WorldWideScience

Sample records for antitumor immune responses

  1. Anti-tumor immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  2. The Pig as a Large Animal Model for Studying Anti-Tumor Immune Responses

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr

    The immune system plays a crucial role in cancer development and progression. Cancer immunoediting encompasses three phases: elimination, equilibrium, and escape; together, describing the complex interplay between tumor and immune cells. Specifically, the immune system both protects against cancer...... of autologous tumor cells, underlining the capacity of the Oncopig immune system to mount a cytotoxic anti-tumor response. Using the results from RNA-seq analysis, we propose a potential mechanism for in vivo inhibition of anti-tumor cytotoxicity based on elevated expression of the immunosuppressive genes IDO1...... support that the Oncopig provides a crucial platform for studying anti-tumor immune responses in a large in vivo system, although the model currently only allows preclinical testing of therapeutics against the early stages of cancer....

  3. The role of radiotherapy for the induction of antitumor immune responses

    International Nuclear Information System (INIS)

    Multhoff, G.; Helmholtz-Zentrum Muenchen; Gaipl, U.S.; Niedermann, G.

    2012-01-01

    Effective radiotherapy is aimed to control the growth of the primary carcinoma and to induce a long-term specific antitumor immune response against the primary tumor, recurrence and metastases. The contribution covers the following issues: T cells and tumor specific immune responses, dendritic cells (DCs) start adaptive immune responses, NK (natural killer) cells for HLA independent tumor control, abscopal effects of radiotherapy, combination of radiotherapy and immune therapy, radiotherapy contribution to the induction of immunogenic cell death, combinability of radiotherapy and DC activation, combinability of radiotherapy and NK cell therapy. It turns out that the combination of radio-chemotherapy and immune therapy can change the microenvironment initiating antitumor immune reactions that inhibit the recurrence risk and the development of metastases.

  4. Oncogenic pathways that affect antitumor immune response and immune checkpoint blockade therapy.

    Science.gov (United States)

    Zhao, Xianda; Subramanian, Subbaya

    2018-01-01

    Mechanistic insights of cancer immunology have led to the development of immune checkpoint blockade therapy (ICBT), which has elicited a remarkable clinical response in some cancer patients. Increasing evidence suggests that activation of oncogenic pathways, such as RAS/RAF/MAPK and PI3K signaling, impairs the antitumor immune response. Such oncogenic signaling, in turn, activates many inhibitory factors, including expression of immune checkpoint genes-allowing active infiltration of immunosuppressive cells into the tumor environment and inducing resistance against T-cell killing. In preclinical tumor models, effective targeting of oncogenic pathways has enhanced the response to ICBT. Ongoing clinical trials are now evaluating combination therapy (i.e., the use of oncogenic pathway inhibitors in combination with ICBT). However, more translational and clinical research is needed, to optimize ICBT doses and sequence, minimize toxicity, and assess the impact on study participants of certain genetic backgrounds. Also, it is crucial to understand whether wild-type tumors with elevated oncogenic signaling will respond to combination therapy. Insights gained through current and future translational studies will provide the scientific premise and rationale to target 1 or more oncogenic pathways in ICBT-resistant tumors, thus enabling more human patients to benefit from combination therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Reprogramming Antitumor Immune Responses with microRNAs

    Science.gov (United States)

    2013-10-01

    disseminate throughout the peritoneal cavity. For tumor cells, ascites provides an ideal milieu to detach and seed distally. Furthermore, crucial...these responses were able to put tumors in check for relatively prolonged periods. However, after this latency period, tumors started to grow very...then, overwhelming experimental evidence demonstrates that both the innate and adaptive immune systems play a non-redundant role in the prevention or

  6. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field.

    Science.gov (United States)

    Xu, Xiaobo; Chen, Yiling; Zhang, Ruiqing; Miao, Xudong; Chen, Xinhua

    2018-03-28

    Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.

  7. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice.

    Science.gov (United States)

    Wang, Cheng-Li; Lu, Chiu-Ying; Hsueh, Ying-Chao; Liu, Wen-Hsiung; Chen, Chun-Jen

    2014-11-01

    Fungi of the genus Ganoderma are basidiomycetes that have been used as traditional medicine in Asia and have been shown to exhibit various pharmacological activities. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the maturation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response in vivo. In this study, we investigated whether the immune adjuvant function of PS-F2 can stimulate antitumor immune responses in tumor-bearing mice. Continuous intraperitoneal or oral administration of PS-F2 effectively suppressed the growth of colon 26 (C26) adenocarcinoma, B16 melanoma, and sarcoma 180 (S180) tumor cells in mice without adverse effects on the animals' health. PS-F2 did not cause direct cytotoxicity on tumor cells, and it lost the antitumor effect in mice with severe combined immunodeficiency (SCID). CD4(+) T cells, CD8(+) T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals, indicating that PS-F2 treatment stimulates tumor-specific cellular and humoral immune responses. These data demonstrate that continuous administration of G. formosanum polysaccharide PS-F2 can activate host immune responses against ongoing tumor growth, suggesting that PS-F2 can potentially be developed into a preventive/therapeutic agent for cancer immunotherapy.

  8. Effector, Memory, and Dysfunctional CD8+ T Cell Fates in the Antitumor Immune Response

    Science.gov (United States)

    2016-01-01

    The adaptive immune system plays a pivotal role in the host's ability to mount an effective, antigen-specific immune response against tumors. CD8+ tumor-infiltrating lymphocytes (TILs) mediate tumor rejection through recognition of tumor antigens and direct killing of transformed cells. In growing tumors, TILs are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment. These interactions and signals can lead to transcriptional, functional, and phenotypic changes in TILs that diminish the host's ability to eradicate the tumor. In addition to effector and memory CD8+ T cells, populations described as exhausted, anergic, senescent, and regulatory CD8+ T cells have been observed in clinical and basic studies of antitumor immune responses. In the context of antitumor immunity, these CD8+ T cell subsets remain poorly characterized in terms of fate-specific biomarkers and transcription factor profiles. Here we discuss the current characterization of CD8+ T cell fates in antitumor immune responses and discuss recent insights into how signals in the tumor microenvironment influence TIL transcriptional networks to promote CD8+ T cell dysfunction. PMID:27314056

  9. Hijacker of the Antitumor Immune Response: Autophagy Is Showing Its Worst Facet.

    Science.gov (United States)

    Viry, Elodie; Noman, Muhammad Zaeem; Arakelian, Tsolère; Lequeux, Audrey; Chouaib, Salem; Berchem, Guy; Moussay, Etienne; Paggetti, Jérôme; Janji, Bassam

    2016-01-01

    Macroautophagy (hereafter referred to as autophagy) is a housekeeping process constitutively executed at basal level in all cells to promote cellular homeostasis by regulating organelle and protein turnover. However, autophagy deregulation caused by several stress factors, such as hypoxia, is prevalent in many cancers. It is now well established that autophagy can act as tumor suppressor or tumor promoter depending on tumor type, stage, and genetic context. In developed tumors, autophagy promotes the survival of cancer cells and therefore operates as a cell resistance mechanism. Emerging evidence point to the prominent role of autophagy in disabling the antitumor immune response by multiple overlapping mechanisms leading to tumor escape from immune cell attack mediated by both natural killer cells and cytotoxic T-lymphocytes. Such a role has inspired significant interest in applying anti-autophagy therapies as an entirely new approach to overcome tumor escape from immune surveillance, which constitutes so far a major challenge in developing more effective cancer immunotherapies. In this review, we will summarize recent reports describing how tumor cells, by activating autophagy, manage to hijack the immune system. In particular, we will focus on the emerging role of hypoxia-induced autophagy in shaping the antitumor immune response and in allowing tumor cells to outmaneuver an effective immune response and escape immunosurveillance. In keeping with this, we strongly believe that autophagy represents an attractive future therapeutic target to develop innovative and effective cancer immunotherapeutic approaches.

  10. Antitumor activity of orally administered maitake α-glucan by stimulating antitumor immune response in murine tumor.

    Directory of Open Access Journals (Sweden)

    Yuki Masuda

    Full Text Available Maitake α-glucan, YM-2A, isolated from Grifola frondosa, has been characterized as a highly α-1,6-branched α-1,4 glucan. YM-2A has been shown to possess an anti-virus effect in mice; however, it does not directly inhibit growth of the virus in vitro, indicating that the anti-virus effect of YM-2A might be associated with modulation of the host immune system. In this study, we found that oral administration of YM-2A could inhibit tumor growth and improve survival rate in two distinct mouse models of colon-26 carcinoma and B16 melanoma. Orally administered YM-2A enhanced antitumor immune response by increasing INF-γ-expressing CD4+ and CD8+ cells in the spleen and INF-γ-expressing CD8+ cells in tumor-draining lymph nodes. In vitro study showed that YM-2A directly activated splenic CD11b+ myeloid cells, peritoneal macrophages and bone marrow-derived dendritic cells, but did not affect splenic CD11b- lymphocytes or colon-26 tumor cells. YM-2A is more slowly digested by pancreatic α-amylase than are amylopectin and rabbit liver glycogen, and orally administered YM-2A enhanced the expression of MHC class II and CD86 on dendritic cells and the expression of MHC class II on macrophages in Peyer's patches. Furthermore, in vitro stimulation of YM-2A increased the expression of pro-inflammatory cytokines in Peyer's patch CD11c+ cells. These results suggest that orally administered YM-2A can activate dendritic cells and macrophages in Peyer's patches, inducing systemic antitumor T-cell response. Thus, YM-2A might be a candidate for an oral therapeutic agent in cancer immunotherapy.

  11. The role of radiotherapy for the induction of antitumor immune responses; Die Rolle der Strahlentherapie bei der Induktion von Antitumor-Immunantworten

    Energy Technology Data Exchange (ETDEWEB)

    Multhoff, G. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Klinik fuer Strahlentherapie und Radiologische Onkologie, Experimentelle Radioonkologie; Helmholtz-Zentrum Muenchen (HMGU) (Germany). Klinische Kooperationsgruppe: ' Angeborene Immunantwort in der Tumorbiologie' ; Gaipl, U.S. [Universitaetsklinikum Erlangen (Germany). Strahlenklinik/Radioonkologie, Strahlen-Immunbiologie; Niedermann, G. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde, Sektion fuer Klinische und Experimentelle Strahlenbiologie

    2012-11-15

    Effective radiotherapy is aimed to control the growth of the primary carcinoma and to induce a long-term specific antitumor immune response against the primary tumor, recurrence and metastases. The contribution covers the following issues: T cells and tumor specific immune responses, dendritic cells (DCs) start adaptive immune responses, NK (natural killer) cells for HLA independent tumor control, abscopal effects of radiotherapy, combination of radiotherapy and immune therapy, radiotherapy contribution to the induction of immunogenic cell death, combinability of radiotherapy and DC activation, combinability of radiotherapy and NK cell therapy. It turns out that the combination of radio-chemotherapy and immune therapy can change the microenvironment initiating antitumor immune reactions that inhibit the recurrence risk and the development of metastases.

  12. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity.

    Science.gov (United States)

    Viry, Elodie; Paggetti, Jerome; Baginska, Joanna; Mgrditchian, Takouhie; Berchem, Guy; Moussay, Etienne; Janji, Bassam

    2014-11-01

    Several environmental-associated stress conditions, including hypoxia, starvation, oxidative stress, fast growth and cell death suppression, modulate both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain proliferation and evade therapies. It is now widely accepted that autophagy is essential to support cancer cell growth and metabolism and that metabolic reprogramming in cancer can also favor autophagy induction. Therefore, this complex interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets. As the regulation of the autophagic activity is related to metabolism, it is important to elucidate the exact molecular mechanism which drives it and the functional consequence of its activation in the context of cancer therapy. In this review, we will summarize the role of autophagy in shaping the cellular response to an abnormal tumor microenvironment and discuss some recent results on the molecular mechanism by which autophagy plays such a role in the context of the anti-tumor immune response. We will also describe how autophagy activation can behave as a double-edged sword, by activating the immune response in some circumstances, and impairing the anti-tumor immunity in others. These findings imply that defining the precise context-specific role for autophagy in cancer is critical to guide autophagy-based therapeutics which are becoming key strategies to overcome tumor resistance to therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Peter [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Multhoff, Gabriele [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Helmholtz Zentrum Muenchen, Institute for innovative Radiotherapy (iRT), Experimental Immune Biology, Neuherberg (Germany)

    2016-05-15

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.) [German] Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken

  14. Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14

    Directory of Open Access Journals (Sweden)

    Louis Cicchini

    2016-05-01

    Full Text Available High-risk human papillomaviruses (HPVs are causally associated with multiple human cancers. Previous studies have shown that the HPV oncoprotein E7 induces immune suppression; however, the underlying mechanisms remain unknown. To understand the mechanisms by which HPV deregulates host immune responses in the tumor microenvironment, we analyzed gene expression changes of all known chemokines and their receptors using our global gene expression data sets from human HPV-positive and -negative head/neck cancer and cervical tissue specimens in different disease stages. We report that, while many proinflammatory chemokines increase expression throughout cancer progression, CXCL14 is dramatically downregulated in HPV-positive cancers. HPV suppression of CXCL14 is dependent on E7 and associated with DNA hypermethylation in the CXCL14 promoter. Using in vivo mouse models, we revealed that restoration of Cxcl14 expression in HPV-positive mouse oropharyngeal carcinoma cells clears tumors in immunocompetent syngeneic mice, but not in Rag1-deficient mice. Further, Cxcl14 reexpression significantly increases natural killer (NK, CD4+ T, and CD8+ T cell infiltration into the tumor-draining lymph nodes in vivo. In vitro transwell migration assays show that Cxcl14 reexpression induces chemotaxis of NK, CD4+ T, and CD8+ T cells. These results suggest that CXCL14 downregulation by HPV plays an important role in suppression of antitumor immune responses. Our findings provide a new mechanistic understanding of virus-induced immune evasion that contributes to cancer progression.

  15. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype.

    Science.gov (United States)

    Chen, Degao; Xie, Jing; Fiskesund, Roland; Dong, Wenqian; Liang, Xiaoyu; Lv, Jiadi; Jin, Xun; Liu, Jinyan; Mo, Siqi; Zhang, Tianzhen; Cheng, Feiran; Zhou, Yabo; Zhang, Huafeng; Tang, Ke; Ma, Jingwei; Liu, Yuying; Huang, Bo

    2018-02-28

    Resetting tumor-associated macrophages (TAMs) is a promising strategy to ameliorate the immunosuppressive tumor microenvironment and improve innate and adaptive antitumor immunity. Here we show that chloroquine (CQ), a proven anti-malarial drug, can function as an antitumor immune modulator that switches TAMs from M2 to tumor-killing M1 phenotype. Mechanistically, CQ increases macrophage lysosomal pH, causing Ca 2+ release via the lysosomal Ca 2+ channel mucolipin-1 (Mcoln1), which induces the activation of p38 and NF-κB, thus polarizing TAMs to M1 phenotype. In parallel, the released Ca 2+ activates transcription factor EB (TFEB), which reprograms the metabolism of TAMs from oxidative phosphorylation to glycolysis. As a result, CQ-reset macrophages ameliorate tumor immune microenvironment by decreasing immunosuppressive infiltration of myeloid-derived suppressor cells and Treg cells, thus enhancing antitumor T-cell immunity. These data illuminate a previously unrecognized antitumor mechanism of CQ, suggesting a potential new macrophage-based tumor immunotherapeutic modality.

  16. The influence of physical activity in the anti-tumor immune response in experimental breast tumor.

    Science.gov (United States)

    Bianco, Thiago M; Abdalla, Douglas R; Desidério, Chamberttan S; Thys, Sofie; Simoens, Cindy; Bogers, John-Paul; Murta, Eddie F C; Michelin, Márcia A

    2017-10-01

    This study aimed to investigate the influence of physical activity in innate immunity to conduce to an effective antitumoral immune response analyzing the phenotype and activation status of infiltrating cells. We analysed the intracellular cytokines and the transcription factors of tumor infiltrating lymphocytes (TILS) and spleen leukocytes. The Nos2 gene expression was evaluated in spleen cells and futhermore the ROS production was measured and spleen cells; another cell evaluated was dendritic cells (TIDCs), their cytokines expression and membrane molecules; finally to understood the results obtained, we analysed the dendritic cells obtained from bone marrow. Were used female Balb/c mice divided into 4 groups: two controls without tumor, sedentary (GI) and trained (GII) and two groups with tumor, sedentary (GIII) or trained (GIV). The physical activity (PA) was realized acoording swimming protocol. Tumor was induced by injection of 4T1 cells. All experiments were performed in biological triplicate. After the experimental period, the tumor was removed and the cells were identified by flow cytometry with labeling to CD4, CD8, CD11c, CD11b, CD80, CD86 and Ia, and intracelular staining IL-10, IL-12, TNF-α, IFN-γ, IL-17, Tbet, GATA3, RORγt and FoxP3. The bone marrow of the animals was obtained to analyse the derivated DCs by flow cytometry and culture cells to obtain the supernatant to measure the cytokines. Our results demonstrated that the PA inhibit the tumoral growth although not to change the number of TILS, but reduced expression of GATA-3, ROR-γT, related with poor prognosis, and TNF-α intracellular; however occur one significantly reduction in TIDCS, but these cells expressed more co-stimulatory and presentation molecules. Furthermore, we observed that the induced PA stimulated the gene expression of Tbet and the production of inflammatory cytokines suggesting an increase of Th1 systemic response. The results evaluating the systemic influence in DCs

  17. Inducing Optimal Antitumor Immune Response through Coadministering iRGD with Pirarubicin Loaded Nanostructured Lipid Carriers for Breast Cancer Therapy.

    Science.gov (United States)

    Deng, Caifeng; Jia, Mengdi; Wei, Guangfei; Tan, Tiantian; Fu, Yao; Gao, Huile; Sun, Xun; Zhang, Quan; Gong, Tao; Zhang, Zhirong

    2017-01-03

    Chemotherapeutic agents trigger antitumor immune response through inducing immunogenic tumor cell death. However, severe toxicity to immune system and insufficient immunogenic cell death hinder chemotherapy from arousing efficient antitumor immunity in vivo. In this study, the cytotoxic drug, pirarubicin (THP), was entrapped into nanostructured lipid carriers (NLC); THP-NLC significantly reduced the toxicity of THP to immune system and improved immune status of breast cancer bearing mice. When THP-NLC was coinjected with iRGD (a tumor-penetrating peptide), drug accumulation in tumors was greatly elevated, which led to significant control of tumor growth and increase of immunogenic tumor cell death. Subsequently, the cytotoxic T lymphocytes (CD3 + and CD8 + cells) infiltration and cytokine (IFN-γ and INF-α) secretion in tumors were heavily increased. The efficient T-cell dependent control of tumors in the late stage and the lower side effects contributed to the longest whole survival of THP-NLC + iRGD treated mice. Therefore, the coadministration of THP-NLC with iRGD resulted in increased tumor cell direct-killing death and enhanced antitumor immune response. Our results illustrated that THP could serve as an immunogenic cell death inducer and the proposed drug delivery strategy might impact cancer immunotherapy by arousing increased immunogenic tumor cell death.

  18. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model.

    Science.gov (United States)

    Mukherjee, P; Pathangey, L B; Bradley, J B; Tinder, T L; Basu, G D; Akporiaye, E T; Gendler, S J

    2007-02-19

    A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced.

  20. IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Barbara Platzer

    2015-03-01

    Full Text Available Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8+ T lymphocytes (CTLs with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin.

  1. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    NARCIS (Netherlands)

    Dolen, Y.; Kreutz, M.; Gileadi, U.; Tel, J.; Vasaturo, A.; Dinther, E.A.W. van; Hout-Kuijer, M.A. van; Cerundolo, V.; Figdor, C.G.

    2016-01-01

    Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here,

  2. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response.

    Science.gov (United States)

    Qiao, Guanxi; Chen, Minhui; Bucsek, Mark J; Repasky, Elizabeth A; Hylander, Bonnie L

    2018-01-01

    An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were

  3. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  4. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  5. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  6. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    Science.gov (United States)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  7. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    Science.gov (United States)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  8. Antitumor Immunity Induced after α Irradiation

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Gorin

    2014-04-01

    Full Text Available Radioimmunotherapy (RIT is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue, and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells.

  9. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  10. Specific anti-tumor immune response with photodynamic therapy mediated by benzoporphyrin derivative and chlorin(e6)

    Science.gov (United States)

    Castano, Ana P.; Gad, Faten; Zahra, Touqir; Hamblin, Michael R.

    2003-07-01

    The purpose of this study was to investigate the induction of anti-tumor immunity by photodynamic therapy (PDT). We used EMT-6 mammary sarcoma, a moderately immunogenic tumor, with 10(6) cells injected s.c. in thighs of immunocompetent Balb/c mice. Mice were treated 10 days later when tumors were 6-mm diameter. Two PDT regimens were equally effective in curing tumors: 1-mg/kg of liposomal benzoporphyrin derivative (BPD) followed after 15 min by 150 J/cm2 690 nm light or 10-mg/kg chlorin(e6) (ce6) followed after 6 hours by 150 J/cm2 665 nm light. BPD-PDT produced a black eschar 24-48 hours after treatment with no visible tumor, followed by healing of the lesion. By contrast ce6-PDT showed no black eschar, but a slow disappearance of tumor over 5-7 days. When cured mice were rechallenged with 10(6) EMT-6 cells in the opposite thigh, all ce6-PDT cured mice rejected the challenge, but BPD-PDT cured mice grew tumors in a proportion of cases. When mice were cured by amputation of the tumor bearing leg, all mice subsequently grew tumors upon rechallenge. Mice were given two EMT6 tumors (1 in each leg) and the mouse was injected with ce6 or BPD but only one tumor was treated with light. Both tumors (PDT-treated and contralateral) regressed at an equal rate until they became undetectable, but in some mice the untreated tumor recurred. Those mice cured of both tumors rejected a subsequent EMT6 rechallenge. Amputation of the tumor bearing leg did not lead to regression of the contralateral tumor. Mice that rejected an EMT6 rechallenge failed to reject a subsequent cross-challenge with J774 reticulum cell sarcoma (an alternative Balb/c murine tumor). These data show that PDT generates a tumor-specific memory immune response, and in addition an active tumoricidal immune response capable of destroying distant established tumors. We hypothesize that ce6-PDT is more effective than BPD-PDT due to more necrotic rather than apoptotic cell death and/or generation of heat

  11. Fractional laser exposure induces neutrophil infiltration (N1 phenotype into the tumor and stimulates systemic anti-tumor immune response.

    Directory of Open Access Journals (Sweden)

    Masayoshi Kawakubo

    Full Text Available Ablative fractional photothermolysis (aFP using a CO2 laser generates multiple small diameter tissue lesions within the irradiation field. aFP is commonly used for a wide variety of dermatological indications, including treatment of photodamaged skin and dyschromia, drug delivery and modification of scars due to acne, surgical procedures and burns. In this study we explore the utility of aFP for treating oncological indications, including induction of local tumor regression and inducing anti-tumor immunity, which is in marked contrast to current indications of aFP.We used a fractional CO2 laser to treat a tumor established by BALB/c colon carcinoma cell line (CT26.CL25, which expressed a tumor antigen, beta-galactosidase (beta-gal. aFP treated tumors grew significantly slower as compared to untreated controls. Complete remission after a single aFP treatment was observed in 47% of the mice. All survival mice from the tumor inoculation rejected re-inoculation of the CT26.CL25 colon carcinoma cells and moreover 80% of the survival mice rejected CT26 wild type colon carcinoma cells, which are parental cells of CT26.CL25 cells. Histologic section of the FP-treated tumors showed infiltrating neutrophil in the tumor early after aFP treatment. Flow cytometric analysis of tumor-infiltrating lymphocytes showed aFP treatment abrogated the increase in regulatory T lymphocyte (Treg, which suppresses anti-tumor immunity and elicited the expansion of epitope-specific CD8+ T lymphocytes, which were required to mediate the tumor-suppressing effect of aFP.We have demonstrated that aFP is able to induce a systemic anti-tumor adaptive immunity preventing tumor recurrence in a murine colon carcinoma in a mouse model. This study demonstrates a potential role of aFP treatments in oncology and further studies should be performed.

  12. Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Antitumor Immune Responses in vitro and in vivo

    Science.gov (United States)

    Fields, R. C.; Shimizu, K.; Mule, J. J.

    1998-08-01

    The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8+ T cells and, to a lesser extent, CD4+ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.

  13. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    Science.gov (United States)

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2013-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)) and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12 and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing anti-tumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted. PMID:22488274

  14. Dendritic cells loaded with HeLa-derived exosomes simulate an antitumor immune response.

    Science.gov (United States)

    Ren, Guoping; Wang, Yanhong; Yuan, Shexia; Wang, Baolian

    2018-05-01

    The aim of the present study was to investigate the effect of loading dendritic cells (DCs) with HeLa-derived exosomes on cytotoxic T-lymphocyte (CTL) responses, and the cytotoxic effects of CTL responses on the HeLa cell line. Ultrafiltration centrifugation combined with sucrose density gradient ultracentrifugation was applied to isolate exosomes (HeLa-exo) from the supernatant of HeLa cells. Morphological features of HeLa-exo were identified by transmission electron microscopy (TEM), and the expression of cluster of differentiation (CD)63 was detected by western blotting. Next, monocytes were isolated from peripheral blood and cultured with the removal of adherent cells to induce DC proliferation. DCs were then phenotypically characterized by flow cytometry. Finally, MTT assays were performed to analyze the effects of DCs loaded with HeLa-exo on T cell proliferation and cytotoxicity assays to evaluate the effect of CTL responses on HeLa cells. TEM revealed that HeLa-exo exhibit typical cup-shaped morphology with a diameter range of 30-100 nm. It was also identified that the CD63 surface antigen is expressed on HeLa-exo. Furthermore, monocyte-derived DCs were able to express CD1a, suggesting that DC induction was a success. DCs exhibited hair-like protrusions and other typical dendritic cell morphology. Furthermore, DCs loaded with HeLa-exo could enhance CTL proliferation and the cytotoxic activity of CTLs compared with DCs without HeLa-exo (PHeLa-exo may promote T cell proliferation and induce CTL responses to inhibit the growth of cervical cancer cells in vitro .

  15. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  16. Depletion of regulatory T lymphocytes reverses the imbalance between pro- and anti-tumor immunities via enhancing antigen-specific T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Yu-Li Chen

    Full Text Available BACKGROUND: The regulatory T cells (Tregs can actively suppress the immune responses. However, literature about detailed changes of host effective and suppressive immunities before and after depletion of Tregs in ovarian carcinomas, is rare. MATERIALS AND METHODS: Ovarian cancer patients and the ascitogenic animal model were employed. Immunologic profiles with flow cytometric analyses, immunohistochemistric staining, RT-PCR, ELISA, and ELISPOT assays were performed. In vivo depletion of Treg cells with the mAb PC61was also performed in the animal model. RESULTS: The cytokines, including IL-4 (p=0.017 and TNF-α (p=0.046, significantly decreased while others such as TGF-β (p=0.013, IL-6 (p=0.016, and IL-10 (p=0.018 were elevated in ascites of ovarian cancer patients, when the disease progressed to advanced stages. The ratio of CD8(+ T cell/Treg cell in ascites was also lower in advanced diseases than in early diseases (advanced 7.37 ± 0.64 vs. early 14.25 ± 3.11, p=0.037. The kinetic low-dose CD25 Ab depletion group had significantly lower intra-peritoneal tumor weight (0.20 ± 0.03 g than the sequential high-dose (0.69 ± 0.06 g and sequential low-dose (0.67 ± 0.07 g CD25 Ab deletion groups (p=0.001 after 49 days of tumor challenge in the animal. The kinetic low-dose CD25 Ab depletion group generated the highest number of IFN-γ-secreting, mesothelin-specific T lymphocytes compared to the other groups (p<0.001. CONCLUSIONS: The imbalance between effective and suppressive immunities becomes more severe as a tumor progresses. The depletion of Treg cells can correct the imbalance of immunologic profiles and generate potent anti-tumor effects. Targeting Treg cells can be a new strategy for the immunotherapy of ovarian carcinoma.

  17. Tumor necrosis factor-α/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice.

    Science.gov (United States)

    Shahrokhi, Somayeh; Daneshmandi, Saeed; Menaa, Farid

    2014-03-01

    The interaction between mesenchymal stem cells (MSCs) and dendritic cells (DCs) affects T cell development and function. Further, the chemotactic capacity of MSCs, their interaction with the tumor microenvironment, and the intervention of immune-stimulatory molecules suggest possible exploitation of tumor necrosis factor-α (TNF-α) and CD40 ligand (CD40L) to genetically modify MSCs for enhanced cancer therapy. Both DCs and MSCs were isolated from BALB/c mice. DCs were then cocultured with MSCs transduced with TNF-α and/or CD40L [(TNF-α/CD40L)-MSCs]. Major DCs' maturation markers, DC and T cell cytokines such as interleukin-4, -6, -10, -12, TNF-α, tumor growth factor-β, as well as T cell proliferation, were assessed. Meantime, a BALB/c mouse breast tumor model was inducted by injecting 4T1 cells subcutaneously. Mice (n = 10) in each well-defined test groups (n = 13) were cotreated with DCs and/or (TNF-α/CD40L)-MSCs. The controls included untreated, empty vector-MSC, DC-lipopolysaccharide, and immature DC mouse groups. Eventually, cytokine levels from murine splenocytes, as well as tumor volume and survival of mice, were assessed. Compared with the corresponding controls, both in vitro and in vivo analyses showed induction of T helper 1 (Th1) as well as suppression of Th2 and Treg responses in test groups, which led to a valuable antitumor immune response. Further, the longest mouse survival was observed in mouse groups that were administered with DCs plus (TNF-α/CD40L)-MSCs. In our experimental setting, the present pioneered study demonstrates that concomitant genetic modification of MSCs with TNF-α and CD40L optimized the antitumor immunity response in the presence of DCs, meantime increasing the mouse lifespan.

  18. Changes of serum endocrine hormone levels in patients with cancerrelated fatigue and their correlation with anti-tumor immune response and tumor load

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2017-08-01

    Full Text Available Objective: To study the changes of serum endocrine hormone levels in patients with cancerrelated fatigue (CRF and their correlation with anti-tumor immune response and tumor load. Methods: A total of 137 patients who were diagnosed with primary lung cancer in West China Hospital, Sichuan University between June 2014 and November 2016 were selected and then divided into CRF group and control group according to their self-reported symptoms, serum was collected to determine the levels of endocrine hormones and tumor markers, and peripheral blood was collected to detect the levels of immune cells. Results: Serum ACTH and TSH levels of CRF group were significantly higher than those of control group while Cor, FT3 and FT4 levels were significantly lower than those of control group; peripheral blood CD11b+ CD15 - CD33+ CD14+ M-MDSC, CD11b+ CD15-CD33+ CD14- G-MDSC, CD4+ CD25+ CD127lowTreg and CD19+ CD5+ CD1d+ Breg levels as well as serum CEA, Cyfra21-1, SCC-Ag, HE4, GDF- 15 and PCNA levels of CRF group were significantly higher than those of control group, positively correlated with serum ACTH and TSH levels, and negatively correlated with Cor, FT3 and FT4 levels. Conclusion: The changes of thyroid hormone and adrenal cortical hormone levels in patients with cancer-related fatigue are closely related to the inhibited antitumor immune response and increased tumor load.

  19. Effect of enteral immunonutrition after radical surgery for esophageal carcinoma on anti-tumor immune response and intestinal mucosal barrier function

    Directory of Open Access Journals (Sweden)

    Tong He

    2017-07-01

    Full Text Available Objective: To study the effect of enteral immunonutrition after radical surgery for esophageal carcinoma on anti-tumor immune response and intestinal mucosal barrier function. Methods: A total of 102 patients who received radical surgery for esophageal carcinoma in our hospital between May 2013 and December 2016 were selected and randomly divided into observation group and control group who received postoperative enteral immunonutrition and routine enteral nutrition respectively. 1 d before operation as well as 1 d and 7 d after operation, peripheral blood immune cell marker expression and serum intestinal mucosal barrier injury marker levels were detected. Results: 1 d after operation, peripheral blood T-bet, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of both groups of patients were significantly lower than those 1d before operation while peripheral blood GATA-3 and Foxp3 fluorescence intensity as well as serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly higher than those 1d before operation; peripheral blood T-bet, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of observation group 7 d after operation were significantly higher than those 1 d after operation while peripheral blood GATA-3 and Foxp3 fluorescence intensity as well as serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly lower than those 1 d after operation; peripheral blood T-bet, GATA-3, Foxp3, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of control group 7 d after operation were not significant different from those 1 d after operation, and serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly lower than those 1d after operation. Conclusion: Enteral immunonutrition after radical surgery for esophageal carcinoma can enhance the anti-tumor immune response and improve the intestinal mucosal barrier function.

  20. Immune response

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000821.htm Immune response To use the sharing features on this page, please enable JavaScript. The immune response is how your body recognizes and defends itself ...

  1. Irradiated tumor cells of lipopolysaccharide stimulation elicit an enhanced anti-tumor immunity.

    Science.gov (United States)

    Li, Yuli; Shen, Guobo; Nie, Wen; Li, Zhimian; Sang, Yaxiong; Zhang, Binglan; Wei, Yuquan

    2014-11-01

    Lipopolysaccharide (LPS) is a major component of the outer surface membrane of Gram-negative bacteria which has been proved an effective immune enhancer. Here, we investigated the anti-tumor effect of irradiated tumor cells that stimulated by LPS in mouse xenografts models. Tumor cells were irradiated after stimulation with 1 μg/mL LPS for 48 h. The C57BL/6 mice were immunized subcutaneously with irradiated tumor cells. The anti-tumor effect of lymphocytes of immunized mice was investigated. The cytotoxicity of spleen lymphocytes from immunized mice was determined by a standard (51)Cr-release assay. The roles of immune cell subsets in anti-tumor activity were assessed by injected intraperitoneally with monoclonal antibodies. We observed that the vaccine of irradiated tumor cell with LPS-stimulated elicited a stronger protective anti-tumor immunity than other controls. Adoptive transfer of lymphocytes of immunized mice showed that the cellular immune response was involved in the anti-tumor effect. And this effect was achieved by activation of antigen-specific CD8(+) T cell response and reduction of myeloid-derived suppressor cells (MDSCs, Gr1(+) CD11b (+) ), which were confirmed by depletion of immune cell subsets and flow cytometry analysis. In summary, our study showed that stimulation of LPS was able to enhance anti-tumor immunity of vaccination with tumor cells after irradiation treatment, which might be a new strategy for cancer therapy.

  2. Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    Directory of Open Access Journals (Sweden)

    Bougras Gwenola

    2004-08-01

    Full Text Available Abstract Background The relative role of anti apoptotic (i.e. Bcl-2 or pro-apoptotic (e.g. Bax proteins in tumor progression is still not completely understood. Methods The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. Results In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5 exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5. However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i huBax A15A5 cells were tumorogenic in nude mice, ii an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. Conclusions We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune response

  3. Therapeutic administration of IL-15 superagonist complex ALT-803 leads to long-term survival and durable antitumor immune response in a murine glioblastoma model.

    Science.gov (United States)

    Mathios, Dimitrios; Park, Chul-Kee; Marcus, Warren D; Alter, Sarah; Rhode, Peter R; Jeng, Emily K; Wong, Hing C; Pardoll, Drew M; Lim, Michael

    2016-01-01

    Glioblastoma is the most aggressive primary central nervous system malignancy with a poor prognosis in patients. Despite the need for better treatments against glioblastoma, very little progress has been made in discovering new therapies that exhibit superior survival benefit than the standard of care. Immunotherapy has been shown to be a promising treatment modality that could help improve clinical outcomes of glioblastoma patients by assisting the immune system to overcome the immunosuppressive tumor environment. Interleukin-15 (IL-15), a cytokine shown to activate several effector components of the immune system, may serve as an excellent immunotherapeutic candidate for the treatment of glioblastoma. Thus, we evaluated the efficacy of an IL-15 superagonist complex (IL-15N72D:IL-15RαSu-Fc; also known as ALT-803) in a murine GL261-luc glioblastoma model. We show that ALT-803, as a single treatment as well as in combination with anti-PD-1 antibody or stereotactic radiosurgery, exhibits a robust antitumor immune response resulting in a prolonged survival including complete remission in tumor bearing mice. In addition, ALT-803 treatment results in long-term immune memory against glioblastoma tumor rechallenge. Flow cytometric analysis of tumor infiltrating immune cells shows that ALT-803 leads to increased percentage of CD8+-cell infiltration, but not the NK cells, and IFN-γ production into the tumor microenvironment. Cell depletion studies, in accordance with the flow cytometric results, show that the ALT-803 therapeutic effect is dependent on CD4+ and CD8+ cells. These results provide a rationale for evaluating the therapeutic activity of ALT-803 against glioblastoma in the clinical setting. © 2015 UICC.

  4. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response.

    Science.gov (United States)

    Wafa, Emad I; Geary, Sean M; Goodman, Jonathan T; Narasimhan, Balaji; Salem, Aliasger K

    2017-03-01

    vaccine formulations, tumor antigens encapsulated in biodegradable polymeric particles have been shown to sustain antigen release and provide long-term protection against tumor challenge by improving the immune response towards the antigen. Treatment of mice with cancer vaccines based on different polyanhydride copolymers encapsulating OVA resulted in stimulation of tumor-specific immune responses with different magnitudes. This clearly indicates that polyanhydride chemistry plays a substantial role in stimulating the immune response. Vaccination with 20:80 CPTEG:CPH/OVA, the most hydrophobic formulation, stimulated the strongest cellular and humoral immune responses and provided the longest survival outcome without adding any other adjuvant. The most important finding in this study is that the copolymer composition of polyanhydride particle-based vaccines can have a direct effect on the magnitude of the antitumor immune response and should be selected carefully in order to achieve optimal cancer vaccine efficacy. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. MUC1 and survivin combination tumor gene vaccine generates specific immune responses and anti-tumor effects in a murine melanoma model.

    Science.gov (United States)

    Zhang, Haihong; Liu, Chenlu; Zhang, Fangfang; Geng, Fei; Xia, Qiu; Lu, Zhenzhen; Xu, Ping; Xie, Yu; Wu, Hui; Yu, Bin; Wu, Jiaxin; Yu, Xianghui; Kong, Wei

    2016-05-23

    MUC1 and survivin are ideal tumor antigens. Although many cancer vaccines targeting survivin or MUC1 have entered clinical trials, no vaccine combining MUC1 and survivin have been reported. Due to tumor heterogeneity, vaccines containing a combination of antigens may have improved efficacy and coverage of a broader spectrum of cancer targets. Here, cellular responses and anti-tumor activities induced by a combination of DNA vaccine targeting MUC1 and survivin (MS) were evaluated. Results showed that CTL activity and inhibition of tumor growth were obviously enhanced in mice immunized with the combined vaccine in a protection assay. However, in order to enhance the therapeutic effect in the treatment assay, a recombinant adenovirus (rAd) vaccine expressing MUC1 and survivin (Ad-MS) was used as a booster following the DNA vaccine prime. Meanwhile, IL-2 promoting T cell proliferation was used as an immunoadjuvant for the DNA vaccine. Results showed that the CTL activity response to the DNA vaccine was enhanced nearly 200% when boosted by the rAd vaccine and was further enhanced by nearly 60% when combined with the IL-2 adjuvant. Therefore, DNA prime combined with rAd boost and IL-2 (MS/IL2/Ad-MS) adjuvant was considered as the best strategy and further evaluated. Multiple cytokines promoting cellular immune responses were shown to be greatly enhanced in mice immunized with MS/IL2/Ad-MS. Moreover, in the treatment assay, the tumor inhibition rate of MS/IL2/Ad-MS reached up to 50.1%, which may be attributed to the enhancement of immune responses and reduction of immunosuppressive factors in tumor-bearing mice. These results suggested that immunization with the combination vaccine targeting MUC1 and survivin using a DNA prime-rAd boost strategy along with IL-2 adjuvant may be an effective method for breaking through immune tolerance to tumors expressing these antigens with potential therapeutic benefits in melanoma cancer. Copyright © 2016. Published by Elsevier Ltd.

