WorldWideScience

Sample records for antisense oligonucleotides enhances

  1. Thiolated polycarbophil as an adjuvant for permeation enhancement in nasal delivery of antisense oligonucleotides.

    Science.gov (United States)

    Vetter, A; Martien, R; Bernkop-Schnürch, A

    2010-03-01

    The purpose of this study was to investigate the effect of thiolated polycarbophil as an adjuvant to enhance the permeation and improve the stability of a phosphorothioate antisense oligonucleotide (PTO-ODN) on the nasal mucosa. Polycarbophil-cysteine (PCP-Cys) was synthesized by the covalent attachment of L-cysteine to the polymeric backbone. Cytotoxicity tests were examined on human nasal epithelial cells from surgery of nasal polyps confirmed by histological studies. Deoxyribonuclease I activity in respiratory region of the porcine nasal cavity was analyzed by an enzymatic assay. The enzymatic degradation of PTO-ODNs on freshly excised porcine nasal mucosa was analyzed and protection of PCP-cysteine toward DNase I degradation was evaluated. Permeation studies were performed in Ussing-type diffusion chambers. PCP-Cys/GSH did not arise a remarkable mortal effect. Porcine respiratory mucosa was shown to possess nuclease activity corresponding to 0.69 Kunitz units/mL. PTO-ODNs were degraded by incubation with nasal mucosa. In the presence of 0.45% thiolated polycarbophil and 0.5% glutathione (GSH), this degradation process could be lowered. In the presence of thiolated polycarbophil and GSH the uptake of PTO-ODNs from the nasal mucosa was 1.7-fold improved. According to these results thiolated polycarbophil/GSH might be a promising excipient for nasal administration of PTO-ODNs.

  2. Chemosensitization by antisense oligonucleotides targeting MDM2.

    Science.gov (United States)

    Bianco, Roberto; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-02-01

    The MDM2 oncogene is overexpressed in many human cancers, including sarcomas, certain hematologic malignancies, and breast, colon and prostate cancers. The p53-MDM2 interaction pathway has been suggested as a novel target for cancer therapy. To that end, several strategies have been explored, including the use of small polypeptides targeted to the MDM2-p53 binding domain, anti-MDM2 antisense oligonucleotides, and natural agents. Different generations of anti-human-MDM2 oligonucleotides have been tested in in vitro and in vivo human cancer models, revealing specific inhibition of MDM2 expression and significant antitumor activity. Use of antisense oligos potentiated the effects of growth inhibition, p53 activation and p21 induction by several chemotherapeutic agents. Increased therapeutic effectiveness of chemotherapeutic drugs in human cancer cell lines carrying p53 mutations or deletions have shown the ability of MDM2 inhibitors to act as chemosensitizers in various types of tumors through both p53-dependent and p53-independent mechanisms. Inhibiting MDM2 appears to also have a role in radiation therapy for human cancer, regardless of p53 status, providing a rationale for the development of a new class of radiosensitizers. Moreover, MDM2 antisense oligonucleotides potentiate the effect of epidermal growth factor receptor (EGFR) inhibitors by affecting in vitro and in vivo proliferation, apoptosis and protein expression in hormone-refractory and hormone-dependent human prostate cancer cells. These data support the development, among other MDM2 inhibitors, of anti-MDM2 antisense oligonucleotides as a novel class of anticancer agents, and suggest a potentially relevant role for the oligonucleotides when integrated with conventional treatments and/or other signaling inhibitors in novel therapeutic strategies.

  3. Antisense oligonucleotides in therapy for neurodegenerative disorders.

    Science.gov (United States)

    Evers, Melvin M; Toonen, Lodewijk J A; van Roon-Mom, Willeke M C

    2015-06-29

    Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.

  4. Antisense oligonucleotide induction of progerin in human myogenic cells.

    Directory of Open Access Journals (Sweden)

    Yue-Bei Luo

    Full Text Available We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene (LMNA transcript in human myogenic cells. The progerin transcript (LMNA Δ150 lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS. HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2'-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model

  5. Conjugation of mono and di-GalNAc sugars enhances the potency of antisense oligonucleotides via ASGR mediated delivery to hepatocytes.

    Science.gov (United States)

    Kinberger, Garth A; Prakash, Thazha P; Yu, Jinghua; Vasquez, Guillermo; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Murray, Heather M; Gaus, Hans; Swayze, Eric E; Seth, Punit P

    2016-08-01

    Antisense oligonucleotides (ASOs) conjugated to trivalent GalNAc ligands show 10-fold enhanced potency for suppressing gene targets expressed in hepatocytes. Trivalent GalNAc is a high affinity ligand for the asialoglycoprotein receptor (ASGR)-a C-type lectin expressed almost exclusively on hepatocytes in the liver. In this communication, we show that conjugation of two and even one GalNAc sugar to single stranded chemically modified ASOs can enhance potency 5-10 fold in mice. Evaluation of the mono- and di-GalNAc ASO conjugates in an ASGR binding assay suggested that chemical features of the ASO enhance binding to the receptor and provide a rationale for the enhanced potency.

  6. A locked nucleic acid antisense oligonucleotide (LNA silences PCSK9 and enhances LDLR expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Nidhi Gupta

    Full Text Available BACKGROUND: The proprotein convertase subtilisin/kexin type 9 (PCSK9 is an important factor in the etiology of familial hypercholesterolemia (FH and is also an attractive therapeutic target to reduce low density lipoprotein (LDL cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol. METHODOLOGY/PRINCIPAL FINDINGS: The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA antisense oligonucleotide (LNA ASO that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT levels revealed that long term LNA ASO treatment (7 weeks does not cause hepatotoxicity. CONCLUSION/SIGNIFICANCE: LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic

  7. Respirable antisense oligonucleotides: a new drug class for respiratory disease

    Directory of Open Access Journals (Sweden)

    Tanaka Makoto

    2000-12-01

    Full Text Available Abstract Respirable antisense oligonucleotides (RASONs, which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.

  8. Targeting several CAG expansion diseases by a single antisense oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Melvin M Evers

    Full Text Available To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2'-O-methyl phosphorothioate (CUGn triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG(7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well.

  9. Advancements of antisense oligonucleotides in treatment of breast cancer

    Institute of Scientific and Technical Information of China (English)

    YANGShuan-Ping; SONGSan-Tai; 等

    2003-01-01

    Breast cancer is one kind of multi-gene related malignancy.Overexpression of some oncogenes such as HER-2(c-erbB-2,Neu),bcl-2/bcl-xL,protein kinase A(PKA),and transferrin receptor gene(TfR gene),etc significantly affect the prognosis of breast cancer.It was shown that specific suppression of the overexpressed genes above resulted in the improvement of the therapy of breast cancer.Antisense interference.one of useful tools for inhibiting the overexpression of specific oncogenes,was involved in the therapy of breast cancer in recent years. Data indicated that antisense oligonucleotides(ON)could inhibit specially the expression of the target genes on mRNA or protein levels in most of cases;some ON candidates showed encouraging therapeutic effects in vitro and in vivo on breast cancer cell lines or xenografts.Furthermore,the combination use of the antisense ON and normal chemotherapeutic agents indicated synergistic antitumor effects,which was probably the best utilization of antisense ON in the treatment of breast cancer.

  10. Splice-switching antisense oligonucleotides as therapeutic drugs

    OpenAIRE

    Havens, Mallory A.; Hastings, Michelle L.

    2016-01-01

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipu...

  11. Antisense 2'-Deoxy, 2'-Fluoroarabino Nucleic Acid (2'F-ANA) Oligonucleotides: In Vitro Gymnotic Silencers of Gene Expression Whose Potency Is Enhanced by Fatty Acids.

    Science.gov (United States)

    Souleimanian, Naira; Deleavey, Glen F; Soifer, Harris; Wang, Sijian; Tiemann, Katrin; Damha, Masad J; Stein, Cy A

    2012-01-01

    Gymnosis is the process of the delivery of antisense oligodeoxynucleotides to cells, in the absence of any carriers or conjugation, that produces sequence-specific gene silencing. While gymnosis was originally demonstrated using locked nucleic acid (LNA) gapmers, 2'-deoxy-2'fluoroarabino nucleic acid (2'F-ANA) phosphorothioate gapmer oligonucleotides (oligos) when targeted to the Bcl-2 and androgen receptor (AR) mRNAs in multiple cell lines in tissue culture, are approximately as effective at silencing of Bcl-2 expression as the iso-sequential LNA congeners. In LNCaP prostate cancer cells, gymnotic silencing of the AR by a 2'F-ANA phosphorothioate gapmer oligo led to downstream silencing of cellular prostate-specific antigen (PSA) expression even in the presence of the androgenic steroid R1881 (metribolone), which stabilizes cytoplasmic levels of the AR. Furthermore, gymnotic silencing occurs in the absence of serum, and silencing by both LNA and 2'F-ANA oligos is augmented in serum-free (SF) media in some cell lines when they are treated with oleic acid and a variety of ω-6 polyunsaturated fatty acids (ω-6 PUFAs), but not by an aliphatic (palmitic) fatty acid. These results significantly expand our understanding of and ability to successfully manipulate the cellular delivery of single-stranded oligos in vitro.

  12. Antisense oligonucleotide targeting midkine suppresses in vivo angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Xiang Wang; Xing Yao; Yong-Liang Lu; Jin-Liang Ping; Jian-Fang He

    2007-01-01

    AIM: To evaluate the effect of antisense oligonucleotide targeting midkine (MK-AS) on angiogenesis in chick chorioallantoic membrane (CAM) andin situ human hepatocellular carcinoma (HCC).METHODS: An in situ human hepatocellular carcinoma (HCC) model and CAM assay were used in this experiment. The effect of MK-AS on angiogenesis was evaluated by cell proliferation assay and hematoxylineosin (HE) staining.RESULTS: MK-AS significantly inhibited human umbilical vein endothelial cells (HUVEC) and in situ human HCC growth. At the same time, MK-AS suppressed the angiogenesis both in human hepatocellular carcinoma cell line (HEPG2)-induced CAM and in situ human HCC tissues.CONCLUSION: MK-AS is an effective antiangiogenesis agent in vivo.

  13. Lipid-Albumin Nanoparticles (LAN) for Therapeutic Delivery of Antisense Oligonucleotide against HIF-1α.

    Science.gov (United States)

    Li, Hong; Quan, Jishan; Zhang, Mengzi; Yung, Bryant C; Cheng, Xinwei; Liu, Yang; Lee, Young B; Ahn, Chang-Ho; Kim, Deog Joong; Lee, Robert J

    2016-07-01

    Lipid-albumin nanoparticles (LAN) were synthesized for delivery of RX-0047, an antisense oligonucleotide (ASO) against the hypoxia inducible factor-1 alpha (HIF-1α) to solid tumor. These lipid nanoparticles (LNs) incorporated a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate, which is cationic and can form electrostatic complexes with negatively charged oligonucleotides. The delivery efficiency of LAN-RX-0047 was investigated in KB cells and a KB murine xenograft model. When KB cells were treated with LAN-RX-0047, significant HIF-1α downregulation and enhanced cellular uptake were observed compared to LN-RX-0047. LN-RX-0047 and LAN-RX-0047 showed similar cytotoxicity against KB cells with IC50 values of 19.3 ± 3.8 and 20.1 ± 4.2 μM, respectively. LAN-RX-0047 was shown to be taken up by the cells via the macropinocytosis and caveolae-mediated endocytosis pathways while LN-RX-0047 was taken up by cells via caveolae-mediated endocytosis. In the KB xenograft tumor model, LAN-RX-0047 exhibited tumor suppressive activity and significantly reduced intratumoral HIF-1α expression compared to LN-RX-0047. Furthermore, LAN-RX-0047 greatly increased survival time of mice bearing KB-1 xenograft tumors at doses of either 3 mg/kg or 16 mg/kg. These results indicated that LAN-RX-0047 is a highly effective vehicle for therapeutic delivery of antisense agents to tumor.

  14. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    Science.gov (United States)

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing.

  15. Profiled support vector machines for antisense oligonucleotide efficacy prediction

    Directory of Open Access Journals (Sweden)

    Martín-Guerrero José D

    2004-09-01

    Full Text Available Abstract Background This paper presents the use of Support Vector Machines (SVMs for prediction and analysis of antisense oligonucleotide (AO efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1 feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE, and (2 AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions. Results In the first stage, the SVM-RFE technique was most efficient and robust in the presence of low number of samples and high input space dimension. This method yielded an optimal subset of 14 representative features, which were all related to energy and sequence motifs. The second stage evaluated the performance of the predictors (overall correlation coefficient between observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE using 8-fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r = 0.44, ME = 0.022, and RMSE= 0.278 and predicted high (>75% inhibition of gene expression and low efficacy (http://aosvm.cgb.ki.se/. Conclusions The SVM approach is well suited to the AO prediction problem, and yields a prediction accuracy superior to previous methods. The profiled SVM was found to perform better than the standard SVM, suggesting that it could lead to improvements in other prediction problems as well.

  16. Poly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice

    OpenAIRE

    Wang, Mingxing; Wu, Bo; Tucker, Jason D; Bollinger, Lauren E; Lu, Peijuan; Lu, Qilong

    2016-01-01

    A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2′-O-methyl phosphorothioate RNA (2′-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was f...

  17. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    Science.gov (United States)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  18. Delivery of antisense oligonucleotide to the cornea by iontophoresis.

    Science.gov (United States)

    Berdugo, M; Valamanesh, F; Andrieu, C; Klein, C; Benezra, D; Courtois, Y; Behar-Cohen, F

    2003-04-01

    We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the

  19. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  20. Obstructive Effects of Ultrasonic Microbubble Intensifier on CHG-5 Cell with Survivin Antisense Oligonucleotides Transfection

    Institute of Scientific and Technical Information of China (English)

    CAO Hong-ying; CAO You-de; WANG Zhi-gang; LI Pan

    2008-01-01

    Objective:To study the effects on human glioma cell line CHG-5 by ultrasonic microbubble intensifier with survivin antisense oligonucleotides (ASODN)transfection. Methods: Antisense oligonucleotides targeting survivin mRNA was designed and synthesized.Four regimen groups were designed,group A:survivin antisense oligonucleotides transfected with ultrasonic microbubble intensifier combined with ultrasound irradiation,group B: survivin antisense oligonucleotides transfected with lipofectamine combined with ultrasound irradiation,group C:survivin antisense oligonucelotides with lipofectamine transfection.group D:blank control.The expression changes of surviving protein were measured by immunohistochemical staining and Western blotting,and MTr assay was used to measure the changes of proliferation.Results:Survivin protein expression in group A was decreased significantly in human glioma cell line CHG-5 than other groups(P<0.05),and the proliferating rate of CHG-5 in group A was also significantly inhibited(P<0.05).Conclusion:Ultrasonic microbubble intensifier transfection combined with ultrasound irradiation is a promising method in gene transfection effectively and noninvasively.

  1. Refinement of antisense oligonucleotide mediated exon skipping as therapy for Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Heemskerk, Johannes Antonius

    2011-01-01

    In recent years, modulation of mRNA has emerged as a promising therapeutic tool. For instance, in the field of neuromuscular disorders therapeutic strategies are being developed for several diseases, including antisense oligonucleotide (AON) mediated exon skipping for Duchenne Muscular Dystrophy (DM

  2. Effect of CD44 Suppression by Antisense Oligonucleotide on Attachment of Human Trabecular Meshwork Cells to HA

    Institute of Scientific and Technical Information of China (English)

    李中国; 张虹

    2004-01-01

    The effects of suppression of CD44 by CD44-specific antisense oligonucleotide on attachment of human trabecular meshwork cells to hyaluronic acid (HA) were observed and the possible relationship between CD44 and primary open-angle glaucoma (POAG) investigated. CD44-specific antisense oligonucleotide was delivered with cationic lipid to cultured human trabecular meshwork cells. The expression of CD44 suppressed by CD44-specific antisense oligonucleotide was detected by RT-PCR and Western blotting. The effect of CD44 suppression by specific antisense oligonucleotide on attachment of trabecular meshwork cells to HA was measured by MTT assay. Results showed that expression of CD44 was suppressed by CD4, specific antisense oligonucleotide. Antisense oligonucleotide also suppressed the adhesion of human trabecular meshwork cells to HA in a concentration dependent manner. It was concluded that attachment of human trabecular meshwork cells to HA was decreased when CD44 was suppressed by specific antisense oligonucleotide. CD44might play a role in pathogenesis of POAG by affecting the adhesion of trabecular meshwork cells to HA.

  3. THE EFFECT OF ANTISENSE OLIGONUCLEOTIDE ON THE INTERLEUKIN-5 IN THE SUPERNATANTS OF SPLEEN CELL CULTURES OF ASTHMATIC MICE

    Institute of Scientific and Technical Information of China (English)

    王美琴; 白春学; 钮善福; 方晓惠; 陈常庆; 陈波

    2001-01-01

    To explore the effect of antisense oligonucleotide on the production of IL-5 by mouse spleen T lymphocytes.Methods Based on the IL-5 cDNA sequence of mouse, a segment of antisense oligonucleotide was designed and synthesized. 5’-labeling of antisense oligonucleotide was signed by T4 PNK in order that the efficiency of stearylamine liposome in transfecting antisense oligonucleotide can be evaluated. Asthma model was duplicated with ovalbumin(OVA) absorbed to aluminum hydroxide. T lymphocytes of mice were separated by nylon fiber method, then T lymphocytes transfected with different concentration of antisense oligonucleotide with cation stearylamine liposme were incubated respectively in order to observe the effect of antisense oligonucleotide on Il-5 production by T lymphocytes. IL-5 levels in the supernatants of T lymphocyte cultures were determined by ELISA.Results Stearylamine liposome could markedly increase the efficiency of antisense oligonucleotide transfection. The transfection efficiency of antisense oligouncleotide increased approximately 12 times at a ratio of 1: 15m/m (antisense oligonucleotide to SA liposome). In healthy and asthma Balb/c mice, IL-5 was not detectable in the supernatants of T lymphocyte cultures without stimulated with OVA; however, IL-5 was increased markedly in the supernatants of T lymphocyte cultures stimulated with OVA. After transfection with different concentrations of antisense oligonucleotide, IL-5 levels in the supernatants of T lymphocyte cultures were significantly lower than those in control cultured without antisense oligonucleotide transfection. IL-5 levels decreased from 44.60±6.23 pg/ml to 30.70±7.362 pg/ml, 17.20±6.181 pg/ml and 8.16±2.34 pg/ml respectively. And IL-5 synthesis was inhibited by 31.17%, 61.43% and 81.7% respectively.Conclusion IL-5 synthesis could be obviously inhibited by antisense oligonucleotide and showed a markedly correlation between dose and effectiveness. It suggests the production

  4. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas.

    Science.gov (United States)

    Caruso, Gerardo; Caffo, Mariella; Raudino, Giuseppe; Alafaci, Concetta; Salpietro, Francesco M; Tomasello, Francesco

    2010-01-01

    Despite the intensive recent research in cancer therapy, the prognosis in patients affected by high-grade gliomas is still very unfavorable. The efficacy of classical anti-cancer strategies is seriously limited by lack of specific therapies against malignant cells. The extracellular matrix plays a pivotal role in processes such as differentiation, apoptosis, and migration in both the normal and the pathologic nervous system. Glial tumors seem to be able to create a favorable environment for the invasion of glioma cells in cerebral parenchyma when they combine with the extracellular matrix via cell surface receptors. Glioma cells synthesize matrix proteins, such as tenascin, laminin, fibronectin that facilitate the tumor cell's motility. New treatments have shown to hit the acting molecules in the tumor growth and to increase the efficacy and minimize the toxicity. Antisense oligonucleotides are synthetic stretches of DNA which hybridize with specific mRNA strands. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review we will focus on the mechanisms of action of antisense oligonucleotides and report clinical and experimental studies on the treatment of high-grade gliomas. We will also report the patents of preclinical and/or clinical studies that adopt the antisense oligonucleotide therapy list in cerebral gliomas.

  5. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    Science.gov (United States)

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  6. Effect of antisense oligonucleotides targeting telomerase catalytic subunit on tumor cell proliferationin vitro

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To screen specific antitumor drugs targeting telomerase catalytic subunit (hEST2), 12 different hEST2 antisense oligonucleotides were designed based on hEST2 mRNA second structure and transfected into tumor cell lines by the lipofectin-mediated method. Cell growth activity was evaluated by MTT assay. hEST212 was picked out and its specificity, antitumor tree and continuous effect were analyzed. The results showed that hEST212 had promising antitumor activity in vitro, hEST2 can be used as a pratical target and an antisense drug candidate for cancer.

  7. THERAPEUTIC ANTISENSE OLIGONUCLEOTIDES AGAINST CANCER: HURDLING TO THE CLINIC

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Duarte Moreno

    2014-10-01

    Full Text Available Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen, oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  8. Purification of noncoding RNA and bound proteins using FLAG peptide-conjugated antisense-oligonucleotides.

    Science.gov (United States)

    Adachi, Shungo; Natsume, Tohru

    2015-01-01

    To understand the function of certain RNAs, including noncoding RNAs, it is important to identify the proteins that interact with the RNAs. Here we describe the method for purification of ribonucleoprotein (RNP) complexes composed of specific cellular RNAs by pull-down with FLAG peptide-conjugated antisense oligonucleotide (ASO). Using this method, we identified a novel protein component of U7 snRNP complex.

  9. Delivering Antisense Morpholino Oligonucleotides to Target Telomerase Splice Variants in Human Embryonic Stem Cells.

    Science.gov (United States)

    Radan, Lida; Hughes, Chris S; Teichroeb, Jonathan H; Postovit, Lynne-Marie; Betts, Dean H

    2016-01-01

    Morpholino oligonucleotides (MO) are an innovative tool that provides a means for examining and modifying gene expression outcomes by antisense interaction with targeted RNA transcripts. The site-specific nature of their binding facilitates focused modulation to alter splice variant expression patterns. Here we describe the steric-blocking of human telomerase reverse transcriptase (hTERT) Δα and Δβ splice variants using MO to examine cellular outcomes related to pluripotency and differentiation in human embryonic stem cells.

  10. Cross-protective effect of antisense oligonucleotide developed against the common 3' NCR of influenza A virus genome.

    Science.gov (United States)

    Kumar, Prashant; Kumar, Binod; Rajput, Roopali; Saxena, Latika; Banerjea, Akhil C; Khanna, Madhu

    2013-11-01

    The influenza A virus (IAV) has eight segmented single-stranded RNA genome containing a common and evolutionarily conserved non-coding region (NCRs) at 5' and 3' ends that are important for the virus replication. In this study, we designed an antisense oligonucleotide against the 3' NCR of vital segments of the IAV genome to inhibit its replication. The results demonstrated that the co-transfection of Madine Darby Canine Kidney (MDCK) cells with the antisense oligonucleotide and the plasmids encoding the viral genes led to the down-regulation of the viral gene expression. The designed antisense molecules reduced the cytopathic effect caused by A/PR/8/34 (H1N1), A/Udorn/307/72 (H3N2), and A/New Caledonia/20/99 (H1N1) strains of IAV for almost 48 h. Furthermore, the intra-venous delivery of this oligonucleotide significantly reduced the viral titers in the lungs of infected mice and protected the mice from lethal effects of all the strains of influenza virus. The study demonstrated that the antisense oligonucleotide designed against the NCR region inhibits the expression of the viral genome. The decrease of the cytopathic effect in the MDCK cells and increase in survival of mice confirmed the reduction of virus multiplication and pathogenesis in the presence of antisense oligonucleotide. Thus, we demonstrate that a single antisense oligonucleotide is capable of providing protection against more than one strains of the IAV.

  11. Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhao; Wen-Lu Shen

    2005-01-01

    AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer cell line SGC-7901, and its potential role in gene therapy for this cancer.METHODS: Human gastric cancer cell line SGC-7901 was treated in vitro with various concentrations of antisense HSP70 oligonucleotides at different intervals. Growth inhibition was determined as percentage by trypan blue dye exclusion test. Extracted DNA was electrophoresed on agarose gel, and distribution of cell cycle and kinetics of apoptosis induction were analyzed by propidium iodide DNA incorporation using flow cytometry, which was also used to detect the effects of antisense oligomer pretreatment on the subsequent apoptosis induced by heat shock in SGC-7901 cells. Proteins were extracted for simultaneous measurement of HSP70 expression level by SDS-PAGE Western blotting.RESULTS: The number of viable cells decreased in a doseand time-dependent manner, and ladder-like patterns of DNA fragments were observed in SGC-7901 cells treated with antisense HSP70 oligomers at a concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h, which were consistent with inter-nucleosomal DNA fragmentation. Flow cytometric analysis showed a dose- and time-dependent increase in apoptotic rate by HSP70 antisense oligomers. This response was accompanied with a decrease in the percentage of cells in the G1 and S phases of the cell cycle, suggesting inhibition of cell proliferation. In addition, flow cytometry also showed that pretreatment of SGC-7901 cells with HSP70 antisense oligomers enhanced the subsequent apoptosis induced by heat shock treatment. Western blotting demonstrated that HSP70 antisense oligomers inhibited HSP70 expression, which preceded apoptosis, and HSP70 was undetectable at the concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h.CONCLUSION: Antisense HSP70 oligomers

  12. Dynamics of human telomerase RNA structure revealed by antisense oligonucleotide technique.

    Science.gov (United States)

    Vasilkova, Daria V; Azhibek, Dulat M; Zatsepin, Timofei S; Naraikina, Yulia V; Prassolov, Vladimir S; Prokofjeva, Maria M; Zvereva, Maria I; Rubtsova, Maria P

    2013-12-01

    Telomeres are the nucleoprotein complexes that cap the linear chromosome ends. Telomerase is a ribonucleoprotein that maintains telomere length in stem, embryonic and cancer cells. Somatic cells don't contain active telomerase and telomere function as mitotic clock and telomere length determines the number of cell divisions. Telomerase RNA (TER) contains the template for telomere synthesis and serves as a structural scaffold for holoenzyme assembly. We compared different oligonucleotide based methods for telomerase RNA inhibition, such as antisense oligonucleotides, knockdown by transient siRNA transfection and silencing by miRNA derived from short expressed RNA hairpin in HEK293 cells. All of these methods were applied to different TER regions. Our results revealed that CR2/CR3 domain of TER is accessible in vitro and in vivo and could serve as an optimal site for oligonucleotide-based telomerase silencing.

  13. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  14. Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases.

    Science.gov (United States)

    Riboldi, Giulietta; Zanetta, Chiara; Ranieri, Michela; Nizzardo, Monica; Simone, Chiara; Magri, Francesca; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-12-01

    Motor neuron disorders, and particularly amyotrophic lateral sclerosis (ALS), are fatal diseases that are due to the loss of motor neurons in the brain and spinal cord, with progressive paralysis and premature death. It has been recently shown that the most frequent genetic cause of ALS, frontotemporal dementia (FTD), and other neurological diseases is the expansion of a hexanucleotide repeat (GGGGCC) in the non-coding region of the C9ORF72 gene. The pathogenic mechanisms that produce cell death in the presence of this expansion are still unclear. One of the most likely hypotheses seems to be the gain-of-function that is achieved through the production of toxic RNA (able to sequester RNA-binding protein) and/or toxic proteins. In recent works, different authors have reported that antisense oligonucleotides complementary to the C9ORF72 RNA transcript sequence were able to significantly reduce RNA foci generated by the expanded RNA, in affected cells. Here, we summarize the recent findings that support the idea that the buildup of "toxic" RNA containing the GGGGCC repeat contributes to the death of motor neurons in ALS and also suggest that the use of antisense oligonucleotides targeting this transcript is a promising strategy for treating ALS/frontotemporal lobe dementia (FTLD) patients with the C9ORF72 repeat expansion. These data are particularly important, given the state of the art antisense technology, and they allow researchers to believe that a clinical application of these discoveries will be possible soon.

  15. Efficient inhibition of human telomerase activity by antisense oligonucleotides sensitizes cancer cells to radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Xue-mei JI; Cong-hua XIE; Ming-hao FANG; Fu-xiang ZHOU; Wen-jie ZHANG; Ming-sheng ZHANG; Yun-feng ZHOU

    2006-01-01

    Aim: To investigate the effect of the antisense oligonucleotides (ASODN) specific for human telomerase RNA (hTR) on radio sensitization and proliferation inhibition in human neurogliocytoma cells (U251). Methods: U251 cells were transfected with hTR ASODN or nonspecific oligonucleotides (NSODN). Before and after irradiation of 60Co-γray, telomerase activity was assayed by telomeric repeat amplification protocol (TRAP-PCR-ELISA), and DNA damage and repair were examined by the comet assay. The classical colony assay was used to plot the cell-survival curve, to detect the D0 value. Results: hTR antisense oligonucleotides could downregulate the telomerase activity, increase radiation induced DNA damage and reduce the subsequent repair. Furthermore, it could inhibit the proliferation and decrease the D0 value which demonstrates rising radiosensitivity. However, telomere length was unchanged over a short period of time. Conclusion: These findings suggest that an ASODN-based strategy may be used to develop telomerase inhibitors, which can efficiently sensitize radiotherapy.

  16. Antisense oligonucleotide to insulin—like growth factor Ⅱ induces apotosis in human ovarian cancer AO cell line

    Institute of Scientific and Technical Information of China (English)

    YINDELING; LUPU; 等

    1998-01-01

    The effects of antisense oligonucleotide to insulin0like growth factor -Ⅱ(IGFⅡ)to induce apotosis in human ovarian cancer cells were evaluated.Antiproliferation effects of antisense to IGFⅡin ovarian cancer AO cells were determined by 3H-thymidine incorporation.Apoptosis of the IGFⅡ antisense-treated cells was quantitated by both nuclear condensation and flow cytometry after cells were stained with propidium iodide,IGFⅡ antisense(4.5μM) treatment of 48h maximally inhibited proliferation of AO cells,More than 25% of IGFⅡantisense-treated cells(4.5μM for 24h) had undergone apoptosis,whereas less than 3% of the cells were apoptotic in either IGFⅡ sense-treated cells or untreated cells.Antisense oligonucleotide to IGFⅡ significantly inhibited cell proliferation and induced apoptosis in human ovarian cancer AO cell.These data suggest that IGFII may be a potential target in treatment of ovarian cancer and antisense oligonucleotide to IGFⅡ may serve as a therapeutic approach.

  17. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models

    OpenAIRE

    Osman, Erkan Y.; Miller, Madeline R.; Robbins, Kate L.; Lombardi, Abby M.; Atkinson, Arleigh K.; Brehm, Amanda J.; Lorson, Christian L.

    2014-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of Survival Motor Neuron-1 (SMN1). In all SMA patients, a nearly identical copy gene called SMN2 is present, which produces low levels of functional protein owing to an alternative splicing event. To prevent exon-skipping, we have targeted an intronic repressor, Element1 (E1), located upstream of SMN2 exon 7 using Morpholino-based antisense oligonucleotides (E1MO-ASOs). A single intracerebroventricular injection i...

  18. Synthesis of antisense oligonucleotides containing acyclic alkynyl nucleoside analogs and their biophysical and biological properties.

    Science.gov (United States)

    Ogata, Aya; Maeda, Yusuke; Ueno, Yoshihito

    2017-02-17

    The synthesis of oligonucleotide (ON) analogs, which can be used as antisense molecules, has recently gained much attention. Here, we report the synthesis and properties of an ON analog containing acyclic thymidine and cytidine analogs with a 4-pentyl-1,2-diol instead of the d-ribofuranose moiety. The incorporation of these analogs into the ON improved its nuclease resistance to 3'-exonucleases. Furthermore, it was found that the incorporation of the acyclic thymidine analog into a DNA/RNA duplex accelerates the RNA cleavage of a DNA/RNA duplex by Escherichia coli RNase H.

  19. Efficient Synthesis and Biological Evaluation of 5'-GalNAc Conjugated Antisense Oligonucleotides.

    Science.gov (United States)

    Østergaard, Michael E; Yu, Jinghua; Kinberger, Garth A; Wan, W Brad; Migawa, Michael T; Vasquez, Guillermo; Schmidt, Karsten; Gaus, Hans J; Murray, Heather M; Low, Audrey; Swayze, Eric E; Prakash, Thazha P; Seth, Punit P

    2015-08-19

    Conjugation of triantennary N-acetyl galactosamine (GalNAc) to oligonucleotide therapeutics results in marked improvement in potency for reducing gene targets expressed in hepatocytes. In this report we describe a robust and efficient solution-phase conjugation strategy to attach triantennary GalNAc clusters (mol. wt. ∼2000) activated as PFP (pentafluorophenyl) esters onto 5'-hexylamino modified antisense oligonucleotides (5'-HA ASOs, mol. wt. ∼8000 Da). The conjugation reaction is efficient and was used to prepare GalNAc conjugated ASOs from milligram to multigram scale. The solution phase method avoids loading of GalNAc clusters onto solid-support for automated synthesis and will facilitate evaluation of GalNAc clusters for structure activity relationship (SAR) studies. Furthermore, we show that transfer of the GalNAc cluster from the 3'-end of an ASO to the 5'-end results in improved potency in cells and animals.

