Ehsan Moghaddam; Justin Jang Hann Chu; Kai Rausalu; Andres Merits; Stephen Higgs; Dana Vanlandingham; Sazaly Abu Bakar; Keivan Zandi

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of thre...

  8. Antiviral activity of constituents of Tamus communis.

    Science.gov (United States)

    Aquino, R; Conti, C; De Simone, F; Orsi, N; Pizza, C; Stein, M L

    1991-10-01

    The antiviral activity of the phenanthrene derivatives 1-6, of the spyrostane triglycosides dioscin (7) and gracillin (8), of the furostanol tetraglycosides methylprotodioscin (9), its (25S) epimer methylprotoneodioscin (10), and methylprotogracillin 11, have been tested towards two RNA viruses: vesicular stomatitis virus and human rhinovirus type 1B. All these products were extracted from the rizomes of Tamus communis L; compound 11 was isolated also from Asparagus cochinchinesis, together with pseudoprotodioscin (12), a 20 (22)-unsaturated furostanoside, which was also investigated for antiviral activity. The results were of some interest mainly for the phenanthrene derivatives. PMID:1667189

  9. Antiviral and Immunostimulant Activities of Andrographis paniculata

    OpenAIRE

    Churiyah; Olivia Bunga Pongtuluran; Elrade Rofaani; Tarwadi,

    2015-01-01

    Andrographis paniculata (Burm. f.) Nees is a medicinal plant which was reported to have anti HIV, anti pathogenic bacteria and immunoregulatory activities. The research purpose was to investigate the activity of Andrographis paniculata ethanol extract as antiviral and immunostimulant. A. paniculata leaves oven-dried, then grinded and macerated with ethanol 90%, and the extract then analyzed using High Performance Liquid Chromatography (HPLC) to determine the content of active compounds androg...

  10. Antiviral activity of oxidized polyamines.

    Science.gov (United States)

    Bachrach, U

    2007-08-01

    Polyamines, oxidized by serum amine oxidase, yield aminoaldehydes and hydrogen peroxide. Acrolein may be formed from the aminoaldehydes by a spontaneous beta-elimination process. These oxidation products "oxidized polyamines" inhibit bacterial growth and exhibit anticancer activity. The antimicrobial activity of oxidized polyamines is not limited to bacteria; and the inactivation of bacterial viruses, plant viruses and animal viruses, was also reported. Bacteriophages of the T-odd series are permeable and were inactivated by oxidized polyamines. The inactive phages absorb to their bacterial host and injected their DNA, which formed a stable inactive complex with the aminoaldehydes. Aminoaldehydes, synthesized chemically, also inactivated viruses. The growth of the plant viruses: Tobacco mosaic virus, Potato virus X and Alfalfa mosaic virus was also inhibited by oxidized polyamines. The animal viruses, which were inactivated by oxidized polyamines included Myxoviruses (influenza and Newcastle disease viruses), West Nile, vaccinia and Sindbis viruses. These findings may have practical implications. PMID:17429570

  11. Antiviral and Immunostimulant Activities of Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Churiyah

    2015-04-01

    Full Text Available Andrographis paniculata (Burm. f. Nees is a medicinal plant which was reported to have anti HIV, anti pathogenic bacteria and immunoregulatory activities. The research purpose was to investigate the activity of Andrographis paniculata ethanol extract as antiviral and immunostimulant. A. paniculata leaves oven-dried, then grinded and macerated with ethanol 90%, and the extract then analyzed using High Performance Liquid Chromatography (HPLC to determine the content of active compounds andrographolide. The antiviral activity of the extract was determined by observing its ability on inhibiting virus load in A549 cells transfected with Simian Retro Virus (SRV by Real Time – Polymerase Chain Reaction (RT-PCR analysis. The immunostimulant activity of extract was determined by its ability to induce lymphocytes cell proliferation using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Our result indicated that the A. paniculata ethanol extract inhibited the SRV virus titer similar to the positive control Lamivudine, and it was not toxic to the A459 cell line. Furthermore, low concentration (1 μg/mL of A. paniculata extract could stimulated lymphocyte cell proliferation about 38% compared to the control lymphocyte cell without any treatment.

  12. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    OpenAIRE

    Paul Schnitzler; Jürgen Reichling; Akram Astani

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infectio...

  13. Antiviral Activity of Euphorbia helioscopia Extract

    Directory of Open Access Journals (Sweden)

    M. Ramezani

    2008-01-01

    Full Text Available In the present study, the antiviral effects of Euphorbia helioscopia extracts were investigated using plaque reduction assay. Plant extracts were prepared using Soxhlet apparatus or by maceration in methanol. After applying several enriching stages of phage CP51, phage titration was performed to determine the phage concentration in phage lysate for specifying the dilution factor of the phage to be used as negative control for the next working stages. Then IC50 of trifluridine, as a positive control, for phage CP51 was determined. The MIC of the extracts for Bacillus cereus was determined as 1.25 and 0.5 mg mL-1 for Soxhlet and maceration extracts, respectively. To determine whether the extracts have the ability to inhibit the adsorption of virus to host cell, it was pre-incubated with phage CP51 for 30 min at 25°C. The growth and reproduction of phage was inhibited by more than 50% at concentration of 1 and 0.25 mg mL-1, respectively. In order to test the effects of extract on transcription process, Bacillus cereus, phage CP51 and extract were incubated together. The growth and reproduction of phage was inhibited by more than 50% at concentration of 0.75 and 0.125 mg mL-1 or Soxhlet and macerated extracts, respectively. These results indicated that both extracts of E. helioscopia have considerable antiviral activity.

  14. Antiviral activity of luteolin against Japanese encephalitis virus.

    Science.gov (United States)

    Fan, Wenchun; Qian, Suhong; Qian, Ping; Li, Xiangmin

    2016-07-15

    Japanese encephalitis virus (JEV), a member of family Flaviviridae, is a neurotropic flavivirus that causes Japanese encephalitis (JE). JEV is one of the most important causative agents of viral encephalitis in humans, and this disease leads to high fatality rates. Although effective vaccines are available, no effective antiviral therapy for JE has been developed. Hence, identifying effective antiviral agents against JEV infection is important. In this study, we found that luteolin was an antiviral bioflavonoid with potent antiviral activity against JEV replication in A549 cells with IC50=4.56μg/mL. Luteolin also showed extracellular virucidal activity on JEV. With a time-of-drug addition assay revealing that JEV replication was inhibited by luteolin after the entry stage. Overall, our results suggested that luteolin can be used to develop an antiviral drug against JEV. PMID:27126774

  15. Evaluation of antiviral activity of essential oil of Trachyspermum Ammi against Japanese encephalitis virus

    OpenAIRE

    Soumen Roy; Pratibha Chaurvedi; Abhay Chowdhary

    2015-01-01

    Background: Japanese encephalitis is a leading form of viral encephalitis, prevalent mostly in South Eastern Asia caused by Japanese encephalitis virus (JEV). It is transmitted by the mosquitoes of the Culex sp. The disease affects children and results in 50% result in permanent neuropsychiatric disorder. There arises a need to develop a safe, affordable, and potent anti-viral agent against JEV. This study aimed to assess the antiviral activity of ajwain (Trachyspermum ammi: Umbellifereae) es...

  16. STUDY OF ANTIVIRAL ACTIVITY OF SOME HYDRAZONE PINOSTROBIN DERIVATIVES

    Directory of Open Access Journals (Sweden)

    G. K. Mukusheva

    2014-01-01

    Full Text Available New derivatives on the basis of hydrazone pinostrobin molecule were synthesized. Significant antiviral activity of received samples of new hydrazone pinstrobin derivatives was identified.

  17. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    Science.gov (United States)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  18. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  19. Mechanisms of virus resistance and antiviral activity of snake venoms

    Directory of Open Access Journals (Sweden)

    JVR Rivero

    2011-01-01

    Full Text Available Viruses depend on cell metabolism for their own propagation. The need to foster an intimate relationship with the host has resulted in the development of various strategies designed to help virus escape from the defense mechanisms present in the host. Over millions of years, the unremitting battle between pathogens and their hosts has led to changes in evolution of the immune system. Snake venoms are biological resources that have antiviral activity, hence substances of significant pharmacological value. The biodiversity in Brazil with respect to snakes is one of the richest on the planet; nevertheless, studies on the antiviral activity of venom from Brazilian snakes are scarce. The antiviral properties of snake venom appear as new promising therapeutic alternative against the defense mechanisms developed by viruses. In the current study, scientific papers published in recent years on the antiviral activity of venom from various species of snakes were reviewed. The objective of this review is to discuss the mechanisms of resistance developed by viruses and the components of snake venoms that present antiviral activity, particularly, enzymes, amino acids, peptides and proteins.

  20. Screening for antiviral activities of isolated compounds from essential oils.

    Science.gov (United States)

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  1. Atividade antiviral de Musa acuminata Colla, Musaceae Antiviral activity of Musa acuminata Colla, Musaceae

    Directory of Open Access Journals (Sweden)

    Fernanda Otaviano Martins

    2009-09-01

    Full Text Available O presente trabalho avalia a atividade antiviral de extratos e frações de Musa acuminata Colla, Musaceae, coletada em duas regiões do Estado do Rio de Janeiro (Petrópolis e Santo Antônio de Pádua. As inflorescências de M. acuminata apresentaram excelente atividade para os dois vírus avaliados: herpesvírus simples humano tipo 1 e herpesvírus simples humano tipo 2, ambos resistentes ao Aciclovir. Os resultados indicam que os extratos de M. acuminata testados podem constituir alvo potencial para uso em terapias antivirais.This study evaluates the antiviral activity of extracts and fractions of Musa acuminata Colla collected in two regions of Rio de Janeiro State (Petrópolis and Santo Antônio de Pádua. The inflorescences of M. acuminata showed excellent activity for the two virus evaluated: simple human herpesvirus type 1 and simple human herpesvirus type 2, both resistant to Acyclovir. The results indicate that the tested extracts of M. acuminata can be potential target for use in antiviral therapy.

  2. Evaluation of antiviral activity of essential oil of Trachyspermum Ammi against Japanese encephalitis virus

    Directory of Open Access Journals (Sweden)

    Soumen Roy

    2015-01-01

    Full Text Available Background: Japanese encephalitis is a leading form of viral encephalitis, prevalent mostly in South Eastern Asia caused by Japanese encephalitis virus (JEV. It is transmitted by the mosquitoes of the Culex sp. The disease affects children and results in 50% result in permanent neuropsychiatric disorder. There arises a need to develop a safe, affordable, and potent anti-viral agent against JEV. This study aimed to assess the antiviral activity of ajwain (Trachyspermum ammi: Umbellifereae essential oil against JEV. Materials and Methods: Ajwain oil was extracted by distillation method and in vitro cytotoxicity assay was performed in vero cell line by 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay method. JEV titer was determined by plaque assay and in vitro antiviral activity of ajwain oil was quantified by the plaque reduction neutralization test (PRNT. Results: Cytotoxic concentration of the oil was found to be 1 mg/ml by MTT assay. The titer of the virus pool was found to be 50× 10 7 PFU/ml. we observed 80% and 40% virus inhibition in 0.5mg/ml of ajwain oil by PRNT method in preexposure treatment and postexposure treatment (antiviral activity, respectively. Conclusion: Our data indicate ajwain oil has potential in vitro antiviral activity against JEV. Further, the active biomolecule will be purified and evaluated for anti-JEV activity and also to scale up for in vivo trial to evaluate the efficacy of ajwain oil in future.

  3. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    OpenAIRE

    Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine com...

  4. 6-azacytidine--compound with wide spectrum of antiviral activity.

    Science.gov (United States)

    Alexeeva, I; Dyachenko, N; Nosach, L; Zhovnovataya, V; Rybalko, S; Lozitskaya, R; Fedchuk, A; Lozitsky, V; Gridina, T; Shalamay, A; Palchikovskaja, L; Povnitsa, O

    2001-01-01

    6-azacytidine demonstrates activity against adenoviruses types 1, 2, 5. It inhibit synthesis of viral DNA and proteins. 6-AC shows antiherpetic and antiinfluenza action during experimental infection in mice. 6-AC is prospective for drug development as an antiviral substance with a wide spectrum of activity. PMID:11562975

  5. Ophthalmic antiviral chemotherapy : An overview

    Directory of Open Access Journals (Sweden)

    Athmanathan Sreedharan

    1997-01-01

    Full Text Available Antiviral drug development has been slow due to many factors. One such factor is the difficulty to block the viral replication in the cell without adversely affecting the host cell metabolic activity. Most of the antiviral compounds are analogs of purines and pyramidines. Currently available antiviral drugs mainly inhibit viral nucleic acid synthesis, hence act only on actively replicating viruses. This article presents an overview of some of the commonly used antiviral agents in clinical ophthalmology.

  6. Bilirubin: an endogenous molecule with antiviral activity in vitro.

    Directory of Open Access Journals (Sweden)

    CesareMancuso

    2012-03-01

    Full Text Available Bilirubin-IX-alpha (BR is the final product of heme metabolism through the heme oxygenase/biliverdin reductase (HO/BVR system. Previous papers reported on the microbicidal effects of the HO by-products biliverdin-IX-alpha, carbon monoxide and iron, through either direct or indirect mechanisms. In this paper the evidence of a virucidal effect of BR against human herpes simplex virus type 1 (HSV-1 and the enterovirus EV71 was provided. Bilirubin-IX-alpha, at concentrations 1-10 µM, close to those found in blood and tissues, significantly reduced HSV-1 and EV71 replication in Hep-2 and Vero cell lines, respectively. Bilirubin-IX-alpha inhibited viral infection of Hep-2 and Vero cells when given 2 hours before, concomitantly and 2 hours after viral infection. Furthermore, BR retained its antiviral activity even complexed with a saturating concentration of human serum-albumin. Moreover, 10 µM BR increased the formation of nitric oxide and the phosphorylation of JNK in Vero and Hep-2 cell lines, respectively, thus implying a role of these two pathways in the mechanism of antiviral activity of the bile pigment. In conclusion, these results support the antiviral effect of BR against HSV-1 and enterovirus in vitro, and put the basis for further basic and clinical studies to understand the real role of BR as an endogenous antiviral molecule.

  7. DMPD: What is disrupting IFN-alpha's antiviral activity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15283983 What is disrupting IFN-alpha's antiviral activity? Mbow ML, Sarisky RT. Tr...ends Biotechnol. 2004 Aug;22(8):395-9. (.png) (.svg) (.html) (.csml) Show What is disrupting IFN-alpha's antiviral activity...? PubmedID 15283983 Title What is disrupting IFN-alpha's antiviral activity? Authors Mbow ML,

  8. [Acyclic analogs of ribavirin. Synthesis and antiviral activity].

    Science.gov (United States)

    Tsilevich, T L; Shchaveleva, I L; Nosach, L N; Zhovnovataia, V L; Smirnov, I P

    1988-05-01

    Activity of several ribavirin analogues, viz.1-(2-hydroxyethoxymethyl)-, 1-(3-hydroxypropoxymethyl)-, 1-(4-hydroxybutoxymethyl)- and 1-(2,3-dihydroxypropyl)-1,2,4-triazole 5- and 3-carboxamides, against human adenovirus type 2 in the Hep-2 cell culture has been studied. The ether oxygen atom imitating the ribose O4' was shown to be essential for the antiviral activity. 1-(2-Hydroxyethoxymethyl)-1,2,4-triazole 3-carboxamide, a structural analogue of ribavirin in which the hydroxyl group is apparently equivalent to the ribose 5'-OH, possesses the highest activity among the compounds studied. Lengthening of the alkyl side chain reduces essentially the antiviral activity. PMID:3422011

  9. Antiviral Activity of Some Plants Used in Nepalese Traditional Medicine

    OpenAIRE

    M. Hipper; Karmacharya, N.; Gewali, M. B.; Bhattarai, S.; Chaudhary, R.P.; Jha, P. K.; M. Rajbhandari; R. Mentel; U. Lindequist

    2009-01-01

    Methanolic extracts of 41 plant species belonging to 27 families used in the traditional medicine in Nepal have been investigated for in vitro antiviral activity against Herpes simplex virus type 1 (HSV-1) and influenza virus A by dye uptake assay in the systems HSV-1/Vero cells and influenza virus A/MDCK cells. The extracts of Astilbe rivularis, Bergenia ciliata, Cassiope fastigiata and Thymus linearis showed potent anti-herpes viral activity. The extracts of Allium oreoprasum, Androsace str...

  10. Antiviral activity of some South American medicinal plants.

    Science.gov (United States)

    Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L

    1999-03-01

    Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication. PMID:10190189

  11. Novel norbornane-based nucleoside and nucleotide analogues and their antiviral activities

    Czech Academy of Sciences Publication Activity Database

    Dejmek, Milan; Šála, Michal; Hřebabecký, Hubert; Andrei, G.; Balzarini, J.; Naesens, L.; Neyts, J.; Nencka, Radim

    San Francisco: International Society for Antiviral Research (ISAR), 2013. s. 48-48. [International Conference on Antiviral Research /26./. 11.05.2013-15.05.2013, San Francisco] Grant ostatní: European Social Fund(XE) CZ.1.07/2.2.00/28.0184 Institutional support: RVO:61388963 Keywords : HIV * antiviral activity * norbornane-based derivatives Subject RIV: CC - Organic Chemistry

  12. Aktivitas Antiviral Minyak Atsiri Jahe Merah terhadap Virus Flu Burung (ANTIVIRAL ACTIVITY OF ESSENSIAL OIL RED GINGER ON AVIAN INFLUENZA

    Directory of Open Access Journals (Sweden)

    Tri Untari

    2013-07-01

    Full Text Available The studies have reported that ginger have many activities such as antiemesis, anti-inflammatory,anti-bacterial and anti-parasites. Therefore, this study was conducted to evaluate antiviral effect of essentialred ginger oil againts Avian Influenza (AI in ovo using hemagglutination test (HA. Avian Influenzaviruses were treated with 0,01%, 0,1% and 1% of essential red ginger oil, and then inoculated in chickenembryonated egg via allantoic sac. Allantoic fluid was harvested using for HA test . Result of this studyshows that application of 1% of essential red ginger oil results in the reduction of titer HA . Interestingly,essential oil shows antiviral activity revealed HA titre 20 whereas the titre HA AI which AI virus treatedwith 0,01% and 0,1% essential red ginger oil, the HA titer was 25. The conclution of this study proved thatessensial oil 1% of the red gingger is the best concentration as antiviral activity .

  13. In vitro antiviral activity of germacrone against porcine parvovirus.

    Science.gov (United States)

    Chen, Ye; Dong, Yunxia; Jiao, Yiren; Hou, Lianjie; Shi, Yuzhen; Gu, Ting; Zhou, Pei; Shi, Zhongyuan; Xu, Lulu; Wang, Chong

    2015-06-01

    Porcine parvovirus (PPV) infections can lead to significant losses to the swine industry by causing reproductive failure in pigs. Germacrone has been reported to efficiently suppress the replication of influenza virus. In this report, the antiviral activity of germacrone on PPV in swine testis (ST) cells was investigated. Here, we show for the first time that germacrone protects cells from PPV infection and suppresses the synthesis of viral mRNA and protein. Furthermore, we show that germacrone inhibits PPV replication at an early stage in a dose-dependent manner. These findings suggest that germacrone is a potential candidate for anti-PPV therapy. PMID:25813663

  14. Total Synthesis and Anti-Viral Activities of an Extract of Radix isatidis

    Directory of Open Access Journals (Sweden)

    Li-Wei He

    2014-12-01

    Full Text Available Radix isatidis (Banlangen, a famous traditional Chinese medicine, has been used for thousands of years in China due to its anti-viral activity. Through our research, we inferred that the anti-viral activity of Radix isatidis depended on the water-soluble part. Among the components of this extract, the isoquinoline derivative 1 was isolated for the first time and has shown better anti-viral activity than other constituents. In this study, to solve the problem of sourcing sufficient quantities of compound 1, a total synthesis route is described, and several analogues are also evaluated for their anti-viral activities. Among them, compound 8 shown potent anti-viral activity with an IC50 value of 15.3 µg/mL. The results suggested that isoquinoline derivatives possessed potent anti-viral activity and are worthy further development.

  15. Evaluation of antiviral activity of plant extracts against foot and mouth disease virus in vitro.

    Science.gov (United States)

    Younus, Ishrat; Siddiq, Afshan; Ishaq, Humera; Anwer, Laila; Badar, Sehrish; Ashraf, Muhammad

    2016-07-01

    The aim of this study was to evaluate antiviral activity of chloroformic leaves extracts of three plants: Azadirachta indica, Moringa oleifera and Morus alba against Foot and Mouth disease virus using MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide). Antiviral and cytotoxic activity of each extract was evaluated as cell survival percentage and results were expressed as Means ± S.D. The concentrations which resulted in cell survival percentages of greater than 50% are considered to be effective antiviral concentrations. From the tested plant extracts, Moringa oleifera showed potent antiviral activity (p<0.05) while Azadirachta indica showed significant antiviral activity in the range of 1-50μ/ml & 12-100μ/ml respectively. In contrast no antiviral activity was observed by Morus alba as all the tested concentration resulted in significant reduction (p<0.05) in cell survival percentage. PMID:27393440

  16. Antiviral Activity of Some Plants Used in Nepalese Traditional Medicine

    Directory of Open Access Journals (Sweden)

    M. Rajbhandari

    2009-01-01

    Full Text Available Methanolic extracts of 41 plant species belonging to 27 families used in the traditional medicine in Nepal have been investigated for in vitro antiviral activity against Herpes simplex virus type 1 (HSV-1 and influenza virus A by dye uptake assay in the systems HSV-1/Vero cells and influenza virus A/MDCK cells. The extracts of Astilbe rivularis, Bergenia ciliata, Cassiope fastigiata and Thymus linearis showed potent anti-herpes viral activity. The extracts of Allium oreoprasum, Androsace strigilosa, Asparagus filicinus, Astilbe rivularis, Bergenia ciliata and Verbascum thapsus exhibited strong anti-influenza viral activity. Only the extracts of A. rivularis and B. ciliata demonstrated remarkable activity against both viruses.

  17. SUMO-interacting motifs of human TRIM5α are important for antiviral activity.

    Directory of Open Access Journals (Sweden)

    Gloria Arriagada

    2011-04-01

    Full Text Available Human TRIM5α potently restricts particular strains of murine leukemia viruses (the so-called N-tropic strains but not others (the B- or NB-tropic strains during early stages of infection. We show that overexpression of SUMO-1 in human 293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor the mutant R110E of N-MLV CA (a B-tropic switch are affected by SUMO-1 overexpression. The block occurred prior to reverse transcription and could be abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral effects, and this loss of restriction could be restored by expression of a human TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and three putative SUMO interacting motifs (SIMs in the B30.2 domain. Mutations of the TRIM5α consensus SUMO conjugation site did not affect the antiviral activity of TRIM5α in any of the cell types tested. Mutation of the SIM consensus sequences, however, abolished TRIM5α antiviral activity against N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation of CA, are required for restriction. We propose that at least a portion of the antiviral activity of TRIM5α is mediated through the binding of its SIMs to SUMO-conjugated CA.

  18. Small molecules with antiviral activity against the Ebola virus

    OpenAIRE

    Nadia Litterman; Christopher Lipinski; Sean Ekins

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important r...

  19. Antiviral activity of squalamine: Role of electrostatic membrane binding

    Science.gov (United States)

    Beckerman, Bernard; Qu, Wei; Mishra, Abhijit; Zasloff, Michael; Wong, Gerard; Luijten, Erik

    2012-02-01

    Recent workootnotetextM. Zasloff et al., Proc. Nat. Acad. Sci. (USA) 108, 15978 (2011). has demonstrated that squalamine, a molecule found in the liver of sharks, exhibits broad-spectrum antiviral properties. It has been proposed that this activity results from the charge-density matching of squalamine and phospholipid membranes, causing squalamine to bind to membranes and displace proteins such as Rac1 that are crucial for the viral replication cycle. Here we investigate this hypothesis by numerical simulation of a coarse-grained model for the competition between Rac1 and squalamine in binding affinity to a flat lipid bilayer. We perform free-energy calculations to test the ability of squalamine to condense stacked bilayer systems and thereby displace bulkier Rac1 molecules. We directly compare our findings to small-angle x-ray scattering results for the same setup.

  20. Aktivitas Antiviral Minyak Atsiri Jahe Merah terhadap Virus Flu Burung (ANTIVIRAL ACTIVITY OF ESSENSIAL OIL RED GINGER ON AVIAN INFLUENZA)

    OpenAIRE

    Tri Untari; Sitarina Widyarini; Michael Haryadi Wibowo

    2013-01-01

    The studies have reported that ginger have many activities such as antiemesis, anti-inflammatory,anti-bacterial and anti-parasites. Therefore, this study was conducted to evaluate antiviral effect of essentialred ginger oil againts Avian Influenza (AI) in ovo using hemagglutination test (HA). Avian Influenzaviruses were treated with 0,01%, 0,1% and 1% of essential red ginger oil, and then inoculated in chickenembryonated egg via allantoic sac. Allantoic fluid was harvested using for HA test ....

  1. Synthesis and Antiviral Activities of Chiral Thiourea Derivatives

    Institute of Scientific and Technical Information of China (English)

    YAN,Zhikun; CAI,Xuejian; YANG,Xuan; SONG,Baoan; CHEN,Zhuo; BHADURY,S.Pinaki; HU,Deyu; JIN,Linhong; XUE,Wei; LU,Ping

    2009-01-01

    An environmentally benign method has been developed for the synthesis of novel chiral thiourea derivatives in high yields in ionic liquid [Bmim]PF6.The ionic solvent Call be recovered and reused without any loss of its activity.The target compounds were characterized by elemental analysis,IR,1H NMR and 13C NMR spectral data.Accord-ing to the preliminary bioassay,some of the chiral thiourea analogues exhibited moderate in vivo antiviral activities against TMV at a concentration of 500 mg/L.Title chiral compound 3i Was found to possess good in vivo protection,inactivation and curative activities of 57.O%,96.4%and 55.0%,respectively against TMV with an inhibitory concentration at 500 mg/L.The title chiral compound 3i revealed better inactivation effect on TMV(EC50=50.8pg/mL)than Ningnanmycin(EC50=60.2μg/mL).

  2. [Antiviral activity of representatives of the family Crassulaceae].

    Science.gov (United States)

    Shirobokov, V P; Evtushenko, A I; Lapchik, V F; Shirobokova, D N; Suptel', E A

    1981-12-01

    The antiviral properties of the juice of 11 species of the orpine family were studied. 8 of them belonged to the genera Kalanchoe, i. e. Kalanchoe diagremontiona R. Hamet, K. pinnata (Zam.) Persoon, K. Peteri Werd., K. prolifera (Bovie) R. Hamet, K. marnierriana (Mann. et Boit) Jacobs; K. blossfeldiana v. Poelln, K. beharensis Drake del Gastillo, K. waldheimii R. Hamet et Perr and 3 belonged to the Sedum genera, i. e. Sedum telephium L., S. spectabile Boreau, S. acre L. A high virus neutralizing activity of the juice from 4 species of Kalanchoe, i. e. K. blossfeldiana, K. waldheimii, K. pinnata and K. beharensis was shown. Inhibition of the virus infecting activity was observed at the juice dilutions from 1-2 to 1-8000 and higher. The viricidal factor of Kalanchoe is stable. It is not destroyed by ether, alcohol and potassium periodate. It is not absorbed by bentonite at the acid pH values. Addition of cattle serum or purified proteins to the juice resulted in their precipitation which suppressed the viricidal activity of the juice. PMID:7198890

  3. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    Science.gov (United States)

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  4. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro.

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2014-06-01

    Full Text Available Essential oils are complex mixtures containing compounds of several different functional- group classes. Depending on the structure, we can distinguish monoterpenes, phenylpropanes, and other components. Here in this study two monoterpene compounds of essential oils, i.e. β-pinene and limonene were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro.All antiviral assays were performed using RC-37 cells. Cytotoxicity was determined in a neutral red assay, antiviral assays were performed with HSV-1 strain KOS. The mode of antiviral action was evaluated at different periods during the viral replication cycle. Acyclovir was used as positive antiviral control.Beta-pinenene and limonenen reduced viral infectivity by 100 %. The mode of antiviral action has been determined, only moderate antiviral effects were revealed by monoterpenes when these drugs were added to host cells prior infection or after entry of HSV into cells. However, both monoterpenes exhibited high anti-HSV-1 activity by direct interaction with free virus particles. Both tested drugs interacted with HSV-1 in a dose-dependent manner thereby inactivating viral infection.These results suggest that monoterpenes in essential oils exhibit antiherpetic activity in the early phase of viral multiplication and might be used as potential antiviral agents.

  5. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01.

    Science.gov (United States)

    Zhang, Guoqiang; Feng, Juntao; Han, Lirong; Zhang, Xing

    2016-07-01

    Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture. PMID:27091231

  6. [Determination of the antibacterial and antiviral activity of the essential oil from Minthostachys verticillata (Griseb.) Epling].

    Science.gov (United States)

    Primo, V; Rovera, M; Zanon, S; Oliva, M; Demo, M; Daghero, J; Sabini, L

    2001-01-01

    The in vitro antiviral activity of the essential oil from Minthostachys verticillata was investigated against herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV). The viral inhibition was assayed employing viral plaque reduction assay. The antiviral activity of the essential oil specifically affects PrV and HSV-1 multiplication, since it was found that non toxic effects on cells were observed at the concentrations assayed. The therapeutic index values were 10.0 and 9.5 for HSV-1 and PrV, respectively. The antibacterial activity was studied using a diffusion assay and the broth tube dilution method. Gram-positive bacteria were more sensitive to inhibition by plant essential oil than the gram-negative bacteria. The essential oil of M. verticillata was analyzed by gas chromatography (GC) technique. Of the six components identified in the volatile oil, pulegone (44.56%) and menthone (39.51%) were the major constituents. The antimicrobial activity can be explained to some extent by the presence of pulegone. Results suggest that further investigations concerning the isolation of the substance responsible for the antimicrobial activity and an effort to define the mechanisms of action are warranted. PMID:11494754

  7. Puromycin-sensitive aminopeptidase: an antiviral prodrug activating enzyme.

    Science.gov (United States)

    Tehler, Ulrika; Nelson, Cara H; Peterson, Larryn W; Provoda, Chester J; Hilfinger, John M; Lee, Kyung-Dall; McKenna, Charles E; Amidon, Gordon L

    2010-03-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design. PMID:19969024

  8. Chemical composition, antimicrobial activity and antiviral activity of essential oil of Carum copticum from Iran

    Directory of Open Access Journals (Sweden)

    Reza Kazemi Oskuee

    2011-09-01

    Conclusion: The essential oil showed an antiviral activity against phage when phage was pre-incubated with the essential oil prior to its exposure to B. cereus and without any pre-incubation with the phage, suggesting that the oil directly inactivated virus particles.

  9. 5α-reductase inhibitors, antiviral and anti-tumor activities of some steroidal cyanopyridinone derivatives.

    Science.gov (United States)

    Al-Mohizea, Abdullah M; Al-Omar, Mohamed A; Abdalla, Mohamed M; Amr, Abdel-Galil E

    2012-01-01

    We herein report the 5α-reductase inhibitors, antiviral and anti-tumor activities of some synthesized heterocyclic cyanopyridone and cyanothiopyridone derivatives fused with steroidal structure. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). All the compounds, except 3b, were interestingly less toxic than the reference drug (Prednisolone(®)). Seventeen heterocyclic derivatives containing a cyanopyridone or cyanothiopyridone rings fused to a steroidal moiety were synthesized and screened for their 5α-reductase inhibitors, antiviral and anti-tumor activities comparable to that of Anastrozole, Bicalutamide, Efavirenz, Capravirine, Ribavirin, Oseltamivir and Amantadine as the reference drugs. Some of the compounds exhibited better 5α-reductase inhibitors, antiviral and anti-tumor activities than the reference drugs. The detailed 5α-reductase inhibitors, antiviral and anti-tumor activities of the synthesized compounds were reported. PMID:22057085

  10. Synthesis and Antiviral Activity of 3-Aminoindole Nucleosides of 2-Acetamido-2-deoxy-D-glucose

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Adel A. H.; Elessawy, Farag A.; Barakat, Yousif A. [Menoufia Univ., Shebin El-Koam (Egypt); Ellatif, Mona M. Abd [The British Univ. in Egypt, Cairo (Egypt)

    2012-10-15

    A new method for the construction of 3-aminoindole nucleosides of 2-acetamido-2-deoxy-D-glucose based is presented. Nitration and acetylation of the indole nucleosides by acetic anhydride-nitric acid mixture followed by reduction using silver catalyst (SNSM) impregnated on silica gel, afforded the corresponding amino indole nucleosides. The nucleosides were tested for antiviral activity against hepatitis B virus (HBV) to show different degrees of antiviral activities or inhibitory actions.

  11. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsumoto

    Full Text Available Glycyrrhizin (GL has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc. To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp, replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD, respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2. We found that group 1B PLA2 (PLA2G1B inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.

  12. Antiviral Activity of Isatis indigotica Extract and Its Derived Indirubin against Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Shu-Jen Chang

    2012-01-01

    Full Text Available Isatis indigotica is widely used in Chinese Traditional Medicine for clinical treatment of virus infection, tumor, and inflammation, yet its antiviral activities remain unclear. This study probed antiviral activity of I. indigotica extract and its marker compounds against Japanese encephalitis virus (JEV. I. indigotica methanol extract, indigo, and indirubin proved less cytotoxic than other components, showing inhibitory effect (concentration-dependent on JEV replication in vitro. Time-of-addition experiments proved the extract, indigo, and indirubin with potent antiviral effect by pretreatment (before infection or simultaneous treatment (during infection, but not posttreatment (after entry. Antiviral action of these agents showed correlation with blocking virus attachment and exhibited potent virucidal activity. In particular, indirubin had strong protective ability in a mouse model with lethal JEV challenge. The study could yield anti-JEV agents.

  13. Small molecules with antiviral activity against the Ebola virus.

    Science.gov (United States)

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  14. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    Directory of Open Access Journals (Sweden)

    Yi-Ning Chen

    2016-04-01

    Full Text Available The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO sheets and GO sheets with silver particles (GO-Ag against enveloped and non-enveloped viruses, feline coronavirus (FCoV with an envelope and infectious bursal disease virus (IBDV without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses.

  15. Antiviral Activity of Graphene-Silver Nanocomposites against Non-Enveloped and Enveloped Viruses.

    Science.gov (United States)

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  16. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    Science.gov (United States)

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  17. [Antiviral activity of the complexes obtained at different ratios of complementary homopolyribonucleotides].

    Science.gov (United States)

    Novokhatskiĭ, A S; Kogan, E M; Timkovskiĭ, A L

    1978-05-01

    Antiviral activity of the complexes of synthetic polyribonucleotides, i.e. poly (I).poly (C) and poly (G).poly (C) obtained at non-equimolar ratios of homopolymers was studied. The system of chick embryon fibroblasts and horse Venezuellan eguine encephalitis virus served as the model. It was shown that the active and stable complexes poly (I).poly (C) and poly (G).poly (C) were formed at some excess of poly (C), i.e. at the ratio of poly G) or poly (I) to poly (C) equal to 40/60 to 20/80 molar per cent. The role of the excessive poly (C) in formation of the stable secondary structure of the nucleotide complexes and its significance as one of the means for affecting the fine structure of double-stranded RNA were discussed. PMID:655685

  18. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    Science.gov (United States)

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents. PMID:26727903

  19. Polyphylla saponin I has antiviral activity against influenza A virus

    OpenAIRE

    Pu, XiuYing; Ren, Jing; Ma, Xiaolong; Liu, Lu; Yu, Shuang; Li, Xiaoyue; Li, Haibing

    2015-01-01

    Objective: In the present study, the antiviral effects of polyphylla saponin I isolated from Parispolyphylla on influenza A virus are investigated both in vitro and in vivo. Methods: Column chromatography and reversed phase liquid chromatography separation technology were used to extract and purify polyphylla saponin I. The purity of polyphylla saponin I was assayed by high performance liquid chromatography. Methyl thiazolyl tetrazolium assay and analyses of cytopathic effects were performed ...

  20. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu®) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 105 and 4.7 ± 0.2 × 109 M−1 s−1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  1. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C

    Science.gov (United States)

    Husic-Selimovic, Azra; Sofic, Amela; Huskic, Jasminko; Bulja, Deniz

    2016-01-01

    Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage. PMID:27147779

  2. Antiviral Activity of Metal-Containing Polymers—Organotin and Cisplatin-Like Polymers

    Directory of Open Access Journals (Sweden)

    Girish Barot

    2011-05-01

    Full Text Available Polymers containing platinum and to a lesser extent tin, have repeatedly demonstrated antitumor activity in vitro and in vivo against a variety of cell and tumor types. The mechanisms responsible for the antitumor activity include inducing a delay in cell proliferation and sister chromatid exchanges blocking tumor growth. As most DNA and some RNA viruses require, and even induce, infected cells to initiate DNA replication and subsequent cell division, compounds with antitumor activity will very likely also possess antiviral activity. This article examines the use of metal-containing polymers as a novel class of antivirals.

  3. Synthesis and Broad-Spectrum Antiviral Activity of Some Novel Benzo-Heterocyclic Amine Compounds

    Directory of Open Access Journals (Sweden)

    Da-Jun Zhang

    2014-01-01

    Full Text Available A series of novel unsaturated five-membered benzo-heterocyclic amine derivatives were synthesized and assayed to determine their in vitro broad-spectrum antiviral activities. The biological results showed that most of our synthesized compounds exhibited potent broad-spectrum antiviral activity. Notably, compounds 3f (IC50 = 3.21–5.06 μM and 3g (IC50 = 0.71–34.87 μM showed potent activity towards both RNA viruses (influenza A, HCV and Cox B3 virus and a DNA virus (HBV at low micromolar concentrations. An SAR study showed that electron-withdrawing substituents located on the aromatic or heteroaromatic ring favored antiviral activity towards RNA viruses.

  4. Antiviral Activities and Putative Identification of Compounds in Microbial Extracts from the Hawaiian Coastal Waters

    Directory of Open Access Journals (Sweden)

    Yuanan Lu

    2012-02-01

    Full Text Available Marine environments are a rich source of significant bioactive compounds. The Hawaiian archipelago, located in the middle of the Pacific Ocean, hosts diverse microorganisms, including many endemic species. Thirty-eight microbial extracts from Hawaiian coastal waters were evaluated for their antiviral activity against four mammalian viruses including herpes simplex virus type one (HSV-1, vesicular stomatitis virus (VSV, vaccinia virus and poliovirus type one (poliovirus-1 using in vitro cell culture assay. Nine of the 38 microbial crude extracts showed antiviral potencies and three of these nine microbial extracts exhibited significant activity against the enveloped viruses. A secosteroid, 5α(H,17α(H,(20R-beta-acetoxyergost-8(14-ene was putatively identified and confirmed to be the active compound in these marine microbial extracts. These results warrant future in-depth tests on the isolation of these active elements in order to explore and validate their antiviral potential as important therapeutic remedies.

  5. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera.

    Science.gov (United States)

    Ozçelik, Berrin; Aslan, Mustafa; Orhan, Ilkay; Karaoglu, Taner

    2005-01-01

    In the present study, antibacterial, antifungal, and antiviral properties of 15 lipohylic extracts obtained from different parts (leaf, branch, stem, kernel, shell skins, seeds) of Pistacia vera were screened against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. parapsilosis by microdilution method. Both Herpes simplex (DNA) and Parainfluenza viruses (RNA) were used for the determination of antiviral activity of the P. vera extracts by using Vero cell line. Ampicilline, ofloxocine, ketoconazole, fluconazole, acyclovir and oseltamivir were used as the control agents. The extracts showed little antibacterial activity between the range of 128-256 microg/ml concentrations whereas they had noticeable antifungal activity at the same concentrations. Kernel and seed extracts showed significant antiviral activity compared to the rest of the extracts as well as the controls. PMID:15881833

  6. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus.

    Science.gov (United States)

    Lupini, C; Cecchinato, M; Scagliarini, A; Graziani, R; Catelli, E

    2009-12-01

    Field evidences have suggested that a natural extract, containing tannins, could be effective against poultry enteric viral infections. Moreover previous studies have shown that vegetable tannins can have antiviral activity against human viruses. Based on this knowledge three different Chestnut (Castanea spp.) wood extracts and one Quebracho (Schinopsis spp.) wood extract, all containing tannins and currently used in the animal feed industry, were tested for in vitro antiviral activity against avian reovirus (ARV) and avian metapneumovirus (AMPV). The MTT assay was used to evaluate the 50% cytotoxic compounds concentration (CC(50)) on Vero cells. The antiviral properties were tested before and after the adsorption of the viruses to Vero cells. Antiviral activities were expressed as IC(50) (concentration required to inhibit 50% of viral cytopathic effect). CC(50)s of tested compounds were > 200 microg/ml. All compounds had an extracellular antiviral effect against both ARV and AMPV with IC(50) values ranging from 25 to 66 microg/ml. Quebracho extract had also evident intracellular anti-ARV activity (IC(50) 24 microg/ml). These preliminary results suggest that the examined vegetable extracts might be good candidates in the control of some avian virus infections. Nevertheless further in vivo experiments are required to confirm these findings. PMID:19435637

  7. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    Directory of Open Access Journals (Sweden)

    Paula Faral-Tello

    2012-01-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50 values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1.

  8. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture.

    Science.gov (United States)

    Schnitzler, P; Schön, K; Reichling, J

    2001-04-01

    The antiviral effect of Australian tea tree oil (TTO) and eucalyptus oil (EUO) against herpes simplex virus was examined. Cytotoxicity of TTO and EUO was evaluated in a standard neutral red dye uptake assay. Toxicity of TTO and EUO was moderate for RC-37 cells and approached 50% (TC50) at concentrations of 0.006% and 0.03%, respectively. Antiviral activity of TTO and EUO against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of TTO for herpes simplex virus plaque formation was 0.0009% and 0.0008% and the IC50 of EUO was determined at 0.009% and 0.008% for HSV-1 and HSV-2, respectively. Australian tea tree oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of TTO plaque formation was reduced by 98.2% and 93.0% for HSV-1 and HSV-2, respectively. Noncytotoxic concentrations of EUO reduced virus titers by 57.9% for HSV-1 and 75.4% for HSV-2. Virus titers were reduced significantly with TTO, whereas EUO exhibited distinct but less antiviral activity. In order to determine the mode of antiviral action of both essential oils, either cells were pretreated before viral infection or viruses were incubated with TTO or EUO before infection, during adsorption or after penetration into the host cells. Plaque formation was clearly reduced, when herpes simplex virus was pretreated with the essential oils prior to adsorption. These results indicate that TTO and EUO affect the virus before or during adsorption, but not after penetration into the host cell. Thus TTO and EUO are capable to exert a direct antiviral effect on HSV. Although the active antiherpes components of Australian tea tree and eucalyptus oil are not yet known, their possible application as antiviral agents in recurrent herpes infection is promising. PMID:11338678

  9. Antiviral Activity and Constituents of the Nepalese Medicinal Plant Astilbe rivularis

    Directory of Open Access Journals (Sweden)

    Meena Rajbhandari

    2011-01-01

    Full Text Available During the screening of Nepalese ethnomedicinal plants for antiviral activities, Astilbe rivularis Buch.-Ham. , Saxifragaceae, was identified as a promising species. Bioassay-guided fractionation led to the isolation of arbutin, bergenin and a bergenin derivative. The structures were established by NMR studies. Except bergenin, the two compounds were found in this plant for the first time. A dimer of bergenin has not been described as a natural product before. The compounds showed in vitro antiviral activity against herpes simplex virus type-1 in non cytotoxic concentrations.

  10. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus

    Directory of Open Access Journals (Sweden)

    Elizondo-Gonzalez Regina

    2012-12-01

    Full Text Available Abstract Background Newcastle Disease Virus (NDV causes a serious infectious disease in birds that results in severe losses in the worldwide poultry industry. Despite vaccination, NDV outbreaks have increased the necessity of alternative prevention and control measures. Several recent studies focused on antiviral compounds obtained from natural resources. Many extracts from marine organisms have been isolated and tested for pharmacological purposes, and their antiviral activity has been demonstrated in vitro and in vivo. Fucoidan is a sulfated polysaccharide present in the cell wall matrix of brown algae that has been demonstrated to inhibit certain enveloped viruses with low toxicity. This study evaluated the potential antiviral activity and the mechanism of action of fucoidan from Cladosiphon okamuranus against NDV in the Vero cell line. Methods The cytotoxicity of fucoidan was determined by the MTT assay. To study its antiviral activity, fusion and plaque-forming unit (PFU inhibition assays were conducted. The mechanism of action was determined by time of addition, fusion inhibition, and penetration assays. The NDV vaccine strain (La Sota was used in the fusion inhibition assays. PFU and Western blot experiments were performed using a wild-type lentogenic NDV strain. Results Fucoidan exhibited antiviral activity against NDV La Sota, with an obtained IS50 >2000. In time of addition studies, we observed viral inhibition in the early stages of infection (0–60 min post-infection. The inhibition of viral penetration experiments with a wild-type NDV strain supported this result, as these experiments demonstrated a 48% decrease in viral infection as well as reduced HN protein expression. Ribavirin, which was used as an antiviral control, exhibited lower antiviral activity than fucoidan and high toxicity at active doses. In the fusion assays, the number of syncytia was significantly reduced (70% inhibition when fucoidan was added before cleavage of

  11. Aminobisphosphonates Synergize with Human Cytomegalovirus To Activate the Antiviral Activity of Vγ9Vδ2 Cells.

    Science.gov (United States)

    Daguzan, Charline; Moulin, Morgane; Kulyk-Barbier, Hanna; Davrinche, Christian; Peyrottes, Suzanne; Champagne, Eric

    2016-03-01

    Human Vγ9Vδ2 T cells are activated through their TCR by neighboring cells producing phosphoantigens. Zoledronate (ZOL) treatment induces intracellular accumulation of the phosphoantigens isopentenyl pyrophosphate and ApppI. Few attempts have been made to use immunomanipulation of Vγ9Vδ2 lymphocytes in chronic viral infections. Although Vγ9Vδ2 T cells seem to ignore human CMV (HCMV)-infected cells, we examined whether they can sense HCMV when a TCR stimulus is provided with ZOL. Fibroblasts treated with ZOL activate Vγ9Vδ2 T cells to produce IFN-γ but not TNF. Following the same treatment, HCMV-infected fibroblasts stimulate TNF secretion and an increased production of IFN-γ, indicating that Vγ9Vδ2 cells can sense HCMV infection. Increased lymphokine production was observed with most clinical isolates and laboratory HCMV strains, HCMV-permissive astrocytoma, or dendritic cells, as well as "naive" and activated Vγ9Vδ2 cells. Quantification of intracellular isopentenyl pyrophosphate/ApppI following ZOL treatment showed that HCMV infection boosts their accumulation. This was explained by an increased capture of ZOL and by upregulation of HMG-CoA synthase and reductase transcription. Using an experimental setting where infected fibroblasts were cocultured with γδ cells in submicromolar concentrations of ZOL, we show that Vγ9Vδ2 cells suppressed substantially the release of infectious particles while preserving uninfected cells. Vγ9Vδ2 cytotoxicity was decreased by HCMV infection of targets whereas anti-IFN-γ and anti-TNF Abs significantly blocked the antiviral effect. Our experiments indicate that cytokines produced by Vγ9Vδ2 T cells have an antiviral potential in HCMV infection. This should lead to in vivo studies to explore the possible antiviral effect of immunostimulation with ZOL in this context. PMID:26819204

  12. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes.

    Science.gov (United States)

    Mestankova, Hana; Schirmer, Kristin; Escher, Beate I; von Gunten, Urs; Canonica, Silvio

    2012-02-01

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu(®)) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 10(5) and 4.7 ± 0.2 × 10(9) M(-1) s(-1) for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. PMID:22230064

  13. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  14. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    Science.gov (United States)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  15. Antiviral and Quantitative Structure Activity Relationship Study for Dihydropyridones Derived from Curcumin

    Directory of Open Access Journals (Sweden)

    Bahjat A. Saeed

    2010-01-01

    Full Text Available Problem statement: Pyridones are known to have variety of biological activities like antitumor, antibacterial, anti-inflammatory and antimalarial activities. This study presents antiviral evaluation of dihydropyridones derived from curcumin, as well as curcumin for comparison. Approach: The compounds evaluated for their in vitro antiviral activities against the viruses: HIV-1, Bovin viral Diarrhea, Yellow Fever, Reovirus 1, Herpesvirus 1, Vaccinia, Vescular Stomatitis, Coxackie virus B2, Poliovirus 1 and Respiratory Syncytial viruses by using Microculture Tetrazolium assay (MTT method. The method was based on the metabolic reduction of 3-(4,5-dimethylthiazol-2- yl-2,5-diphenyltetrazolium bromide. Results: Antiviral biological activities represented as CC50 were within the range >100-26 for BHK-21, while they were within the range >90-≥13 against Respiratory Syncytial Virus when represented as EC50 for example. Both CC50 and EC50 values were found to increase with increasing chain length of the substituent on the nitrogen atom. Conclusion: The in vitro antiviral activities of the tested dihydropyridones can be enhanced by increasing chain length of the substituent on the nitrogen atom.

  16. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity.