  6. Endoplasmic reticulum chaperone glucose regulated protein 170-Pokemon complexes elicit a robust antitumor immune response in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Wu, Xianqu; Jing, Junjie; Chen, Kangning; Liu, Guojun; Zhou, Zhenhua

    2012-07-01

    Previous evidence suggested that the stress protein grp170 can function as a highly efficient molecular chaperone, binding to large protein substrates and acting as a potent vaccine against specific tumors when purified from the same tumor. In addition, Pokemon can be found in almost all malignant tumor cells and is regarded to be a promising candidate for the treatment of tumors. However, the potential of the grp170-Pokemon chaperone complex has not been well described. In the present study, the natural chaperone complex between grp170 and the Pokemon was formed by heat shock, and its immunogenicity was detected by ELISPOT and (51)Cr-release assays in vitro and by tumor bearing models in vivo. Our results demonstrated that the grp170-Pokemon chaperone complex could elicit T cell responses as determined by ELISPOT and (51)Cr-release assays. In addition, immunized C57BL/6 mice were challenged with subcutaneous (s.c.) injection of Lewis cancer cells to induce primary tumors. Treatment of mice with the grp170-Pokemon chaperone complex also significantly inhibited tumor growth and prolonged the life span of tumor-bearing mice. Our results indicated that the grp170-Pokemon chaperone complex might represent a powerful approach to tumor immunotherapy and have significant potential for clinical application. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression

    Directory of Open Access Journals (Sweden)

    Chong-Sheng Chen

    2014-01-01

    Full Text Available Metronomic chemotherapy using cyclophosphamide (CPA is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25% reduction in CPA dose. Moreover, an ~20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses.

  8. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  9. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  10. Tumor-altered dendritic cell function: implications for anti-tumor immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2013-01-01

    Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.

  11. Effects of Androgen Ablation on Anti-Tumor Immunity

    National Research Council Canada - National Science Library

    Kast, Martin

    2004-01-01

    .... This AA induced autoimmune-like response exerts limited anti-tumor activity in a murine prostate cancer model, but could be synergistic with CTLA-4 blockade that promotes the development of autoreactive T cell...

  12. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes.

    Science.gov (United States)

    He, Xiao-Zheng; Wang, Qi-Fu; Han, Shuai; Wang, Hui-Qing; Ye, Yong-Yi; Zhu, Zhi-Yuan; Zhang, Shi-Zhong

    2015-01-01

    In addition to minimally invasive destruction of tumors, cryo-ablation of tumors to some extent modulated anti-tumor immunity. Cryo-ablated tumors in glioma mice models induced anti-tumor cellular immunologic response which increases the percentage of CD3(+) and CD4(+)T cells in blood as well as natural killer cells. As a crucial role in triggering anti-tumor immunity, dendritic cells (DCs) were educated by tumors to adopt a tolerance phenotype which helps the tumor escape from immune monitoring. This study aims to study whether cryo-ablation could influence the tolerogenic DCs, and influence anti-tumor immunity in tumor-draining lymph nodes (TDLNs). Using the GL261 subcutaneous glioma mouse model, we created a tumor bearing group, cryo-ablation group, and surgery group. We analyzed alteration in phenotype and function of tolerogenic DCs, and evaluated the factors of anti-tumor immunity inhibition. DCs in TDLNs in GL261 subcutaneous glioma mouse model expressed tolerogenic phenotype. In contrast to surgery, cryo-ablation improved the quantity and quality of these tolerogenic DCs. Moreover, the DCs decreased the expression of intracellular interleukin-10 (IL-10) and extra-cellular IL-10. In vitro, DCs from the cryo-ablation group recovered their specific function and induced potent anti-tumor immunity through triggering T cells. In vivo, cryo-ablation showed weak anti-tumor immunity, only inhibiting the growth of rechallenged tumors. But many IL-10-low DCs, rather than IL-10-high DCs, infiltrated the tumors. More importantly, Tregs inhibited the performance of these DCs; and depletion of Tregs greatly improved anti-tumor immunity in vivo. Cryo-ablation could recover function of tumor induced tolerogenic DCs in vitro; and depletion of Tregs could improve this anti-tumor effect in vivo. The Tregs/CD4(+)T and Tregs/CD25(+)T cells in TDLNs inhibit DCs' activity and function.

  13. How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    International Nuclear Information System (INIS)

    Rubner, Yvonne; Wunderlich, Roland; Rühle, Paul-Friedrich; Kulzer, Lorenz; Werthmöller, Nina; Frey, Benjamin; Weiss, Eva-Maria; Keilholz, Ludwig; Fietkau, Rainer; Gaipl, Udo S.

    2012-01-01

    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.

  14. Epistasis between MicroRNAs 155 and 146a during T Cell-Mediated Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Thomas B. Huffaker

    2012-12-01

    Full Text Available An increased understanding of antitumor immunity is necessary for improving cell-based immunotherapies against human cancers. Here, we investigated the roles of two immune system-expressed microRNAs (miRNAs, miR-155 and miR-146a, in the regulation of antitumor immune responses. Our results indicate that miR-155 promotes and miR-146a inhibits interferon γ (IFNγ responses by T cells and reduces solid tumor growth in vivo. Using a double-knockout (DKO mouse strain deficient in both miR-155 and miR-146a, we have also identified an epistatic relationship between these two miRNAs. DKO mice had defective T cell responses and tumor growth phenotypes similar to miR-155−/− mice. Further analysis of the T cell compartment revealed that miR-155 modulates IFNγ expression through a mechanism involving repression of Ship1. Our work reveals critical roles for miRNAs in the reciprocal regulation of CD4+ and CD8+ T cell-mediated antitumor immunity and demonstrates the dominant nature of miR-155 during its promotion of immune responses.

  15. Radiotherapy and antitumoral immunity. Fundamentals of immunooncology

    International Nuclear Information System (INIS)

    Klimovich, V.B.

    1982-01-01

    The fundamental states of immunooncology are described briefly: conception of immunologic inspection, antiblastomic immunologic factors, antigeny of tumor cells and mechanisms of slipping out of immune inspection, problastomic immunologic factors. The conclusion is made that tumor formation and extenstion go on under the action of opposite directed but not mutually exclusive factors of immunologic nature. Growth rate and regression of neoplasm are determined by balance between antiblastomic mechanism activity and activity of problastomic factors and factors of immunoresistant neoplasms

  16. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    International Nuclear Information System (INIS)

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  17. Nanovectorized radiotherapy, a new strategy to induce anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Claire eVanpouille-Box

    2012-10-01

    Full Text Available Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radio-therapy. However, clinically-apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nano-devices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immuno-stimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  18. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity.

    Science.gov (United States)

    Alloatti, Andrés; Rookhuizen, Derek C; Joannas, Leonel; Carpier, Jean-Marie; Iborra, Salvador; Magalhaes, Joao G; Yatim, Nader; Kozik, Patrycja; Sancho, David; Albert, Matthew L; Amigorena, Sebastian

    2017-08-07

    CD8 + T cells mediate antigen-specific immune responses that can induce rejection of solid tumors. In this process, dendritic cells (DCs) are thought to take up tumor antigens, which are processed into peptides and loaded onto MHC-I molecules, a process called "cross-presentation." Neither the actual contribution of cross-presentation to antitumor immune responses nor the intracellular pathways involved in vivo are clearly established because of the lack of experimental tools to manipulate this process. To develop such tools, we generated mice bearing a conditional DC-specific mutation in the sec22b gene, a critical regulator of endoplasmic reticulum-phagosome traffic required for cross-presentation. DCs from these mice show impaired cross-presentation ex vivo and defective cross-priming of CD8 + T cell responses in vivo. These mice are also defective for antitumor immune responses and are resistant to treatment with anti-PD-1. We conclude that Sec22b-dependent cross-presentation in DCs is required to initiate CD8 + T cell responses to dead cells and to induce effective antitumor immune responses during anti-PD-1 treatment in mice. © 2017 Alloatti et al.

  19. [Functions of eosinophil granulocytes: from anti-parasite immunity to anti-tumoral potential].

    Science.gov (United States)

    Capron, Monique; Legrand, Fanny

    2009-02-01

    Eosinophils have long been considered simply as effectors of adaptive immune responses during parasitic infections and inflammatory processes. Their role in allergic manifestations and mucosal responses is mediated by membrane receptors that allow them to interact with IgE and IgA antibodies. The recent demonstration that human eosinophils express innate immune receptors suggests that they may also play a role in antitumoral immune surveillance. Experimental evidence shows that human eosinophils have tumoricidal potential, in synergy with other effector cells, notably by releasing cytotoxic molecules.

  20. Jungle Honey Enhances Immune Function and Antitumor Activity

    Science.gov (United States)

    Fukuda, Miki; Kobayashi, Kengo; Hirono, Yuriko; Miyagawa, Mayuko; Ishida, Takahiro; Ejiogu, Emenike C.; Sawai, Masaharu; Pinkerton, Kent E.; Takeuchi, Minoru

    2011-01-01

    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261. PMID:19141489

  1. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  2. Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy

    Directory of Open Access Journals (Sweden)

    Marcin P Komorowski

    2016-01-01

    Full Text Available Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.

  3. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity

    Science.gov (United States)

    Fox, Barbara A.; Sanders, Kiah L.; Rommereim, Leah M.; Bzik, David J.

    2016-01-01

    Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP) and dense granule (GRA) proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ) TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM) associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately control the

  4. Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity

    Science.gov (United States)

    Hu, Xiao; Liu, Xikui; Moisan, Jacques; Wang, Yahong; Lesch, Charles A.; Spooner, Chauncey; Morgan, Rodney W.; Zawidzka, Elizabeth M.; Mertz, David; Bousley, Dick; Majchrzak, Kinga; Kryczek, Ilona; Taylor, Clarke; Van Huis, Chad; Skalitzky, Don; Hurd, Alexander; Aicher, Thomas D.; Toogood, Peter L.; Glick, Gary D.; Paulos, Chrystal M.; Zou, Weiping; Carter, Laura L.

    2016-01-01

    ABSTRACT RORγt is the key transcription factor controlling the development and function of CD4+ Th17 and CD8+ Tc17 cells. Across a range of human tumors, about 15% of the CD4+ T cell fraction in tumor-infiltrating lymphocytes are RORγ+ cells. To evaluate the role of RORγ in antitumor immunity, we have identified synthetic, small molecule agonists that selectively activate RORγ to a greater extent than the endogenous agonist desmosterol. These RORγ agonists enhance effector function of Type 17 cells by increasing the production of cytokines/chemokines such as IL-17A and GM-CSF, augmenting expression of co-stimulatory receptors like CD137, CD226, and improving survival and cytotoxic activity. RORγ agonists also attenuate immunosuppressive mechanisms by curtailing Treg formation, diminishing CD39 and CD73 expression, and decreasing levels of co-inhibitory receptors including PD-1 and TIGIT on tumor-reactive lymphocytes. The effects of RORγ agonists were not observed in RORγ−/− T cells, underscoring the selective on-target activity of the compounds. In vitro treatment of tumor-specific T cells with RORγ agonists, followed by adoptive transfer to tumor-bearing mice is highly effective at controlling tumor growth while improving T cell survival and maintaining enhanced IL-17A and reduced PD-1 in vivo. The in vitro effects of RORγ agonists translate into single agent, immune system-dependent, antitumor efficacy when compounds are administered orally in syngeneic tumor models. RORγ agonists integrate multiple antitumor mechanisms into a single therapeutic that both increases immune activation and decreases immune suppression resulting in robust inhibition of tumor growth. Thus, RORγ agonists represent a novel immunotherapy approach for cancer. PMID:28123897

  5. Positive and negative influence of the matrix architecture on antitumor immune surveillance.

    Science.gov (United States)

    Peranzoni, Elisa; Rivas-Caicedo, Ana; Bougherara, Houcine; Salmon, Hélène; Donnadieu, Emmanuel

    2013-12-01

    The migration of T cells and access to tumor antigens is of utmost importance for the induction of protective anti-tumor immunity. Once having entered a malignant site, T cells encounter a complex environment composed of non-tumor cells along with the extracellular matrix (ECM). It is now well accepted that a deregulated ECM favors tumor progression and metastasis. Recent progress in imaging technologies has also highlighted the impact of the matrix architecture found in solid tumor on immune cells and especially T cells. In this review, we argue that the ability of T cells to mount an antitumor response is dependent on the matrix structure, more precisely on the balance between pro-migratory reticular fiber networks and unfavorable migration zones composed of dense and aligned ECM structures. Thus, the matrix architecture, that has long been considered to merely provide the structural framework of connective tissues, can play a key role in facilitating or suppressing the antitumor immune surveillance. A new challenge in cancer therapy will be to develop approaches aimed at altering the architecture of the tumor stroma, rendering it more permissive to antitumor T cells.

  6. Antitumor mechanisms of metformin: Signaling, metabolism, immunity and beyond

    Directory of Open Access Journals (Sweden)

    Ismael Samudio

    2010-08-01

    Full Text Available Metformin is a synthetic biguanide first described in the 1920´s as a side product of the synthesis of N,N-dimethylguanidine. Like otherrelated biguanides, metformin displays antihyperglycemic properties, and has become the most widely prescribed oral antidiabetic medicinearound the world. Intriguing recent evidence suggests that metformin has chemopreventive and direct antitumor properties, and severalongoing clinical studies around the world are using this agent alone or in combination with chemotherapeutic schemes to determineprospectively its safety and efficacy in the treatment of human cancer. Notably, immune activating effects of metformin have recently beendescribed, and may support a notion put forth in the 1950s that this agent possessed antiviral and antimalarial effects. However, how theseeffects may contribute to its observed antitumor effects in retrospective studies has not been discussed. Mechanistically, metformin has beenshown to activate liver kinase B1 (LKB1 and its downstream target AMP-activated kinase (AMPK. The activation of AMPK has beenproposed to mediate metformin´s glucose lowering effect, although recent evidence suggests that this agent can inhibit electron transport inhepatocyte mitochondria resulting in AMPK-independent inhibition of hepatic gluconeogenesis. Likewise, albeit activation of AMPK andthe resulting inhibition of the mammalian target of rapamycin (mTOR signaling have been suggested to mediate the antitumor effects ofmetformin, AMPK-independent growth inhibitory properties of this agent in tumor cells have also been described. Here we present a briefreview of the signaling, metabolic, and immune effects of metformin and discuss how their interplay may orchestrate the antitumor effectsof this agent. In addition, we provide the rationale for a compassionate use study of metformin in combination with metronomic chemotherapy.

  7. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    Science.gov (United States)

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis

    Directory of Open Access Journals (Sweden)

    Lindhofer Horst

    2009-02-01

    Full Text Available Abstract Peritoneal carcinomatosis (PC from epithelial tumors is a fatal diagnosis without efficient treatment. Trifunctional antibodies (trAb are novel therapeutic approaches leading to a concerted anti-tumor activity resulting in tumor cell destruction. In addition, preclinical data in mouse tumor models demonstrated the induction of long lasting tumor immunity after treatment with trAb. We describe the induction of anti-tumor specific T-lymphocytes after intraperitoneal administration of trAb in patients with PC. 9 patients with progressive PC from gastric (n = 6 and ovarian cancer (n = 2, and cancer of unknown primary (n = 1 received 3 escalating doses of trAb after surgery and/or ineffective chemotherapy. The trAb EpCAM × CD3 (10, 20, 40 μg or HER2/neu × CD3 (10, 40, 80 μg were applicated by intraperitoneal infusion. Four weeks after the last trAb application, all patients were restimulated by subdermal injection of trAb + autologous PBMC + irradiated autologous tumor cells. Immunological reactivity was tested by analyzing PBMC for specific tumor reactive CD4+/CD8+ T lymphocytes using an IFN-γ secretion assay. In 5 of 9 patients, tumor reactive CD4+/CD8+ T-lymphocytes increased significantly, indicating specific anti-tumor immunity. A clinical response (stable disease, partial regression has been observed in 5 of 9 patients, with a mean time to progression of 3.6 months. Follow-up showed a mean survival of 11.8 months (median 8.0 months after trAb therapy. TrAb are able to induce anti-tumor immunity after intraperitoneal application and restimulation. The induction of long-lasting anti-tumor immunity may provide an additional benefit of the intraperitoneal therapy with trAb and should be further elevated in larger clinical trials.

  9. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1.

  10. LV305, a dendritic cell-targeting integration-deficient ZVexTM-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  11. Synthetic ROR? agonists regulate multiple pathways to enhance antitumor immunity

    OpenAIRE

    Hu, Xiao; Liu, Xikui; Moisan, Jacques; Wang, Yahong; Lesch, Charles A.; Spooner, Chauncey; Morgan, Rodney W.; Zawidzka, Elizabeth M.; Mertz, David; Bousley, Dick; Majchrzak, Kinga; Kryczek, Ilona; Taylor, Clarke; Van Huis, Chad; Skalitzky, Don

    2016-01-01

    ABSTRACT ROR?t is the key transcription factor controlling the development and function of CD4+ Th17 and CD8+ Tc17 cells. Across a range of human tumors, about 15% of the CD4+ T cell fraction in tumor-infiltrating lymphocytes are ROR?+ cells. To evaluate the role of ROR? in antitumor immunity, we have identified synthetic, small molecule agonists that selectively activate ROR? to a greater extent than the endogenous agonist desmosterol. These ROR? agonists enhance effector function of Type 17...

  12. Intradermal immunization with combined baculovirus and tumor cell lysate induces effective antitumor immunity in mice.

    Science.gov (United States)

    Kawahara, Mamoru; Takaku, Hiroshi

    2013-12-01

    Although tumor lysate contains all the potential helper and killer epitopes capable of stimulating T cells, it is difficult to use as a cancer vaccine because it suppresses dendritic cell (DC) function. We report that wild-type baculovirus possesses an adjuvant effect to improve the immunogenicity of tumor lysate. When mice were administered CT26 tumor cell lysate combined with baculovirus intradermally, antitumor immunity was induced and rejection of CT26 tumor growth was observed in 40% of the immunized mice. In contrast, such antitumor immunity was not elicited in mice inoculated with tumor cell lysate or baculovirus alone. In tumor-bearing mice, which had previously received the combined baculovirus and tumor lysate vaccine, the established tumors were completely eradicated by administering a booster dose of the combined vaccine. This antitumor effect was attributed to tumor-specific T cell immunity mediated primarily by CD8⁺ T cells. Baculovirus also strongly activated DCs loaded with tumor lysate. Increased interleukin (IL)-6 and IL-12p70 production were also observed in DCs co-cultured with tumor cell lysate and baculovirus. Our study demonstrates that combined baculovirus and tumor lysate vaccine can effectively stimulate DCs to induce acquired antitumor immunity.

  13. Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by CD8(+) T Cells.

    Science.gov (United States)

    Lim, Hoyong; Do, Seon Ah; Park, Sang Min; Kim, Young Sang

    2013-04-01

    IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membrane-bound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-α. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the CD8(+) T cell-depleted mice than in CD4(+) T cell-depleted or normal mice. These results suggest that CD8(+) T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and CD4(+) helper T cells.

  14. The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences.

    Science.gov (United States)

    Lumniczky, Katalin; Sáfrány, Géza

    2015-01-01

    The main antitumor efficacy of irradiation relies in its direct cytotoxic effect. Increasing evidence indicates a systemic effect of radiation though, mediated mainly by the immune system. In this review we wish to focus on the radiotherapy induced modifications of the soluble and cellular mediators of the antitumor immune response and summarize some of the mechanisms by which radiation driven local and systemic bystander effects can influence tumor immunogenicity. In different tumor types due to the intrinsic immunogenicity of the tumor cells and the immunological characteristics of the tumor microenvironment, different radiation induced immune modulatory mechanisms are predominant. Radiation most probably can only amplify or augment a pro-immunogenic phenotype and can hardly change by itself a net immune suppressing environment into an immune stimulating one. This immune modulatory potential of radiotherapy could be exploited in tumor treatment by developing combined radiotherapeutic and immunotherapeutic approaches. The last few years showed a dramatic increase in the knowledge of radiation induced out-of field and systemic effects, which foresees a rapid progress in the development and clinical application of these new, combined therapies for cancer cure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Lili Chen

    Full Text Available BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL staining and decreased Ki-67 expression in tumors. Through natural killer (NK cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria

  16. Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity

    Science.gov (United States)

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Background Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Methodology/Principal Findings Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Conclusions/Significance Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a

  17. Tertiary Lymphoid Structures in Cancer: Drivers of Antitumor Immunity, Immunosuppression, or Bystander Sentinels in Disease?

    Science.gov (United States)

    Colbeck, Emily Jayne; Ager, Ann; Gallimore, Awen; Jones, Gareth Wyn

    2017-01-01

    Secondary lymphoid organs are integral to initiation and execution of adaptive immune responses. These organs provide a setting for interactions between antigen-specific lymphocytes and antigen-presenting cells recruited from local infected or inflamed tissues. Secondary lymphoid organs develop as a part of a genetically preprogrammed process during embryogenesis. However, organogenesis of secondary lymphoid tissues can also be recapitulated in adulthood during de novo lymphoid neogenesis of tertiary lymphoid structures (TLSs). These ectopic lymphoid-like structures form in the inflamed tissues afflicted by various pathological conditions, including cancer, autoimmunity, infection, or allograft rejection. Studies are beginning to shed light on the function of such structures in different disease settings, raising important questions regarding their contribution to progression or resolution of disease. Data show an association between the tumor-associated TLSs and a favorable prognosis in various types of human cancer, attracting the speculation that TLSs support effective local antitumor immune responses. However, definitive evidence for the role for TLSs in fostering immune responses in vivo are lacking, with current data remaining largely correlative by nature. In fact, some more recent studies have even demonstrated an immunosuppressive, tumor-promoting role for cancer-associated TLSs. In this review, we will discuss what is known about the development of cancer-associated TLSs and the current understanding of their potential role in the antitumor immune response. PMID:29312327

  18. A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity

    OpenAIRE

    Yishu Tang; Wenbo Ma; Chunxia Zhou; Dongmei Wang; Shuren Zhang

    2018-01-01

    Background: Tumor-induced immunosuppression can impede tumor-specific immune responses and limit the effects of cancer immunotherapy. The aim of this study was to investigate the possible effects of sequential chemoimmunotherapeutic strategies to enhance antitumor immune responses. Methods: Using the E7-expressing tumor TC-1 as the tumor model, the treatment groups were divided into the following groups: (1) inactivated allogeneic leukocyte infusion (ALI), (2) ALI + MMC-inactivated TC-1 cell ...

  19. Fluorescent nanodiamonds engage innate immune effector cells: A potential vehicle for targeted anti-tumor immunotherapy.

    Science.gov (United States)

    Suarez-Kelly, Lorena P; Campbell, Amanda R; Rampersaud, Isaac V; Bumb, Ambika; Wang, Min S; Butchar, Jonathan P; Tridandapani, Susheela; Yu, Lianbo; Rampersaud, Arfaan A; Carson, William E

    2017-04-01

    Fluorescent nanodiamonds (FNDs) are nontoxic, infinitely photostable, and emit fluorescence in the near infrared region. Natural killer (NK) cells and monocytes are part of the innate immune system and are crucial to the control of carcinogenesis. FND-mediated stimulation of these cells may serve as a strategy to enhance anti-tumor activity. FNDs were fabricated with a diameter of 70±28 nm. Innate immune cell FND uptake, viability, surface marker expression, and cytokine production were evaluated in vitro. Evaluation of fluorescence emission from the FNDs was conducted in an animal model. In vitro results demonstrated that treatment of immune cells with FNDs resulted in significant dose-dependent FND uptake, no compromise in cell viability, and immune cell activation. FNDs were visualized in an animal model. Hence, FNDs may serve as novel agents with "track and trace" capabilities to stimulate innate immune cell anti-tumor responses, especially as FNDs are amenable to surface-conjugation with immunomodulatory molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Breast cancer vaccines delivered by dendritic cell-targeted lentivectors induce potent antitumor immune responses and protect mice from mammary tumor growth.

    Science.gov (United States)

    Bryson, Paul D; Han, Xiaolu; Truong, Norman; Wang, Pin

    2017-10-13

    Breast cancer immunotherapy is a potent treatment option, with antibody therapies such as trastuzumab increasing 2-year survival rates by 50%. However, active immunotherapy through vaccination has generally been clinically ineffective. One potential means of improving vaccine therapy is by delivering breast cancer antigens to dendritic cells (DCs) for enhanced antigen presentation. To accomplish this in vivo, we pseudotyped lentiviral vector (LV) vaccines with a modified Sindbis Virus glycoprotein so that they could deliver genes encoding the breast cancer antigen alpha-lactalbumin (Lalba) or erb-b2 receptor tyrosine kinase 2 (ERBB2 or HER2) directly to resident DCs. We hypothesized that utilizing these DC-targeting lentiviral vectors asa breast cancer vaccine could lead to an improved immune response against self-antigens found in breast cancer tumors. Indeed, single injections of the vaccine vectors were able to amplify antigen-specific CD8T cells 4-6-fold over naïve mice, similar to the best published vaccine regimens. Immunization of these mice completely inhibited tumor growth in a foreign antigen environment (LV-ERBB2 in wildtype mice), and it reduced the rate of tumor growth in a self-antigen environment (LV-Lalba in wildtype or LV-ERBB2 in MMTV-huHER2 transgenic). These results show that a single injection with targeted lentiviral vectors can be an effective immunotherapy for breast cancer. Furthermore, they could be combined with other immunotherapeutic regimens to improve outcomes for patients with breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  2. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer

    Science.gov (United States)

    Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman

    2016-01-01

    Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256

  3. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Jin S Im

    Full Text Available Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation.

  4. Antitumor immunization of mothers delays tumor development in cancer-prone offspring.

    Science.gov (United States)

    Barutello, Giuseppina; Curcio, Claudia; Spadaro, Michela; Arigoni, Maddalena; Trovato, Rosalinda; Bolli, Elisabetta; Zheng, Yujuan; Ria, Francesco; Quaglino, Elena; Iezzi, Manuela; Riccardo, Federica; Holmgren, Lars; Forni, Guido; Cavallo, Federica

    2015-05-01

    Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T-cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable.

  5. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity.

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-03-26

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin(®)) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed.

  6. Photodynamic therapy stimulates anti-tumor immunity in a murine mastocytoma model

    Science.gov (United States)

    Mroz, Pawel; Hamblin, Michael R.

    2008-02-01

    Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species that eventually cause vascular shutdown and tumor cell apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, recognition of tumor-specific antigens, and induction of heat-shock proteins, while the three commonest cancer therapies (surgery, chemotherapy and radiotherapy) all tend to suppress the immune system. Like many other immunotherapies, the extent of the immune response after PDT tends to depend on the antigenicity of the particular tumor, or in other words, whether the tumor contains proteins with the correct characteristics to provide peptides that can bind to MHC class I molecules and provide a target for cytolytic T lymphocytes. We have described certain mouse tumors containing defined or naturally occurring tumor associated antigens that respond particularly well to PDT, and potent immune responses capable of destroying distant untreated tumors can be induced. In this report we address the induction of immunity after PDT of the DBA2 mastocytoma known as P815. This tumor was the first mouse tumor to be shown to possess a tumor-rejection antigen capable of being recognized by cytotoxic T-cells.

  7. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  8. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis.

    Science.gov (United States)

    Qian, Xin; Chen, Hankui; Wu, Xiaofeng; Hu, Ling; Huang, Qi; Jin, Yang

    2017-01-01

    Interleukin-17 (IL-17), a proinflammatory cytokine, mainly produced by Th17 cells, participates in both innate and adaptive immune responses and is involved in various diseases, including infectious diseases, autoimmune disorders and cancer. Emerging evidence indicates that IL-17 not only has an oncogenic role in tumorigenesis by regulating tumor angiogenesis and enhancing tumor immune evasion but also exerts anti-tumor functions by enhancing natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) activation and through the recruitment of neutrophils, NK cells and CD4 + and CD8 + T cells to tumor tissue. In this review, we provide an overview on the basic biology of IL-17 and recent findings regarding its enigmatic double-edged features in tumorigenesis, with special attention to the roles of IL-17 produced by tumor cells interacting with other factors in the tumor microenvironment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Antitumor Responses of Invariant Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Jennie B. Altman

    2015-01-01

    Full Text Available Natural killer T (NKT cells are innate-like lymphocytes that were first described in the late 1980s. Since their initial description, numerous studies have collectively shed light on their development and effector function. These studies have highlighted the unique requirements for the activation of these lymphocytes and the functional responses that distinguish these cells from other effector lymphocyte populations such as conventional T cells and NK cells. This body of literature suggests that NKT cells play diverse nonredundant roles in a number of disease processes, including the initiation and propagation of airway hyperreactivity, protection against a variety of pathogens, development of autoimmunity, and mediation of allograft responses. In this review, however, we focus on the role of a specific lineage of NKT cells in antitumor immunity. Specifically, we describe the development of invariant NKT (iNKT cells and the factors that are critical for their acquisition of effector function. Next, we delineate the mechanisms by which iNKT cells influence and modulate the activity of other immune cells to directly or indirectly affect tumor growth. Finally, we review the successes and failures of clinical trials employing iNKT cell-based immunotherapies and explore the future prospects for the use of such strategies.

  10. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Zong Sheng eGuo

    2014-04-01

    Full Text Available Oncolytic viruses (OVs are novel immunotherapeutic agents whose anticancer effects come from both oncolysis and elicited antitumor immunity. OVs induce mostly immunogenic cancer cell death (ICD, including immunogenic apoptosis, necrosis/necroptosis, pyroptosis and autophagic cell death, leading to exposure of calreticulin and heat-shock proteins to the cell surface, and/or released ATP, high mobility group box-1 [HMGB1], uric acid, and other DAMPs as well as PAMPs as danger signals, along with tumor-associated antigens, to activate dendritic cells (DCs and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive antitumor immunity. The mode of cancer cell death may be modulated by individual OVs and cancer cells as they often encode and express genes that inhibit/promote apoptosis, necroptosis or autophagic cell death. We can genetically engineer OVs with death-pathway-modulating genes and thus skew the infected cancer cells towards certain death pathways for the enhanced immunogenicity. Strategies combining with some standard therapeutic regimens may also change the immunological consequence of cancer cell death. In this review, we discuss recent advances in our understanding of danger signals, modes of cancer cell death induced by OVs, the induced danger signals and functions in eliciting subsequent antitumor immunity. We also discuss potential combination strategies to target cells into specific modes of ICD and enhance cancer immunogenicity, including blockade of immune checkpoints, in order to break immune tolerance, improve antitumor immunity and thus the overall therapeutic efficacy.

  11. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Jianyun Liu

    2018-01-01

    Full Text Available Neurofibromin 1 (NF1 is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

  12. Low-dose gemcitabine induces major histocompatibility complex class I-related chain A/B expression and enhances an antitumor innate immune response in pancreatic cancer.

    Science.gov (United States)

    Miyashita, Tomoharu; Miki, Kenji; Kamigaki, Takashi; Makino, Isamu; Nakagawara, Hisatoshi; Tajima, Hidehiro; Takamura, Hiroyuki; Kitagawa, Hirohisa; Fushida, Sachio; Ahmed, Ali K; Duncan, Mark D; Harmon, John W; Ohta, Tetsuo

    2017-02-01

    We investigated the effect of gemcitabine (GEM), a key drug for pancreatic cancer treatment, on the expression of cell surface MICA/B in pancreatic cancer cells and resulting cytotoxicity of γδ T cells. We assessed the effect of GEM on the upregulation of cell surface MICA/B expression by flow cytometry, utilizing six pancreatic cancer cell lines. MICA and CD16 expressions from resected pancreatic cancer patient specimens, which received neoadjuvant chemotherapy (NAC) with GEM, were analyzed by immunohistochemistry. GEM could increase MICA/B expression on cell surface in pancreatic cancer cell lines (in 2 of 6 cell lines). This effect was most effectively at concentration not affecting cell growth of GEM (0.001 μM), because MICA/B negative population was appeared at concentration at cytostatic and cytotoxic effect to cell growth (0.1 and 10 μM). The cytotoxic activity of γδ T cells against PANC-1 was detected and functions through interactions between NKG2D and MICA/B. However, the enhancement of NKG2D-dependent cytotoxicity with increased MICA/B expression, by GEM treatment, was not observed. In addition, soluble MIC molecules were released from pancreatic cancer cell lines in culture supernatant with GEM treatment. Immunohistochemical staining demonstrated that MICA expression in tumor cells and CD16 positive cells surrounding tumors were significantly higher in the NAC group compared to that of the control group. There was a significant correlation between NAC and MICA expression, as well as NAC and CD16 positive cell expression. The present results indicate that low-dose GEM-induced MICA/B expression enhances innate immune function rather than cytotoxicity in pancreatic cancer. In addition, our result suggests that the inhibition of cleavage and release of MIC molecules from the tumor surface could potentially improve NKG2D-dependent cytotoxicity.

  13. The mannosylated extracellular domain of Her2/neu produced in P. pastoris induces protective antitumor immunity

    International Nuclear Information System (INIS)

    Dimitriadis, Alexios; Gontinou, Chrysanthi; Baxevanis, Constantin N; Mamalaki, Avgi

    2009-01-01

    Her2/neu is overexpressed in various human cancers of epithelial origin and is associated with increased metastatic potential and poor prognosis. Several attempts have been made using the extracellular domain of Her2/neu (ECD/Her2) as a prophylactic vaccine in mice with no success in tumor prevention. The extracellular domain of Her2/neu (ECD/Her2) was expressed in yeast P. pastoris, in a soluble highly mannosylated form. The immune response of the immunization with this recombinant ECD/Her2 was analyzed using immunoprecipitation and western blot analysis, proliferation and cytotoxicity assays as well as specific tumor growth assays. Mannosylated ECD/Her2 elicited a humoral response with HER2/neu specific antibodies in vaccinated mice, which were able to reduce the proliferation rate of cancer cells in vitro. Moreover, it elicited a cellular response with Her2/neu-specific CTL capable of lysing tumor cells, in vitro. When immunized Balb/c and HHD mice were challenged with Her2/neu-overexpressing cells, tumor growth was inhibited. Here we report on the efficacy of the extracellular domain of human Her2/neu produced in yeast P. pastoris, which confers mannosylation of the protein, to act as a potent anti-tumor vaccine against Her2/neu overexpressing tumors. Specific cellular and humoral responses were observed as well as efficacy

  14. Role of Activin A in Immune Response to Breast Cancer

    Science.gov (United States)

    2014-12-01

    Strome SE, Salomao DR, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion . Nat Med 8:793-800, 2002 56...active evasion of the immune system. MECHANISMS FOR IMMUNE EVASION Tumors have the entire genome at their disposal for modulating and evading the anti...tumor- immune response, and their escape tends to be multi-pronged (Figure 1). One simple method of escape utilized by tumors and viruses alike, is

  15. FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity.

    Science.gov (United States)

    Whiteside, Theresa L

    2018-04-01

    Regulatory T cells (Treg) characterized by expression of FOXP3 and strong immunosuppressive activity play a key role in regulating homeostasis in health and disease. Areas covered: Human Treg are highly diverse phenotypically and functionally. In the tumor microenvironment (TME), Treg are reprogrammed by the tumor, acquiring an activated phenotype and enhanced suppressor functions. No unique phenotypic markers for Treg accumulating in human tumors exist. Treg are heterogeneous and use numerous mechanisms to mediate suppression, which either silences anti-tumor immune surveillance or prevents tissue damage by activated T cells. Treg plasticity in the TME endows them with dual functionality. Treg frequency in tumors associates either with poor or improved survival. Treg responses to immune checkpoint inhibition (ICI) differ from the restorative effects ICIs induce in other immune cells. Therapies used to silence Treg, including ICIs, are only partly successful. Treg persistence and resistance to depletion are critical for maintaining homeostasis. Expert opinion: Treg emerge as a heterogeneous subset of immunosuppressive T cells, which usually, but not always, favor tumor progression. Treg are also engaged in non-immune activities that benefit the host. Therapeutic silencing of Treg in cancer requires a deeper understanding of Treg activities in human health and disease.

  16. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Directory of Open Access Journals (Sweden)

    Anastas Pashov

    2010-01-01

    Full Text Available Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies.

  17. Decreased Anti-Tumor Cytotoxic Immunity among Microsatellite-Stable Colon Cancers from African Americans.

    Science.gov (United States)

    Basa, Ranor C B; Davies, Vince; Li, Xiaoxiao; Murali, Bhavya; Shah, Jinel; Yang, Bing; Li, Shi; Khan, Mohammad W; Tian, Mengxi; Tejada, Ruth; Hassan, Avan; Washington, Allen; Mukherjee, Bhramar; Carethers, John M; McGuire, Kathleen L

    2016-01-01

    Colorectal cancer is a leading cause of cancer related deaths in the U.S., with African-Americans having higher incidence and mortality rates than Caucasian-Americans. Recent studies have demonstrated that anti-tumor cytotoxic T lymphocytes provide protection to patients with colon cancer while patients deficient in these responses have significantly worse prognosis. To determine if differences in cytotoxic immunity might play a role in racial disparities in colorectal cancer 258 microsatellite-stable colon tumors were examined for infiltrating immune biomarkers via immunohistochemistry. Descriptive summary statistics were calculated using two-sample Wilcoxon rank sum tests, while linear regression models with log-transformed data were used to assess differences in race and Pearson and Spearman correlations were used to correlate different biomarkers. The association between different biomarkers was also assessed using linear regression after adjusting for covariates. No significant differences were observed in CD8+ (p = 0.83), CD57+ (p = 0.55), and IL-17-expressing (p = 0.63) cell numbers within the tumor samples tested. When infiltration of granzyme B+ cells was analyzed, however, a significant difference was observed, with African Americans having lower infiltration of cells expressing this cytotoxic marker than Caucasians (p<0.01). Analysis of infiltrating granzyme B+ cells at the invasive borders of the tumor revealed an even greater difference by race (p<0.001). Taken together, the data presented suggest differences in anti-tumor immune cytotoxicity may be a contributing factor in the racial disparities observed in colorectal cancer.

  18. Recombinant protein rMBP-NAP restricts tumor progression by triggering antitumor immunity in mouse metastatic lung cancer.

    Science.gov (United States)

    Wang, Ting; Du, Mingxuan; Ji, Zhenyu; Ding, Cong; Wang, Chengbo; Men, Yingli; Liu, Shimeng; Liang, Taotao; Liu, Xin; Kang, Qiaozhen

    2018-02-01

    Recombinant Helicobacter pylori neutrophil-activating protein fused with maltose-binding protein (rMBP-NAP), a potential TLR2 ligand, was reported to possess immunomodulatory effects on in situ tumors in our previous study. In the present work, we attempt to elucidate the effect of rMBP-NAP at the local immune modulation in B16-F10-induced metastatic lung cancer. Our results demonstrated that growth of B16-F10 melanoma metastases in the lung was significantly arrested after rMBP-NAP treatment, along with marked reduction in metastatic lung nodules and significant increase in survival. The treatment induced both local and systemic immune responses, which were associated with higher influx of CD4 + /CD8 + T cells and drove toward Th1-like and cytotoxic immune environment. Moreover, rMBP-NAP also showed significant anti-angiogenic activity by reducing vascularization in lung tumor sections. rMBP-NAP could induce antitumor immunity through activating Th1 cells and producing pro-inflammatory cytokines, which are responsible for the effective cytotoxic immune response against cancer progression. Our findings indicate that rMBP-NAP might be a novel antitumor therapeutic strategy.

  19. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  20. Regulation of CD8+T Cells and Antitumor Immunity by Notch Signaling.

    Science.gov (United States)

    Tsukumo, Shin-Ichi; Yasutomo, Koji

    2018-01-01

    Cancer immunosurveillance is critical for the elimination of neoplastic cells. In addition, recent advances in immunological checkpoint blockade drugs have revealed the importance of the immune system in cancer treatment. As a component of the immune system, CD8 + T cells have important roles in suppressing tumors. CD8 + T cells can kill tumor cells with cytotoxic molecules, such as granzymes and perforin. IFNγ, which is produced by CD8 + T cells, can increase the expression of MHC class I antigens by tumor cells, thereby rendering them better targets for CD8 + T cells. IFNγ also has crucial functions in enhancing the antitumor abilities of other immune cells. Therefore, it has been hypothesized that antitumor immunity could be improved by modulating the activity of CD8 + T cells. The Notch pathway regulates CD8 + T cells in multiple ways. It directly upregulates mRNA expression of granzyme B and perforin, enhances differentiation toward short-lived effector cells, and maintains memory T cells. Intriguingly, CD8 + T cell-specific Notch2 deletion impairs antitumor immunity, whereas the stimulation of the Notch pathway can increase tumor suppression. In this review, we will summarize the roles of the Notch pathway in CD8 + T cells and discuss issues and implications for its use in antitumor immunity.

  1. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  2. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming.