  20. Superior Silencing by 2′,4′-BNANC-Based Short Antisense Oligonucleotides Compared to 2′,4′-BNA/LNA-Based Apolipoprotein B Antisense Inhibitors

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yamamoto

    2012-01-01

    Full Text Available The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue, 2′,4′-BNANC antisense oligonucleotides (AONs ranging from 10- to 20-nt-long, targeted apolipoprotein B. 2′,4′-BNANC was directly compared to its conventional bridged (or locked nucleic acid (2′,4′-BNA/LNA-based counterparts. Melting temperatures of duplexes formed between 2′,4′-BNANC-based antisense oligonucleotides and the target mRNA surpassed those of 2′,4′-BNA/LNA-based counterparts at all lengths. An in vitro transfection study revealed that when compared to the identical length 2′,4′-BNA/LNA-based counterpart, the corresponding 2′,4′-BNANC-based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer oligonucleotides. On the other hand, the 2′,4′-BNANC-based 20-mer AON exhibited the highest affinity but the worst IC50 value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that 2′,4′-BNANC may be a better alternative to conventional 2′,4′-BNA/LNA, even for “short” antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production.

  1. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Fisker, Niels; Hedtjärn, Maj;

    2010-01-01

    the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half......-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated...

  2. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    Science.gov (United States)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  3. Study on Apoptosis-Inducing Effect of XIAP Antisense Oligonucleotides on Glioblastoma Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    Zhongwei Zhao; Zhengchun Sun; Yunhan Zhang; Ming Zhang; Xudong Ma

    2009-01-01

    OBJECTIVE To investigate the apoptosis-inducing effect of XIAP antisense oligonucleotides on glioblastoma cells in vitro.METHODS There were 4 groups in our experiment. Group A,as a cell control group, had normal cell culture and no treatment applied. Group B, as a blank control group, had normal cell culture and no liposome control of ASODN. Group C was N-ODN.Group D was the ASODN group. RT-PCR and Western blot assay were conducted to detect the expression of XIAP in all A-172cell groups after treatment with XIAP antisense oligonucleotides (ASODN). MTT assay and flow-cytometry (FCM) detection were used to detect the ability of cell anchoring growth and apoptotic rates of all groups. The processing time was 72 h.RESULTS The expression of XIAP in the A-172 cells was greatly down-regulated, after treated with XIAP-ASODN. Among different concentrations of ASODN, the 300nM was the most optimal one. The down-regulation of XIAP obviously inhibited the succinate dehydrogenase (SDH) activity of the A-172 cells and the increased apoptotic rate of A-172 cells (87.45%) was significantly higher than that of the A-172 in the control groups. There was a statistically significant difference between the treatment and control groups (P < 0.01).CONCLUSION The XIAP-ASODN can effectively regulate the expression of the XIAP down, as a result, inhibit the growth of the glioblastoma cells (A-172) and obviously increase the apoptotic rate of the A-172 cells. The results of the study manifest an overt killing role of XIAP-ASODN to the glioblastoma cells.

  4. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames.

    Science.gov (United States)

    Liang, Xue-Hai; Shen, Wen; Sun, Hong; Migawa, Michael T; Vickers, Timothy A; Crooke, Stanley T

    2016-08-01

    Increasing the levels of therapeutic proteins in vivo remains challenging. Antisense oligonucleotides (ASOs) are often used to downregulate gene expression or to modify RNA splicing, but antisense technology has not previously been used to directly increase the production of selected proteins. Here we used a class of modified ASOs that bind to mRNA sequences in upstream open reading frames (uORFs) to specifically increase the amounts of protein translated from a downstream primary ORF (pORF). Using ASO treatment, we increased the amount of proteins expressed from four genes by 30-150% in a dose-dependent manner in both human and mouse cells. Notably, systemic treatment of mice with ASO resulted in an ∼80% protein increase of LRPPRC. The ASO-mediated increase in protein expression was sequence-specific, occurred at the level of translation and was dependent on helicase activity. We also found that the type of RNA modification and the position of modified nucleotides in ASOs affected translation of a pORF. ASOs are a useful class of therapeutic agents with broad utility.

  5. In vivo correction of a Menkes disease model using antisense oligonucleotides.

    Science.gov (United States)

    Madsen, Erik C; Morcos, Paul A; Mendelsohn, Bryce A; Gitlin, Jonathan D

    2008-03-11

    Although the molecular basis of many inherited metabolic diseases has been defined, the availability of effective therapies in such disorders remains problematic. Menkes disease is a fatal neurodegenerative disorder due to loss-of-function mutations in the ATP7A gene encoding a copper-transporting P-type Atpase. To develop therapeutic approaches in affected patients, we have identified a zebrafish model of Menkes disease termed calamity that results from splicing defects in the zebrafish orthologue of the ATP7A gene. Embryonic-recessive lethal mutants have impaired copper homeostasis that results in absent melanin pigmentation, impaired notochord formation, and hindbrain neurodegeneration. In this current study, we have attempted to rescue these striking phenotypic alterations by using a series of antisense morpholino oligonucleotides directed against the splice-site junctions of two mutant calamity alleles. Our findings reveal a robust and complete correction of the copper-deficient defects of calamity in association with the generation of the WT Menkes protein in all rescued mutants. Interestingly, a quantitative analysis of atp7a-specific transcripts suggests that competitive translational regulation may account for the synthesis of WT protein in these embryos. This in vivo correction of Menkes disease through the rescue of aberrant splicing may provide therapeutic options in this fatal disease and illustrates the potential for zebrafish models of human genetic disease in the development of treatments based on the principles of interactions of synthetic oligonucleotide analogues with mRNA.

  6. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.

    Science.gov (United States)

    Takeshima, Yasuhiro; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.

  7. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes.

    Science.gov (United States)

    Mitsudome, Yuya; Takahama, Mamiko; Hirose, Jun; Yoshida, Naoto

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on α-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, β-lactamase and β-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring β-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the β-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for

  8. Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3.

    Science.gov (United States)

    Toonen, Lodewijk J A; Schmidt, Iris; Luijsterburg, Martijn S; van Attikum, Haico; van Roon-Mom, Willeke M C

    2016-10-12

    Spinocerebellar ataxia type-3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine repeat expansion in the ataxin-3 protein. Cleavage of mutant ataxin-3 by proteolytic enzymes yields ataxin-3 fragments containing the polyglutamine stretch. These shorter ataxin-3 fragments are thought to be involved in SCA3 pathogenesis due to their increased cellular toxicity and their involvement in formation of the characteristic neuronal aggregates. As a strategy to prevent formation of toxic cleavage fragments, we investigated an antisense oligonucleotide-mediated modification of the ataxin-3 pre-mRNA through exon skipping of exon 8 and 9, resulting in the removal of a central 88 amino acid region of the ataxin-3 protein. This removed protein region contains several predicted cleavage sites and two ubiquitin-interacting motifs. In contrast to unmodified mutant ataxin-3, the internally truncated ataxin-3 protein did not give rise to potentially toxic cleavage fragments when incubated with caspases. In vitro experiments did not show cellular toxicity of the modified ataxin-3 protein. However, the modified protein was incapable of binding poly-ubiquitin chains, which may interfere with its normal deubiquitinating function. Low exon skipping efficiencies combined with reduction in important ataxin-3 protein functions suggest that skipping of exon 8 and 9 is not a viable therapeutic option for SCA3.

  9. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides.

    Science.gov (United States)

    Yamamoto, Tsuyoshi; Sawamura, Motoki; Wada, Fumito; Harada-Shiba, Mariko; Obika, Satoshi

    2016-01-01

    The targeting of abundant hepatic asialoglycoprotein receptors (ASGPR) with trivalent N-acetylgalactosamine (GalNAc) is a reliable strategy for efficiently delivering antisense oligonucleotides (ASOs) to the liver. We here experimentally demonstrate the high systemic potential of the synthetically-accessible, phosphodiester-linked monovalent GalNAc unit when tethered to the 5'-terminus of well-characterised 2',4'-bridged nucleic acid (also known as locked nucleic acid)-modified apolipoprotein B-targeting ASO via a bio-labile linker. Quantitative analysis of the hepatic disposition of the ASOs revealed that phosphodiester is preferable to phosphorothioate as an interunit linkage in terms of ASGPR binding of the GalNAc moiety, as well as the subcellular behavior of the ASO. The flexibility of this monomeric unit was demonstrated by attaching up to 5 GalNAc units in a serial manner and showing that knockdown activity improves as the number of GalNAc units increases. Our study suggests the structural requirements for efficient hepatocellular targeting using monovalent GalNAc and could contribute to a new molecular design for suitably modifying ASO.

  10. A Polyethylenimine-Containing and Transferrin-Conjugated Lipid Nanoparticle System for Antisense Oligonucleotide Delivery to AML

    Directory of Open Access Journals (Sweden)

    Yiming Yuan

    2016-01-01

    Full Text Available Limited success of antisense oligonucleotides (ASO in clinical anticancer therapy calls for more effective delivery carriers. The goal of this study was to develop a nanoparticle system for delivery of ASO G3139, which targets mRNA of antiapoptotic protein Bcl-2, to acute myeloid leukemia (AML cells. The synthesized nanoparticle Tf-LPN-G3139 contained a small molecular weight polyethylenimine and two cationic lipids as condensing agents, with transferrin on its surface for selective binding and enhanced cellular uptake. The optimized nitrogen to phosphate (N/P ratio was 4 to achieve small particle size and high G3139 entrapment efficiency. The Tf-LPN-G3139 exhibited excellent colloidal stability during storage for at least 12 weeks and remained intact for 4 hours in nuclease-containing serum. The cellular uptake results showed extensive internalization of fluorescence-labelled G3139 in MV4-11 cells through Tf-LPN. Following transfection, Tf-LPN-G3139 at 1 µM ASO level induced 54% Bcl-2 downregulation and >20-fold apoptosis compared to no treatment. When evaluated in mice bearing human xenograft AML tumors, Tf-LPN-G3139 suppressed tumor growth by ~60% at the end of treatment period, accompanied by remarkable pharmacological effect of Bcl-2 inhibition in tumor. In conclusion, Tf-LPN-G3139 is a promising nanoparticle system for ASO G3139 delivery to AML and warrants further investigations.

  11. Synthesis and evaluation of a fluorine-18 labeled antisense oligonucleotide as a potential PET tracer for NOS mRNA expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vroegh, J; Dijkstra, G; Moshage, H; Elsinga, PH; Jansen, PLM; Vaalburg, W

    2004-01-01

    Inducible NO synthase (iNOS) is overexpressed in inflammatory bowel diseases. An antisense oligonucleotide with good hybridization properties for iNOS mRNA was selected using RT-PCR. The oligonucleotide was reliably labeled with fluorine-18 using N-(4-[F-18]fluorobenzyl)-2-bromoacetamide. Cellular u

  12. Inhibitory effect of 2 '-o-methoxyethyl-modified antisense oligonucleotides targeting vascular endothelial growth factor A on SKOV3 human ovarian cancer cells

    Institute of Scientific and Technical Information of China (English)

    FU Yi-bing; WEN Ze-qing; ZHAO Xing-bo; YAN Lei; ZHANG Chun-hua; WANG Fei

    2011-01-01

    Background Ovarian cancers are often at an advanced stage at diagnosis because early detection is difficult. The poor prognosis of ovarian cancers highlights the crucial need to develop better therapeutic agents and strategies. The objective of this study was to investigate the inhibitory effects of a new modified antisense oligonucleotides targeting vascular endothelial growth factor A (VEGF-A) in SKOV3 ovarian cancer cells.Methods Antisense oligonucleotides targeting VEGF-A was designed, synthesized and transfected into SKOV3ovarian cancer cells. Western blotting and real-time RT-PCR were used to analyze the inhibitory effects of antisense oligonucleotides on VEGF-A protein and mRNA expression. Transwell matrix assay was used to detect cell migration inhibition.Results The antisense oligonucleotides targeting VEGF-A significantly decreased VEGF-A protein and mRNA expression and inhibited cell migration in SKOV3 ovarian cancer cells.Conclusions This new modified antisense oligonucleotides targeting VEGF-A can decrease VEGF-A expression and inhibit cell migration in SKOV3 ovarian cancer cells. This new oligonucleotides may be a promising therapeutic agent for ovarian cancers.

  13. Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries

    Directory of Open Access Journals (Sweden)

    Fletcher Sue

    2007-07-01

    Full Text Available Abstract Background Antisense oligonucleotides (AOs can interfere with exon recognition and intron removal during pre-mRNA processing, and induce excision of a targeted exon from the mature gene transcript. AOs have been used in vitro and in vivo to redirect dystrophin pre-mRNA processing in human and animal cells. Targeted exon skipping of selected exons in the dystrophin gene transcript can remove nonsense or frame-shifting mutations that would otherwise have lead to Duchenne Muscular Dystrophy, the most common childhood form of muscle wasting. Results Although many dystrophin exons can be excised using a single AO, several exons require two motifs to be masked for efficient or specific exon skipping. Some AOs were inactive when applied individually, yet pronounced exon excision was induced in transfected cells when the AOs were used in select combinations, clearly indicating synergistic rather than cumulative effects on splicing. The necessity for AO cocktails to induce efficient exon removal was observed with 2 different chemistries, 2'-O-methyl modified bases on a phosphorothioate backbone and phosphorodiamidate morpholino oligomers. Similarly, other trends in exon skipping, as a consequence of 2'-O-methyl AO action, such as removal of additional flanking exons or variations in exon skipping efficiency with overlapping AOs, were also seen when the corresponding sequences were prepared as phosphorodiamidate morpholino oligomers. Conclusion The combination of 2 AOs, directed at appropriate motifs in target exons was found to induce very efficient targeted exon skipping during processing of the dystrophin pre-mRNA. This combinatorial effect is clearly synergistic and is not influenced by the chemistry of the AOs used to induce exon excision. A hierarchy in exon skipping efficiency, observed with overlapping AOs composed of 2'-O-methyl modified bases, was also observed when these same sequences were evaluated as phosphorodiamidate morpholino

  14. Antisense oligonucleotide inhibition of hepatitis C virus genotype 4 replication in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Omran Moataza H

    2006-06-01

    Full Text Available Abstract Background Hepatitis C (HCV viral infection is a serious medical problem in Egypt and it has a devastating impact on the Egyptian economy. It is estimated that over 15% of Egyptians are infected by the virus and thus finding a cure for this disease is of utmost importance. Current therapies for hepatitis C virus (HCV genotype 4 with interferon/ribavirin have not been successful and thus the development of alternative therapy for this genotype is disparately needed. Results Although previous studies utilizing viral subgenomic or full cDNA fragments linked to reporter genes transfected into adhered cells or in a cell free system showed promise, demonstration of efficient viral replication was lacking. Thus, we utilized HepG2 cells infected with native HCV RNA genomes in a replication competent system and used antisense phosphorothioate Oligonucleotides (S-ODN against stem loop IIId and the AUG translation start site of the viral polyprotein precursor to monitor viral replication. We were able to show complete arrest of intracellular replication of HCV-4 at 1 uM S-ODN, thus providing a proof of concept for the potential antiviral activity of S-ODN on native genomic replication of HCV genotype 4. Conclusion We have successfully demonstrated that by using two S-ODNs [(S-ODN1 (nt 326–348 and S-ODN-2 (nt 264–282], we were able to completely inhibit viral replication in culture, thus confirming earlier reports on subgenomic constructs and suggesting a potential therapeutic value in HCV type 4.

  15. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Chalermchai Mitrpant

    Full Text Available Spinal muscular atrophy (SMA is caused by loss of the Survival Motor Neuron 1 (SMN1 gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated into an unstable and non-functional protein. Splice intervention therapies to promote exon 7 retention and increase amounts of full-length SMN2 transcript offer great potential as a treatment for SMA patients. Several splice silencing motifs in SMN2 have been identified as potential targets for antisense oligonucleotide mediated splice modification. A strong splice silencer is located downstream of exon 7 in SMN2 intron 7. Antisense oligonucleotides targeting this motif promoted SMN2 exon 7 retention in the mature SMN2 transcripts, with increased SMN expression detected in SMA fibroblasts. We report here systematic optimisation of phosphorodiamidate morpholino oligonucleotides (PMO that promote exon 7 retention to levels that rescued the phenotype in a severe mouse model of SMA after intracerebroventricular delivery. Furthermore, the PMO gives the longest survival reported to date after a single dosing by ICV.

  16. Hybridization of different antisense oligonucleotides on the surface of gold nanoparticles to silence zinc metalloproteinase gene after uptake by Leishmania major.

    Science.gov (United States)

    Jebali, Ali; Anvari-Tafti, Mohammad Hosssein

    2015-05-01

    The use of antisense oligonucleotides is a novel strategy to treat infectious diseases. In this approach, vital mRNAs are targeted by antisense oligonucleotides. The aim of this study was to evaluate the effects of gold nanoparticles hybridized with different antisense oligonucleotides on Leishmania (L) major. In this project, gold nanoparticles were first synthesized, and then conjugated with primary oligonucleotides, 3'-AAA-5'. Next, conjugated gold nanoparticles (NP1) were separately hybridized with three types of antisense oligonucleotide from coding reign of GP63 gene (NP2), non-coding reign of GP63 gene (NP3), and both coding and non-coding reigns of GP63 (NP4). Then, 1mL of L. major suspension was separately added to 1mL of different hybridized gold nanoparticles at serial concentrations (1-200μg/mL), and incubated for 24, 48, and 72h at 37°C. Next, the uptake of each nanoparticle was separately measured by atomic absorption spectroscopy. After incubation, the cell viability was separately evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Also, the expression of GP63 gene was read out by quantitative-real-time PCR. This study showed that NP2 and NP3 had higher (5-fold) uptake than NP1 and NP4. Moreover, NP2 and NP3 led to less cell viability and gene expression, compared with NP1 and NP4. It could be concluded that both sequence and size of antisense oligonucleotide were important for transfection of L. major. Importantly, these antisense oligonucleotides can be obtained from both coding and non-coding reign of GP63 gene. Moreover, hybridized gold nanoparticles not only could silence GP63 gene, but also could kill L. major.

  17. Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB

    Directory of Open Access Journals (Sweden)

    Chew Shern L

    2007-01-01

    Full Text Available Abstract Background Apolipoprotein B (APOB is an integral part of the LDL, VLDL, IDL, Lp(a and chylomicron lipoprotein particles. The APOB pre-mRNA consists of 29 constitutively-spliced exons. APOB exists as two natural isoforms: the full-length APOB100 isoform, assembled into LDL, VLDL, IDL and Lp(a and secreted by the liver in humans; and the C-terminally truncated APOB48, assembled into chylomicrons and secreted by the intestine in humans. Down-regulation of APOB100 is a potential therapy to lower circulating LDL and cholesterol levels. Results We investigated the ability of 2'O-methyl RNA antisense oligonucleotides (ASOs to induce the skipping of exon 27 in endogenous APOB mRNA in HepG2 cells. These ASOs are directed towards the 5' and 3' splice-sites of exon 27, the branch-point sequence (BPS of intron 26–27 and several predicted exonic splicing enhancers within exon 27. ASOs targeting either the 5' or 3' splice-site, in combination with the BPS, are the most effective. The splicing of other alternatively spliced genes are not influenced by these ASOs, suggesting that the effects seen are not due to non-specific changes in alternative splicing. The skip 27 mRNA is translated into a truncated isoform, APOB87SKIP27. Conclusion The induction of APOB87SKIP27 expression in vivo should lead to decreased LDL and cholesterol levels, by analogy to patients with hypobetalipoproteinemia. As intestinal APOB mRNA editing and APOB48 expression rely on sequences within exon 26, exon 27 skipping should not affect APOB48 expression unlike other methods of down-regulating APOB100 expression which also down-regulate APOB48.

  18. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    Institute of Scientific and Technical Information of China (English)

    Nan-Hong Tang; Yan-Ling Chen; Xiao-Qian Wang; Xiu-Jin Li; Feng-Zhi Yin; Xiao-Zhong Wang

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells.METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR,respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment.RESULTS: In comparison with TNF-α inducing group, lipoASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37±1.56% to 14.23±1.07%, P<0.001). Meanwhile,cimetidine alone could inhibit the expression of E-selectin (36.37±1.56% vs 27.2±1.31%, P<0.001), but not ICAM-1 (69.34±2.50% vs68.07±2.10%,P>O.05)and the two kinds of mRNA, either. Compared with TNF-αα inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P<0.05),and Jipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group(P<0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P >0.05).CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion.

  19. Antisense Oligonucleotide Targeting TGF-β1 Abrogates Tumorigenicity of Rhabdomyosarcoma in vivo

    Institute of Scientific and Technical Information of China (English)

    Shouli Wang; Huihua Yao; Lingling Guo; Liang Dong; Shigang Li; Haizhen Deng; Maomin Sun

    2008-01-01

    OBJECTIVE Over-expression of transforming growth factor β1 (TGF-β1) has been observed in many advanced cancers.The present study was aimed at developing potential antisense oligonucleotides (ASONs) to repress TGF-β1 expression in rhabdomyosarcoma (RMS) RD cells, and to examine their effect on tumorigenicity of RD cells in vivo.METHODS ASONs targeting the region surrounding the start codon of TGF-β1 were synthesized and transferred into cells in the form of complexes with Lipofectamine 2000. The TGF-β1 protein was determined by immunofluorescence and ELISA.The cell viability and cell cycle were examined by MTT and flow cytometry. The RD cells, with or without TGF-β1ASON, in 50 μl of serum-free EMDM medium were injected subcutaneously into the right flank of nude mice. The tumors were then measured and weighed.RESULTS The ASON sequence targeting the first start site at bases 841-855 of the human TGF-β1 gene had the greatest effect on attenuating the expression of TGF-β1 (P<0.05). The ASONs induced a decrease in OD values after 6 d (P<0.05). Analysis of the cell cycle revealed that the ASON induced a significant decrease in cells in the S phase and an increase in cells in the G1 phase (P<0.05). In the nude mice model, the mean tumor volume, after 2 weeks of treatment with Lipofectamine or ASON,decreased to 88.5% or 55% respectively, compared to the control tumor size, resulting in a significant difference (P<0.01).CONCLUSION The sequence of the ASON, which targeted the start condon at the bases 841-855 of the human TGF-β1 gene, was demonstrated to be a useful agent for studying the regulation of TGF-β1 over-expression in RD cells, and has important therapeutic potential for suppressing the tumorigenicity of human RMS in vivo.

  20. RNA Interference-Guided Targeting of Hepatitis C Virus Replication with Antisense Locked Nucleic Acid-Based Oligonucleotides Containing 8-oxo-dG Modifications.

    Science.gov (United States)

    Mutso, Margit; Nikonov, Andrei; Pihlak, Arno; Žusinaite, Eva; Viru, Liane; Selyutina, Anastasia; Reintamm, Tõnu; Kelve, Merike; Saarma, Mart; Karelson, Mati; Merits, Andres

    2015-01-01

    The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2'-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.

  1. Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis.

    Science.gov (United States)

    Srivastava, M; Ahmad, N; Gupta, S; Mukhtar, H

    2001-05-04

    Photodynamic therapy (PDT), a promising treatment modality, is an oxidative stress that induces apoptosis in many cancer cells in vitro and tumors in vivo. Understanding the mechanism(s) involved in PDT-mediated apoptosis may improve its therapeutic efficacy. Although studies suggest the involvement of multiple pathways, the triggering event(s) responsible for PDT-mediated apoptotic response is(are) not clear. To investigate the role of Bcl-2 in PDT-mediated apoptosis, we employed Bcl-2-antisense and -overexpression approaches in two cell types differing in their responses toward PDT apoptosis. In the first approach, we treated radiation-induced fibrosarcoma (RIF 1) cells, which are resistant to silicon phthalocyanine (Pc 4)-PDT apoptosis, with Bcl-2-antisense oligonucleotide. This treatment resulted in sensitization of RIF 1 cells to PDT-mediated apoptosis as demonstrated by i) cleavage of poly(ADP-ribose) polymerase, ii) DNA ladder formation, iii) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, and iv) DEVDase activity. This treatment also resulted in oligonucleotide concentration-dependent decrease in cell viability and down-regulation of Bcl-2 protein with a concomitant increase in apoptosis. However, the level of Bax, a pro-apoptotic member of Bcl-2 family, remained unaltered. In the second approach, an overexpression of Bcl-2 in PDT apoptosis-sensitive human epidermoid carcinoma (A431) cells resulted in enhanced apoptosis and up-regulation of Bax following PDT. In both the approaches, the increased Bax/Bcl-2 ratio was associated with an increased apoptotic response of PDT. Our data also demonstrated that PDT results in modulation of other Bcl-2 family members in a way that the overall ratio of pro-apoptotic and anti-apoptotic member proteins favors apoptosis.

  2. Data in support of a functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II

    Directory of Open Access Journals (Sweden)

    Liliana Matos

    2015-12-01

    The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in “Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II” Matos et al. (2015 [1].

  3. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  4. Down-regulation of Survivin by Antisense Oligonucleotides Increases Apoptosis, Inhibits Cytokinesis and Anchorage-Independent Growth

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2000-05-01

    Full Text Available Survivin, a member of the inhibitor of apoptosis protein (IAP family, is detected in most common human cancers but not in adjacent normal cells. Previous studies suggest that survivin associates with the mitotic spindle and directly inhibits caspase activity. To further investigate the function of survivin, we used a survivin antisense (AS oligonucleotide to downregulate survivin expression in normal and cancer cells. We found that inhibition of survivin expression increased apoptosis and polyploidy while decreasing colony formation in soft agar. Immunohistochemistry showed that cells without survivin can initiate the cleavage furrow and contractile ring, but cannot complete cytokinesis, thus resulting in multinucleated cells. These findings indicate that survivin plays important roles in a late stage of cytokinesis, as well as in apoptosis.

  5. In vitro and in vivo suppression of hepatocellular carcinoma growth by midkine-antisense oligonucleotide-loaded nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Xing Yao; Xiang Wang; Shu-Qiong Niu; Lin-Fu Zhou; Fang-Fang Fu; Shui-Xin Yang; Jin-Liang Ping

    2009-01-01

    AIM: To synthesize antisense oligonucleotides (ASODNs) of midkine (MK), package the ASODNs with nanoparticles, and to inhibit hepatocellular carcinoma (HCC) growth using these nanoparticles.METHODS: HepG2 cell proliferation was analyzed in vitro using the 3-(4,5-dimethythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2Htetrazolium, inner salt assay. The in vivo activity of nanoparticles delivering the MK-ASODNs was analyzed by histopathological and immunohistochemical staining and quantitative real time polymerase chain reaction (PCR).RESULTS: The in vitro proliferation of HepG2 cells was significantly inhibited by the nanoparticles packaged with MK-ASODNs (NANO-ASODNs). Furthermore, the NANOASODNs significantly inhibited the growth of HCC in the mouse model.

  6. Antisense Oligonucleotides Targeting Parasite Inositol 1,4,5-Trisphosphate Receptor Inhibits Mammalian Host Cell Invasion by Trypanosoma cruzi

    Science.gov (United States)

    Hashimoto, Muneaki; Nara, Takeshi; Hirawake, Hiroko; Morales, Jorge; Enomoto, Masahiro; Mikoshiba, Katsuhiko

    2014-02-01

    Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.

  7. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  8. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Science.gov (United States)

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  9. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents.

    Science.gov (United States)

    Stein, C A; Hansen, J Bo; Lai, Johnathan; Wu, SiJian; Voskresenskiy, Anatoliy; Høg, Anja; Worm, Jesper; Hedtjärn, Maj; Souleimanian, Naira; Miller, Paul; Soifer, Harris S; Castanotto, Daniella; Benimetskaya, Luba; Ørum, Henrik; Koch, Troels

    2010-01-01

    For the past 15-20 years, the intracellular delivery and silencing activity of oligodeoxynucleotides have been essentially completely dependent on the use of a delivery technology (e.g. lipofection). We have developed a method (called 'gymnosis') that does not require the use of any transfection reagent or any additives to serum whatsoever, but rather takes advantage of the normal growth properties of cells in tissue culture in order to promote productive oligonucleotide uptake. This robust method permits the sequence-specific silencing of multiple targets in a large number of cell types in tissue culture, both at the protein and mRNA level, at concentrations in the low micromolar range. Optimum results were obtained with locked nucleic acid (LNA) phosphorothioate gap-mers. By appropriate manipulation of oligonucleotide dosing, this silencing can be continuously maintained with little or no toxicity for >240 days. High levels of oligonucleotide in the cell nucleus are not a requirement for gene silencing, contrary to long accepted dogma. In addition, gymnotic delivery can efficiently deliver oligonucleotides to suspension cells that are known to be very difficult to transfect. Finally, the pattern of gene silencing of in vitro gymnotically delivered oligonucleotides correlates particularly well with in vivo silencing. The establishment of this link is of particular significance to those in the academic research and drug discovery and development communities.

  10. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides.

    Science.gov (United States)

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M

    2002-08-01

    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  11. Effective exon skipping and dystrophin restoration by 2'-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Lu Yang

    Full Text Available Antisense oligonucleotide (AO-mediated exon-skipping therapy is one of the most promising therapeutic strategies for Duchenne Muscular Dystrophy (DMD and several AO chemistries have been rigorously investigated. In this report, we focused on the effect of 2'-O-methoxyethyl oligonucleotides (MOE on exon skipping in cultured mdx myoblasts and mice. Efficient dose-dependent skipping of targeted exon 23 was achieved in myoblasts with MOE AOs of different lengths and backbone chemistries. Furthermore, we established that 25-mer MOE phosphorothioate (PS AOs provided the greatest exon-skipping efficacy. When compared with 2'O methyl phosphorothioate (2'OmePS AOs, 25-mer MOE (PS AOs also showed higher exon-skipping activity in vitro and in mdx mice after intramuscular injections. Characterization of uptake in vitro corroborated with exon-skipping results, suggesting that increased uptake of 25-mer MOE PS AOs might partly contribute to the difference in exon-skipping activity observed in vitro and in mdx mice. Our findings demonstrate the substantial potential for MOE PS AOs as an alternative option for the treatment of DMD.

  12. Expression of heparanase mRNA in anti-sense oligonucleotide-transfected human esophageal cancer EC9706 cells

    Institute of Scientific and Technical Information of China (English)

    Kui-Sheng Chen; Lan Zhang; Lin Tang; Yun-Han Zhang; Dong-Ling Gao; Liang Yan; Lei Zhang

    2005-01-01

    AIM: To investigate the effects of anti-sense oligonucleotides (ASODNs) on mRNA expression of heparanase in human esophageal cancer EC9706 cells.METHODS: One non-sense oligonucleotide (N-ODN) and five ASODNs against different heparanase mRNA sites were transfected into EC9706 cells, then the expression of heparanase mRNA in EC9706 cells was studied byin situ hybridization.RESULTS: The expression of heparanase mRNA could be inhibited by ASODNs.There was no significant difference among five ASODNs (P>0.05), but there was a significant difference between ASODNs and N-ODN or non-transfected group (ASODN1: 2.25±0.25, ASODN2: 2.21±0.23, ASODN3:2.23±0.23, ASODN4:2.25±0.24 vs N-ODN: 3.47±2.80 or non- transfected group: 3.51±2.93 respectively, P<0.05).CONCLUSION: The expression of heparanase mRNA in EC9706 cells can be inhibited by ASODNs in vivo, and heparanase ASODNs can inhibit metastasis of esophageal squamous cell carcinoma or other tumors by inhibiting the expression of heparanase.