    Science.gov (United States)

    Sinico, Chiara; De Logu, Alessandro; Lai, Francesco; Valenti, Donatella; Manconi, Maria; Loy, Giuseppe; Bonsignore, Leonardo; Fadda, Anna Maria

    2005-01-01

    The effect of liposomal inclusion on the in vitro antiherpetic activity of Artemisia arborescens L. essential oil was investigated. In order to study the influence of vesicle structure and composition on the antiviral activity of the vesicle-incorporated oil, multilamellar (MLV) and unilamellar (SUV) positively charged liposomes were prepared by the film method and sonication. Liposomes were obtained from hydrogenated (P90H) and non-hydrogenated (P90) soy phosphatidylcholine. Formulations were examined for their stability for over one year, monitoring the oil leakage from vesicles and the average size distribution. The antiviral activity was studied against Herpes simplex virus type 1 (HSV-1) by a quantitative tetrazolium-based colorimetric method. Results showed that Artemisia essential oil can be incorporated in good amounts in the prepared vesicular dispersions. Stability studies pointed out that vesicle dispersions were very stable for at least six months and neither oil leakage nor vesicle size alteration occurred during this period. After one year of storage oil retention was still good, but vesicle fusion was present. Antiviral assays demonstrated that the liposomal incorporation of A. arborescens essential oil enhanced its in vitro antiherpetic activity especially when vesicles were made with P90H. On the contrary, no significant difference in antiviral activity was observed between the free and SUV-incorporated oil. PMID:15567314

  17. A systemic resistance inducing antiviral protein with N-glycosidase activity from Bougainvillea xbuttiana leaves.

    Science.gov (United States)

    Narwal, S; Balasubrahmanyam, A; Sadhna, P; Kapoor, H; Lodha, M L

    2001-06-01

    An antiviral protein from Bougainvillea xbuttiana leaves induced systemic resistance in host plants N. glutinosa and Cyamopsis tetragonoloba against TMV and SRV, respectively which was reversed by actinomycin D, when applied immediately or shortly after antiviral protein treatment. When the inhibitor was applied to the host plant leaves post inoculation, it was effective if applied upto 4 h after virus infection. It also delayed the expression of symptoms in systemic hosts of TMV. The inhibitor showed characteristic N-glycosidase activity on 25S rRNA of tobacco ribosomes, suggesting that it could also be interfering with virus multiplication through ribosome-inactivation process. PMID:12562026

  18. Molecular characterization and antiviral activity test of common drugs against echovirus 18 isolated in Korea

    OpenAIRE

    Park KwiSung; Yeo SangGu; Baek KyoungAh; Cheon DooSung; Choi YoungJin; Park JoonSoo; Lee SooJin

    2011-01-01

    Abstract Genetic diversity and antiviral activity for five common antiviral drugs of echovirus (ECV) 5 isolated in Korea have been described. The present study extended these tests to a Korean ECV 18 isolate. An outbreak of aseptic meningitis caused by the ECV 18 isolate was reported in Korea in 2005, marking the first time this virus had been identified in the country since enterovirus surveillance began in 1993. Using a sample isolated from stool specimen of a 5-year-old male patient with a...

  19. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation.

    Directory of Open Access Journals (Sweden)

    Qian Feng

    Full Text Available Upon viral infections, pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs and stimulate an antiviral state associated with the production of type I interferons (IFNs and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3, a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.

  20. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation.

    Science.gov (United States)

    Feng, Qian; Langereis, Martijn A; Olagnier, David; Chiang, Cindy; van de Winkel, Roel; van Essen, Peter; Zoll, Jan; Hiscott, John; van Kuppeveld, Frank J M

    2014-01-01

    Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp)-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3), a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL) RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand. PMID:24759703

  1. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils.

    Science.gov (United States)

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2010-05-01

    Essential oils are complex natural mixtures, their main constituents, e.g. terpenes and phenylpropanoids, being responsible for their biological properties. Essential oils from eucalyptus, tea tree and thyme and their major monoterpene compounds alpha-terpinene, gamma-terpinene, alpha-pinene, p-cymene, terpinen-4-ol, alpha-terpineol, thymol, citral and 1,8-cineole were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. These essential oils were able to reduce viral infectivity by >96%, the monoterpenes inhibited HSV by about >80%. The mode of antiviral action has been determined, only moderate antiviral effects were revealed by essential oils and monoterpenes when these drugs were added to host cells prior to infection or after entry of HSV into cells. However, both essential oils and monoterpenes exhibited high anti-HSV-1 activity by direct inactivation of free virus particles. All tested drugs interacted in a dose-dependent manner with herpesvirus particles thereby inactivating viral infection. Among the analysed compounds, monoterpene hydrocarbons were slightly superior to monoterpene alcohols in their antiviral activity, alpha-pinene and alpha-terpineol revealed the highest selectivity index. However, mixtures of different monoterpenes present in natural tea tree essential oil revealed a ten-fold higher selectivity index and a lower toxicity than its isolated single monoterpenes. PMID:19653195

  2. Antiviral activity of salivary microRNAs for ophthalmic herpes zoster

    Directory of Open Access Journals (Sweden)

    Irmak M

    2012-06-01

    Full Text Available Abstract Ophthalmic herpes zoster is a common ocular infection caused by the varicella-zoster virus (VZV. Viral mRNA transcripts play a major role in the replicative cycle of the virus and current antiviral agents have little effect in preventing and treating the complications. Therapeutic use of saliva for certain painful ocular diseases such as ophthalmic herpes zoster is a well-known public practice in our region. We thought that antiviral activity of saliva may stem from salivary microvesicles and we aimed to look for molecules with antiviral activity in these vesicles. As a possible candidate for antiviral activity, salivary microvesicles contain at least 20 microRNAs (miRNAs, small noncoding RNAs, which suppress the translation of target mRNAs. miRNAs not only participate in maintenance of normal cell functions, but are also involved in host–virus interactions and limit the replication of certain virus types. Thus, miRNA gene therapy by targeting mRNAs required for VZV survival may find a niche in the treatment of ophthalmic herpes zoster. But, how could salivary microvesicles reach into the corneal cells to demonstrate their antiviral activity. We suggest that human salivary microvesicles can be effective carriers of miRNA for corneal cells, because they contain a molecular machinery for vesicle trafficking and fusion allowing them to be endocytosed by target cells. After binding to the plasma membrane, microvesicles seem to enter into the corneal cells through the clathrin-mediated endocytosis. In the cytosol, human salivary miRNAs base-pair with specific viral mRNAs and inhibit their translation, thus limiting the replication of the virus.

  3. Cloning and Characterization of the Antiviral Activity of Feline Tetherin/BST-2

    Science.gov (United States)

    Fukuma, Aiko; Abe, Masumi; Morikawa, Yuko; Miyazawa, Takayuki; Yasuda, Jiro

    2011-01-01

    Human Tetherin/BST-2 has recently been identified as a cellular antiviral factor that blocks the release of various enveloped viruses. In this study, we cloned a cDNA fragment encoding a feline homolog of Tetherin/BST-2 and characterized the protein product. The degree of amino acid sequence identity between human Tetherin/BST-2 and the feline homolog was 44.4%. Similar to human Tetherin/BST-2, the expression of feline Tetherin/BST-2 mRNA was inducible by type I interferon (IFN). Exogenous expression of feline Tetherin/BST-2 efficiently inhibited the release of feline endogenous retrovirus RD-114. The extracellular domain of feline Tetherin/BST-2 has two putative N-linked glycosylation sites, N79 and N119. Complete loss of N-linked glycosylation by introduction of mutations into both sites resulted in almost complete abolition of its antiviral activity. In addition, feline Tetherin/BST-2 was insensitive to antagonism by HIV-1 Vpu, although the antiviral activity of human Tetherin/BST-2 was antagonized by HIV-1 Vpu. Our data suggest that feline Tetherin/BST-2 functions as a part of IFN-induced innate immunity against virus infection and that the induction of feline Tetherin/BST-2 in vivo may be effective as a novel antiviral strategy for viral infection. PMID:21479233

  4. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    Directory of Open Access Journals (Sweden)

    Piotr Orlowski

    Full Text Available The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.

  5. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Juteau Jean-Marc

    2009-12-01

    Full Text Available Abstract Background Phosphorothioated oligonucleotides (PS-ONs have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9 inhibited both murine CMV (MCMV and guinea pig CMV (GPCMV with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated

  6. Molecular characterization and antiviral activity test of common drugs against echovirus 18 isolated in Korea

    Directory of Open Access Journals (Sweden)

    Park KwiSung

    2011-11-01

    Full Text Available Abstract Genetic diversity and antiviral activity for five common antiviral drugs of echovirus (ECV 5 isolated in Korea have been described. The present study extended these tests to a Korean ECV 18 isolate. An outbreak of aseptic meningitis caused by the ECV 18 isolate was reported in Korea in 2005, marking the first time this virus had been identified in the country since enterovirus surveillance began in 1993. Using a sample isolated from stool specimen of a 5-year-old male patient with aseptic meningitis, the complete genome sequence was obtained and was compared it with the Metcalf prototype strain. Unlike the ECV5 isolate, the 3' untranslated region had the highest identity value (94.2% at the nucleotide level, while, at the amino acid level, the P2 region displayed the highest identity value (96.9%. These two strains shared all cleavage sites, with the exception of the 2B/2C site, which was RQ/NN in the Metcalf strain but RQ/NS in the Korean ECV 18 isolate. In Vero cells infected with the Korean ECV 18 isolate, no cytotoxicity was observed in the presence of azidothymidine, acyclovir, amantadine, lamivudine, or ribavirin, when the drugs were administered at a CC50 value >100 μg/mL. Of the five drugs, only amantadine (IC50: 4.97 ± 0.77 μg/mL, TI: 20.12 and ribavirin (IC50: 7.63 ± 0.87 μg/mL, TI: 13.11 had any antiviral activity against the Korean ECV 18 isolate in the five antiviral drugs. These antiviral activity effects were similar with results of the Korean ECV5 isolate.

  7. Antiviral activity of platinum (II) and palladium (II) complexes of dimethyl sulfoxide (DMSO) in vitro

    International Nuclear Information System (INIS)

    The antiviral activity of complexes cis-[Pt(DMSO)2CI2] and trans-[Pd(DMSO)2CI2] against the reverse transcriptase enzyme, herpes and influenza viruses have been studied in vitro. Both complexes demonstrated some activity against the reverse transcriptase enzyme in which the inhibition concentration (IC50) of the cis-Pt and the trans-Pd complexes were shown to be 37.6 and 35.5 μ g/ml respectively. This activity was compared with that of the standard reference; the phosphonoformate (PFA). On the other hand, both complexes have no antiviral activity against herpes and influenza viruses No cytotoxic effects on the three cell lines, Raji, K562 and Mrc-5 were demonstrated by these complexes at the concentrations studied in vitro. (authors). 16 refs., 1 tab., 2 figs

  8. [Antiviral activity of interferon and its inducers in human lymphoblastoid and somatic cells].

    Science.gov (United States)

    Novokhatskiĭ, A S; Labzo, S S; Tsareva, A A

    1979-04-01

    The antiviral effect of interferon inductors, such as poly-I--poly-C, phage f2 RNA replicative form and low molecular inductor GSN and their influence on cellular DNA synthesis were studied in the cultures of lymphoblastoid (inplanting lines Raji Namalva) and somatic human cells. The Semliki forest virus used as the test organism multiplicated well in cells Raji accumulating up to 9 lg BOU/ml. The two-strand RNA was less active in the lymphoid cells than in the somatic ones. GSN was 10 times more active and less toxic in cells Raji as compared to the fibroblasts. The lymphoblastoid interferon had higher antiviral activity as compared to the fibroblast interferon in the system of Raji--Semliki forest virus than in the system of the human embryon fibroblast--Venezuela Horse Encephalytic Virus. Romantadin actively inhibited (100 times) production of the alfavirus in both the somatic and lymphoblastoid cells. PMID:220908

  9. Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state.

    Science.gov (United States)

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant's known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  10. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2015-01-01

    Full Text Available Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8, Vesicular Stomatitis Virus (VSV, Herpes Simplex Virus (HSV and Newcastle Disease Virus (NDV in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2. Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans.

  11. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    Science.gov (United States)

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakaimarkedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  12. Synthesis and antiviral activities of a novel class of thioflavone and flavonoid analogues

    Directory of Open Access Journals (Sweden)

    Dajun Zhang

    2012-12-01

    Full Text Available A novel class of thioflavone and flavonoid derivatives has been prepared and their antiviral activities against enterovirus 71 (EV71 and the coxsackievirus B3 (CVB3 and B6 (CVB6 were evaluated. Compounds 7d and 9b showed potent antiviral activities against EV71 with IC50 values of 8.27 and 5.48 μM, respectively. Compound 7f, which has been synthesized for the first time in this work, showed the highest level of inhibitory activity against both CVB3 and CVB6 with an IC50 value of 0.62 and 0.87 μM. Compounds 4b, 7a, 9c and 9e also showed strong inhibitory activities against both the CVB3 and CVB6 at low concentrations (IC50=1.42−7.15 μM, whereas compounds 4d, 7c, 7e and 7g showed strong activity against CVB6 (IC50=2.91–3.77 μM together with low levels of activity against CVB3. Compound 7d exhibited stronger inhibitory activity against CVB3 (IC50=6.44 μM than CVB6 (IC50>8.29 μM. The thioflavone derivatives 7a, 7c, 7d, 7e, 7f and 7g, represent a new class of lead compounds for the development of novel antiviral agents.

  13. Synthesis and Antiviral Activity of Hydrogenated Ferulic Acid Derivatives

    OpenAIRE

    Can Cui; Zhi-Peng Wang; Xiu-jiang Du; Li-Zhong Wang; Shu-Jing Yu; Xing-Hai Liu; Zheng-Ming Li; Wei-Guang Zhao

    2013-01-01

    A series of hydrogenated ferulic acid amide derivatives 4 were synthesized. The molecular structures of the synthesized compounds were analyzed by H1 NMR and HRMS. The biological activity study showed that some of them displayed excellent protection activity and curative activity against TMV at 500 μg/mL.

  14. Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities

    Directory of Open Access Journals (Sweden)

    Yu-Bo Zhang

    2015-11-01

    Full Text Available Three new phenolic compounds 1–3 and twenty known ones 4–23 were isolated from the flowers of Bombax malabaricum. Their chemical structures were elucidated by spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR and chemical reactions. The antioxidant capacities of the isolated compounds were tested using FRAP and DPPH radical-scavenging assays, and compounds 4, 6, 8, 12, as well as the new compound 2, exhibited stronger antioxidant activities than ascorbic acid. Furthermore, all of compounds were tested for their antiviral activities against RSV by the CPE reduction assay and plaque reduction assay. Compounds 4, 10, 12 possess in vitro antiviral activities, and compound 10 exhibits potent anti-RSV effects, comparable to the positive control ribavirin.

  15. Activation of the Antiviral Kinase PKR and Viral Countermeasures

    Directory of Open Access Journals (Sweden)

    Bianca Dauber

    2009-10-01

    Full Text Available The interferon-induced double-stranded (dsRNA-dependent protein kinase (PKR limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5’-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.

  16. Antiviral activity of 3,4'-dihydroxyflavone on influenza a virus.

    Science.gov (United States)

    Hossain, Mohammed Kawser; Choi, Hye Yeon; Hwang, Jae-Seon; Dayem, Ahmed Abdal; Kim, Jung-Hyun; Kim, Young Bong; Poo, Haryoung; Cho, Ssang-Goo

    2014-06-01

    Influenza virus infection causes thousands of deaths and millions of hospitalizations worldwide every year and the emergence of resistance to anti-influenza drugs has prompted scientists to seek new natural antiviral materials. In this study, we screened 13 different flavonoids from various flavonoid groups to identify the most potent antiviral flavonoid against human influenza A/PR/8/34 (H1N1). The 3-hydroxyl group flavonoids, including 3,2᾿dihydroxyflavone (3,2᾿DHF) and 3,4᾿dihydroxyflavone (3,4᾿DHF), showed potent anti-influenza activity. They inhibited viral neuraminidase activity and viral adsorption onto cells. To confirm the anti-influenza activity of these flavonoids, we used an in vivo mouse model. In mice infected with human influenza, oral administration of 3,4᾿DHF significantly decreased virus titers and pathological changes in the lung and reduced body weight loss and death. Our data suggest that 3-hydroxyl group flavonoids, particularly 3,4᾿DHF, have potent antiviral activity against human influenza A/PR/8/34 (H1N1) in vitro and in vivo. Further clinical studies are needed to investigate the therapeutic and prophylactic potential of the 3-hydroxyl group flavonoids in treating influenza pandemics. PMID:24871979

  17. Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals

    Directory of Open Access Journals (Sweden)

    Débora Scopel e Silva

    2014-09-01

    Full Text Available P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2, canine coronavirus (CCoV, canine distemper virus (CDV, canine parvovirus type 2 (CPV-2, equine arteritis virus (EAV, equine influenza virus (EIV, feline calicivirus (FCV and feline herpesvirus type 1 (FHV-1. The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 10(4.5 TCID50 to 10(2.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections.

  18. Reduction Sensitive Lipid Conjugates of Tenofovir: Synthesis, Stability, and Antiviral Activity.

    Science.gov (United States)

    Giesler, Kyle E; Marengo, Jose; Liotta, Dennis C

    2016-08-11

    The therapeutic value of numerous small molecules hinges on their ability to permeate the plasma membrane. This is particularly true for tenofovir (TFV), adefovir, and other antiviral nucleosides that demonstrate potent antiviral activity but poor bioavailability. Using TFV as a model substrate, we hybridized two disparate prodrug strategies to afford novel reduction-sensitive lipid conjugates of TFV that exhibit subnanomolar activity toward HIV-1 and are stable in human plasma for more than 24 h with a therapeutic index approaching 30000. These compounds significantly rival the clinically approved formulation of TFV and revitalize the potential of disulfide-bearing prodrugs which have seen limited in vitro and in vivo success since their debut over 20 years ago. We further demonstrate the utility of these conjugates as a tool to indirectly probe the enzymatic hydrolysis of phosphonomonoesters that may further advance the development of other prodrug strategies for nucleosides, peptides, and beyond. PMID:27405794

  19. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    OpenAIRE

    Soheil Zorofchian Moghadamtousi; Habsah Abdul Kadir; Pouya Hassandarvish; Hassan Tajik; Sazaly Abubakar; Keivan Zandi

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agen...

  20. In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid

    OpenAIRE

    Blasi Elisabetta; Ardizzoni Andrea; Neglia Rachele G; Bettua Clotilde; Scuri Monica; Cuoghi Alessandro; Cermelli Claudio; Iannitti Tommaso; Palmieri Beniamino

    2011-01-01

    Abstract Background hyaluronic acid (HA), a non-sulphated glycosaminoglycan, is present in synovial fluid, vitreous humour serum and many connective tissues. Pharmaceutical preparations of HA are used in clinical practice for wound healing, joint pain, kerato-conjunctivitis, asthma, mouth care, oesophageal-reflux, and gastritis. Moreover, it is used as a filler to counteract ageing and facial lipoatrophy. Our study aims at investigating the in vitro antiviral activity of a high molecular weig...

  1. Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses

    OpenAIRE

    Bedard, Kristin M.; Wang, Myra L.; Proll, Sean C.; Loo, Yueh-Ming; Michael G Katze; Gale, Michael; Iadonato, Shawn P.

    2012-01-01

    There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. T...

  2. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    OpenAIRE

    Saoussen Hammami; Habib Jmii; Ridha El Mokni; Abdelbaki Khmiri; Khaled Faidi; Hatem Dhaouadi; Mohamed Hédi El Aouni,; Mahjoub Aouni; Joshi, Rajesh K.

    2015-01-01

    The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae) collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Thirty-one compounds were identified representing 88.6% of the total essential oil....

  3. Antiviral activity of sandalwood oil against herpes simplex viruses-1 and -2.

    Science.gov (United States)

    Benencia, F; Courrèges, M C

    1999-05-01

    Sandalwood oil, the essential oil of Santalum album L., was tested for in vitro antiviral activity against Herpes simplex viruses-1 and -2. It was found that the replication of these viruses was inhibited in the presence of the oil. This effect was dose-dependent and more pronounced against HSV-1. A slight diminution of the effect was observed at higher multiplicity of infections. The oil was not virucidal and showed no cytotoxicity at the concentrations tested. PMID:10374251

  4. Antiviral Activities of Several Oral Traditional Chinese Medicines against Influenza Viruses

    OpenAIRE

    Lin-Lin Ma; Miao Ge; Hui-Qiang Wang; Jin-Qiu Yin; Jian-Dong Jiang; Yu-Huan Li

    2015-01-01

    Influenza is still a serious threat to human health with significant morbidity and mortality. The emergence of drug-resistant influenza viruses poses a great challenge to existing antiviral drugs. Traditional Chinese medicines (TCMs) may be an alternative to overcome the challenge. Here, 10 oral proprietary Chinese medicines were selected to evaluate their anti-influenza activities. These drugs exhibit potent inhibitory effects against influenza A H1N1, influenza A H3N2, and influenza B virus...

  5. Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity

    Directory of Open Access Journals (Sweden)

    Strebel Klaus

    2007-08-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins constitute a family of cytidine deaminases that provide intracellular resistance to retrovirus replication and to transposition of endogenous retroelements. A3A has significant homology to the C-terminus of A3G but has only a single cytidine deaminase active site (CDA, unlike A3G, which has a second N-terminal CDA previously found to be important for Vif sensitivity and virus encapsidation. A3A is packaged into HIV-1 virions but, unlike A3G, does not have antiviral properties. Here, we investigated the reason for the lack of A3A antiviral activity. Results Sequence alignment of A3G and A3A revealed significant homology of A3A to the C-terminal region of A3G. However, while A3G co-purified with detergent-resistant viral nucleoprotein complexes (NPC, virus-associated A3A was highly detergent-sensitive leading us to speculate that the ability to assemble into NPC may be a property conveyed by the A3G N-terminus. To test this model, we constructed an A3G-3A chimeric protein, in which the N-terminal half of A3G was fused to A3A. Interestingly, the A3G-3A chimera was packaged into HIV-1 particles and, unlike A3A, associated with the viral NPC. Furthermore, the A3G-3A chimera displayed strong antiviral activity against HIV-1 and was sensitive to inhibition by HIV-1 Vif. Conclusion Our results suggest that the A3G N-terminal domain carries determinants important for targeting the protein to viral NPCs. Transfer of this domain to A3A results in A3A targeting to viral NPCs and confers antiviral activity.

  6. Antiviral Activity of Liquorice Powder Extract against Varicella Zoster Virus Isolated from Egyptian Patients

    OpenAIRE

    Aly F. Mohamed; Essam H. Ibrahim; Amal S. Mostafa; Saad M. Bin Dajem; Magdy A. Amin; Amal Emad-Eldin; Rania I. Shebl

    2012-01-01

    Background: Varicella-zoster virus (VZV) is the etiologic agent of two diseases, varicella (chicken pox) and zoster (shingles). Varicella is a self- limited infection, while zoster is mainly a disease of adults. The present study was conducted to isolate VZV from clinically diagnosed children using cell cultures and compare the activity of liquorice powder extract, an alternative herbal antiviral agent, with acyclovir and interferon alpha 2a (IFN-α2a) against the isolated virus.Methods: Forty...

  7. Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1.

    Science.gov (United States)

    Métifiot, Mathieu; Amrane, Samir; Mergny, Jean-Louis; Andreola, Marie-Line

    2015-11-01

    During clinical trials, a number of fully characterized molecules are dropped along the way because they do not provide enough benefit for the patient. Some of them show limited side effects and might be of great use for other applications. AS1411 is a nucleolin-targeting aptamer that underwent phase II clinical trials as anticancer agent. Here, we show that AS1411 exhibits extremely potent antiviral activity and is therefore an attractive new lead as anti-HIV agent. PMID:26363100

  8. Antiviral activity of the EB peptide against zoonotic poxviruses

    Directory of Open Access Journals (Sweden)

    Altmann Sharon E

    2012-01-01

    Full Text Available Abstract Background The EB peptide is a 20-mer that was previously shown to have broad spectrum in vitro activity against several unrelated viruses, including highly pathogenic avian influenza, herpes simplex virus type I, and vaccinia, the prototypic orthopoxvirus. To expand on this work, we evaluated EB for in vitro activity against the zoonotic orthopoxviruses cowpox and monkeypox and for in vivo activity in mice against vaccinia and cowpox. Findings In yield reduction assays, EB had an EC50 of 26.7 μM against cowpox and 4.4 μM against monkeypox. The EC50 for plaque reduction was 26.3 μM against cowpox and 48.6 μM against monkeypox. A scrambled peptide had no inhibitory activity against either virus. EB inhibited cowpox in vitro by disrupting virus entry, as evidenced by a reduction of the release of virus cores into the cytoplasm. Monkeypox was also inhibited in vitro by EB, but at the attachment stage of infection. EB showed protective activity in mice infected intranasally with vaccinia when co-administered with the virus, but had no effect when administered prophylactically one day prior to infection or therapeutically one day post-infection. EB had no in vivo activity against cowpox in mice. Conclusions While EB did demonstrate some in vivo efficacy against vaccinia in mice, the limited conditions under which it was effective against vaccinia and lack of activity against cowpox suggest EB may be more useful for studying orthopoxvirus entry and attachment in vitro than as a therapeutic against orthopoxviruses in vivo.

  9. SLN as a topical delivery system for Artemisia arborescens essential oil: In vitro antiviral activity and skin permeation study

    Science.gov (United States)

    Lai, Francesco; Sinico, Chiara; De Logu, Alessandro; Zaru, Marco; Müller, Rainer H; Fadda, Anna M

    2007-01-01

    The effect of SLN incorporation on transdermal delivery and in vitro antiherpetic activity of Artemisia arborescens essential oil was investigated. Two different SLN formulations were prepared using the hot – pressure homogenization technique, Compritol 888 ATO as lipid, and Poloxamer 188 and Miranol Ultra C32 as surfactants. Formulations were examined for their stability for two years by monitoring average size distribution and zeta potential values. The antiviral activity of free and SLN incorporated essential oil was tested in vitro against Herpes Simplex Virus-1 (HSV-1) by a quantitative tetrazolium-based colorimetric method (MTT), while the effects of essential oil incorporation into SLN on both the permeation through and the accumulation into the skin strata was investigated by using in vitro diffusion experiments through newborn pig skin and an almond oil Artemisia essential oil solution as a control. Results showed that both SLN formulations were able to entrap the essential oil in high yields and that the mean particle size increased only slightly after two years of storage, indicating a high physical stability. In vitro antiviral assays showed that SLN incorporation did not affect the essential oil antiherpetic activity. The in vitro skin permeation experiments demonstrated the capability of SLN of greatly improving the oil accumulation into the skin, while oil permeation occurred only when the oil was delivered from the control solution. PMID:18019840

  10. SLN as a topical delivery system for Artemisia arborescens essential oil: in vitro antiviral activity and skin permeation study.

    Science.gov (United States)

    Lai, Francesco; Sinico, Chiara; De Logu, Alessandro; Zaru, Marco; Müller, Rainer H; Fadda, Anna M

    2007-01-01

    The effect of SLN incorporation on transdermal delivery and in vitro antiherpetic activity of Artemisia arborescens essential oil was investigated. Two different SLN formulations were prepared using the hot-pressure homogenization technique, Compritol 888 ATO as lipid, and Poloxamer 188 and Miranol Ultra C32 as surfactants. Formulations were examined for their stability for two years by monitoring average size distribution and zeta potential values. The antiviral activity of free and SLN incorporated essential oil was tested in vitro against Herpes Simplex Virus-1 (HSV-1) by a quantitative tetrazolium-based colorimetric method (MTT), while the effects of essential oil incorporation into SLN on both the permeation through and the accumulation into the skin strata was investigated by using in vitro diffusion experiments through newborn pig skin and an almond oil Artemisia essential oil solution as a control. Results showed that both SLN formulations were able to entrap the essential oil in high yields and that the mean particle size increased only slightly after two years of storage, indicating a high physical stability. In vitro antiviral assays showed that SLN incorporation did not affect the essential oil antiherpetic activity. The in vitro skin permeation experiments demonstrated the capability of SLN of greatly improving the oil accumulation into the skin, while oil permeation occurred only when the oil was delivered from the control solution. PMID:18019840

  11. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2014-01-01

    Full Text Available Curcuma longa L. (Zingiberaceae family and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.

  12. A review on antibacterial, antiviral, and antifungal activity of curcumin.

    Science.gov (United States)

    Moghadamtousi, Soheil Zorofchian; Kadir, Habsah Abdul; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  13. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway.

    Science.gov (United States)

    Sanchez, Jacint G; Chiang, Jessica J; Sparrer, Konstantin M J; Alam, Steven L; Chi, Michael; Roganowicz, Marcin D; Sankaran, Banumathi; Gack, Michaela U; Pornillos, Owen

    2016-08-01

    Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response. PMID:27425606

  14. Identification of Residues of SARS-CoV nsp1 That Differentially Affect Inhibition of Gene Expression and Antiviral Signaling

    Science.gov (United States)

    Jauregui, Andrew R.; Savalia, Dhruti; Lowry, Virginia K.; Farrell, Cara M.; Wathelet, Marc G.

    2013-01-01

    An epidemic of Severe Acute Respiratory Syndrome (SARS) led to the identification of an associated coronavirus, SARS-CoV. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses. To gain a better understanding of nsp1 mode of action, we generated and analyzed 38 mutants of the SARS-CoV nsp1, targeting 62 solvent exposed residues out of the 180 amino acid protein. From this work, we identified six classes of mutants that abolished, attenuated or increased nsp1 inhibition of host gene expression and/or antiviral signaling. Each class of mutants clustered on SARS-CoV nsp1 surface and suggested nsp1 interacts with distinct host factors to exert its inhibitory activities. Identification of the nsp1 residues critical for its activities and the pathways involved in these activities should help in the design of drugs targeting nsp1. Significantly, several point mutants increased the inhibitory activity of nsp1, suggesting that coronaviruses could evolve a greater ability to evade the host response through mutations of such residues. PMID:23658627

  15. Antiviral activity of viro care gz-08 against newcastle disease virus in poultry and its in-vitro cytotoxicity assay

    International Nuclear Information System (INIS)

    Newcastle disease (ND), one of the most important disease of poultry throughout the World is caused by Newcastle Disease Virus (NDV). It is causing huge economic losses in poultry industry of Pakistan. Regardless of vaccination, other prevention and control measures are necessary to prevent ND outbreaks. Natural resources have been exploited to obtain antiviral compounds in several latest studies. In this study, the antiviral activity of Viro Care GZ-081 was checked up in-vitro, in-ovo and in-vivo. The cytotoxicity assay of the product was performed using Vero cell line. All the trials revealed that the stock solution and 1:2 dilution of GZ-08 had some antiviral activity as well as were cytotoxic. As the concentration decreased, cytotoxicity as well as antiviral activities were lost. Based on these findings, it was concluded that GZ-08 sanitizer or spray can be used as antiviral agent to clean or disinfect some non-living surfaces against different viruses in general and NDV in particular. However, in-vivo use of GZ-08 in poultry against NDV is recommended only as pre-treatment with ND vaccines as it significantly reduced morbidity and mortality as compared to the use of vaccines alone. However, further work is recommended in future on GZ-08 for its use as post-treatment of ND as well as on other antiviral compounds of natural origin to develop a novel antiviral drug against NDV in poultry. (author)

  16. Antiviral Activity of Hederasaponin B from Hedera helix against Enterovirus 71 Subgenotypes C3 and C4a.

    Science.gov (United States)

    Song, Jaehyoung; Yeo, Sang-Gu; Hong, Eun-Hye; Lee, Bo-Ra; Kim, Jin-Won; Kim, Jeonghoon; Jeong, Hyeongun; Kwon, Yongsoo; Kim, Hyunpyo; Lee, Sangwon; Park, Jae-Hak; Ko, Hyun-Jeong

    2014-01-01

    Enterovirus 71 (EV71) is the predominant cause of hand, foot and mouth disease (HFMD). The antiviral activity of hederasaponin B from Hedera helix against EV71 subgenotypes C3 and C4a was evaluated in vero cells. In the current study, the antiviral activity of hederasaponin B against EV71 C3 and C4a was determined by cytopathic effect (CPE) reduction method and western blot assay. Our results demonstrated that hederasaponin B and 30% ethanol extract of Hedera helix containing hederasaponin B showed significant antiviral activity against EV71 subgenotypes C3 and C4a by reducing the formation of a visible CPE. Hederasaponin B also inhibited the viral VP2 protein expression, suggesting the inhibition of viral capsid protein synthesis.These results suggest that hederasaponin B and Hedera helix extract containing hederasaponin B can be novel drug candidates with broad-spectrum antiviral activity against various subgenotypes of EV71. PMID:24596620

  17. Structure-activity relationships of new antiviral compounds.

    OpenAIRE

    Bonina, L; Orzalesi, G; Merendino, R; Arena, A; Mastroeni, P

    1982-01-01

    In preliminary experiments, the compound 2-amino-5-(2-sulfamoylphenyl)-1,3,4-thiadiazole (G413) was shown to possess high activity against DNA viruses (herpes simplex viruses 1 and 2 and adenovirus 17) and RNA viruses (poliovirus 1, echovirus 2, and coxsackievirus B4). Experiments on the replicative cycle of poliovirus 1 and production of infectious RNA viruses demonstrate that this compound probably prevents assembly of virus particles by acting on structural proteins. In the present experim...

  18. Antiviral activity of purified human breast milk mucin.

    Science.gov (United States)

    Habte, Habtom H; Kotwal, Girish J; Lotz, Zoë E; Tyler, Marilyn G; Abrahams, Melissa; Rodriques, Jerry; Kahn, Delawir; Mall, Anwar S

    2007-01-01

    Human breast milk is known to contain numerous biologically active components which protect breast fed infants against microbes, viruses, and toxins. The purpose of this study was to purify and characterize the breast milk mucin and determine its anti-poxvirus activity. In this study human milk mucin, free of contaminant protein and of sufficient quantity for further analysis, was isolated and purified by Sepharose CL-4B gel filtration and cesiumchloride density-gradient centrifugation. Based on the criteria of size and appearance of the bands and their electrophoretic mobility on sodium dodecyl sulfate polyacrylamide-gel electrophoresis, Western blotting together with the amino acid analysis, it is very likely that the human breast milk mucin is MUC1. It was shown that this breast milk mucin inhibits poxvirus activity by 100% using an inhibition assay with a viral concentration of 2.4 million plaque-forming units/ml. As the milk mucin seems to aggregate poxviruses prior to their entry into host cells, it is possible that this mucin may also inhibit other enveloped viruses such as HIV from entry into host cells. PMID:17361093

  19. A review of antiviral drugs and other compounds with activity against feline herpesvirus type 1.

    Science.gov (United States)

    Thomasy, Sara M; Maggs, David J

    2016-07-01

    Feline herpesvirus type 1 (FHV-1) is a common and important cause of ocular surface disease, dermatitis, respiratory disease, and potentially intraocular disease in cats. Many antiviral drugs developed for the treatment of humans infected with herpesviruses have been used to treat cats infected with FHV-1. Translational use of drugs in this manner ideally requires methodical investigation of their in vitro efficacy against FHV-1 followed by pharmacokinetic and safety trials in normal cats. Subsequently, placebo-controlled efficacy studies in experimentally inoculated animals should be performed followed, finally, by carefully designed and monitored clinical trials in client-owned animals. This review is intended to provide a concise overview of the available literature regarding the efficacy of antiviral drugs and other compounds with proven or putative activity against FHV-1, as well as a discussion of their safety in cats. PMID:27091747

  20. The antiviral activity of tetrazole phosphonic acids and their analogues.

    OpenAIRE

    Hutchinson, D W; Naylor, M.

    1985-01-01

    5-(Phosphonomethyl)-1H-tetrazole and a number of related tetrazoles have been prepared and their effects on the replication of Herpes Simplex Viruses-1 and -2 have been investigated as well as their abilities to inhibit the DNA polymerases induced by these viruses and the RNA transcriptase activity of influenza virus A. Contrary to an earlier report, 5-(phosphonomethyl)-1H-tetrazole was not an efficient inhibitor of the replication of HSV-1 and HSV-2 in tissue culture. Analogues of 5-(phospho...

  1. A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses

    Directory of Open Access Journals (Sweden)

    Alexander Lisov

    2015-10-01

    Full Text Available Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV and bovine herpesvirus type 1 (BoHV-1, two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5–15 µg/mL for different virus strains and BoHV-1 (IC50, 0.5–0.7 µg/mL. When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA–gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA–gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections.

  2. In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid

    Directory of Open Access Journals (Sweden)

    Blasi Elisabetta

    2011-03-01

    Full Text Available Abstract Background hyaluronic acid (HA, a non-sulphated glycosaminoglycan, is present in synovial fluid, vitreous humour serum and many connective tissues. Pharmaceutical preparations of HA are used in clinical practice for wound healing, joint pain, kerato-conjunctivitis, asthma, mouth care, oesophageal-reflux, and gastritis. Moreover, it is used as a filler to counteract ageing and facial lipoatrophy. Our study aims at investigating the in vitro antiviral activity of a high molecular weight HA. Methods the MTT test was used to rule out the potential toxic effects of HA on the different cell lines used in the antiviral assays. The antiviral activity of HA against Coxsackievirus B5, Herpes Simplex Virus-1, Mumps Virus, Adenovirus-5, Influenza Virus A/H1N1, Human Herpesvirus-6, Porcine Parvovirus, Porcine Reproductive and Respiratory Syndrome Virus was assessed by virus yield assays. Results the most effective inhibition was observed against Coxsackievirus B5, with 3Log reduction of the virus yield at 4 mg/ml, and a reduction of 3.5Log and 2Log, at 2 mg/ml and 1 mg/ml, respectively: the selectivity index was 16. Mumps virus was highly inhibited too showing a reduction of 1.7Log at 1 mg/ml and 1Log at 4 mg/ml and 2 mg/ml (selectivity index = 12. The selectivity index for Influenza Virus was 12 with the highest inhibition (1Log observed at 4 mg/ml. Herpes Simplex Virus-1 and Porcine Parvovirus were mildly inhibited, whereas no antiviral activity was observed with respect to Adenovirus-5, Human Herpesvirus-6, Porcine Reproductive and Respiratory Syndrome Virus. No HA virucidal activity was ever observed against any of the viruses tested. Kinetic experiments showed that both Coxsackievirus B5 and Herpes simplex virus-1 replication were consistently inhibited, not influenced by the time of HA addition, during the virus replication cycle. Conclusions the spectrum of the antiviral activity exhibited by HA against both RNA and DNA viruses, known to have

  3. Broad spectrum antiviral activity of favipiravir (T-705: protection from highly lethal inhalational Rift Valley Fever.

    Directory of Open Access Journals (Sweden)

    Amy L Caroline

    2014-04-01

    Full Text Available BACKGROUND: Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705, which is currently in human clinical trials. T-705 displays broad-spectrum in vitro activity against a number of viruses, including Rift Valley Fever virus (RVFV. RVF is an important neglected tropical disease that causes human, agricultural, and economic losses in endemic regions. RVF has the capacity to emerge in new locations and also presents a potential bioterrorism threat. In the current study, the in vivo efficacy of T-705 was evaluated in Wistar-Furth rats infected with the virulent ZH501 strain of RVFV by the aerosol route. METHODOLOGY/PRINCIPAL FINDINGS: Wistar-Furth rats are highly susceptible to a rapidly lethal disease after parenteral or inhalational exposure to the pathogenic ZH501 strain of RVFV. In the current study, two experiments were performed: a dose-determination study and a delayed-treatment study. In both experiments, all untreated control rats succumbed to disease. Out of 72 total rats infected with RVFV and treated with T-705, only 6 succumbed to disease. The remaining 66 rats (92% survived lethal infection with no significant weight loss or fever. The 6 treated rats that succumbed survived significantly longer before succumbing to encephalitic disease. CONCLUSIONS/SIGNIFICANCE: Currently, there are no licensed antiviral drugs for treating RVF. Here, T-705 showed remarkable efficacy in a highly lethal rat model of Rift Valley Fever, even when given up to 48 hours post-infection. This is the first study to show protection of rats infected with the pathogenic ZH501 strain of RVFV. Our data suggest that T-705 has potential to be a broad-spectrum antiviral drug.

  4. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    Science.gov (United States)

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  5. The anti-obesity drug orlistat reveals anti-viral activity.

    Science.gov (United States)

    Ammer, Elisabeth; Nietzsche, Sandor; Rien, Christian; Kühnl, Alexander; Mader, Theresa; Heller, Regine; Sauerbrei, Andreas; Henke, Andreas

    2015-12-01

    The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways. PMID:25680890

  6. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2.

    Science.gov (United States)

    Chen, Jie; Li, Wentao; Jin, Erguang; He, Qigai; Yan, Weidong; Yang, Hanchun; Gong, Shiyu; Guo, Yi; Fu, Shulin; Chen, Xiabing; Ye, Shengqiang; Qian, Yunguo

    2016-06-01

    Arctigenin (ACT) is a phenylpropanoid dibenzylbutyrolactone lignan extracted from the traditional herb Arctium lappa L. (Compositae) with anti-viral and anti-inflammatory effects. Here, we investigated the antiviral activity of ACT found in traditional Chinese medicine on porcine circovirus type 2 (PCV2) in vitro and in vivo. Results showed that dosing of 15.6-62.5μg/mL ACT could significantly inhibit the PCV2 proliferation in PK-15 cells (P<0.01). Dosing of 62.5μg/mL ACT 0, 4 or 8h after challenge inoculation significantly inhibited the proliferation of 1MOI and 10MOI in PK-15 cells (P<0.01), and the inhibitory effect of ACT dosing 4h or 8h post-inoculation was greater than 0h after dosing (P<0.01). In vivo test with mice challenge against PCV2 infection demonstrated that intraperitoneal injection of 200μg/kg ACT significantly inhibited PCV2 proliferation in the lungs, spleens and inguinal lymph nodes, with an effect similar to ribavirin, demonstrating the effectiveness of ACT as an antiviral agent against PCV2 in vitro and in vivo. This compound, therefore, may have the potential to serve as a drug for protection of pigs against the infection of PCV2. PMID:27234554

  7. Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses.

    Directory of Open Access Journals (Sweden)

    Tina M Sali

    2015-12-01

    Full Text Available Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN response by way of the transcription factor IFN regulatory factor 3 (IRF3. A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl-N-(furan-2-ylmethyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10, which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.

  8. Liposome-incorporated santolina insularis essential oil: preparation, characterization and in vitro antiviral activity.

    Science.gov (United States)

    Valenti, D; De Logu, A; Loy, G; Sinico, C; Bonsignore, L; Cottiglia, F; Garau, D; Fadda, A M

    2001-01-01

    The effect of liposomal inclusion on the stability and in vitro antiherpetic activity of Santolina insularis essential oil was investigated. In order to study the influence of vesicle structure on the liposome properties, multilamellar and unilamellar vesicles were prepared by the film method and sonication, respectively. Vesicles were obtained from hydrogenated soya phosphatydilcholine and cholesterol. Formulations were examined for their stability for over one year monitoring the drug leakage from vesicles and the average size distribution. The stability of the incorporated oil was verified by studying its quali-quantitative composition. The antiviral activity was studied against Herpes simplex virus type 1 (HSV-1) by plaque reduction and yield reduction assays. Results showed that Santolina insularis essential oil can be incorporated in high amounts in the prepared liposomes, which successfully prevented its degradation. Moreover, stability studies pointed out that vesicle dispersions were stable for at least one year and neither oil leakage nor vesicle size alteration occurred during this period. Antiviral activity assays demonstrated that Santolina insularis essential oil is effective in inactivating HSV-1 and that the activity is principally due to direct virucidal effects. Free essential oil proved to be more effective than liposomal oil and a different activity was discovered which related to the vesicular structure. The ED(50) values, significantly lower when cells were pre-incubated with the essential oil before the virus adsorption, indicate an intracellular mechanism in the antiviral activity of Santolina insularis. Moreover, liposomal Santolina essential oil is non toxic in the range of the concentration tested. PMID:19530920

  9. Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses.

    Science.gov (United States)

    Sali, Tina M; Pryke, Kara M; Abraham, Jinu; Liu, Andrew; Archer, Iris; Broeckel, Rebecca; Staverosky, Julia A; Smith, Jessica L; Al-Shammari, Ahmed; Amsler, Lisi; Sheridan, Kayla; Nilsen, Aaron; Streblow, Daniel N; DeFilippis, Victor R

    2015-12-01

    Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses. PMID:26646986

  10. A Study of the Interferon Antiviral Mechanism: Apoptosis Activation by the 2–5A System

    OpenAIRE

    Castelli, JoAnn C.; Hassel, Bret A.; Wood, Katherine A.; Li, Xiao-Ling; Amemiya, Kei; Dalakas, Marinos C.; Torrence, Paul F.; Youle, Richard J.

    1997-01-01

    The 2–5A system contributes to the antiviral effect of interferons through the synthesis of 2–5A and its activation of the ribonuclease, RNase L. RNase L degrades viral and cellular RNA after activation by unique, 2′–5′ phosphodiester-linked, oligoadenylates [2–5A, (pp)p5′ A2′(P5′A2′)]n, n ⩾2. Because both the 2–5A system and apoptosis can serve as viral defense mechanisms and RNA degradation occurs during both processes, we investigated the potential role of RNase L in apoptosis. Overexpress...

  11. Antiviral activity of Paulownia tomentosa against enterovirus 71 of hand, foot, and mouth disease.

    Science.gov (United States)

    Ji, Ping; Chen, Changmai; Hu, Yanan; Zhan, Zixuan; Pan, Wei; Li, Rongrong; Li, Erguang; Ge, Hui-Ming; Yang, Guang

    2015-01-01

    The bark, leaves, and flowers of Paulownia trees have been used in traditional Chinese medicine to treat infectious and inflammatory diseases. We investigated the antiviral effects of Paulownia tomentosa flowers, an herbal medicine used in some provinces of P. R. China for the treatment of skin rashes and blisters. Dried flowers of P. tomentosa were extracted with methanol and tested for antiviral activity against enterovirus 71 (EV71) and coxsackievirus A16 (CAV16), the predominant etiologic agents of hand, foot, and mouth disease in P. R. China. The extract inhibited EV71 infection, although no effect was detected against CAV16 infection. Bioactivity-guided fractionation was performed to identify apigenin as an active component of the flowers. The EC50 value for apigenin to block EV71 infection was 11.0 µM, with a selectivity index of approximately 9.3. Although it is a common dietary flavonoid, only apigenin, and not similar compounds like naringenin and quercetin, were active against EV71 infection. As an RNA virus, the genome of EV71 has an internal ribosome entry site that interacts with heterogeneous nuclear ribonucleoproteins (hnRNPs) and regulates viral translation. Cross-linking followed by immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that EV71 RNA was associated with hnRNPs A1 and A2. Apigenin treatment disrupted this association, indicating that apigenin suppressed EV71 replication through a novel mechanism by targeting the trans-acting factors. This study therefore validates the effects of Paulownia against EV71 infection. It also yielded mechanistic insights on apigenin as an active compound for the antiviral activity of P. tomentosa against EV71 infection. PMID:25744451

  12. Antiviral Activity of Liquorice Powder Extract against Varicella Zoster Virus Isolated from Egyptian Patients

    Directory of Open Access Journals (Sweden)

    Aly F. Mohamed

    2012-06-01

    Full Text Available Background: Varicella-zoster virus (VZV is the etiologic agent of two diseases, varicella (chicken pox and zoster (shingles. Varicella is a self- limited infection, while zoster is mainly a disease of adults. The present study was conducted to isolate VZV from clinically diagnosed children using cell cultures and compare the activity of liquorice powder extract, an alternative herbal antiviral agent, with acyclovir and interferon alpha 2a (IFN-α2a against the isolated virus.Methods: Forty-eight VZV specimens, 26 from vesicular aspirates and 22 from vesicular swabs, from children clinically diagnosed with varicella were isolated on the Vero cell line. Isolates were propagated and identified with specific antiserum using indirect immunofluorescence and immunodot blotting assays.The growth kinetics of the viral isolates was studied. The antiviral activity of liquorice powder extract, acyclovir (ACV and IFN-α2a was evaluated against the isolated virus.Results: VZV was successfully isolated in 4 of the 48 specimens, all from vesicular aspirates. The growth kinetics of the viral isolates was time dependent. The inhibitory activity of liquorice powder extract (containing 125 µg/ml glycyrrhizin when compared to ACV (250 µg/ml and IFN-α2a is the lowest.Conclusions: VZV isolates were successfully isolated and propagated using Vero cells. Isolates were identified using indirect immunofluorescent and immunodot blotting techniques. Growth kinetics of the isolates revealed an increase in the viral infectivity titer relative to time. Glycyrrhizin in the crude form has low antiviral activity against VZV compared with acyclovir and interferon.

  13. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  14. Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus.

    Science.gov (United States)

    Chang, Shu-Jen; Huang, Su-Hua; Lin, Ying-Ju; Tsou, Yi-Yun; Lin, Cheng-Wen

    2014-01-01

    Rheum palmatum, Chinese traditional herb, exhibits a great variety of anti-cancer and anti-viruses properties. This study rates antiviral activity of R. palmatum extracts and its components against Japanese encephalitis virus (JEV) in vitro. Methanol extract of R. palmatum contained higher levels of aloe emodin, chrysophanol, rhein, emodin and physcion than water extract. Methanol extract (IC₅₀ = 15.04 μg/ml) exhibited more potent inhibitory effects on JEV plaque reduction than water extract (IC₅₀ = 51.41 μg/ml). Meanwhile, IC₅₀ values determined by plaque reduction assay were 15.82 μg/ml for chrysophanol and 17.39 μg/ml for aloe-emodin, respectively. Virucidal activity of agents correlated with anti-JEV activity, while virucidal IC₅₀ values were 7.58 μg/ml for methanol extract, 17.36 μg/ml for water extract, 0.75 μg/ml for chrysophanol and 0.46 μg/ml for aloe-emodin, respectively. In addition, 10 μg/ml of extract, chrysophanol or aloe emodin caused 90 % inhibition of JEV yields in cells and significantly activated gamma activated sequence-driven promoters. Hence, methanol extract of R. palmatum and chrysophanol with high therapeutic index might be useful for development of antiviral agents against JEV. PMID:24395532

  15. Antiviral activity of recombinant porcine surfactant protein A against porcine reproductive and respiratory syndrome virus in vitro.