    Science.gov (United States)

    Wagner, Julia A; Rosario, Maximillian; Romee, Rizwan; Berrien-Elliott, Melissa M; Schneider, Stephanie E; Leong, Jeffrey W; Sullivan, Ryan P; Jewell, Brea A; Becker-Hapak, Michelle; Schappe, Timothy; Abdel-Latif, Sara; Ireland, Aaron R; Jaishankar, Devika; King, Justin A; Vij, Ravi; Clement, Dennis; Goodridge, Jodie; Malmberg, Karl-Johan; Wong, Hing C; Fehniger, Todd A

    2017-11-01

    NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15-based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1-, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy.

  3. Dysregulation of innate immunity in ulcerative colitis patients who fail anti-tumor necrosis factor therapy.

    Science.gov (United States)

    Baird, Angela C; Mallon, Dominic; Radford-Smith, Graham; Boyer, Julien; Piche, Thierry; Prescott, Susan L; Lawrance, Ian C; Tulic, Meri K

    2016-11-07

    To study the innate immune function in ulcerative colitis (UC) patients who fail to respond to anti-tumor necrosis factor (TNF) therapy. Effects of anti-TNF therapy, inflammation and medications on innate immune function were assessed by measuring peripheral blood mononuclear cell (PBMC) cytokine expression from 18 inflammatory bowel disease patients pre- and 3 mo post-anti-TNF therapy. Toll-like receptor (TLR) expression and cytokine production post TLR stimulation was assessed in UC "responders" ( n = 12) and "non-responders" ( n = 12) and compared to healthy controls ( n = 12). Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were measured in blood to assess disease severity/activity and inflammation. Pro-inflammatory (TNF, IL-1β, IL-6), immuno-regulatory (IL-10), Th1 (IL-12, IFNγ) and Th2 (IL-9, IL-13, IL-17A) cytokine expression was measured with enzyme-linked immunosorbent assay while TLR cellular composition and intracellular signalling was assessed with FACS. Prior to anti-TNF therapy, responders and non-responders had similar level of disease severity and activity. PBMC's ability to respond to TLR stimulation was not affected by TNF therapy, patient's severity of the disease and inflammation or their medication use. At baseline, non-responders had elevated innate but not adaptive immune responses compared to responders ( P innate cytokine responses to all TLRs compared to healthy controls ( P innate immune dysfunction was associated with reduced number of circulating plasmacytoid dendritic cells (pDCs) ( P innate immunity in non-responders may explain reduced efficacy to anti-TNF therapy. These serological markers may prove useful in predicting the outcome of costly anti-TNF therapy.

  4. Effect of Paris saponin on antitumor and immune function in U14 ...

    African Journals Online (AJOL)

    bearing mice, and reduced the serum IL-4 level. The Paris saponin can inhibit U14 cell growth and prolong survival time of mice; it is speculated that the Paris saponin may express its anti-tumor activity by improving the body's immune system.

  5. An evolutionary perspective on anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    David John Klinke

    2013-01-01

    Full Text Available The challenges associated with demonstrating a durable response using molecular targeted therapies in cancer has sparked a renewed interest in viewing cancer from an evolutionary perspective. Evolutionary processes have three common traits: heterogeneity, dynamics, and a selective fitness landscape. Mutagens randomly alter the genome of host cells creating a population of cells that contain different somatic mutations. This genomic rearrangement perturbs cellular homeostasis through changing how cells interact with their tissue microenvironment. To counterbalance the ability of mutated cells to outcompete for limited resources, control structures are encoded within the cell and within the organ system, such as innate and adaptive immunity, to restore cellular homeostasis. These control structures shape the selective fitness landscape and determine whether a cell that harbors particular somatic mutations is retained or eliminated from a cell population. While next-generation sequencing has revealed the complexity and heterogeneity of oncogenic transformation, understanding the dynamics of oncogenesis and how cancer cells alter the selective fitness landscape remain unclear. In this technology review, we will summarize how recent advances in technology have impacted our understanding of these three attributes of cancer as an evolutionary process. In particular, we will focus on how advances in genome sequencing have enabled quantifying cellular heterogeneity, advances in computational power have enabled explicit testing of postulated intra- and intercellular control structures against the available data using simulation, and advances in proteomics have enabled identifying novel mechanisms of cellular cross-talk that cancer cells use to alter the fitness landscape.

  6. Anti-tumor immunity generated by photodynamic therapy in a metastatic murine tumor model

    Science.gov (United States)

    Castano, Ana P.; Hamblin, Michael R.

    2005-04-01

    Photodynamic therapy (PDT) is a modality for the treatment of cancer involving excitation of photosensitizers with harmless visible light producing reactive oxygen species. The major biological effects of PDT are apoptosis of tumor cells, destruction of the blood supply and activation of the immune system. The objective of this study is to compare in an animal model of metastatic cancer, PDT alone and PDT combined with low-dose cyclophosphamide (CY). Since the tumor we used is highly metastatic, it is necessary to generate anti-tumor immunity using PDT to both cure the primary tumor and prevent death from metastasis. This immunity may be potentiated by low dose CY. In our model we used J774 cells (a Balb/c reticulum cell sarcoma line with the characteristics of macrophages) and the following PDT regimen: benzoporphyrin derivative monoacid ring A (BPD, 2mg/kg injected IV followed after 15 min by 150 J/cm2 of 690-nm light). CY (50 mg/kg i.p.) was injected 48 hours before light delivery. BPD-PDT led to complete regression of the primary tumor in more than half the mice but no permanent cures were obtained. BPD-PDT in combination with CY led to 60% permanent cures. CY alone gave no permanent cures but did provide a survival advantage. To probe permanent immunity cured animals were rechallenged with the same tumor cell line and the tumors were rejected in 71% of mice cured with BPD-PDT plus CY. We conclude that BPD-PDT in combination with CY gives best overall results and that this is attributable to immunological response activation in addition to PDT-mediated destruction of the tumor.

  7. Linalool Exhibits Cytotoxic Effects by Activating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2014-05-01

    Full Text Available According to recent studies, the Plantaginaceae, which are traditional Chinese herbal remedies, have potential for use in viral infection treatment and cancer therapy. Linalool and p-coumaric acid are two of the biologically active compounds that can be isolated from the Plantaginaceae. This study mainly focused on investigating the bioactivity of linalool as well as the bioactivity of p-coumaric acid in terms of their cytotoxic effects on cancer cells. Whether the mechanisms of such effects are generated through apoptosis and immunoregulatory activity were also investigated. By using WST-1 analysis, it was shown that linalool and p-coumaric acid have good inhibitory effects against breast, colorectal and liver cancer cells. The IC50 values of linalool for those cancer cell types were 224 μM, 222 μM, and 290 μM, respectively, and the IC50 values of p-coumaric acid were 693 μM, 215 μM and 87 μM, respectively. Cell cycle analysis also confirmed that linalool and p-coumaric acid can lead to apoptosis. By using flow cytometry, it was determined that treatment with linalool rather than p-coumaric acid significantly increased the sub-G1 phase and that there were more cells concentrated in the G1 phase. Furthermore, by using cytokine array analysis, we found that linalool can stimulate IFN-γ, IL-13, IL-2, IL-21, IL-21R, IL-4, IL-6sR and TNF-α secretion. This demonstrated that in addition to the bidirectional regulation capabilities found in linalool, it also induces Th1 cellular immune response in T-47D cells. These results showed that linalool holds great potential for use in cancer therapy, and we believe that it could provide an alternative way to take action against tumors.

  8. Linalool exhibits cytotoxic effects by activating antitumor immunity.

    Science.gov (United States)

    Chang, Mei-Yin; Shen, Yi-Ling

    2014-05-22

    According to recent studies, the Plantaginaceae, which are traditional Chinese herbal remedies, have potential for use in viral infection treatment and cancer therapy. Linalool and p-coumaric acid are two of the biologically active compounds that can be isolated from the Plantaginaceae. This study mainly focused on investigating the bioactivity of linalool as well as the bioactivity of p-coumaric acid in terms of their cytotoxic effects on cancer cells. Whether the mechanisms of such effects are generated through apoptosis and immunoregulatory activity were also investigated. By using WST-1 analysis, it was shown that linalool and p-coumaric acid have good inhibitory effects against breast, colorectal and liver cancer cells. The IC50 values of linalool for those cancer cell types were 224 μM, 222 μM, and 290 μM, respectively, and the IC50 values of p-coumaric acid were 693 μM, 215 μM and 87 μM, respectively. Cell cycle analysis also confirmed that linalool and p-coumaric acid can lead to apoptosis. By using flow cytometry, it was determined that treatment with linalool rather than p-coumaric acid significantly increased the sub-G1 phase and that there were more cells concentrated in the G1 phase. Furthermore, by using cytokine array analysis, we found that linalool can stimulate IFN-γ, IL-13, IL-2, IL-21, IL-21R, IL-4, IL-6sR and TNF-α secretion. This demonstrated that in addition to the bidirectional regulation capabilities found in linalool, it also induces Th1 cellular immune response in T-47D cells. These results showed that linalool holds great potential for use in cancer therapy, and we believe that it could provide an alternative way to take action against tumors.

  9. Combination therapy with local radiofrequency ablation and systemic vaccine enhances antitumor immunity and mediates local and distal tumor regression.

    Directory of Open Access Journals (Sweden)

    Sofia R Gameiro

    Full Text Available PURPOSE: Radiofrequency ablation (RFA is a minimally invasive energy delivery technique increasingly used for focal therapy to eradicate localized disease. RFA-induced tumor-cell necrosis generates an immunogenic source of tumor antigens known to induce antitumor immune responses. However, RFA-induced antitumor immunity is insufficient to control metastatic progression. We sought to characterize (a the role of RFA dose on immunogenic modulation of tumor and generation of immune responses and (b the potential synergy between vaccine immunotherapy and RFA aimed at local tumor control and decreased systemic progression. EXPERIMENTAL DESIGN: Murine colon carcinoma cells expressing the tumor-associated (TAA carcinoembryonic antigen (CEA (MC38-CEA(+ were studied to examine the effect of sublethal hyperthermia in vitro on the cells' phenotype and sensitivity to CTL-mediated killing. The effect of RFA dose was investigated in vivo impacting (a the phenotype and growth of MC38-CEA(+ tumors and (b the induction of tumor-specific immune responses. Finally, the molecular signature was evaluated as well as the potential synergy between RFA and poxviral vaccines expressing CEA and a TRIad of COstimulatory Molecules (CEA/TRICOM. RESULTS: In vitro, sublethal hyperthermia of MC38-CEA(+ cells (a increased cell-surface expression of CEA, Fas, and MHC class I molecules and (b rendered tumor cells more susceptible to CTL-mediated lysis. In vivo, RFA induced (a immunogenic modulation on the surface of tumor cells and (b increased T-cell responses to CEA and additional TAAs. Combination therapy with RFA and vaccine in CEA-transgenic mice induced a synergistic increase in CD4(+ T-cell immune responses to CEA and eradicated both primary CEA(+ and distal CEA(- s.c. tumors. Sequential administration of low-dose and high-dose RFA with vaccine decreased tumor recurrence compared to RFA alone. These studies suggest a potential clinical benefit in combining RFA with vaccine

  10. Photodynamic therapy stimulates anti-tumor immunity in a murine model

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2007-02-01

    Cancer is a leading cause of death among modern peoples largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with the minimal toxicity. This is best accomplished by educating the body's immune system to recognize the tumor as foreign so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. We here report on PDT of mice bearing tumors that either do or do not express an established TAA. We utilized a BALB/c colon adenocarcinoma cell line termed CT26.CL25 retrovirally transduced to stably express β-galactosidase ( β-gal, a bacterial protein), and its non-β-gal expressing wild-type counterpart termed CT26 WT, as well as the control cell line consisting of CT26 transduced with the empty retroviral vector termed CT26-neo. All cells expressed class I MHC restriction element H-2Ld syngenic to BALB/c mice. Vascular PDT with a regimen of 1mg/kg BPD injected IV, and 120 J/cm2 of 690-nm laser light after 15 minutes successfully cured 100% of CT26.CL25 tumors but 0% of CT26-neo tumors and 0% of CT26 WT tumors. After 90 days tumor free interval the CT26.CL25 cured mice were rechallenged with CT26.CL25 tumor cells and 96% rejected the rechallenge while the CT26.CL25 cured mice did not reject a CT26 WT tumor cell challenge. Experiments with mice bearing two CT26.CL25 tumors (one

  11. Radiotherapy and antitumor immunity. An immunomodifying effect of ionizing radiation

    International Nuclear Information System (INIS)

    Klimovich, V.B.

    1983-01-01

    It has been found that a tumor is formed and spread under the influence of opposite but not mutually exlusive immune reactions. Radiation effect along with direct injury of tumoral cells and feeding neoplasms vessels changes the established equilibrium of immunologic factors, therefore it should be considered as immunomodifying one. The wide spread opinion according to which the therapeutic effect in case of radiotherapy is attained despite its depressive effect on immunity, should be revised as not corresponding to the facts. The data available allow one to assume that immunologic factors may play an essential role in realization of therapeutic effect of irradiation as well as in limitation of its efficiency. Investigations into immunologic aspects of oncology and radiology should be therefore directed to the search of methods of control of immune reactions of organism - the tumor bearer. This may discover considerable reserves of increasing radiotherapeutic efficiency

  12. A TLR9 agonist enhances the anti-tumor immunity of peptide and lipopeptide vaccines via different mechanisms.

    Science.gov (United States)

    Song, Ying-Chyi; Liu, Shih-Jen

    2015-07-28

    The toll-like receptor 9 (TLR9) agonists CpG oligodeoxynucleotides (CpG ODNs) have been recognized as promising adjuvants for vaccines against infectious diseases and cancer. However, the role of TLR9 signaling in the regulation of antigen uptake and presentation is not well understood. Therefore, to investigate the effects of TLR9 signaling, this study used synthetic peptides (IDG) and lipopeptides (lipoIDG), which are internalized by dendritic cells (DCs) via endocytosis-dependent and endocytosis-independent pathways, respectively. Our data demonstrated that the internalization of lipoIDG and IDG by bone marrow-derived dendritic cells (BMDCs) was not enhanced in the presence of CpG ODNs; however, CpG ODNs prolonged the co-localization of IDG with CpG ODNs in early endosomes. Surprisingly, CpG ODNs enhanced CD8(+) T cell responses, and the anti-tumor effects of IDG immunization were stronger than those of lipoIDG immunization. LipoIDG admixed with CpG ODNs induced low levels of CD8(+) T cells and partially inhibit tumor growth. Our findings suggest that CpG ODNs increase the retention of antigens in early endosomes, which is important for eliciting anti-tumor immunity. These results will facilitate the application of CpG adjuvants in the design of different vaccines.

  13. CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation.

    Science.gov (United States)

    Deng, Jiehui; Wang, Eric S; Jenkins, Russell W; Li, Shuai; Dries, Ruben; Yates, Kathleen; Chhabra, Sandeep; Huang, Wei; Liu, Hongye; Aref, Amir R; Ivanova, Elena; Paweletz, Cloud P; Bowden, Michaela; Zhou, Chensheng W; Herter-Sprie, Grit S; Sorrentino, Jessica A; Bisi, John E; Lizotte, Patrick H; Merlino, Ashley A; Quinn, Max M; Bufe, Lauren E; Yang, Annan; Zhang, Yanxi; Zhang, Hua; Gao, Peng; Chen, Ting; Cavanaugh, Megan E; Rode, Amanda J; Haines, Eric; Roberts, Patrick J; Strum, Jay C; Richards, William G; Lorch, Jochen H; Parangi, Sareh; Gunda, Viswanath; Boland, Genevieve M; Bueno, Raphael; Palakurthi, Sangeetha; Freeman, Gordon J; Ritz, Jerome; Haining, W Nicholas; Sharpless, Norman E; Arthanari, Haribabu; Shapiro, Geoffrey I; Barbie, David A; Gray, Nathanael S; Wong, Kwok-Kin

    2018-02-01

    Immune checkpoint blockade, exemplified by antibodies targeting the PD-1 receptor, can induce durable tumor regressions in some patients. To enhance the efficacy of existing immunotherapies, we screened for small molecules capable of increasing the activity of T cells suppressed by PD-1. Here, we show that short-term exposure to small-molecule inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) significantly enhances T-cell activation, contributing to antitumor effects in vivo , due in part to the derepression of NFAT family proteins and their target genes, critical regulators of T-cell function. Although CDK4/6 inhibitors decrease T-cell proliferation, they increase tumor infiltration and activation of effector T cells. Moreover, CDK4/6 inhibition augments the response to PD-1 blockade in a novel ex vivo organotypic tumor spheroid culture system and in multiple in vivo murine syngeneic models, thereby providing a rationale for combining CDK4/6 inhibitors and immunotherapies. Significance: Our results define previously unrecognized immunomodulatory functions of CDK4/6 and suggest that combining CDK4/6 inhibitors with immune checkpoint blockade may increase treatment efficacy in patients. Furthermore, our study highlights the critical importance of identifying complementary strategies to improve the efficacy of immunotherapy for patients with cancer. Cancer Discov; 8(2); 216-33. ©2017 AACR. See related commentary by Balko and Sosman, p. 143 See related article by Jenkins et al., p. 196 This article is highlighted in the In This Issue feature, p. 127 . ©2017 American Association for Cancer Research.

  14. [The role of extracellular chaperone Hsp70 in creating antitumor immunity in rat rhabdomyosarcoma RA-2 model].

    Science.gov (United States)

    Guzhova, I V; Komarova, E Iu; Pimenova, A A; Bakhtin, Iu B; Kaminskaia, E V; Margulis, B A

    2008-01-01

    Immunization of experimental animals with extract or membranes of rat rhabdomyosarcoma RA-2 in combination with pure Hsp70 did not offer any significant effect of protection from subsequent RA-2 cells-stimulated tumor growth. By contrast, immunization with preparations of pure Hsp70 led to a significant decrease in number and size of tumors as well as elevation of concentrations of antibodies against RA-2 cells. Also, enhanced blood levels of Hsp70 involved delayed tumor growth. In vitro tests Hsp70 incubation with RA-2 cells was followed by a 30-35% rise in cytotoxic lymphocytes levels. An ability of pure Hsp70 preparations to stimulate humoral and antitumor response was demonstrated. Hence, they may be used in developing vaccine formulas.

  15. Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy.

    Science.gov (United States)

    Borzooee, Faezeh; Asgharpour, Mahdi; Quinlan, Emma; Grant, Michael D; Larijani, Mani

    2017-12-06

    APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.

  16. Up-regulation of GITRL on dendritic cells by WGP improves anti-tumor immunity in murine Lewis lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Jie Tian

    Full Text Available BACKGROUND: β-Glucans have been shown to function as a potent immunomodulator to stimulate innate and adaptive immune responses, which contributes to their anti-tumor property. However, their mechanisms of action are still elusive. Glucocorticoid-induced TNF receptor ligand (GITRL, a member of the TNF superfamily, binds to its receptor, GITR, on both effector and regulatory T cells, generates a positive co-stimulatory signal implicated in a wide range of T cell functions, which is important for the development of immune responses. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we found that whole β-glucan particles (WGPs could activate dendritic cells (DCs via dectin-1 receptor, and increase the expression of GITRL on DCs in vitro and in vivo. Furthermore, we demonstrated that the increased GITRL on DCs could impair the regulartory T cell (Treg-mediated suppression and enhance effector T cell proliferation in a GITR/GITRL dependent way. In tumor models, DCs with high levels of GITRL were of great potential to prime cytotoxic T lymphocyte (CTL responses and down-regulate the suppressive activity of Treg cells, thereby leading to the delayed tumor progression. CONCLUSIONS/SIGNIFICANCE: These findings suggest that particulate β-glucans can be used as an immunomodulator to stimulate potent T cell-mediated adaptive immunity while down-regulate suppressive immune activity via GITR/GITRL interaction, leading to a more efficient defense mechanism against tumor development.

  17. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense.

    Science.gov (United States)

    Hu, Xiaomeng; Wu, Tingting; Bao, Yuling; Zhang, Zhiping

    2017-06-28

    Cancer is still the leading cause of death. While traditional treatments such as surgery, chemotherapy and radiotherapy play dominating roles, recent breakthroughs in cancer immunotherapy indicate that the influence of immune system on cancer development is virtually beyond our expectation. Manipulating the immune system to fight against cancer has been thriving in recent years. Further understanding of tumor anatomy provides opportunities to put a brake on immunosuppression by overcoming tumor intrinsic resistance or modulating tumor microenvironment. Nanotechnology which provides versatile engineered approaches to enhance therapeutic effects may potentially contribute to the development of future cancer treatment modality. In this review, we will focus on the application of nanotechnology both in boosting anti-tumor immunity and collapsing tumor defense. Copyright © 2017. Published by Elsevier B.V.

  18. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  19. CD4+ T cells play a critical role in the generation of primary and memory antitumor immune responses elicited by SA-4-1BBL and TAA-based vaccines in mouse tumor models.

    Science.gov (United States)

    Sharma, Rajesh K; Yolcu, Esma S; Srivastava, Abhishek K; Shirwan, Haval

    2013-01-01

    The role of CD4(+) T cells in the generation of therapeutic primary and memory immune responses in cancer diverse immunotherapy settings remains ambiguous. We herein investigated this issue using two vaccine formulations containing a novel costimulatory molecule, SA-4-1BBL, as adjuvant and HPV E7 or survivin (SVN) as tumor associated antigens (TAAs) in two mouse transplantable tumor models; the TC-1 cervical cancer expressing xenogeneic HPV E7 and 3LL lung carcinoma overexpressing autologous SVN. Single vaccination with optimized SA-4-1BBL/TAA formulations resulted in the eradication of 6-day established TC-1 and 3LL tumors in >70% of mice in both models. The in vivo depletion of CD4(+) T cells one day before tumor challenge resulted in compromised vaccine efficacy in both TC-1 (25%) and 3LL (12.5%) tumor models. In marked contrast, depletion of CD4(+) T cells 5 days post-tumor challenge and one day prior to vaccination did not significantly alter the therapeutic efficacy of these vaccines. However, long-term immunological memory was compromised in the 3LL, but not in TC-1 model as a significant number (85.7%) of tumor free-mice succumbed to tumor growth when rechallenged with 3LL cells 60 days after the initial tumor inoculation. Collectively, these results demonstrate the indispensable role CD4(+) T cells play in the generation of therapeutic primary immune responses elicited by SA-4-1BBL/TAA-based vaccines irrespective of the nature of TAAs and establish the importance of CD4(+) T cells for long-term immune memory against 3LL tumor expressing self-antigen SVN, but not TC-1 expressing xenogeneic viral antigen E7.

  20. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

    Directory of Open Access Journals (Sweden)

    Biliang Hu

    2017-09-01

    Full Text Available The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.

  1. CCL3 Enhances Antitumor Immune Priming in the Lymph NodeviaIFNγ with Dependency on Natural Killer Cells.

    Science.gov (United States)

    Allen, Frederick; Rauhe, Peter; Askew, David; Tong, Alexander A; Nthale, Joseph; Eid, Saada; Myers, Jay T; Tong, Caryn; Huang, Alex Y

    2017-01-01

    Lymph node (LN) plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2). Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell-antigen-presenting cell (APC) encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3-5). In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs) of a CCL3-secreting CT26 colon tumor (L3TU) as compared to wild-type tumor (WTTU) during the priming phase of an antitumor response (≤10 days). In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3) secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103 + dendritic cells (DCs), and CD49b + natural killer (NK) cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ)-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.

  2. CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Frederick Allen

    2017-10-01

    Full Text Available Lymph node (LN plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2. Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5. In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs of a CCL3-secreting CT26 colon tumor (L3TU as compared to wild-type tumor (WTTU during the priming phase of an antitumor response (≤10 days. In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3 secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs, and CD49b+ natural killer (NK cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.

  3. The Effect of Radiation on the Immune Response to Cancers

    Directory of Open Access Journals (Sweden)

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  4. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity.

    Science.gov (United States)

    Xiao, Yichuan; Zou, Qiang; Xie, Xiaoping; Liu, Ting; Li, Haiyan S; Jie, Zuliang; Jin, Jin; Hu, Hongbo; Manyam, Ganiraju; Zhang, Li; Cheng, Xuhong; Wang, Hui; Marie, Isabelle; Levy, David E; Watowich, Stephanie S; Sun, Shao-Cong

    2017-05-01

    Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance. © 2017 Xiao et al.

  5. Antitumor and immune regulation activities of the extracts of some Chinese marine invertebrates

    Science.gov (United States)

    Zhang, Lixin; Fan, Xiao; Han, Lijun

    2005-03-01

    Extracts of 21 marine invertebrates belonging to Coelenterata, Mollusca, Annelida, Bryozoa, Echiura, Arthropoda, Echinodermata and Urochordata were screened for the studies on their antitumor and immune regulation activities. Antitumor activity was determined by MTT method and immune regulation activity was studied using T- and B-lymphocytes in mice spleen in vitro. It was found that the n-butanol part of Asterina pectinifera, the acetic ether part of Tubuaria marina, 95% ethanol extract of Acanthochiton rubrolineatus have a high inhibition rate of 96.7%, 63.9% and 50.5% respectively on tumor cell line HL-60 at the concentration of 0.063 mg/ml. The inhibition rate of the acetic ether part of Tubuaria marina on the tumor cell line A-549 is 65.4% at concentration of 0.063 mg/mL. The 95% ethanol extract of Meretrix meretrix has so outstanding promoting effect on T-lymphocytes that their multiplication increases 25% when the sample concentration is only 1 μg/ml. On B-lymphocytes, the 95% extract of Rapana venosa, at concentration of 100 μg/ml, has a promotion percentage of 60%. On the other hand, under the condition of no cytotoxic effect, the 95% ethanol extracts of Acanthochiton rubrolineatus and Cellana toreum can reach 92% inhibition rate on T lymphocyte at concentration of 100 μg/ml, while the inhibition rate on B lymphocyte of the 95% extract of Acanthochiton rubrolineatus reaches 92% at the same concentration.

  6. Transfer of in vitro-expanded naïve T cells after lymphodepletion enhances antitumor immunity through the induction of polyclonal antitumor effector T cells.

    Directory of Open Access Journals (Sweden)

    Tomohiro Tanaka

    Full Text Available The adoptive transfer of effector T cells combined with lymphodepletion has demonstrated promising antitumor effects in mice and humans, although the availability of tumor-specific T cells is limited. We and others have also demonstrated that the transfer of polyclonal naïve T cells induces tumor-specific effector T cells and enhances antitumor immunity after lymphodepletion. Because tumors have been demonstrated to induce immunosuppressive networks and regulate the function of T cells, obtaining a sufficient number of fully functional naïve T cells that are able to differentiate into tumor-specific effector T cells remains difficult. To establish culture methods to obtain a large number of polyclonal T cells that are capable of differentiating into tumor-specific effector T cells, naïve T cells were activated with anti-CD3 mAbs in vitro. These cells were stimulated with IL-2 and IL-7 for the CD8 subset or with IL-7 and IL-23 for the CD4 subset. Transfer of these hyperexpanded T cells after lymphodepletion showed significant antitumor efficacy, and tumor-specific effector T cells were primed from these expanded T cells in tumor-bearing hosts. Moreover, these ex vivo-expanded T cells maintained T cell receptor diversity and showed long-term persistence of memory against specific tumors. Further analyses revealed that combination therapy consisting of vaccination with dendritic cells that were co-cultured with irradiated whole tumor cells and the transfer of ex vivo-expanded T cells significantly enhanced antitumor immunity. These results indicate that the transfer of ex vivo-expanded polyclonal T cells can be combined with other immunotherapies and augment antitumor effects.

  7. Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats.

    Science.gov (United States)

    Wang, Hui; Zhang, Li; Shi, Yingrui; Javidiparsijani, Sara; Wang, Guirong; Li, Xiao; Ouyang, Weiwei; Zhou, Jumei; Zhao, Lingyun; Wang, Xiaowen; Zhang, Xiaodong; Gao, Fuping; Liu, Jingshi; Luo, Junming; Tang, Jintian

    2014-03-01

    The abscopal effect has previously been described in various tumors and is associated with radiation therapy and hyperthermia, with possible underlying mechanisms explaining each observed case. In the present study, we aimed to investigate the antitumor effects of magnet-mediated hyperthermia on Walker-256 carcinosarcomas in rats at two different temperature ranges (42-46°C and 50-55°C). We also aimed to identify whether a higher therapeutic temperature of magnetic-mediated hyperthermia improves the abscopal antitumor effects, where localised irradiation of the tumor causes not only the irradiated tumor to shrink, but also tumors located far from the area of irradiation. Following induction of carcinosarcoma in both sides of the body, magnet-mediated hyperthermia was applied to one side only, leaving the other side as a control. The changes in tumor growth were observed. Our results demonstrated that magnet-mediated hyperthermia at a higher temperature inhibited the growth of carcinosarcoma at the site of treatment. Furthermore, the growth of the carcinosarcoma on the untreated side was also inhibited. The expression levels of proliferating cell nuclear antigen were decreased in the hyperthermia group, which was more significant in the higher temperature test group. Flow cytometric analysis showed an increased number of CD4- and CD8-positive T cells, and enzyme-linked immunosorbent assay showed increased levels of interferon-γ and interleukin-2 in the higher temperature group. These results suggested that magnet-mediated hyperthermia at a higher temperature (50-55°C) can improve the abscopal antitumor effects and stimulate a greater endogenous immune response in carcinosarcoma-bearing rats.

  8. Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma.

    Science.gov (United States)

    Pajtasz-Piasecka, Elzbieta; Rossowska, Joanna; Duś, Danuta; Weber-Dabrowska, Beata; Zabłocka, Agnieszka; Górski, Andrzej

    2008-02-15

    Bacteriophages in eukaryotic hosts may behave as particulate antigens able to activate the innate immune system and generate adaptive immunity. Dendritic cells (DCs) play a key role in the initiation of the immune response, mainly by priming T cell-mediated immunity. For this reason, they are increasingly applied as an adjuvant for effective anti-tumor therapies in animal models as well as in a few clinical trials. The presented study focused on the application of mouse DCs which were activated with T4 bacteriophages (T4 phages, T4) and further loaded with tumor antigens (TAg) in inducing an anti-tumor response. The activation of bone marrow-derived DCs with T4 phages and TAg resulted in augmentation of their differentiation marker expression accompanied by an enhanced ability to prime T cells for IFN-gamma production. These activated DCs (BM-DC/T4+TAg) were used in experimental immunotherapy of C57BL/6 mice bearing advanced MC38 colon carcinoma tumors. As a result of their triple application, a significant tumor growth delay, up to 19 days, was observed compared with the controls - treated with BM-DCs activated only with T4 phages, TAg, or lipopolysaccharide solution ["solvent"], where the tumor growth delay did not exceed 7 days. The percentage of tumor growth inhibition estimated 10 days after the third cell injection ranged from 32% (for animals treated with BM-DC/TAg cells) to 76% (for animals treated with BM-DC/T4+TAg cells) over the tumor-bearing untreated control mice. The obtained data indicate that in vitro interactions between T4 phages and BM-DCs followed by TAg activation caused augmentation of the anti-tumor effect when DCs were used as a vaccine for tumor-bearing mice treatment. Therefore, pretreatment of DCs with the phages may be considered as a beneficial element of a novel strategy in anti-tumor immunotherapy.

  9. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity.

    Directory of Open Access Journals (Sweden)

    W Joost Lesterhuis

    Full Text Available Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4(+ and CD8(+ T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.

  10. EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yoo Jin Choi

    Full Text Available Cancer stem-like cells (CSCs may play a key role in tumor initiation, self-renewal, differentiation, and resistance to current treatments. Dendritic cells (DCs play a vital role in host immune reactions as well as antigen presentation. In this study, we explored the suitability of using CSC peptides as antigen sources for DC vaccination against human breast cancer and hepatocellular carcinoma (HCC with the aim of achieving CSC targeting and enhancing anti-tumor immunity. CD44 is used as a CSC marker for breast cancer and EpCAM is used as a CSC marker for HCC. We selected CD44 and EpCAM peptides that bind to HLA-A2 molecules on the basis of their binding affinity, as determined by a peptide-T2 binding assay. Our data showed that CSCs express high levels of tumor-associated antigens (TAAs as well as major histocompatibility complex (MHC molecules. Pulsing DCs with CD44 and EpCAM peptides resulted in the efficient generation of mature DCs (mDCs, thus enhancing T cell stimulation and generating potent cytotoxic T lymphocytes (CTLs. The activation of CSC peptide-specific immune responses by the DC vaccine in combination with standard chemotherapy may provide better clinical outcomes in advanced carcinomas.

  11. Histone deacetylase inhibitor AR-42 enhances E7-specific CD8⁺ T cell-mediated antitumor immunity induced by therapeutic HPV DNA vaccination.

    Science.gov (United States)

    Lee, Sung Yong; Huang, Zhuomin; Kang, Tae Heung; Soong, Ruey-Shyang; Knoff, Jayne; Axenfeld, Ellen; Wang, Chenguang; Alvarez, Ronald D; Chen, Ching-Shih; Hung, Chien-Fu; Wu, T-C

    2013-10-01

    We have previously created a potent DNA vaccine encoding calreticulin linked to the human papillomavirus (HPV) oncogenic protein E7 (CRT/E7). While treatment with the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency with the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi has been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administration of a novel HDACi, AR-42, with therapeutic HPV DNA vaccines could improve the activation of HPV antigen-specific CD8(+) T cells, resulting in potent therapeutic antitumor effects. To do so, HPV-16 E7-expressing murine TC-1 tumor-bearing mice were treated orally with AR-42 and/or CRT/E7 DNA vaccine via gene gun. Mice were monitored for E7-specific CD8(+) T cell immune responses and antitumor effects. TC-1 tumor-bearing mice treated with AR-42 and CRT/E7 DNA vaccine experienced longer survival, decreased tumor growth, and enhanced E7-specific immune response compared to mice treated with AR-42 or CRT/E7 DNA vaccine alone. Additionally, treatment of TC-1 cells with AR-42 increased the surface expression of MHC class I molecules and increased the susceptibility of tumor cells to the cytotoxicity of E7-specific T cells. This study indicates the ability of AR-42 to significantly enhance the potency of the CRT/E7 DNA vaccine by improving tumor-specific immune responses and antitumor effects. Both AR-42 and CRT/E7 DNA vaccines have been used in independent clinical trials; the current study serves as foundation for future clinical trials combining both treatments in cervical cancer therapy. AR-42, a novel HDAC inhibitor, enhances potency of therapeutic HPV DNA vaccines AR-42 treatment leads to strong E7-specific CD8+ T cell immune responses AR-42 improves tumor-specific immunity and antitumor effects elicited by HPV DNA vaccine AR-42 is more potent than

  12. Trypanosoma cruzi Adjuvants Potentiate T Cell-Mediated Immunity Induced by a NY-ESO-1 Based Antitumor Vaccine

    Science.gov (United States)

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A.; Salgado, Ana Paula C.; Cunha, Thiago M.; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L. O.; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q.; Gazzinelli, Ricardo T.

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4+ T and CD8+ T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4+ T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8+ T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant. PMID:22567144

  13. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    Science.gov (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Protein Kinase C-theta (PKC-theta in Natural Killer (NK cell function and anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Alberto eAnel

    2012-07-01

    Full Text Available The protein kinase C-theta (PKCtheta, which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK cells, which express PKCtheta, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCtheta-/- mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCtheta in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCtheta is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer activating receptors (KAR. Alternatively, the possibility that PKCtheta is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center (MTOC polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in CTL, and these studies will be also summarized.

  15. Immune Response After Measles Vaccination

    Directory of Open Access Journals (Sweden)

    Bhardwaj A.K

    1991-01-01

    Full Text Available Measles immunization of 192 under 5 years of age children was undertaken and the overall seroconversion was 76.0%. Seroconversion rate in the age group of 9-12 months was 70.9% and it was 100% after one year. Immune response in malnourished children was more as compared to normal children. There were negligible side reactions after measles vaccination, and this vaccine passed normal potency tests under field conditions.

  16. A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts.

    Science.gov (United States)

    Chen, Meihua; Xiang, Rong; Wen, Yuan; Xu, Guangchao; Wang, Chunting; Luo, Shuntao; Yin, Tao; Wei, Xiawei; Shao, Bin; Liu, Ning; Guo, Fuchun; Li, Meng; Zhang, Shuang; Li, Minmin; Ren, Kexing; Wang, Yongsheng; Wei, Yuquan

    2015-09-23

    Cancer-associated fibroblasts (CAFs) are common components of the tumor-suppressive microenvironment, and are a major determinant of the poor outcome of therapeutic vaccination. In this study, we modified tumor cells to express the fibroblast activation protein (FAP), which is highly expressed by CAFs, to potentially improve whole-cell tumor vaccines by targeting both tumor cells and CAFs. Tumor cells were transfected with murine FAP plasmids bearing the cationic lipid DOTAP. Its antitumor effects were investigated in three established tumor models. Vaccination with tumor cells expressing FAP eliminated solid tumors and tumors resulting from hematogenous dissemination. This antitumor immune response was mediated by CD8+ T cells. Additionally, we found that CAFs were significantly reduced within the tumors. Furthermore, this vaccine enhanced the infiltration of CD8+ T lymphocytes, and suppressed the accumulation of immunosuppressive cells in the tumor microenvironment. Our results indicated that the FAP-modified whole-cell tumor vaccine induced strong antitumor immunity against both tumor cells and CAFs and reversed the immunosuppressive effects of tumors by decreasing the recruitment of immunosuppressive cells and enhancing the recruitment of effector T cells. This conclusion may have important implications for the clinical use of genetically modified tumor cells as cancer vaccines.

  17. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  18. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  19. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis

    Directory of Open Access Journals (Sweden)

    Radoja Sasa

    2007-11-01

    Full Text Available Abstract Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells of the cold-exposed group would be compared to

  20. Melanocyte-specific immune response in melanoma and vitiligo: two faces of the same coin?

    NARCIS (Netherlands)

    Wankowicz-Kalinska, Anna; Le Poole, Caroline; van den Wijngaard, Rene; Storkus, Walter J.; Das, Pranab K.

    2003-01-01

    The appearance of depigmentation during the course of malignant melanoma has been considered a good prognostic sign. Is it only a side-effect, informative of the immune system's response to the treatment, or does it act as a necessary amplifier of these clinically important anti-tumor responses? The

  1. Photodynamic therapy for cancer and activation of immune response

    Science.gov (United States)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  2. T-cell mediated anti-tumor immunity after photodynamic therapy: Why does it not always work and how can we improve it?

    Science.gov (United States)

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2015-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients. PMID:26062987

  3. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity

    Directory of Open Access Journals (Sweden)

    Tania Løve Aaes

    2016-04-01

    Full Text Available Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.

  4. Enhanced antitumor immunity contributes to the radio-sensitization of ehrlich ascites tumor by the glycolytic inhibitor 2-deoxy-D-glucose in mice.

    Directory of Open Access Journals (Sweden)

    Abdullah Farooque

    Full Text Available Two-deoxy-D-glucose (2-DG, an inhibitor of glycolysis differentially enhances the radiation and chemotherapeutic drug induced cell death in cancer cells in vitro, while the local tumor control (tumor regression following systemic administration of 2-DG and focal irradiation of the tumor results in both complete (cure and partial response in a fraction of the tumor bearing mice. In the present studies, we investigated the effects of systemically administered 2-DG and focal irradiation of the tumor on the immune system in Ehrlich ascites tumor (EAT bearing Strain "A" mice. Markers of different immune cells were analyzed by immune-flow cytometry and secretary cytokines by ELISA, besides monitoring tumor growth. Increase in the expression of innate (NK and monocytes and adaptive CD4+cells, and a decrease in B cells (CD19 have been observed after the combined treatment, suggestive of activation of anti-tumor immune response. Interestingly, immature dendritic cells were found to be down regulated, while their functional markers CD86 and MHC II were up regulated in the remaining dendritic cells following the combination treatment. Similarly, decrease in the CD4(+ naïve cells with concomitant increase in activated CD4+ cells corroborated the immune activation. Further, a shift from Th2 and Th17 to Th1 besides a decrease in inflammatory cytokines was also observed in the animals showing complete response (cure; tumor free survival. This shift was also complimented by respective antibody class switching followed by the combined treatment. The immune activation or alteration in the homeostasis favoring antitumor immune response may be due to depletion in T regulatory cells (CD4(+CD25(+FoxP3(+. Altogether, these results suggest that early differential immune activation is responsible for the heterogenous response to the combined treatment. Taken together, these studies for the first time provided insight into the additional mechanisms underlying radio

  5. Passive adoptive transfer of antitumor immunity induced by laser-dye-immunoadjuvant treatment in a rat metastatic breast cancer model

    Science.gov (United States)

    Chen, Wei R.; Liu, Hong; Singhal, Anil K.; Nordquist, Robert E.