  13. Influence of connective tissue growth factor antisense oligonucleotide on angiotensin Ⅱ-induced epithelial mesenchymal transition in HK2 cells

    Institute of Scientific and Technical Information of China (English)

    Long CHEN; Bi-cheng LIU; Xiao-liang ZHANG; Jian-dong ZHANG; Hong LIU; Min-xia LI

    2006-01-01

    Aim: The present study was designed to further investigate the effect of connective tissue growth factor antisense oligonucleotide (CTGF-AS) on angiotensin Ⅱ (Ang Ⅱ)-induced tubular cell epithelial mesenchymal transition (EMT) in vitro. Methods: The human proximal tubular cell line (HK2) was grown in Dulbecco's modified Eagle's medium containing 10% heat inactivated fetal calf serum. After being rested in serum-free medium for 24 h, the influence of CTGF-AS (20 μg/mL) on Ang Ⅱ-induced (1×10-7 mol/L) CTGF mRNA and the protein expression were examined by using reverse transcription-polymerase chain reaction and indirectimmunofluorescence. The effect of CTGF-AS on Ang Ⅱ-induced cellular ultrastructure was observed using a transmissive electronic microscope. The expression of α-smooth action (α-SMA) was assayed by immunocytochemistry. In all experiments, the control group was treated with scrambled oligonucleotide. Results: It was shown that Ang Ⅱ significantly induced the increasing expression of CTGF mRNA and protein (P<0.01, respectively), which were significantly abolished by treatment with CTGF-AS. After stimulating cells with Ang Ⅱ, the cellular ultrastructure showed mesenchymal features. These effects were partially inhibited by CTGF-AS. Ang Ⅱ significantly resulted in the expression of α-SMA in time dependent manner, which was markedly attenuated by the treatment with CTGF-AS (P<0.01, respectively). In contrast, no similar effects were observed in the control group treated with scrambled oligonucleotide. Conclusion: Ang Ⅱ-induced EMT in human proximal tubular epithelial cells (PTC) can be attenuated by treatment with CTGF-AS. Our data provides further evidence that CTGF might be involved in Ang Ⅱ-induced EMT in PTC.

  14. Antitumor activity of antisense oligonucleotide p45Skp2 in soft palate carcinoma cell squamous in vitro

    Directory of Open Access Journals (Sweden)

    Supriatno Supriatno

    2013-03-01

    Full Text Available Background: Human soft palate cancers are characterized by a high degree of local invasion and metastasis to the regional lymph nodes. Treatment options for this cancer are limited. However, a new strategy for refractory cancer, gene therapy is watched with keen interest. p45Skp2 gene as a tumor promoter gene is one of target of the oral cancer therapy. To inhibit the activity of p45Skp2 gene is carried-out the genetic engineering via antisense technique. Purpose: To examine the antitumor activity of p45Skp2 antisense (p45Skp2 AS gene therapy in human soft palate [Hamakawa-Inoue (HI] cancer cells. Methods: Pure laboratory experimental study with post test only control group design was conducted as a research design. To investigate the apoptosis induction of p45Skp2 AStransfected cell was evaluated by colorimetric caspase-3 assay and Flow cytometry. Furthermore, to detect the suppression of in vitro HI cell invasion and cell growth of p45Skp2 AS-treatment cell was examined by Boyden chamber kit and MTT assay, respectively. Results: The cell number of p45Skp2 AS-treated HI cell was significant decreased when compared with that of p45Skp2 sense (p45Skp2 S cells (p<0.05. p45Skp2 AS-treated cell induced apoptosis characterized by an increase in the early and late apoptosis, and activation of caspase-3 (p<0.05. Therefore, suppression of HI cell invasion and cell growth were markedly increased by p45Skp2 AS treatment (p<0.05. Conclusion: Antisense oligonucleotide p45Skp2 has a high antitumor activity in human soft palate cancer cell, targeting this molecule could represent a promising new therapeutics approach for this type of cancer.Latar belakang: Kanker palatum lunak mempunyai karakteristik invasi dan metastasis ke limfonodi regional yang tinggi. Pilihan perawatan kanker tersebut masih sangat terbatas. Walaupun demikian, strategi baru untuk penanganan kanker yaitu terapi gen menjadi pilihan utama. Gen p45Skp2 sebagai gen pemacu tumor merupakan salah

  15. Effects of Intrathecally Administerd NaV1.8 Antisense Oligonucleotide on the Expression of Sodium Channel mRNA in Dorsal Root Ganglion

    Institute of Scientific and Technical Information of China (English)

    LIU Yongmin; YAO Shanglong; SONG Wenge; WANG Yuelan; LIU Dong; ZEN Lian

    2005-01-01

    Neuropathic pain has been hypothesized to be the result of aberrant expression and function of sodium channels at the site of injury. To investigate the effects of NaV1.8 antisense oligonucleotide on the expression of sodium channel mRNA in dorsal root ganglion (DRG) neurons in chronic neuropathic pain. 24 Sprague-Dawley rats weighing 200-260 g were anesthetized with the in of sciatic nerve trunk by 4-0 chromic gut. The mechanical and thermal pain threshold were measured before operation and 1, 3, 5, 7, 9, 11, 13 days after operation. A PE-10 catheter was implanted in subarachnoid space at lumbar region. On the 7th postoperative day the animals were randomly divided into 4 groups. The drugs were injected intrathecally twice a day for 5 consecutive days in group 2-4. The animals were decapitated 14 days after the surgery. The L4-L6 DRG of the operated side was removed and crushed, and total RNA was extracted with Trizol reagent. The contralateral side was used as control. The change of NaV1.8 sodium channel transcripts was determined by RT-PCR. Pain threshold was significantly lowered after CCI as compared with that in control group and was elevated 3 days after antisense oligonucleotide injection. Sensory neuron specific TTX-R sodium channel NaV1.8 transcript was down-regulated after antisense oligonucleotide injection at the dosage of 45 μg as compared with that in CCI group (P<0.01), and it was even greater at the dosage of 90 μg. The intrathecally injected NaV1.8 antisense oligonucleotide can reduce the mechanical allodynia and thermal hyperalgesia partially by downregulating the SNS transcript expression.

  16. Inhibition of PCNA Antisense Oligonucleotides Mediated by Liposome on mRNA Expression and Proliferation of h-RPE Cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianbin; XIANG Nan; XU Lili; ZENG Shuiqing

    2006-01-01

    The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN)mediated by liposome, to find a new genetic therapy of proliferative vitreoretinopathy (PVR). RPE cells cultured in vitro were transfected with synthetic fluorescence labled AS-ODN mediated by liposome-Lipofectamine, and the intracellular distribution and persistence time of AS-ODN were dynamically observed. AS-ODN (0.07, 0.28 and 1.12 μ mol/L and sense oligonucleotides (S-ODN with the same concentrations as AS-ODN) mediated by liposome were delivered to the RPE cells cultured in vitro, and CPM values were measured by 3H-TdR incorporation assay and analyzed statistically by variance by comparison with blank control group.Expression of PCNA mRNA in RPE cells was detected by in situ hybridization after the treatment of different concentrations of PCNA AS-ODN and S-ODN, and the average optic density (AOD) was measured by image analysis system and was subjected to q-test and correlation analysis with CPM.Our results showed that AS-ODN mediated by liposome could quickly aggregate in cellular plasma and nuclei in 30 min and 6 h, and stayed for as long as 6 days. AS-ODN (0.28 and 1.12 μ mol/L) markedly suppressed proliferation of RPE cells in a dose-dependent manner with the difference being statistically significant (P<0.05 and P<0.01,repectively) as compared with blank control group. AOD was well correlated with CPM (r=0.975). It is concluded that liposome could increase transfection efficiency of AS-ODN in RPE cells, and AS-ODN could sequence-specifically suppress PCNA mRNA expression and proliferation of human RPE cells.

  17. Reliable Assessment and Quantification of the Fluorescence-Labeled Antisense Oligonucleotides In Vivo

    Directory of Open Access Journals (Sweden)

    Maria Chiara Munisso

    2014-01-01

    Full Text Available The availability of fluorescent dyes and the advances in the optical systems for in vivo imaging have stimulated an increasing interest in developing new methodologies to study and quantify the biodistribution of labeled agents. However, despite these great achievements, we are facing significant challenges in determining if the observed fluorescence does correspond to the quantity of the dye in the tissues. In fact, although the far-red and near-infrared lights can propagate through several centimetres of tissue, they diffuse within a few millimetres as consequence of the elastic scattering of photons. In addition, when dye-labeled oligonucleotides form stable complex with cationic carriers, a large change in the fluorescence intensity of the dye is observed. Therefore, the measured fluorescence intensity is altered by the tissue heterogeneity and by the fluctuation of dye intensity. Hence, in this study a quantification strategy for fluorescence-labeled oligonucleotides was developed to solve these disadvantageous effects. Our results proved that upon efficient homogenization and dilution with chaotropic agents, such as guanidinium thiocyanate, it is possible to achieve a complete fluorescence intensity recovery. Furthermore, we demonstrated that this method has the advantage of good sensitivity and reproducibility, as well as easy handling of the tissue samples.

  18. Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1 Mice

    Directory of Open Access Journals (Sweden)

    Gotkine Marc

    2013-01-01

    Full Text Available Objective. Previous research suggests that acetylcholinesterase (AChE may be involved in ALS pathogenesis. AChE enzyme inhibitors can upregulate AChE transcription which in certain contexts can have deleterious (noncatalytic effects, making them theoretically harmful in ALS, whilst AChE antisense-oligonucleotides (mEN101, which downregulate AChE may be beneficial. Our aim was to investigate whether downregulation of AChE using mEN101 is beneficial in an ALS mouse model. Methods. ALS (G93A-SOD1 mice received saline, mEN101, inverse-EN101, or neostigmine. Treatments were administered from 5 weeks. Disease-onset and survival were recorded. Additional mice were sacrificed for pathological analysis at 15 weeks of age. In a follow-up experiment treatment was started at the symptomatic stage at a higher dose. Results. mEN101 given at the presymptomatic (but not symptomatic stage prolonged survival and attenuated motor-neuron loss in ALS mice. In contrast, neostigmine exacerbated the clinical parameters. Conclusions. These results suggest that AChE may be involved in ALS pathogenesis. The accelerated disease course with neostigmine suggests that any beneficial effects of mEN101 occur through a non-catalytic rather than cholinergic mechanism.

  19. Lack of clinical pharmacodynamic and pharmacokinetic drug-drug interactions between warfarin and the antisense oligonucleotide mipomersen.

    Science.gov (United States)

    Li, Zhaoyang; Hard, Marjie L; Grundy, John S; Singh, Tejdip; von Moltke, Lisa L; Boltje, Ingrid

    2014-08-01

    Mipomersen is a second-generation antisense oligonucleotide indicated as an adjunct therapy for homozygous familial hypercholesterolemia (HoFH). Warfarin is commonly prescribed for a variety of cardiac disorders in homozygous familial hypercholesterolemia population, and concurrent use of warfarin and mipomersen is likely. This open-label, single-sequence 2-period phase 1 study in healthy subjects evaluated the potential drug-drug interactions between mipomersen and warfarin. The subjects received a single oral 25 mg dose of warfarin alone on day 1, and after a 7-day washout period, received 200 mg mipomersen alone subcutaneously every other day on days 8-12, and received both concurrently on day 14. Coadministration of mipomersen did not change the pharmacodynamics (international normalized ratio, prothrombin time, and activated partial thromboplastin time) and pharmacokinetics (PK) of warfarin. There were no clinically significant changes in the PK of mipomersen with concurrent administration of warfarin. There were no events indicative of an increase in bleeding tendency when warfarin was coadministered with mipomersen, and the adverse event profile of mipomersen did not appear to be altered in combination with warfarin, as compared with that of the respective reference treatment. The combination of these 2 medications appeared to be safe and well tolerated. These results suggest that the dosage adjustment of warfarin or mipomersen is not expected to be necessary with coadministration.

  20. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    Directory of Open Access Journals (Sweden)

    Niels H Skotte

    Full Text Available Huntington disease (HD is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs. We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  1. Wild-type mouse models to screen antisense oligonucleotides for exon-skipping efficacy in Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Limin Cao

    Full Text Available A readily available animal model is essential for rapidly identifying effective treatments for Duchenne muscular dystrophy (DMD, a devastating neuromuscular disorder caused by the lack of dystrophin protein, which results from frame-disrupting mutations in the DMD gene. Currently, the mdx mouse is the most commonly used model for antisense oligonucleotide (AO-mediated exon skipping pre-clinical studies, with a mild phenotype. However, the accessibility of mdx mouse colonies particularly in developing countries can constrain research. Therefore in this study we explore the feasibility of using wild-type mice as models to establish exon-skipping efficiency of various DMD AO chemistries and their conjugates. Four different strains of wild-type mice and six different AO chemistries were investigated intramuscularly and the results indicated that the same exon-skipping efficiency was achieved for all tested AOs as that from mdx mice. Notably, levels of exon-skipping obtained in C57BL6 and C3H and mdx mice were most closely matched, followed by ICR and BALB/C mice. Systemic validation revealed that wild-type mice are less responsive to AO-mediated exon skipping than mdx mice. Our study provides evidence for the first time that wild-type mice can be appropriate models for assessing DMD AO exon-skipping efficiency with similar sensitivity to that of mdx mice and this finding can further accelerate the development of effective DMD AOs.

  2. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery.

    Science.gov (United States)

    Garanto, Alejandro; Chung, Daniel C; Duijkers, Lonneke; Corral-Serrano, Julio C; Messchaert, Muriël; Xiao, Ru; Bennett, Jean; Vandenberghe, Luk H; Collin, Rob W J

    2016-06-15

    Leber congenital amaurosis (LCA) is a severe disorder resulting in visual impairment usually starting in the first year of life. The most frequent genetic cause of LCA is an intronic mutation in CEP290 (c.2991 + 1655A > G) that creates a cryptic splice donor site resulting in the insertion of a pseudoexon (exon X) into CEP290 mRNA. Previously, we showed that naked antisense oligonucleotides (AONs) effectively restored normal CEP290 splicing in patient-derived lymphoblastoid cells. We here explore the therapeutic potential of naked and adeno-associated virus (AAV)-packaged AONs in vitro and in vivo In both cases, AON delivery fully restored CEP290 pre-mRNA splicing, significantly increased CEP290 protein levels and rescued a ciliary phenotype present in patient-derived fibroblast cells. Moreover, administration of naked and AAV-packaged AONs to the retina of a humanized mutant Cep290 mouse model, carrying the intronic mutation, showed a statistically significant reduction of exon X-containing Cep290 transcripts, without compromising the retinal structure. Together, our data highlight the tremendous therapeutic prospective of AONs for the treatment of not only CEP290-associated LCA but potentially many other subtypes of retinal dystrophy caused by splicing mutations.

  3. Apoptosis of drug-resistant human ovarian carcinoma cell line COC1/DDP induced by survivin antisense oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    ZHENG Fei; RUAN Fei; XIE Xian-kuan; LIU Shao-yang

    2006-01-01

    @@ Currently, surgery-oriented treatment plays a major role in the treatment of ovarian cancer patients. But 5-year survival rate of patients is still around 30%. One of the main reasons for the Iow survival rate is the drug resistance of tumor cells against chemotherapy.1,2 The function of antiapoptosis in the course of initiation and progress of cancer has a close relationship with drug resistance of tumor cells. Survivin is a new discovered anti-apoptosis gene, its expression levels correlating with more aggressive disease and poor clinical outcome in many of these tumors. It has been reported that survivin is expressed during fetal development and in cancer tissues.3 Furthermore,survivin overexpression, by disrupting the balance between cell proliferation/differentiation and apoptosis, may relate with the resistance to a variety of apoptotic stimuli, including chemotherapy.4,5 We designed antisense oligonucleotides of survivin to treat the drug-resistant human ovarian carcinoma cell line COC1/DDP, and studied its effects on inducing COC1/DDP apoptosis. The purpose of this study was to find a novel approach to improve the sensitivity of ovarian carcinoma chemotherapy.

  4. Modulation of p53 expression using antisense oligonucleotides complementary to the 5'-terminal region of p53 mRNA in vitro and in the living cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Gorska

    Full Text Available The p53 protein is a key player in cell response to stress events and cancer prevention. However, up-regulation of p53 that occurs during radiotherapy of some tumours results in radio-resistance of targeted cells. Recently, antisense oligonucleotides have been used to reduce the p53 level in tumour cells which facilitates their radiation-induced apoptosis. Here we describe the rational design of antisense oligomers directed against the 5'-terminal region of p53 mRNA aimed to inhibit the synthesis of p53 protein and its ΔNp53 isoform. A comprehensive analysis of the sites accessible to oligomer hybridization in this mRNA region was performed. Subsequently, translation efficiency from the initiation codons for both proteins in the presence of selected oligomers was determined in rabbit reticulocyte lysate and in MCF-7 cells. The antisense oligomers with 2'-OMe and LNA modifications were used to study the mechanism of their impact on translation. It turned out that the remaining RNase H activity of the lysate contributed to modulation of protein synthesis efficiency which was observed in the presence of antisense oligomers. A possibility of changing the ratio of the newly synthetized p53 and ΔNp53 in a controlled manner was revealed which is potentially very attractive considering the relationship between the functioning of these two proteins. Selected antisense oligonucleotides which were designed based on accessibility mapping of the 5'-terminal region of p53 mRNA were able to significantly reduce the level of p53 protein in MCF-7 cells. One of these oligomers might be used in the future as a support treatment in anticancer therapy.

  5. STAT1 Antisense Oligonucleotides Attenuate the Proinflammatory Cytokine Release of Alveolar Macrophages in Bleomycin-Induced Fibrosis

    Institute of Scientific and Technical Information of China (English)

    Xianming Fan; Zengli Wang

    2005-01-01

    To investigate the effect of signal transducers and activators of transcription 1 (STAT1) antisense oligonucleotides (ASON) on concentrations of TNF-α, IL-8, NO secreted by alveolar macrophages (AMs) in bleomycin-induced rat pulmonary fibrosis, five adult female Wistar rats were intratracheally instilled with bleomycin. After 7 days, the rats were killed by right ventricle of heart exsanguinations under ketamine anaesthesia and bronchoalveolar lavage (BAL) was performed to obtain AMs. AMs were divided into four groups, treated with STAT1 ASON, STAT1 sense oligonucleotides (SON), dexamethasone (DEX) and medium alone (control), respectively. AMs and media were collected after culture for 36 h. The mRNA and protein expressions of STAT1 and ICAM-1 in AMs were detected by RT-PCR and ELISA, respectively. The concentrations of TNF-α, IL-8, NO in cultured medium were detected.The STAT1 mRNA expression by AMs in the STAT1 ASON group was lower than those of AMs in the STAT1 SON group, the DEX group and the control group (p < 0.05). Moreover, the STAT1 mRNA expression by AMs in the DEX group was also lower than those of AMs in the STAT1 SON group and the control group (p < 0.05), but the STAT1 mRNA expression by AMs in the STAT1 SON group was not different from that of the control group (p >0.05). The protein expressions of STAT1 and ICAM-1 and the mRNA expression of ICAM-1 showed similar changes to the STAT1 mRNA expression by AMs. The concentrations of TNF-α, IL-8, NO in cultured medium from STAT1 ASON group were lower than those from STAT1 SON, DEX and the control groups (p < 0.05). Moreover,the concentrations of TNF-α, IL-8, NO in cultured medium from DEX group were also lower than those from the control and STAT1 SON group (p < 0.05), but no difference between STAT1 SON group and the control (p > 0.05).The results suggest that STAT1 ASON could inhibit the secretion of TNF-α, IL-8, NO in AMs, and STAT1 could become a target of treating pulmonary fibrosis.

  6. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    Full Text Available Antisense oligonucleotides (AONs mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency of 94% of 176 previously reported AONs. Four novel insights are inferred: (1 the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2 engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3 the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4 engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.

  7. XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Obika, Satoshi, E-mail: obika@phs.osaka-u.ac.jp

    2015-08-21

    Antisense oligonucleotides (ASOs) can suppress the expression of a target gene by cleaving pre-mRNA and/or mature mRNA via RNase H1. Following the initial endonucleolytic cleavage by RNase H1, the target RNAs are degraded by a mechanism that is poorly understood. To better understand this degradation pathway, we depleted the expression of two major 5′ to 3′ exoribonucleases (XRNs), named XRN1 and XRN2, and analyzed the levels of 3′ fragments of the target RNAs in vitro. We found that the 3′ fragments of target pre-mRNA generated by ASO were almost completely degraded from their 5′ ends by nuclear XRN2 after RNase H1-mediated cleavage, whereas the 3′ fragments of mature mRNA were partially degraded by XRN2. In contrast to ASO, small interference RNA (siRNA) could reduce the expression level of only mature mRNA, and the 3′ fragment was degraded by cytoplasmic XRN1. Our findings indicate that the RNAs targeted by RNase H1-dependent ASO are rapidly degraded in the nucleus, contrary to the cytoplasmic degradation pathway mediated by siRNA. - Highlights: • We compared the degradation mechanism of the transcript targeted by ASO and siRNA. • We focused on two 5′ to 3′ exoribonucleases, cytoplasmic XRN1, and nuclear XRN2. • The 3′ fragment of target pre-mRNA generated by ASO was degraded by XRN2. • The 3′ fragment of target mRNA generated by ASO was partially degraded by XRN2. • XRN1 depletion promoted accumulation of the 3′ fragment of mRNA generated by siRNA.

  8. Knock-down of postsynaptic density protein 95 expression by antisense oligonucleotides protects against apoptosis-like cell death induced by oxygen-glucose deprivation in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing-Zhi Yan; Yong Liu; Yan-Yan Zong; Guang-Yi Zhang

    2012-01-01

    Objective Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling,such as that of N-methyl-D-aspartate receptors (NMDARs).In this study,the functional roles of PSD-95 in tyrosine phosphorylation of NMDAR subunit 2A (NR2A) and in apoptosis-like cell death induced by oxygen-glucose deprivation (OGD) in cultured rat cortical neurons were investigated.Methods We used immunoprecipitation and immunoblotting to detect PSD-95 protein level,tyrosine phosphorylation level of NR2A,and the interaction between PSD-95 and NR2A or Src.Apoptosis-like cells were observed by 4,6-diamidino-2-phenylindole staining.Results Tyrosine phosphorylation of NR2A and apoptosis-like cell death were increased after recovery following 60-min OGD.The increases were attenuated by pretreatment with antisense oligonucleotides against PSD-95 before OGD,but not by missense oligonucleotides or vehicle.PSD-95 antisense oligonucleotides also inhibited the increased interaction between PSD-95 and NR2A or Src,while NR2A expression did not change under this condition.Conclusion PSD-95 may be involved in regulating NR2A tyrosine phosphorylation by Src kinase.Inhibition of PSD-95 expression can be neuroprotective against apoptosislike cell death after recovery from OGD.

  9. ENHANCEMENT OF RADIATION-INDUCED APOPTOSIS IN RAJI CELL LINE BY BC1-2 ANTISENSE OLIGODEOXYNUCLEOTIDE

    Institute of Scientific and Technical Information of China (English)

    HE Dong-mei; ZHANG Huan

    2005-01-01

    Objective: To investigate whether the Bc1-2 antisense oligonucleotide(ASODN) may enhance radiation-induced apoptosis in Raji cell line. Methods: Cell surviving fraction was determined using the trypan blue dye exclusion assay. The expression level of bc1-2 protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Apoptosis was detected by Giemsa staining and flow cytomertric cell cycle analysis. Results: It was found that Bc1-2 ASODN combined with radiation had significantly reduced the number of viable cells (P<0.05). There was no difference on cell survival between mismatch Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone. Bc1-2 ASODN combined with radiation could significantly inhibit expression of Bc1-2 protein in Raji cells (P<0.05). Cells treated with Bc1-2 ASODN combined with radiation at 72 h displayed classic apoptotic changes. Apoptosis rates of Raji cells treated with Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone, respectively. Conclusion: Bc1-2 antisense oligonucleotide can enhance radiation-induced apoptosis in Raji cell line.

  10. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    Science.gov (United States)

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation.

  11. Effect of antisense oligonucleotide targeting bFGF on apoptosis of hepatoma cells%多层螺旋CT同层动态扫描结合MPR技术诊断肝外胆管癌的研究

    Institute of Scientific and Technical Information of China (English)

    Jielin Qi; Ning Wu; Li Li; Bing Bu; Dengfeng Zhou; Xiqin Zhang

    2009-01-01

    Objective:To investigate the cell cycle changes of hepatoma cells and the rote of antisense oligonucleotide targeting bFGF.Methods:Inhibition of bFGF protein expression was investigated by conical microscopy analysis and Western blot in the best condition of transfecting antisense oligonucleotide targeting bFGF.Cell cycle and apoptosis were detected with flow cytometry analysis.Results:Treatmenl with antisense oligonucleotide of bFGF not only reduced the expression of bFGF by conical microscopy and Western blot analysises,but also increased the apoptosis of HepG2 cells(P<0.01).Conclusion:bFGF may take part in apoptosis regulation of hepatoma cells and be used as a target of hepatocel-lular carcinoma therapy.

  12. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    Science.gov (United States)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that

  13. An intranasal selective antisense oligonucleotide impairs lung cyclooxygenase-2 production and improves inflammation, but worsens airway function, in house dust mite sensitive mice

    Directory of Open Access Journals (Sweden)

    Pujols Laura

    2008-11-01

    Full Text Available Abstract Background Despite its reported pro-inflammatory activity, cyclooxygenase (COX-2 has been proposed to play a protective role in asthma. Accordingly, COX-2 might be down-regulated in the airway cells of asthmatics. This, together with results of experiments to assess the impact of COX-2 blockade in ovalbumin (OVA-sensitized mice in vivo, led us to propose a novel experimental approach using house dust mite (HDM-sensitized mice in which we mimicked altered regulation of COX-2. Methods Allergic inflammation was induced in BALBc mice by intranasal exposure to HDM for 10 consecutive days. This model reproduces spontaneous exposure to aeroallergens by asthmatic patients. In order to impair, but not fully block, COX-2 production in the airways, some of the animals received an intranasal antisense oligonucleotide. Lung COX-2 expression and activity were measured along with bronchovascular inflammation, airway reactivity, and prostaglandin production. Results We observed impaired COX-2 mRNA and protein expression in the lung tissue of selective oligonucleotide-treated sensitized mice. This was accompanied by diminished production of mPGE synthase and PGE2 in the airways. In sensitized mice, the oligonucleotide induced increased airway hyperreactivity (AHR to methacholine, but a substantially reduced bronchovascular inflammation. Finally, mRNA levels of hPGD synthase remained unchanged. Conclusion Intranasal antisense therapy against COX-2 in vivo mimicked the reported impairment of COX-2 regulation in the airway cells of asthmatic patients. This strategy revealed an unexpected novel dual effect: inflammation was improved but AHR worsened. This approach will provide insights into the differential regulation of inflammation and lung function in asthma, and will help identify pharmacological targets within the COX-2/PG system.

  14. Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    Full Text Available Multidrug resistance (MDR is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs against MDR1, MDR-associated protein (MRP1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm composed of N-[1-(2,3-dioleyloxypropyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity

  15. Effects of connective tissue growth factor antisense oligonucleotides on the proliferation and collagen synthesis of the cultured human keloid fibroblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    刘剑毅; 李世荣; 纪淑兴

    2004-01-01

    Objective: To explore the effects of connective tissue growth factor (CTGF) on the pathogenesis of human keloid. Methods: CTGF antisense oligonucleotides (ASODN) conjugated with isothiocyananate fluorescence was encapsulated by liposome, and then added into the human keloid fibroblasts (HKFs) culture media. The intracellular distribution of CTGF ASODN was observed by fluorescence microscopy in the fixed HKFs. The proliferation of HKFs was measured by MTT test. The collagen synthesis of HKFs was measured by 3H-proline incorporation method. Results: Compared with control group, the CTGF ASODN can inhibit the proliferation and collagen synthesis of the HKFs (P < 0.01 ). Conclusion: CTGF ASODN has anti-fibrotic effects on keloid in vitro, and CTGF play an important role in promoting the fibrosis of keloid.

  16. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin

    DEFF Research Database (Denmark)

    Carroll, Jeffrey B; Warby, Simon C; Southwell, Amber L;

    2011-01-01

    Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild......-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease......-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (c...

  17. Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy.

    Science.gov (United States)

    Catapano, Francesco; Zaharieva, Irina; Scoto, Mariacristina; Marrosu, Elena; Morgan, Jennifer; Muntoni, Francesco; Zhou, Haiyan

    2016-07-05

    The identification of noninvasive biomarkers to monitor the disease progression in spinal muscular atrophy (SMA) is becoming increasingly important. MicroRNAs (miRNAs) regulate gene expression and are implicated in the pathogenesis of neuromuscular diseases, including motor neuron degeneration. In this study, we selectively characterized the expression of miR-9, miR-206, and miR-132 in spinal cord, skeletal muscle, and serum from SMA transgenic mice, and in serum from SMA patients. A systematic analysis of miRNA expression was conducted in SMA mice with different disease severities (severe type I-like and mild type III-like) at different disease stages (pre-, mid-, and late-symptomatic stages), and in morpholino antisense oligonucleotide-treated mice. There was differential expression of all three miRNAs in spinal cord, skeletal muscle and serum samples in SMA mice. Serum miRNAs were altered prior to the changes in spinal cord and skeletal muscle at the presymptomatic stage. The altered miR-132 levels in spinal cord, muscle, and serum transiently reversed to normal level after a single-dose morpholino antisense oligomer PMO25 treatment in SMA mice. We also confirmed a significant alteration of miR-9 and miR-132 level in serum samples from SMA patients. Our study indicates the potential of developing miRNAs as noninvasive biomarkers in SMA.

  18. Anti-inflammatory activity of chitosan nanoparticles carrying NF-κB/p65 antisense oligonucleotide in RAW264.7 macropghage stimulated by lipopolysaccharide.

    Science.gov (United States)

    Ma, Li; Shen, Chuan-an; Gao, Lei; Li, Da-wei; Shang, Yu-ru; Yin, Kai; Zhao, Dong-xu; Cheng, Wen-feng; Quan, Dong-qin

    2016-06-01

    The purpose of this present study is to prepare NF-κB/p65 antisense oligonucleotide loaded chitosan nanoparticles (NPs) and evaluate their physicochemical characterization and antisense effects in RAW264.7 macrophages. Condensed nanoparticles with mean particle size of 128±16nm, average Zeta potential of 19.6±6.3mV and high entrapment efficiency (EE) of 98.6±0.11% were formed between NF-κB/p65 antisense gene (NAG) and chitosan by complex coacervation method. Trypan blue staining and MTT tests showed that NAG chitosan NPs had no toxic effect on RAW264.7 macrophages when the dose was no more than 20μg/mL. Confocal microscopy images showed that NAG chitosan NPs were capable to deliver NAG into cytoplasm of RAW264.7 macrophages and finally into nucleus. Real-time PCR tests verified that NAG chitosan NPs could significantly decrease the mRNA expression level of NF-κB/p65 and inflammatory cytokines including TNF-ɑ, IL-1 and IL-6. Accordingly, western blot study showed that NAG NPs uptaken in the cells could efficiently reversed the expression of NF-κB/p65 protein induced by LPS. At last, downstream release level of inflammatory factors including TNF-ɑ, IL-1 and IL-6 in LPS stimulated RAW264.7 macrophages was significantly decreased after treated by NAG chitosan NPs. It could be concluded that chitosan NPs were excellent delivery vectors to ferry the NAG into the cytoplasm and nucleus of macrophages. The NAG chitosan NPs might be a novel therapeutic apparatus for the treatment of LPS induced sepsis by inhibiting NF-κB-related pro-inflammatory cytokines secretion.

  19. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes

    OpenAIRE

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by prov...

  20. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides.

    Science.gov (United States)

    Wada, Shunsuke; Yasuhara, Hidenori; Wada, Fumito; Sawamura, Motoki; Waki, Reiko; Yamamoto, Tsuyoshi; Harada-Shiba, Mariko; Obika, Satoshi

    2016-03-28

    Cholesterol conjugation of oligonucleotides is an attractive way to deliver the oligonucleotides specifically to the liver. However cholesterol-conjugated antisense oligonucleotides (ASOs) mainly accumulate in non-parenchymal cells (NPCs) such as Kupffer cells. In this study, to increase the hepatic accumulation of cholesterol-conjugated ASOs, we prepared a variety of linkers for cholesterol conjugation to anti-Pcsk9 ASOs and examined their effects on pharmacological parameters. Hepatic accumulation of ASO was dramatically increased with cholesterol conjugation. The increase in hepatic accumulation depended largely on the linker chemistry of each cholesterol-conjugated ASO. In addition to hepatic accumulation, the cell tropism of each cholesterol-conjugated ASO tended to depend on their linker. Although a linker bearing a disulfide bond accumulated mainly in NPCs, hexamethylene succinimide linker accumulated mainly in hepatocytes. To estimate the benefits of releasing ASO from the conjugated cholesterol in hepatocyte, we designed another linker based on hexamethylene succinimide, which has a phosphodiester bond between the linker and the ASO. The cholesterol-conjugated ASO bearing such a phosphodiester bond showed a significantly improved Pcsk9 mRNA inhibitory effect compared to its counterpart, cholesterol-conjugated ASO with a phosphorothioate bond, while the hepatic accumulation of both cholesterol-conjugated ASOs was comparable, indicating the effectiveness of removing the conjugated cholesterol for ASO activity. In toxicity analysis, some of the linkers induced lethal toxicities when they were injected at high concentrations (>600μM). These toxicities were attributed to decreased platelet levels in the blood, suggesting an interaction between cholesterol-conjugated ASO and platelets. Our findings may provide a guideline for the design of molecule-conjugated ASOs.