    Science.gov (United States)

    Li, Lan; Zheng, Qisheng; Zhang, Yuanpeng; Li, Pengcheng; Fu, Yanfeng; Hou, Jibo; Xiao, Xilong

    2016-07-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses in the swine industry worldwide. However, there is not an ideal vaccine to provide complete protection against PRRSV. Thus, the need for new antiviral strategies to control PRRSV still remains. Surfactant protein A (SP-A) belongs to the family of C-type lectins, which can exert antiviral activities. In this present study, we assessed the antiviral properties of recombinant porcine SP-A (RpSP-A) on PRRSV infection in Marc 145 cells and revealed its antiviral mechanism using a plaque assay, real-time qPCR, western blotting analysis and an attachment and penetration assay. Our results showed that RpSP-A could inhibit the infectivity of PRRSV in Marc 145 cells and could reduce the total RNA and protein level. The attachment assay indicated that RpSP-A in the presence of Ca(2+) could largely inhibit Marc 145 cell attachment; however, in the penetration assay, it was relatively inactive. Furthermore, our study suggested that virus progeny released from infected Marc145 cells were blocked by RpSP-A from infecting other cells. We conclude that RpSP-A has antiviral activity against PRRSV, most probably by blocking viral attachment and the cell-to-cell transmission pathway, and therefore, RpSP-A holds promise as a novel antiviral agent against PRRSV. PMID:27101074

  16. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    International Nuclear Information System (INIS)

    Research highlights: → We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. → Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. → Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7-/- cells (autophagy-defective cells) derived from an atg7-/- knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  17. Synthesis, antiviral activity, and bioavailability studies of gamma-lactam derived HIV protease inhibitors.

    Science.gov (United States)

    Hungate, R W; Chen, J L; Starbuck, K E; Vacca, J P; McDaniel, S L; Levin, R B; Dorsey, B D; Guare, J P; Holloway, M K; Whitter, W

    1994-09-01

    Incorporation of a gamma-lactam in hydroxyethylene isosteres results in modest inhibitors of HIV-1 protease. Additional structural activity studies have produced significantly more potent inhibitors with the introduction of the trisubstituted cyclopentane (see compound 20) as the optimum substituent for the C-terminus. This new amino acid amide surrogate can be readily prepared in large scale from (R)-pulegone. Optimized compounds (36) and (60) are potent antiviral agents and are well absorbed (15-20%) in a dog model after oral administration. PMID:7712123

  18. Characterization of Antiviral Activity of Benzamide Derivative AH0109 against HIV-1 Infection

    OpenAIRE

    Chen, Liyu; Ao, Zhujun; Jayappa, Kallesh Danappa; Kobinger, Gary; Liu, ShuiPing; Wu, Guojun; Wainberg, Mark A.; Yao, Xiaojian

    2013-01-01

    In the absence of an effective vaccine against HIV-1 infection, anti-HIV-1 strategies play a major role in disease control. However, the rapid emergence of drug resistance against all currently used anti-HIV-1 molecules necessitates the development of new antiviral molecules and/or strategies against HIV-1 infection. In this study, we have identified a benzamide derivative named AH0109 that exhibits potent anti-HIV-1 activity at an 50% effective concentration of 0.7 μM in HIV-1-susceptible CD...

  19. Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses

    DEFF Research Database (Denmark)

    Hamming, Ole Jensen; Terczynska-Dyla, Ewa; Vieyres, Gabrielle;

    2013-01-01

    The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response...... to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL-10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion...

  20. Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity

    Directory of Open Access Journals (Sweden)

    Rincão Vinicius

    2012-02-01

    Full Text Available Abstract Background Lentinula edodes, known as shiitake, has been utilized as food, as well as, in popular medicine, moreover, compounds isolated from its mycelium and fruiting body have shown several therapeutic properties. The aim of this study was to determine the antiviral activity of aqueous (AqE and ethanol (EtOHE extracts and polysaccharide (LeP from Lentinula edodes in the replication of poliovirus type 1 (PV-1 and bovine herpes virus type 1 (BoHV-1. Methods The time-of-addition assay was performed at the times -2, -1, 0, 1 and 2 h of the infection. The virucidal activity and the inhibition of viral adsorption were also evaluated. Plaque assay was used to monitor antiviral activity throughout. Results The AqE and LeP were more effective when added at 0 h of infection, however, EtOHE was more effective at the times 1 h and 2 h of the infection. AqE, EtOHE and LeP showed low virucidal activity, and the inhibition of viral adsorption was not significant. Conclusions The results allowed us to conclude that AqE, EtOHE and LeP act on the initial processes of the replication of both strains of virus.

  1. Structural characteristics and antiviral activity of multiple peptides derived from MDV glycoproteins B and H

    Directory of Open Access Journals (Sweden)

    Wang Ming

    2011-04-01

    Full Text Available Abstract Background Marek's disease virus (MDV, which is widely considered to be a natural model of virus-induced lymphoma, has the potential to cause tremendous losses in the poultry industry. To investigate the structural basis of MDV membrane fusion and to identify new viral targets for inhibition, we examined the domains of the MDV glycoproteins gH and gB. Results Four peptides derived from the MDV glycoprotein gH (gHH1, gHH2, gHH3, and gHH5 and one peptide derived from gB (gBH1 could efficiently inhibit plaque formation in primary chicken embryo fibroblast cells (CEFs with 50% inhibitory concentrations (IC50 of below 12 μM. These peptides were also significantly able to reduce lesion formation on chorioallantoic membranes (CAMs of infected chicken embryos at a concentration of 0.5 mM in 60 μl of solution. The HR2 peptide from Newcastle disease virus (NDVHR2 exerted effects on MDV specifically at the stage of virus entry (i.e., in a cell pre-treatment assay and an embryo co-treatment assay, suggesting cross-inhibitory effects of NDV HR2 on MDV infection. None of the peptides exhibited cytotoxic effects at the concentrations tested. Structural characteristics of the five peptides were examined further. Conclusions The five MDV-derived peptides demonstrated potent antiviral activity, not only in plaque formation assays in vitro, but also in lesion formation assays in vivo. The present study examining the antiviral activity of these MDV peptides, which are useful as small-molecule antiviral inhibitors, provides information about the MDV entry mechanism.

  2. Gene Expression and Antiviral Activity of Interleukin-35 in Response to Influenza A Virus Infection.

    Science.gov (United States)

    Wang, Li; Zhu, Shengli; Xu, Gang; Feng, Jian; Han, Tao; Zhao, Fanpeng; She, Ying-Long; Liu, Shi; Ye, Linbai; Zhu, Ying

    2016-08-01

    Interleukin-35 (IL-35) is a newly described member of the IL-12 family. It has been reported to inhibit inflammation and autoimmune inflammatory disease and can increase apoptotic sensitivity. Little is known about the role of IL-35 during viral infection. Herein, high levels of IL-35 were found in peripheral blood mononuclear cells and throat swabs from patients with seasonal influenza A virus (IAV) relative to healthy individuals. IAV infection of human lung epithelial and primary cells increased levels of IL-35 mRNA and protein. Further studies demonstrated that IAV-induced IL-35 transcription is regulated by NF-κB. IL-35 expression was significantly suppressed by selective inhibitors of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase, indicating their involvement in IL-35 expression. Interestingly, IL-35 production may have suppressed IAV RNA replication and viral protein synthesis via induction of type I and III interferons (IFN), leading to activation of downstream IFN effectors, including double-stranded RNA-dependent protein kinase, 2',5'-oligoadenylate synthetase, and myxovirus resistance protein. IL-35 exhibited extensive antiviral activity against the hepatitis B virus, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that IL-35 is a novel IAV-inducible cytokine, and its production elicits antiviral activity. PMID:27307042

  3. Antiviral activity of Ellagic Acid against envelope proteins from Dengue Virus through Insilico Docking

    Directory of Open Access Journals (Sweden)

    Giridharan Bupesh

    2014-06-01

    Full Text Available Arbo viral infection such as dengue, chikungunya, japanese encephalitis, west nile viruses and other flaviviruses have transmemberane envelope proteins. These proteins (glycoproteins form spike-like projections responsible for virus attachment to target cells and acid-activated membrane fusion. Further it targets numerous serologic reactions and tests including neutralization and hemagglutination inhibition. These viruses showed wide range of antigenic cross reactions and caused by seven antigenic complexes from 30 species, huge subtypes and varieties. This protein is the chief site for most neutralizing epitopes, highly conserved with cross-reactive epitopes. In the present study, the ellagic acid (4,4,5,5,6,6-Hexahydroxydiphenic acid 2,6,2,6-dilactone was evaluated for the antiviral activity through Insilico docking against drug target envelope proteins from dengue viruses. Ellagic acid showed good docking score with all the four glycoproteins from dengue 1-4 viruses. Among the glycoprotein receptors the glycoprotein-1 and 4 demonstrates the highest docking score with energy minimization. This highlights that the ellagic acid have potent antiviral activity against the dengue viruses.

  4. Expression of intracellular interferon-alpha confers antiviral properties in transfected bovine fetal fibroblasts and does not affect the full development of SCNT embryos.

    Directory of Open Access Journals (Sweden)

    Dawei Yu

    Full Text Available Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α (without secretory signal sequence gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT. Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9% became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS, which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.

  5. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins.

    Science.gov (United States)

    Rebensburg, Stephanie; Helfer, Markus; Schneider, Martha; Koppensteiner, Herwig; Eberle, Josef; Schindler, Michael; Gürtler, Lutz; Brack-Werner, Ruth

    2016-01-01

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles. PMID:26833261

  6. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Hammami

    2015-11-01

    Full Text Available The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID and gas chromatography coupled with mass spectrometry (GC/MS. Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1% followed by caryophyllene oxide (6.3%, myristicin (4.9% and α-cubebene (3.9%. The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH. The IC50 value of the oil was evaluated as 0.77 mg·mL−1. In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50 = 653.6 µg·mL−1. The potential antiviral effect was tested against Coxsackievirus B (CV-B, a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE reduction assay.

  7. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia.

    Science.gov (United States)

    Hammami, Saoussen; Jmii, Habib; El Mokni, Ridha; Khmiri, Abdelbaki; Faidi, Khaled; Dhaouadi, Hatem; El Aouni, Mohamed Hédi; Aouni, Mahjoub; Joshi, Rajesh K

    2015-01-01

    The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae) collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1%) followed by caryophyllene oxide (6.3%), myristicin (4.9%) and α-cubebene (3.9%). The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH). The IC50 value of the oil was evaluated as 0.77 mg·mL(-1). In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50)=653.6 µg·mL(-1)). The potential antiviral effect was tested against Coxsackievirus B (CV-B), a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE) reduction assay. PMID:26580590

  8. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  9. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    International Nuclear Information System (INIS)

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC50 values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets

  10. Characterization of antiviral and antibacterial activity of Bombyx mori seroin proteins.

    Science.gov (United States)

    Singh, C P; Vaishna, R L; Kakkar, A; Arunkumar, K P; Nagaraju, J

    2014-09-01

    Lepidopterans as other insects have a very potent innate immune system, which basically comprises cellular and humoral defence mechanisms against bacterial and fungal infections. In lepidopterans, not much is known about the defence mechanisms against viral pathogens, such as baculoviruses. Here we show that small silk proteins of the domesticated silkworm, Bombyx mori, called seroins, act as antiviral agents against a baculovirus pathogen, Bombyx mori nucleopolyhedrovirus (BmNPV). Involvement of these proteins in the inhibition of baculovirus infection was revealed by estimating the viral load upon their dsRNA-mediated knockdown. Additionally, we found through antimicrobial assays that seroins are potent inhibitors of bacterial growth. Binding competition assays followed by antimicrobial assays showed that seroins bind to peptidoglycan, a cell wall component of bacteria. Analysis of bacterial load upon knockdown of seroins resulted in higher proliferation of bacteria. Phylogenetic analysis showed the recent origin of seroins in a few moth species and duplication only in Bombycids. The antiviral and antibacterial activity of seroins shown in this study using several biochemical and molecular biological assays provide strong evidence to characterize them as antimicrobial proteins. Hence, we hypothesize that seroins are potent candidates for use in development of transgene-based disease resistant silkworm strains. PMID:24628957

  11. Light-activated nanotube-porphyrin conjugates as effective antiviral agents

    Science.gov (United States)

    Banerjee, Indrani; Douaisi, Marc P.; Mondal, Dhananjoy; Kane, Ravi S.

    2012-03-01

    Porphyrins have been used for photodynamic therapy (PDT) against a wide range of targets like bacteria, viruses and tumor cells. In this work, we report porphyrin-conjugated multi-walled carbon nanotubes (NT-P) as potent antiviral agents. Specifically, we used Protoporphyrin IX (PPIX), which we attached to acid-functionalized multi-walled carbon nanotubes (MWNTs). We decided to use carbon nanotubes as scaffolds because of their ease of recovery from a solution through filtration. In the presence of visible light, NT-P was found to significantly reduce the ability of Influenza A virus to infect mammalian cells. NT-P may be used effectively against influenza viruses with little or no chance of them developing resistance to the treatment. Furthermore, NT-P can be easily recovered through filtration which offers a facile strategy to reuse the active porphyrin moiety to its fullest extent. Thus NT-P conjugates represent a new approach for preparing ex vivo reusable antiviral agents.

  12. Synthesis, antimicrobial, and antiviral activities of some new 5-sulphonamido-8-hydroxyquinoline derivatives.

    Science.gov (United States)

    Kassem, Emad M; El-Sawy, Eslam R; Abd-Alla, Howaida I; Mandour, Adel H; Abdel-Mogeed, Dina; El-Safty, Mounir M

    2012-06-01

    A series of fused pyranopyrazole and pyranoimidazole, namely 5-(3,6-diamino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-2-yl)sulphonyl-8-hydroxyquinolines (5a-e), 5-(6-amino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-3-yl)sulphonamido-8-hydroxyquinolines (6a-e), 5-(2-thioxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl)sulphonyl-8-hydroxyquinolines (10a-e), and 5-(2-oxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl) sulphonyl-8-hydroxyquinolines (11a-e), have been prepared via condensation of some arylidine malononitriles with 5-sulphonamido-8-hydroxyquinoline derivatives 3, 4, 8 and 9. All the synthesized compounds were screened for their antimicrobial activities, and most of the tested compounds showed potent inhibition growth activity towards Escherichia coli, Pseudomonas aeruginosa (Gramnegative bacteria). Furthermore, six selected compounds were tested for their antiviral activity against avian paramyxovirus type1 (APMV-1) and laryngotracheitis virus (LTV), and the results showed that a concentration range of 3-4 μg per mL of compounds 2, 3, and 4 showed marked viral inhibitory activity for APMV-1 of 5000 tissue culture infected dose fifty (TCID(50)) and LTV of 500 TCID(50) in Vero cell cultures based on their cytopathic effect. Chicken embryo experiments show that compounds 2, 3, and 4 possess high antiviral activity in vitro with an inhibitory concentration fifty (IC(50)) range of 3-4 μg per egg against avian APMV-1 and LTV and their toxic concentration fifty (CC(50)) of 200-300 μg per egg. PMID:22870804

  13. Antiviral Activity of Hederasaponin B from Hedera helix against Enterovirus 71 Subgenotypes C3 and C4a

    OpenAIRE

    Song, Jaehyoung; Yeo, Sang-Gu; Hong, Eun-Hye; Lee, Bo-Ra; Kim, Jin-Won; Kim, Jeonghoon; Jeong, HyeonGun; Kwon, YongSoo; Kim, HyunPyo; Lee, Sangwon; Park, Jae-Hak; Ko, Hyun-Jeong

    2014-01-01

    Enterovirus 71 (EV71) is the predominant cause of hand, foot and mouth disease (HFMD). The antiviral activity of hederasaponin B from Hedera helix against EV71 subgenotypes C3 and C4a was evaluated in vero cells. In the current study, the antiviral activity of hederasaponin B against EV71 C3 and C4a was determined by cytopathic effect (CPE) reduction method and western blot assay. Our results demonstrated that hederasaponin B and 30% ethanol extract of Hedera helix containing hederasaponin B ...

  14. MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-I-MAVS-Independent IFN Induction.

    Science.gov (United States)

    Cuevas, Rolando A; Ghosh, Arundhati; Wallerath, Christina; Hornung, Veit; Coyne, Carolyn B; Sarkar, Saumendra N

    2016-05-01

    Moloney leukemia virus 10, homolog (MOV10) is an IFN-inducible RNA helicase, associated with small RNA-induced silencing. In this article, we report that MOV10 exhibits antiviral activity, independent of its helicase function, against a number of positive- and negative-strand RNA viruses by enhancing type I IFN induction. Using a number of genome-edited knockout human cells, we show that IFN regulatory factor 3-mediated IFN induction and downstream IFN signaling through IFN receptor was necessary to inhibit virus replication by MOV10. MOV10 enhanced IFN regulatory factor 3-mediated transcription of IFN. However, this IFN induction by MOV10 was unique and independent of the known retinoic acid-inducible gene I/mitochondrial antiviral-signaling protein-mediated RNA-sensing pathway. Upon virus infection, MOV10 specifically required inhibitor of κB kinase ε, not TANK-binding kinase 1, for its antiviral activity. The important role of MOV10 in mediating antiviral signaling was further supported by the finding that viral proteases from picornavirus family specifically targeted MOV10 as a possible innate immune evasion mechanism. These results establish MOV10, an evolutionary conserved protein involved in RNA silencing, as an antiviral gene against RNA viruses that uses an retinoic acid-inducible gene I-like receptor-independent pathway to enhance IFN response. PMID:27016603

  15. Epimedium koreanum Nakai Water Extract Exhibits Antiviral Activity against Porcine Epidermic Diarrhea Virus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2012-01-01

    Full Text Available Porcine epidemic diarrhea virus (PEDV causes diarrhea of pigs age-independently and death of young piglets, resulting in economic loss of porcine industry. We have screened 333 natural oriental herbal medicines to search for new antiviral candidates against PEDV. We found that two herbal extracts, KIOM 198 and KIOM 124, contain significant anti-PED viral effect. KIOM 198 and KIOM 124 were identified as Epimedium koreanum Nakai and Lonicera japonica Thunberg, respectively. The further plaque and CPE inhibition assay in vitro showed that KIOM 198 has much stronger antiviral activity than KIOM 124. Additionally, KIOM 198 exhibited a similar extent of antiviral effect against other subtypes of Corona virus such as sm98 and TGE viruses. Cytotoxicity results showed that KIOM 198 is nontoxic on the cells and suggest that it can be delivered safely for therapy. Furthermore, when we orally administered KIOM 198 to piglets and then infected them with PEDV, the piglets did not show any disease symptoms like diarrhea and biopsy results showed clean intestine, whereas control pigs without KIOM 198 treatment exhibited PED-related severe symptoms. These results imply that KIOM 198 contains strong antiviral activity and has a potential to be developed as an antiviral phytomedicine to treat PEDV-related diseases in pigs.

  16. 5-Bromo (or chloro)-6-azido-5,6-dihydro-2' -deoxyuridine and -thymidine derivatives with potent antiviral activity.

    Science.gov (United States)

    Kumar, Rakesh

    2002-02-11

    Synthesis, antiviral, and cytotoxic activities of 5-bromo (or chloro)-6-azido-5,6-dihydro-2' -deoxyuridine (4,5) and -thymidine (6,7) are reported. Compounds 4 and 5 exhibited a broad spectrum of antiherpes activity against (HSV-1, HSV-2, HCMV, and VZV). PMID:11814776

  17. Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart.

    Science.gov (United States)

    Brandão, Geraldo Célio; Kroon, Erna Gessien; Duarte, Maria Gorette R; Braga, Fernão Castro; de Souza Filho, José Dias; de Oliveira, Alaíde Braga

    2010-10-01

    Polygonum spectabile is used in Brazil for treatment of several infection diseases. Extracts and constituents isolated from this species were evaluated for cytotoxicity and effects on 15 bacterias and yeasts as well on 4 viruses strains (HHV-1, VACV-WR, EMCV, DEN-2). Less polar extracts were effective against Staphylococcus aureus, Bacillus subtillis, Micrococcus luteus, M. canis and Tricophyton mentagrophytes and T. rubrum. Two known chalcones and 3-O-β-D-glucosyl-β-sitosterol were isolated. The ethanol extract was the only one to show antiviral activity (CE50 < 30 μg/ml). One chalcone has inhibited the growth of several bacteria and was significantly active against dermathophytes. The 3 compounds isolated have shown moderate cytotoxicity against Vero and LLCMK(2) cells (CC(50) < 50 μg/ml). These results support the use of P. spectabile as antimicrobial agent. PMID:20382006

  18. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes.

    Science.gov (United States)

    Yu, Debin; Zhao, Mingzhi; Dong, Liwei; Zhao, Lu; Zou, Mingwei; Sun, Hetong; Zhang, Mengying; Liu, Hongyu; Zou, Zhihua

    2016-01-01

    Type III interferons (IFNs) (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4) are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the expression of the antiviral genes MxA and OAS and two of them, analog-6 and -7, displayed an unexpected high potency that is higher than that of type I IFN (IFN-α2a) in activating the IFN-stimulated response element (ISRE)-luciferase reporter. Importantly, both analog-6 and -7 effectively inhibited replication of hepatitis C virus in Huh-7.5.1 cells, with an IC50 that is comparable to that of IFN-α2a; and consistent with the roles of IFN-λ in mucosal epithelia, both analogs potently inhibited replication of H3N2 influenza A virus in A549 cells. Together, these studies identified two IFN-λ analogs as candidates to be developed as novel antiviral biologics. PMID:26792983

  19. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Perry

    Full Text Available Ubiquitin (Ub is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs. However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1, a critical mediator of the unfolded protein response (UPR. WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1 through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.

  20. Antiviral Activity of Nano Carbon Fullerene Lipidosome against Influenza Virus/In Vitro

    Institute of Scientific and Technical Information of China (English)

    Hong JI; Zhanqiu YANG; Wenling JIANG; Chun GENG; Ming GONG; Hong XIAO; Zhijie WANG; Li CHENG

    2008-01-01

    The activity of nano carbon fullerene lipidosome (NCFL) against influenza virus HINI in vitro was studied by observing the cytotoxicities and its activity rendered by different intensities of lighting with various periods of time. Rimantadine hydrochloride was used as the positive control drug. By using microcultural technique, the morphological changes of cells were observed and by using the gentian violet staining, antiviral activity of the NCFL against influenza virus was assayed. The results showed that: (1) The maximal concentration of the NCFL was 7μg/mL and the 50% toxic concentration (TC50) was 13.54μg/mL respectively; (2) NCFL had a significant activity of directly killing the influenza virus, while the activities in antiadsorption and antireplication were not obvious; (3) There was a dose-activity relationship between the dosages of NCFL and the direct killing effect against the influenza virus, and the periods of lighting-time could influence the activity partly. It was concluded that NCFL had a significant activity of directly killing the influenza virus.

  1. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2.

    Science.gov (United States)

    Allahverdiyev, A; Duran, N; Ozguven, M; Koltas, S

    2004-11-01

    Melissa officinalis L. (Lamiaceae) has been used in a variety of practical applications in medical science. Our objective in the current study was to determine the effects of the volatile oil components of M. officinalis on Herpes simplex virus type 2 (HSV-2) replication in HEp-2 cells. Four different concentrations (25, 50, 100, 150 and 200 microg/ml) of volatile oils were examined. Experiments were carried out using HEp-2 cells. M. officinalis volatile oil was found to be non-toxic to HEp-2 cells up to a concentration of 100 micro/ml. It was, however, found to be slightly toxic at a concentration over of 100 microg/ml. The antiviral activity of non-toxic concentrations against HSV-2 was tested. The replication of HSV-2 was inhibited, indicating that the M. officinalis L. extract contains an anti-HSV-2 substance. PMID:15636181

  2. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23

    Science.gov (United States)

    Ma, Xinhua; Zhu, Tianjiao; Gu, Qianqun; Xi, Rui; Wang, Wei; Li, Dehai

    2014-12-01

    A new butyrolactone derivative, namely butyrolactone VIII ( 1), and six known butyrolactones ( 2-7) were separated from the ethyl acetate (EtOAc) extract of the fermentation broth of a fungus, Aspergillus terreus MXH-23. The chemical structures of these metabolites were identified by analyzing their nuclear magnetic resonance (NMR) and mass spectrometry (MS). Known butyrolactone derivatives contain an α, β-unsaturated γ-lactone ring with α-hydroxyl and γ-benzyl, and butyrolactone VIII ( 1) was the first butyrolactones contains α-benzyl and γ-hydroxyl on α, β-unsaturated lactone ring. All of the butyrolactone derivatives were tested for their anti-influenza (H1N1) effects. Derivatives 4 and 7 showed moderate antiviral activities while the newly-identified, derivative 1, did not.

  3. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes

    Directory of Open Access Journals (Sweden)

    Yu D

    2016-01-01

    Full Text Available Debin Yu,1 Mingzhi Zhao,2 Liwei Dong,1 Lu Zhao,1 Mingwei Zou,3 Hetong Sun,4 Mengying Zhang,4 Hongyu Liu,4 Zhihua Zou1 1National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 2State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA; 4Prosit Sole Biotechnology, Co., Ltd., Beijing, People’s Republic of China Abstract: Type III interferons (IFNs (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the

  4. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation

    NARCIS (Netherlands)

    Feng, Qian; Langereis, Martijn A; Olagnier, David; Chiang, Cindy; van de Winkel, Roel; van Essen, Peter; Zoll, Jan; Hiscott, John; van Kuppeveld, Frank J M

    2014-01-01

    Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by

  5. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  6. Pharmacokinetics and antiviral activity of PHX1766, a novel HCV protease inhibitor, using an accelerated Phase I study design

    NARCIS (Netherlands)

    D.M. Hotho (Daphne); J. Bruijne (Joep); N. O'Farrell; T. Boyea (Teresa); J. Li (Jianke); M. Bracken (Michele); X. Li (Xin); D. Campbell (David); H.-P. Guler (Hans-Peter); C.J. Weegink (Christine); J. Schinkel (Janke); R. Molenkamp (Richard); J. Van De Wetering De Rooij (Jeroen); A.A. Vliet (Andre); H.L.A. Janssen (Harry); R.J. de Knegt (Robert); H.W. Reesink (Henk)

    2012-01-01

    textabstractBackground: PHX1766 is a novel HCV NS3/4 protease inhibitor with robust potency and high selectivity in replicon studies (50% maximal effective concentration 8 nM). Two clinical trials investigated the safety, tolerability, pharmacokinetics and antiviral activity of PHX1766 in healthy vo

  7. An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity

    DEFF Research Database (Denmark)

    Ank, Nina; Iversen, Marie B; Bartholdy, Christina;

    2008-01-01

    Type III IFNs (IFN-lambda/IL-28/29) are cytokines with type I IFN-like antiviral activities, which remain poorly characterized. We herein show that most cell types expressed both types I and III IFNs after TLR stimulation or virus infection, whereas the ability of cells to respond to IFN-lambda w...

  8. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  9. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    Directory of Open Access Journals (Sweden)

    Elaissi Ameur

    2012-06-01

    Full Text Available Abstract Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia and Souinet arboreta (North of Tunisia were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively, four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae

  10. Antibody complementarity-determining regions (CDRs can display differential antimicrobial, antiviral and antitumor activities.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available BACKGROUND: Complementarity-determining regions (CDRs are immunoglobulin (Ig hypervariable domains that determine specific antibody (Ab binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. METHODOLOGY/PRINCIPAL FINDINGS: CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a a protein epitope of Candida albicans cell wall stress mannoprotein; b a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. CONCLUSIONS/SIGNIFICANCE: The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small

  11. Gas chromatography-mass spectroscopy analysis of bioactive petalostigma extracts: Toxicity, antibacterial and antiviral activities

    Directory of Open Access Journals (Sweden)

    F R Kalt

    2014-01-01

    Full Text Available Background: Petalostigma pubescens and Petalostigma triloculare were common components of pharmacopeia′s of multiple Australian Aboriginal tribal groupings which traditionally inhabited the areas in which they grow. Among these groups, they had a myriad of medicinal uses in treating a wide variety of bacterial, fungal and viral infections. This study was undertaken to test P. pubescens and P. triloculare leaf and fruit extracts for the ability to inhibit bacterial and viral growth and thus validate Australian Aboriginal usage of these plants in treating bacterial and fungal diseases. Materials and Methods: P. pubescens, and P. triloculare leaves and fruit were extracted and tested for antimicrobial, antiviral activity and toxicity. The bioactive extracts were further examined by RP-HPLC and GC-MS to identify the component compounds. Results: The methanol, water and ethyl acetate leaf and fruit extracts of displayed potent antibacterial activity. The methanol and ethyl acetate extracts displayed the broadest specificity, inhibiting the growth of 10 of the 14 bacteria tested (71% for the leaf extract and 9 of the 14 bacteria tested (64% for the fruit extracts. The water extracts also had broad spectrum antibacterial activity, inhibiting the growth of 8 (57% and 7 (50% of the 14 bacteria tested, respectively. All antibacterial extracts were approximately equally effective against Gram-positive and Gram-negative bacteria, inhibiting the growth of 50-75% of the bacteria tested. The methanol, water and ethyl acetate extracts also displayed antiviral activity in the MS2 plaque reduction assay. The methanol and water extracts inhibited 26.6-49.0% and 85.4-97.2% of MS2 plaque formation, respectively, with the fruit extracts being more potent inhibitors. All ethyl acetate extracts inhibited 100% of MS2 plaque formation. All extracts were also non-toxic or of low toxicity. Analysis of these extracts by RP-HPLC showed that the P. triloculare ethyl acetate

  12. [Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus].

    Science.gov (United States)

    Shibnev, V A; Garaev, T M; Finogenova, M P; Kalnina, L B; Nosik, D N

    2015-01-01

    Fractions of aqueous and water-alcohol extracts of the birch fungus Inonotus obliquus have antiviral effect against the human immunodeficiency virus type 1 (HIV-1). Antiviral properties of low toxic extracts were manifested in the concentration of 5.0 μg/ml upon simultaneous application with the virus in the lymphoblastoid cells culture MT-4. The extract of the birch fungus can be used for development of new antiviral drugs, inhibitors of HIV-replication when used both in the form of individual drugs and as a part of complex therapy. PMID:26182655

  13. Antiviral activity of Ecasol against feline calicivirus, a surrogate of human norovirus.

    Science.gov (United States)

    Chander, Yogesh; Johnson, Thomas; Goyal, Sagar M; Russell, R J

    2012-12-01

    Human norovirus (NoV) is a major cause of acute gastroenteritis in closed settings such as hospitals, hotels and cruise ships. The virus survives on inanimate surfaces for extended periods of time, and environmental contamination has been implicated in its transmission. The disinfection of contaminated areas is important in controlling the spread of NoV infections. Neutral solutions of electrochemically activated (ECA)-anolyte have been shown to be powerful disinfectants against a broad range of bacterial pathogens. The active chemical ingredient is hypochlorous acid (HOCl), which is registered as an approved food contact surface sanitizer in the United States by the Environmental Protection Agency, pursuant to 40 CFR 180.940. We evaluated the antiviral activity of Ecasol (an ECA-anolyte) against feline calicivirus (FCV), a surrogate of NoV. FCV dried on plastic surfaces was exposed to Ecasol for 1, 2, or 5min. After exposure to Ecasol, the virus titers were compared with untreated controls to determine the virus inactivation efficacy after different contact times. Ecasol was found to decrease the FCV titer by >5log(10) within 1min of contact, indicating its suitability for inactivation of NoV on surfaces. PMID:23287613

  14. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species.

    Science.gov (United States)

    Loizzo, Monica R; Saab, Antoine M; Tundis, Rosa; Statti, Giancarlo A; Menichini, Francesco; Lampronti, Ilaria; Gambari, Roberto; Cinatl, Jindrich; Doerr, Hans Wilhelm

    2008-03-01

    The chemical composition of the essential oils of Laurus nobilis, Juniperus oxycedrus ssp. oxycedrus, Thuja orientalis, Cupressus sempervirens ssp. pyramidalis, Pistacia palaestina, Salvia officinalis, and Satureja thymbra was determined by GC/MS analysis. Essential oils have been evaluated for their inhibitory activity against SARS-CoV and HSV-1 replication in vitro by visually scoring of the virus-induced cytopathogenic effect post-infection. L. nobilis oil exerted an interesting activity against SARS-CoV with an IC(50) value of 120 microg/ml and a selectivity index (SI) of 4.16. This oil was characterized by the presence of beta-ocimene, 1,8-cineole, alpha-pinene, and beta-pinene as the main constituents. J. oxycedrus ssp. oxycedrus oil, in which alpha-pinene and beta-myrcene were the major constituents, revealed antiviral activity against HSV-1 with an IC(50) value of 200 microg/ml and a SI of 5. PMID:18357554

  15. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71.

    Science.gov (United States)

    Zhao, Chao; Gao, Luying; Wang, Chunyang; Liu, Bin; Jin, Yu; Xing, Zheng

    2016-06-25

    A novel heteropolysaccharide from Grifola frondosa mycelia was extracted and purified using DEAE Sephadex A-50 and Sephadex G-200 chromatography. Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance ((1)H NMR and (13)C NMR) spectroscopy were used to decipher the structure of the purified G. frondosa polysaccharide (GFP1). Chemical and spectral analysis revealed that GFP1, with an average molecular weight of 40.5kDa, possessed a 1,6-β-d-glucan backbone with a single 1,3-α-d-fucopyranosyl side-branching unit. Enterovirus 71 (EV71) is the causative pathogen of hand-foot-and-mouth disease. GFP1 was tested for its anti-EV71 activity in cultured cells, which showed that EV71 viral replication was blocked and viral VP1 protein expression and genomic RNA synthesis were suppressed. Moreover, GFP1 exhibited apoptotic and other activities by suppressing the EV71-induced caspase-3 cleavage and IκBα down regulation. Our results demonstrate that the novel G. frondosa polysaccharide has antiviral activity, which could be valuable as a potentially new anti-EV71 therapeutic compound. PMID:27083830

  16. Antiviral activity of platinum (II) and palladium (II) complexes of pyridine-2-carbaldehyde thiosemicarbazone.

    Science.gov (United States)

    Varadinova, T; Kovala-Demertzi, D; Rupelieva, M; Demertzis, M; Genova, P

    2001-04-01

    A heterocyclic compound, pyridine-2-carbaldehyde thiosemicarbazone (HFoTsc), and its six metal coordinated bound complexes, three with platinum (II) and three with palladium (II), were studied for their activity against herpes simplex virus 1 (HSV-1) infection in cultured cells. According to their cytotoxicity the compounds were divided into two groups. Group I (cytotoxic compounds) included all three palladium complexes and [Pt(HFoTsc)2] Cl2, with maximum non-toxic concentration (MNC) of 1-10 micromol/l and a 50% cytotoxic concentration (CC50) of 20-100 micromol/l. Group 2 (low cytotoxic compounds) with MNC of 100 micromol/l and CC50 of 548-5820 micromol/l included compounds in the following order: [Pt(HFoTsc)2] Cl2antiviral activity. IC50 and SI values of HFoTsc increased in parallel with the duration of action in HSV-1-infected cells. All three platinum complexes as well as [Pd(HFoTsc)2]Cl2 and [Pd(FoTsc)2] inhibited HSV- I infection following a structure-activity relationship but only [Pt(HFoTsc)2]Cl2 expressed a significant selectivity comparable to that of HFoTsc. However, [PdCl(FoTsc)] acting 48 hrs gave a higher infectious HSV-1 titer (170%) compared to control (100%, no compound). PMID:11719987

  17. In Vitro Antiviral Activity of Clove and Ginger Aqueous Extracts against Feline Calicivirus, a Surrogate for Human Norovirus.

    Science.gov (United States)

    Aboubakr, Hamada A; Nauertz, Andrew; Luong, Nhungoc T; Agrawal, Shivani; El-Sohaimy, Sobhy A A; Youssef, Mohammed M; Goyal, Sagar M

    2016-06-01

    Foodborne viruses, particularly human norovirus, are a concern for public health, especially in fresh vegetables and other minimally processed foods that may not undergo sufficient decontamination. It is necessary to explore novel nonthermal techniques for preventing foodborne viral contamination. In this study, aqueous extracts of six raw food materials (flower buds of clove, fenugreek seeds, garlic and onion bulbs, ginger rhizomes, and jalapeño peppers) were tested for antiviral activity against feline calicivirus (FCV) as a surrogate for human norovirus. The antiviral assay was performed using dilutions of the extracts below the maximum nontoxic concentrations of the extracts to the host cells of FCV, Crandell-Reese feline kidney (CRFK) cells. No antiviral effect was seen when the host cells were pretreated with any of the extracts. However, pretreatment of FCV with nondiluted clove and ginger extracts inactivated 6.0 and 2.7 log of the initial titer of the virus, respectively. Also, significant dosedependent inactivation of FCV was seen when host cells were treated with clove and ginger extracts at the time of infection or postinfection at concentrations equal to or lower than the maximum nontoxic concentrations. By comprehensive two-dimensional gas chromatography-mass spectrometry analysis, eugenol (29.5%) and R-(-)-1,2-propanediol (10.7%) were identified as the major components of clove and ginger extracts, respectively. The antiviral effect of the pure eugenol itself was tested; it showed antiviral activity similar to that of clove extract, albeit at a lower level, which indicates that some other clove extract constituents, along with eugenol, are responsible for inactivation of FCV. These results showed that the aqueous extracts of clove and ginger hold promise for prevention of foodborne viral contamination. PMID:27296605

  18. SLN as a topical delivery system for Artemisia arborescens essential oil: In vitro antiviral activity and skin permeation study

    OpenAIRE

    Lai, Francesco; Sinico, Chiara; De Logu, Alessandro; Zaru, Marco; Müller, Rainer H.; Fadda, Anna M.

    2007-01-01

    The effect of SLN incorporation on transdermal delivery and in vitro antiherpetic activity of Artemisia arborescens essential oil was investigated. Two different SLN formulations were prepared using the hot – pressure homogenization technique, Compritol 888 ATO as lipid, and Poloxamer 188 and Miranol Ultra C32 as surfactants. Formulations were examined for their stability for two years by monitoring average size distribution and zeta potential values. The antiviral activity of free and SLN in...

  19. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    OpenAIRE

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2014-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral act...

  20. Antiviral activity of bovine uterus and placenta induced by Newcastle disease virus Atividade antiviral do útero e da placenta bovina induzida pelo vírus da doença de Newcastle

    Directory of Open Access Journals (Sweden)

    J.B. Barreto Filho

    2007-06-01

    Full Text Available The antiviral activity profile of the uterus and fetal membranes from bovine placenta, induced by the Newcastle disease virus (NDV throughout gestation, was investigated. Explants of the endometrium and caruncles were collected from the uterus, and amniochorion, allantochorion and cotyledons, from fetal placenta. Tissue cultures were induced with ~6.0 hemagglutinating units (HU of NDV. Supernatants were concentrated 20 fold, filtered in 100kDa cut-off membranes and antiviral activity was titrated in MDBK x VSV system. Tissues of the uterus did not exhibit antiviral activity, while allantochorion and amniochorion produced antiviral factors throughout gestation. Antiviral factors were not related with IFN-alpha, gamma, tau or TNF-alpha. The antiviral activity pattern observed showed to be related with the development of fetal membranes and increased at the end of pregnancy. Such data suggest that IFN genes inducible by virus are present in fetal membranes of the cow placenta and their expression is dependent on the age of gestation.Investigou-se a atividade antiviral do útero e da placenta bovina, ao longo da gestação, induzidos pelo vírus da doença de Newcastle (NDV. Explantes do endométrio e carúnculas foram colhidos do útero. Os tecidos corioamniótico, corioalantóide e cotilédones foram dissecados da placenta fetal. Os cultivos celulares foram induzidos com aproximadamente 6,0 unidades hemaglutinantes do NDV. Os sobrenadantes foram concentrados 20 vezes, filtrados em dispositivos com superfície de separação de 100kDa e a atividade antiviral foi titulada em células MDBK e vírus da estomatite vesicular (VSV. Endométrio, carúnculas e cotilédones não apresentaram atividade antiviral. Corioamniótico e corioalantóide produziram fatores antivirais ao longo da gestação. Estes fatores não foram relacionados aos IFN - alfa, gama ou tau e nem ao TNF - alfa. O padrão de produção de fatores antivirais acompanhou o desenvolvimento

  1. Study of the Biological Activity of Novel Synthetic Compounds with Antiviral Properties against Human Rhinoviruses

    Directory of Open Access Journals (Sweden)

    Raffaello Pompei

    2011-04-01

    Full Text Available Picornaviridae represent a very large family of small RNA viruses, some of which are the cause of important human and animal diseases. Since no specific therapy against any of these viruses currently exists, palliative symptomatic treatments are employed. The early steps of the picornavirus replicative cycle seem to be privileged targets for some antiviral compounds like disoxaril and pirodavir. Pirodavir’s main weakness is its cytotoxicity on cell cultures at relatively low doses. In this work some original synthetic compounds were tested, in order to find less toxic compounds with an improved protection index (PI on infected cells. Using an amino group to substitute the oxygen atom in the central chain, such as that in the control molecule pirodavir, resulted in decreased activity against Rhinoviruses and Polioviruses. The presence of an -ethoxy-propoxy- group in the central chain (as in compound I-6602 resulted in decreased cell toxicity and in improved anti-Rhinovirus activity. This compound actually showed a PI >700 on HRV14, while pirodavir had a PI of 250. These results demonstrate that modification of pirodavir’s central hydrocarbon chain can lead to the production of novel derivatives with low cytotoxicity and improved PI against some strains of Rhinoviruses.

  2. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    Science.gov (United States)

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  3. Antiviral immunity in marine molluscs.

    Science.gov (United States)

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization. PMID:26297577

  4. TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1.

    Directory of Open Access Journals (Sweden)

    Younglang Lee

    Full Text Available The innate immune response is a host defense mechanism against infection by viruses and bacteria. Type I interferons (IFNα/β play a crucial role in innate immunity. If not tightly regulated under normal conditions and during immune responses, IFN production can become aberrant, leading to inflammatory and autoimmune diseases. In this study, we identified TRIM11 (tripartite motif containing 11 as a novel negative regulator of IFNβ production. Ectopic expression of TRIM11 decreased IFNβ promoter activity induced by poly (I:C stimulation or overexpression of RIG-I (retinoic acid-inducible gene-I signaling cascade components RIG-IN (constitutively active form of RIG-I, MAVS (mitochondrial antiviral signaling protein, or TBK1 (TANK-binding kinase-1. Conversely, TRIM11 knockdown enhanced IFNβ promoter activity induced by these stimuli. Moreover, TRIM11 overexpression inhibited the phosphorylation and dimerization of IRF3 and expression of IFNβ mRNA. By contrast, TRIM11 knockdown increased the IRF3 phosphorylation and IFNβ mRNA expression. We also found that TRIM11 and TBK1, a key kinase that phosphorylates IRF3 in the RIG-I pathway, interacted with each other through CC and CC2 domain, respectively. This interaction was enhanced in the presence of the TBK1 adaptor proteins, NAP1 (NF-κB activating kinase-associated protein-1, SINTBAD (similar to NAP1 TBK1 adaptor or TANK (TRAF family member-associated NF-κB activator. Consistent with its inhibitory role in RIG-I-mediated IFNβ signaling, TRIM11 overexpression enhanced viral infectivity, whereas TRIM11 knockdown produced the opposite effect. Collectively, our results suggest that TRIM11 inhibits RIG-I-mediated IFNβ production by targeting the TBK1 signaling complex.

  5. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities.

    Directory of Open Access Journals (Sweden)

    Luis J Cocka

    2012-09-01

    Full Text Available Tetherin (BST-2/CD317/HM1.24 is an IFN induced transmembrane protein that restricts release of a broad range of enveloped viruses. Important features required for Tetherin activity and regulation reside within the cytoplasmic domain. Here we demonstrate that two isoforms, derived by alternative translation initiation from highly conserved methionine residues in the cytoplasmic domain, are produced in both cultured human cell lines and primary cells. These two isoforms have distinct biological properties. The short isoform (s-Tetherin, which lacks 12 residues present in the long isoform (l-Tetherin, is significantly more resistant to HIV-1 Vpu-mediated downregulation and consequently more effectively restricts HIV-1 viral budding in the presence of Vpu. s-Tetherin Vpu resistance can be accounted for by the loss of serine-threonine and tyrosine motifs present in the long isoform. By contrast, the l-Tetherin isoform was found to be an activator of nuclear factor-kappa B (NF-κB signaling whereas s-Tetherin does not activate NF-κB. Activation of NF-κB requires a tyrosine-based motif found within the cytoplasmic tail of the longer species and may entail formation of l-Tetherin homodimers since co-expression of s-Tetherin impairs the ability of the longer isoform to activate NF-κB. These results demonstrate a novel mechanism for control of Tetherin antiviral and signaling function and provide insight into Tetherin function both in the presence and absence of infection.

  6. Tetrameric assembly of hGBP1 is crucial for both stimulated GMP formation and antiviral activity.

    Science.gov (United States)

    Pandita, Esha; Rajan, Sudeepa; Rahman, Safikur; Mullick, Ranajoy; Das, Saumitra; Sau, Apurba Kumar

    2016-06-15

    Interferon-γ inducible human guanylate binding protein-1 (hGBP1) shows a unique characteristic that hydrolyses GTP to a mixture of GDP and GMP through successive cleavages, with GMP being the major product. Like other large GTPases, hGBP1 undergoes oligomerization upon substrate hydrolysis, which is essential for the stimulation of activity. It also exhibits antiviral activity against many viruses including hepatitis C. However, which oligomeric form is responsible for the stimulated activity leading to enhanced GMP formation and its influence on antiviral activity, are not properly understood. Using mutant and truncated proteins, our data indicate that transition-state-induced tetramerization is associated with higher rate of GMP formation. This is supported by chimaeras that are defective in both tetramerization and enhanced GMP formation. Unlike wild-type protein, chimaeras did not show allosteric interactions, indicating that tetramerization and enhanced GMP formation are allosterically coupled. Hence, we propose that after the cleavage of the first phosphoanhydride bond GDP·Pi-bound protein dimers transiently associate to form a tetramer that acts as an allosteric switch for higher rate of GMP formation. Biochemical and biophysical studies reveal that sequential conformational changes and interdomain communications regulate tetramer formation via dimer. Our studies also show that overexpression of the mutants, defective in tetramer formation in Rep2a cells do not inhibit proliferation of hepatitis C virus, indicating critical role of a tetramer in the antiviral activity. Thus, the present study not only highlights the importance of hGBP1 tetramer in stimulated GMP formation, but also demonstrates its role in the antiviral activity against hepatitis C virus. PMID:27071416

  7. Atividade antiviral de extratos de plantas medicinais disponíveis comercialmente frente aos herpesvírus suíno e bovino Antiviral activity of commercially available medicinal plants on suid and bovine herpesviruses

    Directory of Open Access Journals (Sweden)

    V.M. Kaziyama

    2012-01-01

    Full Text Available O presente trabalho teve como objetivo pesquisar a atividade antiviral in vitro de plantas medicinais disponíveis comercialmente sobre herpesvírus suíno (SuHV-1 e bovino (BoHV-1. As espécies adquiridas foram Mikania glomerata, Cymbopogon citratus, Equisetum arvense, Peumus boldus, Solanum paniculatum, Malva sylvestris, Piper umbellatun e Solidago microglossa. A citotoxicidade dos extratos foi avaliada na linhagem celular MDBK pelas alterações morfológicas das células e obtenção da concentração máxima não citotóxica (CMNC de cada planta. A atividade antiviral foi realizada com os extratos em suas respectivas CMNC e avaliada com base na redução do título viral e expressos em porcentagem de inibição. Os extratos aquosos de Peumus boldus e Solanum paniculatum apresentaram atividade antiviral sobre o SuHV-1 com 98% de inibição viral enquanto o de Peumus boldus inibiu apenas o BoHV-1 em 99%.This paper aims to find commercially available medicinal plants showing antiviral activity in vitro on suid and bovine herpesviruses. The following species were tested: Mikania glomerata, Cymbopogon citratus, Equisetum arvense, Peumus boldus, Solanum paniculatum, Malva sylvestris, Piper umbellatun and Solidago microglossa. The cytotoxicity was evaluated by morphological changes in cells determining the maximum not cytotoxic concentration (MNCC. The antiviral activity was evaluated by viral title reduction. The extracts from Peumus boldus and Solanum paniculatum showed antiviral activity against SuHV-1 with 98% of inhibition. The extract of Peumus boldus also showed activity against BoHV-1 with 99% of inhibition.

  8. Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp.