    2000-06-01

    The ideal cancer treatment modalities should not only cause tumor regression and eradication but also induce a systemic anti-tumor immunity. This is essential for control of metastatic tumors and for long-term tumor resistance. Laser immunotherapy using a laser, a laser-absorbing dye and an immunoadjuvant has induced such a long-term immunity in treatment of a mammary metastatic tumor. The successfully treated rats established total resistance to multiple subsequent tumor challenges. For further mechanistic studies of the antitumor immunity induced by this novel treatment modality, passive adoptive transfer was performed using splenocytes as immune cells. The spleen cells harvested from successfully treated tumor-bearing rats provided 100% immunity in the naive recipients. The passively protected first cohort rats were immune to tumor challenge with an increased tumor dose; their splenocytes also prevented the establishment of tumor in the second cohort of naive recipient rats. This immunity transfer was accomplished without the usually required T-cell suppression in recipients.

  6. Dendritic cells loaded with pancreatic Cancer Stem Cells (CSCs lysates induce antitumor immune killing effect in vitro.

    Directory of Open Access Journals (Sweden)

    Tao Yin

    Full Text Available According to the cancer stem cells (CSCs theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer.

  7. Astrocyte immune responses in epilepsy

    NARCIS (Netherlands)

    Aronica, Eleonora; Ravizza, Teresa; Zurolo, Emanuele; Vezzani, Annamaria

    2012-01-01

    Astrocytes, the major glial cell type of the central nervous system (CNS), are known to play a major role in the regulation of the immune/inflammatory response in several human CNS diseases. In epilepsy-associated pathologies, the presence of astrogliosis has stimulated extensive research focused on

  8. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy.

    Science.gov (United States)

    Schaaf, Marco B; Garg, Abhishek D; Agostinis, Patrizia

    2018-01-25

    It is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers. The structurally and functionally aberrant tumor vasculature contributes to the protumorigenic and immunosuppressive TME by maintaining a cancer cell's permissive environment characterized by hypoxia, acidosis, and high interstitial pressure, while simultaneously generating a physical barrier to T cells' infiltration. Recent research moreover has shown that blood endothelial cells forming the tumor vessels can actively suppress the recruitment, adhesion, and activity of T cells. Likewise, during tumorigenesis the lymphatic vasculature undergoes dramatic remodeling that facilitates metastatic spreading of cancer cells and immunosuppression. Beyond carcinogenesis, the erratic tumor vasculature has been recently implicated in mechanisms of therapy resistance, including those limiting the efficacy of clinically approved immunotherapies, such as immune checkpoint blockers and adoptive T-cell transfer. In this review, we discuss emerging evidence highlighting the major role played by tumor-associated blood and lymphatic vasculature in thwarting immunosurveillance mechanisms and antitumor immunity. Moreover, we also discuss novel therapeutic approaches targeting the tumor vasculature and their potential to help overcoming immunotherapy resistance.

  9. Dendritic Cells Genetically Modified with an Adenovirus Vector Encoding the cDNA for a Model Antigen Induce Protective and Therapeutic Antitumor Immunity

    Science.gov (United States)

    Song, Wenru; Kong, Hwai-Loong; Carpenter, Heather; Torii, Hideshi; Granstein, Richard; Rafii, Shahin; Moore, Malcolm A.S.; Crystal, Ronald G.

    1997-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in the initiation of antitumor immune responses. In this study, we show that genetic modifications of a murine epidermis-derived DC line and primary bone marrow–derived DCs to express a model antigen β-galactosidase (βgal) can be achieved through the use of a replication-deficient, recombinant adenovirus vector, and that the modified DCs are capable of eliciting antigen-specific, MHC-restricted CTL responses. Importantly, using a murine metastatic lung tumor model with syngeneic colon carcinoma cells expressing βgal, we show that immunization of mice with the genetically modified DC line or bone marrow DCs confers potent protection against a lethal tumor challenge, as well as suppression of preestablished tumors, resulting in a significant survival advantage. We conclude that genetic modification of DCs to express antigens that are also expressed in tumors can lead to antigen-specific, antitumor killer cells, with a concomitant resistance to tumor challenge and a decrease in the size of existing tumors. PMID:9334364

  10. Induction of an antitumor response using dendritic cells transfected with DNA constructs encoding the HLA-A*02:01-restricted epitopes of tumor-associated antigens in culture of mononuclear cells of breast cancer patients.

    Science.gov (United States)

    Sennikov, Sergey Vital'evich; Shevchenko, Julia Alexandrovna; Kurilin, Vasilii Vasil'evich; Khantakova, Julia Nikolaevna; Lopatnikova, Julia Anatol'evna; Gavrilova, Elena Vasil'evna; Maksyutov, Rinat Amirovich; Bakulina, Anastasiya Yur'evna; Sidorov, Sergey Vasil'evich; Khristin, Alexander Alexandrovich; Maksyutov, Amir Zakievich

    2016-02-01

    Advances in oncoimmunology related to the definition of the basic mechanisms of the formation of antitumor immune response, as well as the opening of tumor-associated antigens recognized by immune cells, allowed to start developing ways to influence the effector cells of the immune system to generate effective antitumor cytotoxic response. We investigated the possibility to stimulate an antitumor response in a culture of mononuclear cells of breast cancer patients by dendritic cells transfected with HLA-A*02:01-restricted DNA constructs. We isolated dendritic cells from peripheral blood monocytes and delivered our constructs to these cells by magnetic transfection. Additionally, a series of experiments with loading of dendritic cells with autologous tumor cell lysate antigens was conducted. We have shown that dendritic cells transfected with the HLA-A*02:01-restricted DNA constructs are effective in inducing an antitumor response in a culture of mononuclear cells of breast cancer patients. Dendritic cells transfected with DNA constructor dendritic cells loaded with lysate antigens revealed a comparable stimulated cytotoxic response of mononuclear cells to these two ways of antigen delivery. We conclude that using DNA constructs in conjunction with patient stratification by HLA type allows the application of transfected DCs as an effective method to stimulate antitumor immunity in vitro.

  11. [Immune response to influenza vaccination].

    Science.gov (United States)

    Alvarez, I; Corral, J; Arranz, A; Foruria, A; Landa, V; Lejarza, J R; Marijuán, L; Martínez, J M

    1989-01-01

    The present study investigated the level of immunity of the population against three strains of the influenza virus (A Chile/1/83 -A Philippines/2/82 and B URSS/100/83) before and three months after vaccination, and the immune response to whole virus vaccine as compared with fragmented virus vaccine. A high percentage of the population had titers greater than or equal to 1/10 before vaccination for the Chile (54%) and Philippines (65.7%) strains, while titers against the URSS strain were lower (25.4%). There was a definitive increase in antibody titer in the vaccinated population, although it was lower than expected. The overall response to both vaccines, with protecting titers greater than or equal to 1/40 after vaccination was 65.2% for the Chile strain, 74.6% for the Philippines strain, and 15% for the URSS strain. No differences in the overall immune response were found between the groups vaccinated with whole and fragmented virus.

  12. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  13. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    International Nuclear Information System (INIS)

    Pimenta, Erica M.; Barnes, Betsy J.

    2014-01-01

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin ® ) and rituximab (Rituxan ® )) and the first approved cancer vaccine, Provenge ® (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response

  14. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  15. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  16. Tilapia show immunization response against Ich

    Science.gov (United States)

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  17. Ezh2 phosphorylation state determines its capacity to maintain CD8+T memory precursors for antitumor immunity.

    Science.gov (United States)

    He, Shan; Liu, Yongnian; Meng, Lijun; Sun, Hongxing; Wang, Ying; Ji, Yun; Purushe, Janaki; Chen, Pan; Li, Changhong; Madzo, Jozef; Issa, Jean-Pierre; Soboloff, Jonathan; Reshef, Ran; Moore, Bethany; Gattinoni, Luca; Zhang, Yi

    2017-12-14

    Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8 + T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies.

  18. Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus

    Directory of Open Access Journals (Sweden)

    Ahmed Abdullah Al-Zaher

    2018-03-01

    Full Text Available To enhance adenovirus-mediated oncolysis, different approaches that tackle the selectivity, tumor penetration, and spreading potential of oncolytic adenoviruses have been reported. We have previously demonstrated that insertion of the internalizing Arginine-Glycine-Aspartic (iRGD tumor-penetrating peptide at the C terminus of the fiber or transgenic expression of a secreted hyaluronidase can improve virus tumor targeting and spreading. Here we report a new oncolytic adenovirus ICOVIR17K-iRGD in which both modifications have been incorporated. In xenografted A549 tumors in nude mice, ICOVIR17K-iRGD shows higher efficacy than the non-iRGD counterpart. To gain insights into the role of the immune system in oncolysis, we have studied ICOVIR17K-iRGD in the tumor isograft mouse model CMT64.6, partially permissive to human adenovirus 5 replication, in immunodeficient or immunocompetent mice. Whereas no efficacy was observed in the immunodeficient setting due to insufficient viral replication, partial efficacy and a polymorphonuclear and CD8+ T cell infiltrate were observed in the immunocompetent mice. The results indicate that the elicitation of a virus-induced anti-tumoral immune response is responsible for the observed partial anti-tumoral effect. Keywords: oncolytic adenovirus, iRGD tumor-penetrating peptide, immune response

  19. The Immune Response of Maternally Immune Chicks to Vaccination ...

    African Journals Online (AJOL)

    The Immune Response of Maternally Immune Chicks to Vaccination with Newcastle Disease Virus. ... G A El-Tayeb, M Y El-Ttegani, I E Hajer, M A Mohammed ... This study was conducted to determine the persistence of maternally derived antibodies (MDA) to Newcastle disease virus (NDV) in newly hatched chicks and the ...

  20. Immune response to fungal infection.

    Science.gov (United States)

    Diamond, R D

    1989-01-01

    In general, fungi are saprophytes that are well adapted to grow in nature supported by diverse nutritional substrates. For fungi, in contrast to many other microorganisms that infect humans, parasitism is an accidental phenomenon rather than an obligatory requirement for survival. Thus, with progressive improvement in our capabilities to prolong survival of patients with global defects in host defense mechanisms, clinical experience suggests that human tissues may support growth of numerous species of saprophytic fungi that share the capacity to grow at 37 degrees C. Normally, however, a broad array of natural and acquired host defense mechanisms make the occurrence of progressive, systemic, life-threatening mycoses extremely rare events. When one or another of these host defense mechanisms is compromised, one of a variety of significant fungal infections may then progress. Mycoses may be broadly categorized into those controlled largely by natural cellular defenses vs. acquired cell-mediated immunity. Notwithstanding data that permit such general classification of host factors controlling one or another invasive mycosis, the diverse structural and antigenic properties of individual fungi create unique patterns of infections in individual, characteristic host settings. Thus, while some broad generalizations are possible, definition of predisposing factors for specific individual mycoses (and, ultimately, prospects for corrective immunotherapy) requires careful characterization of diverse features of fungal forms mediating divergent immune responses.

  1. Role of CD1A and HSP60 in the antitumoral response of oesophageal cancer

    Directory of Open Access Journals (Sweden)

    Simona Corrao

    2011-12-01

    Full Text Available Oesophageal cancer (OC is one of the most common and severe forms of tumor. A wider knowledge of molecular mechanisms which lead to a normal epithelium becoming a neoplasm may reveal new strategies to improve treatment and outcome of this disease. In this review, we report recent findings concerning molecular events which take place during carcinogenesis of the oesophagus. In particular, we focus on the role of two molecules, CD1a and Hsp60, which are overexpressed in oesophageal and many other types of tumor. Both molecules may present tumor antigens and promote in situ the stimulation of an antitumoral immune activity. We suggest there is a synergistic action between these molecules. Further knowledge about their intracellular pathways and extracellular roles may help develop new antitumoral tools for OC.

  2. Cigarette smoke alters the invariant natural killer T cell function and may inhibit anti-tumor responses.

    LENUS (Irish Health Repository)

    Hogan, Andrew E

    2011-09-01

    Invariant natural killer T (iNKT) cells are a minor subset of human T cells which express the invariant T cell receptor Vα24 Jα18 and recognize glycolipids presented on CD1d. Invariant NKT cells are important immune regulators and can initiate anti-tumor responses through early potent cytokine production. Studies show that iNKT cells are defective in certain cancers. Cigarette smoke contains many carcinogens and is implicated directly and indirectly in many cancers. We investigated the effects of cigarette smoke on the circulating iNKT cell number and function. We found that the iNKT cell frequency is significantly reduced in cigarette smoking subjects. Invariant NKT cells exposed to cigarette smoke extract (CSE) showed significant defects in cytokine production and the ability to kill target cells. CSE inhibits the upregulation of CD107 but not CD69 or CD56 on iNKT cells. These findings suggest that CSE has a specific effect on iNKT cell anti-tumor responses, which may contribute to the role of smoking in the development of cancer.

  3. The immune response to surgery and infection.

    Science.gov (United States)

    Dąbrowska, Aleksandra M; Słotwiński, Robert

    2014-01-01

    Surgical trauma affects both the innate and acquired immunity. The severity of immune disorders is proportional to the extent of surgical trauma and depends on a number of factors, including primarily the basic disease requiring surgical treatment (e.g. cancer), often coexisting infections and impaired nutritional status. Disorder of the immune response following surgical trauma may predispose to septic complications burdened with the highest mortality rate. Extensive surgery in cancer patients is associated with simultaneous activation of pro- and anti-inflammatory processes defined as SIRS (systemic inflammatory immune response) and CARS (compensatory anti-inflammatory immune response). However, it is generally believed that major surgical trauma is accompanied by sustained postoperative immunosuppression, which is particularly important in patients operated on for cancer, since the suppression of the immune system promotes not only septic complications, but also proliferation and tumor metastasis. This paper reviews the main features of immune response to surgical trauma and possibilities of its regulation.

  4. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  5. OK-432 synergizes with IFN-γ to confer dendritic cells with enhanced antitumor immunity.

    Science.gov (United States)

    Pan, Ke; Lv, Lin; Zheng, Hai-xia; Zhao, Jing-jing; Pan, Qiu-zhong; Li, Jian-jun; Weng, De-sheng; Wang, Dan-dan; Jiang, Shan-shan; Chang, Alfred E; Li, Qiao; Xia, Jian-chuan

    2014-03-01

    Generation of functional dendritic cells (DCs) with boosted immunity after the withdrawal of initial activation/maturation conditions remains a significant challenge. In this study, we investigated the impact of a newly developed maturation cocktail consisting of OK-432 and interferon-gamma (IFN-γ) on the function of human monocyte-derived DCs (MoDCs). We found that OK-432 plus IFN-γ stimulation could induce significantly stronger expression of surface molecules, production of cytokines, as well as migration of DCs compared with OK-432 stimulation alone. Most importantly, DCs matured with OK-432 plus IFN-γ-induced maintained secretion of interleukin-12 (IL-12)p70 in secondary culture after stimulus withdrawal. Functionally, OK-432 plus IFN-γ-conditioned DCs induce remarkable Th1 and Tc1 responses more effectively than OK-432 alone, even more than the use of α-type-1 cytokine cocktail. As a result, DCs matured with OK-432 plus IFN-γ can prime stronger cytotoxic lymphocyte (CTL) and natural killer (NK) cell response against tumor cells in vitro. Peripheral blood mononuclear cells activated by DCs matured with OK-432 plus IFN-γ also showed greater tumor growth inhibition in vivo in null mice. Molecular mechanistic analysis showed that DC maturation using IFN-γ in concert with OK-432 involves the activation of p38 and nuclear factor-kappa B (NF-κB) pathways. This study provided a novel strategy to generate more potent immune segments in DC vaccine.

  6. Innate Immune Response to Burkholderia mallei

    Science.gov (United States)

    2017-02-16

    vaccination and therapeutic approaches are necessary for complete protection against B. mallei. Keywords: Innate Immune response, Burkholderia mallei...immune signaling, cellular immunity, vaccine . TR-17-034 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED...Currently, no licensed vaccines are available for either disease, and medical therapeutic options are limited. Both B. pseudomallei and B. mallei

  7. Cytokines and Immune Responses in Murine Atherosclerosis

    NARCIS (Netherlands)

    Kusters, Pascal J. H.; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and

  8. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  9. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  10. Tumor mouse model confirms MAGE-A3 cancer immunotherapeutic as an efficient inducer of long-lasting anti-tumoral responses.

    Directory of Open Access Journals (Sweden)

    Catherine Gérard

    Full Text Available MAGE-A3 is a potential target for immunotherapy due to its tumor-specific nature and expression in several tumor types. Clinical data on MAGE-A3 immunotherapy have raised many questions that can only be addressed by using animal models. In the present study, different aspects of the murine anti-tumor immune responses induced by a recombinant MAGE-A3 protein (recMAGE-A3 in combination with different immunostimulants (AS01, AS02, CpG7909 or AS15 were investigated.Based on cytokine profile analyses and protection against challenge with MAGE-A3-expressing tumor, the combination recMAGE-A3+AS15 was selected for further experimental work, in particular to study the mechanisms of anti-tumor responses. By using MHC class I-, MHC class II-, perforin-, B-cell- and IFN-γ- knock-out mice and CD4+ T cell-, CD8+ T cell- and NK cell- depleted mice, we demonstrated that CD4+ T cells and NK cells are the main anti-tumor effectors, and that IFN-γ is a major effector molecule. This mouse tumor model also established the need to repeat recMAGE-A3+AS15 injections to sustain efficient anti-tumor responses. Furthermore, our results indicated that the efficacy of tumor rejection by the elicited anti-MAGE-A3 responses depends on the proportion of tumor cells expressing MAGE-A3.The recMAGE-A3+AS15 cancer immunotherapy efficiently induced an antigen-specific, functional and long-lasting immune response able to recognize and eliminate MAGE-A3-expressing tumor cells up to several months after the last immunization in mice. The data highlighted the importance of the immunostimulant to induce a Th1-type immune response, as well as the key role played by IFN-γ, CD4+ T cells and NK cells in the anti-tumoral effect.

  11. Visualization of Immune Responses in the Cornea.

    Science.gov (United States)

    Perez, Victor L

    2017-11-01

    The eye has become a useful site for the investigation and understanding of local and systemic immune responses. The ease of access and transparency of the cornea permits direct visualization of ocular structures, blood vessels, and lymphatic vessels, allowing for the tracking of normal and pathological biological processes in real time. As a window to the immune system, we have used the eye to dissect the mechanisms of corneal inflammatory reactions that include innate and adaptive immune responses. We have identified that the ocular microenvironment regulates these immune responses by recruiting different populations of inflammatory cells to the cornea through local production of selected chemokines. Moreover, crosstalk between T cells and macrophages is a common and crucial step in the development of ocular immune responses to corneal alloantigens. This review summarizes the data generated by our group using intravital fluorescent confocal microscopy to capture the tempo, magnitude, and function of innate and adaptive corneal immune responses.

  12. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    Directory of Open Access Journals (Sweden)

    Joseph T. Acquaviva

    2015-07-01

    Full Text Available The ideal treatment modality for metastatic cancer would be a local treatment that can destroy primary tumors while inducing an effective systemic anti-tumor response. To this end, we developed laser immunotherapy, combining photothermal laser application with an immunoadjuvant for the treatment of metastatic cancer. Additionally, to enhance the selective photothermal effect, we integrated light-absorbing nanomaterials into this innovative treatment. Specifically, we developed an immunologically modified carbon nanotube combining single-walled carbon nanotubes (SWNTs with the immunoadjuvant glycated chitosan (GC. To determine the effectiveness of laser irradiation, a series of experiments were performed using two different irradiation durations — 5 and 10 min. Rats were inoculated with DMBA-4 cancer cells, a metastatic cancer cell line. The treatment group of rats receiving laser irradiation for 10 min had a 50% long-term survival rate without residual primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 min had no long-term survivors; all rats died with multiple metastases at several distant sites. Therefore, Laser+SWNT–GC treatment with 10 min of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  13. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients.

    Science.gov (United States)

    Wheeler, Christopher J; Black, Keith L; Liu, Gentao; Mazer, Mia; Zhang, Xiao-xue; Pepkowitz, Samuel; Goldfinger, Dennis; Ng, Hiushan; Irvin, Dwain; Yu, John S

    2008-07-15

    Cancer vaccine trials have failed to yield robust immune-correlated clinical improvements as observed in animal models, fueling controversy over the utility of human cancer vaccines. Therapeutic vaccination represents an intriguing additional therapy for glioblastoma multiforme (GBM; grade 4 glioma), which has a dismal prognosis and treatment response, but only early phase I vaccine trial results have been reported. Immune and clinical responses from a phase II GBM vaccine trial are reported here. IFN-gamma responsiveness was quantified in peripheral blood of 32 GBM patients given therapeutic dendritic cell vaccines. Posttreatment times to tumor progression (TTP) and survival (TTS) were compared in vaccine responders and nonresponders and were correlated with immune response magnitudes. GBM patients (53%) exhibited >or=1.5-fold vaccine-enhanced cytokine responses. Endogenous antitumor responses of similar magnitude occurred in 22% of GBM patients before vaccination. Vaccine responders exhibited significantly longer TTS and TTP relative to nonresponders. Immune enhancement in vaccine responders correlated logarithmically with TTS and TTP spanning postvaccine chemotherapy, but not with initial TTP spanning vaccination alone. This is the first report of a progressive correlation between cancer clinical outcome and T-cell responsiveness after therapeutic vaccination in humans and the first tracing of such correlation to therapeutically exploitable tumor alteration. As such, our findings offer unique opportunities to identify cellular and molecular components of clinically meaningful antitumor immunity in humans.

  14. A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model.

    Science.gov (United States)

    Kim, Julius W; Miska, Jason; Young, Jacob S; Rashidi, Aida; Kane, J Robert; Panek, Wojciech K; Kanojia, Deepak; Han, Yu; Balyasnikova, Irina V; Lesniak, Maciej S

    2017-06-16

    Oncolytic virotherapy is a treatment approach with increasing clinical relevance, as indicated by the marked survival benefit seen in animal models and its current exploration in human patients with cancer. The use of an adenovirus vector for this therapeutic modality is common, has significant clinical benefit in animals, and its efficacy has recently been linked to an anti-tumor immune response that occurs following tumor antigen presentation. Here, we analyzed the adaptive immune system's response following viral infection by comparing replication-incompetent and replication-competent adenoviral vectors. Our findings suggest that cell death caused by replication-competent adenoviral vectors is required to induce a significant anti-tumor immune response and survival benefits in immunocompetent mice bearing intracranial glioma. We observed significant changes in the repertoire of immune cells in the brain and draining lymph nodes and significant recruitment of CD103+ dendritic cells (DCs) in response to oncolytic adenoviral therapy, suggesting the active role of the immune system in anti-tumor response. Our data suggest that the response to oncolytic virotherapy is accompanied by local and systemic immune responses and should be taken in consideration in the future design of the clinical studies evaluating oncolytic virotherapy in patients with glioblastoma multiforme (GBM).

  15. A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model

    Directory of Open Access Journals (Sweden)

    Julius W. Kim

    2017-06-01

    Full Text Available Oncolytic virotherapy is a treatment approach with increasing clinical relevance, as indicated by the marked survival benefit seen in animal models and its current exploration in human patients with cancer. The use of an adenovirus vector for this therapeutic modality is common, has significant clinical benefit in animals, and its efficacy has recently been linked to an anti-tumor immune response that occurs following tumor antigen presentation. Here, we analyzed the adaptive immune system’s response following viral infection by comparing replication-incompetent and replication-competent adenoviral vectors. Our findings suggest that cell death caused by replication-competent adenoviral vectors is required to induce a significant anti-tumor immune response and survival benefits in immunocompetent mice bearing intracranial glioma. We observed significant changes in the repertoire of immune cells in the brain and draining lymph nodes and significant recruitment of CD103+ dendritic cells (DCs in response to oncolytic adenoviral therapy, suggesting the active role of the immune system in anti-tumor response. Our data suggest that the response to oncolytic virotherapy is accompanied by local and systemic immune responses and should be taken in consideration in the future design of the clinical studies evaluating oncolytic virotherapy in patients with glioblastoma multiforme (GBM.

  16. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    Science.gov (United States)

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  17. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Dan A. Erkes

    2014-01-01

    Full Text Available Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD using animal contact hypersensitivity (CHS models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1 ex vivo haptenation, (2 in situ haptenation, (3 epifocal hapten application, and (4 antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.

  18. Avian malaria and bird humoral immune response.

    Science.gov (United States)

    Delhaye, Jessica; Jenkins, Tania; Glaizot, Olivier; Christe, Philippe

    2018-02-09

    Plasmodium parasites are known to impose fitness costs on their vertebrate hosts. Some of these costs are due to the activation of the immune response, which may divert resources away from self-maintenance. Plasmodium parasites may also immuno-deplete their hosts. Thus, infected individuals may be less able to mount an immune response to a new pathogen than uninfected ones. However, this has been poorly investigated. The effect of Plasmodium infection on bird humoral immune response when encountering a novel antigen was tested. A laboratory experiment was conducted on canaries (Serinus canaria) experimentally infected with Plasmodium relictum (lineage SGS1) under controlled conditions. Birds were immune challenged with an intra-pectoral injection of a novel non-pathogenic antigen (keyhole limpet haemocyanin, KLH). One week later they were challenged again. The immune responses to the primary and to the secondary contacts were quantified as anti-KLH antibody production via enzyme-linked immunosorbent assay (ELISA). There was no significant difference in antibody production between uninfected and Plasmodium infected birds at both primary and secondary contact. However, Plasmodium parasite intensity in the blood increased after the primary contact with the antigen. There was no effect of Plasmodium infection on the magnitude of the humoral immune response. However, there was a cost of mounting an immune response in infected individuals as parasitaemia increased after the immune challenge, suggesting a trade-off between current control of chronic Plasmodium infection and investment against a new immune challenge.

  19. Polarization of immune responses in fish

    NARCIS (Netherlands)

    Wiegertjes, Geert F.; Wentzel, Annelieke S.; Spaink, Herman P.; Elks, Philip M.; Fink, Inge R.

    2016-01-01

    In this review, we support taking polarized immune responses in teleost fish from a 'macrophage first' point of view, a hypothesis that reverts the dichotomous T helper (TH)1 and TH2 driving forces by building on the idea of conservation of innate immune responses in lower

  20. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade.

    Science.gov (United States)

    Xue, Wei; Metheringham, Rachael L; Brentville, Victoria A; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M; Durrant, Lindy G

    2016-06-01

    Checkpoint blockade has demonstrated promising antitumor responses in approximately 10-40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses.

  1. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  2. The Immune Response to Astrovirus Infection.

    Science.gov (United States)

    Marvin, Shauna A

    2016-12-30

    Astroviruses are one of the leading causes of pediatric gastroenteritis worldwide and are clinically importantly pathogens in the elderly and immunocompromised populations. Although the use of cell culture systems and small animal models have enhanced our understanding of astrovirus infection and pathogenesis, little is known about the immune response to astrovirus infection. Studies from humans and animals suggest that adaptive immunity is important in restricting classic and novel astrovirus infections, while studies from animal models and cell culture systems suggest that an innate immune system plays a role in limiting astrovirus replication. The relative contribution of each arm of the immune system in restricting astrovirus infection remains unknown. This review summarizes our current understanding of the immune response to astrovirus infection and highlights some of the key questions that stem from these studies. A full understanding of the immune response to astrovirus infection is required to be able to treat and control astrovirus-induced gastroenteritis.

  3. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model.

    Directory of Open Access Journals (Sweden)

    Yuya Yoshimoto

    Full Text Available PURPOSE: There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL activity. METHODS AND MATERIALS: C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD was defined as the time (in days for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. RESULTS: In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days and prolonged median survival time (MST to 59 days (versus 28 days in the non-irradiated group. CD8(+ cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days. Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days, while anti-FR4 and anti-GITR antibodies did not affect efficacy. CONCLUSIONS: Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4

  4. T-regulatory cells depletion is the main cause for enhanced antitumor immunity during radio-sensitization of tumors by 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Farooque, Abdullah; Verma, Amit; Singh, Niharika; Chauhan, Sachin Kumar Singh; Jethani, Jyoti; Adhikari, J.S.; Dwarakanath, B.S.; Afrin, Farhat

    2014-01-01

    Regulatory T cells (Tregs) are known to have profound effects in blocking anti-tumor immunity. Therefore, Tregs are seen as a major hurdle that must be overcome in order to improve the efficacy of cancer therapy. The glycolytic inhibitor, 2-deoxy-d-glucose (2-DG) enhances radiation and chemotherapeutics induced death of many cancer cells in vitro and local tumor control in vivo, which was found to be associated with the enhanced anti-tumor immunity. Therefore, we investigated the role of Tregs in determining the tumor response to the combined treatment of 2-DG plus ionizing radiation. Ehrlich ascites tumor bearing mice were administered with a single dose of 2-DG (2 gm/Kg/b.wt) intravenously just before focal irradiation (10 Gy). Immuno-phenotyping of Tregs in secondary lymphoid organs was carried out using flow cytometry, while related cytokines were analyzed using bead array and ELISA. Further, mRNA and protein levels of transcription factors were assessed in sorted splenic CD4 + cells and CD4 + CD25 + using real time PCR and Western blot techniques. Results clearly showed depletion (TRAIL mediated apoptosis) of T regs (CD4 + CD25 + FoxP3 + CD39 + FR4 + GITR + CD127 - ), in blood, spleen, lymph node and tumor following the combined treatment. This led to the immune activation in the periphery, secondary lymphoid organs and massive infiltration of CD4 + , CD8 + and NK cells in the tumor, which correlated well with the complete response (cure; tumor free survival). Association of Treg depletion with the tumor response was further confirmed using low doses of cyclophosphamide (which depletes Tegs) and rapamycin (activator of Tregs),wherein the depletor of Tregs enhanced the efficacy of combined treatment, while Tregs enhancer compromised the efficacy. These studies unequivocally established the role of Tregs in determining the therapeutic response and can be used as a target for enhancing the efficacy of this combined treatment, besides establishing the potential of

  5. IgG4 subclass antibodies impair antitumor immunity in melanoma.

    Science.gov (United States)

    Karagiannis, Panagiotis; Gilbert, Amy E; Josephs, Debra H; Ali, Niwa; Dodev, Tihomir; Saul, Louise; Correa, Isabel; Roberts, Luke; Beddowes, Emma; Koers, Alexander; Hobbs, Carl; Ferreira, Silvia; Geh, Jenny L C; Healy, Ciaran; Harries, Mark; Acland, Katharine M; Blower, Philip J; Mitchell, Tracey; Fear, David J; Spicer, James F; Lacy, Katie E; Nestle, Frank O; Karagiannis, Sophia N

    2013-04-01

    Host-induced antibodies and their contributions to cancer inflammation are largely unexplored. IgG4 subclass antibodies are present in IL-10-driven Th2 immune responses in some inflammatory conditions. Since Th2-biased inflammation is a hallmark of tumor microenvironments, we investigated the presence and functional implications of IgG4 in malignant melanoma. Consistent with Th2 inflammation, CD22+ B cells and IgG4(+)-infiltrating cells accumulated in tumors, and IL-10, IL-4, and tumor-reactive IgG4 were expressed in situ. When compared with B cells from patient lymph nodes and blood, tumor-associated B cells were polarized to produce IgG4. Secreted B cells increased VEGF and IgG4, and tumor cells enhanced IL-10 secretion in cocultures. Unlike IgG1, an engineered tumor antigen-specific IgG4 was ineffective in triggering effector cell-mediated tumor killing in vitro. Antigen-specific and nonspecific IgG4 inhibited IgG1-mediated tumoricidal functions. IgG4 blockade was mediated through reduction of FcγRI activation. Additionally, IgG4 significantly impaired the potency of tumoricidal IgG1 in a human melanoma xenograft mouse model. Furthermore, serum IgG4 was inversely correlated with patient survival. These findings suggest that IgG4 promoted by tumor-induced Th2-biased inflammation may restrict effector cell functions against tumors, providing a previously unexplored aspect of tumor-induced immune escape and a basis for biomarker development and patient-specific therapeutic approaches.

  6. Effector Regulatory T Cells Reflect the Equilibrium between Antitumor Immunity and Autoimmunity in Adult T-cell Leukemia.

    Science.gov (United States)

    Ureshino, Hiroshi; Shindo, Takero; Nishikawa, Hiroyoshi; Watanabe, Nobukazu; Watanabe, Eri; Satoh, Natsuko; Kitaura, Kazutaka; Kitamura, Hiroaki; Doi, Kazuko; Nagase, Kotaro; Kimura, Hiromi; Samukawa, Makoto; Kusunoki, Susumu; Miyahara, Masaharu; Shin-I, Tadasu; Suzuki, Ryuji; Sakaguchi, Shimon; Kimura, Shinya

    2016-08-01

    The regulatory T cells (Treg) with the most potent immunosuppressive activity are the effector Tregs (eTreg) with a CD45RA(-)Foxp3(++)CCR4(+) phenotype. Adult T-cell leukemia (ATL) cells often share the Treg phenotype and also express CCR4. Although mogamulizumab, a monoclonal antibody to CCR4, shows marked antitumor effects against ATL and peripheral T-cell lymphoma, concerns have been raised that it may induce severe autoimmune immunopathology by depleting eTregs. Here, we present case reports for two patients with ATL who responded to mogamulizumab but developed a severe skin rash and autoimmune brainstem encephalitis. Deep sequencing of the T-cell receptor revealed that ATL cells and naturally occurring Tregs within the cell population with a Treg phenotype can be clearly distinguished according to CADM1 expression. The onset of skin rash and brainstem encephalitis was coincident with eTreg depletion from the peripheral blood, whereas ATL relapses were coincident with eTreg recovery. These results imply that eTreg numbers in the peripheral blood sensitively reflect the equilibrium between antitumor immunity and autoimmunity, and that mogamulizumab might suppress ATL until the eTreg population recovers. Close monitoring of eTreg numbers is crucial if we are to provide immunomodulatory treatments that target malignancy without severe adverse events. Cancer Immunol Res; 4(8); 644-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. A Toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population.

    Science.gov (United States)

    Wu, Chiao-Chieh; Liu, Shih-Jen; Chen, Hsin-Wei; Shen, Kuan-Yin; Leng, Chih-Hsiang

    2016-05-24

    The induction of long-lived effector CD8+ T cells is key to the development of efficient cancer vaccines. In this study, we demonstrated that a Toll-like receptor 2 (TLR2) agonist-fused antigen increased antigen presentation via TLR2 signaling and induced effector memory-like CD8+ T cells against cancer after immunization. The N-terminus of ovalbumin (OVA) was biologically fused with a bacterial lipid moiety TLR2 agonist to produce a recombinant lipidated ovalbumin (rlipo-OVA). We demonstrated that rlipo-OVA activated bone marrow-derived dendritic cells (BM-DCs) maturation and increased antigen presentation by major histocompatibility complex (MHC) class I via TLR2. After immunization, rlipo-OVA skewed the immune response towards T helper (Th) 1 and induced OVA-specific cytotoxic T lymphocyte (CTL) responses. Moreover, immunization with rlipo-OVA induced higher numbers of effector memory (CD44+CD62L-) CD8+ T cells compared with recombinant ovalbumin (rOVA) alone or rOVA mixed with the TLR2 agonist Pam3CSK4. Accordingly, the CD27+CD43+ effector memory CD8+ T cells expressed high levels of the long-lived CD127 marker. The administration of rlipo-OVA could inhibit tumor growth, but the anti-tumor effects were lost after the depletion of CD8 or CD127 cells in vivo. These findings suggested that the TLR2 agonist-fused antigen induced long-lived memory CD8+ T cells for efficient cancer therapy.

  8. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Liqing Wang

    2016-11-01

    Full Text Available Foxp3+ T-regulatory (Treg cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or “secondary” modulation, e.g. using anti-CTLA-4 monoclonal antibody. Our ongoing studies of the post-translational modifications that regulate Foxp3 demonstrated that the histone/protein acetyltransferase, Tip60, plays a dominant role in promoting acetylation, dimerization and function in Treg cells. We now show that the ubiquitin-specific protease, Usp7, controls Treg function largely by stabilizing the expression and promoting the multimerization of Tip60 and Foxp3. Genetic or pharmacologic targeting of Usp7 impairs Foxp3+ Treg suppressive functions, while conventional T cell responses remain intact. As a result, pharmacologic inhibitors of Usp7 can limit tumor growth in immunocompetent mice, and promote the efficacy of antitumor vaccines and immune checkpoint therapy with anti-PD1 monoclonal antibody in murine models. Hence, pharmacologic therapy with Usp7 inhibitors may have an important role in future cancer immunotherapy.

  9. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses.

    Science.gov (United States)

    Hodge, James W; Poole, Diane J; Aarts, Wilhelmina M; Gómez Yafal, Alicia; Gritz, Linda; Schlom, Jeffrey

    2003-11-15

    Cancer vaccine regimens use various strategies to enhance immune responses to specific tumor-associated antigens (TAAs), including the increasing use of recombinant poxviruses [vaccinia (rV) and fowlpox (rF)] for delivery of the TAA to the immune system. However, the use of replication competent vectors with the potential of adverse reactions have made attenuation a priority for next-generation vaccine strategies. Modified vaccinia Ankara (MVA) is a replication defective form of vaccinia virus. Here, we investigated the use of MVA encoding a tumor antigen gene, carcinoembryonic antigen (CEA), in addition to multiple costimulatory molecules (B7-1, intercellular adhesion molecule-1, and lymphocyte function-associated antigen-3 designated TRICOM). Vaccination of mice with MVA-CEA/TRICOM induced potent CD4+ and CD8+ T-cell responses specific for CEA. MVA-CEA/TRICOM could be administered twice in vaccinia naïve mice and only a single time in vaccinia-immune mice before being inhibited by antivector-immune responses. The use of MVA-CEA/TRICOM in a diversified prime and boost vaccine regimen with rF-CEA/TRICOM, however, induced significantly greater levels of both CD4+ and CD8+ T-cell responses specific for CEA than that seen with rV-CEA/TRICOM prime and rF-CEA/TRICOM boost. In a self-antigen tumor model, the diversified MVA-CEA/TRICOM/rF-CEA/ TRICOM vaccination regimen resulted in a significant therapeutic antitumor response as measured by increased survival, when compared with the diversified prime and boost regimen, rV-CEA/TRICOM/rF-CEA/TRICOM. The studies reported here demonstrate that MVA, when used as a prime in a diversified vaccination, is clearly comparable with the regimen using the recombinant vaccinia in both the induction of cellular immune responses specific for the "self"-TAA transgene and in antitumor activity.

  10. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    Directory of Open Access Journals (Sweden)

    Shuhji Seki

    2011-01-01

    Full Text Available Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR ligands and an NKT cell ligand (α-galactocylceramide, activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN-γ, which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a positive feedback loop. These immunological events are essentially evoked to protect the host from bacterial and viral infections; however, these events also contribute to antitumor and antimetastatic immunity in the liver by activated liver NK cells and NKT cells. Bystander CD8+CD122+ T cells, and tumor-specific memory CD8+T cells, are also induced in the liver by α-galactocylceramide. Furthermore, adoptive transfer experiments have revealed that activated liver lymphocytes may migrate to other organs to inhibit tumor growth, such as the lungs and kidneys. The immunological mechanism underlying the development of hepatocellular carcinoma in cirrhotic livers in hepatitis C patients and liver innate immunity as a double-edged sword (hepatocyte injury/regeneration, septic shock, autoimmune disease, etc. are also discussed.

  11. Mycobacterium bovis Bacillus Calmette–Guérin Alters Melanoma Microenvironment Favoring Antitumor T Cell Responses and Improving M2 Macrophage Function

    Directory of Open Access Journals (Sweden)

    Ricardo D. Lardone

    2017-08-01

    Full Text Available Intralesional Mycobacterium bovis bacillus Calmette–Guérin (BCG has long been a relatively inexpensive therapy for inoperable cutaneous metastatic melanoma (CMM, although intralesional BCG skin mechanisms remain understudied. We analyzed intralesional BCG-treated CMM lesions combined with in vitro studies to further investigate BCG-altered pathways. Since macrophages play a pivotal role against both cancer and mycobacterial infections, we hypothesized BCG regulates macrophages to promote antitumor immunity. Tumor-associated macrophages (M2 infiltrate melanomas and impair antitumor immunity. BCG-treated, in vitro-polarized M2 (M2-BCG showed transcriptional changes involving inflammation, immune cell recruitment, cross talk, and activation pathways. Mechanistic network analysis indicated M2-BCG potential to improve interferon gamma (IFN-γ responses. Accordingly, frequency of IFN-γ-producing CD4+ T cells responding to M2-BCG vs. mock-treated M2 increased (p < 0.05. Moreover, conditioned media from M2-BCG vs. M2 elevated the frequency of granzyme B-producing CD8+ tumor-infiltrating lymphocytes (TILs facing autologous melanoma cell lines (p < 0.01. Furthermore, transcriptome analysis of intralesional BCG-injected CMM relative to uninjected lesions showed immune function prevalence, with the most enriched pathways representing T cell activation mechanisms. In vitro-infected MM-derived cell lines stimulated higher frequency of IFN-γ-producing TIL from the same melanoma (p < 0.05. Our data suggest BCG favors antitumor responses in CMM through direct/indirect effects on tumor microenvironment cell types including macrophages, T cells, and tumor itself.