  1. Effect of transfection with PLP2 antisense oligonucleotides on gene expression of cadmium-treated MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Longo, Alessandra; Librizzi, Mariangela; Luparello, Claudio

    2013-02-01

    Emerging evidence indicates that cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity in human normal and pathological cells. We have already shown that exposure of MDA-MB231 breast cancer cells to 5 μM CdCl(2) for 96 h, apart from significantly affecting mitochondrial metabolism, induces modifications of the expression level of genes coding for members of stress response-, mitochondrial respiration-, MAP kinase-, NF-κB-, and apoptosis-related pathways. In the present study, we have expanded the knowledge on the biological effects of Cd-breast cancer cell interactions, indicating PLP2 (proteolipid protein-2) as a novel member of the list of Cd-upregulated genes by MDA-MB231 cancer cells and, through the application of transfection techniques with specific antisense oligonucleotides, we have demonstrated that such over-expression may be an upstream event to some of the changes of gene expression levels already observed in Cd-treated cells, thus unveiling new possible molecular relationship between PLP2 and genes linked to the stress and apoptotic responses.

  2. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs.

    Science.gov (United States)

    Jiang, Jie; Zhu, Qiang; Gendron, Tania F; Saberi, Shahram; McAlonis-Downes, Melissa; Seelman, Amanda; Stauffer, Jennifer E; Jafar-Nejad, Paymaan; Drenner, Kevin; Schulte, Derek; Chun, Seung; Sun, Shuying; Ling, Shuo-Chien; Myers, Brian; Engelhardt, Jeffery; Katz, Melanie; Baughn, Michael; Platoshyn, Oleksandr; Marsala, Martin; Watt, Andy; Heyser, Charles J; Ard, M Colin; De Muynck, Louis; Daughrity, Lillian M; Swing, Deborah A; Tessarollo, Lino; Jung, Chris J; Delpoux, Arnaud; Utzschneider, Daniel T; Hedrick, Stephen M; de Jong, Pieter J; Edbauer, Dieter; Van Damme, Philip; Petrucelli, Leonard; Shaw, Christopher E; Bennett, C Frank; Da Cruz, Sandrine; Ravits, John; Rigo, Frank; Cleveland, Don W; Lagier-Tourenne, Clotilde

    2016-05-04

    Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.

  3. Inhibition of tumor growth and metastasis with antisense oligonucleotides(Cantide) targeting hTERT in an in situ human hepatocellular carcinoma model

    Institute of Scientific and Technical Information of China (English)

    Ru-xian LIN; Chao-wei TUO; Qiu-jun L(u); Wei ZHANG; Sheng-qi WANG

    2005-01-01

    Aim: To evaluate the in vivo antitumor effects of Cantide and the combined effect with 5-fluorouracil. Methods: An in situ human hepatocellular carcinoma model was established in mice livers orthotopically. Drugs were administered intravenously and tumor sizes were monitored with calipers. Plasma alpha-fetoprotein (AFP) were detected by radiation immunoassay. Morphology of tumors was evaluated by hematoxylin-eosin (H&E) staining of histological sections. Human telomerase reverse transcriptase (hTERT) protein levels were detected by Western blotting. Results: Cantide significantly inhibit in situ human hepatocellular compared to the saline group in a dose-dependent manner, which included injectthe tumor in liver. Cantide was also found to prevent tumor recurrence in the liver and metastasis in the lung, showing a dose-dependent response. When Cantide was administered by iv combined with 5-fluorouracil, it resulted in a significant reduction in tumor growth compared to either agent alone treatment group. After the treatment with Cantide alone or combined with 5-fluorouracil, plasma AFP concentration decreased in a dose-dependent manner. Conclusion: These results demonstrated that Cantide was an effective antitumor antisense oligonucleotide in vivo and has the potential to be developed into a clinical anti-cancer drug.

  4. Thermo-Responsive Complexes of c-Myc Antisense Oligonucleotide with Block Copolymer of Poly(OEGMA) and Quaternized Poly(4-Vinylpyridine).

    Science.gov (United States)

    Topuzogullari, Murat; Elalmis, Yeliz Basaran; Isoglu, Sevil Dincer

    2017-04-01

    Solution behavior of thermo-responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo-responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo-responsive block copolymer of quaternized poly(4-vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c-Myc oncogene are also thermo-responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream.

  5. Depressive Effect of the Antisense Oligonucleotides of C-myc and PCNA on the Proliferation of VSMC

    Institute of Scientific and Technical Information of China (English)

    Qingxian Li; Yanfu Wang; Yuhua Liao; Huiling Zhang; Yanying Jiang

    2007-01-01

    To study the depressive effect of the antisense oligonuceotides (ASODN) of c-myc and proliferating cell nuclear antigen (PCNA) on the proliferation of VSMC.Methods Taking the VSMC obtained from rat aorta thoracalis cultured 4 ~ 8 generation as research object.The objects were divided into three groups to carry out control study:control group,PCNA ASODN group and c-myc ASODN group.The ASODNs' working concentration all were 1:50.The depressive effect of ASODN on VSMC proliferation was investigated by cell counting,MTT and 3H-TdR incorporation assay;PCNA and c-myc expression were detected by immunohistochemical method after transferring PCNA successfully;the corresponding gene was inhibited obviously;compared with control group ( P < 0.05 ).Conclusions PCNA and c-myc might play a considerable role in the VSMC proliferation process.The corresponding gene could be depressed successfully after transferring PCNA and c-myc ASODN into VSMC,and then the proliferation of VSMC was slowed down.This study presented a beneficial proposal and theoretical fundament for atherosclerotic treatment.

  6. Enhanced fluorescence of silver nanoclusters stabilized with branched oligonucleotides.

    Science.gov (United States)

    Latorre, Alfonso; Lorca, Romina; Zamora, Félix; Somoza, Álvaro

    2013-05-28

    DNA stabilized silver nanoclusters (AgNCs) are promising optical materials, whose fluorescence properties can be tuned by the selection of the DNA sequence employed. In this work we have used modified oligonucleotides in the preparation of AgNCs. The fluorescent intensity obtained was 60 times higher than that achieved with standard oligonucleotides.

  7. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    Directory of Open Access Journals (Sweden)

    Tamar Canello

    Full Text Available Silencing of O(6-methylguanine-DNA-methyltransferase (MGMT in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1 within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN. Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  8. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    Science.gov (United States)

    Canello, Tamar; Ovadia, Haim; Refael, Miri; Zrihan, Daniel; Siegal, Tali; Lavon, Iris

    2014-01-01

    Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA) modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN). Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  9. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  10. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy

    Science.gov (United States)

    Verheul, Ruurd C.; van Deutekom, Judith C. T.; Datson, Nicole A.

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0–100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  11. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice.

    Science.gov (United States)

    Kakiuchi-Kiyota, Satoko; Koza-Taylor, Petra H; Mantena, Srinivasa R; Nelms, Linda F; Enayetallah, Ahmed E; Hollingshead, Brett D; Burdick, Andrew D; Reed, Lori A; Warneke, James A; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2014-03-01

    Development of LNA gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by non-target mediated hepatotoxicity issues. In the present study, we investigated hepatic transcription profiles of mice administered non-toxic and toxic LNA gapmers. After repeated administration, a toxic LNA gapmer (TS-2), but not a non-toxic LNA gapmer (NTS-1), caused hepatocyte necrosis and increased serum alanine aminotransferase levels. Microarray data revealed that, in addition to gene expression patterns consistent with hepatotoxicity, 17 genes in the clathrin-mediated endocytosis (CME) pathway were altered in the TS-2 group. TS-2 significantly down-regulated myosin 1E (Myo1E), which is involved in release of clathrin-coated pits from plasma membranes. To map the earliest transcription changes associated with LNA gapmer-induced hepatotoxicity, a second microarray analysis was performed using NTS-1, TS-2, and a severely toxic LNA gapmer (HTS-3) at 8, 16, and 72 h following a single administration in mice. The only histopathological change observed was minor hepatic hypertrophy in all LNA groups across time points. NTS-1, but not 2 toxic LNA gapmers, increased immune response genes at 8 and 16 h but not at 72 h. TS-2 significantly perturbed the CME pathway only at 72 h, while Myo1E levels were decreased at all time points. In contrast, HTS-3 modulated DNA damage pathway genes at 8 and 16 h and also modulated the CME pathway genes (but not Myo1E) at 16 h. Our results may suggest that different LNAs modulate distinct transcriptional genes and pathways contributing to non-target mediated hepatotoxicity in mice.

  12. Chemical Modifications of Antisense Morpholino Oligomers Enhance Their Efficacy against Ebola Virus Infection

    Science.gov (United States)

    2009-05-01

    specific PMOs in infected cells and mice during lethal Ebola virus challenge. Members of the Filoviridae family of viruses , Ebola virus (EBOV) and Marburg ...American Society for Microbiology. All Rights Reserved. Chemical Modifications of Antisense Morpholino Oligomers Enhance Their Efficacy against Ebola Virus ...sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we

  13. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  14. Intrathecal administration of Cav3.2 and Cav3.3 antisense oligonucleotide reverses tactile allodynia and thermal hyperalgesia in rats following chronic compression of dorsal root of ganglion

    Institute of Scientific and Technical Information of China (English)

    Xian-jie WEN; Zhang-jun LI; Zhi-xin CHEN; Zhi-yuan FANG; Chen-xiang YANG; Heng LI; Yin-ming ZENG

    2006-01-01

    Aim: The present study aimed to elucidate the role of T-subtype calcium channels (Cav3.1, Cav3.2, and Cav3.3) in the pathogenesis of neuropathic pain at spinal level. Methods: The chronic compression of the dorsal root ganglion (CCD) rat model was adopted. The antisense oligonucleotide of Cav3.1, Cav3.2, and Cav3.3 or normal saline (NS) were intrathecally administered twice per day from the first day to the fourth day after operation. Paw mechanical withdrawal threshold and paw thermal withdrawal latency were measured to evaluate the tactile allodynia and thermal hyperalgesia, respectively. Results: CCD rats developed reliable tactile allodynia and thermal hyperalgesia after operation. Intrathecal administration of antisense oligonucleotide of Cav3.2 and Cav3.3 significantly relieved tactile allodynia and thermal hyperalgesia in CCD rats, but not Cav3.1. Conclusion: Cav2 and Cav3.3 subtype calcium channels in the spinal cord may play an important role in the pathogenesis of neuropathic pain, which may contribute to the management of the neuropathic pain.

  15. Effects of antisense oligonucleotides targeting VEGF on radio sensitivity of uterine cervix cancer Hela cells%血管内皮生长因子反义核酸对宫颈癌Hela细胞的放射增敏作用

    Institute of Scientific and Technical Information of China (English)

    Lina Xing; Li Qi

    2009-01-01

    Objective: To determine the impact of antisense oligonucleotides targeting vascular endothelial growth factor (VEGF) on radiosensitivity of uterine cervix cancer Hela cells. Methods: VEGF antisense oligodeoxynucleotides (ASODN) was transfected into Hela cells by liposome-mediated method. Cells transfected with the oligodeoxynuclecotide and saline were used as control groups. Cells were irradiated by 6 MV X ray at the dose of 0 Gy, 2 Gy, 4 Gy and 6 Gy respectively. The expression of VEGF mRNA was determined by RT-PCR. Apoptosis were evaluated using FCM. Cloning efficiency was deter-mined by colony formation assay. Results: The expression of VEGF mRNA was inhibited by ASODN (P < 0.01) in Hela cells. The inhibited activation which was influenced by radiation resulted in increasing apoptosis (P < 0.01) and inhibiting plating efficiency (P < 0.01). Conclusion: The expression of VEGF induced by Ⅹ irradiation in Hela cells can be blocked by VEGF ASODN. Treatment with VEGF might increase apoptosis in HeLa cells and enhance radiosensitivity.

  16. Novel Efficient Cell-Penetrating, Peptide-Mediated Strategy for Enhancing Telomerase Inhibitor Oligonucleotides.

    Science.gov (United States)

    Muñoz-Alarcón, Andrés; Eriksson, Jonas; Langel, Ülo

    2015-12-01

    At present, there are several therapeutic approaches for targeting telomerase in tumors. One in particular, currently undergoing clinical trials, is based on synthetic lipid-modified oligonucleotide antagonists aimed at inhibiting the ribonucleoprotein subunit of human telomerase. However, while enabling efficient uptake, the lipid modifications reduce the potency of the therapeutic oligonucleotides compared to nonmodified oligonucleotides. Moreover, lipid modification may increase oligonucleotide accumulation in the liver causing undesirable hepatotoxicity. Noncovalent complexation strategies for cell-penetrating peptide (CPP)-mediated delivery present an option to circumvent the need for potency-reducing modifications, while allowing for a highly efficient uptake, and could significantly improve the efficiency of telomerase-targeting cancer therapeutics. Delivery of a nonlipidated locked nucleic acid/2'-O-methyl mixmer significantly inhibits the telomerase activity in treated HeLa cells. The inhibitory effect was further improved through addition of a CPP. Furthermore, calculated IC50-values for the oligonucleotide delivered by CPPs into HeLa cells are more than 20 times lower than telomerase inhibitor Imetelstat, currently undergoing clinical trials. These results emphasize the potential of CPP-mediated delivery of future pharmaceuticals and provide means by which to enhance an already promising therapeutic strategy for cancer treatment.

  17. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    Science.gov (United States)

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased

  18. The Role of Structural Elements of the 5'-Terminal Region of p53 mRNA in Translation under Stress Conditions Assayed by the Antisense Oligonucleotide Approach.

    Directory of Open Access Journals (Sweden)

    Agata Swiatkowska

    Full Text Available The p53 protein is one of the major factors responsible for cell cycle regulation and stress response. In the 5'-terminal region of p53 mRNA, an IRES element has been found which takes part in the translational regulation of p53 expression. Two characteristic hairpin motifs are present in this mRNA region: G56-C169, with the first AUG codon, and U180-A218, which interacts with the Hdm2 protein (human homolog of mouse double minute 2 protein. 2'-OMe modified antisense oligomers hybridizing to the 5'-terminal region of p53 mRNA were applied to assess the role of these structural elements in translation initiation under conditions of cellular stress. Structural changes in the RNA target occurring upon oligomers' binding were monitored by the Pb2+-induced cleavage method. The impact of antisense oligomers on the synthesis of two proteins, the full-length p53 and its isoform Δ40p53, was analysed in HT-29, MCF-7 and HepG2 cells, under normal conditions and under stress, as well as in vitro conditions. The results revealed that the hairpin U180-A218 and adjacent single-stranded region A219-A228 were predominantly responsible for high efficacy of IRES-mediated translation in the presence of stress factors. These motifs play a role of cis-acting elements which are able to modulate IRES activity, likely via interactions with protein factors.

  19. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.

    Directory of Open Access Journals (Sweden)

    Mohammed Bakkali

    Full Text Available Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES causes preferential uptake of conspecific DNA, but the function(s behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein

  20. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide.

    Science.gov (United States)

    Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie

    2014-07-01

    Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy.

  1. Different effects of antisense RelA p65 and NF-κB1 p50 oligonucleotides on the nuclear factor-κB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Both Anton

    2001-08-01

    Full Text Available Abstract Background Activation of nuclear factor-κB (NF-κB is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-α (TNF-α induced and NF-κB mediated expression of intercellular adhesion molecule-1 (ICAM-1 can be inhibited by antisense RelA p65 and NF-κB1 p50 oligonucleotides (RelA p65 and NF-κB1 p50. Results Smooth muscle cells (SMC from human coronary plaque material (HCPSMC, plaque material of 52 patients, SMC from the human coronary media (HCMSMC, human endothelial cells (EC from umbilical veins (HUVEC, and human coronary EC (HCAEC were successfully isolated (HCPSMC, HUVEC, identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC. 12 hrs prior to TNF-α stimulus (20 ng/mL, 6 hrs RelA p65 and NF-κB1 p50 (1, 2, 4, 10, 20, and 30 μM and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-κB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-κB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-κB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-κB1 p50. Conclusions The data point out that differences exist in the NF-κB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-κB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  2. Antisense-Mediated Depletion of Tomato Chloroplast Omega-3 Fatty Acid Desaturase Enhances Thermal Tolerance

    Institute of Scientific and Technical Information of China (English)

    Xun-Yan Liu; Jing-Hua Yang; Bin Li; Xiu-Mei Yang; Qing-Wei Meng

    2006-01-01

    A chloroplast-localized tomato (Lycopersicon esculentum Mill.) ω-3 fatty acid desaturase gene (LeFAD7) was isolated and characterized with regard to its sequence, response to various temperatures, and function in antisense transgenic tomato plants. The deduced amino acid sequence had four histidine-rich regions, of which three regions were highly conserved throughout the whole ω-3 fatty acid desaturase gene family.Southern blotting analysis showed that LeFAD7was encoded by a single copy gene and had two homologous genes in the tomato genome. Northern blot showed that LeFAD7was expressed in all organs and was especially abundant in leaf tissue. Meanwhile, expression of LeFAD7was induced by chilling stress (4 ℃),but was inhibited by high temperature (45 ℃), in leaves. Transgenic tomato plants were produced by integration of the antisense LeFAD7 DNA under the control of a CaMV35S promoter into the genome. Antisense transgenic plants with lower 18: 3 content could maintain a higher maximal photochemical efficiency (Fv/Fm)and O2 evolution rate than wild-type plants. These results suggested that silence of the LeFAD7 gene alleviated high-temperature stress. There was also a correlation between the low content of 18: 3 resulting from silence of the LeFAD7 gene and tolerance to high-temperature stress.

  3. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells

    Science.gov (United States)

    Descostes, Nicolas; Heidemann, Martin; Spinelli, Lionel; Schüller, Roland; Maqbool, Muhammad Ahmad; Fenouil, Romain; Koch, Frederic; Innocenti, Charlène; Gut, Marta; Gut, Ivo; Eick, Dirk; Andrau, Jean-Christophe

    2014-01-01

    In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5′ associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability. DOI: http://dx.doi.org/10.7554/eLife.02105.001 PMID:24842994

  4. Dose-effect relationship of antisense oligonucleotide of type Ⅰ procollagen on hypertrophic scar%Ⅰ型前胶原基因反义核酸对增生性瘢痕作用的量效关系

    Institute of Scientific and Technical Information of China (English)

    祁少海; 利天增; 谢举临; 贲晓松; 唐冰; 罗超权; 何洁华

    2001-01-01

    目的了解Ⅰ型前胶原基因反义寡聚核苷酸对人增生性瘢痕的作用,探讨增生性瘢痕的基因治疗。方法选择120只裸鼠建立增生性瘢痕动物模型,将模型随机分为空白对照组(C组,6只)、RPMI1640组(R组,6只)、反义寡聚核苷酸1(ASONs1)治疗组(54只)及反义寡聚核苷酸2(ASONs1)治疗组(54只),后两组又分为25,50,100 μg/100 μl三个剂量组,每个剂量组又分为治疗7,10,14 d 3组;分别合成位于Ⅰ型前胶原基因5'端翻译区域21 bp的ASONs1和位于第1个外显子与第1个内含子之间22 bp ASONs2,用微注射法分别将两基因片段作用于动物模型,通过测定增生性瘢痕Ⅰ型胶原含量变化、瘢痕体积变化以及运用光、电镜研究不同剂量反义寡聚核苷酸的抑制作用。结果 ASONs1和ASONs2能使瘢痕体积缩小,在治疗10,14 d后,瘢痕组织中Ⅰ型胶原含量降低,与C组和R组比较,差异有显著性意义(P<0.05);光、电镜下见瘢痕结构疏松,胶原纤维变小,成纤维细胞的粗面内质网和线粒体减少,而C组和R组无明显变化。结论 ASONs1和ASONs2能够有效抑制Ⅰ型胶原蛋白的合成,从而抑制瘢痕增生。Z%Objective To investigate the effect of antisense oligonucleotide of type Ⅰ procollagen on hypertrophic scar and to explore a new gene therapy to hypertrophic scar.  Methods The scar models were established in 120 nude mice by a microinjection of ASONs1 and ASONs2. All the mice were divided into blank control group (6 mice), RPMI1640 group (6 mice), ASONs1 treatment group (54 mice) and ASONs2 treatment group (54 mice). The latter 2 groups were subdivided into 25, 50 and 100 μg/μl groups which were further assigned into 3 groups, i.e., 7, 10 and 14 days after treatment. The phosphorothioate ASONs1 and ASONs2 for type Ⅰ collagen used in this study were complementary to type Ⅰ collagen mRNA at the translationregion (21 bp) and at the

  5. Survivin反义寡核苷酸协同Taxol诱导肺癌细胞株凋亡%Effect of Survivin Antisense Oligonucleotide Combined with Taxol on Induced Apoptosis in Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    陈余清; 夏雪梅; 蔡映云; 黄礼年; 李殿明; 胡俊锋

    2005-01-01

    [目的]研究Survivin反义寡核苷酸(antisense oligonucleotide,ASODN)单独或联合Taxol对肺癌细胞株Survivin mRNA和蛋白表达,细胞凋亡,生长抑制率的影响.[方法]Survivin ASODN经脂质体介导转染人小细胞肺癌细胞株NCI-H446,用RT-PCR法、Western blot法检测Survivin表达;Survivin ASODN单独、联合Taxol作用NCI-H446细胞后,用MTT法检测细胞生长抑制率,台盼兰拒染实验检测细胞死亡率,流式细胞仪检测细胞凋亡并计算两药相互作用指数(CDI).[结果]Survivin ASODN转染NCI-H446细胞后,Survivin mRNA表达和蛋白表达明显下调,其中SurvivinASODN 500nM作用72h时Survivin mRNA抑制率达62.72%,效果最佳;Survivin ASODN单独或联合Taxol作用NCI-H446细胞后发现Survivin ASODN联合Taxol作用的效果明显优于两药单独应用(P<0.01).其联用时细胞凋亡率达73.3%,而单用时分别为43.6%和23.8%.其联用时细胞生长抑制率达80.1%,而单用时抑制率分别为50.4%和30.5%(P均<0.01).两药联用组细胞死亡率达69.9%,高于两药单用时的41.4%和24.8%(P均<0.01);CDI值为0.43,表明两药具有显著协同作用.[结论]Survivin ASODN能够抑制肺癌细胞株Survivin mRNA和蛋白表达并诱导肺癌细胞凋亡;Survivin ASODN能够增加Taxol的敏感性.

  6. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides

    Science.gov (United States)

    Bertoni, Carmen; Rustagi, Arjun; Rando, Thomas A.

    2009-01-01

    Gene editing mediated by oligonucleotides has been shown to induce stable single base alterations in genomic DNA in both prokaryotic and eukaryotic organisms. However, the low frequencies of gene repair have limited its applicability for both basic manipulation of genomic sequences and for the development of therapeutic approaches for genetic disorders. Here, we show that single-stranded oligodeoxynucleotides (ssODNs) containing a methyl-CpG modification and capable of binding to the methyl-CpG binding domain protein 4 (MBD4) are able to induce >10-fold higher levels of gene correction than ssODNs lacking the specific modification. Correction was stably inherited through cell division and was confirmed at the protein, transcript and genomic levels. Downregulation of MBD4 expression using RNAi prevented the enhancement of gene correction efficacy obtained using the methyl-CpG-modified ssODN, demonstrating the specificity of the repair mechanism being recruited. Our data demonstrate that efficient manipulation of genomic targets can be achieved and controlled by the type of ssODN used and by modulation of the repair mechanism involved in the correction process. This new generation of ssODNs represents an important technological advance that is likely to have an impact on multiple applications, especially for gene therapy where permanent correction of the genetic defect has clear advantages over viral and other nonviral approaches currently being tested. PMID:19854937

  7. Conjugated agent insulin-antisense-c-myb-PS-ODN enhances the inhibitory effect on proliferation of rat aortic artery smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM:Vascular smooth muscle cell (SMC) proliferation and migration from the arterial wall media into the intima are believed to play a critical role in the pathogenesis of restenosis. Several studies have demonstrated that phosphothioate (PS) oligodeoxynucleotides targeted against genes involved in SMC proliferation inhibits in vitro SMC proliferation and migration. However, the therapeutic effect of antisense ODN on the individual who receives the treatment of delivery of the agent depends on the efficacy of this agent in great degree. We investigated the inhibition effect of a novel agent, insulin-antisense-c-myb-PS-ODN on SMC proliferation in vitro. METHODS:The rat aortic artery SMCs were cultured in Dulbecco's modified Eagel's medium. The passage 8 to 13 were used as the experiment. Cell surface receptor binding assay was quantified through counting gamma particles emitted from 125    I labeled insulin. SMC rapid proliferation was brought by stimulation of high concentration of fetal bovine serum (FBS). The novel agent of insulin conjugated to the antisense-c-myb-PS-ODN was obtained via incubation of both in condition of certain reagents, pH, temperature, and ion concentration. The characterization and purification of the agent was performed through HPLC. Inhibition of SMC proliferation was reflected by incorporation rate of trillium labeled thymidine deoxyribonucleotide.RESULTS:The binding efficacy of insulin to the receptor was remarkably increased in SMC cultured in supplement of 20% FBS. The inhibition effect of conjugator insulin-c-myb-antisense-PS-ODN was stronger than that of the simple c-myb-antisense-PS-ODN. The inhibition rate of conjugator and simple form on SMC proliferation were 48.34% and 29.54%, respectively. CONCLUSION:The binding efficacy and specificity of c-myb-antisense-PS-ODN to SMC may be enhanced by the insulin receptor mediation through the insulin-insulin receptor interaction. The insulin-receptor targeted method may be a

  8. Antisense gene therapy using anti-k-ras and antitelomerase oligonucleotides in colorectal cancer Eficacia de la terapia génica antisentido utilizando oligonucleótidos anti K-ras y antitelomerasa en cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    S. Lledó

    2005-07-01

    Full Text Available Aim: to test the efficacy of anti-k-ras and antitelomerase oligonucleotides for disabling colorectal cancer cell growth. Material and methods: an established human colorectal cancer cell line (SW 480, ATTC® was used. Oligodeoxiribonucleotides (ODNs have a phosphorotioate modification to ensure intracellular intake. We used an antitelomerase ODN (Telp5 and two anti-k-ras ODNs (AS-KRAS and ISIS. AS-KRAS is designed to join the k-ras oncogene's exon 1. ISIS links to the terminal transcription unit 5' of k-ras. Telp5 joins the template region of the hTR telomerase subunit. ODNs have been tested in different concentrations (1, 5, 10, 20 micromolar. Cell viability has been tested at 48 and 72 hours. Statistical analysis and graphic design were made with the statistical package "Analyzing Data with GraphPad Prism-1999", GraphPad Sofware Inc., San Diego CA©. We used the Student's t test for statistical analysis. Results: the lowest dose (1 µM was not effective. Using the highest dose (20 mM for 48 hours of combined AS-KRAS and Telp5 cell viability decreased to 99.67%. The rest of results varied depending on ODN type, dose, and exposure time. Conclusions: tested antisense ODNs stop colorectal cancer cell growth, and a combination of anti-telomerase and anti-k-ras is the most useful treatment. Efficacy is best with a higher dose and longer treatment period.Objetivo: evaluar la eficacia de oligonucleótidos anti k-ras y antitelomerasa para detener el crecimiento tumoral en el cáncer colorrectal. Material y métodos: se ha empleado una línea celular establecida de cáncer colorrectal humano (SW 480, ATTC®. Los oligodesoxirribonucleótidos (ODN utilizados en el presente trabajo presentan modificación fosforotioato con el fin de mejorar su estabilidad en presencia de fluidos biológicos. Hemos utilizado un ODN antitelomerasa (Telp5, y dos ODN anti k-ras (AS-KRAS e ISIS. AS-KRAS actúa en el exón 1 e ISIS actúa a nivel de la unidad terminal de

  9. [Knock-down of apollon gene by antisense oligodeoxynucleotide inhibits the proliferation of Lovo cells and enhances chemo-sensitivity].

    Science.gov (United States)

    He, Jin-hua; Zhang, Xiao-ying; Wu, Feng-yun; Liao, Xiao-li; Wang, Wei; Jiang, Jian-wei

    2011-02-01

    In this study, the effects of apollon antisense oligodeoxynucleotide (ASODN) on the proliferation and apoptosis of human Lovo cells in vitro were investigated. Apollon ASODN was incubated with human colorectal Lovo cells for 48 h, the proliferation inhibition and the clone forming rates were detected by WST method and clone formation assay, respectively. The expression of apollon mRNA was analyzed by real time fluorescent quantitative reverse transcription polymerase chain reaction. The percentage of apoptotic cells and cell cycle distribution were determined by flow cytometry. The morphology of apoptotic cells was examined by fluorescence microscope. Lovo cells incubated with apollon ASODN combined with 5-fluorouracil (5-FU), cisplatin (DDP) or epirubicin (EPI) of different concentrations, cell proliferation inhibition rates were detected with WST method and IC50 was calculated. It was found that ASODN targeting apollon gene could all suppress the growth of Lovo cells and induce apoptosis of these cells significantly (P 5-FU, DDP and EPI on Lovo cells combined with apollon ASODN (0.08 micromol x L(-1)) were enhanced independently compared with single 5-FU, DDP and EPI groups, and the sensitivity enhanced about 2.58, 4.47, and 5.33 times respectively. It can be concluded that ASODN targeting apollon can suppress the expression of apollon mRNA, and inhibit the proliferation, induce apoptosis, arrest cell cycle at S phase of colorectal cancer Lovo cells in vitro and enhance the chemo-sensitivity to 5-FU, DDP and EPI.

  10. A Targeted Oligonucleotide Enhancer of SMN2 Exon 7 Splicing Forms Competing Quadruplex and Protein Complexes in Functional Conditions

    Directory of Open Access Journals (Sweden)

    Lindsay D. Smith

    2014-10-01

    Full Text Available The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5′ end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs.

  11. Diversification of antisense research and development: review of the Ringberg meeting, April 1994. Mechanisms of antisense-mediated gene silencing.

    Science.gov (United States)

    Hawkins, J W; Nellen, W

    1994-01-01

    Antisense technology has established itself as a new and vibrant entrant into the discipline of molecular biology. As such, it has contributed to basic research by providing tools for the molecular dissection of diverse experimental systems. In applied research, antisense approaches have contributed to development of agricultural products (D. Grierson) now coming to market and to the design of a number of oligonucleotide drugs, now in clinical trials. However, few activities to date have focused on the study of antisense per se. Further, few conceptual perspectives have regarded antisense as an integral part of cellular function and genetic regulation. The Ringberg conference showcased a number of systems that would seem unrelated if we regard antisense as a superficial tool to be imposed on nature. On the other hand, if we want to begin to regard antisense as a field of its own with deeper biological and genetic rationales, the Ringberg meeting provided much tantalizing evidence to do so.

  12. Oligonucleotide therapeutics: chemistry, delivery and clinical progress.

    Science.gov (United States)

    Sharma, Vivek K; Watts, Jonathan K

    2015-01-01

    Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.

  13. Effect of a antisense oligonucleotide to noggin on the expression of nestin and GFAP in the hippocampus of adult rats%反义Noggin基因对成年大鼠海马内Nestin及GFAP表达的影响

    Institute of Scientific and Technical Information of China (English)

    徐海伟; 范晓棠

    2005-01-01

    目的探讨Noggin基因对成年大鼠海马内Nestin及GFAP表达的影响.方法反义寡核苷酸技术封闭内源性Noggin基因的表达,免疫组化法检测成年大鼠海马内Nestin与GFAP的表达.结果侧脑室连续4 d注射Noggin基因的反义寡核苷酸后,可见海马齿状回(dentate gyrus,DG)内Nestin阳性细胞数与GFAP阳性细胞数较对照组显著增加;室下区GFAP阳性细胞数亦明显增加.结论Noggin对成年海马干细胞的分化有重要作用,内源性Noggin基因的表达可使神经干细胞向神经元方向分化.%Objective To examine the role of noggin on the expression of nestin and glial fibrillary acidic protein (GFAP) in the hippocampus of adult rats. Methods Antisense oligodeoxynucleotide (ASODN) technique was employed to inhibit endogenous noggin expression and immunohistochemistry was used to detect the expressions of Nestin and GFAP in the hippocampus of adult rats. Results It was observed that the number of nestin and GFAP immunoreactive cells in the dentate gyrus (DG) of hippocampus was increased in adult rats treated with antisense oligodeoxynucleotide to noggin. Moreover, the number of GFAP immunoreactive cells was increased in the subventricular zone of the rats treated with antisense oligodeoxynucleotide to noggin. Conclusion The results in the present study indicates that noggin may play a role in the differentiation of neural stem cells in the adult hippocampus, and it promotes the differentiation of neural stem cells in the DG to neuronal fate.