    Science.gov (United States)

    He, Jun-Wei; Chen, Guo-Dong; Gao, Hao; Yang, Fan; Li, Xiao-Xia; Peng, Tao; Guo, Liang-Dong; Yao, Xin-Sheng

    2012-09-01

    Two new heptaketides, (+)-(2S,3S,4aS)-altenuene (1a) and (-)-(2S,3S,4aR)-isoaltenuene (2a), together with six known compounds, (-)-(2R,3R,4aR)-altenuene (1b), (+)-(2R,3R,4aS)-isoaltenuene (2b), 5'-methoxy-6-methyl-biphenyl-3,4,3'-triol (3), alternariol (4), alternariol-9-methyl ether (5), and 4-hydroxyalternariol-9-methyl ether (6) were isolated from the EtOAc extract of an endolichenic fungal strain Nigrospora sphaerica (No.83-1-1-2). Compounds 1a and 1b were separated from enantiomers 1 by chiral HPLC, and so were 2a and 2b from enantiomers 2. Interestingly, 1-6 were also obtained from other two endolichenic fungal strains Alternaria alternata (No.58-8-4-1) and Phialophora sp. (No.96-1-8-1). The structures of 1-6 were elucidated by means of MS, HR-MS, NMR, and X-ray diffraction. Furthermore, the absolute configurations of 1a-2b were determined by CD experiments and CD calculation. Of these compounds, 4 and 5 showed antiviral activity against herpes simplex virus (HSV) in vitro, with IC(50) values of 13.5 and 21.3 μM, and with selective index (SI) values of 26.5 and 17.1, respectively. PMID:22613072

  9. Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection

    Institute of Scientific and Technical Information of China (English)

    Qiang LIU; Hai-rong XIONG; Li LU; Yuan-yuan LIU; Fan LUO; Wei HOU; Zhan-qiu YANG

    2013-01-01

    Aim:To investigate the effects of arbidol hydrochloride (ARB),a widely used antiviral agent,on the inflammation induced by influenza virus.Methods:MDCK cells were infected with seasonal influenza A/FM/1/47 (H1N1) or pandemic influenza A/Hubei/71/2009 (H1N1).In vitro cytotoxicity and antiviral activity of ARB was determined using MTT assay.BALB/c mice were infected with A/FM/1/47 (H1N1).Four hours later the mice were administered ARB (45,90,and 180 mg·kg-1·d-1) or the neuraminidase inhibitor oseltamivir (22.5mg·kg-1·d-1) via oral gavage once a day for 5 d.Body-weight,median survival time,viral titer,and lung index of the mice were measured.The levels of inflammatory cytokines were examined using real-time RT-PCR and ELISA.Results:Both H1N1 stains were equally sensitive to ARB as tested in vitro.In the infected mice,ARB (90 and 180 mg·kg-1·d-1)significantly decreased the mortality,alleviated virus-induced lung lesions and viral titers.Furthermore,ARB suppressed the levels of IL-1β,IL-6,IL-12,and TNF-α,and elevated the level of IL-10 in the bronchoalveolar lavage fluids and lung tissues.However,ARB did not significantly affect the levels of IFN-α and IFN-γ,but reduced the level of IFN-β1 in lung tissues at 5 dpi.In peritoneal macrophages challenged with A/FM/1/47 (H1N1) or poly I∶C,ARB (20 μmol/L) suppressed the levels of IL-1β,IL-6,IL-12,and TNF-α,and elevated the level of IL-10.Oseltamivir produced comparable alleviation of virus-induced lung lesions with more reduction in the viral titers,but less effective modulation of the inflammatory cytokines.Conclusion:ARB efficiently inhibits both H1N1 stains and diminishes both viral replication and acute inflammation through modulating the expression of inflammatory cytokines.

  10. In-Vitro Antiviral Activities of Extracts of Plants of The Brazilian Cerrado against the Avian Metapneumovirus (aMPV

    Directory of Open Access Journals (Sweden)

    LK Kohn

    2015-09-01

    Full Text Available ABSTRACTAvian metapneumovirus (aMPV is a negative-sense single-stranded RNA enveloped virus of the Metapneumovirus genus belonging to theParamyxoviridae family. This virus may cause significant economic losses to the poultry industry, despite vaccination, which is the main tool for controlling and preventing aMPV. The aim of this study was to evaluate the antiviral activity of extracts of four different native plants of the Brazilian Cerrado against aMPV. The antiviral activity against aMPV was determined by titration. This technique measures the ability of plant extract dilutions (25 to 2.5 µg mL-1 to inhibit the cytopathic effect (CPE of the virus, expressed as inhibition percentage (IP. The maximum nontoxic concentration (MNTC of the extracts used in antiviral assay was 25 µg mL-1for Aspidosperma tomentosumand Gaylussacia brasiliensis, and 2.5 µg mL-1for Arrabidaea chicaand Virola sebifera. Twelve different extracts derived from four plant species collected from the Brazilian Cerrado were screened for antiviral activity against aMPV. G. brasiliensis, A. chica,and V. sebifera extracts presented inhibition rates of 99% in the early viral replication stages, suggesting that these extracts act during the adsorption phase. On the other hand, A. tomentosum inhibited 99% virus replication after the virus entered the cell. The biomonitored fractioning of extracts active against aMPV may be a tool to identify the active compounds of plant extracts and to determine their precise mode of action.

  11. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    Science.gov (United States)

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    formed by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen Pseudomonas aeruginosa during coinfection with respiratory syncytial virus. We also observed antiviral activity, indicating the ability of engineered antimicrobial peptides to act as cross-kingdom single-molecule combination therapies.

  12. Applications of high-throughput genomics to antiviral research: evasion of antiviral responses and activation of inflammation during fulminant RNA virus infection.

    Science.gov (United States)

    Kash, John C

    2009-07-01

    Host responses can contribute to the severity of viral infection, through the failure of innate antiviral mechanisms to recognize and restrict the pathogen, the development of intense systemic inflammation leading to circulatory failure or through tissue injury resulting from overly exuberant cell-mediated immune responses. High-throughput genomics methods are now being used to identify the biochemical pathways underlying ineffective or damaging host responses in a number of acute and chronic viral infections. This article reviews recent gene expression studies of 1918 H1N1 influenza and Ebola hemorrhagic fever in cell culture and animal models, focusing on how genomics experiments can be used to increase our understanding of the mechanisms that permit those viruses to cause rapidly overwhelming infection. Particular attention is paid to how evasion of type I IFN responses in infected cells might contribute to over-activation of inflammatory responses. Reviewing recent research and describing how future studies might be tailored to understand the relationship between the infected cell and its environment, this article discusses how the rapidly growing field of high-throughput genomics can contribute to a more complete understanding of severe, acute viral infections and identify novel targets for therapeutic intervention. PMID:19375457

  13. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins

    OpenAIRE

    Stephanie Rebensburg; Markus Helfer; Martha Schneider; Herwig Koppensteiner; Josef Eberle; Michael Schindler; Lutz Gürtler; Ruth Brack-Werner

    2016-01-01

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming bro...

  14. Enhancement of antiviral activity of collectin trimers through cross-linking and mutagenesis of the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    White, Mitchell R; Boland, Patrick; Tecle, Tesfaldet; Gantz, Donald; Sørensen, Grith Lykke; Tornøe, Ida; Holmskov, Uffe; McDonald, Barbara; Crouch, Erika C; Hartshorn, Kevan L

    2010-01-01

    Surfactant protein D (SP-D) plays important roles in innate defense against respiratory viruses [including influenza A viruses (IAVs)]. Truncated trimers composed of its neck and carbohydrate recognition domains (NCRDs) bind various ligands; however, they have minimal inhibitory activity for IAV......, complementary strategies, namely cross-linking of NCRDs through various means and mutagenesis of CRD residues to increase viral binding. These findings may be relevant for antiviral therapy....

  15. The in vitro anti-viral potential of Setarud (IMOD™, a commercial herbal medicine with protective activity against acquired immune deficiency syndrome in clinical trials

    Directory of Open Access Journals (Sweden)

    Rezvan Zabihollahi

    2012-01-01

    Conclusions: Data from this study indicate that IMOD has significant anti-viral activity against HIV, HSV and MLV. Setarud could be subjected to further investigation after isolation of the constituents and determination of the toxic components.

  16. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina;

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN...

  17. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.;

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN...

  18. Identification of a series of compounds with potent antiviral activity for the treatment of enterovirus infections.

    Science.gov (United States)

    MacLeod, Angus M; Mitchell, Dale R; Palmer, Nicholas J; Van de Poël, Hervé; Conrath, Katja; Andrews, Martin; Leyssen, Pieter; Neyts, Johan

    2013-07-11

    Rhinovirus (genus enterovirus) infections are responsible for many of the severe exacerbations of asthma and chronic obstructive pulmonary disease. Other members of the genus can cause life-threatening acute neurological infections. There is currently no antiviral drug approved for the treatment of such infections. We have identified a series of potent, broad-spectrum antiviral compounds that inhibit the replication of the human rhinovirus, Coxsackie virus, poliovirus, and enterovirus-71. The mechanism of action of the compounds has been established as inhibition of a lipid kinase, PI4KIIIβ. Inhibition of hepatitis C replication in a replicon assay correlated with enterovirus inhibition. PMID:24900715

  19. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses.

    Science.gov (United States)

    Pilau, Marciele Ribas; Alves, Sydney Hartz; Weiblen, Rudi; Arenhart, Sandra; Cueto, Ana Paula; Lovato, Luciane Teresinha

    2011-10-01

    Mexican oregano (Lippia graveolens) is a plant found in Mexico and Central America that is traditionally used as a medicinal herb. In the present study, we investigated the antiviral activity of the essential oil of Mexican oregano and its major component, carvacrol, against different human and animal viruses. The MTT test (3-4,5-dimethythiazol-2yl)-2,5-diphenyl tetrazolium bromide) was conducted to determine the selectivity index (SI) of the essential oil, which was equal to 13.1, 7.4, 10.8, 9.7, and 7.2 for acyclovir-resistant herpes simplex virus type 1 (ACVR-HHV-1), acyclovir-sensitive HHV-1, human respiratory syncytial virus (HRSV), bovine herpesvirus type 2 (BoHV-2), and bovine viral diarrhoea virus (BVDV), respectively. The human rotavirus (RV) and BoHV-1 and 5 were not inhibited by the essential oil. Carvacrol alone exhibited high antiviral activity against RV with a SI of 33, but it was less efficient than the oil for the other viruses. Thus, Mexican oregano oil and its main component, carvacrol, are able to inhibit different human and animal viruses in vitro. Specifically, the antiviral effects of Mexican oregano oil on ACVR-HHV-1 and HRSV and of carvacrol on RV justify more detailed studies. PMID:24031796

  20. Antiviral activity of the Lippia graveolens (Mexican oregano essential oil and its main compound carvacrol against human and animal viruses

    Directory of Open Access Journals (Sweden)

    Marciele Ribas Pilau

    2011-12-01

    Full Text Available Mexican oregano (Lippia graveolens is a plant found in Mexico and Central America that is traditionally used as a medicinal herb. In the present study, we investigated the antiviral activity of the essential oil of Mexican oregano and its major component, carvacrol, against different human and animal viruses. The MTT test (3-4,5-dimethythiazol-2yl-2,5-diphenyl tetrazolium bromide was conducted to determine the selectivity index (SI of the essential oil, which was equal to 13.1, 7.4, 10.8, 9.7, and 7.2 for acyclovir-resistant herpes simplex virus type 1 (ACVR-HHV-1, acyclovir-sensitive HHV-1, human respiratory syncytial virus (HRSV, bovine herpesvirus type 2 (BoHV-2, and bovine viral diarrhoea virus (BVDV, respectively. The human rotavirus (RV and BoHV-1 and 5 were not inhibited by the essential oil. Carvacrol alone exhibited high antiviral activity against RV with a SI of 33, but it was less efficient than the oil for the other viruses. Thus, Mexican oregano oil and its main component, carvacrol, are able to inhibit different human and animal viruses in vitro. Specifically, the antiviral effects of Mexican oregano oil on ACVR-HHV-1 and HRSV and of carvacrol on RV justify more detailed studies.

  1. RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus.

    Science.gov (United States)

    Wang, Xiao; Li, Yongfeng; Li, Lian-Feng; Shen, Liang; Zhang, Lingkai; Yu, Jiahui; Luo, Yuzi; Sun, Yuan; Li, Su; Qiu, Hua-Ji

    2016-04-01

    Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and often fatal disease of pigs, which leads to significant economic losses in many countries. Viral infection can induce the production of interferons (IFNs), giving rise to the transcription of hundreds of IFN-stimulated genes (ISGs) to exert antiviral effects. Although numerous ISGs have been identified to possess antiviral activities against different viruses, rare anti-CSFV ISGs have been reported to date. In this study, to screen anti-CSFV ISGs, twenty-one ISGs reported previously were individually knocked down using small interfering RNAs (siRNAs) followed by infection with a reporter CSFV expressing Renilla luciferase (Rluc). As a result, four novel anti-CSFV ISGs were identified, including natural-resistance-associated macrophage protein 1 (NRAMP1), cytosolic 5'-nucleotidase III A (NT5C3A), chemokine C-X-C motif ligand 10 (CXCL10), and 2'-5'-oligoadenylate synthetase 1 (OAS1), which were further verified to exhibit antiviral activities against wild-type CSFV. We conclude that the reporter virus is a useful tool for efficient screening anti-CSFV ISGs. PMID:26868874

  2. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities

    OpenAIRE

    Karaküçük-İyidoğan, Ayşegül; Taşdemir, Demet; Oruç-Emre, Emine Elçin; Balzarini, Jan

    2011-01-01

    A series of thiosemicarbazones and their platinum(II) and palladium(II) complexes have been synthesized. The chemical structures of ligands and their complexes were characterized by UV-Vis, IR, (1)H NMR, (13)C NMR, MS spectra, elemental analysis and TGA. The antiviral and cytotoxic activities of all compounds have been tested. Results of broad antiviral evaluation showed that none of the compounds evaluated endowed with anti-DNA or -RNA virus activity at subtoxic concentrations except for the...

  3. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    OpenAIRE

    Clarice Weis Arns; Cláudia Beatriz Afonso de Menezes; Bárbara Pereira da Silva; Eduardo Furtado Flores; Fabiana Fantinatti-Garboggini; Marina Aiello Padilla; Juliana Cristina Santiago Bastos; Luciana Konecny Kohn

    2013-01-01

    The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced fro...

  4. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae.

    Science.gov (United States)

    Nikolaeva-Glomb, Lubomira; Mukova, Luchia; Nikolova, Nadya; Badjakov, Ilian; Dincheva, Ivayla; Kondakova, Violeta; Doumanova, Lyuba; Galabov, Angel S

    2014-01-01

    Wild berry species are known to exhibit a wide range of pharmacological activities. They have long been traditionally applied for their antiseptic, antimicrobial, cardioprotective and antioxidant properties. The aim of the present study is to reveal the potential for selective antiviral activity of total methanol extracts, as well as that of the anthocyanins and the non-anthocyanins from the following wild berries picked in Bulgaria: strawberry (Fragaria vesca L.) and raspberry (Rubus idaeus L.) of the Rosaceae plant family, and bilberry (Vaccinium myrtillis L.) and lingonberry (Vaccinium vitis-idaea L) of the Ericaceae. The antiviral effect has been tested against viruses that are important human pathogens and for which chemotherapy and/or chemoprophylaxis is indicated, namely poliovirus type 1 (PV-1) and coxsackievirus B1 (CV-B1) from the Picornaviridae virus family, human respiratory syncytial virus A2 (HRSV-A2) from the Paramyxoviridae and influenza virus A/H3N2 of Orthomyxoviridae. Wild berry fruits are freeze-dried and ground, then total methanol extracts are prepared. Further the extracts are fractioned by solid phase extraction and the non-anthocyanin and anthocyanin fractions are eluted. The in vitro antiviral effect is examined by the virus cytopathic effect (CPE) inhibition test. The results reveal that the total extracts of all tested berry fruits inhibit the replication of CV-B1 and influenza A virus. CV-B1 is inhibited to the highest degree by both bilberry and strawberry, as well as by lingonberry total extracts, and influenza A by bilberry and strawberry extracts. Anthocyanin fractions of all wild berries strongly inhibit the replication of influenza virus A/H3N2. Given the obtained results it is concluded that wild berry species are a valuable resource of antiviral substances and the present study should serve as a basis for further detailed research on the matter. PMID:24660461

  5. Antiviral activity of trappin-2 and elafin in vitro and in vivo against genital herpes.

    Science.gov (United States)

    Drannik, Anna G; Nag, Kakon; Sallenave, Jean-Michel; Rosenthal, Kenneth L

    2013-07-01

    Serine protease inhibitor elafin (E) and its precursor, trappin-2 (Tr), have been associated with mucosal resistance to HIV-1 infection. We recently showed that Tr/E are among principal anti-HIV-1 molecules in cervicovaginal lavage (CVL) fluid, that E is ∼130 times more potent than Tr against HIV-1, and that Tr/E inhibited HIV-1 attachment and transcytosis across human genital epithelial cells (ECs). Since herpes simplex virus 2 (HSV-2) is a major sexually transmitted infection and risk factor for HIV-1 infection and transmission, we assessed Tr/E contribution to defense against HSV-2. Our in vitro studies demonstrated that pretreatment of endometrial (HEC-1A) and endocervical (End1/E6E7) ECs with human Tr-expressing adenovirus (Ad/Tr) or recombinant Tr/E proteins before or after HSV-2 infection resulted in significantly reduced virus titers compared to those of controls. Interestingly, E was ∼7 times more potent against HSV-2 infection than Tr. Conversely, knockdown of endogenous Tr/E by small interfering RNA (siRNA) significantly increased HSV-2 replication in genital ECs. Recombinant Tr and E reduced viral attachment to genital ECs by acting indirectly on cells. Further, lower viral replication was associated with reduced secretion of proinflammatory interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) and decreased NF-κB nuclear translocation. Additionally, protected Ad/Tr-treated ECs demonstrated enhanced interferon regulatory factor 3 (IRF3) nuclear translocation and increased antiviral IFN-β in response to HSV-2. Lastly, in vivo studies of intravaginal HSV-2 infection in Tr-transgenic mice (Etg) showed that despite similar virus replication in the genital tract, Etg mice had reduced viral load and TNF-α in the central nervous system compared to controls. Collectively, this is the first experimental evidence highlighting anti-HSV-2 activity of Tr/E in female genital mucosa. PMID:23637403

  6. [Antiviral activity of extracts of transgenic cichory and lettuce plants with the human interferon alpha-2b gene].

    Science.gov (United States)

    Matveeva, N A; Kudriavets, Iu I; Likhova, A A; Shakhovskiĭ, A M; Bezdenezhnykh, N A; Kvasko, E Iu

    2012-01-01

    Biological activity of protein extracts from transgenic plants of chicory Cichorium intybus L. and lettuce Lactuca sativa L. with human interferon alpha2b gene was investigated against vesicular stomatitis virus. It was shown that the extracts from the hairy roots of chicory and lettuce transformed by A. rhizogenes possess the antiviral activity 1620...5400 IU/g weight, and the extracts from leaves of the plants transformed by A. tumefaciens--till 9375 IU/g weight. Dependence of plant extract biological activity on the transformation vector was shown. PMID:23342646

  7. Antiviral Activity of Bay 41-4109 on Hepatitis B Virus in Humanized Alb-uPA/SCID Mice

    Science.gov (United States)

    Brezillon, Nicolas; Brunelle, Marie-Noëlle; Massinet, Hélène; Giang, Eric; Lamant, Céline; DaSilva, Lucie; Berissi, Sophie; Belghiti, Jacques; Hannoun, Laurent; Puerstinger, Gherard; Wimmer, Eva; Neyts, Johan; Hantz, Olivier; Soussan, Patrick; Morosan, Serban; Kremsdorf, Dina

    2011-01-01

    Current treatments for HBV chronic carriers using interferon alpha or nucleoside analogues are not effective in all patients and may induce the emergence of HBV resistant strains. Bay 41-4109, a member of the heteroaryldihydropyrimidine family, inhibits HBV replication by destabilizing capsid assembly. The aim of this study was to determine the antiviral effect of Bay 41-4109 in a mouse model with humanized liver and the spread of active HBV. Antiviral assays of Bay 41-4109 on HepG2.2.15 cells constitutively expressing HBV, displayed an IC50 of about 202 nM with no cell toxicity. Alb-uPA/SCID mice were transplanted with human hepatocytes and infected with HBV. Ten days post-infection, the mice were treated with Bay 41-4109 for five days. During the 30 days of follow-up, the HBV load was evaluated by quantitative PCR. At the end of treatment, decreased HBV viremia of about 1 log(10) copies/ml was observed. By contrast, increased HBV viremia of about 0.5 log(10) copies/ml was measured in the control group. Five days after the end of treatment, a rebound of HBV viremia occurred in the treated group. Furthermore, 15 days after treatment discontinuation, a similar expression of the viral capsid was evidenced in liver biopsies. Our findings demonstrate that Bay 41-4109 displayed antiviral properties against HBV in humanized Alb-uPA/SCID mice and confirm the usefulness of Alb-uPA/SCID mice for the evaluation of pharmaceutical compounds. The administration of Bay 41-4109 may constitute a new strategy for the treatment of patients in escape from standard antiviral therapy. PMID:22162746

  8. An antiviral protein having deoxyribonuclease and ribonuclease activity from leaves of the post-flowering stage of Celosia cristata.

    Science.gov (United States)

    Begam, M; Narwal, S; Roy, S; Kumar, S; Lodha, M L; Kapoor, H C

    2006-01-01

    An antiviral protein named CCP-27 was purified from the leaves of Celosia cristata at the post-flowering stage by anion-exchange, cation-exchange, and gel-filtration chromatography. It exhibited resistance against sunnhemp rosette virus in its test host Cyamopsis tetragonoloba. It also exhibited deoxyribonuclease activity against supercoiled pBlueScript SK+ plasmid DNA. It was found to nick supercoiled DNA into nicked circular form at lower protein concentration followed by nicked to linear form conversion at higher protein concentration. CCP-27 also possesses strong ribonuclease activity against Torula yeast rRNA. PMID:16487067

  9. Specific antiviral activity of a poly(L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site

    International Nuclear Information System (INIS)

    Antisense oligonucleotides represent an interesting tool for selective inhibition of gene expression, but their efficient introduction within intact cells provide to be difficult to realize. As a step toward this goal, small (13- or 15-mer) synthetic [14C]-oligodeoxyribonucleotides have been coupled at their 3' ends to epsilon-amino groups of lysine residues of poly(L-lysine) (M/sub r/, 14,000). A 15-mer oligonucleotide-poly(L-Lysine) conjugate complementary to the initiation region of vesicular stomatitis virus (VSV) N-protein mRNA specifically inhibits the synthesis of VSV proteins and exerts an antiviral activity against the VSV when added in the cell culture medium at doses as low as 100 nM. Neither synthesis of cellular proteins nor multiplication of encephalomyocarditis virus was affected significantly by this oligonucleotide conjugate. The data suggest that oligonucleotide-poly(L-lysine) conjugates might become effective for studies on gene expression regulation and for antiviral chemotherapy

  10. Mixture toxicity of the antiviral drug Tamiflu (oseltamivir ethylester) and its active metabolite oseltamivir acid

    Energy Technology Data Exchange (ETDEWEB)

    Escher, Beate I., E-mail: b.escher@uq.edu.au [University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); Straub, Juerg Oliver [F.Hoffmann-La Roche Ltd, Corporate Safety, Health and Environmental Protection, 4070 Basel (Switzerland)

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24 h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  11. Mixture toxicity of the antiviral drug Tamiflu (oseltamivir ethylester) and its active metabolite oseltamivir acid

    International Nuclear Information System (INIS)

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24 h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  12. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity

    OpenAIRE

    Ylinen, Laura M. J.; Price, Amanda J.; Rasaiyaah, Jane; Hué, Stéphane; Rose, Nicola J.; Marzetta, Flavia; James, Leo C.; Towers, Greg J

    2010-01-01

    Author Summary Retroviruses have constantly been infecting mammals throughout their evolution, causing them to evolve defensive mechanisms to protect themselves. One of these mechanisms utilises intracellular antiviral molecules referred to as restriction factors. Restriction factor sequences have changed through primate evolution, suggesting an ongoing battle between retroviruses and their hosts as described by the Red Queen hypothesis. TRIM5 is an important restriction factor able to protec...

  13. Partial antiviral activities detection of chicken Mx jointing with neuraminidase gene (NA against Newcastle disease virus.

    Directory of Open Access Journals (Sweden)

    Yani Zhang

    Full Text Available As an attempt to increase the resistance to Newcastle Disease Virus (NDV and so further reduction of its risk on the poultry industry. This work aimed to build the eukaryotic gene co-expression plasmid of neuraminidase (NA gene and myxo-virus resistance (Mx and detect the gene expression in transfected mouse fibroblasts (NIH-3T3 cells, it is most important to investigate the influence of the recombinant plasmid on the chicken embryonic fibroblasts (CEF cells. cDNA fragment of NA and mutant Mx gene were derived from pcDNA3.0-NA and pcDNA3.0-Mx plasmid via PCR, respectively, then NA and Mx cDNA fragment were inserted into the multiple cloning sites of pVITRO2 to generate the eukaryotic co-expression plasmid pVITRO2-Mx-NA. The recombinant plasmid was confirmed by restriction endonuclease treatment and sequencing, and it was transfected into the mouse fibroblasts (NIH-3T3 cells. The expression of genes in pVITRO2-Mx-NA were measured by RT-PCR and indirect immunofluorescence assay (IFA. The recombinant plasmid was transfected into CEF cells then RT-PCR and the micro-cell inhibition tests were used to test the antiviral activity for NDV. Our results showed that co-expression vector pVITRO2-Mx-NA was constructed successfully; the expression of Mx and NA could be detected in both NIH-3T3 and CEF cells. The recombinant proteins of Mx and NA protect CEF cells from NDV infection until after 72 h of incubation but the individually mutagenic Mx protein or NA protein protects CEF cells from NDV infection till 48 h post-infection, and co-transfection group decreased significantly NDV infection compared with single-gene transfection group (P<0. 05, indicating that Mx-NA jointing contributed to delaying the infection of NDV in single-cell level and the co-transfection of the jointed genes was more powerful than single one due to their synergistic effects.

  14. Chemical composition, antimicrobial activity and antiviral activity of essential oil of Carum copticum from Iran

    OpenAIRE

    Reza Kazemi Oskuee; Javad Behravan; Mohammad Ramezani

    2011-01-01

    Objectives: Evaluation of therapeutic effects of Carum copticum (C. copticum) has been the subject of several studies in recent years. Thymol the major component of C. copticum is a widely known anti-microbial agent. In this study, the antibacterial and anti viral activities of essential oil of C. copticum fruit were determined. Materials and Methods: Essential oil of C. copticum was analyzed by means of gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of the oil wa...

  15. Applications of high-throughput genomics to antiviral research: evasion of antiviral responses and activation of inflammation during fulminant RNA virus infection

    OpenAIRE

    Kash, John C.

    2009-01-01

    Host responses can contribute to the severity of viral infection, through the failure of innate antiviral mechanisms to recognize and restrict the pathogen, the development of intense systemic inflammation leading to circulatory failure or through tissue injury resulting from overly exuberant cell-mediated immune responses. High-throughput genomics methods are now being used to identify the biochemical pathways underlying ineffective or damaging host responses in a number of acute and chronic...

  16. Antiviral activity of triazine analogues of 1- (S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (Cidofovir) and related compounds

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Holý, Antonín; Pískala, Alois; Masojídková, Milena; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R.

    2007-01-01

    Roč. 50, č. 5 (2007), s. 1069-1077. ISSN 0022-2623 R&D Projects: GA AV ČR 1QS400550501; GA MŠk 1M0508 Grant ostatní: NIH(US) 1UC1 AI062540-01; René Descartes Prize-2001(XE) HPAV-2002-100096 Institutional research plan: CEZ:AV0Z40550506 Keywords : acyclic nucleoside phosphonate * cidofovir * antiviral activity Subject RIV: CC - Organic Chemistry Impact factor: 4.895, year: 2007

  17. In vitro evaluation of antiviral activity of essential oil from Zataria multiflora Boiss. against Newcastle disease virus

    OpenAIRE

    Mohammadi Ali; Mosleh Najmeh; Shomali Tahoora; Ahmadi Maryam; Sabetghadam Sara

    2015-01-01

    Introduction: The study aimed to investigate the antiviral activity of Zataria multiflora (ZM) essential oil against Newcastle disease virus (NDV) on Vero cells. Methods: The cytotoxicity of ZM essential oil was evaluated by MTT assay. Cells were infected with 100 TCID50 of a field isolate of virulent NDV (JF820294.1). ZM essential oil at concentrations of 1/5000, 1/25 000, 1/125 000 or 1/625 000 was added at different times of infection: 60 minutes pre infection, simultaneously and 60 minute...

  18. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses

    OpenAIRE

    Pilau, Marciele Ribas; Alves, Sydney Hartz; Weiblen, Rudi; Arenhart, Sandra; Cueto, Ana Paula; Lovato, Luciane Teresinha

    2011-01-01

    Mexican oregano (Lippia graveolens) is a plant found in Mexico and Central America that is traditionally used as a medicinal herb. In the present study, we investigated the antiviral activity of the essential oil of Mexican oregano and its major component, carvacrol, against different human and animal viruses. The MTT test (3–4,5-dimethythiazol-2yl)-2,5-diphenyl tetrazolium bromide) was conducted to determine the selectivity index (SI) of the essential oil, which was equal to 13.1, 7.4, 10.8,...

  19. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses

    OpenAIRE

    Marciele Ribas Pilau; Sydney Hartz Alves; Rudi Weiblen; Sandra Arenhart; Ana Paula Cueto; Luciane Teresinha Lovato

    2011-01-01

    Mexican oregano (Lippia graveolens) is a plant found in Mexico and Central America that is traditionally used as a medicinal herb. In the present study, we investigated the antiviral activity of the essential oil of Mexican oregano and its major component, carvacrol, against different human and animal viruses. The MTT test (3-4,5-dimethythiazol-2yl)-2,5-diphenyl tetrazolium bromide) was conducted to determine the selectivity index (SI) of the essential oil, which was equal to 13.1, 7.4, 10.8,...

  20. Antiviral Activity of Marine Actinobacteria against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Santiago Bastos

    2015-12-01

    Full Text Available The Hepatitis C virus (Flaviviridae family, Hepacivirus genus represents a major public health problem worldwide and it is responsible for chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. As this virus does not replicate efficiently in cell culture and in animals, bovine viral diarrhea virus (BVDV is used as a surrogate model for screening assays of antiviral activity, and mechanism of action assays. From marine invertebrates and their microorganisms isolated, we prepared extracts and fractions, and we isolated substances for assessment of their possible antiviral activity. Of the 71 tested, seven were considered promising presenting protection percentage of more than 80%. The best inhibition results were obtained from the extracts produced by the Gordonia bacteria samples with 99.9% inhibition and by Micrococcus with 99% inhibition. Furthermore, most of the extracts selected by the protection percentage showed selectivity index values considered promising, especially the extracts of the bacteria Williansia (SI=27 and Brachybacterium (SI=39. On the action mechanism, most of the promising extracts showed activity in the inhibition of intracellular replication steps, although it has been observed action of different extracts in several stages of viral replicative cycle. Thus, various extracts stood out and may lead to the development of drugs that ensure an alternative therapy for the treatment of hepatitis C.

  1. Antiviral Activity of Chloroquine against Human Coronavirus OC43 Infection in Newborn Mice▿

    OpenAIRE

    Keyaerts, Els; Li, Sandra; Vijgen, Leen; Rysman, Evelien; Verbeeck, Jannick; Van Ranst, Marc; Maes, Piet

    2009-01-01

    Until recently, human coronaviruses (HCoVs), such as HCoV strain OC43 (HCoV-OC43), were mainly known to cause 15 to 30% of mild upper respiratory tract infections. In recent years, the identification of new HCoVs, including severe acute respiratory syndrome coronavirus, revealed that HCoVs can be highly pathogenic and can cause more severe upper and lower respiratory tract infections, including bronchiolitis and pneumonia. To date, no specific antiviral drugs to prevent or treat HCoV infectio...

  2. In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza A Virus.

    Science.gov (United States)

    Fatima, Munazza; Zaidi, Najam-Us-Sahar Sadaf; Amraiz, Deeba; Afzal, Farhan

    2016-01-01

    Nanoparticles have wide-scale applications in various areas, including medicine, chemistry, electronics, and energy generation. Several physical, biological, and chemical methods have been used for synthesis of silver nanoparticles. Green synthesis of silver nanoparticles using plants provide advantages over other methods as it is easy, efficient, and eco-friendly. Nanoparticles have been extensively studied as potential antimicrobials to target pathogenic and multidrug-resistant microorganisms. Their applications recently extended to development of antivirals to inhibit viral infections. In this study, we synthesized silver nanoparticles using Cinnamomum cassia (Cinnamon) and evaluated their activity against highly pathogenic avian influenza virus subtype H7N3. The synthesized nanoparticles were characterized using UVVis absorption spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Cinnamon bark extract and its nanoparticles were tested against H7N3 influenza A virus in Vero cells and the viability of cells was determined by tetrazolium dye (MTT) assay. The silver nanoparticles derived from Cinnamon extract enhanced the antiviral activity and were found to be effective in both treatments, when incubated with the virus prior to infection and introduced to cells after infection. In order to establish the safety profile, Cinnamon and its corresponding nanoparticles were tested for their cytotoxic effects in Vero cells. The tested concentrations of extract and nanoparticles (up to 500 μg/ml) were found non-toxic to Vero cells. The biosynthesized nanoparticles may, hence, be a promising approach to provide treatment against influenza virus infections. PMID:26403820

  3. In vitro evaluation of antiviral activity of essential oil from Zataria multiflora Boiss. against Newcastle disease virus

    Directory of Open Access Journals (Sweden)

    Mohammadi Ali

    2015-07-01

    Full Text Available Introduction: The study aimed to investigate the antiviral activity of Zataria multiflora (ZM essential oil against Newcastle disease virus (NDV on Vero cells. Methods: The cytotoxicity of ZM essential oil was evaluated by MTT assay. Cells were infected with 100 TCID50 of a field isolate of virulent NDV (JF820294.1. ZM essential oil at concentrations of 1/5000, 1/25 000, 1/125 000 or 1/625 000 was added at different times of infection: 60 minutes pre infection, simultaneously and 60 minutes post infection. Cells were evaluated morphologically. The TCID50, neutralizing index (NI and HA titer were determined. Results: Cells treated with ZM essential oil in all concentrations 1 hour before or after infection, showed CPE similar to control virus cells. In simultaneous use, cells treated with 1/5000 concentration of the essential oil, remained morphologically normal. TCID50 values of all treatments were very close to that of control virus except for simultaneous administration at concentration of 1/5000 which was about 1000 folds lower. Virus titer in different treatments was exactly the same as control virus titer in Haemagglutination (HA test. Conclusion: ZM essential oil has some antiviral activity on NDV in vitro, which is possibly by destruction of virus infectivity or inhibition of early phases of viral proliferation cycle.

  4. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors.

    Science.gov (United States)

    Jadav, Surender Singh; Kaptein, Suzanne; Timiri, Ajaykumar; De Burghgraeve, Tine; Badavath, Vishnu Nayak; Ganesan, Ramesh; Sinha, Barij Nayan; Neyts, Johan; Leyssen, Pieter; Jayaprakash, Venkatesan

    2015-04-15

    The β-OG pocket is a cavity in the flavivirus envelope (E) protein that was identified by Proc. Natl. Acad. Sci. U.S.A.2003, 100, 6986 as a promising site for the design of antiviral agents that interfere with virus entry into the host cell. The availability of the X-ray crystal structure of the dengue virus (DENV) E protein provided an opportunity for in silico drug design efforts to identify candidate inhibitors. The present study was set up to explore whether it is possible to generate a novel class of molecules that are hybrids between two hit compounds that have been reported previously by ACS. Chem. Biol.2008, 3, 765 following an in silico screening effort against the DENV E protein. First, a library of twenty hybrid molecules were designed and synthesized to explore the feasibility of this strategy. Antiviral evaluation in a virus-cell-based assay for DENV proved this approach to be successful, after which another twenty-four molecules were produced to further explore and optimize the potency of this novel class of hybrid inhibitors. In the end, a molecule was obtained with an EC50 against dengue virus serotype 2 in the low micromolar range (23, 1.32±0.41μM). PMID:25791449

  5. Studying the Antimicrobial and Antiviral Effects of Electrochemically Activated Nacl Solutions of Anolyte and Catholyte on a Strain of E. Coli DH5 and Classical Swine Fever (CSF) Virus

    OpenAIRE

    Georgi Gluhchev; Ignat Ignatov; Stoil Karadzhov; Georgi Miloshev; Nikolay Ivanov; Oleg Mosin

    2015-01-01

    This paper outlines the results on the antiviral and antimicrobial action of electrochemically activated NaCl solutions (anolyte/catholyte), produced in the anode and cathode chamber of the electrolitic cell, on classical swine fever (CSF) virus and a stain of E. coli DH5. It was found that the anolyte did not affect the growth of the cell culture PK-15; the viral growth during the infection of a cell monolayer with a cell culture virus was affected in the greatest degree by the anolyte in 1:...

  6. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Directory of Open Access Journals (Sweden)

    Galati Gaspare

    2009-07-01

    Full Text Available Abstract Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6 as well as a tumor-line (HL60. Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is

  7. In vitro Antiviral Activity of the Red Marine Alga from Persian Gulf, Gracilaria salicornia, Against Herpes Simplex Virus Type 2

    OpenAIRE

    Keivan Zandi; Maryam Salimi; Kohzad Sartavi

    2007-01-01

    This study was done to evaluate the anti-HSV-2 activity of the crude water of Gracilaria salicornia alga against HSV-2 in cell culture. The extract showed antiviral activity against HSV-2 not only before attachment and entry of virus to the Vero cells, but also on post attachment stages of virus replication. Regarding the calculated SI values of the extracts which were 44.4 and 38.5 for filtered and autoclaved extracts, respectively. It is concluded that the antiviral compound(s) in the water...

  8. Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication

    DEFF Research Database (Denmark)

    Todt, Daniel; François, Catherine; Anggakusuma, [Ukendt; Behrendt, Patrick; Engelmann, Michael; Knegendorf, Leonard; Vieyres, Gabrielle; Wedemeyer, Heiner; Hartmann, Rune; Pietschmann, Thomas; Duverlie, Gilles; Steinmann, Eike

    2016-01-01

    Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I...... interferon (IFN) has been evaluated in a few infected transplant patientsin vivo In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV......) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication...

  9. Studying the Antimicrobial and Antiviral Effects of Electrochemically Activated Nacl Solutions of Anolyte and Catholyte on a Strain of E. Coli DH5 and Classical Swine Fever (CSF Virus

    Directory of Open Access Journals (Sweden)

    Georgi Gluhchev

    2015-09-01

    Full Text Available This paper outlines the results on the antiviral and antimicrobial action of electrochemically activated NaCl solutions (anolyte/catholyte, produced in the anode and cathode chamber of the electrolitic cell, on classical swine fever (CSF virus and a stain of E. coli DH5. It was found that the anolyte did not affect the growth of the cell culture PK-15; the viral growth during the infection of a cell monolayer with a cell culture virus was affected in the greatest degree by the anolyte in 1:1 dilution and less in other dilutions; whereas the viral growth at the infection of a cell suspension with the CSF virus was affected by the anolyte in dilution 1:1 in the greatest degree, and less by other dilutions; viral growth at the infection with a virus in suspension of the cell monolayer was affected by the anolyte in all dilutions. Unexpectedly, the stronger biocidal effect of the catholyte was observed when a strain of E. coli DH5 was treated by the anolyte and catholyte, respectively. In order to provide additional data about the antiviral activity of the electrochemically activated water and the distribution of H2O molecules according to the energies of hydrogen bonds, the non-equilibrium energy spectrum (NES and differential non-equilibrium energy spectrum (DNES of the anolyte and catholyte were measured.

  10. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus.

    Science.gov (United States)

    Ratnoglik, Suratno Lulut; Aoki, Chie; Sudarmono, Pratiwi; Komoto, Mari; Deng, Lin; Shoji, Ikuo; Fuchino, Hiroyuki; Kawahara, Nobuo; Hotta, Hak

    2014-03-01

    The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo-Pacific region; its fruits and leaves are food sources and are also used as a treatment in traditional medicine. In this study, using a HCV cell culture system, it was demonstrated that a methanol extract, its n-hexane, and ethyl acetate fractions from M. citrifolia leaves possess anti-HCV activities with 50%-inhibitory concentrations (IC(50)) of 20.6, 6.1, and 6.6 μg/mL, respectively. Bioactivity-guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti-HCV compound present in the extracts (IC(50) = 0.3 μg/mL). It was also found that pyropheophorbide a possesses anti-HCV activity (IC(50) = 0.2 μg/mL). The 50%-cytotoxic concentrations (CC(50)) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 μg/mL, respectively, their selectivity indexes being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin, and pheophytin a barely, or only marginally, exhibited anti-HCV activities. Time-of-addition analysis revealed that pheophorbide a and pyropheophorbide a act at both entry and the post-entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds for developing antivirals against HCV. PMID:24438164

  11. N-terminal amino acids of bovine alpha interferons are relevant for the neutralization of their antiviral activity

    Directory of Open Access Journals (Sweden)

    Barreto Filho J.B.

    2001-01-01

    Full Text Available The structure-function relationship of interferons (IFNs has been studied by epitope mapping. Epitopes of bovine IFNs, however, are practically unknown, despite their importance in virus infections and in the maternal recognition of pregnancy. It has been shown that recombinant bovine (rBoIFN-alphaC and rBoIFN-alpha1 differ only in 12 amino acids and that the F12 monoclonal antibody (mAb binds to a linear sequence of residues 10 to 34. We show here that the antiviral activities of these two IFNs were neutralized by the F12 mAb to different extents using two tests. In residual activity tests the antiviral activity dropped by more than 99% with rBoIFN-alphaC and by 84% with rBoIFN-alpha1. In checkerboard antibody titrations, the F12 mAb titer was 12,000 with rBoIFN-alphaC and only 600 with rBoIFN-alpha1. Since these IFNs differ in their amino acid sequence at positions 11, 16 and 19 of the amino terminus, only these amino acids could account for the different neutralization titers, and they should participate in antibody binding. According to the three-dimensional structure described for human and murine IFNs, these amino acids are located in the alpha helix A; amino acids 16 and 19 of the bovine IFNs would be expected to be exposed and could bind to the antibody directly. The amino acid at position 11 forms a hydrogen bond in human IFNs-alpha and it is possible that, in bovine IFNs-alpha, the F12 mAb, binding near position 11, would disturb this hydrogen bond, resulting in the difference in the extent of neutralization observed.

  12. Antiviral activity of lambda-carrageenan prepared from red seaweed (Gigartina skottsbergii) against BoHV-1 and SuHV-1.

    Science.gov (United States)

    Diogo, Jésica V; Novo, Sabrina Galdo; González, Marcelo J; Ciancia, Marina; Bratanich, Ana C

    2015-02-01

    The antiviral effect of polysaccharides has been known for many years. Carrageenans are considered a good alternative for the prevention of a wide range of diseases, mainly caused by enveloped viruses. The advantages lie on their high availability, low cost and low induction of resistance. The aim of this study was to evaluate the sensitivity of two viral pathogens of veterinary interest to the presence of lambda-carrageenan. This is the first report of a lambda-carrageenan having antiviral activity against animal viruses belonging to the Alphaherpesvirinae subfamily, BoHV-1 (bovine herpesvirus type 1) strain Cooper and SuHV-1 (suid herpesvirus type 1) strain Bartha. Lambda-carrageenan was able to reduce infectivity of both viruses with a more pronounced effect against BoHV-1. These results proved, as previously shown for human herpes virus type 1, that these compounds could be used as potential antiviral agents in the veterinary field. PMID:25435342

  13. A Novel Hydrodynamic Injection Mouse Model of HBV Genotype C for the Study of HBV Biology and the Anti-Viral Activity of Lamivudine

    OpenAIRE

    Li, Xiumei; Liu, Guangze; Chen, Meijuan; Yang, Yang; Xie, Yong; Kong, Xiangping

    2016-01-01

    Background: Absence of an immunocompetent mouse model of persistent hepatitis B virus (HBV) infection has hindered the research of HBV infection and the development of antiviral medications. Objectives: In the present study, we aimed to develop a novel HBV genotype C mouse model by hydrodynamic injection (HI) and then used it to evaluate the antiviral activity of lamivudine. Materials and Methods: A quantity of 15 μg of HBV plasmid [pcDNA3.1 (+)-HBV1.3C], adeno-associated virus-HBV1.3C (pAAV-...

  14. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2).

    Science.gov (United States)

    Pourghanbari, Gholamhosein; Nili, Hasan; Moattari, Afagh; Mohammadi, Ali; Iraji, Aida

    2016-06-01

    Lemon balm derivatives are going to acquire a novelty as natural and potent remedy for treatment of viral infections since the influenza viruses are developing resistance to the current antivirals widely. Oseltamivir, Melissa officinalis essential oil (MOEO) and their synergistic efficacy against avian influenza virus (AIV) subtype H9N2 were evaluated in vitro in MDCK cells at different time exposure by using TCID50, HA, Real Time PCR and HI assay. The results showed that MOEO could inhibit replication of AVI through the different virus replication phase (P ≤ 0.05). Also the highest antiviral activity of MOEO was seen when AIV incubated with MOEO before cell infection. The TCID50/ml was reduced 1.3-2.1, 2.3-2.8, 3.7-4.5 log 10 than control group (5.6 log 10), HAU/50 µl was decreased 85-94, 71.4-94, 71.4-94 % and viral genome copy number/µl was brought down 68-95, 90-100, 89.6-99.9 % at pre-infection, post-infection and simultaneous stage, respectively. Hemagglutination inhibition result showed the MOEO was not able to inhibit agglutination of the chicken red blood cell (cRBC). Replication of the AVI was suppressed by the different concentration of oseltamivir completely or near 100 %. Also oseltamivir showed a synergistic activity with MOEO especially when oseltamivir concentration reduced under 0.005 mg/ml. The chemical composition was examined by GC-MS analysis and Its main constituents were identified as monoterpenaldehydes citral a, citral b. In conclusion, the findings of the study showed that lemon balm essential oil could inhibit influenza virus replication through different replication cycle steps especially throughout the direct interaction with the virus particles. PMID:27366768

  15. Indolocarbazoles exhibit strong antiviral activity against human cytomegalovirus and are potent inhibitors of the pUL97 protein kinase.

    Science.gov (United States)

    Zimmermann, A; Wilts, H; Lenhardt, M; Hahn, M; Mertens, T

    2000-10-01

    We have analyzed a panel of protein kinase inhibitors (PKIs) and found that some indolocarbazoles (Gö6976, K252a, K252c) proved to be highly effective inhibitors of GCV-sensitive and -resistant human cytomegalovirus (HCMV) strains, but did not show any effect against herpes simplex virus. Antiviral activity was determined by focus reduction assays (IC(50) ranging from 0.009 to 0.4 microM). Other inhibitors of serine/threonine kinases (Gö6850, H-7, roscovitine) were found to be ineffective. Virus yield at 5 days after infection was reduced by three orders of magnitude with nanomolar concentrations of the indolocarbazoles. These compounds were fully effective when added up to 24 h post infection and showed reduced activity up to 72 h post infection. Cytotoxicity assays in proliferating and non-proliferating cells demonstrated that the effective antiviral concentration of these compounds was significantly lower than either antiproliferative (IC(50)/CC(50) ranging from 6.5 to 390) or cytotoxic (IC(50)/CC(50) ranging from 72. 5 to 1000) doses. The effects of PKIs on the virus-encoded protein kinase pUL97 were studied using recombinant vaccinia viruses. Indolocarbazoles strongly inhibited both pUL97 autophosphorylation (IC(50) ranging from 0.0012 to 0.013 microM) and pUL97-dependent ganciclovir phosphorylation (IC(50) ranging from 0.05 to 0.26 microM). Other inhibitors of serine/threonine kinases showed only weak (Gö6850) or no (H-7, roscovitine) effect on these pUL97 functions, while oxoflavone tyrosine kinase inhibitors had no effect at all. PMID:11080540

  16. Protective antiviral antibodies that lack neutralizing activity: precedents and evolution of concepts.

    Science.gov (United States)

    Schmaljohn, Alan L

    2013-07-01

    Antibody-mediated resistance to viral disease is often attributed solely to neutralizing antibodies (NAbs) despite a body of evidence -- more than 30 years in the making -- to show that other populations of antibodies (protective non-neutralizing antibodies, PnNAbs) can also contribute and are sometimes pivotal in host resistance to viruses. Recently, interest in varieties of PnNAbs has been restored and elevated by an HIV vaccine trial in which virus-specific nNAbs have been highlighted as a positive correlate of immunity. Here, I briefly review some of the historical precedents with many viruses other than HIV, along with the emergence of data over the course of some four decades, pointing emphatically to the importance of subsets of antiviral antibodies that operate by mechanisms other than classical virus neutralization. Foremost among suspected mechanisms of protection by PnNAbs is antibody-dependent cellular cytotoxicty (ADCC), but additional mechanisms have sometimes been incriminated or not experimentally excluded. Examples are given for the diversity of proteins and cognate epitopes bound by PnNAbs. Some such epitopes are restricted to virus-infected cell surfaces or found on secreted proteins; others may be associated with virions but unavailable to antibodies during much of the viral cycle; these are epitopes variously described as cryptic, transitional, dynamic, or reversibly masked. PMID:24191933

  17. Antiviral activity of Ladania067, an extract from wild black currant leaves against influenza A virus in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    OliverPlanz

    2014-04-01

    Full Text Available Influenza, a respiratory disease caused by influenza viruses, still represents a major threat to humans and several animal species. Besides vaccination, only two classes of drugs are available for antiviral treatment against this pathogen. Thus, there is a strong need for new effective antivirals against influenza viruses. Here, we tested Ladania067, an extract from the leaves of the wild black currant (Ribes nigrum folium for potential antiviral activity against influenza A virus in vitro and in vivo. In the range of 0 - 1mg/ml the extract showed no cytotoxic effect on three cell lines and a CC50 of 0.5 ± 0.3 mg/ml, on PBMCs. Furthermore, the extract did not influence the proliferative status of human lymphocytes. In contrast, Ladania067 was highly effective (EC50 value: 49.3 ± 1.1 ng/ml against the human pandemic influenza virus strain A/Regensburg/D6/09 (H1N1. The extract exhibited an antiviral effect when the virus was pre-incubated prior to infection or when added directly after infection. No antiviral effect was found when infected cells were treated 2, 4 or 8 h after infection, indicating that Ladania067 blocks a very early step in the virus infection cycle. In the mouse infection model we were able to demonstrate that an intranasal application of 500 µg Ladania067 inhibits progeny virus titers in the lung up to 85% after 24 h. We conclude that the extract from the leaves of the wild black currant may be a promising source for the identification of new molecules with antiviral functions against influenza virus.