  12. Preparation and characterization of different liposomal formulations containing P5 HER2/neu-derived peptide and evaluation of their immunological responses and antitumor effects

    Directory of Open Access Journals (Sweden)

    Sheida Shariat

    2015-05-01

    Full Text Available Objective(s:Tumor-associated antigen (TAA subunit-based vaccines constitute promising tools for anticancer immunotherapy. However, a major limitation in the development of such vaccines is the poor immunogenicity of peptides when used alone.The aim of this study was to develop an efficient vaccine delivery system and adjuvant to enhance anti-tumor activity of a synthetic HER2/neu derived peptide (P5. Materials and Methods: P5 peptide was encapsulated with different liposomal formulations composed of DMPC:DMPG:Chol:DOPE and loaded with monophosphoryl lipid A (MPL. All formulations were characterized for their physicochemical properties. To evaluate vaccine efficacy, BALB/c mice were first immunized with free peptide or liposomal formulations, then, inoculated with a subcutaneous injection of TUBO tumor cells. Enzyme-linked immunospot, cytotoxicity and intracellular cytokine assays, as well as tumor size and animal survival analysis, were performed to evaluate the immune responses. Results: The results demonstrated that P5 encapsulated into liposomal formulations was not able to induce CD8 and CD4 T cells to produce IFN-γ. That is why, a potent CTL response and antitumor immunity was not induced. Conclusion: The Lip-DOPE-P5-MPL formulation in spite of using pH-sensitive lipid to direct intracellular trafficking of peptide to MHC I presentation pathway and MPL to enhance peptide adjuvanticity was interesting. The failure in inducing anti-tumor immunity may be attributed to low uptake of anionic conventional liposomes by dendritic cells (DCs that have negative surface charge.

  13. The immune response to surgery and infection

    OpenAIRE

    D?browska, Aleksandra M.; S?otwi?ski, Robert

    2014-01-01

    Surgical trauma affects both the innate and acquired immunity. The severity of immune disorders is proportional to the extent of surgical trauma and depends on a number of factors, including primarily the basic disease requiring surgical treatment (e.g. cancer), often coexisting infections and impaired nutritional status. Disorder of the immune response following surgical trauma may predispose to septic complications burdened with the highest mortality rate. Extensive surgery in cancer patien...

  14. Safety, immunogenicity, and early evidence of antitumor response with the use of the vaccine formulation NeuGcGM3 / VSSPs in patients with advanced melanoma

    International Nuclear Information System (INIS)

    Osorio Rodríguez, Marta de la Caridad

    2014-01-01

    Introduction. Melanoma is now considered an epidemic around the world. Its high lethality, constitutes a serious problem despite the continuous pharmacological and technological advances. NeuGcGM3/VSSP is a vaccine formulation containing ganglioside NeuGcGM3 incorporated in the acting of Neisseria meningitidis. It may be a choice therapeutic given this ganglioside in primary melanoma expression and immunogenicity and safety demonstrated by this vaccine in advanced breast cancer. This study evaluated the safety, immunogenicity and the anti-tumor response in patients with advanced melanoma to manage it via IM or SC. Material and methods: The expression of ganglioside in primary melanomas and its metastases was identified by immunohistochemical methods with the AcM 14F7 (anti-NGCGM3). 2 clinical trials Phase Ib/IIa escalation of doses with NeuGcGM3 /VSSP were conducted in patients with melanoma Advanced IM and SC routes. Safety and anti-tumour response were evaluated with the CTC and RECIST criteria. The statistical analysis was performed with the SPSS statistical package. Results: NeuGcGM3 is expressed in primary tumors and the studied lymph nodes metastases. NeuGcGM3/VSSP was safely managed by the SC and IM, roads without limiting toxicity. Immunogenic with IgM and IgG isotype antibody response resulted in 75% patients. There was anti-tumoral response in 38.5% with increase in median SV mainly associated with anti-tumor response. The appearance of vitiligo and the response of antibodies against other not present in the vaccine formulation gangliosides may be considered a manifestation of immune restoration. Conclusions. NeuGcGM3/VSSP managed IM and SC in patients with advanced melanoma was safe, immunogenic and antitumor activity associated with overall survival advantage. (author)

  15. Modeling the Dichotomy of the Immune Response to Cancer: Cytotoxic Effects and Tumor-Promoting Inflammation.

    Science.gov (United States)

    Wilkie, Kathleen P; Hahnfeldt, Philip

    2017-06-01

    Although the immune response is often regarded as acting to suppress tumor growth, it is now clear that it can be both stimulatory and inhibitory. The interplay between these competing influences has complex implications for tumor development, cancer dormancy, and immunotherapies. In fact, early immunotherapy failures were partly due to a lack in understanding of the nonlinear growth dynamics these competing immune actions may cause. To study this biological phenomenon theoretically, we construct a minimally parameterized framework that incorporates all aspects of the immune response. We combine the effects of all immune cell types, general principles of self-limited logistic growth, and the physical process of inflammation into one quantitative setting. Simulations suggest that while there are pro-tumor or antitumor immunogenic responses characterized by larger or smaller final tumor volumes, respectively, each response involves an initial period where tumor growth is stimulated beyond that of growth without an immune response. The mathematical description is non-identifiable which allows an ensemble of parameter sets to capture inherent biological variability in tumor growth that can significantly alter tumor-immune dynamics and thus treatment success rates. The ability of this model to predict non-intuitive yet clinically observed patterns of immunomodulated tumor growth suggests that it may provide a means to help classify patient response dynamics to aid identification of appropriate treatments exploiting immune response to improve tumor suppression, including the potential attainment of an immune-induced dormant state.

  16. Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo.

    Science.gov (United States)

    Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E; Termglinchan, Vittavat; Diecke, Sebastian; Shao, Ning-Yi; Wei, Tzu-Tang; Yi, Hyoju; Dey, Devaveena; Nelakanti, Raman; Brouwer, Thomas P; Paik, David T; Sagiv-Barfi, Idit; Han, Arnold; Quax, Paul H A; Hamming, Jaap F; Levy, Ronald; Davis, Mark M; Wu, Joseph C

    2018-02-08

    Cancer cells and embryonic tissues share a number of cellular and molecular properties, suggesting that induced pluripotent stem cells (iPSCs) may be harnessed to elicit anti-tumor responses in cancer vaccines. RNA sequencing revealed that human and murine iPSCs express tumor-associated antigens, and we show here a proof of principle for using irradiated iPSCs in autologous anti-tumor vaccines. In a prophylactic setting, iPSC vaccines prevent tumor growth in syngeneic murine breast cancer, mesothelioma, and melanoma models. As an adjuvant, the iPSC vaccine inhibited melanoma recurrence at the resection site and reduced metastatic tumor load, which was associated with fewer Th17 cells and increased CD11b + GR1 hi myeloid cells. Adoptive transfer of T cells isolated from vaccine-treated tumor-bearing mice inhibited tumor growth in unvaccinated recipients, indicating that the iPSC vaccine promotes an antigen-specific anti-tumor T cell response. Our data suggest an easy, generalizable strategy for multiple types of cancer that could prove highly valuable in clinical immunotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  18. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  19. Enavatuzumab, a Humanized Anti-TWEAK Receptor Monoclonal Antibody, Exerts Antitumor Activity through Attracting and Activating Innate Immune Effector Cells

    Directory of Open Access Journals (Sweden)

    Shiming Ye

    2017-01-01

    Full Text Available Enavatuzumab is a humanized IgG1 anti-TWEAK receptor monoclonal antibody that was evaluated in a phase I clinical study for the treatment of solid malignancies. The current study was to determine whether and how myeloid effector cells were involved in postulated mechanisms for its potent antitumor activity in xenograft models. The initial evidence for a role of effector cells was obtained in a subset of tumor xenograft mouse models whose response to enavatuzumab relied on the binding of Fc of the antibody to Fcγ receptor. The involvement of effector cells was further confirmed by immunohistochemistry, which revealed strong infiltration of CD45+ effector cells into tumor xenografts in responding models, but minimal infiltration in nonresponders. Consistent with the xenograft studies, human effector cells preferentially migrated toward in vivo-responsive tumor cells treated by enavatuzumab in vitro, with the majority of migratory cells being monocytes. Conditioned media from enavatuzumab-treated tumor cells contained elevated levels of chemokines, which might be responsible for enavatuzumab-triggered effector cell migration. These preclinical studies demonstrate that enavatuzumab can exert its potent antitumor activity by actively recruiting and activating myeloid effectors to kill tumor cells. Enavatuzumab-induced chemokines warrant further evaluation in clinical studies as potential biomarkers for such activity.

  20. Cellular immune response in intraventricular experimental neurocysticercosis.

    Science.gov (United States)

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  1. Surviving Sepsis: Taming a Deadly Immune Response

    Science.gov (United States)

    ... Issues Subscribe August 2014 Print this issue Surviving Sepsis Taming a Deadly Immune Response En español Send ... Mouth? Looking at Lupus Wise Choices Signs of Sepsis Sepsis can be hard to spot, because its ...

  2. Immune Response in Hepatitis B Virus Infection

    Science.gov (United States)

    Tan, Anthony; Koh, Sarene; Bertoletti, Antonio

    2015-01-01

    Hepatitis B virus (HBV) can replicate within hepatocytes without causing direct cell damage. The host immune response is, therefore, not only essential to control the spread of virus infection, but it is also responsible for the inflammatory events causing liver pathologies. In this review, we discuss how HBV deals with host immunity and how we can harness it to achieve virus control and suppress liver damage. PMID:26134480

  3. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  4. The Immune Response to Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Marija Gubina

    2014-01-01

    Full Text Available The immune response to Helicobacter pylori involves different mechanisms that are both protective and damaging to the host. The innate and the adaptive immune responses lead to inflammatory as well as anti-inflammatory responses, allowing for persistence of many infections. Thus, developing new therapeutics and effective vaccines against H. pylori has proven to be arduous. Despite many immunisation experiments, using various routes of immunisation with classical as well as recombinant H. pylori vaccines (urease, CagA, HP-NAP, HspA, DNA, chimeric molecules, live vectors, microspheres, no effective vaccine is currently available for humans. New directions for successful vaccine construction should follow a profound knowledge of immunopathological events during natural H. pylori infection and factors leading to resolution of infection: mandatory is a new knowledge about the interplay of the innate response to H. pylori, mucosal inflammation, H. pylori virulence factors inducing immune responses, regulation of the adaptive responses to H. pylori as well as construction of novel vaccine platforms for achieving a broad immune response, leading to a sterilizing immunity.

  5. Plasticity of immunity in response to eating.

    Science.gov (United States)

    Luoma, Rachel L; Butler, Michael W; Stahlschmidt, Zachary R

    2016-07-01

    Following a meal, an animal can exhibit dramatic shifts in physiology and morphology, as well as a substantial increase in metabolic rate associated with the energetic costs of processing a meal (i.e. specific dynamic action, SDA). However, little is known about the effects of digestion on another important physiological and energetically costly trait: immune function. Thus, we tested two competing hypotheses. (1) Digesting animals up-regulate their immune systems (putatively in response to the increased microbial exposure associated with ingested food). (2) Digesting animals down-regulate their immune systems (presumably to allocate energy to the breakdown of food). We assayed innate immunity (lytic capacity and agglutination) in cornsnakes (Pantherophis guttatus) during and after meal digestion. Lytic capacity was higher in females, and (in support of our first hypothesis) agglutination was higher during absorption. Given its potential energetic cost, immune up-regulation may contribute to SDA. © 2016. Published by The Company of Biologists Ltd.

  6. Immune responsiveness in chronic fatigue syndrome.

    OpenAIRE

    Milton, J. D.; Clements, G. B.; Edwards, R. H.

    1991-01-01

    We have endeavoured to find immunological indications of chronic virus infection in patients with chronic fatigue syndrome (myalgic encephalomyelitis) and to investigate immune responsiveness to viruses in such patients in comparison with normal subjects and patients with muscular dystrophy. Levels of circulating IgM immune complexes were elevated (above the 95% normal control range) in 10 (17%) of 58 patients with chronic fatigue syndrome, which was not significantly different from the norma...

  7. Immune responses after live attenuated influenza vaccination

    Science.gov (United States)

    Mohn, Kristin G.-I.; Smith, Ingrid; Sjursen, Haakon; Cox, Rebecca Jane

    2018-01-01

    ABSTRACT Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future “universal influenza vaccine”. In this review we aim to cover the current understanding of the immune responses induced after LAIV. PMID:28933664

  8. Skin innate immune response to flaviviral infection.

    Science.gov (United States)

    Garcia, Magali; Wehbe, Michel; Lévêque, Nicolas; Bodet, Charles

    2017-06-01

    Skin is a complex organ and the largest interface of the human body exposed to numerous stress and pathogens. Skin is composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity, at once providing the first line of defense against microbial infections and ensuring skin homeostasis. Being inoculated directly through the epidermis and the dermis during a vector blood meal, emerging Dengue, Zika and West Nile mosquito-borne viruses lead to the initiation of the innate immune response in resident skin cells and to the activation of dendritic cells, which migrate to the draining lymph node to elicit an adaptive response. This literature review aims to describe the inflammatory response and the innate immune signalization pathways involved in human skin cells during Dengue, Zika and West Nile virus infections.

  9. Cancer Immunotherapy Trials Underutilize Immune Response Monitoring.

    Science.gov (United States)

    Connell, Claire M; Raby, Sophie E M; Beh, Ian; Flint, Thomas R; Williams, Edward H; Fearon, Douglas T; Jodrell, Duncan I; Janowitz, Tobias

    2018-01-01

    Immune-related radiological and biomarker monitoring in cancer immunotherapy trials permits interrogation of efficacy and reasons for therapeutic failure. We report the results from a cross-sectional analysis of response monitoring in 685 T-cell checkpoint-targeted cancer immunotherapy trials in solid malignancies, as registered on the U.S. National Institutes of Health trial registry by October 2016. Immune-related radiological response criteria were registered for only 25% of clinical trials. Only 38% of trials registered an exploratory immunological biomarker, and registration of immunological biomarkers has decreased over the last 15 years. We suggest that increasing the utilization of immune-related response monitoring across cancer immunotherapy trials will improve analysis of outcomes and facilitate translational efforts to extend the benefit of immunotherapy to a greater proportion of patients with cancer. © AlphaMed Press 2017.

  10. Studies of Immune Responses in Candida vaginitis

    Science.gov (United States)

    De Bernardis, Flavia; Arancia, Silvia; Sandini, Silvia; Graziani, Sofia; Norelli, Sandro

    2015-01-01

    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. PMID:26473934

  11. Injury-induced immune responses in Hydra.

    Science.gov (United States)

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights

  12. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    Science.gov (United States)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  13. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  14. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Elong Ngono, Annie; Shresta, Sujan

    2018-01-18

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines. Expected final online publication date for the Annual Review of Immunology Volume 36 is April 26, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Narise K

    2014-06-01

    Full Text Available Kosuke Narise, Kensuke Okuda, Yukihiro Enomoto, Tasuku Hirayama, Hideko Nagasawa Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan Abstract: Adaptive cellular responses resulting from multiple microenvironmental stresses, such as hypoxia and nutrient deprivation, are potential novel drug targets for cancer treatment. Accordingly, we focused on developing anticancer agents targeting the tumor microenvironment (TME. In this study, to search for selective antitumor agents blocking adaptive responses in the TME, thirteen new compounds, designed and synthesized on the basis of the arylmethylbiguanide scaffold of phenformin, were used in structure activity relationship studies of inhibition of hypoxia inducible factor (HIF-1 and unfolded protein response (UPR activation and of selective cytotoxicity under glucose-deprived stress conditions, using HT29 cells. We conducted luciferase reporter assays using stable cell lines expressing either an HIF-1-responsive reporter gene or a glucose-regulated protein 78 promoter-reporter gene, which were induced by hypoxia and glucose deprivation stress, respectively, to screen for TME-targeting antitumor drugs. The guanidine analog (compound 2, obtained by bioisosteric replacement of the biguanide group, had activities comparable with those of phenformin (compound 1. Introduction of various substituents on the phenyl ring significantly affected the activities. In particular, the o-methylphenyl analog compound 7 and the o-chlorophenyl analog compound 12 showed considerably more potent inhibitory effects on HIF-1 and UPR activation than did phenformin, and excellent selective cytotoxicity under glucose deprivation. These compounds, therefore, represent an improvement over phenformin. They also suppressed HIF-1- and UPR-related protein expression and secretion of vascular endothelial growth factor-A. Moreover, these compounds exhibited significant

  16. Immune Response in Mussels To Environmental Pollution.

    Science.gov (United States)

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  17. Innate Immune Sensing and Response to Influenza

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  18. Adrenaline influence on the immune response. I

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    The intervention of adrenaline in the immunoregulation was investigated through the modification of the anti-SRBC PFC response of mice after its i.p. administration (4 μg) at various intervals before SRBC antigen. When the interval was less than 24 h, adrenaline accelerated the immune kinetics. This modification was apparent on both direct and indirect PFC, as well as on naive and immune mice. However, mice treated from 2 days showed a suppression of the response. The adrenaline affect subsisted on the adoptive response of spleen cells drug-treated either in vivo or in vitro. The mitogenic response after in vitro PHA or LPS stimulation of spleen cells from adrenaline-treated mice indicated that the T-cells were the drug target. The physiological role of the adrenaline and immunological influences of acute stress are discussed in the paper. The stress was provided by gamma irradiation. (Auth.)

  19. Protective immune responses in lawsonia intracellularis infections

    DEFF Research Database (Denmark)

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten

    and no increase in acute phase response after challenge with a pathogenic isolate. Here we show results from measurements of serology as well as cell-mediated immune responses from this experiment. We found that Lawsonia-specific IgA peaked in serum around day 17-24 after a primary infection in experimentally......, but exhibited a high, but short-lasting peak after re-infection. Specific IFN responses were also measured using a whole blood IFN-γ assay. These were very high in challenge infected and re-infected animals as compared to controls. These specific immune responses may contribute to the explanation of mechanisms......Lawsonia intracellularis is the cause of porcine proliferative enteropathy, one of the major causes of antibiotics usage in modern pig production. L. intracellularis is an obligate intracellular bacterium preferable infecting epithelial cells of pigs intestine. We have demonstrated earlier...

  20. Humoral immune response to AAV

    Directory of Open Access Journals (Sweden)

    Roberto eCalcedo

    2013-10-01

    Full Text Available Adeno-associated virus (AAV is a member of the family parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  1. A model of auto immune response

    OpenAIRE

    Peterson, James K.; Kesson, Alison M.; King, Nicholas J. C.

    2017-01-01

    Background In this work, we develop a theoretical model of an auto immune response. This is based on modifications of standard second messenger trigger models using both signalling pathways and diffusion and a macro level dynamic systems approximation to the response of a triggering agent such as a virus, bacteria or environmental toxin. Results We show that there, in general, will be self damage effects whenever the triggering agent?s effect on the host can be separated into two distinct cla...

  2. Pulmonary contusion primes systemic innate immunity responses.

    Science.gov (United States)

    Hoth, J Jason; Martin, R S; Yoza, Barbara K; Wells, Jonathan D; Meredith, J W; McCall, Charles E

    2009-07-01

    Traumatic injury may result in an exaggerated response to subsequent immune stimuli such as nosocomial infection. This "second hit" phenomenon and molecular mechanism(s) of immune priming by traumatic lung injury, specifically, pulmonary contusion, remain unknown. We used an animal model of pulmonary contusion to determine whether the injury resulted in priming of the innate immune response and to test the hypothesis that resuscitation fluids could attenuate the primed response to a second hit. Male, 8 to 9 weeks, C57/BL6 mice with a pulmonary contusion were challenged by a second hit of intratracheal administration of the Toll-like receptor 4 agonist, lipopolysaccharide (LPS, 50 microg) 24 hours after injury (injury + LPS). Other experimental groups were injury + vehicle or LPS alone. A separate group was injured and resuscitated by 4 cc/kg of hypertonic saline (HTS) or Lactated Ringer's (LR) resuscitation before LPS challenge. Mice were killed 4 hours after LPS challenge and blood, bronchoalveolar lavage, and tissue were isolated and analyzed. Data were analyzed using one-way analysis of variance with Bonferroni multiple comparison posttest for significant differences (*p < or = 0.05). Injury + LPS showed immune priming observed by lung injury histology and increased bronchoalveolar lavage neutrophilia, lung myeloperoxidase and serum IL-6, CXCL1, and MIP-2 levels when compared with injury + vehicle or LPS alone. After injury, resuscitation with HTS, but not Lactated Ringer's was more effective in attenuating the primed response to a second hit. Pulmonary contusion primes innate immunity for an exaggerated response to a second hit with the Toll-like receptor 4 agonist, LPS. We observed synergistic increases in inflammatory mediator expression in the blood and a more severe lung injury in injured animals challenged with LPS. This priming effect was reduced when HTS was used to resuscitate the animal after lung contusion.

  3. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  4. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  5. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Joel, D.D.; Chanana, A.D.

    1984-01-01

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125 I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  6. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Feng, Yanling; Xie, Mingyong

    2014-02-19

    Ganoderma is a precious health-care edible medicinal fungus in China. A novel Ganoderma atrum polysaccharide (PSG-1) is the main bioactive component. We investigated the antitumor effect and molecular mechanisms of PSG-1. It exhibited no significant effect on cell proliferation directly. In contrast, administration of PSG-1 markedly suppressed tumor growth in CT26 tumor-bearing mice. It was observed that PSG-1 caused apoptosis in CT26 cells. Apoptosis was associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of p53 and Bax expression, downregulation of Bcl-2, and the activation of caspase-9 and -3. Moreover, PSG-1 enhanced immune organ index and promoted lymphocyte proliferation as well as cytokine levels in serum. Taken together, our data indicate that PSG-1 has potential antitumor activity in vivo by inducing apoptosis via mitochondria-mediated apoptotic pathway and enhances host immune system function. Therefore, PSG-1 could be a safe and effective antitumor, bioactive agent or functional food.

  7. Sex differences in response to anti-tumor necrosis factor therapy in early and established rheumatoid arthritis -- results from the DANBIO registry

    DEFF Research Database (Denmark)

    Jawaheer, Damini; Olsen, Jørn; Hetland, Merete Lund

    2012-01-01

    To investigate sex differences in response to anti-tumor necrosis factor-a (TNF-a) therapy over time in early versus established rheumatoid arthritis (RA).......To investigate sex differences in response to anti-tumor necrosis factor-a (TNF-a) therapy over time in early versus established rheumatoid arthritis (RA)....

  8. Immune responses to Dermatophilus congolensis infections.

    Science.gov (United States)

    Ambrose, N; Lloyd, D; Maillard, J C

    1999-07-01

    Complex mechanisms underly the establishment of dermatophilosis, an exudative and proliferative skin disease of ruminants. This multicomponent system involves the bacterium Dermatophilus congolensis, transmission by various routes including flies, host genetic factors and immunosuppression by Amblyomma variegatum ticks. Here, Nick Ambrose and colleagues summarize recent evidence for an association between A. variegatum and severe chronic dermatophilosis in cattle. Breed-based differences in resistance to dermatophilosis are probably related to immunity to ticks or resistance to the immunosuppressive effects of ticks. Immunity to dermatophilosis might involve non-classic responses mediated by CD1 antigen presentation and gammadelta T cells. Progress towards vaccination is further complicated by strain-specific acquired immunity to D. congolensis.

  9. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  10. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  11. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Congcong Zhang

    2017-05-01

    Full Text Available Significant progress has been made in recent years toward realizing the potential of natural killer (NK cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future

  12. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity.

    Science.gov (United States)

    Zhang, Congcong; Oberoi, Pranav; Oelsner, Sarah; Waldmann, Anja; Lindner, Aline; Tonn, Torsten; Wels, Winfried S

    2017-01-01

    Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR

  13. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  14. Quantitating cellular immune responses to cancer vaccines.

    Science.gov (United States)

    Lyerly, H Kim

    2003-06-01

    While the future of immunotherapy in the treatment of cancer is promising, it is difficult to compare the various approaches because monitoring assays have not been standardized in approach or technique. Common assays for measuring the immune response need to be established so that these assays can one day serve as surrogate markers for clinical response. Assays that accurately detect and quantitate T-cell-mediated, antigen-specific immune responses are particularly desired. However, to date, increases in the number of cytotoxic T cells through immunization have not been correlated with clinical tumor regression. Ideally, then, a T-cell assay not only needs to be sensitive, specific, reliable, reproducible, simple, and quick to perform, it must also demonstrate close correlation with clinical outcome. Assays currently used to measure T-cell response are delayed-type hypersensitivity testing, flow cytometry using peptide major histocompatibility complex tetramers, lymphoproliferation assay, enzyme-linked immunosorbant assay, enzyme-linked immunospot assay, cytokine flow cytometry, direct cytotoxicity assay, measurement of cytokine mRNA by quantitative reverse transcriptase polymerase chain reaction, and limiting dilution analysis. The purpose of this review is to describe the attributes of each test and compare their advantages and disadvantages.

  15. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    Directory of Open Access Journals (Sweden)

    Abhirami A Ananth

    Full Text Available Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA-dopachrome tautomerase (AdDCT and resection resulting in major surgical stress (abdominal nephrectomy, we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.

  16. Activation of the Unfolded Protein Response Contributes toward the Antitumor Activity of Vorinostat

    Directory of Open Access Journals (Sweden)

    Soumen Kahali

    2010-01-01

    Full Text Available Histone deacetylase (HDAC inhibitors represent an emerging class of anticancer agents progressing through clinical trials. Although their primary target is thought to involve acetylation of core histones, several nonhistone substrates have been identified, including heat shock protein (HSP 90, which may contribute towards their antitumor activity. Glucose-regulated protein 78 (GRP78 is a member of the HSP family of molecular chaperones and plays a central role in regulating the unfolded protein response (UPR. Emerging data suggest that GRP78 is critical in cellular adaptation and survival associated with oncogenesis and may serve as a cancer-specific therapeutic target. On the basis of shared homology with HSP family proteins, we sought to determine whether GRP78 could serve as a molecular target of the HDAC inhibitor vorinostat. Vorinostat treatment led to GRP78 acetylation, dissociation, and subsequent activation of its client protein double-stranded RNA-activated protein-like endoplasmic reticulum kinase (PERK. Investigations in a panel of cancer cell lines identified that UPR activation after vorinostat exposure is specific to certain lines. Mass spectrometry performed on immunoprecipitated GRP78 identified lysine-585 as a specific vorinostat-induced acetylation site of GRP78. Downstream activation of the UPR was confirmed, including eukaryotic initiating factor 2α phosphorylation and increase in ATF4 and C/EBP homologous protein expression. To determine the biologic relevance of UPR activation after vorinostat, RNA interference of PERK was performed, demonstrating significantly decreased sensitivity to vorinostat-induced cytotoxicity. Collectively, these findings indicate that GRP78 is a biologic target of vorinostat, and activation of the UPR through PERK phosphorylation contributes toward its antitumor activity.

  17. Fallen angels or risen apes? A tale of the intricate complexities of imbalanced immune responses in the pathogenesis and progression of immune-mediated and viral cancers.

    Science.gov (United States)

    Ondondo, Beatrice Omusiro

    2014-01-01

    Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes.

  18. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene-1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo.

    Science.gov (United States)

    He, Songbing; Wang, Liang; Wu, Yugang; Li, Dechun; Zhang, Yanyun

    2010-04-27

    To investigate whether dendritic cell (DC) precursors, recruited by injection of chemokine ligand 3 (CCL3) and CCL20, induce anti-tumor immunity against gastric cancer induced by a DC vaccine expressing melanoma antigen gene-1 (MAGE-1) ex vivo and in vivo. B6 mice were injected with CCL3 and CCL20 via the tail vein. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were analyzed by phenotype analysis and mixed lymphocyte reaction (MLR). For adenoviral (Ad)-mediated gene transduction, cultured F4/80-B220-CD11c+ cells were incubated with Ad-MAGE-1. Vaccination of stimulated DC induced T lymphocytes. The killing effect of these T cells against gastric carcinoma cells was assayed by MTT. INF-gamma production was determined with an INF-gamma ELISA kit. In the solid tumor and metastases model, DC-based vaccines were used for immunization after challenge with MFC cells. Tumor size, survival of mice, and number of pulmonary metastatic foci were used to assess the therapeutic effect of DC vaccines. F4/80-B220-CD11c+ cell numbers increased after CCL3 and CCL20 injection. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were phenotyically identical to typical DC and gained the capacity to stimulate allogeneic T cells. These DCs were transduced with Ad-MAGE-1, which were prepared for DC vaccines expressing tumor antigen. T lymphocytes stimulated by DCs transduced with Ad-MAGE-1 exhibited specific killing effects on gastric carcinoma cells and produced high levels of INF-gamma ex vivo. In vivo, tumor sizes of the experimental group were much smaller than both the positive control group and the negative control groups (P anti-tumor immunity specific to gastric cancer ex vivo and in vivo. This system may prove to be an efficient strategy for anti-tumor immunotherapy.

  19. Ectopic expression of X-linked lymphocyte-regulated protein pM1 renders tumor cells resistant to antitumor immunity.

    Science.gov (United States)

    Kang, Tae Heung; Noh, Kyung Hee; Kim, Jin Hee; Bae, Hyun Cheol; Lin, Ken Y; Monie, Archana; Pai, Sara I; Hung, Chien-Fu; Wu, T-C; Kim, Tae Woo

    2010-04-15

    Tumor immune escape is a major obstacle in cancer immunotherapy, but the mechanisms involved remain poorly understood. We have previously developed an immune evasion tumor model using an in vivo immune selection strategy and revealed Akt-mediated immune resistance to antitumor immunity induced by various cancer immunotherapeutic agents. In the current study, we used microarray gene analysis to identify an Akt-activating candidate molecule overexpressed in immune-resistant tumors compared with parental tumors. X-linked lymphocyte-regulated protein pM1 (XLR) gene was the most upregulated in immune-resistant tumors compared with parental tumor cells. Furthermore, the retroviral transduction of XLR in parental tumor cells led to activation of Akt, resulting in upregulation of antiapoptotic proteins and the induction of immune resistance phenotype in parental tumor cells. In addition, we found that transduction of parental tumor cells with other homologous genes from the mouse XLR family, such as synaptonemal complex protein 3 (SCP3) and XLR-related, meiosis-regulated protein (XMR) and its human counterpart of SCP3 (hSCP3), also led to activation of Akt, resulting in the upregulation of antiapoptotic proteins and induction of immune resistance phenotype. Importantly, characterization of a panel of human cervical cancers revealed relatively higher expression levels of hSCP3 in human cervical cancer tissue compared with normal cervical tissue. Thus, our data indicate that ectopic expression of XLR and its homologues in tumor cells represents a potentially important mechanism for tumor immune evasion and serves as a promising molecular target for cancer immunotherapy. (c) 2010 AACR.

  20. New Perspectives on the Role of Vitiligo in Immune Responses to Melanoma

    Science.gov (United States)

    Byrne, Katelyn T.; Turk, Mary Jo

    2011-01-01

    Melanoma-associated vitiligo is the best-studied example of the linkage between tumor immunity and autoimmunity. Although vitiligo is an independent positive prognostic factor for melanoma patients, the autoimmune destruction of melanocytes was long thought to be merely a side effect of robust anti-tumor immunity. However, new data reveal a key role for vitiligo in supporting T cell responses to melanoma. This research perspective reviews the history of melanoma-associated vitiligo in patients, the experimental studies that form the basis for understanding this relationship, and the unique characteristics of melanoma-specific CD8 T cells found in hosts with vitiligo. We also discuss the implications of our recent findings for the interpretation of patient responses, and the design of next-generation cancer immunotherapies. PMID:21911918

  1. Immunohistochemical analysis of immune response in breast cancer and melanoma patients after laser immunotherapy

    Science.gov (United States)

    Nordquist, Robert E.; Bishop, Shelly L.; Ferguson, Halie; Vaughan, Melville B.; Jose, Jessnie; Kastl, Katherine; Nguyen, Long; Li, Xiaosong; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown great promise in pre-clinical studies and preliminary clinical trials. It could not only eradicate treated local tumors but also cause regression and elimination of untreated metastases at distant sites. Combining a selective photothermal therapy with an active immunological stimulation, LIT can induce systemic anti-tumor immune responses. Imiquimod (IMQ), a toll-like receptor agonist, was used for the treatment of late-stage melanoma patients and glycated chitosan (GC), a biological immunological modulator, was used for the treatment of late-stage breast cancer patients, in combination of irradiation of a near-infrared laser light. To observe the immunological changes before and after LIT treatment, the pathological tissues of melanoma and breast cancer patients were processed for immunohistochemical analysis. Our results show that LIT changed the expressions of several crucial T cell types. Specifically, we observed significant decreases of CD3+ T-cells and a significant increase of CD4+,CD8+, and CD68+ T-cells in the tumor samples after LIT treatment. While not conclusive, our study could shed light on one the possible mechanisms of anti-tumor immune responses induced by LIT. Further studies will be conducted to identify immunological biomarkers associated with LIT-induced clinical response.

  2. Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer.

    Science.gov (United States)

    Mo, Lijun; Chen, Qianmei; Zhang, Xinji; Shi, Xiaojun; Wei, Lili; Zheng, Dianpeng; Li, Hongwei; Gao, Jimin; Li, Jinlong; Hu, Zhiming

    2017-10-13

    ICOS + Treg cells exert important immunosuppressive effects in tumor immunity. We adopt a combination approach of ICOS + Treg cells depletion with tumor cell vaccine to evaluate anti-tumor immunity in mouse prostate cancer model. Streptavidin (SA)-mGM-CSF surface-modified RM-1 cells were prepared as the vaccine and the mouse subcutaneous prostate tumor model was used to evaluate the immunity. Tumor growth, flow cytometry, immunohistochemistry, immunofluorescence and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the therapeutic effects. Our results demonstrated that SA-mGM-CSF vaccine was prepared successfully and tumor growth was inhibited. The tumor size in the combination group was much smaller than that in the vaccine with IgG mAb group. The portions of dendritic cells, CD8 + and CD4 + T cells in the mice blood and tumor tissues were increased after treatment with vaccine. There were more immune-suppressing Tregs infiltrated into tumor after treatment with tumor cell vaccine, and ICOS blocking could deplete the infiltrated Tregs, and T lymphocytes increased more dramatically in the combination therapy group. The concentrations of interferon-γ were increased in all vaccine group, the concentrations of Interleukin-10 and Interleukin-4 were much lower in the combination group. Our study demonstrated that ICOS blocking could deplete the tumor-infiltrated ICOS + Treg cells. Combining GM-CSF surface-modified RM-1 cell vaccine with Anti-ICOS antibody could induce better antitumor immunity than a vaccine alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  4. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers.

    Science.gov (United States)

    Ubillos, Luis; Freire, Teresa; Berriel, Edgardo; Chiribao, María Laura; Chiale, Carolina; Festari, María Florencia; Medeiros, Andrea; Mazal, Daniel; Rondán, Mariella; Bollati-Fogolín, Mariela; Rabinovich, Gabriel A; Robello, Carlos; Osinaga, Eduardo

    2016-04-01

    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growth. © 2015 UICC.

  5. Quantitative imaging of the T cell antitumor response by positron-emission tomography

    Science.gov (United States)

    Dubey, Purnima; Su, Helen; Adonai, Nona; Du, Shouying; Rosato, Antonio; Braun, Jonathan; Gambhir, Sanjiv S.; Witte, Owen N.

    2003-02-01

    We describe a noninvasive, quantitative, and tomographic method to visualize lymphocytes within the whole animal. We used positron-emission tomography (PET) to follow the localization of adoptively transferred immune T lymphocytes. Splenic T cells from animals that had rejected a Moloney murine sarcoma virus/Moloney murine leukemia virus (M-MSV/M-MuLV)-induced tumor were marked with a PET reporter gene, injected into tumor-bearing mice, and imaged in a microPET by using a substrate specific for the reporter. Specific localization of immune T cells to the antigen-positive tumor was detected over time, by sequential imaging of the same animals. Naive T cells did not localize to the tumor site, indicating that preimmunization was required. Autoradiography and immunohistochemistry analysis corroborated the microPET data. The method we have developed can be used to assess the effects of immunomodulatory agents intended to potentiate the immune response to cancer, and can also be useful for the study of other cell-mediated immune responses, including autoimmunity.

  6. Roles for Innate Immunity in Combination Immunotherapies.

    Science.gov (United States)

    Moynihan, Kelly D; Irvine, Darrell J

    2017-10-01

    Immunity to infectious agents involves a coordinated response of innate and adaptive immune cells working in concert, with many feed-forward and regulatory interactions between both arms of the immune system. In contrast, many therapeutic strategies to augment immunity against tumors have focused predominantly on stimulation of adaptive immunity. However, a growing appreciation of the potential contributions of innate immune effectors to antitumor immunity, especially in the context of combination immunotherapy, is leading to novel strategies to elicit a more integrated immune response against cancer. Here we review antitumor activities of innate immune cells, mechanisms of their synergy with adaptive immune responses against tumors, and discuss recent studies highlighting the potential of combination therapies recruiting both innate and adaptive immune effectors to eradicate established tumors. Cancer Res; 77(19); 5215-21. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Parasite burden and the insect immune response: interpopulation comparison.

    Science.gov (United States)

    Kaunisto, Kari M; Suhonen, Jukka

    2013-01-01

    The immune response affects host's survival and reproductive success. Insurmountable immune function has not evolved because it is costly and there is a trade-off between other life-history traits. In previous studies several factors such as diet and temperature have been proposed to cause interpopulation differences in immune response. Moreover, the insect immune system may be functionally more protective upon secondary exposure, thus infection history may associate with the immune response. Here we measured how geographical location and parasite burden is related to variation in immune response between populations. We included 13 populations of the Northern Damselfly Coenagrion hastulatum (Odonata: Coenagrionidae) in Finland over a latitudinal range of 880 km to this study. We found that water mites associated strongly with the immune response at interpopulation level: the more the mites, the higher the immune response. Also, in an alternative model based on AIC, latitude and individual size associated with the immune response. In turn, endoparasitic gregarines did not affect the immune response. To conclude, a positive interpopulation association between the immune response and the rate of water mite infection may indicate (i) local adaptation to chronic parasite stress, (ii) effective 'induced' immune response against parasites, or (iii) a combined effect of both of these.

  8. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2015-05-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide. RESUMEN El sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  9. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    Science.gov (United States)

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  10. Radiofrequency ablation and immunostimulant OK-432: combination therapy enhances systemic antitumor immunity for treatment of VX2 lung tumors in rabbits.

    Science.gov (United States)

    Hamamoto, Shinichi; Okuma, Tomohisa; Yamamoto, Akira; Kageyama, Ken; Takeshita, Toru; Sakai, Yukimasa; Nishida, Norifumi; Matsuoka, Toshiyuki; Miki, Yukio

    2013-05-01

    To evaluate whether antitumor immunity is enhanced systemically by combining radiofrequency ablation (RFA) and local injection of an immunostimulant, OK-432. Experiments were approved by the institutional animal care committee. Experimental Japanese rabbits inoculated with VX2 tumors in the lung and the auricle were randomized into four groups of eight: control (supportive care), RFA (RFA of lung tumor), OK-432 (direct injection of OK-432 into lung tumor), and combination therapy (lung RFA and direct OK-432 injection into lung tumor). All procedures were performed 1 week after implantation of VX2 tumors (week 1). In addition, a VX2 tumor rechallenge test was performed in the RFA and combination therapy groups. Survival time was evaluated by means of the Kaplan-Meier method and by using the log-rank test for intergroup comparison. Mean auricle tumor volumes were calculated every week. Specific growth rates (SGRs) were calculated and compared by using the Mann-Whitney test. The median survival times of the control, RFA, OK-432, and combination therapy groups were 23, 36.5, 46.5, and 105 days, respectively. Survival was significantly prolonged in the combination therapy group when compared with the other three groups (P OK-432 may lead to indirectly activation of systemic antitumor immunity. © RSNA, 2013.