  14. Hydrogel-based protein and oligonucleotide microchips on metal-coated surfaces: enhancement of fluorescence and optimization of immunoassay.

    Science.gov (United States)

    Zubtsova, Zh I; Zubtsov, D A; Savvateeva, E N; Stomakhin, A A; Chechetkin, V R; Zasedatelev, A S; Rubina, A Yu

    2009-10-26

    Manufacturing of hydrogel-based microchips on metal-coated substrates significantly enhances fluorescent signals upon binding of labeled target molecules. This observation holds true for both oligonucleotide and protein microchips. When Cy5 is used as fluorophore, this enhancement is 8-10-fold in hemispherical gel elements and 4-5-fold in flattened gel pads, as compared with similar microchips manufactured on uncoated glass slides. The effect also depends on the hydrophobicity of metal-coated substrate and on the presence of a layer of liquid over the gel pads. The extent of enhancement is insensitive to the nature of formed complexes and immobilized probes and remains linear within a wide range of fluorescence intensities. Manufacturing of gel-based protein microarrays on metal-coated substrates improves their sensitivity using the same incubation time for immunoassay. Sandwich immunoassay using these microchips allows shortening the incubation time without loss of sensitivity. Unlike microchips with probes immobilized directly on a surface, for which the plasmon mechanism is considered responsible for metal-enhanced fluorescence, the enhancement effect observed using hydrogel-based microchips on metal-coated substrates might be explained within the framework of geometric optics.

  15. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.;

    2003-01-01

    of specific neurons in the brains of HD patients correlate with the expression of mutant huntingtin. Therefore, we have studied whether mutant huntingtin expression can be downregulated by antisense technique. Methods NT2 precursor cells and differentiated postmitotic NT2-N neurons, respectively, were...... transfected with plasmid constructs containing exon 1 of the HD gene with expanded CAG repeats in frame with the reporter protein EGFP. The transfected cell cultures were treated with a phosphorothioated antisense oligonucleotide (PS-ASHD/20+) or a control oligonucleotide either by cotransfection...... or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...

  16. Carboranyl oligonucleotides. 3. Biochemical properties of oligonucleotides containing 5-(o-carboranyl-l-yl)-2{prime}-deoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Lesnikowski, Z.J.; Fulcrand, G.; Lloyd, R.M. Jr. [Veterans Affairs Medical Center and Georgia Research Center for AIDS and HIV Infections, Decatur, GA (United States)]|[Emory Univ. School of Medicine, Atlanta, GA (United States)

    1996-05-07

    Boronated oligonucleotides are potential candidates for boron neutron capture therapy, antisense technology, and as tools in molecular biology. The biological properties of dodecathymidylic acids containing one or more 5-(o-carboran-l-yl)-2{prime}-deoxyuridine residues at different locations within the oligonucleotide chain were studied. 5-(o-carboran-l-yl)-2{prime}-deoxyuridine containing oligonucleotides manifested marked increased lipophilicity and resistance to 3{prime}- or 5{prime}-phosphodiesterases compared to the corresponding unmodified oligomer. They were substrates for T4 polynucleotide kinase and primers for Escherichia coli polymerase I and human immunodeficiency virus type 1 reverse transcriptase but not for human DNA polymerase {alpha} and {beta}. They also formed heteroduplexes that were substrates for E. coli RNase H, an essential property for antisense technology. These studies indicate that the carboranyl-containing oligonucleotides have desirable properties that need to be exploited further in the design of novel biopharmaceuticals. 33 refs., 2 figs., 1 tab.

  17. Template-Directed Ligation of Peptides to Oligonucleotides

    Science.gov (United States)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  18. 鞘内注射NR2B反义寡核苷酸对纳洛酮诱发吗啡依赖大鼠戒断反应的影响%Effect of NR2B antisense oligonucleotide on naloxone-induced withdrawal responses in morphine-dependent rats

    Institute of Scientific and Technical Information of China (English)

    卫毅; 石翊飒; 张双银; 马永丰

    2010-01-01

    Objective To investigate the effect of NR2B antisense oligonucleotide on naloxone-induced withdrawal responses in morphine-dependent rats. Methods Famale SD rats weighing 230-270 g were anesthetized with intraperitoneal pentobarhital 60 mg/kg. Intrathecal (IT)catheter was placed at L3,4 interspace.Thirty-two rats in which FT catheter was successfully placed were randomly divided into 4 groups ( n = 8 each) : group C control; group MD morphine dependence; group AO NR2B antisense oligonucleotide (aNR2B) and group SO NR2B sense oligonucleotide (sNR2B) . In group MD, AO, SO chronic morphine dependence was induced by increasing doses of subcutaneous morphine for 6 days. The initial dose of morphine was 10 mg/kg twice a day and was increased by 10 mg/kg twice every other day and reached 50 mg/kg on the 6th day. In group AO and SO IT aNR2B or sNR2B 15 nmol was administered simultaneously with subcutaneous morphine. Morphine withdrawal responses was induced by IT naloxone 4 mg/kg and scored based on the responses (0 = normal; higher scores signify severer responses) . The weight loss was calculated.The expression of NR1, NR2A and NR2B mRNA in hippocampus was determined by RT-PCR. Results The morphine withdrawal syndrome and weight loss were significantly incresed in group MD, AO and SO, while NR2B mRNA expression in hippocampus was up-regulated in group MD and SO compared with group C. The morphine withdrawal syndrome and weight loss were significantly decreased, NR2A mRNA expression in hippocampus was up-regulated and NR2B mRNA expression was down-regulated in group AO compared with group MD. There was no significant difference in NR1 mRNA expression between the 4 groups . Conclusion NR2B antisense oligonucleotide can suppress morphine withdrawal responses through the regulation of NMDA receptor level and construction in hippocampus.%目的 评价鞘内注射N-甲基-D-天门冬氨酸(NMDA)受体2B亚基(NR2B)反义寡核苷酸对纳洛酮诱发吗啡依赖大

  19. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    DEFF Research Database (Denmark)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most...... promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense...

  20. Enhanced therapeutic effects for human pancreatic cancer by application K-ras and IGF-IR antisense oligodeoxynucleotides

    Institute of Scientific and Technical Information of China (English)

    Yong-Mei Shen; Xiao-Chun Yang; Chen Yang; Jun-Kang Shen

    2008-01-01

    AIM:To investigate the combined effects of K-ras antisense oligodeoxynucleotide(K-ras ASODN)specific to GTT point mutation at codon 12 and type I insulin-like growth factor receptor(IGF-IR)antisense oligodeoxynucleotide(IGF-IR ASODN)on proliferation and apoptosis of human pancreatic cancer Patu8988 cells in vitro and in vivo.METHODS:K-ras gene point mutation and its style at codon 12 of human pancreatic cancer cell line Patu8988 were detected by using polymerase chain reaction with special sequence primers(PCR-SSP)and sequence analysis.According to the mutation style,K-ras mutation ASODN specific to K-ras point mutation at codon 12 was designed and composed.After K-ras ASODN and IGF-IR ASODN treated on Patu8988 cells respectively or cooperatively,the proliferation and morphological change of Patu8988 cells were analyzed by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide(MTT)assay,colony forming assay and transmission electron microscopy;the expression of K-ras and IGF-IR mRNA and protein in the treated cells was measured by reverse-transcript polymerase chain reaction(RT-PCR)and flow cytometry respectively;apoptosis was determined by flow cytometry.The combined antitumor activity of K-ras ASODN and IGFIR ASODN was evaluated in BALB/C nude mice bearing human pancreatic cancer inoculated with Patu8988 cells.RESULTS:The results of PCR-SSP and sequence analysis showed that the human Dancreatic cancer cell line Patu8988 had point mutation at coclon 12,and the mutation style was GGT→GTT.2-32 μg/mL K-ras ASODN and 2-32 μg/mL IGF-IR ASODN could inhibit Patu8988 cells' growth,induce apoptosis and decrease the expression of K-ras and IGF-IR mRNA and protein alone.However,there was much more effective inhibition of growth and induction of apoptosis by their combination than by each one alone.In tumor bearing mice,the combination of K-ras ASODN and IGF-IR ASODN showed a significant inhibitory effect on the growth of transplanted pancreatic cancer,resulting in

  1. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    Science.gov (United States)

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  2. Studies of Liposomal bcl-2 Antisense Oligode-oxynucleofide Induction of Apoptosis in Raji Cells

    Institute of Scientific and Technical Information of China (English)

    DongmeiHe; HuanZhong

    2004-01-01

    OBJECTIVE To explore the effect of liposomal G3139 and transfected antisense phosphorothioate oligodeoxynucleotides directed against the coding region of the bcl-2 messenger RNA and the translation site on apoptosis in Raji cells.METHODS Cytotoxic effects were measured by use of the MTT method; The expression levels of Bcl-2 protein were assayed by immunofiuorescence using a fluoresce isothiocyanate label. Apoptosis was determined by morphological observation and flow cytometric analysis.RESULTS The 2 antisense oligonucleotides and G3139 can reduce Bcl-2 protein levels and Raji cell viability (IC50=4.54, 4.72 and 4.26 μmol/L, respectively), and induce apoptosis. A scrambled sequence control oligonucleotide and empty liposomes did not alter cell viability, Bcl-2 protein expression or apoptosis rates. There was no difference in reducing Bcl-2 protein levels and apoptosis rates found among the 3 antisense oligonucleotides.CONCLUSION The 2 antisense oligodeoxynucleotides of bcl-2 messenger RNA can effectively induce apoptosis of Raji cells. The 2 antisense sequences and G3139 have a similarity in their antisense effect.

  3. 细胞周期蛋白E2反义脱氧寡核苷酸对K562细胞增殖及凋亡的调控作用%Effect of cyclin E2 antisense oligonucleotide on human leukemic cell line K562

    Institute of Scientific and Technical Information of China (English)

    徐丽粉; 郭晓楠; 刘英芳

    2012-01-01

    Objective To investigate the effect of cyclin E2 antisense oligonucleotide ( ASON) on human leukemic cell line K562. Methods Cyclin E2 ASON was used in vitro culture K562 cell study. MTT assay was used to measure the growth inhibitory effect of transfection of ASON and lipofectamine TM2000. The Mrna expression levels of cyclin E2 were examined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Apopsis was detected by flow cytometry and morphology method. Results Cyclin E2 ASON specifically inhibited K562 cell Mrna expression level as well as the K562 cell proliferation. After transfection with cyclin E2 ASON.K562 cells developed apoptosis. Conclusion Cyclin E2 ASON can specifically inhibit K562 cell Mrna expression levels as well as the K562 cell proliferation. After being transfected with cyclin E2 ASON,K562 cells developed apoptosis. Cyclin E2 gene is likely to be a new target for antisense nucleotides techonology therapy of leukemia.%目的 研究细胞周期蛋白E2 (cyclin E2)反义脱氧寡核苷酸(ASON)对人红白血病细胞K562增殖的调控作用.方法 采用反义技术合成ASON并与K562细胞共培养.用四甲基偶氮唑蓝(MTT)法检测转染ASON和脂质体lipofectamineTM 2000后的细胞活力,逆转录-聚合酶链式反应(RT-PCR)方法检测转染细胞cyclin E2 mRNA表达水平及流式细胞术和形态学观察检测细胞凋亡.结果 Cyclin E2特异的ASON能显著地抑制cyclin E2mRNA水平的表达(F=26.442,P<0.01);白血病细胞的生长明显受抑制(P<0.01),细胞凋亡明显增加.结果 表明反义脱氧寡核苷酸能有效地抑制K562细胞的增殖,抑制K562细胞cyclin E2 mRNA表达上调,并显著地诱导细胞凋亡.结论 脂质体转染cyclin E2的反义寡核苷酸能够有效地抑制K562细胞cyclin E2 mRNA的表达,同时对白血病细胞K562的生长有明显的抑制作用,并可诱导K562细胞凋亡.提示cyclin E2在细胞周期调控中起作用,cyclinE2基因有望

  4. Inhibition of telomerase with human telomerase reverse transcriptase antisense enhances tumor necrosis factor-a-induced apoptosis in bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao-dong; CHEN Yi-rong

    2007-01-01

    Background Telomerase activity is found in 85%-90% of all human cancers but not in their adjacent normal cells.Human telomerase reverse transcriptase (hTERT) is an essential component in the telomerase complex that plays an important role in telomerase activity. This study investigated the effect of the telomerase inhibition with an hTERT antisense oligodeoxynucleotide (ODN) in bladder cancer cells (T24) on tumor necrosis factor-o (TNF-α)-induced apoptosis.Methods Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and purified. Telomerase activity was measured by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). hTERT mRNA expression was measured by reverse transcription polymerase chain reaction (RT-PCR) assay and a gel-image system.hTERT protein was detected by immunochemistry and flow cytometry. Cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium (MTT) assay. Cell apoptosis was observed by a morphological method and determined by flow cytometry.Results AS PS-ODN significantly inhibited telomerase activity and decreased the levels of hTERT mRNA which preceded the decline in the telomerase activity. AS PS-ODN significantly reduced the percentage of positive cells expressing hTERT protein following the decline of hTERT mRNA levels. There was no difference seen in the telomerase activity, hTERT mRNA expression or the protein levels between the sense phosphorothioate oligodeoxynucleotide (SPS-ODN) and the control group. AS PS-ODN treatment significantly decreased the cell viability and enhanced the apoptotic rate of T24 cells in response to TNF-α while there was no difference in cell viability and apoptotic rate between the S PS-ODN and the control group.Conclusions AS PS-ODN can significantly inhibit telomerase activity by downregulating the hTERT mRNA and protein expression. Treatment with AS PS-ODN may be a potential and most promising strategy for bladder cancer with telomerase

  5. [Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope].

    Science.gov (United States)

    Tan, Shude; Ouyang, Yu; Li, Xinyou; Wen, Ming; Li, Shaolin

    2011-06-01

    The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (PSK-Br-3 mRNA of tumor cell nuclear.

  6. MPC30-DEA70-loaded transforming growth factor beta1 antisense oligonucleotide for transfection of cardiomyocytes%磷酸胆碱聚合物MPC30-DEA70负载转化生长因子β1AS-ODN转染心肌细胞

    Institute of Scientific and Technical Information of China (English)

    杨煜; 张敏; 徐建荣; 林雪烽; 赵侠; 王志荣; 曹希传; 张卓琦

    2015-01-01

    BACKGROUND:Currently, antisense oligonucleotides (AS-ODN) have a good prospect in gene therapy, but AS-ODN with smal molecular weight cannot easily enter into the cels, which is susceptible to nuclease degradation. Therefore, there is stil a lack of fundamental understanding about how to improve their transfection efficiency, and target-based transferring. OBJECTIVE:To investigate whether a weak cationic and phosphorylcholine-containing diblock copolymer (MPC30-DEA70) can act as a carrier system to deliver a chemicaly synthesized transforming growth factor-β1 (TGF-β1) AS-ODN into myocardial cels. METHODS: MPC30-DEA70 was compounded with TGF-β1 AS-ODN at various N/P ratios and the MPC30-DEA70/TGF-β1 AS-ODN complexes were characterized by DNA electrophoresis. MTT assay was used to observe the biocompatibility. Confocal laser scanning microscope was used to observe the distribution and location of MPC30- DEA70/TGF-β1 AS-ODN in cells. Flow cytometry was used to detect the transfection efficiency and fluorescence intensity of MPC30-DEA70/TGF-β1 AS-ODN in cells. Western blot and RT-PCR methods were employed to measure the expression of TGF-β1 in cells. RESULTS AND CONCLUSION: Cell growth inhibition showed that the MPC30-DEA70 had low cytotoxicity to myocardial cells within the effective transfection dosage range (20 mg/L)下才表现出一定的细胞毒性并呈剂量依赖;MPC30-DEA70/TGF-β1AS-ODN 复合物对心肌细胞具有较高的转染效率,并且能够携带转化生长因子β1 AS-ODN进入细胞后下调转化生长因子β1 mRNA和蛋白的表达。新型阳离子磷酸胆碱基聚合物MPC30-DEA70可以有效负载和运输转化生长因子。

  7. 侧脑室注射 ERK5的反义寡核苷酸对小鼠神经病理性痛的作用%Intracerelar ventricular injection of the antisense oligonucleotides of ERK5 inhibits neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    陈秋萍; 杨建平

    2014-01-01

    Objective To explore the effects of extracellular signal-regulated protein kinase 5 signaling pathway in chronic constriction injury ( CCI)-induced neuropathic pain above spinal cord level. Methods The CCI model of neuropathic pain was established.Intracerebroventricular injection of antisense oligonucleotides and immunohistochemical labeling technique were employed.And the heat and mechanical hyperalgesia responses were used to examine the affect of ERK5 in CCI-induced neuropathic pain and the expression of p-CREB ( cAMP response-element binding protein) in spinal cord.Results The mechanical paw withdrawal reflex threshold and thermal reflex latency became significantly lower in CCI-induced mice. Compared with saline group, mechanical and thermal hyperalgesia significantly decreased and the expression of p-CREB protein decreased at spinal cord in oligonucleotide group.Conclusion The ERK5 spinal cord neurons are involved in the regulation of CCI-induced neuropathic pain in mice.And this effect is achieved by adjusting the CREB-dependent gene expression.%目的:探讨脊髓上水平的细胞外信号调节蛋白激酶5( ERK5)信号通路在慢性坐骨神经结扎( CCI )致神经病理性疼痛中的作用。方法制作CCI神经病理性疼痛模型,应用侧脑室注射反义寡核苷酸技术和免疫组织化学标记技术,应用von Frey机械痛敏检测仪和热辐射痛敏检测仪,检测鞘内注射ERK5反义寡核苷酸对神经病理性疼痛小鼠机械缩足反射阈值( MWT )和热缩足反射潜伏期( TWL )、脊髓磷酸化cAMP反应元件结合蛋白( CREB )表达的影响。结果 CCI致神经病理性疼痛刺激后,小鼠患侧后足机械缩足反射阈值和热缩足反射潜伏期均明显降低;侧脑室注射ERK5反义寡核苷酸,与错义寡核苷酸或生理盐水组相比,CCI所致的机械和热痛觉过敏明显减轻;同时,侧脑室注射ERK5反义寡核苷酸抑制了CCI小鼠脊髓p-CREB蛋

  8. Effect of intrathecal NR2B antisense oligonucleotide on congnitive function in morphine-dependent rats%鞘内注射NR2B反义寡核苷酸对吗啡依赖大鼠认知功能的影响

    Institute of Scientific and Technical Information of China (English)

    张双银; 石翊飒; 卫毅

    2010-01-01

    Objective To evaluate the effect of intrathecal (IT) NR2B antisense oligonucleotide (aNR2B) on cognitive function in morphine-dependent rats.Methods Male SD rats weighing 230-270 g were used in this study. The animals were anesthetized with intraperitoneal pentobarbital 60 mg/kg.IT catheter was placed at L3-4 interspace according to the technique described by Yang. Thirty rats in which IT catheter was successfully placed without any complication were randomly divided into 3 groups(n=10 each):control group (group C), morphine dependence group (group MD) and group aNR2B.Morphine dependence was induced in group MD and aNR2B by increasing doses of morphine for 6 days. The initial dose of morphine was 10mg/kg injected subcutaneously (SC) twice a day and was increased by 10 mg/kg.every other day.The final dose was 50mg/kg. Then morphine 30 mg/kg was administered SC once a day for 4 weeks. aNR2B 15 nmol was administered IT at 30 min before SC morphine every day in group aNR2B.In control group normal saline was administered instead of morphine. Morris water maze was used to assess the cognitive function at 0 (T0, baseline),1 and 3 weeks of morphine administration (T1,T2).The escape latency and the number of times the animals crossing the plateform were recorded. The animals were killed after the test and the hippocampus was isolated for determination of choline acetytransferase(ChAT)expression.Results There was no significant difference in the baseline escape latency and the baseline number of times the animals crossing the plateform at T0 among the 3 groups. The escape latency was significantly prolonged and the number of times the animals crossing the plateform decreased at T1 and T2 as compared with the baseline at T0 in group MD.The ChAT expression was significantly down-regulated in group MD as compared with control group. IT aNR2B significantly ameliorated cognitive dysfunction at T1 and T2 and increased ChAT expression in group aNR2B compared with group MD

  9. 术前输注供者CD80low/CD86low树突状细胞延长小鼠同种异体移植心脏存活%Donor dendritic cells treated with B7- 1, B7- 2 antisense oligonucleotide prolonged mouse cardiac allograft survival

    Institute of Scientific and Technical Information of China (English)

    梁晓燕; 陈宗佑; 钱诗光; 李树浓

    2000-01-01

    AIM:To investigate the effect of donor bone marrow derived dentritic cell (DC) treated with B7 - 1, B7 - 2 antisense oligonucleotide on mouse heart allografe survival time and its mechanism. METHODS: There were 7 groups of C57BL/10J (B10) mouse bone marrow DCs which were treated by 400 nM antisense oligonucleotide target to B7 -1, B7 -2 mRNA (AS B7- 1/2), B7- 1 mismatch oligo control ,B7- 2 mismatch control(mASB7- 1/2), lipofeetamine only and non-treatment, respectively. Each group of DC were named as ASB7- 1 DC, ASB7- 2 DC, mASB7 - 1 DC, mAS B7 - 2DC, and Lipo DC, respectively. RESULTS: Flow cytometer results shown that AS B7- 1/2 can inhibit B7- 1 (CD80)and B7- 2 (CD86) molecule express on DC surface, while control groups have no effects. To observe their tolerogenicity in mouse cardiac allograft model, B10→C3H heterotopic heart transplantation were performed. Recepients were received 2 x 106 of DC injection 7 days before transplantation. Results showed that both AS B7 - 1 DC and AS B7 - 2 DC can prolong mouse cardiac allograft survival time to (18.6 + 0.89) days and (23.67 + 10.73) days, respectively, compared with IL - 4 DC [ (6.22 + 0.97) days ( P < 0.01 ) ]. Two mismatch control groups can slightly prolong while oligo DC has no effect. For understanding its mechanism, each group of DC was used as stimulator to stimulated C3H spleen T cell. Results suggested that AS B7 - 1DC and AS B7 - 2 DC had less allo - stimulate function, including MLR and generation CTL and IL - 2 production than IL - 4 DC but control groups have no effect. CONCLUSION: Donor bone marrow derived DC treated with AS B7 - 1 oligo and AS B7 - 2 oligo expressed lower level of CD80 and CD86, respectively. These cells can induce allogeneic T cells anergy in vitro and markedly prolong mouse heart allograft survival time in vivo.%目的:应用B7-1和B7-2反义寡核苷酸(AS B7-1/AS B7-2 oligo)抑制CD80(B7-1)、CD86(B7-2)在供体小鼠骨髓树突状细胞(DC)上的表达,观察这类DC

  10. Targeting several CAG expansion diseases by a single antisense oligonucleotide.

    NARCIS (Netherlands)

    Evers, M.M.; Pepers, B.A.; Deutekom, J.C.T. van; Mulders, S.A.M.; Dunnen, J.T. den; Aartsma-Rus, A.; Ommen, G.J.B. van; Roon-Mom, W.M. van

    2011-01-01

    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion i

  11. Inhibition of VASP Gene Expression on HUVEC by Antisense Oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    De-Ling ZHANG; Jing-Ping Ou YANG; Yong-Ming LIU; Nian WANG

    2005-01-01

    @@ 1 Introduction Vasodilator-stimulated phosphoprotein ( VASP ), a proline-rich founding member of the Ena-VASP proteinfamily, was discovered both as a substrate of cyclic AMPand cyclic GMP-dependent protein kinases and a component of the actin-based cytoskeleton. VASP is associated with focal adhesions, actin filaments, and highly dynamic membrance regions and is a crucial factor in regulating actin remodelling and associated processes such as cellcell adhesion, platelet aggregation and actin-based motility. Phosphorylation may significantly alter the actin binding properties of VASP and phosphorylation of Ser157causes the phosphorylation-induced mobility shift in SDSPAGE from 46 KDa to 50 KDa. Some articles indicate changes of the VASP phosphorylation expression participate in the regulation of actin remodelling in HUVEC under different level of laminar flow[1] . However, a number of seemingly conflicting studies have confused the VASP field, pointing to roles for these proteins in both promotion and inhibition of actin-dependent processes.

  12. Inhibition of VASP Gene Expression on HUVEC by Antisense Oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionVasodilator-stimulated phosphoprotein(VASP),a proline-rich founding member of the Ena-VASP protein family,was discovered both as a substrate of cyclic AMP-and cyclic GMP-dependent protein kinases and a component of the actin-based cytoskeleton.VASP is associated with focal adhesions,actin filaments,and highly dynamic membrance regions and is a crucial factor in regulating actin remodelling and associated processes such as cell-cell adhesion,platelet aggregation and actin-based motility. Phosph...

  13. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay

    Science.gov (United States)

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  14. EFFECT OF BcL-2 ANTISENSE DRUG WITH DIFFERENT STRUCTURE ON THE BIOLOGICAL FUNCTION OF K562 CELLS

    Institute of Scientific and Technical Information of China (English)

    雷小勇; 张洹; 何冬梅

    2004-01-01

    Objective: To study the differences and similarities of the antisense drugs with different structures on the biological functions of K562 cells. Methods: Cytotoxic effects were measured by use of a cell viability assay. Flow cytometric analysis and agarose gel electrophoresis of DNA fragmentation were also performed. The expression level of protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Results: PNA targeting the coding region of the Bcl-2 messenger RNA could effectively inhibit K562 cell viability, down-regulate the synthesis of the Bcl-2 protein and increase cell apoptosis. By 72 h after the Bcl-2 antisense PNA treatment, K562 cells showed more reduction in the level of Bcl-2 protein compared with cells treated with the antisense ODN. After treatment with 10μmol/L of Bcl-2 antisense PNA or antisense ODN for 72 h, apoptotic rates of K562 cells were 13.15±1.13 and 11.72±1.12, respectively. Furthermore, there was significant difference in the percentage of apoptotic cells between antisense PNA group and antisense ODN group. Conclusion: The results suggest that antisense PNA targeting the coding region of Bcl-2 mRNA has better antisense effects than the antisense oligonucleotides on inducing apoptosis of K562 cells.

  15. Anti-tumor activity of splice-switching oligonucleotides

    OpenAIRE

    Bauman, John A; Li, Shyh-Dar; Yang, Angela; Huang, Leaf; Kole, Ryszard

    2010-01-01

    Alternative splicing has emerged as an important target for molecular therapies. Splice-switching oligonucleotides (SSOs) modulate alternative splicing by hybridizing to pre-mRNA sequences involved in splicing and blocking access to the transcript by splicing factors. Recently, the efficacy of SSOs has been established in various animal disease models; however, the application of SSOs against cancer targets has been hindered by poor in vivo delivery of antisense therapeutics to tumor cells. T...

  16. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll

    Indian Academy of Sciences (India)

    Girdhar K Pandey; Amita Pandey; Vanga Siva Reddy; Renu Deswal; Alok Bhattacharya; Kailash C Upadhyaya; Sudhir K Sopory

    2007-03-01

    Entamoeba histolytica contains a novel calcium-binding protein like calmodulin, which was discovered earlier, and we have reported the presence of its homologue(s) and a dependent protein kinase in plants. To understand the functions of these in plants, a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP) was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised. These plants showed variation in several phenotypic characters, of which two distinct features, more greenness and leaf thickness, were inherited in subsequent generations. The increase in the level of total chlorophyll in different plants ranged from 60% to 70%. There was no major change in chloroplast structure and in the protein level of D1, D2, LHCP and RuBP carboxylase. These morphological changes were not seen in antisense calmodulin transgenic tobacco plants, nor was the calmodulin level altered in EhCaBP antisense plants.

  17. Preparation of liposome-coated oligonucleotide labeled with 99mTc and its uptake in vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To explore the preparation method of liposome-coated 99mTc-labeled antisense oligonucleotide (ASON),targeteing the proliferating cell nuclear antigen (PCNA), and to explore the biological characteristics and the uptake kinetics of a radiolabeled probe in vascular smooth muscle cells, an 18-base single-stranded antisense oligonucleotide targeting PCNA mRNA and the complementary strand (sense oligonucleotide, SON) were synthesized. The ASON (SON) was labeled with 99mTc, by conjugating the bifunctional chelator (hydrazino nicotinamide, HYNIC), and purified through a gel filtration column of Sephadex G-25. The product was then encapsulated in cationic liposome (oligofectamineTM). The radiolabeling efficiency, radiochemical purity, stability of the liposome-coated 99mTc-HYNIC-ASON in a phosphate buffered solution (PBS), and fresh human serum and its uptake rate were studied. There was no significant difference between the 99mTc radiolabeling efficiencies of HYNIC-ASON and HYNIC-SON, which were 60.04% ± 1.92% and 59.60% ± 2.53%, respectively (P > 0.05, n = 5). The radiochemical purity of the liposome-coated 99mTc-HYNIC-ASON was 94.70% ± 1.90% (n = 5). And after incubation with PBS and fresh human seAt 90 min after transfection, the uptake rate of the liposome-coated 99mTc-HYNIC-ASON reached its peak of 83.8% ±5.92% in vascular smooth muscle cells (VSMCs) and was much higher than that of the nonliposome-coated 99mTc-HYNIC-ASON, which was 11.16% ± 0.54% (P < 0.01, n = 4). The labeling method of PCNA ASON (SON) conjugated by HYNIC has been proved successful. The liposome was able to enhance the ASON (SON) uptake in VSMCs,and could be widely used as a safe, convenient, effective gene transfer carrier.

  18. Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2

    Directory of Open Access Journals (Sweden)

    Yasunari Yamanaka

    2015-05-01

    Full Text Available Long non-coding RNAs (lncRNAs, including natural antisense transcripts (NATs, are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1, referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2 and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer’s disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  19. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2.

    Science.gov (United States)

    Yamanaka, Yasunari; Faghihi, Mohammad Ali; Magistri, Marco; Alvarez-Garcia, Oscar; Lotz, Martin; Wahlestedt, Claes

    2015-05-12

    Long non-coding RNAs (lncRNAs), including natural antisense transcripts (NATs), are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1), referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2) and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer's disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  20. In situ entry of oligonucleotides into brain cells can occur through a nucleic acid channel

    NARCIS (Netherlands)

    Shi, Fuxin; Gounko, Natasha V.; Wang, Xiaoqin; Ronken, Eric; Hoekstra, Dick

    2007-01-01

    Brain tissue has become a challenging therapeutic target, in part because of failure of conventional treatments of brain tumors and a gradually increasing number of neurodegenerative diseases. Because antisense oligonucleotides are readily internalized by neuronal cells in culture, these compounds c

  1. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-met

  2. LNA-antisense rivals siRNA for gene silencing

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Wengel, Jesper; Stenvang, Jan

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing unprecedented binding affinity toward complementary DNA and RNA while obeying the Watson-Crick base-pairing rules. For efficient gene silencing in vitro and in vivo, fully modified or chimeric LNA oligonucleotides have been a...... or phosphorothioate-DNA segment flanked by LNA gaps, rivals siRNA as the technology of choice for target validation and therapeutic applications....... applied. LNA oligonucleotides are commercially available, can be transfected using standard techniques, are non-toxic, lead to increased target accessibility, can be designed to activate RNase H, and function in steric block approaches. LNA-Antisense, including gapmer LNA containing a central DNA...

  3. Evaluation of a new biocompatible poly(N-(morpholino ethyl methacrylate)-based copolymer for the delivery of ruthenium oligonucleotides, targeting HPV16 E6 oncogene.

    Science.gov (United States)

    Reschner, Anca; Shim, Yong Ho; Dubois, Philippe; Delvenne, Philippe; Evrard, Brigitte; Marcélis, Lionel; Moucheron, Cécile; Kirsch-De Mesmaeker, Andrée; Defrancq, Eric; Raes, Martine; Piette, Jacques; Collard, Laurence; Piel, Géraldine

    2013-08-01

    This study investigates the use of a new biocompatible block copolymer poly(2-(dimethylamino)ethyl methacrylate-N-(morpholino)ethyl methacrylate (PDMAEMA-b-PMEMA) for the delivery of a particular antisense oligonucleotide targeting E6 gene from human papilloma virus. This antisense oligonucleotide was derivatized with a polyazaaromatic Ru(II) complex which, under visible illumination, is able to produce an irreversible crosslink with the complementary targeted sequence. The purpose of this study is to determine whether by the use of a suitable transfection agent, it is possible to increase the efficiency of the antisense oligonucleotide targeting E6 gene, named Ru-P-4. In a recent study, we showed that Oligofectamine transfected Ru-P-4 antisense oligonucleotide failed to inhibit efficiently the growth of cervical cancer cell line SiHa, contrarily to the Ru-P-6 antisense oligonucleotide, another sequence also targeting the E6 gene. The ability of PDMAEMA-b-PMEMA to form polyplexes with optimal physicochemical characteristics was investigated first. Then the ability of the PDMAEMA-b-PMEMA/Ru-P-4 antisense oligonucleotide polyplexes to transfect two keratinocyte cell lines (SiHa and HaCat) and the capacity of polyplexes to inhibit HPV16+ cervical cancer cell growth was evaluated. PDMAEMA-b-PMEMA base polyplexes at the optimal molar ratio of polymer nitrogen atoms to DNA phosphates (N/P), were able to deliver Ru-P-4 antisense oligonucleotide and to induce a higher growth inhibition in human cervical cancer SiHa cells, compared to other formulations based on Oligofectamine.