  18. Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34.

    Science.gov (United States)

    Won, Ji-Na; Lee, Seo-Yong; Song, Dae-sub; Poo, Haryoung

    2013-01-01

    Influenza viruses cause significant morbidity and mortality in humans through epidemics or pandemics. Currently, two classes of anti-influenza virus drugs, M2 ion-channel inhibitors (amantadin and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir), have been used for the treatment of the influenza virus infection. Since the resistance to these drugs has been reported, the development of a new antiviral agent is necessary. In this study, we examined the antiviral efficacy of the plant extracts against the influenza A/PR/8/34 infection. In vitro, the antiviral activities of the plant extracts were investigated using the cell-based screening. Three plant extracts, Thuja orientalis, Aster spathulifolius, and Pinus thunbergii, were shown to induce a high cell viability rate after the infection with the influenza A/PR/8/34 virus. The antiviral activity of the plant extracts also increased as a function of the concentration of the extracts and these extracts significantly reduced the visible cytopathic effect caused by virus infections. Furthermore, the treatment with T. orientalis was shown to have a stronger inhibitory effect than that with A. spathulifolius or P. thunbergii. These results may suggest that T. orientalis has anti-influenza A/PR/8/34 activity. PMID:23314378

  19. Antiviral, Antifungal and Antibacterial Activities of a BODIPY-Based Photosensitizer

    Directory of Open Access Journals (Sweden)

    Bradley L. Carpenter

    2015-06-01

    Full Text Available Antimicrobial photodynamic inactivation (aPDI employing the BODIPY-based photosensitizer 2,6-diiodo-1,3,5,7-tetramethyl-8-(N-methyl-4-pyridyl-4,4′-difluoro-boradiazaindacene (DIMPy-BODIPY was explored in an in vitro assay against six species of bacteria (eight total strains, three species of yeast, and three viruses as a complementary approach to their current drug-based or non-existent treatments. Our best results achieved a noteworthy 5–6 log unit reduction in CFU at 0.1 μM for Staphylococcus aureus (ATCC-2913, methicillin-resistant S. aureus (ATCC-44, and vancomycin-resistant Enterococcus faecium (ATCC-2320, a 4–5 log unit reduction for Acinetobacter baumannii ATCC-19606 (0.25 μM, multidrug resistant A. baumannii ATCC-1605 (0.1 μM, Pseudomonas aeruginosa ATCC-97 (0.5 μM, and Klebsiella pneumoniae ATCC-2146 (1 μM, and a 3 log unit reduction for Mycobacterium smegmatis mc2155 (ATCC-700084. A 5 log unit reduction in CFU was observed for Candida albicans ATCC-90028 (1 μM and Cryptococcus neoformans ATCC-64538 (0.5 μM, and a 3 log unit reduction was noted for Candida glabrata ATCC-15545 (1 μM. Infectivity was reduced by 6 log units in dengue 1 (0.1 μM, by 5 log units (0.5 μM in vesicular stomatitis virus, and by 2 log units (5 μM in human adenovirus-5. Overall, the results demonstrate that DIMPy-BODIPY exhibits antiviral, antibacterial and antifungal photodynamic inactivation at nanomolar concentrations and short illumination times.

  20. Analgesic, antibacterial and antiviral activities of 2-(5-alkyl-1,3,4-oxadiazol-2-yl-3 H -benzo [f] chromen-3-ones

    Directory of Open Access Journals (Sweden)

    R Raghavendra

    2012-01-01

    Full Text Available A novel series of 2-(5-alkyl-1,3,4-oxadiazol-2-yl-3H-benzo[f]chromen-3-ones (4a-e have been evaluated for analgesic, antibacterial and antiviral activities. Analgesic activity was carried out using acetic acid-induced writhing method in Swiss albino male mice. The antibacterial activity was performed against Gram-positive and Gram-negative clinical strains by agar well diffusion method. The in vitro antiviral activity was carried out against camelpox and buffalopox viruses. The analgesic activity exhibited by the compounds 4a, 4c and 4d were found to be more significant compared to the standard. The bacterial activity was determined by the inhibition of growth of the organism by the drugs at different concentrations. All the compounds showed significant activity when compared with the drug ciprofloxacin. The in vitro antiviral activity of the compound 4b tested against camelpox and buffalopox viruses revealed no activity when tested at concentrations of 250 μg. The compound 4b did not alter the titres of both the viruses and the titres remain, respectively, 10 6.5 TCID 50 and 10 6.74 TCID 50 per ml for camelpox vaccine virus and buffalopox vaccine virus. However, the compounds 4a-e showed significant analgesic and antibacterial activities.

  1. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  2. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404.

    Science.gov (United States)

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Marjakangas, Jenni M; van Rij, Ronald P

    2016-04-01

    Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development. PMID:26856827

  3. Whence Induced Demand: How Access Affects Activity

    OpenAIRE

    Levinson, David; Kanchi, Seshasai

    2000-01-01

    Additional highway capacity, by increasing travel speed, affects the individual share of time within a 24-hour budget allocated to various activities (time spent at and traveling to home, shop, work and other), some activities will be undertaken more, others less. This paper extends previous research that identified and quantified induced demand in terms of vehicle miles traveled, by considering questions of what type of demand is induced and which activities are consequently reduced. This pa...

  4. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Clarice Weis Arns

    2013-04-01

    Full Text Available The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18 and 584 (150 µg/mL, SI 27 showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C.

  5. Pharmacological Characterization of the Spectrum of Antiviral Activity and Genetic Barrier to Drug Resistance of M2-S31N Channel Blockers.

    Science.gov (United States)

    Ma, Chunlong; Zhang, Jiantao; Wang, Jun

    2016-09-01

    Adamantanes (amantadine and rimantadine) are one of the two classes of Food and Drug Administration-approved antiviral drugs used for the prevention and treatment of influenza A virus infections. They inhibit viral replication by blocking the wild-type (WT) M2 proton channel, thus preventing viral uncoating. However, their use was discontinued due to widespread drug resistance. Among a handful of drug-resistant mutants, M2-S31N is the predominant mutation and persists in more than 95% of currently circulating influenza A strains. We recently designed two classes of M2-S31N inhibitors, S31N-specific inhibitors and S31N/WT dual inhibitors, which are represented by N-[(5-cyclopropyl-1,2-oxazol-3-yl)methyl]adamantan-1-amine (WJ379) and N-[(5-bromothiophen-2-yl)methyl]adamantan-1-amine (BC035), respectively. However, their antiviral activities against currently circulating influenza A viruses and their genetic barrier to drug resistance are unknown. In this report, we evaluated the therapeutic potential of these two classes of M2-S31N inhibitors (WJ379 and BC035) by profiling their antiviral efficacy against multidrug-resistant influenza A viruses, in vitro drug resistance barrier, and synergistic effect with oseltamivir. We found that M2-S31N inhibitors were active against several influenza A viruses that are resistant to one or both classes of Food and Drug Administration-approved anti-influenza drugs. In addition, M2-S31N inhibitors display a higher in vitro genetic barrier to drug resistance than amantadine. The antiviral effect of WJ379 was also synergistic with oseltamivir carboxylate. Overall, these results reaffirm that M2-S31N inhibitors are promising antiviral drug candidates that warrant further development. PMID:27385729

  6. The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity

    OpenAIRE

    More, Vijaykumar

    2014-01-01

    2010 - 2011 The thesis entitled “The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity" is divided into three chapters. The title of the thesis clearly reflects the importance of nitrogen heterocycles compounds: in fact they are extremely pivotal structural motifs responsible for eliciting various biological activities in natural products and synthetic medicines. This has attracted the medicinal chemists towards the synth...

  7. Study on Antimicrobial and Antiviral Activities of Lysozyme From Marine Strain S-12-86 In Vitro

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, the in vitro antimicrobial and antiviral activities of the lysozyme from marine strain S-12-86 (LS) were investigated. The antimicrobial activity of LS was tested by minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) method. The inhibiting effects of LS on pseudo rabies virus (PRV) in swine kidney cells (PK-15 cells) were judged by cytopathogenic effect test (CPE). The results showed LS had a broad antimicrobial spectrum against several standard strains including gram-positive bacteria, gram-negative bacteria, fungi, etc. The MIC of LS was 0.25-4.00 mg mL-1 and its MBC was 0.25-8.00 mg mL-1, respectively. Observation under the transmission electron microscope revealed that the cell wall of Candida albicans was distorted seriously, and the cytoplasm with many cavities was asymmetrical after being hydrolyzed by LS. The median cytotoxicity concentration (TC50) of LS was 100.0 μg mL-1, the median effective concentration (EC50) was 0.46 μg mL-1, and the selectivity index (TI = TC50/EC50) was 217. LS could inhibit PRV in PK-15 cells when it was added to cell culture medium at 0, 2, 4, 6, and 8 h after PK-15 cells had been infected by PRV. From the results, we concluded that LS had broad antimicrobial spectrum and good inhibiting effects on PRV.

  8. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity.

    Directory of Open Access Journals (Sweden)

    Sophiya Karki

    Full Text Available The zinc finger antiviral protein (ZAP is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV, the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.

  9. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities.

    Science.gov (United States)

    Karaküçük-İyidoğan, Ayşegül; Taşdemir, Demet; Oruç-Emre, Emine Elçin; Balzarini, Jan

    2011-11-01

    A series of thiosemicarbazones and their platinum(II) and palladium(II) complexes have been synthesized. The chemical structures of ligands and their complexes were characterized by UV-Vis, IR, (1)H NMR, (13)C NMR, MS spectra, elemental analysis and TGA. The antiviral and cytotoxic activities of all compounds have been tested. Results of broad antiviral evaluation showed that none of the compounds evaluated endowed with anti-DNA or -RNA virus activity at subtoxic concentrations except for the palladium complex 1b. This compound exhibited slightly selective inhibition against cytomegalovirus. The platinum complex 4a exhibited the best cytostatic activities against human cervix carcinoma. Ligands 2, 4 and 5 showed cytostatic potential. The palladium complexes were in general less cytostatic than the corresponding platinum complexes or unliganded congeners. PMID:21993152

  10. Antiviral Activity of Metal-Containing Polymers—Organotin and Cisplatin-Like Polymers

    OpenAIRE

    Girish Barot; Roner, Michael R.; Charles E. Carraher Jr.; Kimberly Shahi

    2011-01-01

    Polymers containing platinum and to a lesser extent tin, have repeatedly demonstrated antitumor activity in vitro and in vivo against a variety of cell and tumor types. The mechanisms responsible for the antitumor activity include inducing a delay in cell proliferation and sister chromatid exchanges blocking tumor growth. As most DNA and some RNA viruses require, and even induce, infected cells to initiate DNA replication and subsequent cell division, compounds with antitumor activity will ve...

  11. Screening of Dengue virus antiviral activity of marine seaweeds by an in situ enzyme-linked immunosorbent assay.

    Directory of Open Access Journals (Sweden)

    Andrea Cristine Koishi

    Full Text Available Dengue is a significant public health problem worldwide. Despite the important social and clinical impact, there is no vaccine or specific antiviral therapy for prevention and treatment of dengue virus (DENV infection. Considering the above, drug discovery research for dengue is of utmost importance; in addition natural marine products provide diverse and novel chemical structures with potent biological activities that must be evaluated. In this study we propose a target-free approach for dengue drug discovery based on a novel, rapid, and economic in situ enzyme-linked immunosorbent assay and the screening of a panel of marine seaweed extracts. The in situ ELISA was standardized and validated for Huh7.5 cell line infected with all four serotypes of DENV, among them clinical isolates and a laboratory strain. Statistical analysis showed an average S/B of 7.2 and Z-factor of 0.62, demonstrating assay consistency and reliability. A panel of fifteen seaweed extracts was then screened at the maximum non-toxic dose previously determined by the MTT and Neutral Red cytotoxic assays. Eight seaweed extracts were able to reduce DENV infection of at least one serotype tested. Four extracts (Phaeophyta: Canistrocarpus cervicornis, Padina gymnospora; Rhodophyta: Palisada perforate; Chlorophyta: Caulerpa racemosa were chosen for further evaluation, and time of addition studies point that they might act at an early stage of the viral infection cycle, such as binding or internalization.

  12. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Jessica Jenkins Broglie

    Full Text Available Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk virus-like particles (VLPs as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1 by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  13. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B 2705-restricted CD8+ T cells

    DEFF Research Database (Denmark)

    Payne, Rebecca P; Kløverpris, Henrik; Sacha, Jonah B;

    2010-01-01

    The association between HLA-B 2705 and the immune control of human immunodeficiency virus type 1 (HIV-1) has previously been linked to the targeting of the HLA-B 2705-restricted Gag epitope KRWIILGLNK (KK10) by CD8(+) T cells. In order to better define the mechanisms of the HLA-B 2705 immune...... control of HIV, we first characterized the CD8(+) T-cell responses of nine highly active antiretroviral therapy (HAART)-naïve B 2705-positive subjects. Unexpectedly, we observed a strong response to an HLA-B 2705-restricted Pol epitope, KRKGGIGGY (KY9), in 8/9 subjects. The magnitude of the KY9 response...... respective CD8(+) T-cell response. By comparing inhibitions of viral replication by CD8(+) T cells specific for the Gag KK10, Pol KY9, and Vpr VL9 HLA-B 2705-restricted epitopes, we observed a consistent hierarchy of antiviral efficacy (Gag KK10 > Pol KY9 > Vpr VL9). This hierarchy was associated with early...

  14. Synthesis and antiviral activity of new dimeric inhibitors against HIV-1

    DEFF Research Database (Denmark)

    Danel, Krzysztof; Larsen, Louise M.; Pedersen, Erik Bjerreg.;

    2008-01-01

    Sonogashira reaction, ‘click' chemistry or Pd-catalyzed oxidative coupling. The iodo precursor 5 turned out as a potent compound against wild type and mutated HIV-1 virus. All dimeric compounds showed lower activity against HIV-1 than MKC-442, except the asymmetric dimer of AZT and 1a which showed an activity...

  15. Application of radiobiological techniques in studying antioxidant mechanisms: evaluation of their radioprotective, antioxidative and antiviral activities

    International Nuclear Information System (INIS)

    In the medical field, the oxidation phenomenon is the source of several pathologies (diabetes, cystic fibrosis, cancers,...). The natural oxidants are used as food preserving and skin ageing moderators. Several plant extracts with antioxidant activity were studied, this important antioxidant activity is probably due to their richness of compounds: polyphenols, phenolic acids, tocopherols, carotenoids, flavonoids,... Many techniques for evaluation and reactional mechanism study of the antioxidative activity are used. After selection, extraction, fractionation, activity screening, chemical analyses of molecules contained in the best active extracts, biological properties research of isolated redox pharmacophore, we have : - determined the structure of active products by spectroscopy and chromatography; - studied the antioxidative properties by EPR and spin trapping of the obtained extracts and molecules. The results of this first part of our work consists in evaluating the antioxidative degree of a great number of natural active principles, extracted from moroccan plants and pur obtained products. The second part consists in studying the action mechanisms using the LDL labelling (F. M.)

  16. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens.

    Science.gov (United States)

    Sökmen, Münevver; Serkedjieva, Julia; Daferera, Dimitra; Gulluce, Medine; Polissiou, Moschos; Tepe, Bektas; Akpulat, H Askin; Sahin, Fikrettin; Sokmen, Atalay

    2004-06-01

    The essential oil and various extracts obtained from Origanum acutidens and methanol extracts (MeOH) from callus cultures have been evaluated for their antioxidative, antimicrobial, and antiviral properties. The essential oil exhibited strong antimicrobial activity with a significant inhibitory effect against 27 (77%) of the 35 bacteria, 12 (67%) of the 18 fungi, and a yeast tested and moderate antioxidative capacity in DPPH and beta-carotene/linoleic acid assays. GC and GC-MS analyses of the oil resulted in the identification of 38 constituents, carvacrol being the main component. The MeOH extracts obtained from herbal parts showed better antioxidative effect than that of butylated hydroxytoluene (BHT), whereas callus cultures also exhibited interesting antioxidative patterns. Concerning antiviral activity, none of the extracts inhibited the reproduction of influenza A/Aichi virus in MDCK cells. The MeOH extracts from herbal parts inhibited the reproduction of HSV-1, and also callus cultures exerted slight antiherpetic effect. PMID:15161188

  17. [The antiviral activity of the adamantane derivatives against the influenza virus A (H1N1) pdm2009 model in vivo].

    Science.gov (United States)

    Shchelkanov, M Iu; Shibnev, V A; Finogenova, I T; Fediakina, T M; Garaev, T M; Markova, N V; Kirillov, I M

    2014-01-01

    For the first time in vivo, the model of the viral pneumonia in mice was used to study the antiviral activity against influenza A virus (H1N1) pdm09 synthetic derivatives of adamantane series including the amino acid residues and lipoid acid. It was found that the adamantane derivatives with histidine, serine, and lipoid acid could inhibit the rimantadine-resistant strain of the influenza A (H1N1) pdm09. As a result, the lifespan of the mice infected with the virus has increased by 1.6 times with respect to viral control. Thus, the possibility of restoration of antiviral properties of rimantadine both in vitro and in vivo by introducing into its molecular structure new functionally active groups was tested. PMID:25069284

  18. Antagonistic antiviral activity between IFN-lambda and IFN-alpha against lethal Crimean-Congo hemorrhagic fever virus in vitro.

    Directory of Open Access Journals (Sweden)

    Licia Bordi

    Full Text Available Crimean Congo Hemorrhagic fever virus (CCHFV is the causative agent of Crimean-Congo hemorrhagic fever, a severe disease with a mortality rate of around 30% in humans. Previous studies demonstrate that pre-treatment with type I IFNs have an antiviral effect against CCHFV, while established CCHFV infection is almost insensitive to subsequent IFN-α treatment. No data concerning type III IFNs antiviral activity against CCHFV are available so far. The aim of the present study was to explore the capability of IFN-λ1 to inhibit the replication of CCHFV and the possible synergism/antagonism between IFN-α and IFN-λ1 both in the inhibition of CCHFV replication and in the activation of intracellular pathways of IFN response.Human A549 and HuH7 cells were treated with increasing amounts of IFN-λ1, or IFN-α or a combination of them, infected with CCHF; the extent of virus yield inhibition and the induction of MxA and 2'-5'OAS mRNA was measured.Our study pointed out that type III IFN possess an antiviral activity against CCHFV, even if lower than type I IFN. Moreover, a clear antagonism between IFN-λ and IFN-α was observed in both cell lines (A549 and HuH7 cells, in terms of antiviral effect and activation of pivotal ISGs, i.e. MxA and 2'-5'OAS. Elucidating the interplay between type I and III IFNs will help to better understand innate defence mechanisms against viral infections and may provide novel scientific evidence for a more rational planning of available and future treatments, particularly against human diseases caused by high concern viruses.

  19. Viral Ancestors of Antiviral Systems

    Directory of Open Access Journals (Sweden)

    Luis P. Villarreal

    2011-10-01

    Full Text Available All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  20. Viral ancestors of antiviral systems.

    Science.gov (United States)

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  1. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  2. Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4.

    Science.gov (United States)

    Warfield, Kelly L; Plummer, Emily M; Sayce, Andrew C; Alonzi, Dominic S; Tang, William; Tyrrell, Beatrice E; Hill, Michelle L; Caputo, Alessandro T; Killingbeck, Sarah S; Beatty, P Robert; Harris, Eva; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J L; Kato, Atsushi; Buck, Michael D; King, Kevin; Eddy, William; Khaliq, Mansoora; Sampath, Aruna; Treston, Anthony M; Dwek, Raymond A; Enterlein, Sven G; Miller, Joanna L; Zitzmann, Nicole; Ramstedt, Urban; Shresta, Sujan

    2016-05-01

    The antiviral activity of UV-4 was previously demonstrated against dengue virus serotype 2 (DENV2) in multiple mouse models. Herein, step-wise minimal effective dose and therapeutic window of efficacy studies of UV-4B (UV-4 hydrochloride salt) were conducted in an antibody-dependent enhancement (ADE) mouse model of severe DENV2 infection in AG129 mice lacking types I and II interferon receptors. Significant survival benefit was demonstrated with 10-20 mg/kg of UV-4B administered thrice daily (TID) for seven days with initiation of treatment up to 48 h after infection. UV-4B also reduced infectious virus production in in vitro antiviral activity assays against all four DENV serotypes, including clinical isolates. A set of purified enzyme, in vitro, and in vivo studies demonstrated that inhibition of endoplasmic reticulum (ER) α-glucosidases and not the glycosphingolipid pathway appears to be responsible for the antiviral activity of UV-4B against DENV. Along with a comprehensive safety package, these and previously published data provided support for an Investigational New Drug (IND) filing and Phases 1 and 2 clinical trials for UV-4B with an indication of acute dengue disease. PMID:26946111

  3. Synthesis and Antiviral Activity of N-Phenylbenzamide Derivatives, a Novel Class of Enterovirus 71 Inhibitors

    Directory of Open Access Journals (Sweden)

    Zhuo-Rong Li

    2013-03-01

    Full Text Available A series of novel N-phenylbenzamide derivatives were synthesized and their anti-EV 71 activities were assayed in vitro. Among the compounds tested, 3-amino-N-(4-bromophenyl-4-methoxybenzamide (1e was active against the EV 71 strains tested at low micromolar concentrations, with IC50 values ranging from 5.7 ± 0.8–12 ± 1.2 μM, and its cytotoxicity to Vero cells (TC50 = 620 ± 0.0 μM was far lower than that of pirodavir (TC50 = 31 ± 2.2 μM. Based on these results, compound 1e is a promising lead compound for the development of anti-EV 71 drugs.

  4. Antiviral activity of Ellagic Acid against envelope proteins from Dengue Virus through Insilico Docking

    OpenAIRE

    Giridharan Bupesh; Ramalingam Senthil Raja; Krishnan Saravanamurali; Vijayan Senthil Kumar; Natrajan Saran; Mohan Kumar; Subramanian Vennila; Kaleefathulah Sheriff; Krishnasamy Kaveri; Palani Gunasekaran

    2014-01-01

    Arbo viral infection such as dengue, chikungunya, japanese encephalitis, west nile viruses and other flaviviruses have transmemberane envelope proteins. These proteins (glycoproteins) form spike-like projections responsible for virus attachment to target cells and acid-activated membrane fusion. Further it targets numerous serologic reactions and tests including neutralization and hemagglutination inhibition. These viruses showed wide range of antigenic cross reactions and caused by seven ant...

  5. Imidazole Alkaloids from the South China Sea Sponge Pericharax heteroraphis and Their Cytotoxic and Antiviral Activities

    Directory of Open Access Journals (Sweden)

    Kai-Kai Gong

    2016-01-01

    Full Text Available Marine sponges continue to serve as a rich source of alkaloids possessing interesting biological activities and often exhibiting unique structural frameworks. In the current study, chemical investigation on the marine sponge Pericharax heteroraphis collected from the South China Sea yielded one new imidazole alkaloid named naamidine J (1 along with four known ones (2–5. Their structures were established by extensive spectroscopic methods and comparison of their data with those of the related known compounds. All the isolates possessed a central 2-aminoimidazole ring, substituted by one or two functionalized benzyl groups in some combination of the C4 and C5 positions. The cytotoxicities against selected HL-60, HeLa, A549 and K562 tumor cell lines and anti-H1N1 (Influenza a virus (IAV activity for the isolates were evaluated. Compounds 1 and 2 exhibited cytotoxicities against the K562 cell line with IC50 values of 11.3 and 9.4 μM, respectively. Compound 5 exhibited weak anti-H1N1 (influenza a virus, IAV activity with an inhibition ratio of 33%.

  6. In vivo antiviral activity of 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine and its cyclic form

    Czech Academy of Sciences Publication Activity Database

    Andrei, G.; Krečmerová, Marcela; Holý, Antonín; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R.

    Elsevier. Roč. 74, č. 3 (2007), s. 33-34. ISSN 0166-3542. [International Conference on Antiviral Research /20./. 29.04.2007-03.05.2007, Palm Springs] R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Grant ostatní: NIH(US) 1UC1AI062540-01; René Descartes Prize-2001(XE) HPAW-2002-100096 Institutional research plan: CEZ:AV0Z40550506 Keywords : 5-azacytosine * phosphonates * antivirals * in vivo Subject RIV: CC - Organic Chemistry

  7. Synthesis and antiviral activity of 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine and its ester prodrugs

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Holý, Antonín; Pískala, Alois; Andrei, G.; Snoeck, R.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.

    Elsevier. Roč. 74, č. 3 (2007), s. 33. ISSN 0166-3542. [International Conference on Antiviral Research /20./. 29.04.2007-03.05.2007, Palm Springs] R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Grant ostatní: NIH(US) 1UC1AI062540-01; René Descartes Prize-2001(XE) HPAW-2002-100096 Institutional research plan: CEZ:AV0Z40550506 Keywords : 5-azacytosine * phosphonates * antivirals Subject RIV: CC - Organic Chemistry

  8. Studies of Antiviral Activity and Cytotoxicity of Wrightia tinctoria and Morinda citrifolia

    OpenAIRE

    Selvam, P; Murugesh, N.; Witvrouw, M.; Keyaerts, E.; Neyts, J.

    2009-01-01

    Different extracts of leaf parts of Wrightia tinctoria and fruit powder of Morinda citrifolia have been studied against replication of HIV-1(IIIB) in MT-4 cells and HCV in Huh 5.2 cells. Chloroform extract of Wrightia tinctoria exhibited a maximum protection of 48% against the cytopathic effect of HIV-1(IIIB) in MT-4 cells. Fruit juice of Morinda citrifolia exhibited a displayed marked cytotoxic activity in lymphocyte (MT-4) cells (CC50: 0.19 mg/ml). The 50% effective concentration for inhibi...

  9. Studies of antiviral activity and cytotoxicity of Wrightia tinctoria and Morinda citrifolia

    Directory of Open Access Journals (Sweden)

    Selvam P

    2009-01-01

    Full Text Available Different extracts of leaf parts of Wrightia tinctoria and fruit powder of Morinda citrifolia have been studied against replication of HIV-1(IIIB in MT-4 cells and HCV in Huh 5.2 cells. Chloroform extract of Wrightia tinctoria exhibited a maximum protection of 48% against the cytopathic effect of HIV-1(IIIB in MT-4 cells. Fruit juice of Morinda citrifolia exhibited a displayed marked cytotoxic activity in lymphocyte (MT-4 cells (CC50: 0.19 mg/ml. The 50% effective concentration for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells by Morinda citrifolia was 0.98 µg/ml and by chloroform extract of Wrightia tinctoria was 10 µg/ml. The concentration that reduced the growth of exponentially proliferating Huh 5-2 cells by 50% was greater than 50 µg/ml.

  10. Composition and antiviral activity of the essential oils of Eryngium alpinum and E. amethystinum.

    Science.gov (United States)

    Dunkić, Valerija; Vuko, Elma; Bezić, Nada; Kremer, Dario; Ruščić, Mirko

    2013-10-01

    The chemical compositions of the essential oils obtained by hydrodistillation of the aerial parts of Croatian Eryngium alpinum L. and E. amethystinum L. were characterized by GC-FID and GC/MS analyses. The main components identified were the sesquiterpene β-caryophyllene (19.7%) in the oil of E. amethystinum and the oxygenated sesquiterpene caryophyllene oxide (21.6%) in the oil of E. alpinum. Overall, 32 and 35 constituents were detected in the essential oils of the aerial parts of E. alpinum and E. amethystinum, respectively, representing 92.4 and 93.1% of the total oil compositions. The essential oils of both Eryngium species were proved to reduce the number of lesions in the local host Chenopodium quinoa infected with cucumber mosaic virus and an associated satellite. This is the first investigation of antiphytoviral activity of essential oils of Eryngium species. PMID:24130032

  11. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  12. [KIL-d] Protein Element Confers Antiviral Activity via Catastrophic Viral Mutagenesis.

    Science.gov (United States)

    Suzuki, Genjiro; Weissman, Jonathan S; Tanaka, Motomasa

    2015-11-19

    Eukaryotic cells are targeted by pathogenic viruses and have developed cell defense mechanisms against viral infection. In yeast, the cellular extrachromosomal genetic element [KIL-d] alters killer activity of M double-stranded RNA killer virus and confers cell resistance against the killer virus. However, its underlying mechanism and the molecular nature of [KIL-d] are unknown. Here, we demonstrate that [KIL-d] is a proteinaceous prion-like aggregate with non-Mendelian cytoplasmic transmission. Deep sequencing analyses revealed that [KIL-d] selectively increases the rate of de novo mutation in the killer toxin gene of the viral genome, producing yeast harboring a defective mutant killer virus with a selective growth advantage over those with WT killer virus. These results suggest that a prion-like [KIL-d] element reprograms the viral replication machinery to induce mutagenesis and genomic inactivation via the long-hypothesized mechanism of "error catastrophe." The findings also support a role for prion-like protein aggregates in cellular defense and adaptation. PMID:26590718

  13. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  14. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides

    Czech Academy of Sciences Publication Activity Database

    Tichý, Michal; Pohl, Radek; Xu, H. Y.; Chen, Y. L.; Yokokawa, F.; Shi, P. Y.; Hocek, Michal

    2012-01-01

    Roč. 20, č. 20 (2012), s. 6123-6133. ISSN 0968-0896 R&D Projects: GA ČR GAP207/11/0344 Institutional support: RVO:61388963 Keywords : nucleosides * deazapurines * antivirals Subject RIV: CC - Organic Chemistry Impact factor: 2.903, year: 2012

  15. Isolation and antiviral activity of water-soluble Cynomorium songaricum Rupr. polysaccharides.

    Science.gov (United States)

    Tuvaanjav, Suvdmaa; Shuqin, Han; Komata, Masashi; Ma, Chunjie; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2016-02-01

    The plant, Cynomorium songaricum Rupr., is used as a traditional medicine in China and Mongolia. In the present study, two new water-soluble polysaccharides isolated from C. songaricum Rupr. were purified by successive Sephadex G-75 and G-50 column chromatographies and then characterized by high resolution NMR and IR spectroscopies. The molecular weights of two polysaccharides were determined by an aqueous GPC to be [Formula: see text] = 3.7 × 10(4) and 1.0 × 10(4), respectively. In addition, it was found that the polysaccharide with the larger molecular weight was an acidic polysaccharide. It was found that the iodine-starch reaction of both isolated polysaccharides was negative and the methylation analysis gave 2, 4, 6-tri-O-methyl alditol acetate as a main product. NMR and IR measurements and sugar analysis revealed that both polysaccharides had a (1 → 3)-α-d-glucopyranosidic main chain with a small number of branches. After sulfation, the sulfated C. songaricum Rupr. polysaccharides were found to have a potent inhibitory effect on HIV infection of MT-4 cells at a 50% effective concentration of 0.3-0.4 μg/ml, a concentration that has almost the same high activity as standard dextran and curdlan sulfates, EC50 = 0.35 and 0.14 μg/ml, respectively. The 50% cytotoxic concentration was low, CC50>1000 μg/ml. In addition, the interaction between the sulfated polysaccharides and poly-l-lysine as a model protein compound was investigated by a surface plasmon resonance to reveal the anti-HIV mechanism. PMID:26838028

  16. Rapid Synthesis and Antiviral Activity of (Quinazolin-4-YlaminoMethyl-Phosphonates Through Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Baoan Song

    2012-06-01

    Full Text Available This study describes the simple synthesis of new (quinazolin-4-ylamino methylphosphonates via microwave irradiation. Substituted-2-aminobenzonitrile reacted with 1,1-dimethoxy-N,N-dimethylmethanamine at a reflux condition to obtain N'-(substituted-2-cyanophenyl-N,N-dimethylformamidine (1. The subsequent reaction of this intermediate product with α-aminophosphonate (2 in a solution containing glacial acetic acid in 2-propanol through microwave irradiation resulted in the formation of (quinazolin-4-ylaminomethyl-phosphonate derivatives 3a to 3x, which were unequivocally characterized by the spectral data and elemental analysis. The influence of the reaction conditions on the yield of 3a was investigated to optimize the synthetic conditions. The relative optimal conditions for the synthesis of 3a include a 1:1 molar ratio of N’-(2-cyanophenyl-N,N-dimethylformamidine to diethyl amino(phenylmethylphosphonate and a 4:1 volume ratio of isopropanol to HOAc in the solvent mixture, at a reaction temperature of 150 °C, with a microwave power of 100 W and a corresponding pressure of 150 psi for 20 min in the microwave synthesizer. The yield of 3a was approximately 79%, whereas those of 3b to 3x were approximately 77% to 86%. Some of the synthesized compounds displayed weak to good anti-Tobacco mosaic virus (TMV activity.

  17. An initial assessment of correlations between host- and virus-related factors affecting analogues antiviral therapy in HBV chronically infected patients

    OpenAIRE

    Stalke, Piotr; Rybicka, Magda; Wróblewska, Anna; Dreczewski, Marcin; Stracewska, Ewa; Smiatacz, Tomasz; Bielawski, Krzysztof Piotr

    2014-01-01

    Background Success in treating hepatitis B virus (HBV) infection with nucleoside analogues drugs is limited by the emergence of drug-resistant viral strains upon prolonged therapy. In addition to mutation patterns in the viral polymerase gene, host factors are assumed to contribute to failure of treatment in chronic HBV infections. The aim of this study was to analyze the correlation between efficacy of antiviral therapy and the prevalence of HBV pretreatment drug-resistant variants. We also ...

  18. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  19. Synthesis, antiviral activity and structure-activity relationship of 1-(1-aryl-4,5-dihydro-1H-imidazoline)-3-chlorosulfonylureas and products of their cyclization.

    Science.gov (United States)

    Rządkowska, Marzena; Szacoń, Elżbieta; Kaczor, Agnieszka A; Rajtar, Barbara; Świątek, Łukasz; Polz-Dacewicz, Małgorzata; Matosiuk, Dariusz

    2016-10-01

    Novel 1-(1-aryl-4,5dihydro-1H-imidazoline)-3-chlorosulfonylourea derivatives 3a-3f were synthesized in the reaction of 1-aryl-4,5-dihydro-1H-imidazol-2-amines with chlorosulfonyl isocyanate. The second series of compounds 4a-4f was prepared from the respective 1-(1-aryl-4,5-dihydro-1H-imidazoline)-3-chlorsulfonylureas 3a-3f and 1,1'-carbonyldiimidazole (CDI). The selected compounds were tested for their activity against Herpes simplex virus and coxsackievirus B3 (CVB3). It was determined that three derivatives, i.e 3d, 4a and 4d are active against Herpes simplex virus (HSV-1). Compounds 3d and 4c are active against CVB3. Their favorable activity can be primarily attributed to their low lipophilicity values. Moreover, the lack of substituent in the phenyl moiety or 4-methoxy substitution can be considered as the most beneficial for the antiviral activity. PMID:26212601

  20. Antiviral activity and possible mechanism of action of constituents identified in Paeonia lactiflora root toward human rhinoviruses.

    Directory of Open Access Journals (Sweden)

    Luong Thi My Ngan

    Full Text Available Human rhinoviruses (HRVs are responsible for more than half of all cases of the common cold and cost billions of USD annually in medical visits and missed school and work. An assessment was made of the antiviral activities and mechanisms of action of paeonol (PA and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG from Paeonia lactiflora root toward HRV-2 and HRV-4 in MRC5 cells using a tetrazolium method and real-time quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results were compared with those of a reference control ribavirin. Based on 50% inhibitory concentration values, PGG was 13.4 and 18.0 times more active toward HRV-2 (17.89 μM and HRV-4 (17.33 μM in MRC5 cells, respectively, than ribavirin. The constituents had relatively high selective index values (3.3->8.5. The 100 μg/mL PA and 20 μg/mL PGG did not interact with the HRV-4 particles. These constituents inhibited HRV-4 infection only when they were added during the virus inoculation (0 h, the adsorption period of HRVs, but not after 1 h or later. Moreover, the RNA replication levels of HRVs were remarkably reduced in the MRC5 cultures treated with these constituents. These findings suggest that PGG and PA may block or reduce the entry of the viruses into the cells to protect the cells from the virus destruction and abate virus replication, which may play an important role in interfering with expressions of rhinovirus receptors (intercellular adhesion molecule-1 and low-density lipoprotein receptor, inflammatory cytokines (interleukin (IL-6, IL-8, tumor necrosis factor, interferon beta, and IL-1β, and Toll-like receptor, which resulted in diminishing symptoms induced by HRV. Global efforts to reduce the level of synthetic drugs justify further studies on P. lactiflora root-derived materials as potential anti-HRV products or lead molecules for the prevention or treatment of HRV.

  1. Antiviral activity of hemocyanins

    Directory of Open Access Journals (Sweden)

    P Dolashka,

    2013-11-01

    Full Text Available Hemocyanins are giant biological macromolecules acting as oxygen-transporting glycoproteins. Most of them are respiratory proteins of arthropods and mollusks, but besides they also exhibit protecting effects against bacterial, fungal and viral invasions. As discovered by 2-DGE proteomics analyses, several proteins including hemocyanins of hemocytes from virus-infected arthropods increased upon infection, confirming hemocyanin’s role as part of the organism’s defence system. Based on the structural analyses of molluscan Hcs it is suggested that the carbohydrate chains of the glycoproteins seem to interact with surface-exposed amino acid or carbohydrate residues of the viruses through van der Waals interactions.

  2. Clinical relevance of HCV antiviral drug resistance.

    Science.gov (United States)

    Welsch, C; Zeuzem, S

    2012-10-01

    The approval of direct-acting antiviral agents (DAAs) against the hepatitis C virus (HCV) NS3 protease revolutionized antiviral therapy in chronic hepatitis C. They mark the beginning of an era with drugs designed to inhibit specific viral proteins involved in the virus life cycle rather than the nonspecific antiviral activity of interferon. Upcoming generations of antivirals are expected that lead to viral eradication in most patients who undergo treatment with hope held for years that HCV can be cured without interferon. Antiviral drug resistance plays a key role in DAA-treatment failure. Knowledge on molecular escape mechanisms of resistant variants, their time to wild-type reversal and potential persistence is of upmost importance to design treatment strategies for patients with previous DAA-treatment failure. PMID:23006585

  3. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection. PMID:24044366

  4. Atividade antiviral do extrato de própolis contra o calicivírus felino, adenovírus canino 2 e vírus da diarréia viral bovina Antiviral activity of propolis extracts against feline calicivirus, canine adenovirus 2, and bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    Ana Paula Cueto

    2011-10-01

    Full Text Available Dentre as propriedades biológicas da própolis, a atividade antimicrobiana tem merecido destacada atenção. Neste artigo, descreve-se a atividade antiviral de dois extratos etanólicos de própolis (EP1 e EP2 frente aos vírus: calicivírus felino (FCV, adenovírus canino tipo 2 (CAV-2 e vírus da diarréia viral bovina (BVDV. Um dos extratos (EP1 foi obtido por extração etanólica de própolis obtida da região central do Estado do Rio Grande do Sul e o segundo (EP2, obtido comercialmente de uma empresa de Minas Gerais. A análise dos extratos de própolis através da cromatografia líquida de alta eficiência (CLAE identificou a presença de flavonóides como: rutina, quercetina e ácido gálico. A atividade antiviral bem como a citotoxicidade dos extratos aos cultivos celulares foram avaliadas através do MTT [3- (4,5 dimetiltiazol-2yl-2-5-difenil-2H tetrazolato de bromo]. Ambos os extratos evidenciaram atividade antiviral frente ao BVDV e CAV-2 quando acrescidos ao cultivo celular anteriormente à inoculação viral. Os extratos foram menos efetivos contra o FCV em comparação aos resultados obtidos com os outros vírus, e a atividade antiviral neste caso foi observada apenas quando a própolis estava presente após a inoculação viral. O extrato obtido no laboratório (EP1 apresentou valores mais altos de índice de seletividade (IS=CC50/ CE50, quando comparado à outra amostra (EP2. Em resumo, a própolis apresentou atividade antiviral frente a três diferentes vírus, o que a torna alvo para o desenvolvimento de novos compostos naturais com atividade antiviral.Propolis is a resinous substance produced by bees for which several biological activities have been attributed. In this article, the antiviral activity of two propolis extracts was tested against bovine viral diarrhea virus (BVDV, canine adenovirus type 2 (CAV-2, and feline calicivirus (FCV. One of the extracts was obtained by ethanolic extraction of propolis from the Santa

  5. Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures.

    Science.gov (United States)

    Shibnev, V A; Mishin, D V; Garaev, T M; Finogenova, N P; Botikov, A G; Deryabin, P G

    2011-09-01

    Fractions of Inonotus obliquus fungus water extract exhibited a virucidal effect towards hepatitis C virus: it 100-fold reduced its infective properties within 10 min. The antiviral effects of fungus extracts manifested after preventive (24 h before infection) and therapeutic use (during infection of porcine embryo kidney cells). Moreover, the data indicate that the birch fungus extracts inhibit production of infective virus by porcine embryo kidney cells. PMID:22462058

  6. In Vitro Antiviral Activity of Circular Triple Helix Forming Oligonucleotide RNA towards Feline Infectious Peritonitis Virus Replication

    OpenAIRE

    Oi Kuan Choong; Parvaneh Mehrbod; Bimo Ario Tejo; Abdul Rahman Omar

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infect...

  7. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    Science.gov (United States)

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  8. Antiviral Activity of a Nanoemulsion of Polyprenols from Ginkgo Leaves against Influenza A H3N2 and Hepatitis B Virus in Vitro

    Directory of Open Access Journals (Sweden)

    Cheng-Zhang Wang

    2015-03-01

    Full Text Available In order to improve the bioavailability levels of polyprenols (derived from ginkgo leaves (GBP in the human body, a GBP nanoemulsion was prepared, and its antiviral activity was evaluated against influenza A H3N2 and hepatitis B virus in vitro. Methods: A GBP nanoemulsion was prepared by inversed-phase emulsification (IPE. Next, we investigated the antiviral activity of the GBP nanoemulsion on influenza A H3N2 and hepatitis B virus in vitro by the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenlytetrezolium bromide method. ELISA and the fluorescent quantitative PCR method were used to measure the content of HBsAg, HBeAg and DNA virus in human samples. Results: The GBP nanoemulsion exhibited uniformity at an average particle size 97 nm with a hydrophilic-lipophilic balance (HLB of 9.5. GBP is non-toxic to normal cells, hepatitis B virus DNA, hepatitis B virus antigen and HepG2215. Furthermore, GBP could reach a 70% virucidal activity and a 74.9% protection rate (*** p < 0.001 on MDCK cells infected with H3N2 virus at a high concentration of 100 μg/mL. GBP had a good inhibition rate on HBsAg (52.11%, ** p < 0.01 at 50 μg/mL and Day 9 of incubation, and a 67.32% inhibition effect on HBeAg at a high concentration of 100 μg/mL and Day 9. GBP had good inhibition on HBV DNA with CT 18.6 and lower copies (** p < 0.01 at a middle concentration of 12.5 to 25 μg/mL. Conclusions: The GBP nanoemulsion was very stable and non-toxic and had very strong antiviral activity against influenza A H3N2 and hepatitis B virus in vitro. The inhibitory effects and reactive mechanisms were similar to the drug, 3TC; by lengthening the incubation time and increasing the drug concentration, GBP has promising potential as an antiviral drug.

  9. Structure-Based Design and Engineering of a Nontoxic Recombinant Pokeweed Antiviral Protein with Potent Anti-Human Immunodeficiency Virus Activity

    OpenAIRE

    Uckun, Fatih M.; Rajamohan, Francis; Pendergrass, Sharon; Ozer, Zahide; Waurzyniak, Barbara; Mao, Chen

    2003-01-01

    A molecular model of pokeweed antiviral protein (PAP)-RNA interactions was used to rationally engineer FLP-102(151AA152) and FLP-105(191AA192) as nontoxic PAPs with potent anti-human immunodeficiency virus (anti-HIV) activities. FLP-102 and FLP-105 have been produced in Escherichia coli and tested both in vitro and in vivo. These proteins depurinate HIV type 1 (HIV-1) RNA much better than rRNA and are more potent anti-HIV agents than native PAP or recombinant wild-type PAP. They are substanti...

  10. Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice.

    Science.gov (United States)

    Park, Hye-Jin; Kurokawa, Masahiko; Shiraki, Kimiyasu; Nakamura, Norio; Choi, Jae-Sue; Hattori, Masao

    2005-12-01

    The antiviral activities of extracts from 5 species of marine algae collected at Haeundae (Pusan, Korea), were examined using plaque reduction assays. Although the activity of a methanol (MeOH) extract of Sargassum ringoldianum (Sargassaceae) was the most potent against several types of viruses, it was also cytotoxic. A MeOH extract of Symphyocladia latiuscula (Rhodomelaceae) and its fractions exhibited antiviral activities against acyclovir (ACV) and phosphonoacetic acid (PAA)-resistant (AP(r)) herpes simplex type 1 (HSV-1), thymidine kinase (TK(-)) deficient HSV-1 and wild type HSV-1 in vitro without cytotoxicity. The major component, 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) of a CH(2)Cl(2)-soluble fraction was active against wild type HSV-1, as well as AP(r) HSV-1 and TK(-) HSV-1 (IC(50) values of 5.48, 4.81 and 23.3 microg/ml, respectively). The therapeutic effectiveness of the MeOH extract and TDB from S. latiuscula was further examined in BALB/c mice that were cutaneously infected with HSV-1 strain 7401H. Three daily oral administrations of the MeOH extract and TDB significantly delayed the appearance of score 2 skin lesions (local vesicles) and limited the development of further score 6 (mild zosteriform) lesions in infected mice without toxicity compared with controls. In addition, TDB suppressed virus yields in the brain and skin. Therefore TDB should be a promising anti HSV agent. PMID:16327161

  11. Interferon-λ1 Linked to a Stabilized Dimer of Fab Potently Enhances both Antitumor and Antiviral Activities in Targeted Cells

    Science.gov (United States)

    Liu, Donglin; Chang, Chien-Hsing; Rossi, Edmund A.; Cardillo, Thomas M.; Goldenberg, David M.

    2013-01-01

    The type III interferons (IFNs), comprising IFN-λ1, IFN-λ2, and IFN-λ3, behave similarly to IFN-α in eliciting antiviral, antitumor, and immune-modulating activities. Due to their more restricted cellular targets, IFN-λs are attractive as potential alternatives to existing therapeutic regimens based on IFN-αs. We have applied the DOCK-AND-LOCK™ method to improve the anti-proliferative potency of IFN-λ1 up to 1,000-fold in targeted cancer cell lines by tethering stabilized Fab dimers, derived from hRS7 (humanized anti-Trop-2), hMN-15 (humanized anti-CEACAM6), hL243 (humanized anti-HLA-DR), and c225 (chimeric anti-EGFR), to IFN-λ1 site-specifically, resulting in novel immunocytokines designated (E1)-λ1, (15)-λ1, (C2)-λ1, and (c225)-λ1, respectively. Targeted delivery of IFN-λ1 via (15)-λ1 or (c225)-λ1 to respective antigen-expressing cells also significantly increased antiviral activity when compared with non-targeting (C2)-λ1, as demonstrated in human lung adenocarcinoma cell line A549 by (15)-λ1 against encephalomyocarditis virus (EC50 = 22.2 pM versus 223 pM), and in human hepatocarcinoma cell line Huh-7 by (c225)-λ1 against hepatitis C virus (EC50 = 0.56 pM versus 91.2 pM). These promising results, which are attributed to better localization and stronger binding of IFN-λ1 to antibody-targeted cells, together with the favorable pharmacokinetic profile of (E1)-λ1 in mice (T1/2 = 8.6 h), support further investigation of selective prototypes as potential antiviral and antitumor therapeutic agents. PMID:23696859

  12. Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function

    Science.gov (United States)

    Becerra, Aniuska; Warke, Rajas V.; Xhaja, Kris; Evans, Barbara; Evans, James; Martin, Katherine; de Bosch, Norma; Rothman, Alan L.; Bosch, Irene

    2009-01-01

    The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-γ) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-γ against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo. PMID:19264674

  13. Antiviral activity of Basidiomycete mycelia against influenza type A(serotype H1N1) and herpes simplex virus type 2 in cell culture

    Institute of Scientific and Technical Information of China (English)

    Tetiana; Krupodorova; Svetlana; Rybalko; Victor; Barshteyn

    2014-01-01

    In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.

  14. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Directory of Open Access Journals (Sweden)

    Andreas Jurgeit

    Full Text Available Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  15. Ester prodrugs of cyclic 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: Synthesis and antiviral activity

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Holý, Antonín; Pohl, Radek; Masojídková, Milena; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R.