  11. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors were...

  12. Human papillomavirus type 16 E6-specific antitumor immunity is induced by oral administration of HPV16 E6-expressing Lactobacillus casei in C57BL/6 mice.

    Science.gov (United States)

    Lee, Tae-Young; Kim, Yang-Hyun; Lee, Kyung-Soon; Kim, Jeong-Ki; Lee, Il-Han; Yang, Jai-Myung; Sung, Moon-Hee; Park, Jong-Sup; Poo, Haryoung

    2010-11-01

    Given that local cell-mediated immunity (CMI) against the human papillomavirus type 16 E6 (HPV16 E6) protein is important for eradication of HPV16 E6-expressing cancer cells in the cervical mucosa, the HPV16 E6 protein may be a target for the mucosal immunotherapy of cervical cancer. Here, we expressed the HPV16 E6 antigen on Lactobacillus casei (L. casei) and investigated E6-specific CMI following oral administration of the L. casei-PgsA-E6 to mice. Surface expression of HPV16 E6 antigens was confirmed and mice were orally inoculated with the L. casei-PgsA or the L. casei-PgsA-E6. Compared to the L. casei-PgsA-treated mice, significantly higher levels of serum IgG and mucosal IgA were observed in L. casei-PgsA-E6-immunized mice; these differences were significantly enhanced after boost. Consistent with this, systemic and local CMI were significantly increased after the boost, as shown by increased counts of IFN-gamma-secreting cells in splenocytes, mesenteric lymph nodes (MLN), and vaginal samples. Furthermore, in the TC-1 tumor model, animals receiving the orally administered L. casei-PgsA-E6 showed reduced tumor size and increased survival rate versus mice receiving control (L. casei-PgsA) immunization. We also found that L. casei-PgsA-E6-induced antitumor effect was decreased by in vivo depletion of CD4(+) or CD8(+) T cells. Collectively, these results indicate that the oral administration of lactobacilli bearing the surface-displayed E6 protein induces T cell-mediated cellular immunity and antitumor effects in mice.

  13. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  14. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  15. Human Metapneumovirus Antagonism of Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Xiaoyong Bao

    2012-12-01

    Full Text Available  Human metapneumovirus (hMPV is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.

  16. Human metapneumovirus antagonism of innate immune responses.

    Science.gov (United States)

    Kolli, Deepthi; Bao, Xiaoyong; Casola, Antonella

    2012-12-07

     Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN) represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.

  17. Mx bio adjuvant for enhancing immune responses against influenza virus

    Directory of Open Access Journals (Sweden)

    Sina Soleimani

    2015-06-01

    Conclusion: These data revealed that Mx1 as biological adjuvant was able to increase antibody titer and induction memory immune responses against influenza immunization without causing any side effects.

  18. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    Science.gov (United States)

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  19. Immune Response And Anamnestic Immune Response In Children After A 3-Dose Primary Hepatitis B Vaccination.

    Science.gov (United States)

    Afzal, Muhammad Faheem; Sultan, Muhammad Ashraf; Saleemi, Ahmad Imran

    2016-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response & anamnestic immune response in children, 9 months-10 years of age, after a 3dose primary Hepatitis B vaccination. This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, documented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum antiHBsAb by ELIZA was measured. Children with antiHBs titers ≥10 mIU/mL were considered to be immune. Those with anti HBsAb levels immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Of the 200 children, protective antibody response was found in 58%. Median serological response was 18.60 (range 2.82 - 65.15). Antibody levels were found to have a statistically significant ( pvalue 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vacci ne was administered to all nonresponders, with each registering a statistically significant (pvalue 0.00) anamnestic response. The vaccination schedule with short dosage interval was unable to provide protection to 42% of the study population. Introduction of birth dose of Hepatitis B vaccine to the existing schedule is recommended.

  20. Molecular and Genomic Determinants of Response to Immune Checkpoint Inhibition in Cancer.

    Science.gov (United States)

    Jenkins, Russell W; Thummalapalli, Rohit; Carter, Jacob; Cañadas, Israel; Barbie, David A

    2018-01-29

    Molecularly targeted therapy and immunotherapy have dramatically changed the landscape of available treatment options for patients with advanced cancer. Improved understanding of the molecular and genomic features of cancers over the last decade has led to the development of successful targeted therapies and the field of precision cancer medicine. As a result of these advances, patients whose tumors harbor select molecular alterations are eligible for treatment with targeted therapies active against the unique molecular aberration. Concurrently, advances in tumor immunology have led to the development of immunomodulatory antibodies targeting T cell coinhibitory receptors CTLA-4 and PD-1 (programmed death-1) that have shown activity in several cancer histologies, reinvigorating antitumor immune responses in a subset of patients. These immunomodulatory antibodies offer the promise of durable disease control. However, discrete genomic determinants of response to cancer immunotherapy, unlike molecularly targeted therapies, have remained elusive, and robust biomarkers are lacking. Recent advances in tumor profiling have begun to identify novel genomic features that may influence response and resistance to cancer immunotherapy, including tumor mutational burden (e.g., microsatellite instability), copy-number alterations, and specific somatic alterations that influence immune recognition and response. Further investigation into the molecular and genomic features of response and resistance to cancer immunotherapy will be needed. We review the recent advances in understanding the molecular and genomic determinants of response to cancer immunotherapy, with an emphasis on immune checkpoint inhibitors.

  1. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION : AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  2. Malaria vaccines and human immune responses.

    Science.gov (United States)

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. Published by Elsevier Ltd.

  3. Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats

    OpenAIRE

    WANG, HUI; ZHANG, LI; SHI, YINGRUI; JAVIDIPARSIJANI, SARA; WANG, GUIRONG; LI, XIAO; OUYANG, WEIWEI; ZHOU, JUMEI; ZHAO, LINGYUN; WANG, XIAOWEN; ZHANG, XIAODONG; GAO, FUPING; LIU, JINGSHI; LUO, JUNMING; TANG, JINTIAN

    2014-01-01

    The abscopal effect has previously been described in various tumors and is associated with radiation therapy and hyperthermia, with possible underlying mechanisms explaining each observed case. In the present study, we aimed to investigate the antitumor effects of magnet-mediated hyperthermia on Walker-256 carcinosarcomas in rats at two different temperature ranges (42–46°C and 50–55°C). We also aimed to identify whether a higher therapeutic temperature of magnetic-mediated hyperthermia impro...

  4. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, Søren; Lauemøller, S L; Ruhwald, Morten

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors we...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  5. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  6. Tumor suppressor maspin as a modulator of host immune response to cancer

    Directory of Open Access Journals (Sweden)

    Sijana H. Dzinic

    2015-10-01

    Full Text Available Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.

  7. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... that these can lead to sustainable reduction in viral burden. Conversely, antiviral ... is sufficiently plastic in adults to show restoration of specific and general immunity after receiving ART is promising when translated to paediatric .... of a skewed expansion of CD8+ cells that use a limited Vß. T-cell receptor ...

  8. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... that these can lead to sustainable reduction in viral burden. Conversely, antiviral drug ... is sufficiently plastic in adults to show restoration of specific and general immunity after receiving ART is promising when translated to ... changes.1,18 Improvements in naïve and/or memory CD4+ and. CD8+ T-cell ...

  9. Frequent adaptive immune responses against arginase-1

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Mortensen, Rasmus Erik Johansson; Hansen, Morten

    2018-01-01

    was examined in PBMCs from cancer patients and healthy individuals. IFNγ ELISPOT revealed frequent immune responses against multiple arginase-1-derived peptides. We further identified a hot-spot region within the arginase-1 protein sequence containing multiple epitopes recognized by T cells. Next, we examined......, and further demonstrated the specificity and reactivity of these T cells. Overall, we showed that arginase-1-specific T cells were capable of recognizing arginase-1-expressing cells. The activation of arginase-1-specific T cells by vaccination is an attractive approach to target arginase-1-expressing...... macrophages (TAMs), and its expression is associated with poor prognosis. In the present study, we divided the arginase-1 protein sequence into overlapping 20-amino-acid-long peptides, generating a library of 31 peptides covering the whole arginase-1 sequence. Reactivity towards this peptide library...

  10. Flavobacterium psychrophilum - Experimental challenge and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi

    use of antibiotics, further knowledge of the disease is needed. Previous studies focusing on various types of aquacultures demonstrated the presence of F. psychrophilum in all examined farms. The bacterium was demonstrated in gills, skin, internal organs and wounds both during RTFS outbreaks......) Establish an experimental infection model imitating natural infection, 2) examine the immune response in blood and selected organs, and 3) examine potential portals of entry for the bacterium. Previous experimental immersion-challenges involving F. psychrophilum have resulted in none or low mortality...... in rainbow trout fry, unless the fish are stressed or have their surface compromised through e.g. injuries to the skin. The effect of a range of hydrogen peroxide (H2O2) concentrations was tested on fry in order to assess mortality. An appropriate dose was subsequently combined with immersion in a diluted...

  11. Adrenaline influence on the immune response. II

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    Experiments were carried out to specify the adrenaline target among the immunocompetent cells. Adrenaline administered for some hours exerted opposite effects on the natural PFC and RFC: the first were enhanced and the second significantly reduced. These paradoxical results were interpreted as a consequence of the inhibition of the suppressor T-cells in the resting status. Adrenaline appeared to act on the sensitive cells through beta- rather than through alpha-receptors. Further experiments on the adrenaline influence on the syngeneic barrier phenomenon and on the cellular balance at its termination seemed to indicate that adrenaline was directly inhibitory for the Ts but not for their precursors. These results are discussed in the light of the cellular networks regulating the immune response. Irradiated mice were compared with non-irradiated mice as described in the previous article. (Auth.)

  12. Population-expression models of immune response

    International Nuclear Information System (INIS)

    Stromberg, Sean P; Antia, Rustom; Nemenman, Ilya

    2013-01-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable. (paper)

  13. Population-expression models of immune response

    Science.gov (United States)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  14. Neuroendocrine-immune interactions and responses to exercise.

    Science.gov (United States)

    Fragala, Maren S; Kraemer, William J; Denegar, Craig R; Maresh, Carl M; Mastro, Andrea M; Volek, Jeff S

    2011-08-01

    This article reviews the interaction between the neuroendocrine and immune systems in response to exercise stress, considering gender differences. The body's response to exercise stress is a system-wide effort coordinated by the integration between the immune and the neuroendocrine systems. Although considered distinct systems, increasing evidence supports the close communication between them. Like any stressor, the body's response to exercise triggers a systematic series of neuroendocrine and immune events directed at bringing the system back to a state of homeostasis. Physical exercise presents a unique physiological stress where the neuroendocrine and immune systems contribute to accommodating the increase in physiological demands. These systems of the body also adapt to chronic overload, or exercise training. Such adaptations alleviate the magnitude of subsequent stress or minimize the exercise challenge to within homeostatic limits. This adaptive capacity of collaborating systems resembles the acquired, or adaptive, branch of the immune system, characterized by the memory capacity of the cells involved. Specific to the adaptive immune response, once a specific antigen is encountered, memory cells, or lymphocytes, mount a response that reduces the magnitude of the immune response to subsequent encounters of the same stress. In each case, the endocrine response to physical exercise and the adaptive branch of the immune system share the ability to adapt to a stressful encounter. Moreover, each of these systemic responses to stress is influenced by gender. In both the neuroendocrine responses to exercise and the adaptive (B lymphocyte) immune response, gender differences have been attributed to the 'protective' effects of estrogens. Thus, this review will create a paradigm to explain the neuroendocrine communication with leukocytes during exercise by reviewing (i) endocrine and immune interactions; (ii) endocrine and immune systems response to physiological stress

  15. Staphylococcus aureus strategies to evade the host acquired immune response.

    Science.gov (United States)

    Goldmann, Oliver; Medina, Eva

    2017-09-15

    Staphylococcus aureus poses a significant public-health problem. Infection caused by S. aureus can manifest as acute or long-lasting persistent diseases that are often refractory to antibiotic and are associated with significant morbidity and mortality. To develop more effective strategies for preventing or treating these infections, it is crucial to understand why the immune response is incapable to eradicate the bacterium. When S. aureus first infect the host, there is a robust activation of the host innate immune responses. Generally, S. aureus can survive this initial interaction due to the expression of a wide array of virulence factors that interfere with the host innate immune defenses. After this initial interaction the acquired immune response is the arm of the host defenses that will try to clear the pathogen. However, S. aureus is capable of maintaining infection in the host even in the presence of a robust antigen-specific immune response. Thus, understanding the mechanisms underlying the ability of S. aureus to escape immune surveillance by the acquired immune response will help uncover potentially important targets for the development of immune-based adjunctive therapies and more efficient vaccines. There are several lines of evidence that lead us to believe that S. aureus can directly or indirectly disable the acquired immune response. This review will discuss the different immune evasion strategies used by S. aureus to modulate the different components of the acquired immune defenses. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding.

    Science.gov (United States)

    Petrova, Penka S; Viller, Natasja Nielsen; Wong, Mark; Pang, Xinli; Lin, Gloria H Y; Dodge, Karen; Chai, Vien; Chen, Hui; Lee, Vivian; House, Violetta; Vigo, Noel T; Jin, Debbie; Mutukura, Tapfuma; Charbonneau, Marilyse; Truong, Tran; Viau, Stephane; Johnson, Lisa D; Linderoth, Emma; Sievers, Eric L; Maleki Vareki, Saman; Figueredo, Rene; Pampillo, Macarena; Koropatnick, James; Trudel, Suzanne; Mbong, Nathan; Jin, Liqing; Wang, Jean C Y; Uger, Robert A

    2017-02-15

    Purpose: The ubiquitously expressed transmembrane glycoprotein CD47 delivers an anti-phagocytic (do not eat) signal by binding signal-regulatory protein α (SIRPα) on macrophages. CD47 is overexpressed in cancer cells and its expression is associated with poor clinical outcomes. TTI-621 (SIRPαFc) is a fully human recombinant fusion protein that blocks the CD47-SIRPα axis by binding to human CD47 and enhancing phagocytosis of malignant cells. Blockade of this inhibitory axis using TTI-621 has emerged as a promising therapeutic strategy to promote tumor cell eradication. Experimental Design: The ability of TTI-621 to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy was evaluated in xenograft and syngeneic models and the role of the Fc region in antitumor activity was evaluated using SIRPαFc constructs with different Fc tails. Results: TTI-621 enhanced macrophage-mediated phagocytosis of both hematologic and solid tumor cells, while sparing normal cells. In vivo , TTI-621 effectively controlled the growth of aggressive AML and B lymphoma xenografts and was efficacious in a syngeneic B lymphoma model. The IgG1 Fc tail of TTI-621 plays a critical role in its antitumor activity, presumably by engaging activating Fcγ receptors on macrophages. Finally, TTI-621 exhibits minimal binding to human erythrocytes, thereby differentiating it from CD47 blocking antibodies. Conclusions: These data indicate that TTI-621 is active across a broad range of human tumors. These results further establish CD47 as a critical regulator of innate immune surveillance and form the basis for clinical development of TTI-621 in multiple oncology indications. Clin Cancer Res; 23(4); 1068-79. ©2016 AACR . ©2016 American Association for Cancer Research.

  17. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene-1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo

    Directory of Open Access Journals (Sweden)

    Zhang Yanyun

    2010-04-01

    Full Text Available Abstract Background To investigate whether dendritic cell (DC precursors, recruited by injection of chemokine ligand 3 (CCL3 and CCL20, induce anti-tumor immunity against gastric cancer induced by a DC vaccine expressing melanoma antigen gene-1 (MAGE-1 ex vivo and in vivo. Methods B6 mice were injected with CCL3 and CCL20 via the tail vein. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were analyzed by phenotype analysis and mixed lymphocyte reaction (MLR. For adenoviral (Ad-mediated gene transduction, cultured F4/80-B220-CD11c+ cells were incubated with Ad-MAGE-1. Vaccination of stimulated DC induced T lymphocytes. The killing effect of these T cells against gastric carcinoma cells was assayed by MTT. INF-γ production was determined with an INF-γ ELISA kit. In the solid tumor and metastases model, DC-based vaccines were used for immunization after challenge with MFC cells. Tumor size, survival of mice, and number of pulmonary metastatic foci were used to assess the therapeutic effect of DC vaccines. Results F4/80-B220-CD11c+ cell numbers increased after CCL3 and CCL20 injection. Freshly isolated F4/80-B220-CD11c+ cells cultured with cytokines were phenotyically identical to typical DC and gained the capacity to stimulate allogeneic T cells. These DCs were transduced with Ad-MAGE-1, which were prepared for DC vaccines expressing tumor antigen. T lymphocytes stimulated by DCs transduced with Ad-MAGE-1 exhibited specific killing effects on gastric carcinoma cells and produced high levels of INF-γ ex vivo. In vivo, tumor sizes of the experimental group were much smaller than both the positive control group and the negative control groups (P P Conclusions CCL3 and CCL20-recruited DCs modified by adenovirus-trasnsduced, tumor-associated antigen, MAGE-1, can stimulate anti-tumor immunity specific to gastric cancer ex vivo and in vivo. This system may prove to be an efficient strategy for anti-tumor immunotherapy.

  18. Retroviral Replicating Vector Delivery of miR-PDL1 Inhibits Immune Checkpoint PDL1 and Enhances Immune Responses In Vitro

    Directory of Open Access Journals (Sweden)

    Amy H. Lin

    2017-03-01

    Full Text Available Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV can be used to stably and selectively introduce genetic material into cancer cells. Here, we designed RRV to express shRNA (RRV-shPDL1 or microRNA30-derived shRNA (RRV-miRPDL1 using Pol II or Pol III promoters to downregulate PDL1 in human cancer cells. We also designed RRV expressing cytosine deaminase (yCD2 and miRPDL1 for potential combinatorial therapy. Among various configurations tested, we showed that RRV-miRPDL1 vectors with Pol II or Pol III promoter replicated efficiently and exhibited sustained downregulation of PDL1 protein expression by more than 75% in human cancer cell lines with high expression of PDL1. Immunologic effects of RRV-miRPDL1 were assessed by a trans-suppression lymphocyte assay. In vitro data showed downregulation of PDL1+ tumor cells restored activation of CD8+ T cells and bio-equivalency compared to anti-PDL1 antibody treatment. These results suggest RRV-miRPDL1 may be an alternative therapeutic approach to enhance anti-tumor immunity by overcoming PDL1-induced immune suppression from within cancer cells and this approach may also be applicable to other cancer targets.

  19. Customising the therapeutic response of signalling networks to promote antitumor responses by drug combinations

    Directory of Open Access Journals (Sweden)

    Alexey eGoltsov

    2014-02-01

    Full Text Available Drug resistance, de novo and acquired, pervades cellular signalling networks from one signalling motif to another as a result of cancer progression and/or drug intervention. This resistance is one of the key determinants of efficacy in targeted anticancer drug therapy. Although poorly understood, drug resistance is already being addressed in combination therapy by selecting drug targets where sensitivity increases due to combination components or as a result of de novo or acquired mutations. Additionally, successive drug combinations have shown low resistance potency. To promote a rational, systematic development of combination therapies, it is necessary to establish the underlying mechanisms that drive the advantages of drug combinations and design methods to determine advanced targets for drug combination therapy. Based on a joint systems analysis of cellular signalling network (SN response and its sensitivity to drug action and oncogenic mutations, we describe an in silico method to analyse the targets of drug combinations. The method explores mechanisms of sensitizing the SN through combination of two drugs targeting vertical signalling pathways. We propose a paradigm of SN response customization by one drug to both maximize the effect of another drug in combination and promote a robust therapeutic response against oncogenic mutations. The method was applied to the customization of the response of the ErbB/PI3K/PTEN/AKT pathway by combination of drugs targeting HER2 receptors and proteins in the downstream pathway. The results of a computational experiment showed that the modification of the SN response from hyperbolic to smooth sigmoid response by manipulation of two drugs in combination leads to greater robustness in therapeutic response against oncogenic mutations determining cancer heterogeneity. The application of this method in drug combination co-development suggests a combined evaluation of inhibition effects along with the

  20. Enhancement of broiler performance and immune response by ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... immune response. The significant increase in lymphocytes might also indicate the specific and non- specific immune stimulant role of E. purpurea. Bauer .... extract from root significantly increased in vivo the number of leucocytes and lymphocytes. It is reported that Echinacea activates rat immune system.

  1. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  2. Response to childhood immunizations in congenital nephrotic syndrome.

    Science.gov (United States)

    Nguyen, Stephanie; Winnicki, Erica; Butani, Lavjay

    2015-05-01

    Infections are a leading cause of morbidity in children following transplantation. It is therefore imperative to ensure that children are immunized before a transplant. Contrary to this recommendation, it has long been suggested that children with congenital nephrotic syndrome (CNS) not receive immunizations due to their perceived lack of response. We report a child with CNS who was immunized before transplantation per the routine pediatric immunization protocol and responded appropriately. The intent of this report is to encourage health care providers to immunize children with CNS, as the practice of withholding immunizations in these patients may have adverse health implications.

  3. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rutian Li

    Full Text Available AIMS: The matrix metalloproteinase (MMP 2/9, also known as collagenases IV and gelatinases A/B, play a key role in cancer invasion and metastasis. However, the clinical trials of the MMP inhibitors (MMPIs ended up with disappointing results. In this paper, we synthesized a gelatinase-responsive copolymer (mPEG-PCL by inserting a gelatinase cleavable peptide (PVGLIG between mPEG and PCL blocks of mPEG-PCL for anticancer drug delivery to make use of MMP2/9 as an intelligent target for drug delivery. MATERIALS AND METHODS: mPEG-pep-PCL copolymer was synthesized via ring-opening copolymerization and double-amidation. To evaluate whether Nanoparticles (NPs prepared from this copolymer are superior to NPs prepared from mPEG-PCL, NPs prepared from mPEG-PCL copolymer were used as positive control. Docetaxel-loading NPs using mPEG-pep-PCL and mPEG-PCL were prepared by nano-precipitation method, mentioned as Gel-NPs and Con-NPs, respectively. The morphologic changes of the NPs after treatment with gelatinases were observed macroscopically by spectrophotometer and microscopically by transmission electron microscopy (TEM and atomic force microscopy (AFM. The cellular uptake amount and cytotoxicity of Gel-NPs and Con-NPs, respectively, in cell lines with different levels of gelatinase expression were studied. Moreover, the cytotoxicity study on the primary cancer cells isolated from pericardial fluids from a patient with late-stage lung cancer was conducted. RESULTS: The Gel-NPs aggregated in response to gelatinases, which was confirmed macroscopically and microscopically. The cellular uptake amount of Gel-NPs was correlated with the level of gelatinases. The in vitro antitumor effect of Gel-NPs was also correlated with the level of gelatinases and was superior to Taxotere (commercially available docetaxel as well as the Con-NPs. The cytotoxicity study on the primary lung cancer cells also confirmed the effectiveness of Gel-NPs. CONCLUSION: The results in

  4. Enhancement of anamnestic immunospecific antibody response in orally immunized chickens

    DEFF Research Database (Denmark)

    Mayo, Susan; Carlsson, Hans-Erik; Zagon, Andrea

    2008-01-01

    Production of immunospecific egg yolk antibodies (IgY antibodies) in egg laying hens through oral immunization is an attractive alternative to conventional antibody production in mammals for economic reasons as well as for animal welfare reasons. Oral immunization results in a systemic humoral...... response, but oral booster immunizations lack efficiency. The aim of the present study was to develop immunization schemes in which the concentration of immunospecific IgY would increase following oral booster immunizations. Two groups of egg laying hens (5 in each group) were immunized orally (each...... and one oral dose with BSA+RV. The eggs of the chickens in this group had a significantly higher immunospecific anti BSA IgY-concentration than did any of the eggs from the orally immunized chickens. One of the immunization regimes (immunizations in weeks 1, 7 and 18) clearly included a booster effect...

  5. Non specific immune response in the African catfish ...

    African Journals Online (AJOL)

    Non specific immune response in the African catfish, Heterobranchus longifilis fed diets fortified with ethanolic extracts of selected traditional medicinal plants and disease resistance against Pseudomonas aeruginosa.

  6. Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response

    Science.gov (United States)

    Zhao, Jie; Weng, Xiufang; Bagchi, Sreya; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells are innate-like T cells with potent immunomodulatory function via rapid production of both Th1 and Th2 cytokines. NKT cells comprise well-characterized type I NKT cells, which can be detected by α-galactosylceramide-loaded CD1d tetramers, and less-studied type II NKT cells, which do not recognize α-galactosylceramide. Here we characterized type II NKT cells on a polyclonal level by using a Jα18-deficient IL-4 reporter mouse model. This model allows us to track type II NTK cells by the GFP+TCRβ+ phenotype in the thymus and liver. We found type II NKT cells, like type I NKT cells, exhibit an activated phenotype and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger (PLZF) and the adaptor molecule signaling lymphocyte activation molecule-associated protein (SAP) for their development. Type II NKT cells are potently activated by β-D-glucopyranosylceramide (β-GlcCer) but not sulfatide or phospholipids in a CD1d-dependent manner, with the stimulatory capacity of β-GlcCer influenced by acyl chain length. Compared with type I NKT cells, type II NKT cells produce lower levels of IFN-γ but comparable amounts of IL-13 in response to polyclonal T-cell receptor stimulation, suggesting they may play different roles in regulating immune responses. Furthermore, type II NKT cells can be activated by CpG oligodeoxynucletides to produce IFN-γ, but not IL-4 or IL-13. Importantly, CpG-activated type II NKT cells contribute to the antitumor effect of CpG in the B16 melanoma model. Taken together, our data reveal the characteristics of polyclonal type II NKT cells and their potential role in antitumor immunotherapy. PMID:24550295

  7. Enhancement of T-cell-mediated antitumor response: angiostatic adjuvant to immunotherapy against cancer.

    Science.gov (United States)

    Dings, Ruud P M; Vang, Kieng B; Castermans, Karolien; Popescu, Flavia; Zhang, Yan; Oude Egbrink, Mirjam G A; Mescher, Matthew F; Farrar, Michael A; Griffioen, Arjan W; Mayo, Kevin H

    2011-05-15

    Tumor-released proangiogenic factors suppress endothelial adhesion molecule (EAM) expression and prevent leukocyte extravasation into the tumor. This is one reason why immunotherapy has met with limited success in the clinic. We hypothesized that overcoming EAM suppression with angiogenesis inhibitors would increase leukocyte extravasation and subsequently enhance the effectiveness of cellular immunotherapy. Intravital microscopy, multiple color flow cytometry, immunohistochemistry, and various tumor mouse (normal and T-cell deficient) models were used to investigate the temporal dynamics of cellular and molecular events that occur in the tumor microenvironment during tumor progression and angiostatic intervention. We report that while EAM levels and T-cell infiltration are highly attenuated early on in tumor growth, angiostatic therapy modulates these effects. In tumor models with normal and T-cell-deficient mice, we show the active involvement of the adaptive immune system in cancer and differentiate antiangiogenic effects from antiangiogenic mediated enhancement of immunoextravasation. Our results indicate that a compromised immune response in tumors can be obviated by the use of antiangiogenic agents. Finally, with adoptive transfer studies in mice, we show that a phased combination of angiostatic therapy and T-cell transfer significantly (P response within the tumor microenvironment, in particular as a consequence of the temporal dynamics of EAM levels. Moreover, our results suggest that adjuvant therapy with angiogenesis inhibitors holds promise for cellular immunotherapy in the clinic. ©2011 AACR.

  8. Spaceflight and Immune Responses of Rhesus Monkeys

    Science.gov (United States)

    Sonnenfeld, Gerald

    1997-01-01

    In the grant period, we perfected techniques for determination of interleukin production and leukocyte subset analysis of rhesus monkeys. These results are outlined in detail in publication number 2, appended to this report. Additionally, we participated in the ARRT restraint test to determine if restraint conditions for flight in the Space Shuttle could contribute to any effects of space flight on immune responses. All immunological parameters listed in the methods section were tested. Evaluation of the data suggests that the restraint conditions had minimal effects on the results observed, but handling of the monkeys could have had some effect. These results are outlined in detail in manuscript number 3, appended to this report. Additionally, to help us develop our rhesus monkey immunology studies, we carried out preliminary studies in mice to determine the effects of stressors on immunological parameters. We were able to show that there were gender-based differences in the response of immunological parameters to a stressor. These results are outlined in detail in manuscript number 4, appended to this report.

  9. Immune-related tumour response assessment criteria: a comprehensive review.

    Science.gov (United States)

    Somarouthu, Bhanusupriya; Lee, Susanna I; Urban, Trinity; Sadow, Cheryl A; Harris, Gordon J; Kambadakone, Avinash

    2018-04-01

    Growing emphasis on precision medicine in oncology has led to increasing use of targeted therapies that encompass a spectrum of drug classes including angiogenesis inhibitors, immune modulators, signal transduction inhibitors, DNA damage modulators, hormonal agents etc. Immune therapeutic drugs constitute a unique group among the novel therapeutic agents that are transforming cancer treatment, and their use is rising. The imaging manifestations in patients on immune therapies appear to be distinct from those typically seen with conventional cytotoxic therapies. Patients on immune therapies may demonstrate a delayed response, transient tumour enlargement followed by shrinkage, stable size, or initial appearance of new lesions followed by stability or response. These newer patterns of response to treatment have rendered conventional criteria such as World Health Organization and response evaluation criteria in solid tumours suboptimal in monitoring changes in tumour burden. As a consequence, newer imaging response criteria such as immune-related response evaluation criteria in solid tumours and immune-related response criteria are being implemented in many trials to effectively monitor patients on immune therapies. In this review, we discuss the traditional and new imaging response criteria for evaluation of solid tumours, review the outcomes of various articles which compared traditional criteria with the new immune-related criteria and discuss pseudo-progression and immune-related adverse events.

  10. Intratumoral interleukin-21 increases antitumor immunity, tumor-infiltrating CD8+ T-cell density and activity, and enlarges draining lymph nodes

    DEFF Research Database (Denmark)

    Søndergaard, Henrik; Galsgaard, Elisabeth D; Bartholomaeussen, Monica

    2010-01-01

    Interleukin (IL)-21 is a novel cytokine in clinical development for the treatment of cancer. In this study, we have compared the efficacy of subcutaneous and intratumoral (IT) administration of IL-21 protein in two syngeneic mouse tumor models, RenCa renal cell carcinoma and B16 melanoma......, and investigated the mechanisms by which IL-21 enhances CD8 T-cell-mediated antitumor immunity. We found that in comparison to subcutaneous administration, IT administration of IL-21 more potently inhibited tumor growth and increased survival. This correlated with increased densities of tumor-infiltrating CD8...... and CD4CD25 T cells, but not CD4CD25FoxP3 T cells. Furthermore, IT administration of IL-21 increased degranulation, and expression of interferon-gamma and granzyme B in tumor-infiltrating CD8 T cells. Tumors injected with IL-21 grew slower than contralateral tumors, suggesting that the increased efficacy...

  11. Intratumoral Interleukin-21 Increases Antitumor Immunity, Tumor-infiltrating CD8(+) T-cell Density and Activity, and Enlarges Draining Lymph Nodes

    DEFF Research Database (Denmark)

    Sondergaard, H.; Galsgaard, E.D.; Bartholomaeussen, M.

    2010-01-01

    Interleukin (IL)-21 is a novel cytokine in clinical development for the treatment of cancer. In this study, we have compared the efficacy of subcutaneous and intratumoral (IT) administration of IL-21 protein in two syngeneic mouse tumor models, RenCa renal cell carcinoma and B16 melanoma......, and investigated the mechanisms by which IL-21 enhances CD8(+) T-cell-mediated antitumor immunity. We found that in comparison to subcutaneous administration, IT administration of IL-21 more potently inhibited tumor growth and increased survival. This correlated with increased densities of tumor-infiltrating CD8......(+) and CD4(+) CD25(-) T cells, but not CD4(+) CD25(+) FoxP3(+) T cells. Furthermore, IT administration of IL-21 increased degranulation, and expression of interferon-gamma and granzyme B in tumor-infiltrating CD8(+) T cells. Tumors injected with IL-21 grew slower than contralateral tumors, suggesting...

  12. Meningococcal C specific immune responses: immunity in an era of immunization with vaccine

    NARCIS (Netherlands)

    de Voer, R.M.

    2010-01-01

    Meningococcal serogroup C conjugate immunization was introduced in the Dutch national immunization schedule at the age of 14 months, together with a large catch-up campaign in 2002. After introduction of this MenC immunization, the incidence of MenC completely disappeared from the immunized

  13. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M

    2001-01-01

    to identify TAA, mice were immunized with mixtures of peptides representing putative cytotoxic T cell epitopes derived from one of the gene products. Indeed, such immunized mice were partially protected against subsequent tumor challenge. Despite being immunized with bona fide self antigens, no clinical signs...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  14. Immune response and anamnestic immune response in children after a 3-dose primary hepatitis b vaccination

    International Nuclear Information System (INIS)

    Afzal, M.F.; Sultan, M.A.; Saleemi, A.I.

    2017-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response and anamnestic immune response in children, 9 months-10 years of age, after a 3-dose primary Hepatitis B vaccination. Methods: This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, docu mented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum anti-HBsAb by ELIZA was measured. Children with anti-HBs titers =10 mIU/mL were considered to be immune. Those with anti-HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Results: Of the 200 children, protective antibody response was found in 58 percent. Median serological response was 18.60 (range 2.82-65.15). Antibody levels were found to have a statistically significant (p-value 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vaccine was administered to all non-responders, with each registering a statistically significant (p-value 0.00) anamnestic response. Conclusion: The vaccination schedule with short dosage interval was unable to provide

  15. Seasonal changes in human immune responses to malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G

    1993-01-01

    Cellular as well as humorol immune responses to malaria antigens fluctuate in time in individuals living in molono-endemic areas, particularly where malaria transmission is seasonal. The most pronounced changes are seen in association with clinical attacks, but osymptomatic infection can also lead...... to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its possible...... causes and implications....

  16. Global immune disregulation in multiple sclerosis: from the adaptive response to the innate immunity.

    Science.gov (United States)

    Ristori, G; Montesperelli, C; Perna, A; Cannoni, S; Battistini, L; Borsellino, G; Riccio, P; Pesole, G; Chersi, A; Pozzilli, C; Buttinelli, C; Salvetti, M

    2000-07-24

    Increasing evidences show a global immune disregulation in multiple sclerosis (MS). The possible involvement of myelin and non-myelin (auto-)antigens in the autoaggressive process as well as the disregulation of both adaptive and innate immunity challenge the concept of specific immunotherapy. T cells at the boundary between innate and adaptive immunity, whose immunoregulatory role is becoming increasingly clear, have recently been shown to bear relevance for MS pathogenesis. Global immune interventions (and type I interferons may be considered as such) aimed at interfering with both innate and acquired immune responses seem to be a most promising therapeutic option in MS.

  17. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis)

    OpenAIRE

    Widodo, Trijoedani

    2005-01-01

    Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed th...

  18. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  19. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  20. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. HIV's evasion of the cellular immune response.

    Science.gov (United States)

    Collins, K L; Baltimore, D

    1999-04-01

    Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS. We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on cells expressing individual MHC class I alleles have revealed that nef does not downmodulate HLA-C and HLA-E antigens. This selective downmodulation allows infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.

  2. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study. ... Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs) to determine associations between discordant immune response and clinical and demographic ...

  3. [Immune response and digestive cancers: Prognostic and therapeutic implications].

    Science.gov (United States)

    Bibeau, Frédéric; Bazille, Céline; Svrcek, Magali; Pierson, Rémi; Lagorce-Pagès, Christine; Cohen, Romain; André, Thierry

    2017-02-01

    The aim of this article is to emphasize the impact of the immune response in digestive cancers, especially from colorectal (CRC) origin. In this setting, an adaptive lymphocytic infiltrate underlines the prognostic impact of the immune response, because it is associated to a favorable outcome. The next challenge will be to validate, in a prospective therapeutic trial, the integration of the immune response as decisional parameter for adjuvant therapy. The immune response is also a predictive parameter in microsatellite instable metastatic CRC, characterized by an adaptive lymphocytic infiltrate, leading to a very high response rate to immune therapies. However, prognostic and predictive biomarkers still need to be optimized in order to better select patients. These data are also valuable for digestive non-colorectal cancers, which are briefly analyzed. The methodology for the assessment of these prognostic and predictive biomarkers, which represents an important issue in precision medicine, is also discussed. Copyright © 2016. Published by Elsevier Masson SAS.

  4. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  5. [Opportunities and defiance of therapeutic anti-tumoral vaccination].

    Science.gov (United States)

    Coulie, P

    2007-01-01

    Therapeutic anti-cancer vaccines containing tumor-specific antigens recognized by T lymphocytes are thought to stimulate high numbers of anti-vaccine cytolytic T lymphocytes (CTL) which then can lyse the tumor cells. To understand why these vaccines are followed by tumor regressions in only 10% of the patients, we analysed the tumor-specific immune responses of these patients. Contrary to our expectations, the anti-vaccine CTL responses were of very low level. However, regressing tumors were massively infiltrated by anti-tumor T cells of other specificities, including new anti-tumor CTL clonotypes that emerged following vaccination. We now believe that the role of the anti-vaccine CTL is to activate or restimulate large numbers of other anti-tumor CTL. Their ability to initiate this response is probably more important than their number. These results have important consequences for the improvement of the clinical efficacy of anti-cancer vaccines.

  6. Introduction of a point mutation into an HLA class I single-chain trimer induces enhancement of CTL priming and antitumor immunity

    Directory of Open Access Journals (Sweden)

    Masanori Matsui

    2014-01-01

    Full Text Available We previously discovered one particular HLA-A*02:01 mutant that enhanced peptide-specific cytotoxic T lymphocyte (CTL recognition in vitro compared to wild-type HLA-A*02:01. This mutant contains a single amino acid substitution from histidine to leucine at position 74 (H74L that is located in the peptide-binding groove. To investigate the effect of the H74L mutation on the in vivo CTL priming, we took advantage of the technology of the HLA class I single-chain trimer (SCT in which three components involving a peptide, β2 microglobulin and the HLA class I heavy chain are joined together via flexible linkers. We generated recombinant adenovirus expressing SCT comprised influenza A matrix protein (FMP-derived peptide, β2 microglobulin and the H74L heavy chain. HLA-A*02:01 transgenic mice were immunized with the adenovirus, and the induction of peptide-specific CTLs and antitumor immunity was investigated. It was clearly shown that the H74L mutation enabled the HLA-A*02:01 SCT molecule to dramatically enhance both in vivo priming of FMP-specific CTLs and protection against a lethal challenge of tumor cells expressing FMP. These data present the first evidence that a simple point mutation in the HLA class I heavy chain of SCT is beneficial for improving CTL-based immunotherapy and prophylaxis to control tumors.

  7. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  8. Rotavirus immune responses and correlates of protection

    OpenAIRE

    Angel, Juana; Franco, Manuel A.; Greenberg, Harry B.

    2012-01-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses have developed multiple mechanisms to evade interferon-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at...

  9. Innate and adaptive immune responses in neurodegeneration and repair

    Science.gov (United States)

    Amor, Sandra; Woodroofe, M Nicola

    2014-01-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases. PMID:23758741

  10. Immune responsiveness in renal transplant recipients: mycophenolic acid severely depresses humoral immunity in vivo

    NARCIS (Netherlands)

    Rentenaar, Rob J.; van Diepen, Frank N. J.; Meijer, René T.; Surachno, Sugianto; Wilmink, Joep M.; Schellekens, Peter Th A.; Pals, Steven T.; van Lier, René A. W.; ten Berge, Ineke J. M.

    2002-01-01

    BACKGROUND: Current immunosuppressive drug treatments for renal transplant recipients result in high one-year graft survival rates. Despite adequate suppression of the immune response directed to the allograft, the immune system remains able to cope with many infectious agents. METHODS: To define

  11. Systemic immune response to Acanthamoeba keratitis in the Chinese hamster.

    Science.gov (United States)

    Van Klink, F; Leher, H; Jager, M J; Alizadeh, H; Taylor, W; Niederkorn, J Y

    1997-12-01

    Recrudescence is a common and troubling feature of Acanthamoeba keratitis and suggests that corneal infection with this organism fails to stimulate the systemic immune apparatus. The present study examined the cell-mediated and humoral immune responses to Acanthamoeba keratitis in the Chinese hamster. Corneal infection with A. castellanii failed to induce either delayed-type hypersensitivity (DTH) or serum IgG antibody against parasite antigens. The failure to induce cell-mediated and humoral immunity did not result in anergy or tolerance since subsequent intramuscular (i.m.) immunization with parasite antigens elicited robust DTH and IgG antibody responses. The inability of corneal infections to induce primary cell-mediated immune responses was due to the absence of resident antigen-presenting cells in the central cornea because induction of Langerhans cell (LC) migration into the central cornea prior to infection with Acanthamoeba promoted the development of parasite-specific DTH. Although the presence of resident LC did not promote the development of a primary humoral immune response, subsequent i.m. immunization elicited heightened parasite-specific IgG antibody production which was indicative of an anamnestic response. Collectively, the results indicate that in the absence of resident antigen-presenting cells, corneal infection with Acanthamoeba fails to stimulate primary cell-mediated or humoral immunity. Induction of peripheral LC into the central corneal epithelium promotes the development of parasite-specific DTH, but does not exacerbate corneal disease.