  4. In vitro detection of mdr1 mRNA in murine leukemia cells with {sup 111}In-labeled oligonucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Jingming; Yokoyama, Kunihiko; Kinuya, Seigo; Michigishi, Takatoshi; Tonami, Norihisa [Kanazawa University Graduate School of Medical Sciences, Department of Biotracer Medicine (Nuclear Medicine), Kanazawa (Japan); Shiba, Kazuhiro [Kanazawa University, Radioisotope Center, Kanazawa (Japan); Matsushita, Ryo [Kanazawa University, Laboratory for Development of Medicine, Faculty of Pharmaceutical Sciences, Kanazawa (Japan); Nomura, Masaaki [Kanazawa University Hospital, Hospital Pharmacy, Kanazawa (Japan)

    2004-11-01

    The feasibility of intracellular mdr1 mRNA expression detection with radiolabeled antisense oligonucleotide (ODN) was investigated in the murine leukemia cell line, P388/S, and its subclonal, adriamycin-resistant cell line, P388/R. The expression level of mdr1 mRNA was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Existence of the multidrug resistance (MDR) phenomenon was assessed via cellular uptake of {sup 99m}Tc-sestamibi (MIBI), a known substrate for P-glycoprotein. A 15-mer phosphorothioate antisense ODN complementary to the sequences located at -1 to 14 of mdr1 mRNA and its corresponding sense ODN were conjugated with the cyclic anhydride of diethylene triamine penta-acetic acid (cDTPA) via an amino group linked to the terminal phosphate at the 5' end at pH 8-9. The DTPA-ODN complexes at concentrations of 0.1-17.4 {mu}Mwere reacted with {sup 111}InCl{sub 3} at pH 5 for 1 h. The hybridization affinity of labeled ODN was evaluated with size-exclusion high-performance liquid chromatography following incubation with the complementary sequence. Cellular uptake of labeled ODN was examined in vitro. Furthermore, enhancing effects of synthetic lipid carriers (Transfast) on transmembrane delivery of ODN were assessed. P388/R cells displayed intense mdr1 mRNA expression in comparison with P388/S cells. {sup 99m}Tc-MIBI uptake in P388/S cells was higher than that in P388/R cells. Specific radioactivity up to 1,634 MBq/nmol was achieved via elevation of added radioactivity relative to ODN molar amount. The hybridization affinity of antisense {sup 111}In-ODN was preserved at approximately 85% irrespective of specific activity. Cellular uptake of antisense {sup 111}In-ODN did not differ from that of sense {sup 111}In-ODN in either P388/S cells or P388/R cells. However, lipid carrier incorporation significantly increased transmembrane delivery of {sup 111}In-ODN; moreover, specific uptake of antisense {sup 111}In-ODN was demonstrated in P388/R

  5. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic...

  6. 博来霉素致肺纤维化大鼠不同时间点吸人STAT1反义寡核苷酸的疗效比较%Therapeutic effects of aerosolized signal transducer and activator of transcription 1 antisense oligonucleotide administered at different time points on bleomycin-induced pulmonary fibrosis: experiment with rats

    Institute of Scientific and Technical Information of China (English)

    李晶; 曾鸣; 朱晨; 王文军; 湛晓勤; 范贤明

    2009-01-01

    目的 探讨雾化吸入信号转导和转录活化因子1(STAT1)反义寡核苷酸(ASON)干预肺纤维化的最佳给药时机.方法 Wistar雌性大鼠25只随机均分为博来霉素(BLM)组、ASON 0 d组、ASON 7 d组、ASON 14 d组和生理盐水(NS)组,前4组气管内灌注BLM建立肺纤维化模型,NS组气管内灌注NS.ASON 0、7、14 d组分别于气管内灌注BLM后立即、第7和14天开始雾化吸入STATI ASON;NS组和BLM组雾化吸入NS.气管内灌注BLM后第28天处死各组大鼠,取肺组织分别行HE和Masson染色,观察肺泡炎和纤维化情况并评分;酶联免疫吸附试验(ELISA)测定支气管肺泡灌洗液(BALF)中转化生长因子β(TGF-β)和肿瘤坏死因子α(TNF-α)浓度.结果 肺组织病理学观察显示ASON 0 d组大鼠肺泡炎和肺纤维化程度明显轻于BLM组和ASON 14 d组,肺泡炎评分(1.80±0.84)和肺纤维化评分(2.60±0.55)均明显低于BLM组(2.40±0.55、4.40±0.55)、ASON 7 d组(2.20±0.45、3.00 ±0.71)和ASON 14 d组(2.20±0.84、4.00±1.00)(均P<0.05);ASON 7 d组肺纤维化评分也明显低于BLM组和ASON 14 d组(均P<0.05).ASON 0 d组BALF中TGF-β与TNF-α浓度[(48.11±3.46)pg/ml、(1.93±0.14)ng/ml]均明显低于BLM组[(57.67±2.46)pg/ml、(2.45±0.25)ng/ml,均P<0.05],TGF-β浓度明显低于ASON 7 d组[(51.42±3.57)pg/ml]和ASON 14 d组[(55.83±1.79)pg/ml](均P<0.05);ASON 7 d组BALF中TGF-β浓度也明显低于BLM组和ASON 14d组(均P<0.05).结论 早期雾化吸入STAT1 ASON对BLM致肺纤维化大鼠的肺纤维化形成有明显阻抑作用,用药越早效果越好,提示雾化吸入STAT1 ASON有可能成为肺纤维化的早期干预手段.%Objective To investigate the curative effects of inhaling signal transducer and activator of transcription 1 (STAT1) antisense oligonucleotide (ASON) on alveolitis and pulmonary fibrosis and the best administration time. Methods Twenty-five adult female Wistar rats were randomly divided into 5 equal groups: BLM group, undergoing intra

  7. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R. [Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 (Israel)

    1996-09-01

    Human neuroblastoma NMB cells take up [{sup 3}H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [{sup 3}H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [{sup 3}H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996

  8. Propionic and Methylmalonic Acidemia: Antisense Therapeutics for Intronic Variations Causing Aberrantly Spliced Messenger RNA

    OpenAIRE

    Rincón, A. ; Aguado, C. ; Desviat, L. R. ; Sánchez-Alcudia, R. ; Ugarte, M. ; Pérez, B. 

    2007-01-01

    We describe the use of antisense morpholino oligonucleotides (AMOs) to restore normal splicing caused by intronic molecular defects identified in methylmalonic acidemia (MMA) and propionic acidemia (PA). The three new point mutations described in deep intronic regions increase the splicing scores of pseudoexons or generate consensus binding motifs for splicing factors, such as SRp40, which favor the intronic inclusions in MUT (r.1957ins76), PCCA (r.1284ins84), or PCCB (r.654ins72) messenger R...

  9. Massive and selective delivery of lipid-coated cationic lipoplexes of oligonucleotides targeted in vivo to hepatic endothelial cells

    NARCIS (Netherlands)

    Bartsch, M; Weeke-Klimp, AH; Meijer, DKF; Scherphof, GL; Kamps, JAAM

    2002-01-01

    Purpose. Previously we reported on massive uptake of liposomes surface-modified with negatively charged aconitylated albumin (Aco-HSA) by liver sinusoidal endothelial cells (EC) in vivo. In the present work we applied this principle for the in vivo delivery of antisense oligonucleotides (ODN) to the

  10. Targeting Cancer with Antisense Oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  11. Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases.

    Science.gov (United States)

    Liao, Wupeng; Dong, Jinrui; Peh, Hong Yong; Tan, Lay Hong; Lim, Kah Suan; Li, Li; Wong, Wai-Shiu Fred

    2017-01-17

    Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD) and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF). The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), and microRNA (miRNA) are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir) has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.

  12. Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Wupeng Liao

    2017-01-01

    Full Text Available Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF. The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO, small interfering RNA (siRNA, and microRNA (miRNA are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.

  13. 超声空化脂质体微气泡促反义寡核苷酸转染的体外实验研究%Ultrasound Activation of Liposome Microbubbles Enhances the Transfer of Antisense Oligonucleotides in Vitro

    Institute of Scientific and Technical Information of China (English)

    罗渝昆; 唐杰; 赵应征; 张彦; 梅兴国; 李建华; 欧伦

    2005-01-01

    目的: 探讨超声空化脂质体微气泡转染反义寡核苷酸HA2741的有效性与安全性.材料和方法: 12孔板培养人乳腺癌细胞并分为: (1)单纯超声照射;(2)单纯造影剂;(3)单纯HA2741;(4)超声照射+HA2741;(5)造影剂+HA2741;(6)造影剂+HA2741+超声照射;(7)脂质体+HA2741;(8)脂质体+HA2741+超声照射.声波发射强度-18.0~0 dB,照射时间5~240 s,给予实验刺激后,荧光显微镜观察HA2741的转染率及细胞的活性,免疫组化检测HER-2蛋白的表达.结果: 第(6)组HA2741转染率显著高于其余各组,约94.6%,造影剂浓度2%、5%时转染效率最高,提高造影剂浓度,转染效率无改变,但细胞活性显著下降.声波发射强度-3.0~-6.0dB,照射时间30~60s,细胞转染效率最高.乳腺癌细胞的HER-2蛋白表达下调,其程度与HA2741转染率呈正相关.结论: 超声空化微气泡造影剂显著增加了基因的转染,安全、简便具有良好的靶向性.

  14. Enhanced annealing of mismatched oligonucleotides using a novel melting curve assay allows efficient in vitro discrimination and restriction of a single nucleotide polymorphism

    Directory of Open Access Journals (Sweden)

    Chan Chee

    2011-08-01

    Full Text Available Abstract Background Many SNP discrimination strategies employ natural restriction endonucleases to discriminate between allelic states. However, SNPs are often not associated with a restriction site and therefore, a number of attempts have been made to generate sequence-adaptable restriction endonucleases. In this study, a simple, sequence-adaptable SNP discrimination mechanism between a 'wild-type' and 'mutant' template is demonstrated. This model differs from other artificial restriction endonuclease models as cis- rather than trans-orientated regions of single stranded DNA were generated and cleaved, and therefore, overcomes potential issues of either inefficient or non-specific binding when only a single variant is targeted. Results A series of mismatch 'bubbles' that spanned 0-5-bp surrounding a point mutation was generated and analysed for sensitivity to S1 nuclease. In this model, generation of oligonucleotide-mediated ssDNA mismatch 'bubbles' in the presence of S1 nuclease resulted in the selective degradation of the mutant template while maintaining wild-type template integrity. Increasing the size of the mismatch increased the rate of mutant sequence degradation, until a threshold above which discrimination was lost and the wild-type sequence was degraded. This level of fine discrimination was possible due to the development of a novel high-resolution melting curve assay to empirically determine changes in Tm (~5.0°C per base-pair mismatch and to optimise annealing conditions (~18.38°C below Tm of the mismatched oligonucleotide sets. Conclusions The in vitro 'cleavage bubble' model presented is sequence-adaptable as determined by the binding oligonucleotide, and hence, has the potential to be tailored to discriminate between any two or more SNPs. Furthermore, the demonstrated fluorometric assay has broad application potential, offering a rapid, sensitive and high-throughput means to determine Tm and annealing rates as an alternative

  15. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.

    Science.gov (United States)

    Cheng, Xinwei; Lee, Robert J

    2016-04-01

    Lipid nanoparticles (LNPs) have shown promise as delivery vehicles for therapeutic oligonucleotides, including antisense oligos (ONs), siRNA, and microRNA mimics and inhibitors. In addition to a cationic lipid, LNPs are typically composed of helper lipids that contribute to their stability and delivery efficiency. Helper lipids with cone-shape geometry favoring the formation hexagonal II phase, such as dioleoylphosphatidylethanolamine (DOPE), can promote endosomal release of ONs. Meanwhile, cylindrical-shaped lipid phosphatidylcholine can provide greater bilayer stability, which is important for in vivo application of LNPs. Cholesterol is often included as a helper that improves intracellular delivery as well as LNP stability in vivo. Inclusion of a PEGylating lipid can enhance LNP colloidal stability in vitro and circulation time in vivo but may reduce uptake and inhibit endosomal release at the cellular level. This problem can be addressed by choosing reversible PEGylation in which the PEG moiety is gradually released in blood circulation. pH-sensitive anionic helper lipids, such as fatty acids and cholesteryl hemisuccinate (CHEMS), can trigger low-pH-induced changes in LNP surface charge and destabilization that can facilitate endosomal release of ONs. Generally speaking, there is no correlation between LNP activity in vitro and in vivo because of differences in factors limiting the efficiency of delivery. Designing LNPs requires the striking of a proper balance between the need for particle stability, long systemic circulation time, and the need for LNP destabilization inside the target cell to release the oligonucleotide cargo, which requires the proper selection of both the cationic and helper lipids. Customized design and empirical optimization is needed for specific applications.

  16. Inhibitory effects of antisense phosphorothioate oligodeoxynucleotides on pancreatic cancer cell Bxpc-3 telomerase activity and cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Yun-Feng Wang; Ke-Jian Guo; Bei-Ting Huang; Yong Liu; Xiao-Yun Tang; Jian-Jun Zhang; Qiang Xia

    2006-01-01

    AIM: To investigate the effect of telomerase hTERT gene antisense oligonucleotide (hTERT-ASO) on proliferation and telomerase activity of pancreatic cancer cell line Bxpc-3.METHODS: MTT assay was used to detect the effect of different doses of hTERT-ASO on proliferation of Bxpc-3 cell for different times. To study the anti-tumor activity,the cells were divided into there groups: Control group (pancreatic cancer cell Bxpc-3); antisense oligonucleotide (hTERT-ASO) group; and nosense oligonucleotide group decorated with phosphorothioate. Telomerase activity was detected using TRAP-PCR-ELISA. Cell DNA distribution was examined using flow cytometry assay.Cell apoptosis was observed by transmission electron microscope in each group.RESULTS: After treatment with 6 mmol/L hTERTASO, cell proliferation was inhibited in dose- and timedependent manner. The telomerase activity decreased after treatment with hTERT-ASO for 72 h. Flow cytometry showed the cell number of G0/G1 phase increased from 2.7% to 14.7%, the cell number of S phase decreased from 72.7% to 51.0%, and a sub-G1 stage cell apoptosis peak appeared in front of G1 stage.CONCLUSION: Telomerase antisense oligodeoxynucleotide can inhibit the proliferation of pancreatic cancer cell line Bxpc-3 and decrease the telomerase activity and increase cell apoptosis rate in vitro.

  17. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model.

    Science.gov (United States)

    Bestas, Burcu; Moreno, Pedro M D; Blomberg, K Emelie M; Mohammad, Dara K; Saleh, Amer F; Sutlu, Tolga; Nordin, Joel Z; Guterstam, Peter; Gustafsson, Manuela O; Kharazi, Shabnam; Piątosa, Barbara; Roberts, Thomas C; Behlke, Mark A; Wood, Matthew J A; Gait, Michael J; Lundin, Karin E; El Andaloussi, Samir; Månsson, Robert; Berglöf, Anna; Wengel, Jesper; Smith, C I Edvard

    2014-09-01

    X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA.

  18. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model

    Science.gov (United States)

    Bestas, Burcu; Moreno, Pedro M.D.; Blomberg, K. Emelie M.; Mohammad, Dara K.; Saleh, Amer F.; Sutlu, Tolga; Nordin, Joel Z.; Guterstam, Peter; Gustafsson, Manuela O.; Kharazi, Shabnam; Piątosa, Barbara; Roberts, Thomas C.; Behlke, Mark A.; Wood, Matthew J.A.; Gait, Michael J.; Lundin, Karin E.; El Andaloussi, Samir; Månsson, Robert; Berglöf, Anna; Wengel, Jesper; Smith, C.I. Edvard

    2014-01-01

    X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton’s tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2′-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro–B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA. PMID:25105368

  19. The effects of antisense PTEN gene transfection on the growth and invasion of glioma cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-jie; ZHENG Zhao-cong; WANG Ru-mi; WANG Shou-sen; YANG Wei-zhong

    2006-01-01

    Objective:To study the effects of antisense PTEN gene on the growth and invasion of glioma cells. Methods:A pcDNA3. 1/Hygro (-) recombinant plasmid containing antisense PTEN gene fragment was constructed. Glioma cells of primary culture were transfected with antisense PTEN gene vector and stably transfected clones were selected. Then, the different growth and invasion abilities and the different MMP9 mRNA expressions of three kinds of cells were observed, including the transfected cells, untransfected cells and the cells transfected with empty vector. Results :The abilities of growth and invasion of the transfected cells and the expressions of MMP9 mRNA were obviously enhanced. Conclusion: Antisense PTEN gene could have a negative impact on the growth and invasion of primary culture glioma cells.

  20. Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant-Associated Fungi.

    Science.gov (United States)

    Ikenaga, Makoto; Tabuchi, Masakazu; Kawauchi, Tomohiro; Sakai, Masao

    2016-09-29

    The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant-associated fungi due to the similar homologies of sequences in primer-annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3' end of the primer-binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant-associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant-associated fungi.

  1. Antisense bcl-2 retrovirus vector increases the sensitivity of a human gastric adenocarcinoma cell line to photodynamic therapy.

    Science.gov (United States)

    Zhang, W G; Ma, L P; Wang, S W; Zhang, Z Y; Cao, G D

    1999-05-01

    The bcl-2 oncoprotein directly prolongs cellular survival by blocking apoptosis and its overexpression is associated with cellular resistance to killing by chemotherapeutic drugs and gamma-irradiation. Meanwhile, it has been shown that bcl-2 antisense oligonucleotide can induce apoptosis or increase toxicity of the treatment in tumors in vivo and in vitro. However, it is difficult to obtain stable transfection by this approach and there are no reports about the effect of an antisense bcl-2 on the sensitivity to oxidative stress induced by photodynamic therapy (PDT). Here we investigated the effect of an antisense bcl-2 RNA retrovirus vector transfer on the sensitivity of 2-butylamino-2-demethoxy-hypocrellin A (2-BA-2-DMHA) photosensitization in a human gastric adenocarcinoma MGC803 cell line. The results indicate that antisense bcl-2-infected MGC803 cells expressed exogenous antisense bcl-2 mRNA measured by reverse transcription polymerase chain reaction and significantly reduced bcl-2 protein determined by western blotting analysis. The decreased expression of bcl-2 protein was accompanied by increased phototoxicity and susceptibility to apoptosis induced by 2-BA-2-DMHA PDT. Our finding suggests that reduction of bcl-2 protein in gastric cancers, and possibly also in a variety of other tumors, may be a novel and rational approach to improve photosensitivity and the treatment outcome.

  2. 包载缺氧诱导因子-1α反义寡核苷酸纳米粒子的制备和特性评价%Preparation and characterization of hypoxia-inducible factor-1α antisense oligonucleotide loaded nanoparticles

    Institute of Scientific and Technical Information of China (English)

    郑延波; 刘胜; 李丽君; 刘万卉

    2011-01-01

    目的 制备一种包载缺氧诱导因子-1α(HIF-1α)反义寡核苷酸的聚乳酸-聚乙醇酸共聚物(PLGA)纳米粒子,并评价其理化特性.方法 应用复乳化-溶剂挥发法制备包载HIF-1α反义寡核苷酸PLGA纳米粒子,并固定其他因素,选择不同的聚乙烯醇(PVA)浓度(0.5%、1.0%、1.5%、2.0%)和乳化速度(17 500、21 500、24 000 r/min),观察其对制备的纳米粒子粒度和载药量的影响;应用电子显微镜和粒度测定仪对制得的纳米粒子进行形态观察和粒径测定;应用高效液相色谱法测定纳米粒子的载药量和包封率并进行体外释药实验.结果 制得的载HIF-1α反义寡核苷酸PLGA纳米粒子外观呈圆形或介于圆形与椭圆形之间,表面光滑圆整,粒径分布范围较窄,平均粒度为320 nm(标准差50 nm),纳米粒子载药量为(0.930±0.015)%,包封率为(79.14±1.78)%;纳米粒子中HIF-1α反义寡核苷酸在24h突释期内累积释放率为31.2%,10d内呈缓慢线性稳定性释放,释放量达81.5%.结论 应用复乳化-溶剂挥发法制备包载HIF-1α反义寡核苷酸PLGA纳米粒子,方法实用有效,工艺稳定,重复性好.%Objective To prepare and characterize the hypoxia-inducible factor-la antisense oligodeoxynucleotide(HIF-lα-ASODN) loaded nanoparticles. Methods Biodegradable polylactide -co -glycolide(PLGA) was used as the carrier material to prepare HIF-lα-ASODN loaded nanoparticles using the emulsification/solvent evaporation technique. The effects of polyvinyl alcohol(PVA) concentration and emulsion speed on drug loading and diameter of nanoparticles were observed. The morphology and size of the nanoparticles were measured by scanning electron microscope and granularity calcimeter, respectively. The drug loading and embedding rates, as well as the in vitro drug release characteristic were investigated with high performance liquid chromatography. The physical stability of the nanoparticles and amplified

  3. Combination Adenovirus-Mediated HSV-tk/GCV and Antisense IGF-1 Gene Therapy for Rat Glioma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To investigate the effects of combination adenovirus-mediated HSV-tk/GCV system and antisense IGF-1 gene therapy for rat glioma and analyze the mechanism.Methods Using the recombinant adenovirus vector,GCV killing effeciency after combined gene transfer of HSV-tk and antisense IGF-1 was observed in vitro.Rat glioma was treated with HSV-tk/GCV and antisense IGF-1 and the survival rate of rats was observed.Results C6 cells transfected with tk and antisense IGF-1 gene were more sensitive to GCV than that transfected with tk gene alone.The survival of the combination gene therapy group was prolonged significantly and large amounts of CD+4,CD+8 lymphocytes were detected in the tumor tissues.Conclusion Antisense IGF-1 gene may enhance the tumor-killing effects of HSV-tk/GCV.

  4. Gold-nanoparticle extraction and reversed-electrode-polarity stacking mode combined to enhance capillary electrophoresis sensitivity for conjugated nucleosides and oligonucleotides containing thioether linkers.

    Science.gov (United States)

    Bosi, Valentina; Sarti, Elena; Navacchia, Maria Luisa; Perrone, Daniela; Pasti, Luisa; Cavazzini, Alberto; Capobianco, Massimo L

    2015-07-01

    We present a capillary electrophoresis method for determining two different C8-conjugated deoxyadenosines, and for oligonucleotides containing them, in which a psoralen or an acridine molecule is bonded to the base via a short alkyl chain containing sulfur ethers at both ends. The sensitivity of the micellar electrokinetic chromatography (MEKC) method was increased by using two preconcentration techniques, micro solid-phase extraction (μSPE) followed by reversed-electrode-polarity stacking mode (REPSM). Variables that affect the efficiency of the extraction in μSPE and preconcentration by REPSM, including the type and volume of extraction nanoparticle, concentration, and injection time, were investigated. Under the optimum conditions, enrichment factors obtained were in the range 360-400. The limits of detection (LODs) at a signal-to-noise ratio of 3 ranged from 2 to 5 nmol L(-1). The relative recoveries of labelled adenosines from water samples were 95-103%. The proposed method provided high enrichment factors and good precision and accuracy with a short analysis time. On the basis of the advantages of simplicity, high selectivity, high sensitivity, and good reproducibility, the proposed method may have great potential for biochemical applications.

  5. Water-absorbent polymer as a carrier for a discrete deposit of antisense oligodeoxynucleotides in the central nervous system.

    Science.gov (United States)

    Bannai, M; Ichikawa, M; Nishimura, F; Nishihara, M; Takahashi, M

    1998-09-01

    One of the problems of introducing antisense oligodeoxynucleotides (ODN) into the central nervous system (CNS) is their rapid disappearance from the target site due to their dispersion and diffusion, which results in poor uptake and/or retention in cells (M. Morris, A.B. Lucion, Antisense oligonucleotides in the study of neuroendocrine systems, J. Neuroendocrinol. 7 (1995) 493-500; S. Ogawa, H.E. Brown, H.J. Okano, D.W. Pfaff, Cellular uptake of intracerebrally administrated oligodeoxynucleotides in mouse brain, Regul. Pept. 59 (1995) 143-149) [2,5]. Recently, we adapted a new method using water-absorbent polymer (WAP; internally cross-linked starch-grafted-polyacrylates) as a carrier for antisense ODN. The polymer forms a hydro-gel after absorbing water which is chemically and biologically inert. In these studies, the polymer (powder-form) is fully swollen by physiological saline containing antisense ODN (0.2 micromol/ml) to make 80-fold volume gel. Hydro-gel (1 microliter) is injected into the target site, and water solutes are assumed to be diffused stoichiometrically into CNS from the surface of the gel. Histological studies indicate that 24 h after the injection, antisense ODN (5'biotinylated-S-oligos of 15 mer) are distributed to within 800 micrometer from the edge of the area where the gel is located and then gradually disappear from this area within days, but still remain within 300-micrometer distance 7 days later. Antisense ODN are effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias, and suppress the synthesis of the target protein. This method can be adapted to slow delivery of antisense ODN and other water soluble substances into the CNS.

  6. Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient.

    Directory of Open Access Journals (Sweden)

    Takashi Saito

    Full Text Available BACKGROUND: Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD. We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. METHODOLOGY/PRINCIPAL FINDINGS: We converted fibroblasts of CXMD(J and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. CONCLUSION/SIGNIFICANCE: Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.

  7. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  8. Functionalization of an Antisense Small RNA.

    Science.gov (United States)

    Rodrigo, Guillermo; Prakash, Satya; Cordero, Teresa; Kushwaha, Manish; Jaramillo, Alfonso

    2016-02-27

    In order to explore the possibility of adding new functions to preexisting genes, we considered a framework of riboregulation. We created a new riboregulator consisting of the reverse complement of a known riboregulator. Using computational design, we engineered a cis-repressing 5' untranslated region that can be activated by this new riboregulator. As a result, both RNAs can orthogonally trans-activate translation of their cognate, independent targets. The two riboregulators can also repress each other by antisense interaction, although not symmetrically. Our work highlights that antisense small RNAs can work as regulatory agents beyond the antisense paradigm and that, hence, they could be interfaced with other circuits used in synthetic biology.

  9. Lipid-based delivery of combinations of antisense oligodeoxynucleotides for the in vitro inhibition of HIV-1 replication.

    Science.gov (United States)

    Lavigne, C; Yelle, J; Sauvé, G; Thierry, A G

    2001-01-01

    We evaluated a new approach to AIDS therapy by using combinations of oligodeoxynucleotides (ODNs), delivered with a lipid-based carrier system, that target different HIV viral genome sites. We identified some of the factors that seem to influence the effectiveness of a combination strategy in cell cultures including ODN concentrations, type of infection (acute vs chronic), backbone modification of the ODN, and the number of sequences. When delivered by the DLS carrier system, some advantages of using a combination of ODNs over treatment with only one ODN could be observed in acute infection assays but not in the chronic infection model. These results suggest that in the acute infection model, the 3 different antisense ODNs in the "cocktail" might block an early step of virus replication by combined inhibitory effects. Various combinations of phosphorothioate-modified (PS) and unmodified oligonucleotides delivered by the DLS system were compared for their antiviral activity in a long-term acute assay using HIV-1 (IIIB strain)-infected MOLT-3 cells. The most effective combination had 3 phosphorothioate antisense ODNs: Srev, SDIS, and SPac (>99% inhibition at 100 pM). However, the additive effect determined when using ODN combinations was rather low, revealing the high level of nonsequence specificity in HIV-1 cell culture models. Data illustrated the high sequence nonspecific activity of ODNs, especially when comparing activity of antisense ODNs with activity of random control sequence ODNs. The latter exhibited an inhibitory effect similar to that of antisense ODNs under our experimental conditions. Nevertheless, we demonstrated that it is possible to achieve high anti-HIV activity by using, in combination, picomolar range concentrations of antisense oligonucleotides complexed to a lipid-based carrier system such as the DLS system, without increasing cell toxicity.

  10. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    Directory of Open Access Journals (Sweden)

    Weizhong Tang

    Full Text Available To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA, (dC, (dG and (dT to silver staining could be ranged as (dA > (dG > (dC > (dT from high to low. It was unexpected that oligo (dT was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt. The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  11. The novel cis-encoded antisense RNA AsrC positively regulates the expression of rpoE-rseABC operon and thus enhances the motility of Salmonella enterica serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Qi eZhang

    2015-09-01

    Full Text Available Bacterial noncoding RNAs are essential in many cellular processes, including response to environmental stress, and virulence. Deep sequencing analysis of the Salmonella enterica serovar Typhi (S. Typhi transcriptome revealed a novel antisense RNA transcribed in cis on the strand complementary to rseC, an activator gene of sigma factor RpoE. In this study, expression of this antisense RNA was confirmed in S. Typhi by Northern hybridization. Rapid amplification of cDNA ends and sequence analysis identified an 893 bp sequence from the antisense RNA coding region that covered all of the rseC coding region in the reverse direction of transcription. This sequence of RNA was named as AsrC. After overexpression of AsrC with recombinantant plasmid in S. Typhi, the bacterial motility was increased obviously. To explore the mechanism of AsrC function, regulation of rseC and rpoE expression by AsrC was investigated. We found that AsrC increased the levels of rseC mRNA and protein. The expression of rpoE was also increased in S. Typhi after overexpression of AsrC, which was dependent on rseC. Thus, we propose that AsrC increased RseC level and indirectly activating RpoE which can initiate fliA expression and promote the motility of S. Typhi.

  12. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors

    Science.gov (United States)

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O.; Burzio, Verónica A.

    2016-01-01

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy. PMID:27507060

  13. Inhibition of microRNA function by antimiR oligonucleotides

    DEFF Research Database (Denmark)

    Stenvang, Jan; Petri, Andreas; Lindow, Morten

    2012-01-01

    MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in many developmental and cellular processes. Moreover, there is now ample evidence that perturbations in the levels of individual or entire families of miRNAs are strongly associated...... with the pathogenesis of a wide range of human diseases. Indeed, disease-associated miRNAs represent a new class of targets for the development of miRNA-based therapeutic modalities, which may yield patient benefits unobtainable by other therapeutic approaches. The recent explosion in miRNA research has accelerated...... the development of several computational and experimental approaches for probing miRNA functions in cell culture and in vivo. In this review, we focus on the use of antisense oligonucleotides (antimiRs) in miRNA inhibition for loss-of-function studies. We provide an overview of the currently employed antisense...

  14. Clinical potential of oligonucleotide-based therapeutics in the respiratory system.

    Science.gov (United States)

    Moschos, Sterghios A; Usher, Louise; Lindsay, Mark A

    2017-01-01

    The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.

  15. In vivo correction of a Menkes disease model using antisense oligonucleotides

    OpenAIRE

    Madsen, Erik C.; Morcos, Paul A.; Mendelsohn, Bryce A.; Gitlin, Jonathan D.

    2008-01-01

    Although the molecular basis of many inherited metabolic diseases has been defined, the availability of effective therapies in such disorders remains problematic. Menkes disease is a fatal neurodegenerative disorder due to loss-of-function mutations in the ATP7A gene encoding a copper-transporting P-type Atpase. To develop therapeutic approaches in affected patients, we have identified a zebrafish model of Menkes disease termed calamity that results from splicing defects in the zebrafish orth...

  16. Oligonucleotide Antiviral Therapeutics: Antisense and RNA Interference for Highly Pathogenic RNA Viruses

    Science.gov (United States)

    2008-01-01

    www.cdc.gov/flu/keyfacts), and poses the contin- ing threat of a global pandemic that could kill millions (Johnson nd Mueller, 2002). Dengue virus is...A single dose of E-specific shRNA- xpressing neurotropic lentivirus was able to provide complete rotection (100% of mice survive) against lethal JEV...449 (7163), 745–747.ohnson, N.P., Mueller, J., 2002. Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic. Bull. Hist

  17. Study of HIV-2 primer-template initiation complex using antisense oligonucleotides

    DEFF Research Database (Denmark)

    Boulmé, F; Freund, F; Gryaznov, S;

    2000-01-01

    HIV-2 reverse transcription is initiated by the retroviral DNA polymerase (reverse transcriptase) from a cellular tRNALys3 partially annealed to the primer binding site in the 5'-region of viral RNA. The HIV-2 genome has two A-rich regions upstream of the primer binding site. In contrast to HIV-1...