    2007-01-01

    Roč. 50, č. 23 (2007), s. 5765-5772. ISSN 0022-2623 R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Grant ostatní: NIH(US) 1UC1AI062540-01; René Descartes Prize-2001(XE) HPAW-2002-100096 Institutional research plan: CEZ:AV0Z40550506 Keywords : acyclic nucleoside phosphonates * antivirals * HPMP-5-azacytosine * alkoxyalkyl ester * hexadecyloxyethyl ester Subject RIV: CC - Organic Chemistry Impact factor: 4.895, year: 2007

  16. Chebulagic Acid, a Hydrolyzable Tannin, Exhibited Antiviral Activity in Vitro and in Vivo against Human Enterovirus 71

    OpenAIRE

    Lianfeng Zhang; Chuan Qin; Yanfeng Xu; Xiaoying Li; Li Zhang; Jiangning Liu; Jinghui Xiu; Yajun Yang

    2013-01-01

    Human enterovirus 71 is one of the major causative agents of hand, foot and mouth disease in children under six years of age. Presently, no vaccines or antiviral drugs have been clinically available to employ against EV71. In this study, we demonstrate that treatment with chebulagic acid reduced the viral cytopathic effect on rhabdomyosarcoma cells with an IC50 of 12.5 μg/mL. The utilization of the chebulagic acid treatment on mice challenged with a lethal dose of enterovirus 71 was able to e...

  17. Gene analysis of an antiviral protein SP-2 from Chinese wild silkworm, Bombyx mandarina Moore and its bio-activity assay

    Institute of Scientific and Technical Information of China (English)

    YAO HuiPeng; HE FangQing; GUO AiQin; CAO CuiPing; LU XingMeng; WU XiaoFeng

    2008-01-01

    The cDNA encoding an antiviral protein SP-2 against BmNPV was cloned from the midgut of Chinese wild silkworm, Bombyx mandarina Moore (GenBank access AY945210) based on the available informa-tion of the domesticated silkworm. Its cDNA was 855 bp encoding 284 amino acids with predicted mo-lecular weight of 29.6 kDa. Its full length in genomics was 1376 bp, including 5 exons and 4 introns. The expression analysis indicated that it was only expressed in midgut, and its expression level was higher during feeding stage of larval instars while very lower during the moltism and mature stages. The de-duced amino acid sequence of this protein showed eight-amino-acid variation compared with the counterpart of domesticated silkworm. Its antiviral activity was assayed through in vitro test. The re-sults indicated that it showed strong bioactivity against BmNPV, and its activity was 1.6 fold higher that the counterpart of domesticated silkworm.

  18. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells.

    Directory of Open Access Journals (Sweden)

    Katherine eGarcía

    2015-04-01

    Full Text Available Infectious salmon anemia virus (ISAV has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3 with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP, fusion (F, hemagglutinin (HE and matrix (M proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

  19. In Vitro Antiviral Activity of Circular Triple Helix Forming Oligonucleotide RNA towards Feline Infectious Peritonitis Virus Replication

    Directory of Open Access Journals (Sweden)

    Oi Kuan Choong

    2014-01-01

    Full Text Available Feline Infectious Peritonitis (FIP is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV, a virulent mutant strain of Feline Enteric Coronavirus (FECV. Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO RNAs (TFO1 to TFO5, which target the different regions of virulent feline coronavirus (FCoV strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 1014 in the virus-inoculated cells to 109 in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.

  20. In vitro antiviral activity of circular triple helix forming oligonucleotide RNA towards Feline Infectious Peritonitis virus replication.

    Science.gov (United States)

    Choong, Oi Kuan; Mehrbod, Parvaneh; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 10(14) in the virus-inoculated cells to 10(9) in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection. PMID:24707494

  1. Antiviral Drug Resistance of Human Cytomegalovirus

    OpenAIRE

    Lurain, Nell S.; Chou, Sunwen

    2010-01-01

    Summary: The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Co...

  2. Evaluation of Antiviral Compounds Against Avian Influenza

    OpenAIRE

    Call, Evan W.

    1991-01-01

    Tests in vitro for antiviral activity against avian influenza viruses, A/Turkey/Sanpete/85 (H6N8) and A/Turkey/Sanpete/86 (H10N9), isolated in Sanpete County, Utah, utilized known antiviral agents, amantadine•HCl (adamantanamine hydrochloride) and ribavirin (1-β-D ribofuranosyl-1,2,4-triazole-3-carboxamide). The testing involved evaluation of seven drug concentrations. Maximum tolerated dose, minimum inhibitory concentration and therapeutic indexes were determined for each drug used. Both dru...

  3. An inducible heat shock protein 70 small molecule inhibitor demonstrates anti-dengue virus activity, validating Hsp70 as a host antiviral target.

    Science.gov (United States)

    Howe, Matthew K; Speer, Brittany L; Hughes, Philip F; Loiselle, David R; Vasudevan, Subhash; Haystead, Timothy A J

    2016-06-01

    An estimated three billion people are at risk of Dengue virus (DENV) infection worldwide and there are currently no approved therapeutic interventions for DENV infection. Due to the relatively small size of the DENV genome, DENV is reliant on host factors throughout the viral life cycle. The inducible form of Heat Shock Protein 70 (Hsp70i) has been implicated as a host factor in DENV pathogenesis, however the complete role remains to be elucidated. Here we further illustrate the importance of Hsp70i in dengue virus pathogenesis and describe the antiviral activity of the allosteric small molecule inhibitor that is selective for Hsp70i, called HS-72. In monocytes, Hsp70i is expressed at low levels preceding DENV infection, but Hsp70i expression is induced upon DENV infection. Targeting Hsp70i with HS-72, results in a dose dependent reduction in DENV infected monocytes, while cell viability was maintained. HS-72 works to reduce DENV infection by inhibiting the entry stage of the viral life cycle, through disrupting the association of Hsp70i with the DENV receptor complex. This work highlights Hsp70i as an antiviral target and HS-72 as a potential anti-DENV therapeutic agent. PMID:27058774

  4. The innate antiviral immune system of the cat: molecular tools for the measurement of its state of activation.

    Science.gov (United States)

    Robert-Tissot, Céline; Rüegger, Vera L; Cattori, Valentino; Meli, Marina L; Riond, Barbara; Gomes-Keller, Maria Alice; Vögtlin, Andrea; Wittig, Burghardt; Juhls, Christiane; Hofmann-Lehmann, Regina; Lutz, Hans

    2011-10-15

    The innate immune system plays a central role in host defence against viruses. While many studies portray mechanisms in early antiviral immune responses of humans and mice, much remains to be discovered about these mechanisms in the cat. With the objective of shedding light on early host-virus interactions in felids, we have developed 12 real-time TaqMan(®) qPCR systems for feline genes relevant to innate responses to viral infection, including those encoding for various IFNα and IFNω subtypes, IFNβ, intracellular antiviral factor Mx, NK cell stimulator IL-15 and effectors perforin and granzyme B, as well as Toll-like receptors (TLRs) 3 and 8. Using these newly developed assays and others previously described, we measured the relative expression of selected markers at early time points after viral infection in vitro and in vivo. Feline embryonic fibroblasts (FEA) inoculated with feline leukemia virus (FeLV) indicated peak levels of IFNα, IFNβ and Mx expression already 6h after infection. In contrast, Crandell-Rees feline kidney (CrFK) cells inoculated with feline herpes virus (FHV) responded to infection with high levels of IFNα and IFNβ only after 24h, and no induction of Mx could be detected. In feline PBMCs challenged in vitro with feline immunodeficiency virus (FIV), maximal expression levels of IFNα, β and ω subtype genes as well as IL-15 and TLRs 3, 7 and 8 were measured between 12 and 24h after infection, whereas expression levels of proinflammatory cytokine gene IL-6 were consistently downregulated until 48h post inoculation. A marginal upregulation of granzyme B was also observed within 3h after infection. In an in vivo experiment, cats challenged with FIV exhibited a 2.4-fold increase in IFNα expression in blood 1 week post infection. We furthermore demonstrate the possibility of stimulating feline immune cells in vitro with various immune response modifiers (IRMs) already known for their immunostimulatory properties in mice and humans, namely

  5. Chebulagic Acid, a Hydrolyzable Tannin, Exhibited Antiviral Activity in Vitro and in Vivo against Human Enterovirus 71

    Directory of Open Access Journals (Sweden)

    Lianfeng Zhang

    2013-05-01

    Full Text Available Human enterovirus 71 is one of the major causative agents of hand, foot and mouth disease in children under six years of age. Presently, no vaccines or antiviral drugs have been clinically available to employ against EV71. In this study, we demonstrate that treatment with chebulagic acid reduced the viral cytopathic effect on rhabdomyosarcoma cells with an IC50 of 12.5 μg/mL. The utilization of the chebulagic acid treatment on mice challenged with a lethal dose of enterovirus 71 was able to efficiently reduce mortality and relieve clinical symptoms through the inhibition of viral replication. Chebulagic acid may represent a potential therapeutic agent to control infections to enterovirus 71.

  6. Eupafolin and Ethyl Acetate Fraction of Kalanchoe gracilis Stem Extract Show Potent Antiviral Activities against Enterovirus 71 and Coxsackievirus A16

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wang

    2013-01-01

    Full Text Available Enterovirus 71 (EV71 and coxsackievirus A16 (CoxA16 are main pathogens of hand-foot-and-mouth disease, occasionally causing aseptic meningitis and encephalitis in tropical and subtropical regions. Kalanchoe gracilis, Da-Huan-Hun, is a Chinese folk medicine for treating pain and inflammation, exhibiting antioxidant and anti-inflammatory activities. Our prior report (2012 cited K. gracilis leaf extract as moderately active against EV71 and CoxA16. This study further rates antienteroviral potential of K. gracilis stem (KGS extract to identify potent antiviral fractions and components. The extract moderately inhibits viral cytopathicity and virus yield, as well as in vitro replication of EV71 (IC50 = 75.18 μg/mL and CoxA16 (IC50 = 81.41 μg/mL. Ethyl acetate (EA fraction of KGS extract showed greater antiviral activity than that of n-butanol or aqueous fraction: IC50 values of 4.21 μg/mL against EV71 and 9.08 μg/mL against CoxA16. HPLC analysis, UV-Vis absorption spectroscopy, and plaque reduction assay indicate that eupafolin is a vital component of EA fraction showing potent activity against EV71 (IC50 = 1.39 μM and CoxA16 (IC50 = 5.24 μM. Eupafolin specifically lessened virus-induced upregulation of IL-6 and RANTES by inhibiting virus-induced ERK1/2, AP-1, and STAT3 signals. Anti-enteroviral potency of KGS EA fraction and eupafolin shows the clinical potential against EV71 and CoxA16 infection.

  7. Antiviral Inhibition of Enveloped Virus Release by Tetherin/BST-2: Action and Counteraction

    Directory of Open Access Journals (Sweden)

    Stuart J. D. Neil

    2011-05-01

    Full Text Available Tetherin (BST2/CD317 has been recently recognized as a potent interferon-induced antiviral molecule that inhibits the release of diverse mammalian enveloped virus particles from infected cells. By targeting an immutable structure common to all these viruses, the virion membrane, evasion of this antiviral mechanism has necessitated the development of specific countermeasures that directly inhibit tetherin activity. Here we review our current understanding of the molecular basis of tetherin’s mode of action, the viral countermeasures that antagonize it, and how virus/tetherin interactions may affect viral transmission and pathogenicity.

  8. Do Real Estate Loans Affect Economic Activity?

    OpenAIRE

    Z. Onder; S.Ozyildirim Gunalay; S. Ozyildirim; Y. Gunalay

    2007-01-01

    Real estate, especially housing, has an important share in the nationís wealth. For example, real estate constitutes 48.8% of total wealth in the world in 1991. Moreover, housing construction and its financing are two important factors that affect economic development in developed and developing countries. Although the mortgage system has been developing in the 1980s and 1990s in the developing economies, the impact of mortgage credits on the economy has been ignored in the literature. The on...

  9. Evaluation of antibacterial and antiviral activity of N-arylamides of 9-methyl and 9-methoxyphenazine-1-carboxylic acids – inhibitors of the phage T7 model transctiption

    Directory of Open Access Journals (Sweden)

    Hovorun D. M.

    2012-12-01

    Full Text Available Aim. Search for compounds with antibacterial and antiviral properties among N-arylamides of 9-substituted phenazine-1-carboxylic acids (PCA, inhibitors of the RNA synthesis. Methods. Influence of N-aryl-amides on the RNA synthesis was tested in vitro in the model system of the DNA-dependent RNA polymerase of phage T7 (T7 RNAP. Antimicrobial activities of the N-arylamides against bacteria Erysipelothrix rhusiopathiae VR-2 var. IVM, Klebsiella spp. and Escherichia coli ATCC25922 were investigated by the method of two-fold dilution in a liquid medium. Antiviral effects against Bovine Viral Diarrhea Virus (BVDV and cytotoxicity of the N-arylamides were evaluated using Madin-Darby bovine kidney (MDBK cells. Results. Twenty N-arylamides appeared to be efficacious inhibitors of the RNA synthesis at concent- rations of 0.48–61 µМ. The compound 16 proved to be the most effective inhibitor of T7 RNAP with the IC50 value being 0.48 µМ. Fourteen N-arylamides demonstrated antibacterial properties against gram positive and gram negative bacteria at the 0.1–10 µg/ml concentrations. A number of the N-arylamides revealed a multiplicity of their antimicrobial actions: 7 compounds against two bacteria and two compounds, 2 and 3, against three bacteria investigated. N-arylamides 16 and 26 showed high inhibitory activity as to BVDV with the IC50 values 0.43 and 0.88 µg/ml and SI values 160 and 10 correspondingly. Conclusions. The obtained data evidence that the most likely targets of the N-arylamides 9-substituted PCA in bacteria and viruses are their RNA synthesizing complexes.

  10. Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus.

    Science.gov (United States)

    Cui, Rui; Wang, Yizhuo; Wang, Liu; Li, Guiming; Lan, Ke; Altmeyer, Ralf; Zou, Gang

    2016-08-01

    Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in infants and young children worldwide, yet no vaccine or effective antiviral treatment is available. To search for new anti-RSV agents, we developed a cell-based assay that measures inhibition of RSV-induced cytopathic effect (CPE) and identified cyclopiazonic acid (CPA), an intracellular calcium ATPase inhibitor as a RSV inhibitor (EC50 values 4.13 μM) by screening of natural product library. CPA inhibited the replication of RSV strains belonging to both A and B subgroups and human parainfluenza virus type 3, but not Enterovirus 71. Mechanism of action study by time-of-addition assay and minigenome assay revealed that CPA acts at the step of virus genome replication and/or transcription. Moreover, two other calcium ATPase inhibitors (Thapsigargin and BHQ) and calcium ionophores (A23187 and ionomycin), but not calcium channel blockers (nifedipine, nimodipine, and tetrandrine), also had similar effect. These results indicate that an increase in intracellular calcium concentration is detrimental to RSV replication. Thus, our findings provide a new strategy for anti-RSV therapy via increasing intracellular calcium concentration. PMID:27210812

  11. Extent of Intramolecular p-Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and Several 2-Aminopurine Derivatives of the Antivirally Active Nucleotide Analog 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA)

    Czech Academy of Sciences Publication Activity Database

    Gómez-Coca, R. B.; Blindauer, C. A.; Sigel, A.; Operschall, B. P.; Holý, Antonín; Sigel, H.

    2012-01-01

    Roč. 9, č. 9 (2012), s. 2008-2034. ISSN 1612-1872 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : copper complexes * nucleotides * acyclic nucleoside phosphonates * ANPs * antiviral activity Subject RIV: CE - Biochemistry Impact factor: 1.808, year: 2012

  12. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  13. An innate antiviral pathway acting before interferons at epithelial surfaces

    DEFF Research Database (Denmark)

    Iversen, Marie B; Reinert, Line S; Thomsen, Martin K;

    2015-01-01

    we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a...

  14. Ionizing radiation affects active ileal electrolyte transport

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation has pronounced effects on gastrointestinal physiology eliciting the fluid and electrolyte loss of the gastrointestinal syndrome. This study reports on the effect of whole-body cobalt-60 exposure on active electrolyte transport by rabbit ileum in an effort to quantify these changes and to define the mechanism by which electrolyte transport is altered. The short-circuit current (lsc), a measure of active electrolyte transport, was determined for ileal segments isolated from rabbits radiated with 5 to 100 Gy and compared to those from sham irradiated control 1 to 96 hours after exposure. One hour after exposure there was no apparent effect of radiation. However by 24 hours, there was a significant increase in lsc of segments from animals exposed to doses of 7.5 Gy and greater. The lsc remained elevated during the 96 hours for 10 and 12 Gy whereas at 7.5 Gy it returned to control values by 72 hours. The response of the tissue to a secretagogue, theophylline, was reduced 72 hours post-irradiation. By 96 hours after exposure, the response to an actively transported amino acid, alanine, was also reduced. These results indicate that radiation-induced fluid and electrolyte loss is not simply a consequence of denudiation of the intestine but due in part to alterations in cellular transport processes

  15. PCBP2 enhances the antiviral activity of IFN-α against HCV by stabilizing the mRNA of STAT1 and STAT2.

    Directory of Open Access Journals (Sweden)

    Zhongshuai Xin

    Full Text Available Interferon-α (IFN-α is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b. However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3'Untranslated Region (UTR of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3'UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.

  16. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  17. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    Science.gov (United States)

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  18. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform.

    Science.gov (United States)

    Nguyen, Nhung T H; Now, Hesung; Kim, Woo-Jong; Kim, Nari; Yoo, Joo-Yeon

    2016-01-01

    RIG-I is a key cytosolic RNA sensor that mediates innate immune defense against RNA virus. Aberrant RIG-I activity leads to severe pathological states such as autosomal dominant multi-system disorder, inflammatory myophathies and dermatomyositis. Therefore, identification of regulators that ensure efficient defense without harmful immune-pathology is particularly critical to deal with RIG-I-associated diseases. Here, we presented the inflammatory inducible FAT10 as a novel negative regulator of RIG-I-mediated inflammatory response. In various cell lines, FAT10 protein is undetectable unless it is induced by pro-inflammatory cytokines. FAT10 non-covalently associated with the 2CARD domain of RIG-I, and inhibited viral RNA-induced IRF3 and NF-kB activation through modulating the RIG-I protein solubility. We further demonstrated that FAT10 was recruited to RIG-I-TRIM25 to form an inhibitory complex where FAT10 was stabilized by E3 ligase TRIM25. As the result, FAT10 inhibited the antiviral stress granules formation contains RIG-I and sequestered the active RIG-I away from the mitochondria. Our study presented a novel mechanism to dampen RIG-I activity. Highly accumulated FAT10 is observed in various cancers with pro-inflammatory environment, therefore, our finding which uncovered the suppressive effect of the accumulated FAT10 during virus-mediated inflammatory response may also provide molecular clue to understand the carcinogenesis related with infection and inflammation. PMID:26996158

  19. Design, RNA cleavage and antiviral activity of new artificial ribonucleases derived from mono-, di- and tripeptides connected by linkers of different hydrophobicity.

    Science.gov (United States)

    Tamkovich, Nikolay; Koroleva, Lyudmila; Kovpak, Mikhail; Goncharova, Elena; Silnikov, Vladimir; Vlassov, Valentin; Zenkova, Marina

    2016-03-15

    A novel series of metal-free artificial ribonucleases (aRNases) was designed, synthesized and assessed in terms of ribonuclease activity and ability to inactivate influenza virus WSN/A33/H1N1 in vitro. The compounds were built of two short peptide fragments, which include Lys, Ser, Arg, Glu and imidazole residues in various combinations, connected by linkers of different hydrophobicity (1,12-diaminododecane or 4,9-dioxa-1,12-diaminododecane). These compounds efficiently cleaved different RNA substrates under physiological conditions at rates three to five times higher than that of artificial ribonucleases described earlier and displayed RNase A-like cleavage specificity. aRNases with the hydrophobic 1,12-diaminododecane linker displayed ribonuclease activity 3-40 times higher than aRNases with the 4,9-dioxa-1,12-diaminododecane linker. The assumed mechanism of RNA cleavage was typical for natural ribonucleases, that is, general acid-base catalysis via the formation of acid/base pairs by functional groups of amino acids present in the aRNases; the pH profile of cleavage confirmed this mechanism. The most active aRNases under study exhibited high antiviral activity and entirely inactivated influenza virus A/WSN/33/(H1N1) after a short incubation period of viral suspension under physiological conditions. PMID:26899594

  20. Atividade antiviral de extratos de plantas medicinais disponíveis comercialmente frente aos herpesvírus suíno e bovino Antiviral activity of commercially available medicinal plants on suid and bovine herpesviruses

    OpenAIRE

    V.M. Kaziyama; M.J.B. Fernandes; I.C. Simoni

    2012-01-01

    O presente trabalho teve como objetivo pesquisar a atividade antiviral in vitro de plantas medicinais disponíveis comercialmente sobre herpesvírus suíno (SuHV-1) e bovino (BoHV-1). As espécies adquiridas foram Mikania glomerata, Cymbopogon citratus, Equisetum arvense, Peumus boldus, Solanum paniculatum, Malva sylvestris, Piper umbellatun e Solidago microglossa. A citotoxicidade dos extratos foi avaliada na linhagem celular MDBK pelas alterações morfológicas das células e obtenção da concentra...

  1. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin...

  2. A comparison of the antiproliferative and antiviral activities of α-, β- and γ-interferons: description of a unified assay for comparing both effects simultaneously

    International Nuclear Information System (INIS)

    An assay system is described which allows simultaneous measurement of antiviral (AV) and antiproliferative (AP) activities of various interferons (IFNs) with the same indicator cells and tests one biological function, i.e. the reduction of DNA synthesis. Human IFN-α, -β, and -γ preparations were investigated for their respective AV and AP activities. In repeated independent experiments the AP:AV ratio was found to be constant for each IFN preparation. However, a striking difference in the AP:AV ratios was found between the preparations, being highest in IFN-γ and lowest in IFN-α. The validity of this assay was substantiated by the observation that the AP activity of the IFNs is not influenced by virus once the cells are protected by sufficient amounts of IFN and that the score of the microscopically assessed cytopathic effect (CPE) strongly correlates with the reduction of [3H]TdR uptake in the cultures. The AP:AV ratio of a Corynebacterium parvum induced IFN resembled that of the IFN-α-reference, suggesting that contrary to previous reports, the C. parvum induced IFN is of α type. It is suggested that the assay system presented here provides a simple means not only of comparing AP and AV ratios of various IFNs but also of characterizing IFNs of unknown type. (Auth.)

  3. The N-Terminal T-T Motif of a Third-Generation HIV-1 Fusion Inhibitor Is Not Required for Binding Affinity and Antiviral Activity.

    Science.gov (United States)

    Chong, Huihui; Qiu, Zonglin; Su, Yang; He, Yuxian

    2015-08-27

    The highlighted next-generation HIV-1 fusion inhibitor peptide 1 is capped by two threonines. Here, we generated peptide 2 by deleting the T-T motif and compared their structural and antiviral properties. Significantly, two peptides showed similar helical and oligomeric states in solution, comparable binding affinities to the target, and no significant difference to inhibit HIV-1 fusion and infection. Also, the T-T motif was not associated with peptide 1 resistant mutations and its deletion did not affect peptide 1 against enfuvirtide-resistant HIV-1 mutants. The redundancy of the T-T motif was further verified by the model peptide C34 and short peptide inhibitors that mainly target the gp41 pocket, suggesting that the N-terminal T-T motif of peptide 1 could be removed or modified toward the development of new anti-HIV-1 drugs. Consistently, our data have verified that the M-T hook structure rather than the T-T motif is an efficient strategy for short peptide fusion inhibitors. PMID:26256053

  4. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  5. Antiviral effects of Glycyrrhiza species.

    Science.gov (United States)

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs. PMID:17886224

  6. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay.

    Science.gov (United States)

    Chu, Justin Jang Hann; Lee, Regina Ching Hua; Ang, Melgious Jin Yan; Wang, Wei-Ling; Lim, Huichang Annie; Wee, John Liang Kuan; Joy, Joma; Hill, Jeffrey; Brian Chia, C S

    2015-06-01

    The dengue virus is a mosquito-borne pathogen responsible for an estimated 50-100 million human dengue infections annually. There are currently no approved drugs against this disease, resulting in a major unmet clinical need. The dengue viral NS2B-NS3 protease has been identified as a plausible drug target due to its involvement in viral replication in mammalian host cells. In the past decade, at least 20 dengue NS2B-NS3 protease inhibitors have been reported in the literature with a range of inhibitory activities in protease assays. However, such assays do not shed light on an inhibitor's ability to penetrate human cell membranes where the viral protease resides. In this study, we investigated the antiviral activities of 15 small-molecule and peptide-based NS2B-NS3 inhibitors on dengue serotype 2-infected HuH-7 human hepatocarcinoma cells. Experimental results revealed anthraquinone ARDP0006 (compound 5) to be the most potent inhibitor which reduced dengue viral titer by more than 1 log PFU/mL at 1 μM in our cell-based assays involving HuH-7 and K562 cell lines, suggesting that its scaffold could serve as a lead for further medicinal chemistry studies. Compound 5 was also found to be non-cytotoxic at 1 μM over 3 days incubation on HuH-7 cells using the Alamar Blue cellular toxicity assay. PMID:25823617

  7. Spectroscopic, quantum chemical studies, Fukui functions, in vitro antiviral activity and molecular docking of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide

    Science.gov (United States)

    Sebastian, S. H. Rosline; Al-Alshaikh, Monirah A.; El-Emam, Ali A.; Panicker, C. Yohannan; Zitko, Jan; Dolezal, Martin; VanAlsenoy, C.

    2016-09-01

    The molecular structural parameters and vibrational frequencies of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide have been obtained using density functional theory technique in the B3LYP approximation and CC-pVDZ (5D, 7F) basis set. Detailed vibrational assignments of observed FT-IR and FT-Raman bands have been proposed on the basis of potential energy distribution and most of the modes have wavenumbers in the expected range. In the present case, the NH stretching mode is a doublet in the IR spectrum with a difference of 138 cm-1 and is red shifted by 76 cm-1 from the computed value, which indicates the weakening of NH bond resulting in proton transfer to the neighboring oxygen atom. The molecular electrostatic potential has been mapped for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The hyperpolarizability values are calculated in order to find its role in nonlinear optics. From the molecular docking study, amino acids Asn161, His162 forms H-bond with pyrazine ring and Trp184, Gln19 shows H-bond with Cdbnd O group and the docked ligand, title compound forms a stable complex with cathepsin K and the results suggest that the compound might exhibit inhibitory activity against cathepsin K. Moderate in vitro antiviral activity with EC50 at tens of μM was detected against feline herpes virus, coxsackie virus B4, and influenza A/H1N1 and A/H3N2.

  8. 16 CFR 801.3 - Activities in or affecting commerce.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Activities in or affecting commerce. 801.3... in or affecting commerce. Section 7A(a)(1) is satisfied if any entity included within the acquiring person, or any entity included within the acquired person, is engaged in commerce or in any...

  9. Impaired antiviral activity of interferon alpha against hepatitis C virus 2a in Huh-7 cells with a defective Jak-Stat pathway

    Directory of Open Access Journals (Sweden)

    Kousoulas Gus

    2010-02-01

    Full Text Available Abstract Background The sustained virological response to interferon-alpha (IFN-α in individuals infected with hepatitis C virus (HCV genotype 1 is only 50%, but is about 80% in patients infected with genotype 2-6 viruses. The molecular mechanisms explaining the differences in IFN-α responsiveness between HCV 1 and other genotypes have not been elucidated. Results Virus and host cellular factors contributing to IFN responsiveness were analyzed using a green fluorescence protein (GFP based replication system of HCV 2a and Huh-7 cell clones that either possesses or lack a functional Jak-Stat pathway. The GFP gene was inserted into the C-terminal non-structural protein 5A of HCV 2a full-length and sub-genomic clones. Both HCV clones replicated to a high level in Huh-7 cells and could be visualized by either fluorescence microscopy or flow cytometric analysis. Huh-7 cells transfected with the GFP tagged HCV 2a genome produced infectious virus particles and the replication of fluorescence virus particles was demonstrated in naïve Huh-7.5 cells after infection. IFN-α effectively inhibited the replication of full-length as well as sub-genomic HCV 2a clones in Huh-7 cells with a functional Jak-Stat pathway. However, the antiviral effect of IFN-α against HCV 2a virus was not observed in Huh-7 cell clones with a defect in Jak-Stat signaling. HCV infection or replication did not alter IFN-α induced Stat phosphorylation or ISRE promoter-luciferase activity in both the sensitive and resistant Huh-7 cell clones. Conclusions The cellular Jak-Stat pathway is critical for a successful IFN-α antiviral response against HCV 2a. HCV infection or replication did not alter signaling by the Jak-Stat pathway. GFP labeled JFH1 2a replicon based stable cell lines with IFN sensitive and IFN resistant phenotypes can be used to develop new strategies to overcome IFN-resistance against hepatitis C.

  10. IFN-gamma: Novel antiviral cytokines

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Paludan, Søren Riis

    2006-01-01

    adaptive immune responses. Recently, a novel class of cytokines was discovered and named IFN-lambda (alternatively type III IFN or interleukin-28/29 [IL- 28/29]), based on IFN-like antiviral activity and induction of typical IFN-inducible genes. Here, we review the literature on IFN-lambda and discuss the...

  11. The analysis of structure-anticancer and antiviral activity relationships for macrocyclic pyridinophanes and their analogues on the basis of 4D QSAR models (simplex representation of molecular structure).

    Science.gov (United States)

    Kuz'min, Victor E; Artemenko, Anatoly G; Lozitsky, Victor P; Muratov, Eugene N; Fedtchouk, Alla S; Dyachenko, Natalia S; Nosach, Lidiya N; Gridina, Tatiyana L; Shitikova, Larisa I; Mudrik, Liubov M; Mescheriakov, Aleksey K; Chelombitko, Vladislav A; Zheltvay, Andrey I; Vanden Eynde, Jean-Jaques

    2002-01-01

    A new 4D-QSAR approach has been considered. For all investigated molecules the 3D structural models have been created and the set of conformers (fourth dimension) have been used. Each conformer is represented as a system of different simplexes (tetratomic fragments of fixed structure, chirality and symmetry). The investigation of influence of molecular structure of macrocyclic pyridinophanes, their analogues and certain other compounds on anticancer and antiviral (anti-influenza, antiherpes and antiadenovirus) activity has been carried out by means of the 4D-QSAR. Statistic characteristics for QSAR of PLS (partial least squares) models are satisfactory (R = 0.92-0.97; CVR = 0.63-0.83). Molecular fragments increasing and decreasing biological activity were defined. This information may be useful for design, and direct synthesis of novel anticancer and antiviral agents. PMID:12136936

  12. ERK signaling couples nutrient status to antiviral defense in the insect gut.

    Science.gov (United States)

    Xu, Jie; Hopkins, Kaycie; Sabin, Leah; Yasunaga, Ari; Subramanian, Harry; Lamborn, Ian; Gordesky-Gold, Beth; Cherry, Sara

    2013-09-10

    A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral "midgut barrier." Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK's antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity. PMID:23980175

  13. A Quantitative Measurement of Antiviral Activity of Anti-Human Immunodeficiency Virus Type 1 Drugs against Simian Immunodeficiency Virus Infection: Dose-Response Curve Slope Strongly Influences Class-Specific Inhibitory Potential

    OpenAIRE

    Deng, Kai; Zink, M. Christine; Clements, Janice E; Siliciano, Robert F.

    2012-01-01

    Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful...

  14. How do oil prices affect oilrig activity? : an empirical investigation

    OpenAIRE

    2004-01-01

    Resume "How do oil prices affect oilrig activity? An empirical investigation" by Guro Børnes Ringlund. Supervisors: Knut Einar Rosendahl and Terje Skjerpen. In this thesis, I analyse the relationship between oilrig activity and oil price changes for several oil-producing regions in the world. Rig activity is a preparation for future production of oil, through exploration for new fields or development of existing fields, and is thus an indicator for the future level of oil production. ...

  15. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin.

    Science.gov (United States)

    Glisoni, Romina J; Cuestas, María L; Mathet, Verónica L; Oubiña, José R; Moglioni, Albertina G; Sosnik, Alejandro

    2012-10-01

    The hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis in humans. Approximately 5% of the infected people die from cirrhosis or hepatocellular carcinoma. The current standard therapy comprises a combination of pegylated-interferon alpha and ribavirin. Due to the relatively low effectiveness, the prohibitive costs and the extensive side effects of the treatment, an intense research for new direct-acting anti-HCV agents is taking place. Furthermore, NS3 protease inhibitors recently introduced into the market are not effective against all HCV subgenotypes. Thiosemicarbazones (TSCs) have shown antiviral activity against a wide range of DNA and RNA viruses. However, their extremely low aqueous solubility and high self-aggregation tendency often preclude their reliable biological evaluation in vitro. In this work, we investigated and compared for the first time the anti-HCV activity of two 1-indanone TSCs, namely 5,6-dimethoxy-1-indanone TSC and 5,6-dimethoxy-1-indanone N4-allyl TSC, and their inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβ-CD) in Huh-7.5 cells containing the full-length and the subgenomic subgenotype 1b HCV replicon system. Studies of physical stability in culture medium showed that free TSCs precipitated rapidly and formed submicron aggregates. Conversely, TSC complexation with HPβ-CD led to more stable systems with minimal size growth and drug concentration loss. More importantly, both TSCs and their inclusion complexes displayed a potent suppression of the HCV replication in both cell lines with no cytotoxic effects. The mechanism likely involves the inhibition of non-structural proteins of the virus. In addition, findings suggested that the cyclodextrin released the drug to the culture medium over time. This platform could be exploited for the study of the drug toxicity and pharmacokinetics animal models. PMID:22885176

  16. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    OpenAIRE

    Elaissi Ameur; Rouis Zyed; Salem Nabil Abid; Mabrouk Samia; ben Salem Youssef; Salah Karima Bel; Aouni Mahjoub; Farhat Farhat; Chemli Rachid; Harzallah-Skhiri Fethia; Khouja Mohamed

    2012-01-01

    Abstract Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the ...

  17. Sulfated Alkyl Glucopyranans with Potent Antiviral Activity Synthesized by Ring-Opening Copolymerization of Anhydroglucose and Alkyl Anhydroglucose Monomers

    Directory of Open Access Journals (Sweden)

    Shiming Bai

    2015-01-01

    Full Text Available Sulfated glucopyranans having long alkyl groups were prepared by the ring-opening copolymerization of benzylated 1,6-anhydroglucopyranose with 3-O-octadecyl 1,6-anhydro-β-d-glucopyranose monomers, and subsequent deprotection and sulfation. Water-soluble sulfated glucopyranans with 2.8 and 4.7 mol% of 3-O-octadecyl group and lower molecular weights of M-n = 2.5 × 103–5.1 × 103 have potent anti-HIV activity at 0.05–1.25 μg/mL, even though sulfated polysaccharides with molecular weights below M-n = 6 × 103 had low anti-HIV activity. The interaction with poly-l-lysine as a model compound of proteins was analyzed by SPR, DSL, and zeta potential, indicating that the sulfated 3-O-octadecyl glucopyranans had high association and low dissociation rate constants, and the particle size increased after addition of poly-l-lysine. The anti-HIV activity was induced by electrostatic interaction between sulfate groups and amino groups of poly-l-lysine and by the synergistic effect of the hydrophobic long alkyl chain and hydrophilic sulfated group.

  18. [Antiviral properties of basidiomycetes metabolites].

    Science.gov (United States)

    Avtonomova, A V; Krasnopolskaya, L M

    2014-01-01

    The data on the antiviral action of the Ganoderma lucidum, Lentinus edodes, Grifola frondosa, Agaricus brasiliensis and other basidiomycetes metabolites are summurized. The metabolites of these species of basidiomycetes exhibit a direct antiviral effect on herpes simplex virus types I and II, human immunodeficiency virus (HIV), hepatitis B virus, vesicular stomatitis virus, influenza virus, Epstein-Barr virus, and others. Moreover, metabolites of basidiomycetes increased antiviral immunity. PMID:25975107

  19. Studies of antiviral activity and cytotoxicity of Wrightia tinctoria and Morinda citrifolia

    OpenAIRE

    Selvam P; Murugesh N; Witvrouw M; Keyaerts E; Neyts J

    2009-01-01

    Different extracts of leaf parts of Wrightia tinctoria and fruit powder of Morinda citrifolia have been studied against replication of HIV-1(IIIB) in MT-4 cells and HCV in Huh 5.2 cells. Chloroform extract of Wrightia tinctoria exhibited a maximum protection of 48% against the cytopathic effect of HIV-1(IIIB) in MT-4 cells. Fruit juice of Morinda citrifolia exhibited a displayed marked cytotoxic activity in lymphocyte (MT-4) cells (CC50: 0.19 mg/ml). The 50% effective concentrat...

  20. RNAi: antiviral therapy against dengue virus

    OpenAIRE

    Idrees, Sobia; Ashfaq, Usman A

    2013-01-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of...

  1. Heterosubtypic antiviral activity of hemagglutinin-specific antibodies induced by intranasal immunization with inactivated influenza viruses in mice.

    Directory of Open Access Journals (Sweden)

    Mieko Muramatsu

    Full Text Available Influenza A virus subtypes are classified on the basis of the antigenicity of their envelope glycoproteins, hemagglutinin (HA; H1-H17 and neuraminidase. Since HA-specific neutralizing antibodies are predominantly specific for a single HA subtype, the contribution of antibodies to the heterosubtypic immunity is not fully understood. In this study, mice were immunized intranasally or subcutaneously with viruses having the H1, H3, H5, H7, H9, or H13 HA subtype, and cross-reactivities of induced IgG and IgA antibodies to recombinant HAs of the H1-H16 subtypes were analyzed. We found that both subcutaneous and intranasal immunizations induced antibody responses to multiple HAs of different subtypes, whereas IgA was not detected remarkably in mice immunized subcutaneously. Using serum, nasal wash, and trachea-lung wash samples of H9 virus-immunized mice, neutralizing activities of cross-reactive antibodies were then evaluated by plaque-reduction assays. As expected, no heterosubtypic neutralizing activity was detected by a standard neutralization test in which viruses were mixed with antibodies prior to inoculation into cultured cells. Interestingly, however, a remarkable reduction of plaque formation and extracellular release of the H12 virus, which was bound by the H9-induced cross-reactive antibodies, was observed when infected cells were subsequently cultured with the samples containing HA-specific cross-reactive IgA. This heterosubtypic plaque reduction was interfered when the samples were pretreated with anti-mouse IgA polyclonal serum. These results suggest that the majority of HA-specific cross-reactive IgG and IgA antibodies produced by immunization do not block cellular entry of viruses, but cross-reactive IgA may have the potential to inhibit viral egress from infected cells and thus to play a role in heterosubtypic immunity against influenza A viruses.

  2. New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and bougainvillea spectabilis Willd.

    Science.gov (United States)

    Bolognesi, A; Polito, L; Olivieri, F; Valbonesi, P; Barbieri, L; Battelli, M G; Carusi, M V; Benvenuto, E; Del Vecchio Blanco, F; Di Maro, A; Parente, A; Di Loreto, M; Stirpe, F

    1997-12-01

    New single-chain (type 1) ribosome-inactivating proteins (RIPs) were isolated from the seeds of Basella rubra L. (two proteins) and from the leaves of Bougainvillea spectabilis Willd. (one protein). These RIPs inhibit protein synthesis both in a cell-free system, with an IC50 (concentration causing 50% inhibition) in the 10(-10) M range, and by various cell lines, with IC50S in the 10(-8)-10(-6) M range. All three RIPs released adenine not only from rat liver ribosomes but also from Escherichia coli rRNA, polyadenylic acid, herring sperm DNA, and artichoke mottled crinkle virus (AMCV) genomic RNA, thus being polynucleotide:adenosine glycosidases. The proteins from Basella rubra had toxicity to mice similar to that of most type 1 RIPs (Barbieri et al., 1993, Biochim Biophys Acta 1154: 237-282) with an LD50 (concentration that is 50% lethal) 32 mg.kg-1. The N-terminal sequence of the two RIPs from Basella rubra had 80-93% identity, whereas it differed from the sequence of the RIP from Bougainvillea spectabilis. When tested with antibodies against various RIPs, the RIPs from Basella gave some cross-reactivity with sera against dianthin 32, and weak cross-reactivity with momordin I and momorcochin-S, whilst the RIP from Bougainvillea did not cross-react with any antiserum tested. An RIP from Basella rubra and one from Bougainvillea spectabilis were tested for antiviral activity, and both inhibited infection of Nicotiana benthamiana by AMCV. PMID:9421927

  3. Antiviral Activity of a Single-Domain Antibody Immunotoxin Binding to Glycoprotein D of Herpes Simplex Virus 2

    Science.gov (United States)

    Geoghegan, Eileen M.; Zhang, Hong; Desai, Prashant J.; Biragyn, Arya

    2014-01-01

    Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells. PMID:25385102

  4. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J. (Abbott)

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  5. Do microRNAs induced by Viral Hemorrhagic Septicemia virus in rainbow trout (Oncorhynchus mykiss) possess anti-viral activity?

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    2013-01-01

    processes. Some miRNAs have been shown to have direct anti-viral effects. We have previously observed and validated that the fish-specific miRNAs, miR-462 and miR-731, were among the most highly expressed miRNAs in rainbow trout liver following Viral hemorrhagic septicemia virus (VHSV) infection. These mi...

  6. N-4-Acyl derivatives as lipophilic prodrugs of cidofovir and its 5-azacytosine analogue, (S)-HPMP-5-azaC: Chemistry and antiviral activity

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Pohl, Radek; Masojídková, Milena; Balzarini, J.; Snoeck, R.; Andrei, G.

    2014-01-01

    Roč. 22, č. 10 (2014), s. 2896-2906. ISSN 0968-0896 R&D Projects: GA MPO FR-TI4/625 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonate * antivirals * 5-azacytosine * prodrug Subject RIV: CC - Organic Chemistry Impact factor: 2.793, year: 2014

  7. Evaluation of the potential anti-viral activity of microRNAs in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    2013-01-01

    Micro ribonucleic acids (miRNAs) are small (18-22 nucleotides) endogenous RNAs that potently mediate post-transcriptional silencing of a wide range of genes. They are emerging as critical regulators of cellular processes and some miRNAs have been demonstrated to possess direct antiviral effects. ...

  8. Synthesis and cytostatic and antiviral activities of 2 '-deoxy-2 ',2 '-difluororibo- and 2 '-deoxy-2 '-fluororibonucleosides derived from 7-(het)aryl-7-deazaadenines

    Czech Academy of Sciences Publication Activity Database

    Perlíková, Pavla; Eberlin, Ludovic; Ménová, Petra; Raindlová, Veronika; Slavětínská, Lenka; Tloušťová, Eva; Bahador, G.; Lee, Y. J.; Hocek, Michal

    2013-01-01

    Roč. 8, č. 5 (2013), s. 832-846. ISSN 1860-7179 R&D Projects: GA ČR GAP207/11/0344 Institutional support: RVO:61388963 Keywords : 7-deazapurines * antiviral agents * cytostatics * fluorinated derivatives * nucleosides Subject RIV: CC - Organic Chemistry Impact factor: 3.046, year: 2013

  9. Small molecules with antiviral activity against the Ebola virus [v1; ref status: indexed, http://f1000r.es/523

    Directory of Open Access Journals (Sweden)

    Nadia Litterman

    2015-02-01

    Full Text Available The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus.

  10. Ubiquitin-fusion as a strategy to modulate protein half-life: A3G antiviral activity revisited

    International Nuclear Information System (INIS)

    The human APOBEC3G (A3G) is a potent inhibitor of HIV-1 replication and its activity is suppressed by HIV-1 virion infectivity factor (Vif). Vif neutralizes A3G mainly by inducing its degradation in the proteasome and blocking its incorporation into HIV-1 virions. Assessing the time needed for A3G incorporation into virions is, therefore, important to determine how quickly Vif must act to induce its degradation. We show that modelling the intracellular half-life of A3G can induce its Vif-independent targeting to the ubiquitin-proteasome system. By using various amino acids (X) in a cleavable ubiquitin-X-A3G fusion, we demonstrate that the half-life (t1/2) of X-A3G can be manipulated. We show that A3G molecules with a half-life of 13 min are incorporated into virions, whereas those with a half-life shorter than 5 min were not. The amount of X-A3G incorporated into virions increases from 13 min (Phe-A3G) to 85 min (Asn-A3G) and remains constant after this time period. Interestingly, despite the presence of similar levels of Arg-A3G (t1/2 = 28 min) and Asp-A3G (t1/2 = 65 min) into HIV-1 Δvif virions, inhibition of viral infectivity was only evident in the presence of A3G proteins with a longer half-life (t1/2 ≥ 65 min).

  11. Monitoring Affect States during Effortful Problem Solving Activities

    Science.gov (United States)

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  12. Antiviral agents against equid alphaherpesviruses: Current status and perspectives.

    Science.gov (United States)

    Vissani, María A; Thiry, Etienne; Dal Pozzo, Fabiana; Barrandeguy, María

    2016-01-01

    Equid herpesvirus infections cause respiratory, neurological and reproductive syndromes. Despite preventive and control measures and the availability of vaccines and immunostimulants, herpesvirus infections still constitute a major threat to equine health and for the equine industry worldwide. Antiviral drugs, particularly nucleoside analogues and foscarnet, are successfully used for the treatment of human alphaherpesvirus infections. In equine medicine, the use of antiviral medications in alphaherpesvirus infections would decrease the excretion of virus and diminish the risk of contagion and the convalescent time in affected horses, and would also improve the clinical outcome of equine herpesvirus myeloencephalopathy. The combined use of antiviral compounds, along with vaccines, immune modulators, and effective preventive and control measures, might be beneficial in diminishing the negative impact of alphaherpesvirus infections in horses. The purpose of this review is to analyse the available information regarding the use of antiviral agents against alphaherpesviruses, with particular emphasis on equine alphaherpesvirus infections. PMID:26654843

  13. How does the anthropogenic activity affect the spring discharge?

    Science.gov (United States)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  14. Synthesis and antiviral activity of 2,4-diamino-5-cyano-6-[2-(phosphonomethoxy)ethoxy]pyrimidine and related compounds

    Czech Academy of Sciences Publication Activity Database

    Hocková, Dana; Holý, Antonín; Masojídková, Milena; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.

    2004-01-01

    Roč. 12, č. 12 (2004), s. 3197-3202. ISSN 0968-0896 R&D Projects: GA AV ČR IBS4055109 Grant ostatní: ISEP/FORTIS(US) GOA -00/12; European Commission(XE) HPAW-2002-90001 Institutional research plan: CEZ:AV0Z4055905 Keywords : nucleotide analogues * antiviral * pyrimidines Subject RIV: CC - Organic Chemistry Impact factor: 2.018, year: 2004

  15. In Vitro Antiviral Activity of Favipiravir (T-705) against Drug-Resistant Influenza and 2009 A(H1N1) Viruses▿

    OpenAIRE

    Sleeman, Katrina; Mishin, Vasiliy P.; Deyde, Varough M.; Furuta, Yousuke; Klimov, Alexander I; Larisa V Gubareva

    2010-01-01

    Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic ...

  16. Perspective of Use of Antiviral Peptides against Influenza Virus.

    Science.gov (United States)

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-10-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  17. Perspective of Use of Antiviral Peptides against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sylvie Skalickova

    2015-10-01

    Full Text Available The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.

  18. Active house: A contemporary housing model for flood affected population

    Directory of Open Access Journals (Sweden)

    Stratimirović Tatjana

    2015-01-01

    Full Text Available The effectiveness of architectural knowledge in the struggle for a better future can be seen in the attitude that a good design or a good architectural solution, does not belong solely to the privileged ones as an improvement of the basic requirements, rather quite the opposite, that it is created as a response to a need. The goal of physical and emotional wellbeing, combined with a long term strategy for reducing the negative impact of the built environment by converting it into a positive influence upon the natural ecosystem, brings together and advances bioclimatic principles, architectural design and sustainable construction in the contemporary housing model dubbed the Active House. The Active House Workshop was held, as part of a wider student initiative New Housing Models for Flood Affected Population, at the University of Belgrade - Faculty of Architecture. The purpose of the campaign was to provide help to flood affected communities and assistance in efforts for repairing buildings in Serbia, hit by the severe floods of May 2014. Students came up with nine design solutions for small family homes, which incorporate the principles of Active House into existing construction techniques. In an architectural context, when concerning repair work after flooding, the need to consider problems related to contemporary living conditions through the ‘active’ category is seen in a new understanding of nature which allows the replacement of a passive restoration model, with an active models for designing in interaction with the environment.

  19. Dengue Virus Entry as Target for Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Marijke M. F. Alen

    2012-01-01

    Full Text Available Dengue virus (DENV infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed.