  12. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  14. Enhancing the Immune Response to Recombinant Plague Antigens

    Science.gov (United States)

    2007-05-01

    protection against rotavirus infection of mice stimulated by intranasal immunization with chimeric VP4 or VP6 protein. J Virol 1999;73(9):7574–81. [13] Choi...McNeal MM, Rae MN, Bean JA, Ward RL. Antibody-dependent and -independent protection following intranasal immunization of mice with rotavirus particles. J...Williamson ED, Sharp GJ, Eley SM, Vesey PM, Pepper TC, Titball RW, et al. Local and systemic immune response to a microencapsu- lated sub-unit vaccine for

  15. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Kristian M. Hargadon

    2016-08-01

    Full Text Available TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1’s contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.

  16. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2016-08-31

    TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1's contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.

  17. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  18. Host Immune Response to Influenza A Virus Infection.

    Science.gov (United States)

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  19. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  20. Host Immune Response to Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2018-03-01

    Full Text Available Influenza A viruses (IAVs are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins, various phagocytic cells, group of cytokines, interferons (IFNs, and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  1. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...... and/or demyelinating pathology. This article will review the molecular and cellular dynamics of immune responses in the CNS, with particular emphasis on autoimmune inflammation, as has been studied in the authors' laboratory....

  2. War and peace: Factor VIII and the adaptive immune response.

    Science.gov (United States)

    Georgescu, Maria T; Lai, Jesse D; Hough, Christine; Lillicrap, David

    2016-03-01

    The development of neutralizing anti-factor VIII (FVIII) antibodies (inhibitors) remains a major challenge for FVIII replacement therapy in hemophilia A patients. The adaptive immune response plays a crucial role in the development and maintenance of inhibitors. In this review, we focus on our current understanding of FVIII interactions with cells of the adaptive immune system and the phenotype of the resultant response. Additionally, we examine both current and novel FVIII tolerance induction methods that function at the level of the adaptive immune response. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Rotavirus immune responses and correlates of protection.

    Science.gov (United States)

    Angel, Juana; Franco, Manuel A; Greenberg, Harry B

    2012-08-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses (RVs) have developed multiple mechanisms to evade interferon (IFN)-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at an early age. Studies in developing countries indicate that rotavirus-specific serum IgA levels are not an optimal correlate of protection following vaccination, and better correlates need to be identified. Protection against rotavirus following vaccination is substantially heterotypic; nonetheless, a role for homotypic immunity in selection of circulating postvaccination strains needs further study. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Directory of Open Access Journals (Sweden)

    Akash M. Mehta

    2017-01-01

    Full Text Available The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.

  5. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chen; Jie, Leng; Yongqi, Wang [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weiming, Xiao [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Juqun, Xi [Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Yanbing, Ding [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Li, Qian [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Xingyuan, Pan [Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Mingchun, Ji [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weijuan, Gong, E-mail: wjgong@yzu.edu.cn [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 (China)

    2015-07-31

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8{sup +} T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle.

  6. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  7. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Purpose: To evaluate the immunogenicity and types of immune response of a quality-controlled modified recombinant hepatitis B surface antigen (HBsAg) plasmid encoding HBsAg in mice. Methods: The characterized plasmid DNA was used in the immunization of Balb/c mice. Three groups of mice were intramuscularly ...

  8. Hepatitis B Virus Vaccine immune response in Egyptian children 15 ...

    African Journals Online (AJOL)

    Egypt J Pediatr Allergy Immunol 2015;13(2):45-48. 45. Hepatitis B Virus Vaccine immune response in Egyptian children 15-17 years after primary immunization; should we provide a booster dose? INTRODUCTION. Hepatitis B virus (HBV) infection is a global public health problem. With approximately 350 million hepatitis B ...

  9. Evidence of a humoral immune response against the prokaryotic ...

    Indian Academy of Sciences (India)

    Although the BVDV non-structural N-terminal protease (Npro) acts as an interferon antagonist and subverts the host innate immunity, little is known about its immunogenicity. Hence, we expressed a recombinant BVDV Npro–His fusion protein (28 kDa) in E. coli and determined the humoral immune response generated by it ...

  10. Decreased 7,12-dimethylbenz[a]anthracene-induced carcinogenesis coincides with the induction of antitumor immunities in adult female B6C3F1 mice pretreated with genistein.

    Science.gov (United States)

    Guo, Tai L; Chi, Rui P; Hernandez, Denise M; Auttachoat, Wimolnut; Zheng, Jian F

    2007-12-01

    The objective of this study was to determine if genistein (GEN) modulation of the immune responses might contribute to the increased host resistances to tumors. A time-course study was performed in adult female B6C3F1 mice that had been exposed to GEN for 1-4 weeks at the dose level of 20 mg/kg by gavage. A significant increase in ex vivo cytotoxic T lymphocyte (CTL) activity was observed in the periods of 2 weeks and 4 weeks. Moreover, increased activities of CTLs were associated with a decrease in the percentage of CD4(+)CD25(+) T cells and an increase in the production of interferon-gamma and activation of STAT1 (signal transducer and activator of transcription 1) and STAT4. Additionally, exposure of mice to GEN increased the activities of in vivo CTLs. An increased activity of natural killer (NK) cells was also observed. Further study in the B16F10 tumor model suggested that GEN-mediated enhancement in host resistance to B16F10 tumor was partially related to its potentiating effect on NK cells. Finally, 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumor model was employed to determine the chemopreventive effect of oral GEN treatment. Mice pretreated with GEN for 2 weeks by gavage, the time when an enhanced CTL activity had been produced, had a decreased susceptibility toward DMBA-mediated carcinogenesis, while treatment with GEN after tumor induction conferred no protection. In conclusion, pretreatment with GEN by gavage could enhance host resistances to the B16F10 tumor and DMBA-induced carcinogenesis, suggesting that GEN modulation of immune response was, at least partially, responsible for the antitumor effect of this compound.

  11. Modulation of primary immune response by different vaccine adjuvants

    Directory of Open Access Journals (Sweden)

    Annalisa Ciabattini

    2016-10-01

    Full Text Available Adjuvants contribute to enhancing and shaping the vaccine immune response through different modes of action. Since the primary immune response can influence the overall quality of the response generated, here we investigate early biomarkers of adjuvanticity after primary immunization with four different adjuvants combined with the chimeric tuberculosis vaccine antigen H56. C57BL/6 mice were immunized by the subcutaneous route with different vaccine formulations, and the modulation of primary CD4+ T cell and B cell responses was assessed within draining lymph nodes, blood and spleen, 7 and 12 days after priming. Vaccine formulations containing the liposome system CAF01 or a squalene-based oil-in-water emulsion (o/w Squalene, but not aluminum hydroxide (Alum or CpG ODN 1826, elicited a significant primary antigen-specific CD4+ T cell response compared to antigen alone, 7 days after immunization. The effector function of activated CD4+ T cells was skewed towards a Th1/Th17 response by CAF01, while a Th1/Th2 response was elicited by o/w Squalene. Differentiation of B cells in short-lived plasma cells, and subsequent early H56-specific IgG secretion, was observed in mice immunized with o/w Squalene or CpG adjuvants. Tested adjuvants promoted the germinal centre reaction with different magnitude. These results show that the immunological activity of different adjuvants can be characterized by profiling early immunization biomarkers after primary immunization. These data and this approach could give an important contribution to the rational development of heterologous prime-boost vaccine immunization protocols.

  12. Scaling dynamic response and destructive metabolism in an immunosurveillant anti-tumor system modulated by different external periodic interventions.

    Directory of Open Access Journals (Sweden)

    Yuanzhi Shao

    Full Text Available On the basis of two universal power-law scaling laws, i.e. the scaling dynamic hysteresis in physics and the allometric scaling metabolism in biosystem, we studied the dynamic response and the evolution of an immunosurveillant anti-tumor system subjected to a periodic external intervention, which is equivalent to the scheme of a radiotherapy or chemotherapy, within the framework of the growth dynamics of tumor. Under the modulation of either an abrupt or a gradual change external intervention, the population density of tumors exhibits a dynamic hysteresis to the intervention. The area of dynamic hysteresis loop characterizes a sort of dissipative-therapeutic relationship of the dynamic responding of treated tumors with the dose consumption of accumulated external intervention per cycle of therapy. Scaling the area of dynamic hysteresis loops against the intensity of an external intervention, we deduced a characteristic quantity which was defined as the theoretical therapeutic effectiveness of treated tumor and related with the destructive metabolism of tumor under treatment. The calculated dose-effectiveness profiles, namely the dose cumulant per cycle of intervention versus the therapeutic effectiveness, could be well scaled into a universal quadratic formula regardless of either an abrupt or a gradual change intervention involved. We present a new concept, i.e., the therapy-effect matrix and the dose cumulant matrix, to expound the new finding observed in the growth and regression dynamics of a modulated anti-tumor system.

  13. IL4I1: an inhibitor of the CD8⁺ antitumor T-cell response in vivo.

    Science.gov (United States)

    Lasoudris, Fanette; Cousin, Céline; Prevost-Blondel, Armelle; Martin-Garcia, Nadine; Abd-Alsamad, Issam; Ortonne, Nicolas; Farcet, Jean-Pierre; Castellano, Flavia; Molinier-Frenkel, Valérie

    2011-06-01

    The L-phenylalanine oxidase IL4I1 inhibits T-cell proliferation in vitro through H(2) O(2) production, and is highly expressed in tumor-associated macrophages. IL4I1 is also detected by immunohistochemistry in neoplastic cells from several B-cell lymphomas and some non-lymphoid tumors. To evaluate IL4I1's effect on tumor growth, we developed a mouse melanoma model constitutively coexpressing IL4I1 and the GP33 epitope. After GP33 vaccination, tumors developed more frequently in mice injected with IL4I1-expressing cells in comparison with mice receiving control cells. Tumor escape was preceded by a rapid diminution of IFN-γ-producing cytotoxic antitumor CD8(+) T cells. Moreover, tumor incidence was already increased when only 20% of the injected cells expressed IL4I1. The minimal IL4I1 activities leading to tumor escape were close to those detected in human melanoma and mesothelioma. Thus, we demonstrate the immunosuppressive functions of IL4I1 in vivo and suggest that IL4I1 facilitates human tumor growth by inhibiting the CD8(+) antitumor T-cell response. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. IL4I1: an inhibitor of the CD8(+) antitumor T-cell response in vivo

    Science.gov (United States)

    Lasoudris, Fanette; Cousin, Céline; Prevost-Blondel, Armelle; Martin-Garcia, Nadine; Abd-Alsamad, Issam; Ortonne, Nicolas; Farcet, Jean-Pierre; Castellano, Flavia; Molinier-Frenkel, Valérie

    2011-01-01

    The L-phenylalanine oxidase IL4I1 inhibits T-cell proliferation in vitro through H2O2 production, and is highly expressed in tumor-associated macrophages. IL4I1 is also detected by immunohistochemistry in neoplastic cells from several B-cell lymphomas and some non-lymphoid tumors. To evaluate IL4I1 effect on tumor growth, we developed a mouse melanoma model constitutively coexpressing IL4I1 and the GP33 epitope. After GP33 vaccination, tumors developed more frequently in mice injected with IL4I1-expressing cells in comparison to mice receiving control cells. Tumor escape was preceded by a rapid diminution of IFN-γ producing cytotoxic antitumor CD8+ T cells. Moreover, tumor incidence was already increased when only 20% of the injected cells expressed IL4I1. The minimal IL4I1 activities leading to tumor escape were close to those detected in human melanoma and mesothelioma. Thus, we demonstrate the immunosuppressive functions of IL4I1 in vivo and suggest that IL4I1 facilitates human tumor growth by inhibiting the CD8+ antitumor T-cell response. PMID:21469114

  15. Subversion of the Immune Response by Rabies Virus

    Directory of Open Access Journals (Sweden)

    Terence P. Scott

    2016-08-01

    Full Text Available Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.

  16. Immune response capacity after human splenic autotransplantation - Restoration of response to individual pneumococcal vaccine subtypes

    NARCIS (Netherlands)

    Leemans, R; Manson, W; Snijder, JAM; Smit, JW; Klasen, HJ; The, TH; Timens, W

    Objective To evaluate features of general immune function, in particular the restoration of the humoral immune response to pneumococcal capsular polysaccharides, in humans undergoing a spleen autotransplantation after splenectomy because of trauma. Summary Background Data After splenectomy, patients

  17. Combined IL-21 and Low-Dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2006-06-01

    Full Text Available Abstract Background In vivo studies have recently demonstrated that interleukin 21 (IL-21 enhances the anti-tumor function of T-cells and NK cells in murine tumor models, and the combined use of IL-21 and IL-15 has resulted in prolonged tumor regression and survival in mice with previously established tumors. However, the combined anti-tumor effects of IL-21 and low dose IL-2 have not been studied even though IL-2 has been approved for human use, and, at low dose administration, stimulates the proliferation of memory T cells, and does not significantly increase antigen-induced apoptosis or regulatory T cell (Treg expansion. This study examined whether recombinant IL-21 alone or in combination with low-dose IL-2 could improve the in vivo anti-tumor function of naïve, tumor-antigen specific CD8+ T cells in a gp10025–33 T cell receptor transgenic pmel murine melanoma model. Methods Congenic C57BL/6 (Ly5.2 mice bearing subcutaneous B16F10 melanoma tumors were sublethally irradiated to induce lymphopenia. After irradiation naive pmel splenocytes were adoptively transferred, and mice were immunized with bone marrow-derived dendritic cells pulsed with human gp10025–33 (hgp10025–33. Seven days after vaccination groups of mice received 5 consecutive days of intraperitoneal administration of IL-2 alone (20 × 103 IU, IL-21 alone (20 μg or IL-21 and IL-2. Control animals received no cytokine therapy. Results IL-21 alone and IL-2 alone both delayed tumor progression, but only IL-21 significantly augmented long-term survival (20% compared to the control group. However, combination therapy with IL-21 and IL-2 resulted in the highest long-term (>150 days tumor-free survival frequency of 46%. Animals that were tumor-free for > 150 days demonstrated tumor-specific protection after rechallenge with B16F10 melanoma cells. At peak expansion (21 days post vaccination, the combination of IL-21 plus IL-2 resulted in a 2- to 3-fold higher absolute number of

  18. Transcriptional Profiling of the Immune Response to Marburg Virus Infection.

    Science.gov (United States)

    Connor, John H; Yen, Judy; Caballero, Ignacio S; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J

    2015-10-01

    Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells

  19. Overview of the immune response to phytonutrient in poultry

    Science.gov (United States)

    Overview of the immune response to phytonutrient in poultry. Lillehoj, Hyun S. Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA Phytochemicals are non-nutritive, plant-derived chemicals, many w...

  20. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  1. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known

  2. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  3. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    , through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine......Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers...... of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against...

  4. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  5. Immune responses to colophony, an agent causing occupational asthma.

    OpenAIRE

    Cullen, R T; Cherrie, B; Soutar, C A

    1992-01-01

    BACKGROUND: Inhalation of fumes from heated colophony (pine resin) is a recognised cause of occupational asthma, although the mechanisms by which colophony produces symptoms are unclear and specific immune responses to colophony have not been reported in sensitised workers. A study was carried out to determine whether colophony is antigenic. METHODS: The immune responses to colophony were studied in C57BL/6 mice and Dunkin Hartley guinea pigs after intraperitoneal injection of colophony conju...

  6. CCR 20th Anniversary Commentary: Immune-Related Response Criteria--Capturing Clinical Activity in Immuno-Oncology.

    Science.gov (United States)

    Hoos, Axel; Wolchok, Jedd D; Humphrey, Rachel W; Hodi, F Stephen

    2015-11-15

    To evaluate antitumor responses to chemotherapeutic agents, investigators would typically rely upon Response Evaluation Criteria in Solid Tumors (RECIST) or modified WHO criteria, which do not comprehensively capture responses with immunotherapeutic agents. In the December 1, 2009, issue of Clinical Cancer Research, Wolchok and colleagues reported their development of novel criteria, designated "Immune-related Response Criteria" (irRC), designed to better capture the response patterns observed with immunotherapies. Broad use of the irRC since then has allowed for a more comprehensive evaluation of immunotherapies in clinical trials, indicating that their concepts can be used in conjunction with either RECIST or WHO, and has shown irRC to be a powerful tool for improved clinical investigation. See related article by Wolchok et al., Clin Cancer Res 2009;15(23) December 1, 2009;7412-20. ©2015 American Association for Cancer Research.

  7. Antigen processing and immune regulation in the response to tumours.

    Science.gov (United States)

    Reeves, Emma; James, Edward

    2017-01-01

    The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8 + cytotoxic and CD4 + helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8 + cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4 + T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8 + cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets. © 2016 John Wiley & Sons Ltd.

  8. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  9. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    Science.gov (United States)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  10. Evaluation of immune response to hepatitis A vaccination and vaccine safety in juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Muferet Erguven

    2011-05-01

    Conclusion: Hepatitis A vaccine was safe in patients with JIA, and response to vaccine did not differ between healthy children and patients with JIA except for children with active systemic JIA receiving anti-tumor necrosis factor alpha drugs.

  11. Mathematical modeling of interleukin-27 induction of anti-tumor T cells response.

    Directory of Open Access Journals (Sweden)

    Kang-Ling Liao

    Full Text Available Interleukin-12 is a pro-inflammatory cytokine which promotes Th1 and cytotoxic T lymphocyte activities, such as Interferon-[Formula: see text] secretion. For this reason Interleukin-12 could be a powerful therapeutic agent for cancer treatment. However, Interleukin-12 is also excessively toxic. Interleukin-27 is an immunoregulatory cytokine from the Interleukin-12 family, but it is not as toxic as Interleukin-12. In recent years, Interleukin-27 has been considered as a potential anti-tumor agent. Recent experiments in vitro and in vivo have shown that cancer cells transfected with IL-27 activate CD8+ T cells to promote the secretion of anti-tumor cytokines Interleukin-10, although, at the same time, IL-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells. In the present paper we develop a mathematical model based on these experimental results. The model involves a dynamic network which includes tumor cells, CD8+ T cells and cytokines Interleukin-27, Interleukin-10 and Interferon-[Formula: see text]. Simulations of the model show how Interleukin-27 promotes CD8+ T cells to secrete Interleukin-10 to inhibit tumor growth. On the other hand Interleukin-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells which somewhat diminishes the inhibition of tumor growth. Our numerical results are in qualitative agreement with experimental data. We use the model to design protocols of IL-27 injections for the treatment of cancer and find that, for some special types of cancer, with a fixed total amount of drug, within a certain range, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing, although the decrease in tumor load is only temporary.

  12. Antitumor and immunomodulatory effects of salvigenin on tumor bearing mice.

    Science.gov (United States)

    Noori, Shokoofe; Hassan, Zuhair M; Yaghmaei, Bahram; Dolatkhah, Milad

    2013-01-01

    Development of agents that specifically kill cancer cells and simultaneously elicit antitumor immune response is a step forward in cancer therapy. Immunostimulation can result in eliminating of the cancer cells; immunotherapy is a promising approach in balancing the immune response by Treg. In the present study, we investigated whether the administration of salvigenin contributes to the augmentation of antitumor immunity and the regression of tumor tissues in a mouse model of breast cancer. Salvigenin was purified from Tanacetum canescens, and its effect on the tumor volume was investigated. The splenocyte proliferation, shifting of cytokine profile, and the presence of naturally-occurring CD4+CD25+Foxp3+ Treg cells were assessed to describe the anti-tumor immune response. Our results demonstrated that a significant decrease in the level of IL-4 and increase in the IFN-γ in the animals treated with salvigenin and significant decreased in the level of splenic CD4+CD25+Foxp3+ T regulatory cells. The cytotoxic and immunomodulatory properties of salvigenin were acknowledged in vivo. Copyright © 2013. Published by Elsevier Inc.

  13. Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine Langerhans cells.

    Science.gov (United States)

    Zaric, Marija; Lyubomska, Oksana; Poux, Candice; Hanna, Mary L; McCrudden, Maeliosa T; Malissen, Bernard; Ingram, Rebecca J; Power, Ultan F; Scott, Christopher J; Donnelly, Ryan F; Kissenpfennig, Adrien

    2015-02-01

    Dendritic cells (DCs) of the skin have an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient, and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8+ T cells ex vivo. Although all DC subsets were equally efficient in priming CD4+ T cells, LCs were largely responsible for orchestrating the differentiation of CD4+ IFN-γ- and IL-17-producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8+ CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumor and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favored by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.

  14. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  15. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  16. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  17. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  18. Flavobacterium psychrophilum, prevention and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi; Dalsgaard, Inger

    The fish pathogen Flavobacterium psychrophilum is one of the main causes of mortality in farmed rainbow trout and other salmonid fish. The disease following infection is often called bacterial coldwater disease (BCWD) in USA or rainbow trout fry syndrome (RTFS) in Europe. An infected farm can exp...... goal is to examine gene expression and location of transcription products in rainbow trout fry, in order to optimize vaccination or immune-stimulation. The presentation will focus on the future plans for the project, since no data have yet been obtained....

  19. Cancer Immunotherapy Trials Underutilize Immune Response Monitoring

    OpenAIRE

    Connell, Claire M.; Raby, Sophie E.M.; Beh, Ian; Flint, Thomas R.; Williams, Edward H.; Fearon, Douglas T.; Jodrell, Duncan I.; Janowitz, Tobias

    2017-01-01

    This brief communication presents a quantitative assessment of the inclusion of immune‐related response criteria and immunological biomarker response monitoring in the registration details of T‐cell checkpoint‐targeted cancer immunotherapy trials in solid malignancies.

  20. Agouron and immune response to commercialize remune immune-based treatment.

    Science.gov (United States)

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  1. Contribution of humoral immune responses to the antitumor effects mediated by anthracyclines

    Czech Academy of Sciences Publication Activity Database

    Hannani, D.; Locher, C.; Yamazaki, T.; Colin-Minard, V.; Vetizou, M.; Aymeric, L.; Viaud, S.; Sánchez, Daniel; Smyth, M. J.; Bruhna, P.; Kroemer, G.; Zitvogel, L.

    2013-01-01

    Roč. 21, č. 1 (2013), s. 50-58 ISSN 1350-9047 R&D Projects: GA ČR GA13-14608S Institutional support: RVO:61388971 Keywords : antibodies * immunogenic cell death * chemotherapy Subject RIV: CE - Biochemistry Impact factor: 8.385, year: 2013

  2. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  3. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  4. Behavioural trait covaries with immune responsiveness in a wild passerine.

    Science.gov (United States)

    Sild, Elin; Sepp, Tuul; Hõrak, Peeter

    2011-10-01

    Immune system is highly integrated with the nervous and endocrine systems, which is thought to result in covariation between behavioural syndromes and stress- and immune-associated diseases. Very little is known about the associations between behaviour and immune traits in wild animals. Here we describe such an association in passerine birds, the greenfinches (Carduelis chloris). When wild-caught greenfinches are brought into captivity, some individuals damage their tail feathers against cage walls due to excited behaviour, while others retain their feathers in intact condition. We show that damage to tail feathers was associated with flapping flight movements and the frequency of such flapping bouts was individually consistent over 57 days. Birds with intact tails, i.e., relatively 'calm' individuals mounted stronger antibody response to a novel Brucella abortus antigen and their circulating phagocytes were capable of producing stronger oxidative burst in response to stimulation with bacterial lipopolysaccharide in vitro. As the behavioural trait was assessed 13-25 days before measuring immune responsiveness, our results demonstrate that individuals' coping styles with captivity predicted how these individuals would respond to forthcoming immune challenges. This is a novel evidence about covariation between immune responsiveness and a behavioural trait in a wild-caught animal. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Subversion of innate and adaptive immune responses by Toxoplasma gondii.

    Science.gov (United States)

    Lang, Christine; Gross, Uwe; Lüder, Carsten G K

    2007-01-01

    The intracellular apicomplexan parasite Toxoplasma gondii is able to survive and persist in immunocompetent intermediate hosts for the host's life span. This is despite the induction of a vigorous humoral and -- more importantly -- cell-mediated immune response during infection. In order to establish and maintain such chronic infections, however, T. gondii has evolved multiple strategies to avoid or to interfere with potentially efficient anti-parasitic immune responses of the host. Such immune evasion includes (1) indirect mechanisms by altering the expression and secretion of immunomodulatory cytokines or by altering the viability of immune cells and (2) direct mechanisms by establishing a lifestyle within a suitable intracellular niche and by interference with intracellular signaling cascades, thereby abolishing a number of antimicrobial effector mechanisms of the host. Despite the parasite's ability to interfere successfully with the host's efforts to eradicate the infection, the immune response is, however, not completely abrogated but is rather partially diminished after infection. T. gondii thus keeps a delicate balance between induction and suppression of the host's immune response in order to guarantee the survival of the host as a safe harbor for parasite development and to allow its transmission to the definitive host.

  6. The immune response against Candida spp. and Sporothrix schenckii.

    Science.gov (United States)

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  7. The immune response to Prevotella bacteria in chronic inflammatory disease

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura

    2017-01-01

    The microbiota plays a central role in human health and disease by shaping immune development, immune responses and metabolism, and by protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked......-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice...... support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells...

  8. Impact on allergic immune response after treatment with vitamin A

    DEFF Research Database (Denmark)

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease....... METHODS: Ovalbumin (OVA)-immunization/OVA-challenge (OVA/OVA) and house dust mite (HDM)-immunization/HDM-challenge (HDM/HDM) experimental murine models of allergic airway disease, using C57Bl.10/Q groups of mice (n = 10) treated subcutaneously with different concentrations of all-trans RA (0, 50, 500...... and 2,500 ug) every 2-days were used to assess the allergic immune response. RESULTS: Levels of total and specific-IgE in sera were increased in all groups of RA treated OVA/OVA and HDM/HDM mice. Percentage and total amount of recruited eosinophil in airways by bronchoalveolar lavage fluid (BALF) were...

  9. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  10. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  11. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations.

    Science.gov (United States)

    Osada, Takuya; Chen, Minyong; Yang, Xiao Yi; Spasojevic, Ivan; Vandeusen, Jeffrey B; Hsu, David; Clary, Bryan M; Clay, Timothy M; Chen, Wei; Morse, Michael A; Lyerly, H Kim

    2011-06-15

    Wnt/β-catenin pathway activation caused by adenomatous polyposis coli (APC) mutations occurs in approximately 80% of sporadic colorectal cancers (CRC). The antihelminth compound niclosamide downregulates components of the Wnt pathway, specifically Dishevelled-2 (Dvl2) expression, resulting in diminished downstream β-catenin signaling. In this study, we determined whether niclosamide could inhibit the Wnt/β-catenin pathway in human CRCs and whether its inhibition might elicit antitumor effects in the presence of APC mutations. We found that niclosamide inhibited Wnt/β-catenin pathway activation, downregulated Dvl2, decreased downstream β-catenin signaling, and exerted antiproliferative effects in human colon cancer cell lines and CRC cells isolated by surgical resection of metastatic disease, regardless of mutations in APC. In contrast, inhibition of NF-κB or mTOR did not exert similar antiproliferative effects in these CRC model systems. In mice implanted with human CRC xenografts, orally administered niclosamide was well tolerated, achieved plasma and tumor levels associated with biologic activity, and led to tumor control. Our findings support clinical explorations to reposition niclosamide for the treatment of CRC.

  12. Spectroscopic techniques to study the immune response in human saliva

    Science.gov (United States)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.

    2018-01-01

    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  13. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    Norval, M.

    2000-01-01

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  14. The nature of immune responses to urinary tract infections

    Science.gov (United States)

    Abraham, Soman N.; Miao, Yuxuan

    2016-01-01

    The urinary tract is constantly exposed to microorganisms that inhabit the gastrointestinal tract, but generally the urinary tract resists infection by gut microorganisms. This resistance to infection is mainly ascribed to the versatility of the innate immune defences in the urinary tract as the adaptive immune responses are limited, particularly when only the lower urinary tract is infected. In recent years, as the strengths and weaknesses of the immune system of the urinary tract have emerged and as the virulence attributes of uropathogens are recognized, several potentially effective and unconventional strategies to contain or prevent urinary tract infections have emerged. PMID:26388331

  15. Modulation of Human Immune Response by Fungal Biocontrol Agents

    Science.gov (United States)

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  16. Ageing and the humoral immune response in mice

    International Nuclear Information System (INIS)

    Blankwater, M.J.

    1978-01-01

    The study presented in this thesis is concerned with changes in the humoral immune system as a function of age in different inbred mouse strains. Their capacity to develop humoral immune responses to experimentally given thymus-dependent and thymus-independent antigens under various conditions is compared. Furthermore, experiments employing thymus transplantation and thymic humoral factors which are directed at the restoration of the diminished T cell functions in old age are reported. (Auth.)

  17. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  18. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  19. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  20. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  1. Arginine and Citrulline and the Immune Response in Sepsis

    Science.gov (United States)

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  2. Arginine and Citrulline and the Immune Response in Sepsis

    Directory of Open Access Journals (Sweden)

    Karolina A.P. Wijnands

    2015-02-01

    Full Text Available Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.

  3. The perioperative immune/inflammatory insult in cancer surgery

    OpenAIRE

    Roxburgh, Campbell S; Horgan, Paul G; McMillan, Donald C

    2013-01-01

    Within the tumor microenvironment, non-specific innate immune responses can suppress adaptive cytotoxic immunity and hence promote tumor progression. Surgery and trauma provokes high-grade, non-specific inflammatory responses that suppress cell-mediated immunity. Here, the surgical resection of neoplastic lesions is considered in the context of antitumor immunity, providing the rationale for development of perioperative interventions to maintain the immunological competence of the host.

  4. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients

    NARCIS (Netherlands)

    Wieten, R. W.; Goorhuis, A.; Jonker, E. F. F.; de Bree, G. J.; de Visser, A. W.; van Genderen, P. J. J.; Remmerswaal, E. B. M.; ten Berge, I. J. M.; Visser, L. G.; Grobusch, M. P.; van Leeuwen, E. M. M.

    2016-01-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen

  5. The genetic regulation of infant immune responses to vaccination

    Directory of Open Access Journals (Sweden)

    Melanie eNewport

    2015-02-01

    Full Text Available A number of factors are recognised to influence immune responses to vaccinations including age, gender, the dose and quality of the antigen used, the number of doses given, the route of administration and the nutritional status of the recipient. Additionally, several immunogenetic studies have identified associations between polymorphisms in genes encoding immune response proteins, both innate and adaptive, and variation in responses to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines, cytokine receptors have associated with heterogeneity of responses to a wide range of vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority of these studies have been conducted in older children and adults and there are very few data available from studies conducted in infants. This paper reviews the evidence to date that host genes influencing vaccines responses in these older population and identifies a large gap in our understanding of the genetic regulation of responses in early life. . Given the high mortality from infection in early life and the challenges of developing vaccines that generate effective immune responses in the context of the developing immune system further research on infant populations is required.

  6. A basic mathematical model of the immune response

    Science.gov (United States)

    Mayer, H.; Zaenker, K. S.; an der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as ``virgin state,'' ``immune state'' and ``state of tolerance.'' The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response.

  7. Immune responses of ducks infected with duck Tembusu virus

    Directory of Open Access Journals (Sweden)

    Ning eLi

    2015-05-01

    Full Text Available Duck Tembusu virus (DTMUV can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8 and antiviral proteins (Mx, Oas, etc. are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  8. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Probiotics, antibiotics and the immune responses to vaccines

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  10. Anti-myosin humoral immune response following cardiac injury.

    Science.gov (United States)

    de Scheerder, I K; de Buyzere, M L; Delanghe, J R; Clement, D L; Wieme, R J

    1989-01-01

    A sensitive and highly specific ELISA assay was developed to determine the anti-myosin humoral immune response (AMA) in various heart diseases: acute viral myocarditis, infective endocarditis, acute myocardial infarction, and valve and coronary bypass surgery. The mean study entry AMA titer of each patient group was already significantly increased compared with age matched controls. During further follow-up (90 d) all the groups except for endocarditis showed a significant increase of AMA titer compared with their entry titer. Anti-myosin antibody titer were higher after cardiac surgery than after myocardial infarction or inflammatory heart disease. These results suggest that anti-myosin immune response is not limited to infectious processes in which the pathogen induces antibodies which cross-react with heart constituents but is merely caused by direct cardiac injury. Myosin as a major compound of heart cellular proteins turned out to be a good candidate to trigger immune response after cardiac injury.

  11. Immune responses to inflammation and trauma: a physical training model.

    Science.gov (United States)

    Shephard, R J; Shek, P N

    1998-05-01

    Physical activity and training have some potential as tools for examining immune responses to inflammation and trauma. Contributors to the present symposium review various aspects of the inflammatory process, including issues of lymphocyte recirculation and endotoxemia. They examine also the extent and nature of the immune disturbances induced by acute and chronic exercise and consider parallels between such responses and cellular manifestations of clinical sepsis. Factors modulating immune responses during physical activity include changes in the circulating levels of various cytokines, alterations in nutritional status, an altered expression of adhesion molecules, and the possible intervention of reactive species. Factors that can exacerbate exercise-induced changes include exposure to adverse environments, particularly hot conditions, and disturbances of the normal sleep-wakefulness cycle. Current research in exercise immunology finds clinical application in attempts to regulate aging, acute viral infections, and neoplasia.

  12. Crosstalk between microbiota, pathogens and the innate immune responses.

    Science.gov (United States)

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  14. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  15. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  16. Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response

    Directory of Open Access Journals (Sweden)

    Giovanna eSchiavoni

    2013-12-01

    Full Text Available Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells (APC present tumor-associated antigens (Ag on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I, a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I -stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses.

  17. Microgravity and immune responsiveness: implications for space travel.

    Science.gov (United States)

    Borchers, Andrea T; Keen, Carl L; Gershwin, M Eric

    2002-10-01

    To date, several hundred cosmonauts and astronauts have flown in space, yet knowledge about the adaptation of their immune system to space flight is rather limited. It is evident that a variety of immune parameters are changed during and after space flight, but the magnitude and pattern of these changes can differ dramatically between missions and even between crew members on the same mission. A literature search was conducted involving a total of 335 papers published between 1972 and 2002 that dealt with the key words immune response, microgravity and astronauts/cosmonauts, isolation, gravity, and human health. The data from multiple studies suggested that major discrepancies in outcome are due to methodologic differences. However, the data also suggested major factors that affect and modulate the immune response during space travel. In part at least, these discrepancies can be attributed to methodologic differences. In addition, a variety of other features, in particular the types and extent of stressors encountered during space missions, are likely to contribute to the variability of immune responses during and after space flight. That stress plays an important role in the effects of space flight on immunologic parameters is suggested by the frequent findings that stress hormones are upregulated during and after space flight. Unfortunately, however, the existing data on hormonal parameters are almost as varied as those on immunologic changes, and correlations between the two datasets have only rarely been attempted. The functional implications of space flight-induced alterations in immune response largely remain to be elucidated, but the data suggest that long-term travel will be associated with the development of immune-compromised hosts.

  18. Acute psychological stress induces short-term variable immune response.

    Science.gov (United States)

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. Copyright © 2015. Published by Elsevier Inc.

  19. [Immune response to hepatitis B vaccine in elite athletes].

    Science.gov (United States)

    Rosić, Ilija; Malićević, Sead; Medić, Snezana

    2008-01-01

    Hepatitis B viral infection can create serious health problems, such as acute and chronic hepatitis, cirrhosis of liver and hepatocellular carcinoma. Athletes have bigger risk of hepatitis B infection due to frequent injuries with bleeding, their style of living (promiscuity), close contact with teammates, etc. The aim of this study was to investigate the immune response to hepatitis B vaccine among elite athletes, compared to corresponding control group of male subjects front general non-athlete population, and to test out reaction in relation to age. There were 21 elite football players and 30 control non-athlete males. After written consent, they all received three doses of hepatitis B vaccine (Euvax B, Sanofi Pasteur) during 6 months. Eight weeks later, their immune response (as anti-HBs antibody titre in serum) was assessed and statistical significance of the findings was tested. The level of immune response was also evaluated in different age clusters within test groups. None of the footballers was without response to the vaccine. One of the subjects from the control group did not develop it. The group of athletes was with better mean values of antibody titre (1626621 mIU/ml vs. 1568455 mIU/ml), but without statistical significance (t = 0.375: p > 0.05), and with a greater deal of subjects who developed very good immune response (titre over 2000 mIU/ml). Younger football players had better immune reaction than older (age 18-24, 1795560 mIU/ml, vs. age 25-29 years, 1597470 mIU/ml vs. age 30 and more, 1360904 mIU/ml), but without statistical importance (H = 1.593; p > 0.05). Our study has shown that elite athletes respond very well to hepatitis B vaccination and have good immune response. Vaccination against hepatitis B of elite athletes is very important, because viral infection can seriously affect their health and stop their careers.

  20. Innate immune interferon responses to human immunodeficiency virus-1 infection.

    Science.gov (United States)

    Hughes, Rose; Towers, Greg; Noursadeghi, Mahdad

    2012-07-01

    Type I interferon (IFN) responses represent the canonical host innate immune response to viruses, which serves to upregulate expression of antiviral restriction factors and augment adaptive immune defences. There is clear evidence for type I IFN activity in both acute and chronic HIV-1 infection in vivo, and plasmacytoid dendritic cells have been identified as one important source for these responses, through innate immune detection of viral RNA by Toll-like receptor 7. In addition, new insights into the molecular mechanisms that trigger induction of type I IFNs suggest innate immune receptors for viral DNA may also mediate these responses. It is widely recognised that HIV-1 restriction factors share the characteristic of IFN-inducible expression, and that the virus has evolved to counteract these antiviral mechanisms. However, in some target cells, such as macrophages, IFN can still effectively restrict virus. In this context, HIV-1 shows the ability to evade innate immune recognition and thereby avoid induction of type I IFN in order to successfully establish productive infection. The relative importance of evasion of innate immune detection and evasion of IFN-inducible restriction in the natural history of HIV-1 infection is not known, and the data suggest that type I IFN responses may play a role in both viral control and in the immunopathogenesis of progressive disease. Further study of the relationship between HIV-1 infection and type I IFN responses is required to unravel these issues and inform the development of novel therapeutics or vaccine strategies. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Mitochondrial DNA in the regulation of innate immune responses

    Directory of Open Access Journals (Sweden)

    Chunju Fang

    2015-10-01

    Full Text Available Abstract Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.

  2. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  3. The intracellular cholesterol landscape: dynamic integrator of the immune response

    Science.gov (United States)

    Fessler, Michael B.

    2016-01-01

    Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, ‘professional’ role for sterols and oxysterols in macrophage and T cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease. PMID:27692616

  4. Liver Stage specific response among Endemic Populations: Diet & Immunity

    Directory of Open Access Journals (Sweden)

    Sarat Kumar Dalai

    2015-03-01

    Full Text Available Developing effective anti-malarial vaccine has been a challenge for long. Various factors including complex life cycle of parasite and lack of knowledge of stage specific critical antigens are some of the reasons. Moreover, inadequate understanding of the immune responses vis-à-vis sterile protection induced naturally by Plasmodia infection has further compounded the problem. It has been shown that people living in endemic areas take years to develop protective immunity to blood stage infection. But hardly anyone believes that immunity to liver-stage infection could be developed. Various experimental model studies using attenuated parasite suggest that liver stage immunity might exist among endemic populations. This could be induced because of the attenuation of parasite in liver by various compounds present in the diet of endemic populations.

  5. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  6. Anti-tumor Activity of Toll-Like Receptor 7 Agonists

    Directory of Open Access Journals (Sweden)

    Huju Chi

    2017-05-01

    Full Text Available Toll-like receptors (TLRs are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.

  7. Effects of inhaled insoluble 239PuO2 on immune responses following lung immunization

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Brooks, A.L.; Mewhinney, J.A.