  18. Antisense oligonucleotide inhibition of hepatitis C virus genotype 4 replication in HepG2 cells

    OpenAIRE

    2006-01-01

    Abstract Background Hepatitis C (HCV) viral infection is a serious medical problem in Egypt and it has a devastating impact on the Egyptian economy. It is estimated that over 15% of Egyptians are infected by the virus and thus finding a cure for this disease is of utmost importance. Current therapies for hepatitis C virus (HCV) genotype 4 with interferon/ribavirin have not been successful and thus the development of alternative therapy for this genotype is disparately needed. Results Although...

  19. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates

    DEFF Research Database (Denmark)

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels;

    2012-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two ...

  20. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  1. EXPERIMENTAL STUDY ON THE GENE THERAPY OF MALIGNANT GLIOMA WITH ANTISENSE VEGF RNA

    Institute of Scientific and Technical Information of China (English)

    浦佩玉; 王建桢; 黄强; 张敬; 张云亭

    2003-01-01

    Objective: To study the effect of antisense VEGF RNA on rat C6 gliomas in vivo and find out the feasibility of antiangiogenesis therapy with antisense VEGF RNA for malignant gliomas. Methods: Parental rat C6 glioma cells and C6 cells transfected with antisense VEGF cDNA were implanted intracerebrally and subcutaneously into SD rats as control and transfected group. Rats bearing cerebral and subcutaneous C6 gliomas were treated with antisense VEGF cDNA as treated group and sense VEGF cDNA and empty vector as control of treated group. The general manifestation, survival time, MRI and histopathological changes of all rats were observed. The volume of subcutaneously implanted tumors was determined regularly. In situ hybridization and immunohistochemical staining were used for detection of VEGF gene expression of gliomas while PCNA immunostaining and TUNEL method for examination of proliferation activity and apoptosis of gliomas, respectively. Results: The survival of the rats in transfected and treated group was prolonged. There were two rats surviving over 90 d in the treated group and their tumors disappeared. The VEGF gene expression, the number of microvessels and the proliferation activity were decreased and a large amount of apoptotic cells could be found in cerebral and subcutaneous gliomas in treated and transfected groups. Conclusion: VEGF is one of the candidate genes for gene therapy of malignant gliomas. Antisense VEGF RNA combined with other therapies should be studied further for enhancing the therapeutic effect of malignant gliomas.

  2. Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response.

    Science.gov (United States)

    Siegrist, Claire-Anne; Pihlgren, Maria; Tougne, Chantal; Efler, Sue M; Morris, Mary Lou; AlAdhami, Mohammed J; Cameron, D William; Cooper, Curtis L; Heathcote, Jenny; Davis, Heather L; Lambert, Paul-Henri

    2004-12-16

    We assessed the avidity maturation process elicited by human immunization with alum-adsorbed HBsAg alone or with a novel adjuvant containing CpG motifs (CpG 7909). Mean avidity indexes and distribution of low- and high-avidity anti-HBs indicated that avidity maturation essentially takes place late after priming. CpG 7909 markedly enhanced this affinity maturation process, increasing the pool of high-avidity antibodies. The influence of CpG 7909 was antigen-specific, isotype-specific and distinct from the influence on anti-HBs production, as avidity did not correlate with anti-HBs IgG titers. This is the first demonstration that a novel human adjuvant may induce antibodies with higher antigen-binding affinity.

  3. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  4. SENSITIZATION OF ACNU KILLING EFFECTS ON HeLa S3 CELLS BY MGMT ANTISENSE RNA TRANSFECTION

    Institute of Scientific and Technical Information of China (English)

    季守平; 由英; 吴英; 陈建敏; 杨军; 章扬培

    1998-01-01

    O’-methylguanlne-DNA-msthybransferase(MGMT)plays a very important role in the ceUular resistsnce to uitrosoureas drugs. Inhibition of MGMT might be a useful approach in tumor chemotherapy. In this study, the depletlon vii MGMT activity hy retroviral-mediated antisense RNA transfectkm were reported. Three retroviral vectors expressing MGMT antisense RNA were constructed and transfected into HeLa S3 cells. The difference of MGMT mRNA, MGMT activity as well as cellular resistance to ACNU before and after transtecfion were ohserved. It was found that antisense RNA targeting 5''region and whole length of MGMT mRNA could partially deplete MGMT activity and enhance killing effects of ACNU.However, 3'' region antisense RNA had no effect on MGMT modulation.

  5. Internalization of oligodeoxynucleotide antisense to type-1 plasminogen activator inhibitor mRNA in endothelial cells: a three-dimensional reconstruction by confocal microscopy.

    Science.gov (United States)

    Wyroba, E; Pawlowska, Z; Kobylanska, A; Pluskota, E; Maszewska, M; Stec, W J; Cierniewski, C S

    1996-01-01

    A three-dimensional reconstruction analysis of localization of phosphodiester and phosphorothioate oligonucleotide antisense to type-1 plasminogen activator inhibitor (PAI-1) mRNA within endothelial cells is described. When EA.hy 926 cells were incubated with fluorescently labelled phosphodiester (PO-16) or phosphorothioate (PS-16) oligonucleotides at low, not cytotoxical concentrations, the relative brightness composition of the images of the particular samples was much higher for PS-16 than PO-16 and dependent upon the extracellular concentration and the incubation time. The 3-D reconstructions based on the series of optical sections of the samples, spaced every 1.5 microns, showed the punctuate accumulation of the oligonucleotides and a striking difference in a spatial distribution between PO-16 and PS-16 within the cytoplasm. Even after 24 h incubation of endothelial cells with 2.5 microM of PO-16 and PS-16 oligonucleotides, there was a predominant oligonucleotide localization within the cytoplasm and only traces of oligonucleotides could be seen in the cell nucleus and/or perinuclear organelles.

  6. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides

    OpenAIRE

    Pawel Bialk; Brett Sansbury; Natalia Rivera-Torres; Kevin Bloh; Dula Man; Kmiec, Eric B.

    2016-01-01

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRIS...

  7. In vitro inhibition of promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) expression and leukemogenic activity by DNA/LNA chimeric antisense oligos.

    Science.gov (United States)

    Caprodossi, Sara; Galluzzi, Luca; Biagetti, Simona; Della Chiara, Giulia; Pelicci, Pier Giuseppe; Magnani, Mauro; Fanelli, Mirco

    2005-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by the chromosomal translocation t(15:17) that leads to the expression of promyelocytic leukemia/retinoic acid receptor-alpha (PML/ RARalpha) oncofusion protein. The block of differentiation at the promyelocytic stage of the blasts and their increased survival induced by PML/RARalpha are the principal biological features of the disease. Therapies based on pharmacological doses of retinoic acid (RA, 10(-6) M) are able to restore APL cell differentiation in most cases, but not to achieve complete hematological remission because retinoic acid resistance occurs in many patients. In order to elaborate alternative therapeutic approaches, we focused our attention on the use of antisense oligonucleotides as gene-specific drug directed to PML/RARalpha mRNA target. We used antisense molecules containing multiple locked nucleic acid (LNA) modifications. The LNAs are nucleotide analogues that are able to form duplexes with complementary DNA or RNA sequences with highly increased thermal stability and are resistant to 3'-exonuclease degradation in vitro. The DNA/LNA chimeric molecules were designed on the fusion sequence of PML and RARalpha genes to specifically target the oncofusion protein. Cell-free and in vitro experiments using U937-PR9-inducible cell line showed that DNA/LNA oligonucleotides were able to interfere with PML/RARalpha expression more efficiently than the corresponding unmodified DNA oligo. Moreover, the treatment of U937-PR9 cells with these chimeric antisense molecules was able to abrogate the block of differentiation induced by PML/RARalpha oncoprotein. These data suggest a possible application of oligonucleotides containing LNA in an antisense therapeutic strategy for APL.

  8. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    Directory of Open Access Journals (Sweden)

    Alireza Nomani

    2010-05-01

    Full Text Available Alireza Nomani1,6, Ismaeil Haririan1,5, Ramin Rahimnia2,4, Shamileh Fouladdel2, Tarane Gazori1, Rassoul Dinarvand1, Yadollah Omidi3, Ebrahim Azizi2,41Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Molecular Research Lab, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; 4Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; 5Biomaterials Research Center (BRC Tehran, Iran; 6Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, IranAbstract: To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine dendrimer (PAMAM dendrimer and a short-stranded DNA (antisense oligonucleotide, multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS; zeta potential measurement; and atomic force microscopy (AFM. PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was

  9. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

    Directory of Open Access Journals (Sweden)

    Elela Sherif

    2006-01-01

    Full Text Available Abstract Background We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. Results We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. Conclusion Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

  10. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    Science.gov (United States)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  11. Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain

    Directory of Open Access Journals (Sweden)

    Ioannis eZalachoras

    2011-07-01

    Full Text Available A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion, but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g. in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis.AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover 1. The principles of antisense-mediated techniques, chemistry and efficacy.2. The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial and temporal control over gene expression, toxicity and delivery issues.3. The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the CNS can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.

  12. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown

    Science.gov (United States)

    Fakhoury, Johans J.; Edwardson, Thomas G.; Conway, Justin W.; Trinh, Tuan; Khan, Farhad; Barłóg, Maciej; Bazzi, Hassan S.; Sleiman, Hanadi F.

    2015-12-01

    Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable therapeutics. We have synthesized antisense-polymer conjugates, where the polymeric block is completely monodisperse and sequence-controlled. Depending on the polymer sequence, these can self-assemble to produce micelles of very low polydispersity. The introduction of linear poly(ethylenimine) to these micelles leads to aggregation into size-defined PEI-mediated superstructures. Subsequently, both cellular uptake and gene silencing are greatly enhanced over extended periods compared to antisense alone, while at the same time cellular cytotoxicity remains very low. In contrast, gene silencing is not enhanced with antisense polymer conjugates that are not able to self-assemble into micelles. Thus, using antisense precision micelles, we are able to achieve significant transfection and knockdown with minimal cytotoxicity at much lower concentrations of linear PEI then previously reported. Consequently, a conceptual solution to the problem of antisense or siRNA delivery is to self-assemble these molecules into `gene-like' micelles with high local charge and increased stability, thus reducing the amount of transfection agent needed for effective gene silencing.Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable

  13. Antisense mRNA for NPY-Y1 receptor in the medial preoptic area increases prolactin secretion

    Directory of Open Access Journals (Sweden)

    N.A. Silveira

    1999-09-01

    Full Text Available We investigated the participation of neuropeptide Y-Y1 receptors within the medial preoptic area in luteinizing hormone, follicle-stimulating hormone and prolactin release. Four bilateral microinjections of sense (control or antisense 18-base oligonucleotides of messenger ribonucleic acid (mRNA (250 ng corresponding to the NH2-terminus of the neuropeptide Y1 receptor were performed at 12-h intervals for two days into the medial preoptic area of ovariectomized Wistar rats (N = 16, weighing 180 to 200 g, treated with estrogen (50 µg and progesterone (25 mg two days before the experiments between 8.00 and 10:00 a.m. Blockade of Y1 receptor synthesis in the medial preoptic area by the antisense mRNA did not change plasma luteinizing hormone or follicle-stimulating hormone but did increase prolactin from 19.6 ± 5.9 ng/ml in the sense group to 52.9 ± 9.6 ng/ml in the antisense group. The plasma hormones were measured by radioimmunoassay and the values are reported as mean ± SEM. These data suggest that endogenous neuropeptide Y in the medial preoptic area has an inhibitory action on prolactin secretion through Y1 receptors.

  14. A novel HBV antisense RNA gene delivery system targeting hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chun-Hong Ma; Xiao-Hong Liang; Wen-Sheng Sun; Pei-Kun Tian; Li-Fen Gao; Su-Xia Liu; Xiao-Yan Wang; Li-Ning Zhang; Ying-Lin Cao; Li-Hui Han

    2003-01-01

    AIM: To construct a novel HBV antisense RNA delivery system targeting hapatocellular carcinoma and study its inhibitory effect in vitro and in vivo.METHODS: GE7,a 16-peptide specific to EGFR, and HA20,a homologue of N-terminus of haemagglutinin of influenza viral envelope protein, were synthesized and conjugated with polylysin. The above conjugates were organized into the pEBAF-as-preS2, a hepatocarcinoma specific HBV antisense expression vector, to construct a novel HBV antisense RNA delivery system, named AFP-enhancing 4-element complex. Hepatocelluar carcinoma HepG2.2.15 cells was used to assay the in vitro inhibition of the complex on HBV. Expression of HBV antigen was assayed by ELISA. BALB/c nude mice bearing HepG2.2.15 cells were injected with AFP-enhancing 4-element complex. The expression of HBV antisense RNA was examined by RT-PCR and the size of tumor in nude mice were measured.RESULTS: The AFP-enhancing 4-element complex was constructed and DNA was completely trapped at the slot with no DNA migration when the ratio of polypeptide to plasmid was 1:1.The expression of HBsAg and HBeAg of HepG2.2.15 cells was greatly decreased after being transfected by AFP-enhancing 4-element complex. The inhibitory rates were 33.4 % and 58.5 % respectively. RTPCR showed HBV antisense RNA expressed specifically in liver tumor cells of tumor-bearing nude mice. After 4injections of AFP-enhancing 4-element complex containing 0.2 μg DNA, the diameter of the tumor was 0.995 cm±0.35,which was significantly smaller than that of the control groups (2.215 cm±0.25, P<0.05).CONCLUSION: AFP-enhancing 4-element complex could deliver HBV antisense RNA targeting on hepatocarcinoma and inhibit both HBV and liver tumor cells in vitro and in vivo.

  15. Effect of C-myc Antisense Oligodeoxynucleotides on Hypoxia-induced Proliferation of Pulmonary Vascular Pericytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the effect of c-myc antisense oligodeoxynucleotides (ODNs) on proliferation of pulmonary vascular pericytes (PC) induced by hypoxia, cell culture, dot hybridization using probe of digoxigenin-11-dUTP-labeled cDNA,3H-thymidine incorporation, immunocytochemical technique and image analysis methods were used to observe the effect of c-myc antisense ODNs on expression of c-myc gene and proliferating cell nuclear antigen (PCNA), and 3H-thymidine incorporation of PC induced by hypoxia. The results showed that hypoxia could significantly enhance the expression of c-myc and PCNA (P<0.01), and elevate 3H-thymidine incorporation of PC (P<0.01), but antisense ODNs could significantly inhibit the expression of c-myc and PCNA (P<0.05), and 3H-thymidine incorporation of PC (P<0.01). It was suggested that hypoxia could promote the proliferation of PC by up-regulating the expression of c-myc gene, but c-myc antisense ODNs could inhibit hypoxia-induced proliferation of PC by downregulating the expression of c-myc gene.

  16. Evaluation of cystine transport in cultured human kidney cells and establishment of cystinuria type I phenotype by antisense technology.

    Science.gov (United States)

    Wendt-Nordahl, Gunnar; Sagi, Sreedhar; Bolenz, Christian; Alken, Peter; Michel, Maurice Stephan; Knoll, Thomas

    2008-02-01

    Cystinuria is a rare hereditary disease resulting in recurrent stone formation and the need for repeated invasive interventions. So far, two responsible genes have been identified which encode the two transporters, rBAT and b(0,+)AT forming a heterodimer to transport cystine in proximal tubular cells (PTC) and whose defect results in increased excretion of cystine. A human cell line mimicing the phenotype of cystinuria in vitro is yet to be developed. Human kidney (HK)-2 is a PTC line derived from normal HK. After determining the presence of rBAT gene by RT-PCR and Western blot analysis, radioactively labeled cystine (S(35)) was used to evaluate the functional presence of the amino acid transport in HK-2 cells when cultured in vitro. To achieve a cystinuria type I phenotype in HK-2 cells, the rBAT gene was silenced using antisense oligonucleotides complimentary to human rBAT mRNA. The reduced transport activity of cystine was then determined by radiolabeled cystine uptake measurements. RT-PCR and Western blot confirmed the expression of the rBAT gene in HK-2 cells. Considerable transport of the radio labeled cystine was observed in HK-2 cells and was linearly dependent on the incubation time with the amino acid. The cystine transport in rBAT knockdown cells after incubation with antisense oligonucleotides was significantly lower compared to control (0.76 vs. 0.98%; P=0.0008), proving a transient knock-down of the rBAT gene. This study demonstrates the presence of the b(0,+) amino acid transport system in human proximal tubular HK-2 cells when cultured in vitro. Inhibition of this transport system is possible by using antisense technology. A permanent inhibition of the cystine transport, based on our model, would be useful for the development and evaluation gene therapeutic approaches.

  17. Using both strands: The fundamental nature of antisense transcription.

    Science.gov (United States)

    Murray, Struan C; Mellor, Jane

    2016-01-01

    Non-coding transcription across the antisense strands of genes is an abundant, pervasive process in eukaryotes from yeast to humans, however its biological function remains elusive. Here, we provide commentary on a recent study of ours, which demonstrates a genome-wide role for antisense transcription: establishing a unique, dynamic chromatin architecture over genes. Antisense transcription increases the level of nucleosome occupancy and histone acetylation at the promoter and body of genes, without necessarily modulating the level of protein-coding sense transcription. It is also associated with high levels of histone turnover. By allowing genes to sample a wider range of chromatin configurations, antisense transcription could serve to make genes more sensitive to changing signals, priming them for responses to developmental programs or stressful cellular environments. Given the abundance of antisense transcription and the breadth of these chromatin changes, we propose that antisense transcription represents a fundamental, canonical feature of eukaryotic genes.

  18. Adaptive resolution simulation of oligonucleotides

    Science.gov (United States)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  19. Characterization of self-assembled DNA concatemers from synthetic oligonucleotides

    Directory of Open Access Journals (Sweden)

    Lu Sun

    2014-08-01

    Full Text Available Studies of DNA–ligand interaction on a single molecule level provide opportunities to understand individual behavior of molecules. Construction of DNA molecules with repetitive copies of the same segments of sequences linked in series could be helpful for enhancing the interaction possibility for sequence-specific binding ligand to DNA. Here we report on the use of synthetic oligonucleotides to self-assembly into duplex DNA concatemeric molecules. Two strands of synthetic oligonucleotides used here were designed with 50-mer in length and the sequences are semi-complimentary so to hybridize spontaneously into concatemers of double stranded DNA. In order to optimize the length of the concatemers the oligonucleotides were incubated at different oligomer concentrations, ionic strengths and temperatures for different durations. Increasing the salt concentration to 200 mM NaCl was found to be the major optimizing factor because at this enhanced ionic strength the concatemers formed most quickly and the other parameters had no detectable effect. The size and shape of formed DNA concatemers were studied by gel electrophoresis in agarose, polyacrylamide gels and by AFM. Our results show that linear DNA constructs up to several hundred base pairs were formed and could be separated from a substantial fraction of non-linear constructs.

  20. Identification and characterization of a cis-encoded antisense RNA associated with the replication process of Salmonella enterica serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Isaac Dadzie

    Full Text Available Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise while others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned.

  1. The Cellular Processing Capacity Limits the Amounts of Chimeric U7 snRNA Available for Antisense Delivery.

    Science.gov (United States)

    Eckenfelder, Agathe; Tordo, Julie; Babbs, Arran; Davies, Kay E; Goyenvalle, Aurélie; Danos, Olivier

    2012-06-26

    Many genetic diseases are induced by mutations disturbing the maturation of pre-mRNAs, often affecting splicing. Antisense oligoribonucleotides (AONs) have been used to modulate splicing thereby circumventing the deleterious effects of mutations. Stable delivery of antisense sequences is achieved by linking them to small nuclear RNA (snRNAs) delivered by viral vectors, as illustrated by studies where therapeutic exon skipping was obtained in animal models of Duchenne muscular dystrophy (DMD). Yet, clinical translation of these approaches is limited by the amounts of vector to be administered. In this respect, maximizing the amount of snRNA antisense shuttle delivered by the vector is essential. Here, we have used a muscle- and heart-specific enhancer (MHCK) to drive the expression of U7 snRNA shuttles carrying antisense sequences against the human or murine DMD pre-mRNAs. Although antisense delivery and subsequent exon skipping were improved both in tissue culture and in vivo, we observed the formation of additional U7 snRNA by-products following gene transfer. These included aberrantly 3' processed as well as unprocessed species that may arise because of the saturation of the cellular processing capacity. Future efforts to increase the amounts of functional U7 shuttles delivered into a cell will have to take this limitation into account.

  2. Antisense transcription as a tool to tune gene expression.

    Science.gov (United States)

    Brophy, Jennifer A N; Voigt, Christopher A

    2016-01-14

    A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.

  3. Selection of optimal antisense accessible sites of survivin and its application in treatment of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Qiang-Song Tong; Li-Duan Zheng; Fang-Min Chen; Fu-Qing Zeng; Liang Wang; Ji-Hua Dong; Gong-Cheng Lu

    2005-01-01

    AIM: To select the optimal antisense accessible sites of survivin, a highly expressed gene in tumor tissues, in order to explore a novel approach to improve biological therapy of gastric cancer.METHODS: The 20 mer random oligonucleotide library was synthesized, hybridized with in vitro transcribed total survivin cRNA, then digested by RNase H. After primer extension and autoradiography, the antisense accessible sites (AAS) of survivin were selected. Then RNADraw software was used to analyze and choose the AAS with obvious stem-loop structures, according to which the complementary antisense oligonucleotides (AS-ODNs) were synthesized and transferred into survivin highly- expressing gastric cancer cell line MKN-45. Survivin expression was detected by RT-PCR and Western Blotting. Cellular growth activities were assayed by tetrazolium bromide (MTT)colorimetry. Cellular ultrastructure was observed by electronic microscopy, while apoptosis was detected by annexin V-FITC and propidium iodide staining flow cytometry.RESULTS: Thirteen AAS of survivin were selected in vitro.Four AAS with stem-loop structures were chosen, locating at 207-226 bp, 187-206 bp, 126-145 bp and 44-63 bp of survivin cDNA respectively. When compared with nontranfection controls, their corresponding AS-ODNs (AS-ODN1,AS-ODN2, AS-ODN3 and AS-ODN4) could reduce Survivin mRNA levels in MKN-45 cells by 54.3±1.1% (t= 6.12, P<0.01),86.1±1.0% (t= 5.27, P<0.01), 32.2±1.3% (t= 7.34, P<0.01)and 56.2±0.9% (t= 6.45, P<0.01) respectively, while survivin protein levels were decreased by 42.2±2.5% (t = 6.26,P<0.01), 75.4±3.1% (t= 7.11, P<0.01), 28.3±2.0% (t= 6.04,P<0.01) and 45.8±1.2% (t = 6.38, P<0.01) respectively.After transfection with 600 nmol/L AS-ODN1~AS-ODN4 for24 h, cell growth was inhibited by 28.12±1.54% (t= 7.62,P<0.01), 38.42±3.12% (t = 7.75, P<0.01), 21.46±2.63%(t= 5.94, P<0.01) and 32.12±1.77% (t= 6.17, P<0.01)respectively. Partial cancer cells presented the

  4. Ribonucleases, antisense RNAs and the control of bacterial plasmids.

    Science.gov (United States)

    Saramago, Margarida; Bárria, Cátia; Arraiano, Cecília M; Domingues, Susana

    2015-03-01

    In the last decade regulatory RNAs have emerged as powerful tools to regulate the expression of genes both in prokaryotes and in eukaryotes. RNases, by degrading these RNA molecules, control the right amount of regulatory RNAs, which is fundamental for an accurate regulation of gene expression in the cell. Remarkably the first antisense RNAs identified were plasmid-encoded and their detailed study was crucial for the understanding of prokaryotic antisense RNAs. In this review we highlight the role of RNases in the precise modulation of antisense RNAs that control plasmid replication, maintenance and transfer.

  5. On primordial sense-antisense coding.

    Science.gov (United States)

    Rodin, Andrei S; Rodin, Sergei N; Carter, Charles W

    2009-11-01

    The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These 20 enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sense-antisense (SAS) coding (Rodin and Ohno, Orig Life Evol Biosph 25:565-589, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achlya klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in Williams et al. (Mol Biol Evol 26:445-450, 2009), this could indeed be a "Rosetta stone" gene (Carter and Duax, Mol Cell 10:705-708, 2002) (eroded somewhat, though) for the SAS origin of the two aaRS classes.

  6. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  7. Inhibition of allergic airway inflammation by antisense-induced blockade of STAT6 expression

    Institute of Scientific and Technical Information of China (English)

    TIAN Xin-rui; TIAN Xin-li; BO Jian-ping; LI Shao-gang; LIU Zhuo-la; NIU Bo

    2011-01-01

    Background The signal transducer and activator of transcription 6 (STAT6) expression in lung epithelial cells plays a pivotal role in asthma pathogenesis. Activation of STAT6 expression results in T helper cell type 2 (Th2) cell differentiation leading to Th2-mediated IgE production, development of allergic airway inflammation and hyperreactivity. Therefore,antagonizing the expression and/or the function of STAT6 could be used as a mode of therapy for allergic airway inflammation.Methods In this study, we synthesized a 20-mer phosphorothioate antisense oligonucleotide (ASODN) overlapping the translation starting site of STAT6 and constructed STAT6 antisense RNA (pANTI-STAT6), then transfected them into murine spleen lymphocytes and analyzed the effects of antagonizing STAT6 function in vitro and in a murine model of asthma.Results In vitro, we showed suppression of STAT6 expression and interleukin (IL)-4 production of lymphocytes by STAT6 ASODN. This effect was more prominent when cells were cultured with pANTI-STAT6. In a murine model of asthma associated with allergic pulmonary inflammation in ovalbumin (OVA)-sensitized mice, local intranasal administration of fluorescein isothiocyanate (FITC)-labeled STAT6 ASODN to DNA uptake in lung cells was accompanied by a reduction of intracellular STAT6 expression. Such intrapulmonary blockade of STAT6 expression abrogated signs of lung inflammation, infiltration of eosinophils and Th2 cytokine production.Conclusion These data suggest a critical role of STAT6 in the pathogenesis of asthma and the use of local delivery of STAT6 ASODN as a novel approach for the treatment of allergic airway inflammation such as in asthma.

  8. Antisense-Based Progerin Downregulation in HGPS-Like Patients’ Cells

    Directory of Open Access Journals (Sweden)

    Karim Harhouri

    2016-07-01

    Full Text Available Progeroid laminopathies, including Hutchinson-Gilford Progeria Syndrome (HGPS, OMIM #176670, are premature and accelerated aging diseases caused by defects in nuclear A-type Lamins. Most HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type Lamins. This mutation activates a cryptic splice site leading to the deletion of 50 amino acids at its carboxy-terminal domain, resulting in a truncated and permanently farnesylated Prelamin A called Prelamin A Δ50 or Progerin. Some patients carry other LMNA mutations affecting exon 11 splicing and are named “HGPS-like” patients. They also produce Progerin and/or other truncated Prelamin A isoforms (Δ35 and Δ90 at the transcriptional and/or protein level. The results we present show that morpholino antisense oligonucleotides (AON prevent pathogenic LMNA splicing, markedly reducing the accumulation of Progerin and/or other truncated Prelamin A isoforms (Prelamin A Δ35, Prelamin A Δ90 in HGPS-like patients’ cells. Finally, a patient affected with Mandibuloacral Dysplasia type B (MAD-B, carrying a homozygous mutation in ZMPSTE24, encoding an enzyme involved in Prelamin A maturation, leading to accumulation of wild type farnesylated Prelamin A, was also included in this study. These results provide preclinical proof of principle for the use of a personalized antisense approach in HGPS-like and MAD-B patients, who may therefore be eligible for inclusion in a therapeutic trial based on this approach, together with classical HGPS patients.

  9. An oligonucleotide hybridization approach to DNA sequencing.

    Science.gov (United States)

    Khrapko, K R; Lysov YuP; Khorlyn, A A; Shick, V V; Florentiev, V L; Mirzabekov, A D

    1989-10-09

    We have proposed a DNA sequencing method based on hybridization of a DNA fragment to be sequenced with the complete set of fixed-length oligonucleotides (e.g., 4(8) = 65,536 possible 8-mers) immobilized individually as dots of a 2-D matrix [(1989) Dokl. Akad. Nauk SSSR 303, 1508-1511]. It was shown that the list of hybridizing octanucleotides is sufficient for the computer-assisted reconstruction of the structures for 80% of random-sequence fragments up to 200 bases long, based on the analysis of the octanucleotide overlapping. Here a refinement of the method and some experimental data are presented. We have performed hybridizations with oligonucleotides immobilized on a glass plate, and obtained their dissociation curves down to heptanucleotides. Other approaches, e.g., an additional hybridization of short oligonucleotides which continuously extend duplexes formed between the fragment and immobilized oligonucleotides, should considerably increase either the probability of unambiguous reconstruction, or the length of reconstructed sequences, or decrease the size of immobilized oligonucleotides.

  10. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Directory of Open Access Journals (Sweden)

    Talaei F

    2011-09-01

    Full Text Available Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi31Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan and NAP-C (N-acetyl penicillamine-chitosan in anticancer drug delivery targeting epidermal growth factor receptor (EGFR. Doxorubicin (DOX and antisense oligonucleotide (ASOND-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

  11. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention.

    Science.gov (United States)

    Donnelly, Christopher J; Zhang, Ping-Wu; Pham, Jacqueline T; Haeusler, Aaron R; Heusler, Aaron R; Mistry, Nipun A; Vidensky, Svetlana; Daley, Elizabeth L; Poth, Erin M; Hoover, Benjamin; Fines, Daniel M; Maragakis, Nicholas; Tienari, Pentti J; Petrucelli, Leonard; Traynor, Bryan J; Wang, Jiou; Rigo, Frank; Bennett, C Frank; Blackshaw, Seth; Sattler, Rita; Rothstein, Jeffrey D

    2013-10-16

    A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.

  12. Pharmacology of a Central Nervous System Delivered 2′-O-Methoxyethyl–Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates

    OpenAIRE

    Rigo, Frank; Chun, Seung J.; Norris, Daniel A.; Hung, Gene; Lee, Sam; Matson, John; Fey, Robert A.; Gaus, Hans; Hua, Yimin; Grundy, John S.; Krainer, Adrian R; Henry, Scott P.; Bennett, C. Frank

    2014-01-01

    Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adul...

  13. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Δ48-50 DMD cells

    Science.gov (United States)

    De Angelis, Fernanda Gabriella; Sthandier, Olga; Berarducci, Barbara; Toso, Silvia; Galluzzi, Giuliana; Ricci, Enzo; Cossu, Giulio; Bozzoni, Irene

    2002-01-01

    Deletions and point mutations in the dystrophin gene cause either the severe progressive myopathy Duchenne muscular dystrophy (DMD) or the milder Becker muscular dystrophy, depending on whether the translational reading frame is lost or maintained. Because internal in-frame deletions in the protein produce only mild myopathic symptoms, it should be possible, by preventing the inclusion of specific mutated exon(s) in the mature dystrophin mRNA, to restore a partially corrected phenotype. Such control has been previously accomplished by the use of synthetic oligonucleotides; nevertheless, a significant drawback to this approach is caused by the fact that oligonucleotides would require periodic administrations. To circumvent this problem, we have produced several constructs able to express in vivo, in a stable fashion, large amounts of chimeric RNAs containing antisense sequences. In this paper we show that antisense molecules against exon 51 splice junctions are able to direct skipping of this exon in the human DMD deletion 48–50 and to rescue dystrophin synthesis. We also show that the highest skipping activity was found when antisense constructs against the 5′ and 3′ splice sites are coexpressed in the same cell. PMID:12077324

  14. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.

  15. Reduction of methylviologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX

    Institute of Scientific and Technical Information of China (English)

    Wei-hong SUN; Yong WANG; Hua-gang HE; Xue LI; Wan SONG; Bin DU; Qing-wei MENG

    2013-01-01

    Ascorbate peroxidases are directly involved in reactive oxygen species (ROS) scavenging by reducing hydrogen peroxide to water.The tomato thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco.RNA gel blot analysis confirmed that StAPX in tomato leaves was induced by methylviologen-mediated oxidative stress.The sense transgenic seedlings exhibited higher tAPX activity than that of the wild type (WT) plants under oxidative stress conditions,while the antisense seedlings exhibited lower tAPX activity.Lower APX activities of antisense transgenic seedlings caused higher malondialdehyde contents and relative electrical conductivity.The sense transgenic seedlings with higher tAPX activity maintained higher chlorophyll content and showed the importance of tAPX in maintaining the optimal chloroplast development under methylviologen stress conditions,whereas the antisense lines maintained lower chlorophyll content than WT seedlings.Results indicated that the over-expression of StAPX enhanced tolerance to methylviologen-mediated oxidative stress in sense transgenic tobacco early seedlings,whereas the suppression of StAPX in antisense transgenic seedlings showed high sensitivity to oxidative stress.