  20. Antiviral therapy: a perspective

    Directory of Open Access Journals (Sweden)

    Shahidi Bonjar AH

    2016-02-01

    s recovery to a large extent depends on their general health status. EVAC would be for single use and appropriately disposed of after each detoxification procedure. When sufficient research has yielded positive results in animal models, EVAC could be used as a supportive treatment in humans along with conventional antiviral therapies. EVAC would not be suitable for all viral infections, but could be expected to decrease the casualties resulting from blood-borne viral infections. The EVAC approach would be efficient in terms of time, effort, and expenditure in the research and treatment of blood-borne viral infections. Keywords: blood, virus, infection, antiviral, sepsis, HIV, Ebola

  1. An antiviral furanoquinone from Paulownia tomentosa Steud.

    Science.gov (United States)

    Kang, K H; Huh, H; Kim, B K; Lee, C K

    1999-11-01

    A methanol extract of the stem bark of Paulownia tomentosa showed antiviral activity against poliovirus types 1 and 3. Sequential liquid-liquid extraction with n-hexane, chloroform and water, and a silicagel column chromatography resulted in the purification of a compound. The compound was identified as methyl-5-hydroxy-dinaphthol[1,2-2',3']furan-7,12-dione-6-carbox yla te on the basis of spectroscopic data. The component caused a significant reduction of viral cytopathic effect when it was subjected to a standard antiviral assay by using HeLa cells. The EC(50) of the compound against poliovirus type 1 strain Brunhilde, and type 3 strain Leon were 0.3 microg/mL and 0.6 microg/mL, respectively. PMID:10548761

  2. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. PMID:26990572

  3. Emerging antiviral drugs.

    Science.gov (United States)

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025. PMID:18764719

  4. Avaliação da atividade antiviral e determinação do perfil cromatográfico de Hippeastrum glaucescens (Martius Herbert (Amaryllidaceae Evaluation of antiviral activity and determination of the chromatographic profile of Hippeastrum glaucescens (Martius Herbert (Amaryllidaceae

    Directory of Open Access Journals (Sweden)

    A. E. Hofmann JR

    2004-01-01

    Full Text Available Plantas da família Amaryllidaceae são caracterizadas pela presença de alcalóides isoquinolínicos. Desde o primeiro estudo envolvendo alcalóides desta família em 1877, um grande número destas plantas tem sido analisado quimicamente. Estes compostos apresentam uma ampla variedade de atividades biológicas, tais como: antiviral, citotóxica, antitumoral e analgésica. Neste trabalho, foram avaliados o perfil cromatográfico e a potencial atividade antiviral das frações diclorometano A e B, isoladas dos diferentes órgãos vegetais (bulbos, raízes, folhas e flores de Hippeastrum glaucescens (Martius Herbert, assim como dos alcalóides licorina, tazetina e pretazetina, previamente isolados desta planta. A extração dos alcalóides de H. glaucescens foi realizada por métodos clássicos, a partir de bulbos, raízes, folhas e flores fornecendo rendimentos totais em alcalóides de 0,53%; 0,81%; 0,29% e 0,12%, respectivamente. Empregando-se cromatografia em camada delgada, verificou-se que os bulbos e as raízes apresentam perfis cromatográficos semelhantes e que os alcalóides licorina, tazetina e pretazetina estão presentes em todas as partes testadas do vegetal. As frações diclorometano A e B, de cada órgão vegetal, e os alcalóides isolados (licorina, tazetina e pretazetina não inibiram a replicação do herpesvírus simples humano tipo 1 (HSV-1 cepa KOS, quando avaliados através do método de inibição do efeito citopático viral.Plants of Amaryllidaceae are characterized by isoquinoline alkaloids. Since the first study with Amaryllidaceae alkaloids in 1877, a large number of these plants have been chemically investigated. These compounds have shown a wide range of biological activities such as: antiviral, cytotoxic, antitumoral and analgesic. In this work, the dichloromethane (CH2Cl2 extracts obtained from different parts of the Hippeastrum glaucescens (Martius Herbert (bulbs, roots, leaves and flowers and the isolated

  5. Antiviral activities of new cidofovir analogs against camelpox virus, used as a model of variola virus, in human skin equivalent cultures

    Czech Academy of Sciences Publication Activity Database

    Duraffour, S.; Snoeck, R.; Van Den Oord, J.; Krečmerová, Marcela; Holý, Antonín; Crance, J. M.; Garin, D.; De Clercq, E.; Andrei, G.

    Elsevier. Roč. 74, č. 3 (2007), s. 123. ISSN 0166-3542. [International Conference on Antiviral Research /20./. 29.04.2007-03.05.2007, Palm Springs] R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Grant ostatní: René Descartes Prize-2001(XE) HPAW-2002-100096 Institutional research plan: CEZ:AV0Z40550506 Keywords : 5-azacytosine * acyclic nucleoside phosphonates * cidofovir * pox viruses Subject RIV: CC - Organic Chemistry

  6. CD8+-Cell Antiviral Factor Activity Is Not Restricted to Human Immunodeficiency Virus (HIV)-Specific T Cells and Can Block HIV Replication after Initiation of Reverse Transcription

    OpenAIRE

    Le Borgne, Sylvie; Février, Michèle; Callebaut, Christian; Lee, Steven P.; Rivière, Yves

    2000-01-01

    CD8+ lymphocytes from human immunodeficiency virus (HIV)-infected patients can suppress in vitro HIV replication in CD4+ T cells by a noncytolytic mechanism involving secreted CD8+-cell antiviral factor(s) (CAF). Using an HIV Nef-specific cytotoxic-T-lymphocyte (CTL) line and autologous CD4+ T cells infected with a nef-deleted HIV-1 virus, we demonstrated that, after a priming antigenic stimulation, this suppression does not require the presence of the specific antigen during the effector pha...

  7. Antiviral activity of Small interfering RNAs: Specificity testing using heterologous virus reveals interferon-related effects overlooked by conventional mismatch controls

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Lorenzen, Niels; Pedersen, Finn Skou

    2006-01-01

    RNA interference by small interfering RNAs (siRNAs) is considered to be a highly specific method for knockdown of gene expression in eukaryotic cells via degradation of target mRNA. Mutated siRNA molecules with 1–4 mismatching nucleotides compared to the target mRNA are regularly used as specific...... against a heterologous virus. Further analyses revealed that the siRNAs induced a non-target-specific anti-viral effect correlating with upregulation of the interferon induced Mx gene....

  8. Economic aspects of antiviral agents to control Classical Swine Fever epidemics

    OpenAIRE

    Bergevoet, R.H.M.; Asseldonk, van, N.; Backer, J.A.

    2012-01-01

    Outbreaks of contagious animal diseases such as Classical Swine Fever have detrimental effects on the livestock sector in an affected country as well as on society at large. The development of antiviral agents to control these epidemics can reduce the consequences of such outbreaks. The economic impact of applying these antiviral agents is until now unknown. In this report these consequences are investigated.

  9. Modulation of heme oxygenase-1 by metalloporphyrins increases anti-viral T cell responses.

    Science.gov (United States)

    Bunse, C E; Fortmeier, V; Tischer, S; Zilian, E; Figueiredo, C; Witte, T; Blasczyk, R; Immenschuh, S; Eiz-Vesper, B

    2015-02-01

    Heme oxygenase (HO)-1, the inducible isoform of HO, has immunomodulatory functions and is considered a target for therapeutic interventions. In the present study, we investigated whether modulation of HO-1 might have regulatory effects on in-vitro T cell activation. The study examined whether: (i) HO-1 induction by cobalt-protoporphyrin (CoPP) or inhibition by tin-mesoporphyrin (SnMP) can affect expansion and function of virus-specific T cells, (ii) HO-1 modulation might have a functional effect on other cell populations mediating effects on proliferating T cells [e.g. dendritic cells (DCs), regulatory T cells (T(regs)) and natural killer cells] and (iii) HO-1-modulated anti-viral T cells might be suitable for adoptive immunotherapy. Inhibition of HO-1 via SnMP in cytomegalovirus (CMV)pp65-peptide-pulsed peripheral blood mononuclear cells (PBMCs) led to increased anti-viral T cell activation and the generation of a higher proportion of effector memory T cells (CD45RA(-) CD62L(-)) with increased capability to secrete interferon (IFN)-γ and granzyme B. T(reg) depletion and SnMP exposure increased the number of anti-viral T cells 15-fold. To test the possibility that HO-1 modulation might be clinically applicable in conformity with good manufacturing practice (GMP), SnMP was tested in isolated anti-viral T cells using the cytokine secretion assay. Compared to control, SnMP treatment resulted in higher cell counts and purity without negative impact on quality and effector function [CD107a, IFN-γ and tumour necrosis factor (TNF)-α levels were stable]. These results suggest an important role of HO-1 in the modulation of adaptive immune responses. HO-1 inhibition resulted in markedly more effective generation of functionally active T cells suitable for adoptive T cell therapy. PMID:25196646

  10. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  11. Antiviral Lead Compounds from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Kenneth P. Minneman

    2010-10-01

    Full Text Available Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV and herpes simplex virus (HSV. The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed.

  12. Antiviral macrophage responses in flavivirus encephalitis.

    Science.gov (United States)

    Ashhurst, Thomas Myles; Vreden, Caryn van; Munoz-Erazo, Luis; Niewold, Paula; Watabe, Kanami; Terry, Rachael L; Deffrasnes, Celine; Getts, Daniel R; Cole King, Nicholas Jonathan

    2013-11-01

    Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered. PMID:24434318

  13. Age-prioritized use of antivirals during an influenza pandemic

    Directory of Open Access Journals (Sweden)

    Ajelli Marco

    2009-07-01

    number of antivirals stockpiled is well below 25% of the population, priority should be decided based on age-specific case fatality rates. However, late detection of cases (administration of antivirals 48 hours after the clinical onset of symptoms dramatically affects the efficacy of both treatment and prophylaxis.

  14. FACTORS AFFECTED DECARBOXYLATION ACTIVITY OF ENTEROCOCCUS FAECIUM ISOLATED FROM RABBIT

    Directory of Open Access Journals (Sweden)

    František Buňka

    2012-04-01

    Full Text Available Normal 0 21 false false false SK JA X-NONE Biogenic amines (BA are basic nitrogenous compounds formed mainly by decarboxylation of amino acids. There are generated in course of microbial, vegetable and animal metabolisms. The aim of the study was to monitor factors affected production of biogenic amines by Enterococcus faecium, which is found in rabbit meat. Biogenic amines were analyzed by means of UPLC (ultrahigh performance liquid chromatography equipped with a UV/VIS DAD detector. Decarboxylation activity of E. faecium was mainly influenced by the cultivation temperature and the amount of NaCl in this study. E. faecium produced most of the monitored biogenic amines levels: tyramine ˂2500 mg.l-1; putrescine ˂30 mg.l-1; spermidine ˂10 mg.l-1 and cadaverine ˂5 mg.l-1.doi:10.5219/182

  15. Antiviral therapy: a perspective.

    Science.gov (United States)

    Shahidi Bonjar, Amir Hashem

    2016-01-01

    research has yielded positive results in animal models, EVAC could be used as a supportive treatment in humans along with conventional antiviral therapies. EVAC would not be suitable for all viral infections, but could be expected to decrease the casualties resulting from blood-borne viral infections. The EVAC approach would be efficient in terms of time, effort, and expenditure in the research and treatment of blood-borne viral infections. PMID:26893542

  16. Towards antivirals against chikungunya virus.

    Science.gov (United States)

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2015-09-01

    Chikungunya virus (CHIKV) has re-emerged in recent decades, causing major outbreaks of chikungunya fever in many parts of Africa and Asia, and since the end of 2013 also in Central and South America. Infections are usually associated with a low mortality rate, but can proceed into a painful chronic stage, during which patients may suffer from polyarthralgia and joint stiffness for weeks and even several years. There are no vaccines or antiviral drugs available for the prevention or treatment of CHIKV infections. Current therapy therefore consists solely of the administration of analgesics, antipyretics and anti-inflammatory agents to relieve symptoms. We here review molecules that have been reported to inhibit CHIKV replication, either as direct-acting antivirals, host-targeting drugs or those that act via a yet unknown mechanism. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World." PMID:26119058

  17. Antiviral Effect Assay of Aqueous Extract of Echium Amoenum-L against HSV-1

    Directory of Open Access Journals (Sweden)

    Malihe Farahani

    2013-08-01

    Full Text Available Background: Medicinal plants have been used for different diseases in past. There is an increasing need for substances with antiviral activity since the treatment of viral infections with the available antiviral drugs often leads to the problem of viral resistance. Therefore in the present study Echium amoenum L plant with ethnomedical background was screened for antiviral activity against HSV-1 in different times. Materials and Methods: Flower part of Echium amoenum L plant collected from Iran was extracted with different methods to obtain crude aqueous extract. This extract was screened for its cytotoxicity against Hep II cell line by CPE assay. Antiviral properties of the plant extract were determined by cytopathic effect inhibition assay.Results: Echium amoenum L extract exhibited significant antiviral activity at non toxic concentrations to the cell line used. Findings indicated that plant extract has the most antiviral activity when it used an hour after virus inoculation.Conclusion: Echium amoenum L plant had not toxic effect at highest concentrations to the cell lines used and showed the most antiviral activity when it used an hour after virus inoculation. Further research is needed to elucidate the active constituents of this plant which may be useful in the development of new and effective antiviral agents.

  18. Is Minocycline an Antiviral Agent? A Review of Current Literature.

    Science.gov (United States)

    Nagarakanti, Sandhya; Bishburg, Eliahu

    2016-01-01

    Minocycline is a second-generation semi-synthetic derivative of tetracycline and has well-known anti-bacterial effects. The drug possesses anti-inflammatory, anti-oxidant, anti-apoptotic and immunomodulatory effects. The drug is widely used in bacterial infections and non-infectious conditions such as acne, dermatitis, periodontitis and neurodegenerative conditions. Minocycline was shown to have antiviral activity in vitro and also against different viruses in some animal models. Some studies have been done on human patients infected with Human Immunodeficiency Virus. We have review the available data regarding minocycline activity as an antiviral agent. PMID:26177421

  19. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2015-08-01

    Full Text Available Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71 is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways.

  20. Oxysterols: An emerging class of broad spectrum antiviral effectors.

    Science.gov (United States)

    Lembo, David; Cagno, Valeria; Civra, Andrea; Poli, Giuseppe

    2016-06-01

    Oxysterols are a family of cholesterol oxidation derivatives that contain an additional hydroxyl, epoxide or ketone group in the sterol nucleus and/or a hydroxyl group in the side chain. The majority of oxysterols in the blood are of endogenous origin, derived from cholesterol via either enzymatic or non-enzymatic mechanisms. A large number of reports demonstrate multiple physiological roles of specific oxysterols. One such role is the inhibition of viral replication. This biochemical/biological property was first characterised against a number of viruses endowed with an external lipid membrane (enveloped viruses), although antiviral activity has since been observed in relation to several non-enveloped viruses. In the present paper, we review the recent findings about the broad antiviral activity of oxysterols against enveloped and non-enveloped human viral pathogens, and provide an overview of their putative antiviral mechnism(s). PMID:27086126

  1. Relaxation training affects success and activation on a teaching test.

    Science.gov (United States)

    Helin, P; Hänninen, O

    1987-12-01

    We studied the effects of an audiocassette-relaxation training period (ART) and its timing on success at a teaching test (lecture type), on observed tension and on a number of physiological responses. The electrical activity of the upper trapezius muscle (EMG), heart rate (HR) and blood pressure (BP), of female and male instructor candidates, were examined before, during and after the teaching test as well as during its critique. The relaxation period (18 min) was presented either on the preceding night (ARTnt) or immediately before the teaching test (ARTimm). The influence of personality (types A-B and extrovert-introvert) was also studied. ART improved success at the teaching test in both sexes. In males (but not in females), ARTimm decreased EMG level during the test, but ARTnt increased EMG at the test period as compared to the control group. In females, both ARTnt and ARTimm lowered HR more than in the control group. ARTimm lowered systolic BP in both sexes. Personality types affected the ART responses; ART was more beneficial for type A than B subjects. PMID:3325481

  2. Influenza Round Table: Antiviral Drugs

    Centers for Disease Control (CDC) Podcasts

    2009-11-04

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used.  Created: 11/4/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 11/4/2009.

  3. Amido tyrosine esters: a promising new approach to antiviral nucleoside phosphonate prodrugs

    Czech Academy of Sciences Publication Activity Database

    McKenna, Ch. E.; Kashemirov, B. A.; Zakharova, V. M.; Krylov, I. S.; Williams, M.; Krečmerová, Marcela; Drach, J. C.; Hilfinger, J. M.

    Elsevier. Roč. 90, - (2011), A23-A24. ISSN 0166-3542. [International Conference on Antiviral Research (ICAR) /24./. 08.05.2011-11.05.2011, Sofia] R&D Projects: GA MŠk(CZ) ME10040 Institutional research plan: CEZ:AV0Z40550506 Keywords : antiviral activity * ANP * phosphonates * oral bioavailability * tyrosine * ester prodrugs Subject RIV: CC - Organic Chemistry

  4. Autoimmune disease: A role for new anti-viral therapies?

    Science.gov (United States)

    Dreyfus, David H

    2011-12-01

    Many chronic human diseases may have an underlying autoimmune mechanism. In this review, the author presents a case of autoimmune CIU (chronic idiopathic urticaria) in stable remission after therapy with a retroviral integrase inhibitor, raltegravir (Isentress). Previous reports located using the search terms "autoimmunity" and "anti-viral" and related topics in the pubmed data-base are reviewed suggesting that novel anti-viral agents such as retroviral integrase inhibitors, gene silencing therapies and eventually vaccines may provide new options for anti-viral therapy of autoimmune diseases. Cited epidemiologic and experimental evidence suggests that increased replication of epigenomic viral pathogens such as Epstein-Barr Virus (EBV) in chronic human autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), and multiple sclerosis (MS) may activate endogenous human retroviruses (HERV) as a pathologic mechanism. Memory B cells are the reservoir of infection of EBV and also express endogenous retroviruses, thus depletion of memory b-lymphocytes by monoclonal antibodies (Rituximab) may have therapeutic anti-viral effects in addition to effects on B-lymphocyte presentation of both EBV and HERV superantigens. Other novel anti-viral therapies of chronic autoimmune diseases, such as retroviral integrase inhibitors, could be effective, although not without risk. PMID:21871974

  5. Bioprospecting of Red Sea Sponges for Novel Antiviral Pharmacophores

    KAUST Repository

    O'Rourke, Aubrie

    2015-05-01

    Natural products offer many possibilities for the treatment of disease. More than 70% of the Earth’s surface is ocean, and recent exploration and access has allowed for new additions to this catalog of natural treasures. The Central Red Sea off the coast of Saudi Arabia serves as a newly accessible location, which provides the opportunity to bioprospect marine sponges with the purpose of identifying novel antiviral scaffolds. Antivirals are underrepresented in present day clinical trials, as well as in the academic screens of marine natural product libraries. Here a high-throughput pipeline was initiated by prefacing the antiviral screen with an Image-based High-Content Screening (HCS) technique in order to identify candidates with antiviral potential. Prospective candidates were tested in a biochemical or cell-based assay for the ability to inhibit the NS3 protease of the West Nile Virus (WNV NS protease) as well as replication and reverse transcription of the Human Immunodeficiency Virus 1 (HIV-1). The analytical chemistry techniques of High-Performance Liquid Chromatograpy (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Nuclear Magnetic Resonance (NMR) where used in order to identify the compounds responsible for the characteristic antiviral activity of the selected sponge fractions. We have identified a 3-alkyl pyridinium from Amphimedon chloros as the causative agent of the observed WNV NS3 protease inhibition in vitro. Additionally, we identified debromohymenialdisine, hymenialdisine, and oroidin from Stylissa carteri as prospective scaffolds capable of HIV-1 inhibition.

  6. Extent of intramolecular pi stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the anticancer and antivirally active 9[2-(phosphonomethoxy)ethyl]guanine (PMEG). A comparison with related acyclic nucleotide analogues

    Czech Academy of Sciences Publication Activity Database

    Blindauer, C. A.; Sigel, A.; Operschall, B. P.; Griesser, R.; Holý, Antonín; Sigel, H.

    2016-01-01

    Roč. 103, SI (2016), s. 248-260. ISSN 0277-5387 Institutional support: RVO:61388963 Keywords : anticancer activity * antivirals * aromatic-ring stacking * isomeric equilibria * nucleotide analogues Subject RIV: CC - Organic Chemistry Impact factor: 2.011, year: 2014

  7. Activity Clinic and Affects in Workplace Conflicts: Transformation through transferential activity

    Directory of Open Access Journals (Sweden)

    Livia Scheller

    2014-04-01

    Full Text Available This paper presents some reflections about an approach in work psychology: the Activity Clinic.After a brief introduction to the conceptual background of the “Activity Clinic”, it covers threedeeply interconnected themes. The first concerns the meaning attributed to the development of theaffects present in the work situation under analysis; the second discusses the reasons for theconflicts that are ultimately due to these affects; the third considers how a method of co-analysisof the activity can lead towards transformation of those conflicts.Our reflections refer to the process engendered by this methodological approach as one of“transferential activity”. The paper explains this process by empirically describing the“transport” of affects involved in the conflicts. The personal interpretation of the cause ofproblems gives way to the understanding that they are due to organizational dysfunction ratherthan to individual personalities. Measures can then be taken to break the deadlocks experiencedboth at the personal and collective level.

  8. Antiviral Chemistry & Chemotherapy's current antiviral agents FactFile 2008 (2nd edition): RNA viruses.

    Science.gov (United States)

    De Clercq, Erik; Field, Hugh J

    2008-01-01

    Among the RNA viruses, other than the retroviruses (that is, HIV), which are dealt with separately in the current FactFile, the most important targets for the development of antiviral agents at the moment are the orthomyxoviruses (that is, influenza), the hepaciviruses (that is, hepatitis C virus [HCV]) and, to a lesser extent, the picornaviruses. Although the uncoating inhibitors amantadine and rimantadine were the first known inhibitors of influenza A, the neuraminidase inhibitors oseltamivir, zanamivir and peramivir have now become the prime antiviral drugs for the treatment of influenza A and B virus infections. For HCV infections, standard treatment consists of the combination of pegylated interferon-alpha with ribavirin, but several other antivirals targeted at specific viral functions such as the HCV protease and/ or polymerase may be expected to soon take an important share of this important market. Still untapped is the potential of a variety of uncoating inhibitors, as well as protease and/or polymerase inhibitors against the wide spectrum of picornaviruses. While ribavirin has been available for 35 years as a broad-spectrum anti-RNA virus agent, relatively new and unexplored is favipiravir (T-705) accredited with activity against influenza as well as flaviviruses, bunyaviruses and arenaviruses. PMID:18727441

  9. Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys.

    Science.gov (United States)

    Umar, S; Shah, M A A; Munir, M T; Yaqoob, M; Fiaz, M; Anjum, S; Kaboudi, K; Bouzouaia, M; Younus, M; Nisa, Q; Iqbal, M; Umar, W

    2016-07-01

    The main objective of this study was to determine the possible effects of thymoquinone (TQ) and curcumin (Cur) on immune-response and pathogenesis of H9N2 avian influenza virus (AIV) in turkeys. The experiment was performed on 75 non-vaccinated mixed-sex turkey poults, divided into 5 experimental groups (A, B, C, D, and E) of 15 birds each. Group A was kept as non-infected and a non-treated negative control (ctrl group) while group B was kept as infected and non-treated positive control (H9N2 group). Turkeys in groups A and B received normal commercial feed while turkeys in groups C and D received TQ, and Cur respectively, and group E concurrently received TQ and Cur from d one through the entire experiment period. All groups were challenged intra-nasally with H9N2 AIV (A/chicken/Pakistan/10RS3039-284-48/2010) at the fourth wk of age except group A. Infected turkeys showed clinical signs of different severity, showing the most prominent disease signs in turkeys in group B. All infected turkeys showed positive results for virus shedding; however, the pattern of virus shedding was different, and with turkeys in group B showing more pronounced virus secretion than the turkeys in the other groups receiving different levels of TQ and Cur. Moreover, significantly higher antibody titer against H9N2 AIV in turkeys shows the immunomodulatory nature of TQ and Cur. Similarly, increased cytokine gene expression suggests antiviral behavior of TQ and Cur especially in combination, leading to suppressed pathogenesis of H9N2 viruses. However, reduced virus shedding and enhanced immune responses were more pronounced in those turkeys receiving TQ and Cur concurrently. This study showed that supplements of TQ and Cur in combination would significantly enhance immune responsiveness and suppress pathogenicity of influenza viruses in turkeys. PMID:26944958

  10. The anti-lymphoma activity of antiviral therapy in HCV-associated B-cell non-Hodgkin lymphomas: a meta-analysis.

    Science.gov (United States)

    Peveling-Oberhag, J; Arcaini, L; Bankov, K; Zeuzem, S; Herrmann, E

    2016-07-01

    Many epidemiological studies provide solid evidence for an association of chronic hepatitis C virus (HCV) infection with B-cell non-Hodgkin's lymphoma (B-NHL). However, the most convincing evidence for a causal relationship between HCV infection and lymphoma development is the observation of B-NHL regression after HCV eradication by antiviral therapy (AVT). We conducted a literature search to identify studies that included patients with HCV-associated B-NHL (HCV-NHL) who received AVT, with the intention to treat lymphoma and viral disease at the same time. The primary end point was the correlation of sustained virological response (SVR) under AVT with lymphoma response. Secondary end points were overall lymphoma response rates and HCV-NHL response in correlation with lymphoma subtypes. We included 20 studies that evaluated the efficacy of AVT in HCV-NHL (n = 254 patients). Overall lymphoma response rate through AVT was 73% [95%>confidence interval, (CI) 67-78%]. Throughout studies there was a strong association between SVR and lymphoma response (83% response rate, 95%>CI, 76-88%) compared to a failure in achieving SVR (53% response rate, 95%>CI, 39-67%, P = 0.0002). There was a trend towards favourable response for AVT in HCV-associated marginal zone lymphomas (response rate 81%, 95%>CI, 74-87%) compared to nonmarginal zone origin (response rate 71%, 95%>CI, 61-79%, P = 0.07). In conclusion, in the current meta-analysis, the overall response rate of HCV-NHL under AVT justifies the recommendation for AVT as first-line treatment in patients who do not need immediate conventional treatment. The strong correlation of SVR and lymphoma regression supports the hypothesis of a causal relationship of HCV and lymphomagenesis. PMID:26924533

  11. Positive affect modulates activity in the visual cortex to images of high calorie foods.

    Science.gov (United States)

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-05-01

    Activity within the visual cortex can be influenced by the emotional salience of a stimulus, but it is not clear whether such cortical activity is modulated by the affective status of the individual. This study used functional magnetic resonance imaging (fMRI) to examine the relationship between affect ratings on the Positive and Negative Affect Schedule and activity within the occipital cortex of 13 normal-weight women while viewing images of high calorie and low calorie foods. Regression analyses revealed that when participants viewed high calorie foods, Positive Affect correlated significantly with activity within the lingual gyrus and calcarine cortex, whereas Negative Affect was unrelated to visual cortex activity. In contrast, during presentations of low calorie foods, affect ratings, regardless of valence, were unrelated to occipital cortex activity. These findings suggest a mechanism whereby positive affective state may affect the early stages of sensory processing, possibly influencing subsequent perceptual experience of a stimulus. PMID:17464782

  12. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context

    Science.gov (United States)

    Niermann, Christina Y. N.; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  13. Affect and subsequent physical activity: An ambulatory assessment study examining the affect-activity association in a real-life context

    Directory of Open Access Journals (Sweden)

    Christina eNiermann

    2016-05-01

    Full Text Available Traditionally, cognitive, motivational and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship.An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M=45.2, SD=8.1 was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested.Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect.The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent

  14. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context.

    Science.gov (United States)

    Niermann, Christina Y N; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  15. Antiviral resistance: influenza B

    OpenAIRE

    Conde, Patrícia; Guiomar, Raquel; Cristóvão, Paula; Pechirra, Pedro

    2013-01-01

    Currently circulating influenza viruses are resistant to adamantanes and except for a low number of sporadic cases most are sensitive to neuraminidase inhibitors (NI). Adamantanes are ineffective against influenza B viruses and although NI-resistant influenza B viruses have been rarely reported, recently in the United States was identified one cluster of influenza B viruses with reduced susceptibility to NI and with the I221V substitution in the active site of the neuraminidase. Despite the l...

  16. The Antiviral Activity of Approved and Novel Drugs against HIV-1 Mutations Evaluated under the Consideration of Dose-Response Curve Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Chang

    Full Text Available This study was designed to identify common HIV-1 mutation complexes affecting the slope of inhibition curve, and to propose a new parameter incorporating both the IC50 and the slope to evaluate phenotypic resistance.Utilizing site-directed mutagenesis, we constructed 22 HIV-1 common mutation complexes. IC50 and slope of 10 representative approved drugs and a novel agent against these mutations were measured to determine the resistance phenotypes. The values of new parameter incorporating both the IC50 and the slope of the inhibition curve were calculated, and the correlations between parameters were assessed.Depending on the class of drug, there were intrinsic differences in how the resistance mutations affected the drug parameters. All of the mutations resulted in large increases in the IC50s of nucleoside reverse transcriptase inhibitors. The effects of the mutations on the slope were the most apparent when examining their effects on the inhibition of non-nucleoside reverse transcriptase inhibitors and protease inhibitors. For example, some mutations, such as V82A, had no effect on IC50, but reduced the slope. We proposed a new concept, termed IIPatoxic, on the basis of IC50, slope and the maximum limiting concentrations of the drug. The IIPatoxic values of 10 approved drugs and 1 novel agent were calculated, and were closely related to the IIPmax values (r > 0.95, p < 0.001.This study confirms that resistance mutations cannot be accurately assessed by IC50 alone, because it tends to underestimate the degree of resistance. The slope parameter is of very importance in the measurement of drug resistance and the effect can be applied to more complex patterns of resistance. This is the most apparent when testing the effects of the mutations on protease inhibitors activity. We also propose a new index, IIPatoxic, which incorporates both the IC50 and the slope. This new index could complement current IIP indices, thereby enabling predict the

  17. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    of certain PAHs to activate the Ah receptor was assessed in H4IIE liver cancer cells, stably transfected with a luciferase reporter gene system. The positive control 2, 3,7, 8-tetrachlorodibenzodioxin (TCDD) caused a 13-14-fold induction of luciferase activity reaching maximum activity at 0.1 nM. DB...

  18. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    of certain PAHs to activate the Ah receptor was assessed in H4IIE liver cancer cells, stably transfected with a luciferase reporter gene system. The positive control 2, 3,7, 8-tetrachlorodibenzodioxin (TCDD) caused a 13-14-fold induction of luciferase activity reaching maximum activity at 0.1 nM. DB...

  19. A Phase i Dose Escalation Study Demonstrates Quercetin Safety and Explores Potential for Bioflavonoid Antivirals in Patients with Chronic Hepatitis C

    OpenAIRE

    Lu, NT; Crespi, CM; Liu, NM; Vu, JQ; Ahmadieh, Y; Wu, S; S. Lin; McClune, A; Durazo, F; Saab, S.; Han, S; Neiman, DC; Beaven, S; French, SW

    2016-01-01

    © 2015 John Wiley & Sons, Ltd. The hepatitis C virus (HCV) infects more than 180 million people worldwide, with long-term consequences including liver failure and hepatocellular carcinoma. Quercetin bioflavonoids can decrease HCV production in tissue culture, in part through inhibition of heat shock proteins. If quercetin demonstrates safety and antiviral activity in patients, then it could be developed into an inexpensive HCV treatment for third world countries or other affected populations ...

  20. RNAi:antiviral therapy against dengue virus

    Institute of Scientific and Technical Information of China (English)

    Sobia Idrees; Usman A Ashfaq

    2013-01-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of siRNA in inhibiting dengue virus replication. This review summarizes siRNAs as a therapeutic approach against dengue virus serotypes and concludes that siRNAs against virus and host genes can be next generation treatment of dengue virus infection.

  1. Can antiviral drugs contain pandemic influenza transmission?

    Directory of Open Access Journals (Sweden)

    Niels G Becker

    Full Text Available Antiviral drugs dispensed during the 2009 influenza pandemic generally failed to contain transmission. This poses the question of whether preparedness for a future pandemic should include plans to use antiviral drugs to mitigate transmission.Simulations using a standard transmission model that allows for infected arrivals and delayed vaccination show that attempts to contain transmission require relatively few antiviral doses. In contrast, persistent use of antiviral drugs when the reproduction number remains above 1 use very many doses and are unlikely to reduce the eventual attack rate appreciably unless the stockpile is very large. A second model, in which the community has a household structure, shows that the effectiveness of a strategy of dispensing antiviral drugs to infected households decreases rapidly with time delays in dispensing the antivirals. Using characteristics of past pandemics it is estimated that at least 80% of primary household cases must present upon show of symptoms to have a chance of containing transmission by dispensing antiviral drugs to households. To determine data needs, household outbreaks were simulated with 50% receiving antiviral drugs early and 50% receiving antiviral drugs late. A test to compare the size of household outbreaks indicates that at least 100-200 household outbreaks need to be monitored to find evidence that antiviral drugs can mitigate transmission of the newly emerged virus.Use of antiviral drugs in an early attempt to contain transmission should be part of preparedness plans for a future influenza pandemic. Data on the incidence of the first 350 cases and the eventual attack rates of the first 200 hundred household outbreaks should be used to estimate the initial reproduction number R and the effectiveness of antiviral drugs to mitigate transmission. Use of antiviral drugs to mitigate general transmission should cease if these estimates indicate that containment of transmission is unlikely.

  2. 78 FR 46418 - Proposed Information Collection (Obligation To Report Factors Affecting Entitlement) Activity...

    Science.gov (United States)

    2013-07-31

    ... AFFAIRS Proposed Information Collection (Obligation To Report Factors Affecting Entitlement) Activity... techniques or the use of other forms of information technology. Title: Obligation to Report Factors Affecting... dependents, may affect the amount of benefit that he or she receives or affect the right to receive...

  3. MEG brain activities reflecting affection for visual food stimuli.

    Science.gov (United States)

    Kuriki, Shinya; Miyamura, Takahiro; Uchikawa, Yoshinori

    2010-01-01

    This study aimed to explore the modulation of alpha rhythm in response to food pictures with distinct affection values. We examined the method to discriminate subject's state, i.e., whether he/she liked the article of food or not, from MEG signals detected over the head. Pictures of familiar foods were used as affective stimuli, while those pictures with complementary color phase were used as non-affective stimuli. Alpha band signals in a narrow frequency window around the spectral peak of individual subjects were wavelet analyzed and phase-locked component to the stimulus onset was obtained as a complex number. The amplitude of the phase-locked component was averaged during 0-1 s after stimulus onset for 30 epochs in a measurement session and across 76 channels of MEG sensor. In statistical test of individual subjects, significant difference was found in the real part of the averaged phase-locked amplitude between the normal-color and reverse-color pictures. These results suggest that affective information processing of food pictures is reflected in the synchronized component of narrow band alpha rhythm. PMID:21096510

  4. How Do Sociodemographics and Activity Participations Affect Activity-Travel? Comparative Study between Women and Men

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-01-01

    Full Text Available Activity-travel behaviors of women and men are different because they have different social and household responsibilities. However, studies concerning gender differences are mainly limited in developed countries. This paper concentrates on gender role-based differences in activity-travel behavior in a typical developing country, namely, China. Using data from 3656 cases collected through surveys conducted in Shangyu, data processing, method choice, and descriptive analysis were conducted. Binary and ordered logistic regression models segmented by gender were developed to evaluate the mechanism through which individual sociodemographics, household characteristics, and activity participations affect the number of trip chain types and activities for women and men. The results show that women aged 30 to 50 perform less subsistence activities. However, the difference between the different age groups of men is not as significant. In addition, men with bicycles and electric bicycles have more subsistence and maintenance activities, whereas women do not have these attributes. Moreover, women with children under schooling age make more maintenance trip chains but less leisure trip chains and activities, whereas men are free from this influence. Furthermore, both women and men perform more subsistence activities if the duration increases, and men have less influences than women do.

  5. Mutation of the Zinc-Binding Metalloprotease Motif Affects Bacteroides fragilis Toxin Activity but Does Not Affect Propeptide Processing

    OpenAIRE

    Franco, Augusto A.; Buckwold, Simy L.; Shin, Jai W.; Ascon, Miguel; Sears, Cynthia L.

    2005-01-01

    To evaluate the role of the zinc-binding metalloprotease in Bacteroides fragilis toxin (BFT) processing and activity, the zinc-binding consensus sequences (H348, E349, H352, G355, H358, and M366) were mutated by site-directed-mutagenesis. Our results indicated that single point mutations in the zinc-binding metalloprotease motif do not affect BFT processing but do reduce or eliminate BFT biologic activity in vitro.

  6. Mutation of the Zinc-Binding Metalloprotease Motif Affects Bacteroides fragilis Toxin Activity but Does Not Affect Propeptide Processing

    Science.gov (United States)

    Franco, Augusto A.; Buckwold, Simy L.; Shin, Jai W.; Ascon, Miguel; Sears, Cynthia L.

    2005-01-01

    To evaluate the role of the zinc-binding metalloprotease in Bacteroides fragilis toxin (BFT) processing and activity, the zinc-binding consensus sequences (H348, E349, H352, G355, H358, and M366) were mutated by site-directed-mutagenesis. Our results indicated that single point mutations in the zinc-binding metalloprotease motif do not affect BFT processing but do reduce or eliminate BFT biologic activity in vitro. PMID:16041055

  7. Stress affects salivary alpha-Amylase activity in bonobos.

    Science.gov (United States)

    Behringer, Verena; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2012-01-18

    Salivary alpha-Amylase (sAA) is a starch digesting enzyme. In addition to its function in the context of nutrition, sAA has also turned out to be useful for monitoring sympathetic nervous system activity. Recent studies on humans have found a relationship between intra-individual changes in sAA activity and physical and psychological stress. In studies on primates and other vertebrates, non-invasive monitoring of short-term stress responses is usually based on measurements of cortisol levels, which are indicative of hypothalamic-pituitary-adrenal activity. The few studies that have used both cortisol levels and sAA activity indicate that these two markers may respond differently and independently to different types of stress such that variation in the degree of the activation of different stress response systems might reflect alternative coping mechanisms or individual traits. Here, we present the first data on intra- and inter-individual variation of sAA activity in captive bonobos and compare the results with information from other ape species and humans. Our results indicate that sAA activity in the bonobo samples was significantly lower than in the human samples but within the range of other great ape species. In addition, sAA activity was significantly higher in samples collected at times when subjects had been exposed to stressors (judged by changes in behavioral patterns and cortisol levels) than in samples collected at other times. Our results indicate that bonobos possess functioning sAA and, as in other species, sAA activity is influenced by autonomic nervous system activity. Monitoring sAA activity could therefore be a useful tool for evaluating stress in bonobos. PMID:21945369

  8. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin

    Science.gov (United States)

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  9. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin.

    Science.gov (United States)

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  10. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin

    Directory of Open Access Journals (Sweden)

    Romina Croci

    2016-01-01

    Full Text Available RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity. To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221. In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery.

  11. Lung cancer: district active treatment rates affect survival

    OpenAIRE

    CARTMAN, M.; Hatfield, A; Muers, M; Peake, M; Haward, R; Forman, D

    2002-01-01

    Design: A retrospective study of population based data held by the Northern & Yorkshire Cancer Registry and Information Service (NYCRIS), comparing active treatment rates for lung cancer with survival by districts.

  12. Oxidative Activity of Heated Coal Affected by Antypirogens

    Science.gov (United States)

    Torosyan, V. F.; Torosyan, E. S.; Borovikov, I. F.; Yakutova, V. A.

    2016-04-01

    The effect of antypirogens on chemical activity of heated coal is studied. It is proved that ammonium sulfate, calcium phosphate, calcium chloride, calcium nitrate and acid fluoride are the most effective antypirogens.

  13. Technology trends, energy prices affect worldwide rig activity

    International Nuclear Information System (INIS)

    The major worldwide offshore rig markets have improved slightly this year, while the onshore markets generally lagged slightly. Offshore rig utilization rates have remained strong worldwide, with some areas reaching nearly 100%. Total worldwide offshore rig (jack ups, semisubmersible, drillships, submersibles, and barges) utilization was about 86%. Offshore drilling activity is driven primarily by oil and natural gas price expectations. Natural gas prices tend to drive North American offshore drilling activity, including the shallow waters in the Gulf of Mexico. International offshore drilling activity and deepwater projects in the Gulf of Mexico are more closely tied to oil prices. The paper discusses US rig count, directional drilling activity, jack up rig demand, semisubmersibles demand, rig replacement costs, and new construction

  14. Disturbances of electrodynamic activity affect abortion in human

    OpenAIRE

    Jandová, A; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; M. Cifra; Pokorný, J.

    2011-01-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich; he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of ...

  15. Carbon monoxide affects electrical and contractile activity of rat myocardium

    OpenAIRE

    Porokhnya Maria V; Haertdinov Nail N; Abramochkin Denis V; Zefirov Andrew L; Sitdikova Gusel F

    2011-01-01

    Abstract Background Carbon monoxide (CO) is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and vent...

  16. Carbon monoxide affects electrical and contractile activity of rat myocardium

    Directory of Open Access Journals (Sweden)

    Porokhnya Maria V

    2011-06-01

    Full Text Available Abstract Background Carbon monoxide (CO is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and ventricular myocardium. Contractions of atrial myocardial stripes were registered via force transducer. Results CO (10-4 - 10-3 M caused prominent decrease of action potential duration (APD in working atrial myocardium as well as significant acceleration of sinus rhythm. In addition CO reduced force of contractions and other parameters of contractile activity. Inhibitor of heme oxygenase zinc protoporphyrin IX exerts opposite effects: prolongation of action potential, reduction of sinus rhythm rate and enhancement of contractile function. Therefore, endogenous CO, which may be generated in the heart due to the presence of active heme oxygenase, is likely to exert the same effects as exogenous CO applied to the perfusing medium. In ventricular myocardium preparations exogenous CO also induced shortening of action potential, while zinc protoporphyrin IX produced the opposite effect. Conclusions Thus, endogenous or exogenous carbon monoxide may act as an important regulator of electrical and contractile cardiac activity.

  17. Early life stress affects limited regional brain activity in depression.

    Science.gov (United States)

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  18. Early life stress affects limited regional brain activity in depression

    Science.gov (United States)

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  19. Inhibition of Nek2 by Small Molecules Affects Proteasome Activity

    Directory of Open Access Journals (Sweden)

    Lingyao Meng

    2014-01-01

    Full Text Available Background. Nek2 is a serine/threonine kinase localized to the centrosome. It promotes cell cycle progression from G2 to M by inducing centrosome separation. Recent studies have shown that high Nek2 expression is correlated with drug resistance in multiple myeloma patients. Materials and Methods. To investigate the role of Nek2 in bortezomib resistance, we ectopically overexpressed Nek2 in several cancer cell lines, including multiple myeloma lines. Small-molecule inhibitors of Nek2 were discovered using an in-house library of compounds. We tested the inhibitors on proteasome and cell cycle activity in several cell lines. Results. Proteasome activity was elevated in Nek2-overexpressing cell lines. The Nek2 inhibitors inhibited proteasome activity in these cancer cell lines. Treatment with these inhibitors resulted in inhibition of proteasome-mediated degradation of several cell cycle regulators in HeLa cells, leaving them arrested in G2/M. Combining these Nek2 inhibitors with bortezomib increased the efficacy of bortezomib in decreasing proteasome activity in vitro. Treatment with these novel Nek2 inhibitors successfully mitigated drug resistance in bortezomib-resistant multiple myeloma. Conclusion. Nek2 plays a central role in proteasome-mediated cell cycle regulation and in conferring resistance to bortezomib in cancer cells. Taken together, our results introduce Nek2 as a therapeutic target in bortezomib-resistant multiple myeloma.

  20. Regulation of drugs affecting striatal cholinergic activity by corticostriatal projections

    International Nuclear Information System (INIS)

    Research demonstrates that the chronic degeneration of the corticostriatal excitatory pathway makes the cholinergic neurons of the striatum insensitive to the neuropharmacological action of a number of different drugs. Female rats were used; they were killed and after the i.v. infusion of tritium-choline precursor, choline acetyltransferase activity was measured. Striatal noradrenaline, dopamine and serotonin content was measured by electrochemical detection coupled with high pressure liquid chromatography. Uptake of tritium-glutamic acid was estimated. The data were analyzed statistically. It is shown that there is evidence that the effects of a number of drugs capable of depressing cholinergic activity through receptor-mediated responses are operative only if the corticostriatal pathway is integral. Neuropharmacological responses in the brain appear to be the result of an interaction between several major neurotransmitter systems

  1. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer

    Science.gov (United States)

    Link, Daniel; de Lorenzo, Michael F.

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1–6) and at the end of a season (round 29–34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  2. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    Science.gov (United States)

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  3. Disturbances of electrodynamic activity affect abortion in human

    Czech Academy of Sciences Publication Activity Database

    Jandová, Anna; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, Michal; Pokorný, Jiří

    Vol. 329. Bristol: IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012030 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] Institutional research plan: CEZ:AV0Z2067918 Keywords : Biochemical research * Cellular structure * Control groups Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Disturbances of electrodynamic activity affect abortion in animals

    Czech Academy of Sciences Publication Activity Database

    Nedbalová, M.; Jandová, Anna; Dohnalová, A.

    Vol. 329. Bristol: IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012036 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] Institutional research plan: CEZ:AV0Z20670512 Keywords : Energy supplies * Genetic process * Information transfers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer.

    Science.gov (United States)

    Link, Daniel; de Lorenzo, Michael F

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1-6) and at the end of a season (round 29-34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  6. Early life stress affects limited regional brain activity in depression

    OpenAIRE

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic reso...

  7. Disturbances of electrodynamic activity affect abortion in human

    International Nuclear Information System (INIS)

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich; he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  8. Disturbances of electrodynamic activity affect abortion in human

    Science.gov (United States)

    Jandová, A.; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, M.; Pokorný, J.

    2011-12-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  9. Antifungal and antiviral products of marine organisms.

    Science.gov (United States)

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  10. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Newsletters What You Should Know About Flu Antiviral Drugs Language: ... that can be used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines ( ...

  11. A neutrophil-derived antiviral protein: induction requirements and biological properties.

    OpenAIRE

    Ohmann, H B; de Campos, M.; Fitzpatrick, D. R.; Rapin, N; Babiuk, L.A.

    1989-01-01

    Polymorphonuclear neutrophilic granulocytes (PMN) have been implicated as playing a role in antiviral defense. In addition to having phagocytic and cytotoxic activities, PMN may produce an antiviral substance with interferon (IFN)-like activity. The product, for which the name polyferon (PF) has been coined, is produced upon direct encounter of PMN with bovine herpesvirus 1 (BHV-1)-infected bovine cells or membranes thereof. Exposure to purified virus only does not induce PF. The intimate int...

  12. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum

    OpenAIRE

    Andrighetti-Fröhner CR; RV Antonio; Creczynski-Pasa TB; CRM Barardi; CMO Simões

    2003-01-01

    Natural products are an inexhaustible source of compounds with promising pharmacological activities including antiviral action. Violacein, the major pigment produced by Chromobacterium violaceum, has been shown to have antibiotic, antitumoral and anti-Trypanosoma cruzi activities. The goal of the present work was to evaluate the cytotoxicity of violacein and also its potential antiviral properties.The cytotoxicity of violacein was investigated by three methods: cell morphology evaluation by i...

  13. Antiviral targets of human noroviruses.

    Science.gov (United States)

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  14. Tongue sole (Cynoglossus semilaevis) prothymosin alpha: Cytokine-like activities associated with the intact protein and the C-terminal region that lead to antiviral immunity via Myd88-dependent and -independent pathways respectively.

    Science.gov (United States)

    Zhang, Bao-cun; Sun, Li

    2015-11-01

    Prothymosin alpha (ProTα) is a small protein that in mammals is known to participate in diverse biological processes including immunomodulation. In teleost, the immunological function of ProTα is unknown. In the current study, we investigated the expression and function of the ProTα (named CsProTα) from the teleost fish tongue sole (Cynoglossus semilaevis). We found that CsProTα expression was abundant in immune relevant tissues and upregulated by megalocytivirus infection. Immunoblot detected secretion of CsProTα by peripheral blood leukocytes. Recombinant CsProTα (rCsProTα) as well as the C-terminal 11-residue (Ct11) were able to bind head kidney monocytes (HKM) and induce immune gene expression; however, the induction patterns caused by rCsProTα and Ct11 differed considerably. When introduced in vivo, rCsProTα and Ct11 significantly reduced megalocytivirus infection in fish tissues, whereas rCsProTα antibody significantly promoted viral replication. Blocking of Myd88 activity abolished the virus-inhibitory effect of rCsProTα but not Ct11. Taken together, these results demonstrate for the first time that both the intact protein and the C-terminal segment of a teleost ProTα can act like cytokines and induce antiviral immunity via, however, distinct signaling pathways that differ in the requirement of Myd88. PMID:26162512

  15. Disturbances of electrodynamic activity affect abortion in animals

    International Nuclear Information System (INIS)

    A specific kind of intracellular organelles, the mitochondria, is the place of metabolic energy production by oxidative mechanism. We used cell mediated immunity method for verification of the energy metabolism (ATP production). The antigen (immunological functional RNA) was obtained from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus (LDV) and prepared by the high pressure gel chromatography (HPGC). We have studied the immunological adaptability of LDH viral antigen in 62 pigs (12 parents and 50 piglings). Exitus of piglings was in case of positive imunological response on LDV. The statement results from a comparison of the relative frequency of an incidence of identical findings in male piglets and sows and from identical findings in female piglets and pigs. The efficient elaboration and utilization of energy in cell may be damaged by the changes of energy production systems and also by long-term parasitary depletion of ATP energy. Biological activity is based not only on biochemical but also on biophysical mechanisms. Biophysical processes are also involved in the transfer of information and its processing for making decisions and providing control, which are important parts of biological activity. These experimental results were used for the same study in human.