    1978-01-01

    To determine if inhaled 239 PuO 2 suppresses immunity in lung-associated lymph nodes, Chinese hamsters were exposed to a polydisperse aerosol of 239 PuO 2 produced at 1150 0 C. The mean lung burden of these animals was estimated to be 10 nCi at 8 days after exposure. At 128, 256 and 400 days after exposure, sham exposed controls and experimental animals were immunized by intratracheal instillation of 1 x 10 8 sheep red blood cells (SRBC). Six days later, they were sacrificed and the number of antibody forming cells (AFC) in lung-associated lymph nodes, spleen and cervical lymph nodes was evaluated. Results of these studies indicated that the number of AFC in lung-associated lymph modes was significantly lower in animals exposed to 239 PuO 2 . Only a few AFC were found in spleen and cervical lymph nodes after intratracheal immunization and the number in exposed animals was not significantly different than in the controls. These data indicate that even though the 239 PuO 2 exposure had suppressed immune responses in lung-associated lymph nodes, their filtering capacity was unaffected and antigen did not translocate to the spleen. We conclude that, at the sacrifice intervals evaluated, the immune function of lung-associated lymph nodes was suppressed and that distant lymphoid tissue (e.g., spleen and cervical lymph nodes) did not replace the immune function of the lung-associated lymph nodes

  8. Immune Response to Cryptosporidiosis in Philippine Children

    Science.gov (United States)

    1990-01-01

    and total iron binding capacity, and the degree of malnutrition was determined by clinical examination. Antibody response to Cryptosporidium was...of Cryptosporidium - found positive by modified Kinyoun stain were specific IgA, lgG, and lgM antibodies in the stool. 131 132 1 \\XER \\ND OTHERS FABLE...plus PBS were run. To establish cutoff val- 10. Blastocvsts hominis 9 1.1 ues. serum samples were obtained from 12 11. (ampilobacter jejumt 7 ().85

  9. The microbiota and immune response during Clostridium difficile infection.

    Science.gov (United States)

    Buonomo, Erica L; Petri, William A

    2016-10-01

    Clostridium difficile is a gram-positive, spore forming anaerobe that infects the gut when the normal microbiota has been disrupted. C. difficile infection (CDI) is the most common cause of hospital acquired infection in the United States, and the leading cause of death due to gastroenteritis. Patients suffering from CDI have varying symptoms which range from mild diarrhea to pseudomembranous colitis and death. The involvement of the immune response to influence disease severity is just beginning to be investigated. There is evidence that the immune response can facilitate either protective or pathogenic phenotypes, suggesting it plays a multifaceted role during CDI. In addition to the immune response, the microbiota is pivotal in dictating the pathogenesis to CDI. A healthy microbiota effectively inhibits infection by restricting the ability of C. difficile to expand in the colon. Thus, understanding which immune mediators and components of the microbiota play beneficial roles during CDI will be important to future therapeutic developments. This review outlines how the microbiota can modulate specific immune mediators, such as IL-23 and others, to influence disease outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of produced water on cod (Gadus morhua) immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division; Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Mathieu, A. [Oceans Ltd., St. John' s, NL (Canada)

    2007-07-01

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS.

  11. miRNAs associated with immune response in teleost fish.

    Science.gov (United States)

    Andreassen, Rune; Høyheim, Bjørn

    2017-10-01

    MicroRNAs (miRNAs) have been identified as important post transcriptional regulators of gene expression. In higher vertebrates, a subset of miRNAs has been identified as important regulators of a number of key genes in immune system gene networks, and this paper review recent studies on miRNAs associated with immune response in teleost fish. Challenge studies conducted in several species have identified differently expressed miRNAs associated with viral or bacterial infection. The results from these studies point out several miRNAs that are likely to have evolutionary conserved functions that are related to immune response in teleost fish. Changed expression levels of mature miRNAs from the five miRNA genes miRNA-462, miRNA-731, miRNA-146, miRNA-181 and miRNA-223 are observed following viral as well as bacterial infection in several teleost fish. Furthermore, significant changes in expression of mature miRNAs from the five genes miRNA-21, miRNA-155, miRNA-1388, miRNA-99 and miRNA-100 are observed in multiple studies of virus infected fish while changes in expression of mature miRNA from the three genes miRNA-122, miRNA-192 and miRNA-451 are observed in several studies of fish with bacterial infections. Interestingly, some of these genes are not present in higher vertebrates. The function of the evolutionary conserved miRNAs responding to infection depends on the target gene(s) they regulate. A few target genes have been identified while a large number of target genes have been predicted by in silico analysis. The results suggest that many of the targets are genes from the host's immune response gene networks. We propose a model with expected temporal changes in miRNA expression if they target immune response activators/effector genes or immune response inhibitors, respectively. The best way to understand the function of a miRNA is to identify its target gene(s), but as the amount of genome resources for teleost fish is limited, with less well characterized genomes

  12. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    expression affect the inflammatory response (Friedland et al., 1995; Wellmer et al., 2002). Heat-inactivation destroys the cytotoxic and cytokine...clearance of Brucella abortus. Infect. Immun. 73: 5137-5143. Wellmer , A., Zysk, G., Gerber, J., Kunst, T., Von Mering, M., Bunkowski, S., Eiffert, H

  13. Subversion and coercion: the art of redirecting tumor immune surveillance.

    Science.gov (United States)

    Mumm, John B; Oft, Martin

    2011-01-01

    Tumor immune surveillance and CD8+ T cells in particular appear capable of recognizing the antigenic properties of human tumor cells. However, those antigen specific T cells are often excluded from tumor tissue or are functionally limited in their cytotoxic capacity. Instead, the immune response provides proinflammatory cytokines and proteases promoting tumor growth and progression while subverting cytotoxic anti-tumor immunity. The cytokines and the inflammatory mechanisms driving tumor associated inflammation resemble tissue remodeling processes during wound healing and chronic inflammatory diseases. In this chapter, we summarize the current knowledge of how inflammatory cytokines may promote the deviation of anti-tumor immunity toward a tumor promoting, noncytotoxic inflammation.

  14. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... to specific T cells; the activation of a CD21/CD19 complex-mediated signalling pathway in B cells, which provides a stimulus synergistic to that induced by antigen interaction with the B-cell receptor (BCR); and promotion of the interaction between B cells and FDC, where C3d-bearing immune complexes...

  15. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... to specific T cells; the activation of a CD21/CD19 complex-mediated signalling pathway in B cells, which provides a stimulus synergistic to that induced by antigen interaction with the B-cell receptor (BCR); and promotion of the interaction between B cells and FDC, where C3d-bearing immune complexes......Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...

  16. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  17. Radiation and PD-(L)1 treatment combinations: immune response and dose optimization via a predictive systems model.

    Science.gov (United States)

    Kosinsky, Yuri; Dovedi, Simon J; Peskov, Kirill; Voronova, Veronika; Chu, Lulu; Tomkinson, Helen; Al-Huniti, Nidal; Stanski, Donald R; Helmlinger, Gabriel

    2018-02-27

    Numerous oncology combination therapies involving modulators of the cancer immune cycle are being developed, yet quantitative simulation models predictive of outcome are lacking. We here present a model-based analysis of tumor size dynamics and immune markers, which integrates experimental data from multiple studies and provides a validated simulation framework predictive of biomarkers and anti-tumor response rates, for untested dosing sequences and schedules of combined radiation (RT) and anti PD-(L)1 therapies. A quantitative systems pharmacology model, which includes key elements of the cancer immunity cycle and the tumor microenvironment, tumor growth, as well as dose-exposure-target modulation features, was developed to reproduce experimental data of CT26 tumor size dynamics upon administration of RT and/or a pharmacological IO treatment such as an anti-PD-L1 agent. Variability in individual tumor size dynamics was taken into account using a mixed-effects model at the level of tumor-infiltrating T cell influx. The model allowed for a detailed quantitative understanding of the synergistic kinetic effects underlying immune cell interactions as linked to tumor size modulation, under these treatments. The model showed that the ability of T cells to infiltrate tumor tissue is a primary determinant of variability in individual tumor size dynamics and tumor response. The model was further used as an in silico evaluation tool to quantitatively predict, prospectively, untested treatment combination schedules and sequences. We demonstrate that anti-PD-L1 administration prior to, or concurrently with RT reveal further synergistic effects, which, according to the model, may materialize due to more favorable dynamics between RT-induced immuno-modulation and reduced immuno-suppression of T cells through anti-PD-L1. This study provides quantitative mechanistic explanations of the links between RT and anti-tumor immune responses, and describes how optimized combinations and

  18. [Immune response of Hansen's disease. Review].

    Science.gov (United States)

    Rada, Elsa; Aranzazu, Nacarid; Convit, Jacinto

    2009-12-01

    Hansen's disease presents a wide spectrum of clinical and histopathological manifestations that reflect the nature of the immunological response of the host towards diverse Mycobacterium leprae components. The immunological system, composed by both innate and adaptive immunology, offers protection towards infections of various etiologies, among them bacterial. Bacteria, of course, have developed multiple strategies for evading host defenses, based on either very complex or simple mechanisms, but with a single purpose: to "resist" host attacks and to be able to survive. We have tried to summarize some recent studies in Hansen's disease, with more emphasis in the inmunology area. We think that in the future, all illnesses should also be very strongly related to other important aspects such as the social, environmental and economic, and whose development is not solved in a laboratory.

  19. HTLV-1, Immune Response and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Juarez A S Quaresma

    2015-12-01

    Full Text Available Human T-lymphotropic virus type-1 (HTLV-1 infection is associated with adult T-cell leukemia/lymphoma (ATL. Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA, Systemic Lupus Erythematosus (SLE, and Sjögren’s Syndrome (SS. The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.

  20. Dynamics of the Intratumoral Immune Response during Progression of High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Mandy Stanske

    2018-03-01

    Full Text Available PURPOSE: Tumor-infiltrating lymphocytes (TILs have an established impact on the prognosis of high-grade serous ovarian carcinoma (HGSOC, however, their role in recurrent ovarian cancer is largely unknown. We therefore systematically investigated TIL densities and MHC class I and II (MHC1, 2 expression in the progression of HGSOC. EXPERIMENTAL DESIGN: CD3+, CD4+, CD8+ TILs and MHC1, 2 expression were evaluated by immunohistochemistry on tissue microarrays in 113 paired primary and recurrent HGSOC. TILs were quantified by image analysis. All patients had been included to the EU-funded OCTIPS FP7 project. RESULTS: CD3+, CD4+, CD8+ TILs and MHC1 and MHC2 expression showed significant correlations between primary and recurrent tumor levels (Spearman rho 0.427, 0.533, 0.361, 0.456, 0.526 respectively; P<.0001 each. Paired testing revealed higher CD4+ densities and MHC1 expression in recurrent tumors (Wilcoxon P=.034 and P=.018. There was also a shift towards higher CD3+ TILs levels in recurrent carcinomas when analyzing platinum-sensitive tumors only (Wilcoxon P=.026 and in pairs with recurrent tumor tissue from first relapse only (Wilcoxon P=.031. High MHC2 expression was the only parameter to be significantly linked to prolonged progression-free survival after first relapse (PFS2, log-rank P=.012. CONCLUSIONS: This is the first study that analyzed the development of TILs density and MHC expression in paired primary and recurrent HGSOC. The level of the antitumoral immune response in recurrent tumors was clearly dependent on the one in the primary tumor. Our data contribute to the understanding of temporal heterogeneity of HGSOC immune microenvironment and have implications for selection of samples for biomarker testing in the setting of immune-targeting therapeutics.

  1. Characterization of the immune response in human paracoccidioidomycosis.

    Science.gov (United States)

    de Castro, Lívia Furquim; Ferreira, Maria Carolina; da Silva, Rosiane Maria; Blotta, Maria Heloisa de Souza Lima; Longhi, Larissa Nara Alegrini; Mamoni, Ronei Luciano

    2013-11-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the dimorphic fungus Paracoccidioides brasiliensis that presents two main clinical forms: the adult form (AF) and the juvenile form (JF); and an asymptomatic form denominated PCM-infection (PI). These forms of PCM are related to the immune response developed after infection, which has been associated with Th1 and Th2 responses. However, some PCM characteristics cannot be explained by this balance. In this study we aimed to complement the characterization of the immune response in PCM, including the newly described T cells subpopulations (Th17, Th9 and Th22). We analyzed the expression of cytokines and transcription factors characteristics of these different subpopulations of CD4(+) T cells in PBMCs from PCM patients and a PI group. The results showed that the PI group presented a predominant Th1 response; that JF patients were characterized by a mixed Th2/Th9 response; and AF patients were characterized by a predominant Th17/Th22 response, as well as substantial participation of Th1 cells. These results contribute to the existing knowledge on the immune responses associated with resistance or susceptibility to the P. brasiliensis infection, and thus could lead to the development of new strategies for patient management. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  2. Role of Activin A in Immune Response to Breast Cancer

    Science.gov (United States)

    2015-12-01

    Ipilimumab Phase 1 NCT01935921 Stages III and IV head and neck cancer Cetuximab IMRT Ipilimumab Phase 1 NCT02115139 Melanoma Brain metastases Ipilimumab WBRT...impaired growth-inhibitory response by suppressing immunity in the tumor microenvironment (Loomans et al., Cancers ( Basel ). 2014). Radiotherapy (RT) has

  3. Veni, vidi, vici: in vivo molecular imaging of immune response.

    Science.gov (United States)

    Gross, Shimon; Moss, Britney L; Piwnica-Worms, David

    2007-10-01

    "I came, I saw, I conquered," Julius Caesar proclaimed, highlighting the importance of direct visualization as a winning strategy. Continuing the "From the Field" series (see Editorial [2007] 26, 131), Gross et al. summarize how modern molecular imaging techniques can successfully dissect the complexities of immune response in vivo.

  4. Effect of partially purified fumonisins on cellular immune response in ...

    African Journals Online (AJOL)

    Fumonisins are mycotoxins produced mainly by Fusarium verticillioides, which can modulate the immune response. Paracoccidioidomycosis (PCM), caused by the fungus Paracoccodioides brasiliensis (Pb), is one of the most important systemic mycoses in Latin America. The aim of this study was to evaluate the effect of ...

  5. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated DNA vaccines were ...

  6. Enhancement of broiler performance and immune response by ...

    African Journals Online (AJOL)

    The objective of the present study was to compare short and long term application of Echinacea purpurea root powder on growth performance and immunity response of broiler chicks. Three replicate trials involving a total of 600 day-old Ross chicks were used in this study. In each trial, a total of 200 chicks were randomly ...

  7. Signalling through C-type lectin receptors: shaping immune responses

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2009-01-01

    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce

  8. Genetic variations in non-specific immune response to ...

    African Journals Online (AJOL)

    Non-specific immune response in three strains of Heterobranchus bidorsalis challenged with the bacterium Aeromonas hydrophilia was evaluated. The study was undertaken in three strains of H. bidorsalis from different ecological zones in Nigeria and the percentage cumulative mortality was lowest and significantly ...

  9. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated. DNA vaccines were ...

  10. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    2012-11-02

    Nov 2, 2012 ... We aimed to determine the prevalence of discordant immune response and explore associated factors in a retrospective cohort of ..... haemoglobin; TB = tuberculosis; BMI = body mass index; ALT = alanine aminotransferase; AST = aspartate transaminase. *Data are ... In the North American. AIDS Cohort ...

  11. Cellular immune response in prognosis of Bell's palsy and its ...

    African Journals Online (AJOL)

    Objective: To determine the cellular immune response in Bell's palsy (BP) and its prognostic value in relation to clinical and electrophysiological findings. Methods: Twenty patients with BP were subjected to: Facial nerve paralysis assessment according to House–Brackmann (H&B) grading system, bilateral facial nerve ...

  12. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  13. Cellular immune response of infectious bursal disease and ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... Cellular immune response of infectious bursal disease and Newcastle disease vaccinations in broilers exposed to monochromatic lights. Avesta Sadrzadeh1, Gholamreza Nikbakht Brujeni2, Masoud Livi1, Mohammad Javad Nazari1,. Meysam Tehrani Sharif1, Hossein Hassanpour3* and Nasrin Haghighi3.

  14. Investigating Human Dendritic Cell Immune Responses to Borrelia burgdorferi

    NARCIS (Netherlands)

    Mason, Lauren M. K.; Hovius, Joppe W. R.

    2018-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells that recognize and phagocytose pathogens, and help to orchestrate adaptive immune responses to combat them. DCs are abundant in the skin where Borrelia burgdorferi first enters the body during a tick bite, and are thus critical in

  15. Radiation-induced augmentation of the immune response

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  16. Optimal Control Strategy for Abnormal Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Jinying Tan

    2015-01-01

    Full Text Available Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t or enhancing interferon activity (u2(t, has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t and (u2(t simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases.

  17. Cocoa Diet and Antibody Immune Response in Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-06-01

    Full Text Available The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system’s functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.

  18. Immunosuppressive activity of florfenicol on the immune responses in mice.

    Science.gov (United States)

    Shuang, Guan; Yu, Song; Weixiao, Guo; Dacheng, Wang; Zhichao, Zhang; Jing, Lu; Xuming, Deng

    2011-01-01

    Florfenicol is a new type of broad-spectrum antibacterial that has been used in veterinary clinics. It shows immunosuppressive activity on the immune responses to ovalbumin (OVA) in mice. In the present study, florfenicol suppressed lipopolysaccharide (LPS)-stimulated splenocyte proliferation in a concentration-dependent manner in vitro and in vivo. BALB/c mice were immunized subcutaneously with OVA on days 1 and 4. Following the second immunization, mice were treated with a single daily oral dose of florfenicol (50, 100, and 200 mg/kg) for 10 consecutive days. On day 14, blood samples were collected to analyze OVA-specific IgG, IgG1, and IgG2b antibodies, and splenocytes were harvested to assess lymphocyte proliferation, CD3(+) T and CD19(+) B lymphocyte subsets. The results presented here demonstrate that florfenicol not only significantly suppressed Con A-, LPS- and OVA-induced splenocyte proliferation but also decreased the percentage of CD19(+) B cells in a dose-dependent manner and suppressed CD3(+) T cell at high doses. Moreover, OVA-specific IgG, IgG1 and IgG2b titers in OVA-immunized mice were reduced by florfenicol. These results suggest that florfenicol could suppress humoral and cellular immune responses in mice.

  19. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  20. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T......-cell and humoral responses, but prevents CD8(+) T-cell activation. Here, we briefly discuss the relevance of glycans as candidate targets for anti-cancer vaccines....

  1. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  2. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    International Nuclear Information System (INIS)

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-01-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen

  3. Human herpesvirus 8 infection contributes to a T helper 2 immune response in men from Tobago with prostate cancer.

    Science.gov (United States)

    Henning, Jill D; Bonachea, Luis A; Bunker, Clareann H; Patrick, Alan L; Jenkins, Frank J

    2017-01-01

    To compare the cytokine profile between human herpesvirus 8 seropositive and seronegative men with and without prostate cancer. The study sample was obtained from the Tobago Prostate Survey, an ongoing study of prostate cancer in the Caribbean island of Tobago. Participants in the study were recruited mostly by public service announcement and by word of mouth. For analyses of circulating levels of pro-inflammatory cytokines, participants with biopsy-confirmed prostate cancer (n = 79) were compared with control participants (n = 87). Cytokine analyses showed a T helper 2 response with suppressed T helper 1 response in prostate cancer patients, as evidenced by significantly increased levels of interleukin-13 and reduced levels of interleukin-12p70. Herpesvirus 8 seropositive men showed significantly increased levels of interleukin-13 and interleukin-10. At logistic regression analyses, interleukin-12p70 predicted prostate cancer in 94.4% of human herpesvirus 8 seropositive men. These findings show that prostate cancer elicits an antitumor, T helper 2 response with a suppressed T helper 1 response. Human herpesvirus 8 infection results in a similar immune response supporting the hypothesis that in Tobago, human herpesvirus 8 establishes a chronic infection that can contribute to an immune response favoring the formation and survival of prostate cancer. © 2016 The Japanese Urological Association.

  4. Stochastic responses of tumor–immune system with periodic treatment

    International Nuclear Information System (INIS)

    Li Dong-Xi; Li Ying

    2017-01-01

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment. Firstly, a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation. Then, sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula. Finally, numerical simulations are introduced to illustrate and verify the results. The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells, especially for combining the immunotherapy and the traditional tools. (paper)

  5. Human cytomegalovirus infection and the immune response to exercise.

    Science.gov (United States)

    Simpson, Richard J; Bigley, Austin B; Spielmann, Guillaume; LaVoy, Emily C P; Kunz, Hawley; Bollard, Catherine M

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous -herpes virus that has co-evolved with its host since the very beginning of human life. The vast majority of adults worldwide carry the virus in a latent state, which is known to have striking effects on the composition and function of both T-cells and NK-cells. While there is evidence to suggest that prior exposure to HCMV can have beneficial effects in the immune competent host, poor control of the virus may contribute to T-cell exhaustion and the early onset of immunosenescence. The interaction between HCMV and exercise has garnered a lot of recent research attention. This stemmed from observations that people with HCMV redeploy greater numbers of CD8+ T-cells in response to a single exercise bout, while NK-cell mobilization is, conversely, impaired. Moreover, athletes with latent HCMV infection may be better protected against symptoms of upper respiratory illness (URI), and it has been suggested that the host's ability to control HCMV (i.e. keeping CMV in a latent state) may connect apparent bidirectional effects of exercise volume on host immunity and infection risk. This work has set a new paradigm that immune responses to both acute and chronic exercise might be governed by the infection history of the host. In this review, we summarize current knowledge on the effects of HCMV infection on T-cells and NK-cells and synthesize the literature on HCMV and the immune response to both single exercise bouts and prolonged periods of exercise training. We also discuss potential clinical and practical applications of this work including the use of HCMV reactivation as a biomarker of immune depression in athletes, its relevance in immunosenescence and the associated immune risk profile, and the potential for exercise to augment vaccine responses and the man ufacture of immune cells for adoptive transfer immunotherapy. Although research in this area is still in its infancy, we conclude that host infection history and the

  6. Inflammation and Immune Response in COPD: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  7. Fluid phase recognition molecules in neutrophil-dependent immune responses.

    Science.gov (United States)

    Jaillon, Sébastien; Ponzetta, Andrea; Magrini, Elena; Barajon, Isabella; Barbagallo, Marialuisa; Garlanda, Cecilia; Mantovani, Alberto

    2016-04-01

    The innate immune system comprises both a cellular and a humoral arm. Neutrophils are key effector cells of the immune and inflammatory responses and have emerged as a major source of humoral pattern recognition molecules (PRMs). These molecules, which include collectins, ficolins, and pentraxins, are specialised in the discrimination of self versus non-self and modified-self and share basic multifunctional properties including recognition and opsonisation of pathogens and apoptotic cells, activation and regulation of the complement cascade and tuning of inflammation. Neutrophils act as a reservoir of ready-made soluble PRMs, such as the long pentraxin PTX3, the peptidoglycan recognition protein PGRP-S, properdin and M-ficolin, which are stored in neutrophil granules and are involved in neutrophil effector functions. In addition, other soluble PRMs, such as members of the collectin family, are not expressed in neutrophils but can modulate neutrophil-dependent immune responses. Therefore, soluble PRMs are an essential part of the innate immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on molecules involved in neutrophil effector functions. Copyright © 2016. Published by Elsevier Ltd.

  8. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  10. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Resistance and immune response in scabies-infested hosts immunized with Dermatophagoides mites.

    Science.gov (United States)

    Arlian, L G; Rapp, C M; Morgan, M S

    1995-06-01

    Seventy-one percent of rabbits immunized with a mixed (50:50) Dermatophagoides farinae and D. pteronyssinus house dust mite extract were resistant to infestation by Sarcoptes scabiei var. canis. The resistance was evidenced by a marked reduction in parasite load. All immunized hosts developed similar immunogen-specific antibody titers that were independent of the levels of scabies infestation that developed when the hosts were infested with scabies. Resistant hosts exhibited significantly lower scabies-specific immunoglobulin titers and produced antibody to fewer scabies antigens than did nonresistant hosts. All infested hosts (resistant and nonresistant) showed a cellular infiltrate in the scabietic lesions that was composed of neutrophils, plasma cells, macrophages, and mononuclear cells. Resistant hosts were characterized by fewer plasma cells in the infiltrate than were observed for non-resistant hosts. Resistant hosts exhibited a gradual increase in the number of infiltrating neutrophils, followed by a decrease that correlated with a decrease in the mite burden. Nonresistant hosts exhibited an early rapid increase, a decrease, and then a gradual increase in the concentration of neutrophils as the mite load increased. These results clearly showed that D. farinae/D. pteronyssinus antigens/epitopes can sensitize the hosts to scabies mites and induce protective immunity. The lower circulating antibody levels and generally stronger inflammatory cell-mediated response of resistant hosts compared with nonresistant hosts suggested that the mechanism by which immunization with Dermatophagoides mites induces immunity to scabies mites involved a down-regulated T helper cell type 2 (Th2) response with reduced antibody production but an up-regulated and stronger Th1 (inflammatory cell-mediated) response to scabies.

  12. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  13. Immune responses of wild birds to emerging infectious diseases.

    Science.gov (United States)

    Staley, M; Bonneaud, C

    2015-05-01

    Over the past several decades, outbreaks of emerging infectious diseases (EIDs) in wild birds have attracted worldwide media attention, either because of their extreme virulence or because of alarming spillovers into agricultural animals or humans. The pathogens involved have been found to infect a variety of bird hosts ranging from relatively few species (e.g. Trichomonas gallinae) to hundreds of species (e.g. West Nile Virus). Here we review and contrast the immune responses that wild birds are able to mount against these novel pathogens. We discuss the extent to which these responses are associated with reduced clinical symptoms, pathogen load and mortality, or conversely, how they can be linked to worsened pathology and reduced survival. We then investigate how immune responses to EIDs can evolve over time in response to pathogen-driven selection using the illustrative case study of the epizootic outbreak of Mycoplasma gallisepticum in wild North American house finches (Haemorhous mexicanus). We highlight the need for future work to take advantage of the substantial inter- and intraspecific variation in disease progression and outcome following infections with EID to elucidate the extent to which immune responses confer increased resistance through pathogen clearance or may instead heighten pathogenesis. © 2015 John Wiley & Sons Ltd.

  14. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Girish J. Kotwal

    2012-01-01

    Full Text Available The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.

  15. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Science.gov (United States)

    Kotwal, Girish J.; Hatch, Steven; Marshall, William L.

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals. PMID:22997518

  16. Immune responses and latent herpesvirus reactivation in spaceflight.

    Science.gov (United States)

    Stowe, R P; Mehta, S K; Ferrando, A A; Feeback, D L; Pierson, D L

    2001-10-01

    Increased frequency and severity of herpesvirus infections are common in individuals with impaired cellular immunity, a phenomenon observed in both the elderly and astronauts alike. This study investigated immune responses and latent herpesvirus reactivation during a 9-d spaceflight. In addition, adrenocortical and immune responses of an elderly astronaut (payload specialist-2, PS2; age 77) who flew on this mission were compared with that of younger crewmembers. Spaceflight and associated stresses will decrease cellular immunity and reactivate latent herpesviruses. Blood and urine samples, collected from the seven crewmembers who flew on the Space Shuttle Discovery (STS-95), were analyzed for levels of neuroendocrine hormones, leukocyte and lymphocyte subsets, and evidence of herpes-virus reactivation. Prior to flight, increased antibody titers to latent Epstein-Barr virus were found. During flight, acute changes in dehydroepiandrosterone sulfate (DHEAS) and cortisol resulted in a pronounced decrease in the DHEAS/cortisol ratio by the end of the mission for PS2 and a younger crewmember. Shedding of cytomegalovirus (CMV) in urine and increased CMV antibody titers also occurred inflight. At landing, the percent increases in adrenocorticotropic hormone and cortisol were greatest for PS2 as compared with the other six crewmembers. A significant neutrophilia also was observed in all crewmembers. Notably, PS2 had large increases in monocytes and natural killer cells at landing while other crewmembers showed little change or a decrease. These findings indicate that spaceflight and associated stresses reactivate latent herpesviruses and suggest that acute changes in neuroendocrine hormones mediate these changes in part by downregulating cellular immunity. Moreover, the similarities between aging and spaceflight suggest that the study of the immune system in elderly subjects may be useful as a predictive model for astronauts enduring long-term spaceflights.

  17. The immune response to surgery and trauma: Implications for treatment.

    Science.gov (United States)

    Marik, Paul E; Flemmer, Mark

    2012-10-01

    Infection after surgery and trauma is a major cause of increased morbidity, mortality, and cost. Alterations of the hosts immune system following these insults is believed to be responsible for the increased risk of infection. The hosts' immune response to tissue injury is widely believed to follow a bimodal response, with the systemic inflammatory response syndrome (SIRS) followed by the compensated anti-inflammatory response syndrome (CARS). Recent data, however, suggests that his paradigm may not be correct. We reviewed the literature to describe the immunological changes following surgery and trauma and possible therapeutic interventions to limit this process. Physical injury related to trauma and surgery increase the expression of T-helper 2 (Th2) lymphocytes which cause impaired cell mediated immunity (CMI). Activation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathoadrenal system (SAS) with the release of cortisol and catecholamines appear to be responsible for altering the Th1/Th2 balance. Decreased expression and signalling of interleukin-12 (IL-12) and increased expression of T regulatory cells (Tregs) appear to play a central role in mediating this immune depression. Furthermore, Th2 cytokines increase the expression of arginase-1 (ARG1) in myeloid-derived suppressor cells (MDSC's) causing an arginine deficient state, which further impairs lymphocyte function. Immunomodulating diets (IMDs) containing supplemental arginine and omega-3 fatty acids have been demonstrated to restore the Th1/Th2 balance after surgical trauma and to reduce the risk of infectious complications. β-adrenergic receptor blockage reverses the Th-1 to Th2 shift and preliminary data suggests that such therapy may be beneficial. Tissue injury following surgery and trauma results in depressed CMI leading to an increased risk of infections. The peri-operative use of IMDs appear to reverse this immunosuppression and decrease the risk of postoperative complications. While

  18. Antitumor Allium Sulfides.

    Science.gov (United States)

    Nohara, Toshihiro; Fujiwara, Yukio; El-Aasr, Mona; Ikeda, Tsuyoshi; Ono, Masateru; Nakano, Daisuke; Kinjo, Junei

    2017-01-01

    We examined the sulfides in onion (Allium cepa L.), Welsh onion (A. fistulosum L.), and garlic (A. sativum L.), and obtained three new thiolane-type sulfides (onionins A 1 -A 3 ) from onion; two new thiabicyclic-type sulfides (welsonins A 1 , A 2 ), together with onionins A 1 -A 3 , from Welsh onion; and six new acyclic-type sulfides (garlicnins L-1-L-4, E, and F), ten new thiolane-type sulfides (garlicnins A, B 1 -B 4 , C 1 -C 3 , K 1 , and K 2 ), and three new atypical cyclic-type sulfides (garlicnins G, I, and J) from garlic. Acetone extracts showed the potential of these sulfides in inhibiting the polarization of M2 activated macrophages that are capable of suppressing tumor-cell proliferation. The effect of the thiolane-type sulfide of a major component, onionin A 1 , on tumor progression and metastasis in both osteosarcoma and ovarian cancer-bearing mouse models was then examined. Tumor proliferation was depressed, and tumor metastasis was controlled by regulating macrophage activation. These results showed that onionin A 1 is an effective agent for controlling tumors in both in vitro and in vivo models, and that the antitumor effects observed in vivo are likely caused by reversing the antitumor immune system. Activation of the antitumor immune system by onionin A 1 might be an effective adjuvant therapy for patients with osteosarcoma, ovarian cancer and other malignant tumors. Based on these findings, pharmacological investigations will be conducted in the future to develop natural and healthy foods and anti-cancer agents that can prevent or combat disease.

  19. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient.

    Science.gov (United States)

    Löffler, Markus W; Chandran, P Anoop; Laske, Karoline; Schroeder, Christopher; Bonzheim, Irina; Walzer, Mathias; Hilke, Franz J; Trautwein, Nico; Kowalewski, Daniel J; Schuster, Heiko; Günder, Marc; Carcamo Yañez, Viviana A; Mohr, Christopher; Sturm, Marc; Nguyen, Huu-Phuc; Riess, Olaf; Bauer, Peter; Nahnsen, Sven; Nadalin, Silvio; Zieker, Derek; Glatzle, Jörg; Thiel, Karolin; Schneiderhan-Marra, Nicole; Clasen, Stephan; Bösmüller, Hans; Fend, Falko; Kohlbacher, Oliver; Gouttefangeas, Cécile; Stevanović, Stefan; Königsrainer, Alfred; Rammensee, Hans-Georg

    2016-10-01

    We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  1. Calcitriol exerts an anti-tumor effect in osteosarcoma by inducing the endoplasmic reticulum stress response.

    Science.gov (United States)

    Shimizu, Takatsune; Kamel, Walied A; Yamaguchi-Iwai, Sayaka; Fukuchi, Yumi; Muto, Akihiro; Saya, Hideyuki

    2017-09-01

    Osteosarcoma is the most common type of primary bone tumor, and novel therapeutic approaches for this disease are urgently required. To identify effective agents, we screened a panel of Food and Drug Administration (FDA)-approved drugs in AXT cells, our newly established mouse osteosarcoma line, and identified calcitriol as a candidate compound with therapeutic efficacy for this disease. Calcitriol inhibited cell proliferation in AXT cells by blocking cell cycle progression. From a mechanistic standpoint, calcitriol induced endoplasmic reticulum (ER) stress, which was potentially responsible for downregulation of cyclin D1, activation of p38 MAPK, and intracellular production of reactive oxygen species (ROS). Knockdown of Atf4 or Ddit3 restored cell viability after calcitriol treatment, indicating that the ER stress response was indeed responsible for the anti-proliferative effect in AXT cells. Notably, the ER stress response was induced to a lesser extent in human osteosarcoma than in AXT cells, consistent with the weaker suppressive effect on cell growth in the human cells. Thus, the magnitude of ER stress induced by calcitriol might be an index of its anti-osteosarcoma effect. Although mice treated with calcitriol exhibited weight loss and elevated serum calcium levels, a single dose was sufficient to decrease osteosarcoma tumor size in vivo. Our findings suggest that calcitriol holds therapeutic potential for treatment of osteosarcoma, assuming that techniques to diminish its toxicity could be established. In addition, our results show that calcitriol could still be safely administered to osteosarcoma patients for its original purposes, including treatment of osteoporosis. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity

    OpenAIRE

    Griffin, Diane E.

    2016-01-01

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive vir...

  3. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  4. Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy

    Science.gov (United States)

    Guo, Qiao

    2018-01-01

    Immune checkpoints are cell surface molecules that can fine-tune the immune responses, they are crucial for modulating the duration and amplitude of immune reactions while maintaining self-tolerance in order to minimize autoimmune responses. Numerous studies have demonstrated that tumors cells can directly express immune-checkpoint molecules, or induce many inhibitory molecules expression in the tumor microenvironment to inhibit the anti-tumor immunity. Releasing these brakes has emerged as an exciting strategy to cure cancer. In the past few years, clinical trials with therapeutic antibodies targeting to the checkpoint molecules CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. In contrast to the conventional treatment, checkpoint inhibitors induce broad and durable antitumor responses. In the future, treatment may involve combination therapy to target different checkpoint molecules and stages of the adaptive immune responses. In this review, we summarized the recent advances of the study and development of other checkpoint molecules in tumor immunotherapy.

  5. Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery

    Directory of Open Access Journals (Sweden)

    Xavier Chauchet

    2016-01-01

    Full Text Available Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy.

  6. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  7. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  8. FEATURES OF THE IMMUNE RESPONSE DURING VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    G. A. Borisov

    2015-01-01

    Full Text Available The aim of the investigation was to select using cluster analysis and comparatively characterize immune disorders types in acute and chronic viral infections. Patients with acute and chronic viral infections (n = 896 were examined: 77 patients with acute viral hepatitis B, 94 — chronic viral hepatitis B, 119 — chronic hepatitis C, 531 — recurrent herpes, 75 — human papillomavirus infection. Healthy persons (n = 466 were examined as control. The research of blood lymphocyte phenotype was performed by flow cytometry. Four-color immunophenotyping were used in the following panels: Т-lymphocytes (CD3+CD19–CD16/56–CD45+, Т-helpers (CD3+CD4+CD45+, cytotoxic Т-cells (CD3+CD8+CD45+, NKcells (CD3–CD16/56+CD45+, B-lymphocytes (CD3–CD19+CD16/56+CD45+. Absolute values were obtained on a dualplatform technology using the results of haematological analysis. The immunoglobulin concentrations were determined by ELISA. The clustering was performed by a single linkage method. The number of clusters was determined on the basis of calculating the values of the Euclidean distance between the mean group values. It was found that the parameters, characterizing the functional state of the various parts of the immune system in acute and chronic viral infections, considerable diversity values. Custer analysis allows to allocate 6 immunotypes defined different states of innate and adaptive immunity: characterized by activation of the innate (increasing the number of neutrophils and NK-cells and adaptive immunity humoral response (increasing the concentration of IgG, characterized by hyperreaction of adaptive immunity (a significant increase in the concentration of IgG, discoordinated (multidirectional changes in the values of immunological parameters, immunodeficiency and unresponsiveness (did not differ from the control parameters immunotypes. It is proved that in patients with viral infections most often determined by the

  9. Histone Deacetylase Inhibitor AR-42 Enhances E7-Specific CD8+ T Cell-Mediated Antitumor Immunity Induced by Therapeutic HPV DNA Vaccination

    OpenAIRE

    Lee, Sung Yong; Huang, Zhuomin; Kang, Tae Heung; Soong, Ruey-Shyang; Knoff, Jayne; Axenfeld, Ellen; Wang, Chenguang; Alvarez, Ronald D.; Chen, Ching-Shih; Hung, Chien-Fu; Wu, T.-C.

    2013-01-01

    We have previously created a potent DNA vaccine encoding calreticulin linked to the HPV oncogenic protein E7 (CRT/E7). While treatment of the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency of the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi have been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administratio...

  10. Factors influencing secondary vibriocidal immune responses: relevance for understanding immunity to cholera.

    Science.gov (United States)

    Losonsky, G A; Yunyongying, J; Lim, V; Reymann, M; Lim, Y L; Wasserman, S S; Levine, M M

    1996-01-01

    Although serum vibriocidal activity is used extensively as a marker of immunity to O1 Vibrio cholerae, there are limitations in this assay to detect instances of reexposure. We define the conditions operative in producing secondary vibriocidal responses in North American volunteers primed with either wild-type V. cholerae 1, 4, or 6 months later. Secondary serum vibriocidal responses occurred under two distinct secondary challenge conditions. The first occurred when secondary challenge produced a breakthrough in clinical protection. Following secondary exposure, 14 of 22 (64%) and 1 of 29 (3%) subjects with and without vibrio stool excretion, respectively, had secondary responses (P CVD 103-HgR and given homologous wild-type challenge within 4 months mounted a secondary vibriocidal response (P = 0.0009). The majority of the serum vibriocidal activity was of the immunoglobulin M (IgM) isotype, seen in 96 and 73% of subjects following primary and secondary exposure, respectively. Vibriocidal activity in the IgG fraction following primary and secondary exposures occurred with LPS)-specific IgG1 and IgG3 subclass responses supported the vibriocidal isotype data. However, following primary exposure, IgG4 LPS responses predominated, occurring in 81% of responding volunteers. These data suggest that, under certain conditions of secondary exposure to V. cholerae O1 antigens, when there is sufficient active local immunity present, there is a block of vibrio antigen resampling at the M cell level. We discuss the implications of and possible explanations for these findings.

  11. An overview of HCV molecular biology, replication and immune responses

    Directory of Open Access Journals (Sweden)

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  12. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cells...... in peripheral blood of healthy volunteers and cancer patients. These immune responses were directed against a HLA-A2-restricted peptide epitope derived from Foxp3. Foxp3-reactive T cells were characterized as cytotoxic CD8+ T cells. These cells recognized dendritic cells incubated with recombinant Foxp3 protein...... indicating that this protein was indeed internalized, processed and cross-presented in the context of HLA-A2. More importantly, however, Foxp3-specific T cells were able to specifically recognize Tregs. Similarly, Foxp3+ malignant T cells established from a Cutaneous T-cell lymphomas (CTCL) patient were...

  13. Immune responses in humans after 60 days of confinement

    Science.gov (United States)

    Schmitt, D. A.; Peres, C.; Sonnenfeld, G.; Tkackzuk, J.; Arquier, M.; Mauco, G.; Ohayon, E.

    1995-01-01

    A confinement experiment in a normobaric diving chambe