  16. Root activity, some crops as affected by soil strength

    International Nuclear Information System (INIS)

    To find out the relationship between soil strength and root activity of different crops, the experiment was conducted on Haryana Agricultural University Farm, Hissar. Open drums were placed one foot deep. 5 cm thick densities 1.4 (Control), 1.6 and 1.8 g/cc were placed at 25 cm depth in various drums. Test crops taken were pea, gram, wheat and barley. Bulk density of higher order in combination with low moisture levels resulted in more detrimental effects on root penetration of the crop in general but at some stages significant interaction between bulk density and moisture was observed where low moisture favoured the root entry through the compacted layers of soil. (author)

  17. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies. PMID:26315688

  18. Cobalt in alluvial Egyptian soils as affected by industrial activities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Twenty-five surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils. The aim of this study was to evaluate total Co content in alluvial soils of Delta in Egypt using the delayed Neturen activation analysis technique (DNAA). The two prominent gamma ray lines at 1173.2 and 1332.5 keV was efficiently used for 60Co determination. Co content in non-polluted soil samples ranged between 13.12 to 23.20 ppm Co with an average of 18.16*4.38 ppm. Cobalt content in moderately polluted soils ranged between 26.5 to 30.00 ppm with an average of 28.3*1.3 ppm. The highest Co levels (ranged from 36 to 64.69 ppm with an average of 51.9*9.5); were observed in soil samples collected from, either highly polluted agricultural soils due to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  19. Sampling frequency affects ActiGraph activity counts

    DEFF Research Database (Denmark)

    Brønd, Jan Christian; Arvidsson, Daniel

    Introduction: The ActiLife Data Analysis Software processes ActiGraph accelerometer data and has a bandpass filter attenuating accelerations falling outside the normal human frequency passband considered to be 0.25-2.5 Hz. This frequency passband disfavour vigorous physical activity that is...... normally performed at frequencies higher than 2.5 Hz. With the ActiGraph model GT3X one has the option to select sample frequency from 30 to 100 Hz. This study investigated the effect of the sampling frequency on the ouput of the bandpass filter.Methods: A synthetic frequency sweep of 0-15 Hz was generated...... in Matlab and sampled at frequencies of 30-100 Hz. Also, acceleration signals during indoor walking and running were sampled at 30 Hz using the ActiGraph GT3X and resampled in Matlab to frequencies of 40-100 Hz. All data was processed with the ActiLife software.Results: Acceleration frequencies...

  20. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. PMID:25449847

  1. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  2. 1,6-Bis[(benzyloxy)methyl]uracil derivatives-Novel antivirals with activity against HIV-1 and influenza H1N1 virus.

    Science.gov (United States)

    Geisman, Alexander N; Valuev-Elliston, Vladimir T; Ozerov, Alexander A; Khandazhinskaya, Anastasia L; Chizhov, Alexander O; Kochetkov, Sergey N; Pannecouque, Christophe; Naesens, Lieve; Seley-Radtke, Katherine L; Novikov, Mikhail S

    2016-06-01

    A series of 1,6-bis[(benzyloxy)methyl]uracil derivatives combining structural features of both diphenyl ether and pyridone types of NNRTIs were synthesized. Target compounds were found to inhibit HIV-1 reverse transcriptase at micro- and submicromolar levels of concentrations and exhibited anti-HIV-1 activity in MT-4 cell culture, demonstrating resistance profile similar to first generation NNRTIs. The synthesized compounds also showed profound activity against influenza virus (H1N1) in MDCK cell culture without detectable cytotoxicity. The lead compound of this assay appeared to exceed rimantadine, amantadine, ribavirin and oseltamivir carboxylate in activity. The mechanism of action of 1,6-bis[(benzyloxy)methyl]uracils against influenza virus is currently under investigation. PMID:27112451

  3. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL in vitro DE CUATRO EXTRACTOS DE LAS ESPECIES Caryodendron orinocense Y Phyllanthus niruri DE LA FAMILIA Euphorbiaceae CONTRA LOS VIRUS HERPES BOVINO TIPO 1 y HERPES SIMPLEX TIPO 2 EVALUATION OF THE in vitro ANTIVIRAL ACTIVITY OF FOUR EXTRACTS FROM THE SPECIES Caryodendron orinocense AND Phyllanthus niruri FROM Euphorbiaceae FAMILY AGAINST HERPES SIMPLEX VIRUS TYPE 2 AND BOVINE HERPES VIRUS TYPE 1

    Directory of Open Access Journals (Sweden)

    David ARBOLEDA C.

    2007-01-01

    Full Text Available Los virus causan enfermedades humanas y animales de gran importancia epidemiológica y económica, para la mayoría de las cuales no existen tratamientos satisfactorios, o con las terapias se generan cepas resistentes. Extractos de plantas pertenecientes a la familia Euphorbiaceae han mostrado actividad contra virus de la familia Herpesviridae. Utilizando la técnica de tinción en placa con cristal violeta, se evaluó la citotoxicidad y la actividad antiviral de los extractos en hexano, en acetato de etilo, en metanol y en agua de las especies Caryodendron orinocense y Phyllanthus niruri contra los virus del Herpes Simplex tipo 2 (HSV-2 y del Herpes Bovino tipo 1 (HVB-1. Además, se realizó un estudio fitoquímico preliminar de las dos especies. En general, los extractos de las especies estudiadas muestran citotoxicidad a concentraciones mayores de 250 μg/mL. El extracto en acetato de etilo de la especie Caryodendron orinocense fue el que registró el mayor factor de reducción viral para HSV-2 y HVB-1, el cual fue de 10² a una concentración de 125 μg/ml y de 10(4 a 62.5 μg/ml respectivamente. Las especies estudiadas muestran una composición química determinada principalmente por aminoácidos, compuestos fenólicos, taninos y triterpenoides, metabolitos que podrían estar involucrados en su actividad antiviral.Viruses cause human and animal diseases of both epidemiological and economic importance and for many of them there are no satisfactory treatments or resistant strains are generated during drug therapy. Extracts from the Euphorbiaceae family plants have shown activity against viruses belonging to the Herpesviridae family. Both the toxicity and the antiviral activity of hexanic, ethyl acetate, methanolic and aqueous extracts from the Euphorbiaceae species Caryodendron orinocense and Phyllanthus niruri against Herpes Simplex Virus type 2 and Herpes Bovine Virus type 1, were evaluated using the crystal violet plaque staining technique

  4. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance

    Science.gov (United States)

    McKimm‐Breschkin, Jennifer L.

    2012-01-01

    Please cite this paper as: McKimm‐Breschkin (2012) Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses 7(Suppl. 1), 25–36. There are two major classes of antivirals available for the treatment and prevention of influenza, the M2 inhibitors and the neuraminidase inhibitors (NAIs). The M2 inhibitors are cheap, but they are only effective against influenza A viruses, and resistance arises rapidly. The current influenza A H3N2 and pandemic A(H1N1)pdm09 viruses are already resistant to the M2 inhibitors as are many H5N1 viruses. There are four NAIs licensed in some parts of the world, zanamivir, oseltamivir, peramivir, and a long‐acting NAI, laninamivir. This review focuses on resistance to the NAIs. Because of differences in their chemistry and subtle differences in NA structures, resistance can be both NAI‐ and subtype specific. This results in different drug resistance profiles, for example, the H274Y mutation confers resistance to oseltamivir and peramivir, but not to zanamivir, and only in N1 NAs. Mutations at E119, D198, I222, R292, and N294 can also reduce NAI sensitivity. In the winter of 2007–2008, an oseltamivir‐resistant seasonal influenza A(H1N1) strain with an H274Y mutation emerged in the northern hemisphere and spread rapidly around the world. In contrast to earlier evidence of such resistant viruses being unfit, this mutant virus remained fully transmissible and pathogenic and became the major seasonal A(H1N1) virus globally within a year. This resistant A(H1N1) virus was displaced by the sensitive A(H1N1)pdm09 virus. Approximately 0·5–1·0% of community A(H1N1)pdm09 isolates are currently resistant to oseltamivir. It is now apparent that variation in non‐active site amino acids can affect the fitness of the enzyme and compensate for mutations that confer high‐level oseltamivir resistance resulting in minimal impact on enzyme function. PMID:23279894

  5. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay.

    Science.gov (United States)

    Rothan, H A; Zulqarnain, M; Ammar, Y A; Tan, E C; Rahman, N A; Yusof, R

    2014-06-01

    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation. PMID:25134897

  6. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    Science.gov (United States)

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record PMID:26709860

  7. Inhibition of sandfly fever Sicilian virus (Phlebovirus) replication in vitro by antiviral compounds.

    Science.gov (United States)

    Crance, J M; Gratier, D; Guimet, J; Jouan, A

    1997-01-01

    Sandfly fever Sicilian virus (SFSV) was used in our laboratory to screen antiviral substances active toward viruses of the Bunyaviridae family. Antiviral activity was estimated by the reduction of the cytopathic effect of SFSV on infected Vero cells. Cytotoxicity was evaluated by determining the inhibition of Trypan blue exclusion. The specificity of action of each tested compound was estimated by the selectivity index (CD50/ED50). Selectivity indices of human recombinant interferon-alpha (IFN alpha) (Roferon and Introna), iota-, kappa- and lambda- carrageenans, fucoidan and 6-azauridine were much higher than that of ribavirin, the only antiviral substance which has been previously investigated for its inhibitory effects on Phlebovirus infections. Other compounds showed significant antiviral activity: glycyrrhizin, suramin sodium, dextran sulphate and pentosan polysulphate. All these compounds caused a concentration-dependent reduction in the virus yield. Ribavirin, 6-azauridine and IFN alpha have been shown to inhibit a late step of the virus replicative cycle, whereas glycyrrhizin and suramin sodium were active at an early step and the sulphated polysaccharides inhibited adsorption of SFSV on the cells. The antiviral compounds selected in this study as specific inhibitors of in vitro replication of SFSV are promising candidates for the chemotherapy of haemorrhagic fevers caused by viruses of the Bunyaviridae family. The combination of IFN alpha and ribavirin, which showed a synergistic antiviral effect, should be evaluated for the treatment of these infections. PMID:9403935

  8. Youth perceptions of how neighborhood physical environment and peers affect physical activity: a focus group study

    OpenAIRE

    Smith, Alan L.; Troped, Philip J; McDonough, Meghan H; DeFreese, J.D.

    2015-01-01

    Objective There is need for a youth-informed conceptualization of how environmental and social neighborhood contexts influence physical activity. We assessed youths’ perceptions of their neighborhood physical and peer environments as affecting physical activity. Methods Thirty-three students (20 girls; ages 12-14 years) participated in focus groups about the physical environment and peers within their neighborhoods, and their understanding of how they affect physical activity. Results Inducti...

  9. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense

    Science.gov (United States)

    Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan

    2014-01-01

    The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792

  10. Antiviral Inhibition of Enveloped Virus Release by Tetherin/BST-2: Action and Counteraction

    OpenAIRE

    Stuart J D Neil; Anna Le Tortorec; Suzanne Willey

    2011-01-01

    Tetherin (BST2/CD317) has been recently recognized as a potent interferon-induced antiviral molecule that inhibits the release of diverse mammalian enveloped virus particles from infected cells. By targeting an immutable structure common to all these viruses, the virion membrane, evasion of this antiviral mechanism has necessitated the development of specific countermeasures that directly inhibit tetherin activity. Here we review our current understanding of the molecular basis of tetherin’s ...

  11. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential

    OpenAIRE

    Zasloff, Michael; Adams, A. Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Scott C Weaver; Wong, Gerard C. L.

    2011-01-01

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacit...

  12. Carbohydrate recognition by the antiviral lectin cyanovirin-N

    OpenAIRE

    Fujimoto, Yukiji K.; Green, David F.

    2012-01-01

    Cyanovirin-N is a cyanobacterial lectin with potent antiviral activity, and has been the focus of extensive pre-clinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and Molecular-Mechanics/ Poisson–Boltzmann/Surface-Area (...

  13. Momentary Affective States Are Associated with Momentary Volume, Prospective Trends, and Fluctuation of Daily Physical Activity

    Science.gov (United States)

    Kanning, Martina K.; Schoebi, Dominik

    2016-01-01

    Several interventions aiming to enhance physical activity in everyday life showed mixed effects. Affective constructs are thought to potentially support health behavior change. However, little is known about within-subject associations between momentary affect and subsequent physical activity in everyday life. This study analyzed the extent to which three dimensions of affective states (valence, calmness, and energetic arousal) were associated with different components of daily activity trajectories. Sixty-five undergraduates’ students (Age: M = 24.6; SD = 3.2; females: 57%) participated in this study. Physical activity was assessed objectively through accelerometers during 24 h. Affective states assessments were conducted randomly every 45 min using an e-diary with a six-item mood scale that was especially designed for ambulatory assessment. We conducted three-level multi-level analyses to investigate the extent to which momentary affect accounted for momentary volume, prospective trends, and stability vs. fluctuation of physical activity in everyday life. All three affect dimensions were significantly associated with momentary activity volumes and prospective trends over 45 min periods. Physical activity didn’t fluctuate freely, but featured significant autocorrelation across repeated measurements, suggesting some stability of physical activity across 5-min assessments. After adjusting for the autoregressive structure in physical activity assessments, only energetic arousal remained a significant predictor. Feeling energized and awake was associated with an increased momentary volume of activity and initially smaller but gradually growing decreases in subsequent activity within the subsequent 45 min. Although not related to trends in physical activity, higher valence predicted lower stability in physical activity across subsequent 45 min, suggesting more short-term fluctuations in daily activity the more participants reported positive affective valence. The

  14. Efficacious Early Antiviral Activity of HIV Gag- and Pol-Specific HLA-B*2705-Restricted CD8+ T Cells ▿

    OpenAIRE

    Payne, Rebecca P.; Kløverpris, Henrik; Sacha, Jonah B.; Brumme, Zabrina; Brumme, Chanson; Buus, Søren; Sims, Stuart; Hickling, Stephen; Riddell, Lynn; Chen, Fabian; Luzzi, Graz; Edwards, Anne; Phillips, Rodney; Prado, Julia G.; Goulder, Philip J. R.

    2010-01-01

    The association between HLA-B*2705 and the immune control of human immunodeficiency virus type 1 (HIV-1) has previously been linked to the targeting of the HLA-B*2705-restricted Gag epitope KRWIILGLNK (KK10) by CD8+ T cells. In order to better define the mechanisms of the HLA-B*2705 immune control of HIV, we first characterized the CD8+ T-cell responses of nine highly active antiretroviral therapy (HAART)-naïve B*2705-positive subjects. Unexpectedly, we observed a strong response to an HLA-B*...

  15. Gene Expression and Antiviral Activity of Alpha/Beta Interferons and Interleukin-29 in Virus-Infected Human Myeloid Dendritic Cells

    OpenAIRE

    Österlund, Pamela; Veckman, Ville; Sirén, Jukka; Klucher, Kevin M; Hiscott, John; Matikainen, Sampsa; Julkunen, Ilkka

    2005-01-01

    Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-α), alpha/beta interferon (IFN-α/β), and IFN-like interleukin-28A/B (IFN-λ2/3) and IL-29 (IFN-λ1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or ...

  16. In Vitro Evaluation of the Antiviral Activity of the Synthetic Epigallocatechin Gallate Analog-Epigallocatechin Gallate (EGCG Palmitate against Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Chunjian Zhao

    2014-02-01

    Full Text Available In this study, epigallocatechin gallate (EGCG palmitate was synthesized and its anti-porcine reproductive and respiratory syndrome virus (PRRSV activity was studied. Specifically, EGCG palmitate was evaluated for its ability to inhibit PRRSV infection in MARC-145 cells when administered as pre-, post-, or co-treatment. EGCG and ribavirin were used as controls. The results showed that a 50% cytotoxic concentration (CC50 of EGCG, EGCG palmitate, and ribavirin was achieved at 2,359.71, 431.42, and 94.06 μM, respectively. All three drugs inhibited PRRSV in a dose-dependent manner regardless of the treatment protocol. EGCG palmitate exhibited higher cytotoxicity than EGCG, but lower cytotoxicity than ribavirin. EGCG palmitate anti-PRRSV activity was significantly higher than that of EGCG and ribavirin, both as pre-treatment and post-treatment. Under the former conditions and a tissue culture infectious dose of 10 and 100, the selectivity index (SI of EGCG palmitate in the inhibition of PRRSV was 3.8 and 2.9 times higher than that of ribavirin when administered as a pre-treatment, while the SI of EGCG palmitate in the inhibition of PRRSV was 3.0 and 1.9 times higher than ribavirin when administered as a post-treatment. Therefore, EGCG palmitate is potentially effective as an anti-PRRSV agent and thus of interest to the pharmaceutical industry.

  17. An uncontrolled open-label, multicenter study to monitor the antiviral activity and safety of inhaled zanamivir (as Rotadisk via Diskhaler device) among Chinese adolescents and adults with influenza-like illness

    Institute of Scientific and Technical Information of China (English)

    CAO Bin; XU Qian; HU Ke; CHEN Bai-yi; YU Yun-song; SONG Shu-fan; SHU Yue-long; WANG Chen; WANG Da-yan; YU Xiao-min; WEI Lu-qing; PU Zeng-hui; GAO Yan; WANG Jing; DONG Jian-ping; LI Xiao-ling

    2012-01-01

    Background It is the first multicenter clinical study in China to investigate zanamivir use among Chinese adolescents and adults with influenza-like illness (ILI) since 2009,when inhaled zanamivir (RELENZA(R)) was marketed in China.Methods An uncontrolled open-label,multicentre study to evaluate the antiviral activity,and safety of inhaled zanamivir (as Rotadisk via Diskhaler device); 10 mg administered twice daily for 5 days in subjects ≥12 years old with ILl.Patients were enrolled within 48 hours of onset and followed for eight days.Patients were defined as being influenza-positive if the real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) test had positive results.Results A total of 400 patients ≥12 years old were screened from 11 centers in seven provinces from March 2010 to January 2011.Three hundred and ninety-two patients who took at least one dose of zanamivir were entered into the safety analysis.The mean age was 33.8 years and 50% were male.Cardiovascular diseases and diabetes were the most common comorbidities.All the reported adverse events,such as rash,nasal ache,muscle ache,nausea,diarrhea,headache,occurred in less than 1% of subjects.Mild sinus bradycadia or arrhythmia occurred in four subjects (1%).Most of the adverse events were mild and did not require any change of treatment.No severe adverse events (SAE) or fatal cases were reported.Bronchospasm was found in a 38 years old woman whose symptoms disappeared after stopping zanamivir and without additional treatment.All the 61 influenza virus isolates (43 before enrollment,18 during treatment) proved to be sensitive to zanamivir.Conclusions Zanamivir is well tolerated by Chinese adolescents and adults with ILls.There is no evidence for the emergence of drug-resistant isolates during treatment with zanamivir.(ChiCTR-TNRC-10000938)

  18. Extent of Intramolecular pi Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72)

    Czech Academy of Sciences Publication Activity Database

    Blindauer, C. A.; Sigel, A.; Operschall, B. P.; Holý, Antonín; Sigel, H.

    2013-01-01

    Roč. 639, 8-9 (2013), s. 1661-1673. ISSN 0044-2313 Institutional support: RVO:61388963 Keywords : nucleotide analogues * antivirals * complex stabilities * isomers * equilibria * mixed ligand complexes Subject RIV: CC - Organic Chemistry Impact factor: 1.251, year: 2013

  19. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  20. Familial Vulnerability to ADHD Affects Activity in the Cerebellum in Addition to the Prefrontal Systems

    Science.gov (United States)

    Mulder, Martijn J.; Baeyens, Dieter; Davidson, Matthew C.; Casey, B. J.; Van Den Ban, Els; Van Engeland, Herman; Durston, Sarah

    2008-01-01

    The study examines whether cerebellar systems are sensitive to familial risk for ADHD in addition to frontostriatal circuitry. The results conclude that familial vulnerability to ADHD affects activity in both the prefrontal cortex and cerebellum.

  1. Iron metabolism in chronic hepatitis C patients on antiviral treatment

    Directory of Open Access Journals (Sweden)

    K. V. Zhdanov

    2009-01-01

    Full Text Available Purpose of the present research studying dynamics of the parameters describing a metabolism of iron at chronic hepatitis С patients on a combined antiviral therapy peg-interferon-2а and ribavirin. Has served 50 patients chronic hepatitis C (anti-HCV “+”, РНК HCV “+”, 1b genotype in the age from 18 till 59 years, on the average 33±1,5years, at various stages of disease and stages of monitoring antiviral treatments. To patients the parameters describing a metabolism of iron (serum iron, transferrin, ferritin, haptoglobin, ceruplasmin, total iron binding capacity, transferrin saturation by iron were defined. The sustain virology response (SVR was estimated - definition RNA HCV in half a year after end of treatment (72 week. It was carried out liver biopsy with the subsequent estimation of a degree of inflammatory activity and fibrosis on system METAVIR. Therapy peg-interferon-2а and ribavirin was accompanied by decrease serum iron, transferrin, ferritin, ceruplasmin, haptoglobin, transferrin saturation by iron irrespective of the answer to treatment. Thus, SVR directly correlated with higher level of iron and ceruplasmin of blood before therapy, on its background and during supervision. Normalization of biochemical activity chronic hepatitis C and positive morphological dynamics correspond with the parameters describing changes in a metabolism of iron at its patients, possibly, were compensatory-adaptive and to some extent endogen antiviral reaction of an organism of the person on HCV - infection. 

  2. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    Science.gov (United States)

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. PMID:24780919

  3. Physical Activity in Adolescents — Barriers and Impact on Depressed Affect

    OpenAIRE

    Langguth, Nadine

    2016-01-01

    Adolescence is a high-risk period for physical inactivity as well as depressed affect, both related to various short-, mid-, and long-term negative consequences for adolescents' physical and mental health. Therefore, this developmental period is ideally suited for studying the association between change processes of everyday physical activity and change processes of depressed affect within person by applying an intensive longitudinal design. Given that physical activity substantially decrease...

  4. Vaccines and Antiviral Drugs in Pandemic Preparedness

    OpenAIRE

    Arnold S. Monto

    2006-01-01

    While measures such as closing schools and social distancing may slow the effects of pandemic influenza, only vaccines and antiviral drugs are clearly efficacious in preventing infection or treating illness. Unless the pandemic strain closely resembles one already recognized, vaccine will not be available early. However, studies can be conducted beforehand to address questions concerning vaccine dose, frequency of inoculation, and need for adjuvants. In contrast, antiviral drugs, particularly...

  5. [Study of the antiviral action of gentamicin].

    Science.gov (United States)

    Novokhatskiĭ, A S; Gerasimova, S S

    1975-05-01

    Experimental data on the effect of various concentrations of gentamycin on reproduction of VEE and Sindbis viruses in tissue culture are presented. It was found that gentamycin had no cytotoxic effect on the primary tripsinized chick embryon fibroblasts (CEF) when used in doses of 10, 20 or 30 mg/ml and only when used in a dose of 50 mg/ml it induced 50 percent destruction of the cell layer. Multiplication of the VEE and Sindbis viruses in the culture of CEF was inhibited in the presence of gentamycin by 1.5--3.5 lg PFU/ml. Two stages in the virus inhibiting effect of gentamycin were determined on the model of VEE, i. e. the stage of inhibition in the absence of visible damages of the cells and the stage associated with their destruction. The doses of gentamycin higher than 3 mg/ml inhibited in parallel the virus specific synthesis and synthesis of the cell proteins and nucleic acids. At the same time, when gentamycin was used in a dose of 10 mg/ml, no impairement of the cell viability was observed and the cell capacity to produce high titers of the model virus was reduced after incubation without the antibiotic for 24 hours. The antiviral activity of gentamycin were therefore determined by revers inhibition of the cell metabolic activity. PMID:1225192

  6. MicroRNA-555 has potent antiviral properties against poliovirus.

    Science.gov (United States)

    Shim, Byoung-Shik; Wu, Weilin; Kyriakis, Constantinos S; Bakre, Abhijeet; Jorquera, Patricia A; Perwitasari, Olivia; Tripp, Ralph A

    2016-03-01

    Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV. PMID:26683768

  7. Antiviral activity of Mentha spicata Linn.extracts against porcine parvovirus in vitro%留兰香提取物体外抗猪细小病毒的作用

    Institute of Scientific and Technical Information of China (English)

    韩卫丽; 崔保安; 张红英; 王学兵; 徐端红; 陈瑞亮

    2011-01-01

    通过观察病毒引起的细胞病变效应(Cytopathogenic effect,CPE)和四甲基偶氮唑盐微量酶反应比色法(MTT)检测留兰香提取物抗猪细小病毒(PPV)活性,计算药物对病变的抑制率和半数抑制浓度(50%inhibitingconcentration,IC50),并从药物预防给药(抗病毒吸附)、直接杀灭及治疗给药(抑制病毒在细胞内的生物合成)3个方面分析留兰香提取物抗PPV活性的作用机制。结果显示:留兰香挥发油在这3种作用方式中对PPV均有抑制效果,其半数抑制浓度(IC50)分别为0.008 0 mg/ml、0.001 9 mg/ml、0.003 6 mg/ml,治疗指数(TI)分别为25.88、108.95、57.50;留兰香水提液和粗提物对PPV直接杀灭的半数有效浓度(IC50)分别为0.034 0 mg/ml、0.356 0mg/ml,治疗指数(TI)分别为79.18、8.37;留兰香水提液和粗提物抑制病毒在细胞内生物合成的半数有效浓度(IC50)分别为0.043 0 mg/ml、0.063 0 mg/ml,治疗指数(TI)分别为62.60、47.27,留兰香水提液和粗提物均无抗病毒吸附作用。表明留兰香挥发油在对PPV的3种作用方式中均有安全高效活性,留兰香水提液和粗提物对PPV侵入细胞无阻止作用,但在直接灭活和抑制其在细胞内的增殖方面均有较高的活性。%The experiment aimed to investigate antiviral activity of Mentha spicata Linn, extracts against porcine parvovirus (PPV) in vitro. The activity was measured by MTT assay and CPE (cytopathogenic effect) , based on which, inhibition ratio and median inhibiting concentration (IC50) were calculated. The antiviral mechanism was analyzed through three ways of drug administration, adding the extracts into cells before, after and simultaneous with PPV virus. The results demonstrated that the volatile oils of Mentha spicata Linn, had antivirus activities in the three reactions. Their median inhibiting concentrations (IC50) were 0.008 0 mg/ml, 0.001 9 mg/ml and 0.003 6 mg/ml respectively. And the treatment

  8. Atividade antiviral do extrato de própolis contra o calicivírus felino, adenovírus canino 2 e vírus da diarréia viral bovina Antiviral activity of propolis extracts against feline calicivirus, canine adenovirus 2, and bovine viral diarrhea virus

    OpenAIRE

    Ana Paula Cueto; Sydney Hartz Alves; Marciele Pilau; Rudi Weiblen; Thaís Felli Kubiça; Luciane Teresinha Lovato

    2011-01-01

    Dentre as propriedades biológicas da própolis, a atividade antimicrobiana tem merecido destacada atenção. Neste artigo, descreve-se a atividade antiviral de dois extratos etanólicos de própolis (EP1 e EP2) frente aos vírus: calicivírus felino (FCV), adenovírus canino tipo 2 (CAV-2) e vírus da diarréia viral bovina (BVDV). Um dos extratos (EP1) foi obtido por extração etanólica de própolis obtida da região central do Estado do Rio Grande do Sul e o segundo (EP2), obtido comercialmente de uma e...

  9. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Khachatoorian, Ronik, E-mail: RnKhch@ucla.edu [Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Arumugaswami, Vaithilingaraja, E-mail: VArumugaswami@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Department of Surgery, Regenerative Medicine Institute at Cedars-Sinai Medical Center, Los Angeles, California, CA (United States); Raychaudhuri, Santanu, E-mail: SRaychau@ucla.edu [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Yeh, George K., E-mail: GgYeh@ucla.edu [Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Maloney, Eden M., E-mail: EMaloney@ucla.edu [Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, CA (United States); Wang, Julie, E-mail: JulieW1521@ucla.edu [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); and others

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  10. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    International Nuclear Information System (INIS)

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  11. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjing; Tao, Junyan; Yang, Xiaoping [State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Zhuliang [Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201 (China); Zhang, Li; Liu, Hongsheng [Department of Academy of Sciences, Liaoning University, Shenyang 110036 (China); Wu, Kailang [State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072 (China)

    2014-07-04

    Highlights: • Triterpenoids GLTA and GLTB display anti-EV71 activities without cytotoxicity. • The compounds prevent EV71 infection by blocking adsorption of the virus to the cells. • GLTA and GLTB bind to EV71 capsid at the hydrophobic pocket to block EV71 uncoating. • The two compounds significantly inhibit the replication of EV71 viral RNA. • GLTA and GLTB may be used as potential therapeutic agents to treat EV71 infection. - Abstract: Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential

  12. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection

    International Nuclear Information System (INIS)

    Highlights: • Triterpenoids GLTA and GLTB display anti-EV71 activities without cytotoxicity. • The compounds prevent EV71 infection by blocking adsorption of the virus to the cells. • GLTA and GLTB bind to EV71 capsid at the hydrophobic pocket to block EV71 uncoating. • The two compounds significantly inhibit the replication of EV71 viral RNA. • GLTA and GLTB may be used as potential therapeutic agents to treat EV71 infection. - Abstract: Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential

  13. THE STUDY OF FACTORS AFFECTING THE ACTIVITY OF MEAT ANTIOXIDANT SYSTEM

    OpenAIRE

    Patrakova, I.; Gurinovich, G.

    2015-01-01

    Oxidation of lipids and myoglobin in raw meat are interrelated processes that affect the overall meat quality. The intensity of oxidation processes in meat raw material is regulated by its own antioxidant system (catalase, peroxidase, glutathione, etc.), the activity of which should be considered in the development of new technological solutions. Oxidation of lipids and myoglobin, directly affect the quality and safety of meat products, and reducing of the intensity of these processes contrib...

  14. Affective response to a loved one's pain: insula activity as a function of individual differences.

    Directory of Open Access Journals (Sweden)

    Viridiana Mazzola

    Full Text Available Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone. Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion.

  15. A fresh look at an antiviral helicase

    Institute of Scientific and Technical Information of China (English)

    Leonid Gitlin; Marco Colonna

    2007-01-01

    @@ In order to survive,all organlsms must guard against viral infections.Recognition of viruses is accomplished via multiple sensors.Many mammalian proteins can recognize viral products,such as double-stranded RNA(dsRNA),yet feW of them are known to induce interferon,the central antiviral messenger.Since interferon is indispensable for Successful antiviral defense [1],the interferon-inducing sensors have been of particular interest.However,a clear understanding of such sensors has been elusive,and the first well-established sensor family,the toll-like receptors (TLRs),was described relatively recently[2].Antiviral TLRS are positioned in the endosomes,where they report the appearance of viral genetic material(DNA,single-and double-stranded RNA).

  16. Antiviral Effect of Korean Red Ginseng Extract and Ginsenosides on Murine Norovirus and Feline Calicivirus as Surrogates for Human Norovirus

    OpenAIRE

    Lee, Min Hwa; Lee, Bog-Hieu; Jung, Ji-Youn; Cheon, Doo-Sung; Kim, Kyung-Tack; Choi, Changsun

    2011-01-01

    Korean red ginseng has been studied various biological activities such as immune, anti-oxidative, anti-microbial, and anticancer activities but antiviral mechanism needs further studies. In this study, we aimed to examine the antiviral effects of Korea red ginseng extract and ginsenosides on norovirus surrogate, including murine norovirus (MNV) and feline calicivirus (FCV). We evaluated the pre-, co-, and post-treatment effects of Korean red ginseng (KRG), ginsenosides Rb1 and Rg1. To measure...

  17. A new antiviral screening method that simultaneously detects viral replication, cell viability, and cell toxicity.

    Science.gov (United States)

    Matza-Porges, Sigal; Eisen, Kobi; Ibrahim, Hadeel; Haberman, Adva; Fridlender, Bertold; Joseph, Gili

    2014-11-01

    Viruses cause a variety of illnesses in humans, yet only a few antiviral drugs have been developed; thus, new antiviral drugs are urgently needed. Plants could be a good source of antiviral drugs, they do not have mobility and can only defend themselves by producing compounds against pathogens such as viruses in their own fix environment. These compounds may have the potential to inhibit animal and human viruses as well. In this study, a fast and reliable method for screening plant extracts for specific antiviral activity against Herpes simplex virus type-1 (HSV-1) was developed. This method distinguishes between host cell death due to infectivity and multiplicity of the virus versus toxicity of the plant extract. Extracts from 80 plant and plant organs were screened using this approach. Six plant extracts showed potential to exert specific HSV-1 growth inhibition activity. In two cases, different organs from the same plant showed similar active results. With this method it is possible to screen a large number of extracts in a rapid and accurate way to detect antiviral substances against HSV-I and other viruses. PMID:25152527

  18. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    International Nuclear Information System (INIS)

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the 3Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation

  19. Factors affecting uptake of an education and physical activity programme for newly diagnosed type 2 diabetes.

    OpenAIRE

    Visram, S.; Bremner, A.S.; Harrington, B.E.; Hawthorne, G

    2008-01-01

    Background: Intensive lifestyle intervention involving weight reduction and moderate physical activity has been shown to help regulate, and even prevent, type 2 diabetes. Aim: This study sought to explore factors affecting uptake of an education and physical activity programme for those diagnosed with type 2 diabetes. Method: Focus group discussions were conducted with individuals who completed the programme and semi-structured interviews were conducted with those who decline...

  20. Potencial antiviral da quercetina sobre o parvovírus canino Antiviral potencial of quercetin in canine parvovirus

    Directory of Open Access Journals (Sweden)

    O.V. Carvalho

    2013-04-01

    Full Text Available Avaliou-se o efeito do flavonoide quercetina na replicação do parvovírus canino in vitro por meio do ensaio de determinação da atividade virucida (ensaio 1, ensaio de determinação da atividade sobre a célula (ensaio 2 e ensaio de tempo de adição das drogas em diferentes etapas do ciclo replicativo viral (ensaio 3. A quercetina apresentou significante atividade antiviral, com valores máximos de redução do título viral de 96,3% no ensaio 1, 90% no ensaio 2 e 90% no ensaio 3. Os efeitos mais expressivos ocorreram nas etapas de adsorção e penetração viral. Os resultados deste trabalho sugerem a importância da quercetina para a medicina veterinária.The in vitro effect of the flavonoid quercetin against canine parvovirus was evaluated. The antiviral activity of quercetin was evaluated by determining the virucidal activity (assay 1, determining the activity on the cell (assay 2 and using the time of addition assay to test the inhibition of the viral replication cycle (assay 3. Quercetin showed a significant antiviral activity, with maximum viral titer reduction of 96.3% in assay 1, 90% in assay 2 and 90% in assay 3. The most expressive effects occurred in the stages of viral adsorption and penetration. The results show the importance of quercetin for veterinary medicine.

  1. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors.

    Science.gov (United States)

    Wang, X; Wang, G; Shi, J; Aa, J; Comas, R; Liang, Y; Zhu, H-J

    2016-06-01

    The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs. PMID:26076923

  2. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    Science.gov (United States)

    ... PATIENTS and their FAMILIES BELL’S PALSY: TREATMENT WITH STEROIDS AND ANTIVIRAL DRUGS This information sheet is provided to help you understand the role of steroids and antiviral drugs for treating Bell’s palsy. Neurologists ...

  3. Murine Pancreatic Beta TC3 Cells Show Greater 2′,5′-Oligoadenylate Synthetase (2′5′AS Antiviral Enzyme Activity and Apoptosis Following IFN-α or Poly(I:C Treatment than Pancreatic Alpha TC3 Cells

    Directory of Open Access Journals (Sweden)

    M. Li

    2009-01-01

    Full Text Available Type 1 diabetes is caused by autoimmune destruction of pancreatic beta cells, possibly virus initiated. Virus infection induces alpha-interferon (IFN-α, leading to upregulation of genes encoding double-stranded (ds RNA-dependent antiviral enzymes 2′,5′-oligoadenylate synthetase (2′5′AS and PKR (p68. To investigate whether beta cell specificity could be due to antiviral differences between beta and alpha cells, we treated beta and alpha TC3 cell lines with IFN-α and/or poly(I:C (a synthetic dsRNA. Results showed that, following IFN-α stimulation, increases in 2′5′AS levels and activities were significantly higher in beta than alpha cells (P<.001, whereas increases in PKR level and activity were comparable in the two cell types. Poly(I:C stimulated 2′5′AS activity in beta but not alpha cells, and co-transfection IFN-α plus poly(I:C induced apoptosis in beta but not alpha cells. These findings suggest that the elevated 2′5′AS response of pancreatic beta cells could render them particularly vulnerable to damage and/or apoptosis during virus infection.

  4. Elements of Design-Based Science Activities That Affect Students' Motivation

    Science.gov (United States)

    Jones, Brett D.; Chittum, Jessica R.; Akalin, Sehmuz; Schram, Asta B.; Fink, Jonathan; Schnittka, Christine; Evans, Michael A.; Brandt, Carol

    2015-01-01

    The primary purpose of this study was to examine the ways in which a 12-week after-school science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires,…

  5. Watered depressions as ecological phenomena in regions affected by mining activities

    International Nuclear Information System (INIS)

    This paper presents the results of the importance of mine watered depressions in a landscape affected by mining activities (model localities - Louky nad Olsi, Orlova and Horni Sucha, Karvina district) from an ecological point of view - conservation and formation of wetland and water ecosystems, genetic resources and biodiversity conservation

  6. Antiviral Prophylaxis and Isolation for the Control of Pandemic Influenza

    OpenAIRE

    Qingxia Zhang; Dingcheng Wang

    2014-01-01

    Before effective vaccines become available, antiviral drugs are considered as the major control strategies for a pandemic influenza. However, perhaps such control strategies can be severely hindered by the low-efficacy of antiviral drugs. For this reason, using antiviral drugs and an isolation strategy is included in our study. A compartmental model that allows for imported exposed individuals and asymptomatic cases is used to evaluate the effectiveness of control strategies via antiviral pro...

  7. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics.

    Science.gov (United States)

    Wang, Chao; Lu, Lu; Na, Heya; Li, Xiangpeng; Wang, Qian; Jiang, Xifeng; Xu, Xiaoyu; Yu, Fei; Zhang, Tianhong; Li, Jinglai; Zhang, Zhenqing; Zheng, Baohua; Liang, Guodong; Cai, Lifeng; Jiang, Shibo; Liu, Keliang

    2014-09-11

    Triterpene saponins are a major group of active components in natural products with nonspecific antiviral activities, while T20 peptide (enfuvirtide), which contains a helix zone-binding domain (HBD), is a gp41-specific HIV-1 fusion inhibitor. In this paper, we report the design, synthesis, and structure-activity relationship (SAR) of a group of hybrid molecules in which bioactive triterpene sapogenins were covalently attached to the HBD-containing peptides via click chemistry. We found that either the triterpenes or peptide part alone showed weak activity against HIV-1 Env-mediated cell-cell fusion, while the hybrids generated a strong cooperative effect. Among them, P26-BApc exhibited anti-HIV-1 activity against both T20-sensitive and -resistant HIV-1 strains and improved pharmacokinetic properties. These results suggest that this scaffold design is a promising strategy for developing new HIV-1 fusion inhibitors and possibly novel antiviral therapeutics against other viruses with class I fusion proteins. PMID:25156906

  8. Antiviral drug discovery: broad-spectrum drugs from nature.

    OpenAIRE

    Martinez, J P; Sasse, F; Brönstrup, M; Diez, J; Meyerhans, A

    2015-01-01

    Covering: up to April 2014. The development of drugs with broad-spectrum antiviral activities is a long pursued goal in drug discovery. It has been shown that blocking co-opted host-factors abrogates the replication of many viruses, yet the development of such host-targeting drugs has been met with scepticism mainly due to toxicity issues and poor translation to in vivo models. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can efficien...

  9. Population-wide emergence of antiviral resistance during pandemic influenza.

    Directory of Open Access Journals (Sweden)

    Seyed M Moghadas

    Full Text Available BACKGROUND: The emergence of neuraminidase inhibitor resistance has raised concerns about the prudent use of antiviral drugs in response to the next influenza pandemic. While resistant strains may initially emerge with compromised viral fitness, mutations that largely compensate for this impaired fitness can arise. Understanding the extent to which these mutations affect the spread of disease in the population can have important implications for developing pandemic plans. METHODOLOGY/PRINCIPAL FINDINGS: By employing a deterministic mathematical model, we investigate possible scenarios for the emergence of population-wide resistance in the presence of antiviral drugs. The results show that if the treatment level (the fraction of clinical infections which receives treatment is maintained constant during the course of the outbreak, there is an optimal level that minimizes the final size of the pandemic. However, aggressive treatment above the optimal level can substantially promote the spread of highly transmissible resistant mutants and increase the total number of infections. We demonstrate that resistant outbreaks can occur more readily when the spread of disease is further delayed by applying other curtailing measures, even if treatment levels are kept modest. However, by changing treatment levels over the course of the pandemic, it is possible to reduce the final size of the pandemic below the minimum achieved at the optimal constant level. This reduction can occur with low treatment levels during the early stages of the pandemic, followed by a sharp increase in drug-use before the virus becomes widely spread. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that an adaptive antiviral strategy with conservative initial treatment levels, followed by a timely increase in the scale of drug-use, can minimize the final size of a pandemic while preventing large outbreaks of resistant infections.

  10. Antiviral effect of ranpirnase against Ebola virus.

    Science.gov (United States)

    Hodge, Thomas; Draper, Ken; Brasel, Trevor; Freiberg, Alexander; Squiquera, Luis; Sidransky, David; Sulley, Jamie; Taxman, Debra J

    2016-08-01

    The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics. PMID:27350309

  11. SOME ASPECTS OF THE MARKETING STUDIES FOR THE PHARMACEUTICAL MARKET OF ANTIVIRAL DRUGS

    Directory of Open Access Journals (Sweden)

    A. G. Salnikova

    2015-01-01

    Full Text Available Antiviral drugs are widely used in medicinal practice. They suppress the originator and stimulate the protection of an organism. The drugs are used for the treatment of flu and ARVI, herpetic infections, virus hepatitis, HIV-infection. Contemporary pharmaceutical market is represented by a wide range of antiviral drugs. Marketing studies are conducted to develop strategies, used for the enhancement of pharmacy organization activity efficiency. Conduction of the marketing researches of pharmaceutical market is the purpose of this study. We have used State Registry of Drugs, State Record of Drugs, List of vital drugs, questionnaires of pharmaceutical workers during our work. Historical, sociological, mathematical methods, and a method of expert evaluation were used in the paper. As the result of the study we have made the following conclusions. We have studied and generalized the literature data about classification and application of antiviral drugs, marketing, competition. The assortment of antiviral drugs on the pharmaceutical market of the Russian Federation was also studied. We have conducted an analysis for the obtainment of the information about antiviral drugs by pharmaceutical workers. We have determined the competitiveness of antiviral drugs, and on the basis of the research conducted we have submitted an offer for pharmaceutical organizations to form the range of antiviral drugs.

  12. Sonme Factors that Affect the Free Radical-scavenging Activity of Tea Extracts

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Some factors that affect the free radical-scavenging activety of two tea extracts were studied in vitro. It was found that concentration of tea extract or heating tea extract or treating with activated carbon and diatomite all had obvious effect on the scavenging activety of green tea extract ,but heating or treating with diaomite had less effect on the scavenging activity of black tea extract. Ascorbic acid, for having synergic effect with tea extracts, could enhance the scavenging activity of tea extracts markedly, and the contrary was cupric ion. Reducing sugars such as fructose and glucose also had some syncrgic effect to tea extracts.

  13. Antifungal activity of different natural dyes against traditional products affected fungal pathogens

    Institute of Scientific and Technical Information of China (English)

    R Mari selvam; AJA Ranjit Singh; K Kalirajan

    2012-01-01

    Objective: In the present study to evaluate the anti fungal activity of natural dyes against traditional products affected fungal pathogens. Methods: Many traditional craft products affected fungal pathogens were isolated using potato dextrose agar medium. The isolated fungus were identified by morphological and microscopically characterization using Alexopolus manual. 50μl of Turmeric, Terminalli, Guava and Henna natural dyes were poured into the wells of the culture plates. If antifungal activity was present on the plates, it was indicated by an inhibition zone surrounding the well containing the natural dye. Result: At a dose level of 50μl of terminalli dye was able to inhibit the growth of all the fungi tested. The absorbance rate of natural dyes analyzed by UV Spectrophotometer. The absorbance rate is high in terminalli (2.266) and turmeric (2.255). Conclusions: Natural dyes were bound with traditional products to give good colour and good antimicrobial activity against isolated fungal pathogens.

  14. Physical activity and affect in elementary school children’s daily lives

    Directory of Open Access Journals (Sweden)

    JanKühnhausen

    2013-07-01

    Full Text Available A positive influence of physical activity (PA on affect has been shown in numerous studies. However, this relationship has not yet been studied in the daily life of children. We present a part of the FLUX study that attempts to contribute to filling that gap. To this end, a proper way to measure PA and affect in the daily life of children is needed. In pre-studies of the FLUX study, we were able to show that affect can be measured in children with self-report items that are answered using smartphones. In the current article, we show that it is feasible to objectively measure children’s PA with accelerometers for a period of several weeks and report descriptive information on the amount of activity of 51 children from 3rd and 4th grade. Additionally, we investigate the influence of daily PA on daily affect in children. Mixed effects models show no effect of PA on any of the four measured dimensions of affect. We discuss that this might be due to effects taking place at shorter time intervals, which can be investigated in future analyses.

  15. Quantitative Analysis of a Parasitic Antiviral Strategy

    OpenAIRE

    Kim, Hwijin; Yin, John

    2004-01-01

    We extended a computer simulation of viral intracellular growth to study a parasitic antiviral strategy that diverts the viral replicase toward parasite growth. This strategy inhibited virus growth over a wide range of conditions, while minimizing host cell perturbations. Such parasitic strategies may inhibit the development of drug-resistant virus strains.

  16. The IKK Kinases: Operators of Antiviral Signaling

    Directory of Open Access Journals (Sweden)

    Alissa M. Pham

    2010-01-01

    Full Text Available The ability of a cell to combat an intracellular pathogen requires a mechanism to recognize the threat and elicit a transcriptional response against it. In the context of virus infection, the cell must take measures to inhibit viral replication, meanwhile, convey warning signals to neighboring cells of the imminent threat. This immune response is predominantly mediated by the production of cytokines, notably, interferon beta (IFNβ. IFNβ signaling results in the transcriptional induction of over one hundred antiviral gene products whose timely expression renders infected cells more capable of inhibiting virus replication, while providing the uninfected cells with the reinforcements to generate a less permissive cellular environment. Induction of IFNβ and many aspects of the antiviral response pivot on the function of the IKK and IKK-related kinases. Despite sharing high levels of homology and some degree of functional redundancy, the classic IKK kinases: IKKα and IKKβ, and the IKK-related kinases: TBK1 and IKKε, perform distinct roles in regulating the host antiviral defense. These kinases serve as molecular operators in their cooperative ability to integrate incoming cellular cues and act on a range of essential antiviral transcription factors to reshape the cellular transcriptome during infection.

  17. Anti-viral Responses in Insects

    Science.gov (United States)

    Although the study of anti-viral responses in insects has lagged behind studies of responses to other types of pathogens, progress has begun to rapidly accelerate over the past few years. Insects are subject to infection by many different kinds of DNA and RNA viruses. These include viruses that ar...

  18. Antiviral Prophylaxis and H1N1

    Centers for Disease Control (CDC) Podcasts

    2011-07-14

    Dr. Richard Pebody, a consultant epidemiologist at the Health Protection Agency in London, UK, discusses the use of antiviral post-exposure prophylaxis and pandemic H1N1.  Created: 7/14/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 7/18/2011.

  19. Melissa officinalis oil affects infectivity of enveloped herpesviruses.

    Science.gov (United States)

    Schnitzler, P; Schuhmacher, A; Astani, A; Reichling, Jürgen

    2008-09-01

    Extracts and essential oils of medicinal plants are increasingly of interest as novel drugs of antimicrobial and antiviral agents, since herpes simplex virus (HSV) might develop resistance to commonly used antiviral agents. Melissa officinalis essential oil was phytochemically examined by GC-MS analysis, its main constituents were identified as monoterpenaldehydes citral a, citral b and citronellal. The antiviral effect of lemon balm oil, the essential oil of Melissa officinalis, on herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1)and herpes simplex virus type 2 (HSV-2) was tested in vitro on monkey kidney cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of balm oil for herpes simplex virus plaque formation was determined at high dilutions of 0.0004% and 0.00008% for HSV-1 and HSV-2, respectively. At noncytotoxic concentrations of the oil,plaque formation was significantly reduced by 98.8% for HSV-1 and 97.2% for HSV-2, higher concentrations of lemon balm oil abolished viral infectivity nearly completely. In order to determine the mode of antiviral action of this essential oil, time-on-addition assays were performed. Both herpesviruses were significantly inhibited by pretreatment with balm oil prior to infection of cells. These results indicate that Melissa oil affected the virus before adsorption, but not after penetration into the host cell, thus lemon balm oil is capable of exerting a direct antiviral effect on herpesviruses. Considering the lipophilic nature of lemon balm essential oil, which enables it to penetrate the skin, and a high selectivity index, Melissa officinalis oil might be suitable for topical treatment of herpetic infections. PMID:18693101

  20. Cattle activities affect abundance and activity of nitrifying and denitrifying microbial communities in upland soil

    Czech Academy of Sciences Publication Activity Database

    Chroňáková, Alica; Radl, V.; Čuhel, Jiří; Gattinger, A.; Šimek, Miloslav; Elhottová, Dana; Schloter, M.

    Uppsala : Swedish University of Agriculture Sciences, 2007. [Achievements of COST 856. Denitrification and related aspects. Final meeting of the ESF COST Action 856 /14./. 05.12.2007-08.12.2007, Uppsala] Institutional research plan: CEZ:AV0Z60660521 Keywords : cattle activities * nitrifying and denitrifying microbial communities * upland soil Subject RIV: EH - Ecology, Behaviour