  16. Reduction of methylviologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX.

    Science.gov (United States)

    Sun, Wei-Hong; Wang, Yong; He, Hua-Gang; Li, Xue; Song, Wan; Du, Bin; Meng, Qing-Wei

    2013-07-01

    Ascorbate peroxidases are directly involved in reactive oxygen species (ROS) scavenging by reducing hydrogen peroxide to water. The tomato thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco. RNA gel blot analysis confirmed that StAPX in tomato leaves was induced by methylviologen-mediated oxidative stress. The sense transgenic seedlings exhibited higher tAPX activity than that of the wild type (WT) plants under oxidative stress conditions, while the antisense seedlings exhibited lower tAPX activity. Lower APX activities of antisense transgenic seedlings caused higher malondialdehyde contents and relative electrical conductivity. The sense transgenic seedlings with higher tAPX activity maintained higher chlorophyll content and showed the importance of tAPX in maintaining the optimal chloroplast development under methylviologen stress conditions, whereas the antisense lines maintained lower chlorophyll content than WT seedlings. Results indicated that the over-expression of StAPX enhanced tolerance to methylviologen-mediated oxidative stress in sense transgenic tobacco early seedlings, whereas the suppression of StAPX in antisense transgenic seedlings showed high sensitivity to oxidative stress.

  17. An antisense oligodeoxynucleotide that depletes RI alpha subunit of cyclic AMP-dependent protein kinase induces growth inhibition in human cancer cells.

    Science.gov (United States)

    Yokozaki, H; Budillon, A; Tortora, G; Meissner, S; Beaucage, S L; Miki, K; Cho-Chung, Y S

    1993-02-15

    Enhanced expression of the RI alpha subunit of cyclic AMP-dependent protein kinase type I has been correlated with cancer cell growth. We provide evidence that RI alpha is a growth-inducing protein that may be essential for neoplastic cell growth. Human colon, breast, and gastric carcinoma and neuroblastoma cell lines exposed to a 21-mer human RI alpha antisense phosphorothioate oligodeoxynucleotide (S-oligodeoxynucleotide) exhibited growth inhibition with no sign of cytotoxicity. Mismatched sequence (random) S-oligodeoxynucleotides of the same length exhibited no effect. The growth inhibitory effect of RI alpha antisense oligomer correlated with a decrease in the RI alpha mRNA and protein levels and with an increase in RII beta (the regulatory subunit of protein kinase type II) expression. The growth inhibition was abolished, however, when cells were exposed simultaneously to both RI alpha and RII beta antisense S-oligodeoxynucleotides. The RII beta antisense S-oligodeoxynucleotide alone, exhibiting suppression of RII beta along with enhancement of RI alpha expression, led to slight stimulation of cell growth. These results demonstrate that two isoforms of cyclic AMP receptor proteins, RI alpha and RII beta, are reciprocally related in the growth control of cancer cells and that the RI alpha antisense oligodeoxynucleotide, which efficiently depletes the growth stimulatory RI alpha, is a powerful biological tool toward suppression of malignancy.

  18. LNA-modified isothermal oligonucleotide microarray for differentiating bacilli of similar origin

    Indian Academy of Sciences (India)

    Jing Yan; Ying Yuan; Runqing Mu; Hong Shang; Yifu Guan

    2014-12-01

    Oligonucleotide microarray has been one of the most powerful tools in the ‘Post-Genome Era’ for its high sensitivity, high throughput and parallel processing capability. To achieve high detection specificity, we fabricated an isothermal microarray using locked nucleic acid (LNA)-modified oligonucleotide probes, since LNA has demonstrated the advanced ability to enhance the binding affinity toward their complementary nucleotides. After designing the nucleotide sequences of these oligonucleotide probes for gram-positive bacilli of similar origin (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus megaterium and Bacillus circulans), we unified the melting temperatures of these oligonucleotide probes by modifying some nucleotides using LNA. Furthermore, we optimized the experimental procedures of hydrating microarray slides, blocking side surface as well as labelling the PCR products. Experimental results revealed that KOD Dash DNA polymerase could efficiently incorporate Cy3-dCTP into the PCR products, and the LNA-isothermal oligonucleotide microarray were able to distinguish the bacilli of similar origin with a high degree of accuracy and specificity under the optimized experimental condition.

  19. Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction.

    Directory of Open Access Journals (Sweden)

    Dustin T King

    Full Text Available Studies on Coding Region Determinant-Binding Protein (CRD-BP and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10 were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.

  20. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.

    Science.gov (United States)

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A; Sobczak, Krzysztof

    2015-03-31

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3'-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUG(exp)) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUG(exp)/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUG(exp) foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUG(exp)-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1.

  1. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    Directory of Open Access Journals (Sweden)

    Miguel A

    2017-01-01

    Full Text Available Antonio Miguel,1 Luis Sendra,1 Verónica Noé,2 Carles J Ciudad,2 Francisco Dasí,3,4 David Hervas,5 María José Herrero,1,6 Salvador F Aliño17 1Department of Pharmacology, Faculty of Medicine, University of Valencia, 2Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 3Research University Hospital of Valencia, INCLIVA Health Research Institute, 4Department of Physiology, Faculty of Medicine, University of Valencia Foundation, 5Biostatistics Unit, 6Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe, 7Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain Abstract: The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg, which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs and polypurine reverse Hoogsteen hairpins (PPRHs, were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following

  2. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours

    Science.gov (United States)

    Martirosyan, A.; Olesen, M. J.; Fenton, R. A.; Kjems, J.; Howard, K. A.

    2016-06-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites.This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal

  3. Electrochemical study of hepta–oligonucleotides

    Directory of Open Access Journals (Sweden)

    Zdenka Balcarova

    2010-12-01

    Full Text Available The study deals with the description and characterization of twohepta–oligonucleotides (DNA and RNA forming special structures.We studied their electrochemical behaviour by means of cyclicvoltammetry (CV and elimination voltammetry with linear scan(EVLS in combination with adsorptive stripping (AdS technique.Differences in electrochemical behaviour of hepta–deoxyribonucleotide and its RNA analog were discussed with regardto their different structures in solutions and their melting points.

  4. Synthesis and hybridization properties of inverse oligonucleotides.

    OpenAIRE

    Marangoni, M.; Van Aerschot, Arthur; Augustijns, Patrick; Rozenski, Jef; Herdewijn , Piet

    1997-01-01

    The synthesis of adenine and thymine cyclopentylethyl nucleosides is presented. This novel constrained monomeric building block is very difficult to incorporate into oligonucleotides. It was introduced in 13mer oligodeoxynucleotide sequences at a single position using H-phosphonate chemistry. Phosphoramidite chemistry completely failed in this particular case. The H-phosphonate building blocks were obtained starting from the corresponding phosphoramidites. Stability of duplexes with RNA and D...

  5. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer.

    Science.gov (United States)

    Bates, Paula J; Laber, Damian A; Miller, Donald M; Thomas, Shelia D; Trent, John O

    2009-06-01

    Certain guanine-rich (G-rich) DNA and RNA molecules can associate intermolecularly or intramolecularly to form four stranded or "quadruplex" structures, which have unusual biophysical and biological properties. Several synthetic G-rich quadruplex-forming oligodeoxynucleotides have recently been investigated as therapeutic agents for various human diseases. We refer to these biologically active G-rich oligonucleotides as aptamers because their activities arise from binding to protein targets via shape-specific recognition (analogous to antibody-antigen binding). As therapeutic agents, the G-rich aptamers may have some advantages over monoclonal antibodies and other oligonucleotide-based approaches. For example, quadruplex oligonucleotides are non-immunogenic, heat stable and they have increased resistance to serum nucleases and enhanced cellular uptake compared to unstructured sequences. In this review, we describe the characteristics and activities of G-rich oligonucleotides. We also give a personal perspective on the discovery and development of AS1411, an antiproliferative G-rich phosphodiester oligonucleotide that is currently being tested as an anticancer agent in Phase II clinical trials. This molecule functions as an aptamer to nucleolin, a multifunctional protein that is highly expressed by cancer cells, both intracellularly and on the cell surface. Thus, the serendipitous discovery of the G-rich oligonucleotides also led to the identification of nucleolin as a new molecular target for cancer therapy.

  6. Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility

    Directory of Open Access Journals (Sweden)

    Martina Schleicher

    2012-01-01

    Full Text Available In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleotides immobilized by adsorption on parylene (poly(monoaminomethyl-para-xylene coated polystyrene and ePTFE were resistant to high shear stress (9.5 N/m2 and human blood serum for up to 96 h. Adhesion of murine endothelial progenitor cells, HUVECs and endothelial cells from human adult saphenous veins as well as viability over a period of 14 days of HUVECs on oligonucleotide coated samples under dynamic culture conditions was significantly enhanced (P<0.05. Oligonucleotide-coated surfaces revealed low thrombogenicity and excellent hemocompatibility after incubation with human blood. These properties suggest the suitability of immobilization of DNA-oligonucleotides for biofunctionalization of blood vessel substitutes for improved in vivo endothelialization.

  7. An evaluation of oligonucleotide-based therapeutic strategies for polyQ diseases

    Directory of Open Access Journals (Sweden)

    Fiszer Agnieszka

    2012-03-01

    Full Text Available Abstract Background RNA interference (RNAi and antisense strategies provide experimental therapeutic agents for numerous diseases, including polyglutamine (polyQ disorders caused by CAG repeat expansion. We compared the potential of different oligonucleotide-based strategies for silencing the genes responsible for several polyQ diseases, including Huntington's disease and two spinocerebellar ataxias, type 1 and type 3. The strategies included nonallele-selective gene silencing, gene replacement, allele-selective SNP targeting and CAG repeat targeting. Results Using the patient-derived cell culture models of polyQ diseases, we tested various siRNAs, and antisense reagents and assessed their silencing efficiency and allele selectivity. We showed considerable allele discrimination by several SNP targeting siRNAs based on a weak G-G or G-U pairing with normal allele and strong G-C pairing with mutant allele at the site of RISC-induced cleavage. Among the CAG repeat targeting reagents the strongest allele discrimination is achieved by miRNA-like functioning reagents that bind to their targets and inhibit their translation without substantial target cleavage. Also, morpholino analog performs well in mutant and normal allele discrimination but its efficient delivery to cells at low effective concentration still remains a challenge. Conclusions Using three cellular models of polyQ diseases and the same experimental setup we directly compared the performance of different oligonucleotide-based treatment strategies that are currently under development. Based on the results obtained by us and others we discussed the advantages and drawbacks of these strategies considering them from several different perspectives. The strategy aimed at nonallele-selective inhibiting of causative gene expression by targeting specific sequence of the implicated gene is the easiest to implement but relevant benefits are still uncertain. The gene replacement strategy that

  8. Highly expressed genes are associated with inverse antisense transcription in mouse

    Indian Academy of Sciences (India)

    Andras Györffy; Pawel Surowiak; Zsolt Tulassay; Balazs Györffy

    2007-08-01

    There is a growing evidence, that antisense transcription might have a key role in a range of human diseases. Although predefined sense–antisense pairs were extensively studied, the antisense expression of the known sense genes is rarely investigated. We retrieved and correlated the expression of sense and antisense sequences of 1182 mouse transcripts to assess the prevalence and to find the characteristic pattern of antisense transcription. We contrasted three Affymetrix MGU74A version 1 mouse genome chips to six MGU74A version 2 chips. For these 1182 transcripts, the version 1 chips contain the antisense sequences of the transcripts presented on the version 2 chips. The original data was taken from the GEO database (GDS431 and GDS432). As the Affymetrix data are semiquantitative, the relative expression levels of antisense partners were analysed. We detected antisense transcription, although the average antisense expression is shifted towards smaller expression values (MGU74A version 1, 516; version 2, 1688). An inverse direct correlation between sense and antisense expression values could be observed at high expression values. At a very high relative expression—above 40,000—the Pearson correlation coefficient is getting closer to −1. Transcripts with high inverse expression ratio may be correlated to the investigated gene (major histocompatibility complex class II trans activator). The ratio of sense to antisense transcripts varied among different chromosomes; on chromosomes 14 and 1 the level of antisense expression was higher than that of sense. We conclude that antisense transcription is a common phenomenon in the mouse genome. The hypothesis of regulatory role of antisense transcripts is supported by the inverse antisense gene expression of highly expressed genes.

  9. Antisense downregulation of the barley limit dextrinase inhibitor modulates starch granule size distribution, starch composition and amylopectin structure.

    Science.gov (United States)

    Stahl, Yvonne; Coates, Steve; Bryce, James H; Morris, Peter C

    2004-08-01

    The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown.

  10. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...

  11. Natural antisense transcripts associated with salinity response in alfalfa

    Science.gov (United States)

    Natural antisense transcripts (NATs) are long non-coding RNAs (lncRNAs) complimentary to the messenger (sense) RNA (Wang et al. 2014). Many of them are involved in regulation of their own sense transcripts thus playing pivotal biological roles in all processes of organismal development and responses...

  12. Reduction of polygalacturonase activity in tomato fruit by antisense RNA.

    Science.gov (United States)

    Sheehy, R E; Kramer, M; Hiatt, W R

    1988-12-01

    Polygalacturonase [PG; poly(1,4-alpha-D-galacturonide) glycanhydrolase; EC 3.2.1.15] is expressed in tomato only during the ripening stage of fruit development. PG becomes abundant during ripening and has a major role in cell wall degradation and fruit softening. Tomato plants were transformed to produce antisense RNA from a gene construct containing the cauliflower mosaic virus 35S promoter and a full-length PG cDNA in reverse orientation. The construct was integrated into the tomato genome by Agrobacterium-mediated transformation. The constitutive synthesis of PG antisense RNA in transgenic plants resulted in a substantial reduction in the levels of PG mRNA and enzymatic activity in ripening fruit. The steady-state levels of PG antisense RNA in green fruit of transgenic plants were lower than the levels of PG mRNA normally attained during ripening. However, analysis of transcription in isolated nuclei demonstrated that the antisense RNA construct was transcribed at a higher rate than the tomato PG gene(s). Analysis of fruit from transgenic plants demonstrated a reduction in PG mRNA and enzymatic activity of 70-90%. The reduction in PG activity did not prevent the accumulation of the red pigment lycopene.

  13. Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides.

    Science.gov (United States)

    Pescina, Silvia; Antopolsky, Maxim; Santi, Patrizia; Nicoli, Sara; Murtomäki, Lasse

    2013-05-13

    Oligonucleotides represent a subject of clinical interest due to their potential ability to treat several diseases, including those affecting the posterior segment of the eye. Unfortunately, therapeutic oligonucleotides are currently administered by means of highly invasive approaches, such as intravitreal injections. The aim of the present work was to study in vitro, across isolated bovine sclera, the effect of iontophoresis on the transport of three single stranded oligonucleotides (ssDNA), 12-, 24- and 36-mer, selected as reference compounds in view of a non-invasive drug delivery to the back of the eye. All the three sequences were able to cross bovine sclera in vitro without iontophoresis. When anodal iontophoresis was applied, no change in flux was observed, while in the presence of cathodal iontophoresis the permeability coefficients increased four-fold compared to passive conditions. This behavior can be ascribed to the electrorepulsive mechanism, due to the negative charge of the nucleic acid backbone. It was also observed that the molecular weights of the three sequences did not affect trans-scleral transport, neither in passive, nor in current assisted permeation. Furthermore, increasing the current intensity from 1.75 mA to 3 mA, no effect on the trans-scleral transport of the 24-mer was noticed. Although preliminary, the results demonstrate that cathodal iontophoresis enhances trans-scleral transport of single stranded oligonucleotides and suggest its use as a novel non-invasive approach for the treatment of diseases affecting the posterior segment of the eye.

  14. Stable gene targeting in human cells using single-strand oligonucleotides with modified bases.

    Directory of Open Access Journals (Sweden)

    Xavier Rios

    Full Text Available Recent advances allow multiplexed genome engineering in E. coli, employing easily designed oligonucleotides to edit multiple loci simultaneously. A similar technology in human cells would greatly expedite functional genomics, both by enhancing our ability to test how individual variants such as single nucleotide polymorphisms (SNPs are related to specific phenotypes, and potentially allowing simultaneous mutation of multiple loci. However, oligo-mediated targeting of human cells is currently limited by low targeting efficiencies and low survival of modified cells. Using a HeLa-based EGFP-rescue reporter system we show that use of modified base analogs can increase targeting efficiency, in part by avoiding the mismatch repair machinery. We investigate the effects of oligonucleotide toxicity and find a strong correlation between the number of phosphorothioate bonds and toxicity. Stably EGFP-corrected cells were generated at a frequency of ~0.05% with an optimized oligonucleotide design combining modified bases and reduced number of phosphorothioate bonds. We provide evidence from comparative RNA-seq analysis suggesting cellular immunity induced by the oligonucleotides might contribute to the low viability of oligo-corrected cells. Further optimization of this method should allow rapid and scalable genome engineering in human cells.

  15. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  16. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    Science.gov (United States)

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes.

  17. Effects of Antisense Oligodeoxynucleotide to Follicle-stimulating Hormone Receptor on the Expression of Proliferating Cell Nuclear Antigen and Vascular Endothelial Growth Factor in Primary Culture Cells Derived from Human Ovarian Mucinous Cystadenocarcino

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of antisense oligodeoxynucleotide (antisense ODN) to follicle-stimulating hormone receptor (FSHR) and follicle-stimulating hormone (FSH) on the expression of proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF) were studied in primary culture cells derived from human ovarian mucinous cystadenocarcinoma (OMC). The prlmary OMC cells were cultured with the enzyme digestion method, and the expression of pan Keratin protein and FSHR mRNA was detected for identification of the cells. OMC cells were co-cultured with antisense ODN, nonsense ODN and FSH with different concentrations for 48 h and 72 h. The expression of PCNA and VEGF was detected by using SP immunohistochemistry. Compared with that in the control group, the PCNA and VEGF expression was increased obviously in FSH groups (P<0.05 or P< 0.01), while decreased significantly in antisense ODN groups (P<0. 05 or P<0.01) and unchanged in nonsense ODN groups, respectively. Meanwhile, antisense ODN could antagonize the increased expression of PCNA and VEGF caused by FSH significantly (P<0.01). It was suggested that FSH might promotethe development of OMC to some extent. Antisense ODN could inhibit the proliferative activity of OMC cells and the promoting proliferative activity enhanced by FSH.

  18. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective

    Directory of Open Access Journals (Sweden)

    Stephanie A. Fernandes

    2013-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5–10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS.

  19. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective.

    Science.gov (United States)

    Fernandes, Stephanie A; Douglas, Andrew G L; Varela, Miguel A; Wood, Matthew J A; Aoki, Yoshitsugu

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD) is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5-10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation) and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs) are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS.

  20. Hyphenation of a Deoxyribonuclease I immobilized enzyme reactor with liquid chromatography for the online stability evaluation of oligonucleotides.

    Science.gov (United States)

    Álvarez Porebski, Piotr Wiktor; Gyssels, Ellen; Madder, Annemieke; Lynen, Frederic

    2015-11-27

    The stability of antisense oligonucleotides (ONs) toward nucleases is a key aspect for their possible implementation as therapeutic agents. Typically, ON stability studies are performed off-line, where the ONs are incubated with nucleases in solution, followed by their analysis. The problematics of off-line processing render the detailed comparison of relative ON stability quite challenging. Therefore, the development of an online platform based on an immobilized enzyme reactor (IMER) coupled to liquid chromatography (LC) was developed as an alternative for improved ON stability testing. More in detail, Deoxyribonuclease I (DNase I) was immobilized on epoxy-silica particles of different pore sizes and packed into a column for the construction of an IMER. Subsequently, the hyphenation of the IMER with ion-pair chromatography (IPC) and ion-exchange chromatography (IEC) was evaluated, leading to the successful development of two online methodologies: IMER-IPC and IMER-IEC. More specifically, natural and modified DNA and RNA oligonucleotides were used for testing the performance of the methodologies. Both methodologies proved to be simple, automatable, fast and highly reproducible for the quantitative and qualitative evaluation of ON degradation. In addition, the extended IMER life time in combination with a more straightforward control of the reaction kinetics substantiate the applicability of the IMER-LC platform for ON stability tests and its implementation in routine and research laboratories.

  1. Inhibitory effect of antisense oligodeoxynucleotide to p44/p42 MAPK on angiotensin II-induced hypertrophic response in cultured neonatal rat cardiac myocyte

    Institute of Scientific and Technical Information of China (English)

    Shi-qinZHANG; BoDING; Zhao-guiGUO; Yun-xiaLI

    2004-01-01

    AIM: To explore the inhibitory effect of antisense oligonucleotide (ODN) to mitogen activated protein kinase(MAPK) on cardiomyocyte hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ). METHODS: A 17-mer phosphorothioate-protected antisense ODN directed against the initiation of translation sites of the p42 and p44 MAPK isoforms byliposomal transfection was applied to inhibit the translation of p44/p42 MAPK mRNA. The sense and random ODNs to p44/p42MAPK were used as sequence controls. Neonatal cardiac myocytes were exposed to Ang Ⅱ (10nmol/L) for 5 min and then harvested in lysis buffer for the measurement of the activity and the phosphorylated protein content of p44/p42MAPK that were tested by P-81 phosphocellulose filter paper method and Western blotting, respectively. The rate of protein synthesis by [3H]leucine incorporation and the diameter of cell were measured after exposure to Ang Ⅱ for 24 h and 72 h, respectively. RESULTS: In cardiac myocyte Ang Ⅱ increased p44/p42MAPK activity and phosphorylated protein content by 140 % and 699 %, and also increased [3H]leucine incorporation and cell diameter by 40 % and 27 %. c-fos and c-myc mRNAs were induced significantly after exposure to Ang Ⅱ. Antisense ODN to p44/p42MAPK (0.2 μmol/L) reduced Ang Ⅱ-induced MAPK activity by 30 %,and phophorylated MAPK protein expression by 59 % in cardiac myocyte, and inhibited c-fos and c-myc mRNA expression induced by Ang Ⅱ by 44 % and 43 %, respectively. The diameter and the rate of protein synthesis of cardiac myocyte induced by Ang Ⅱ were decreased by 16 % and 22 % after pretreatment with antisense ODN to p44/p42MAPK. CONCLUSION: Antisense ODN to p44/p42 MAPK inhibited the increase of rate of protein synthesis,and the augmentation of cell diameter and expression of c-fos and c-myc mRNA induced by Ang Ⅱ in culturedcardiac myocytes, p44/p42 MAPK played a critical role in the hypertrophic response induced by Ang Ⅱ in cultured neonatal rat cardiac myocytes.

  2. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    Science.gov (United States)

    Miguel, Antonio; Sendra, Luis; Noé, Verónica; Ciudad, Carles J; Dasí, Francisco; Hervas, David; Herrero, María José; Aliño, Salvador F

    2017-01-01

    The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg), which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2′-O-methyl phosphorotioate-modified oligonucleotides (2′-OMe-PS-ASOs) and polypurine reverse Hoogsteen hairpins (PPRHs), were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) and were intraperitoneally treated with CTLA4 and Foxp3 2′-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following results were obtained: 1) only 2′-OMe-PS-ASO reached gene silencing efficacy “in vitro”; 2) an improved survival effect was achieved combining both therapeutic vaccine and Foxp3 antisense or CTLA4 antisense oligonucleotides (50% and 20%, respectively); 3) The blood CD4+CD25+Foxp3+ (Treg) and CD4+CTLA4+ cell counts were higher in mice that developed tumor on the day of sacrifice. Our data showed that tumor cell vaccine combined with Foxp3 or CTLA4 gene silencing can increase the efficacy of therapeutic antitumor vaccination. PMID:28176947

  3. Focal adhesion kinase antisense oligodeoxynucleotides inhibit human pulmonary artery smooth muscle cells proliferation and promote human pulmonary artery smooth muscle cells apoptosis

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-long; ZHANG Zhen-xiang; XU Yong-jian; NI Wang; CHEN Shi-xin

    2005-01-01

    was higher than in the mismatch sense group and the latter was higher than sense-FAK group. In addition, the sense-FAK ODNs group was strongly stained by immunocytochemistry, whereas the antisense-FAK ODNs group was weakly stained. Conclusions The results suggest that FAK relates to the proliferation of HPASMCs. Antisense-FAK ODNs inhibit HPASMCs proliferation and facilitate their apoptosis. It is possible that FAK via JNK, CDK 2 signalling pathways enhances HPASMCs proliferation and via caspase-3 inhibits HPASMCs apoptosis.

  4. Combining gene expression data from different generations of oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Kong Sek

    2004-10-01

    Full Text Available Abstract Background One of the important challenges in microarray analysis is to take full advantage of previously accumulated data, both from one's own laboratory and from public repositories. Through a comparative analysis on a variety of datasets, a more comprehensive view of the underlying mechanism or structure can be obtained. However, as we discover in this work, continual changes in genomic sequence annotations and probe design criteria make it difficult to compare gene expression data even from different generations of the same microarray platform. Results We first describe the extent of discordance between the results derived from two generations of Affymetrix oligonucleotide arrays, as revealed in cluster analysis and in identification of differentially expressed genes. We then propose a method for increasing comparability. The dataset we use consists of a set of 14 human muscle biopsy samples from patients with inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays. We find that the use of the probe set matching table for comparative analysis provided by Affymetrix produces better results than matching by UniGene or LocusLink identifiers but still remains inadequate. Rescaling of expression values for each gene across samples and data filtering by expression values enhance comparability but only for few specific analyses. As a generic method for improving comparability, we select a subset of probes with overlapping sequence segments in the two array types and recalculate expression values based only on the selected probes. We show that this filtering of probes significantly improves the comparability while retaining a sufficient number of probe sets for further analysis. Conclusions Compatibility between high-density oligonucleotide arrays is significantly affected by probe-level sequence information. With a careful filtering of the probes based on their sequence overlaps, data from different

  5. Nano and Microtechnologies for the Delivery of Oligonucleotides with Gene Silencing Properties

    Directory of Open Access Journals (Sweden)

    Giuseppe De Rosa

    2009-07-01

    Full Text Available Oligonucleotides (ONs are synthetic fragments of nucleic acid designed to modulate the expression of target proteins. DNA-based ONs (antisense, antigene, aptamer or decoy and more recently a new class of RNA-based ONs, the small interfering RNAs (siRNAs, have gained great attention for the treatment of different disease states, such as viral infections, inflammation, diabetes, and cancer. However, the development of therapeutic strategies based on ONs is hampered by their low bioavailability, poor intracellular uptake and rapid degradation in biological fluids. The use of a non-viral carrier can be a powerful tool to overcome these drawbacks. Lipid or polymer-based nanotechnologies can improve biological stability and cellular uptake of ONs, with possibility of tissue and/or cellular targeting. The use of polymeric devices can also produce a prolonged release of the ON, thus reducing the need of frequent administrations. This review summarizes advantages and issues related to the main non-viral vectors used for ON delivery.

  6. Template switching between PNA and RNA oligonucleotides

    Science.gov (United States)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  7. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A;

    2015-01-01

    ) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one......The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition......, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise...

  8. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    Science.gov (United States)

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  9. hsa-miR-125a-5p Enhances Invasion in Non-small Cell Lung Carcinoma Cell Lines by Upregulating Rock-1

    Directory of Open Access Journals (Sweden)

    Lili JIANG

    2009-10-01

    Full Text Available Background and objective MicroRNAs (miRNAs are endogenous, non-coding small RNA in eukaryotes. They recognize their target sites by incomplete base pairing and posttranscriptionally regulate gene expression, and function on a lot of complex vital processes of organisms. The objective of this work is to study how hsa-miR-125a-5p enhances the invasive ability of lung cancer cells. Methods The target gene and its target sites of hsa-miR-125a-5p were predicted by microRNA.org. We investigated Rock-1 mRNA and protein expressions by RT-PCR and Western blot according to the result of prediction further. The invasive ability of A549 cells, which were transfected with sense hsa-miR-125a-5p 2’-O-methyl oligonucleotide after being blocked by anti-Rock-1, was observed by Transwell. Results With RT-PCR and Western blot, Rock-1 mRNA and protein were both increased in A549 cells transfected with sense hsa-miR-125a-5p 2’-O-methyl oligonucleotide and were both decreased in the cells which transfected with antisense vs control groups. The invasive ability of A549 cells transfected with sense hsa-miR-125a-5p 2’-O-methyl oligonucleotide were weakened after being blocked by anti-Rock-1, vs non-blocking group by Transwell test. Conclusion hsa-miR-125a-5p could up-regulate Rock-1 and enhance invasion in lung cancer cells.

  10. Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases.

    Science.gov (United States)

    Renaud, Jean-Baptiste; Boix, Charlotte; Charpentier, Marine; De Cian, Anne; Cochennec, Julien; Duvernois-Berthet, Evelyne; Perrouault, Loïc; Tesson, Laurent; Edouard, Joanne; Thinard, Reynald; Cherifi, Yacine; Menoret, Séverine; Fontanière, Sandra; de Crozé, Noémie; Fraichard, Alexandre; Sohm, Frédéric; Anegon, Ignacio; Concordet, Jean-Paul; Giovannangeli, Carine

    2016-03-08

    Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.

  11. Conjugation of fluorescent proteins with DNA oligonucleotides.

    Science.gov (United States)

    Lapiene, Vidmantas; Kukolka, Florian; Kiko, Kathrin; Arndt, Andreas; Niemeyer, Christof M

    2010-05-19

    This work describes the synthesis of covalent ssDNA conjugates of six fluorescent proteins, ECFP, EGFP, E(2)GFP, mDsRed, Dronpa, and mCherry, which were cloned with an accessible C-terminal cystein residue to enable site-selective coupling using a heterobispecific cross-linker. The resulting conjugates revealed similar fluorescence emission intensity to the unconjugated proteins, and the functionality of the tethered oligonucleotide was proven by specific Watson-Crick base pairing to cDNA-modified gold nanoparticles. Fluorescence spectroscopy analysis indicated that the fluorescence of the FP is quenched by the gold particle, and the extent of quenching varied with the intrinsic spectroscopic properties of FP as well as with the configuration of surface attachment. Since this study demonstrates that biological fluorophores can be selectively incorporated into and optically coupled with nanoparticle-based devices, applications in DNA-based nanofabrication can be foreseen.

  12. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.

    Science.gov (United States)

    Alam, Rowshon; Thazhathveetil, Arun Kalliat; Li, Hong; Seidman, Michael M

    2014-01-01

    Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site. Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity.

  13. Sequence-specific targeting of RNA with an oligonucleotide-neomycin conjugate.

    Science.gov (United States)

    Charles, Irudayasamy; Xi, Hongjuan; Arya, Dev P

    2007-01-01

    The synthesis of neomycin covalently attached at the C5-position of 2'-deoxyuridine is reported. The synthesis outlined allows for incorporation of an aminoglycoside (neomycin) at any given site in an oligonucleotide (ODN) where a thymidine (or uridine) is present. Incorporation of this modified base into an oligonucleotide, which is complementary to a seven-bases-long alpha-sarcin loop RNA sequence, leads to enhanced duplex hybridization. The increase in Tm for this duplex (DeltaTm = 6 degrees C) suggests a favorable interaction of neomycin within the duplex groove. CD spectroscopy shows that the modified duplex adopts an A-type confirmation. ITC measurements indicate the additive effects of ODN and neomycin binding to the RNA target (Ka = 4.5 x 107 M-1). The enhanced stability of the hybrid duplex from this neomycin-ODN conjugate originates primarily from the enthalpic contribution of neomycin {DeltaDeltaHobs = -7.21 kcal/mol (DeltaHneomycin conjugated - DeltaH nonconjugated)} binding to the hybrid duplex. The short linker length allows for selective stabilization of the hybrid duplex over the hybrid triplex. The results described here open up new avenues in the design and synthesis of nucleo-aminoglycoside-conjugates (N-Ag-C) where the inclusion of any number of aminoglycoside (neomycin) molecules per oligonucleotide can be accomplished.

  14. The Use of Antisense-Mediated Inhibition to Delineate The Role of Inflammatory Agents in The Pathophysiology of Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Damien D. Pearse

    2002-01-01

    Full Text Available Injuries to the central nervous system (CNS usually lead to a potent and acute inflammatory response[1]. During this period, glia and immune cells respond to chemical cues associated with the debris of lysed neurons, disrupted axons, and a broken blood-brain-barrier by releasing a battery of cytokines including tumor necrosis factor-α (TNF-α and, interleukin-β (IL-1β as well as reactive oxygen species such as nitric oxide (NO-[2]. The secretion of these factors may be primarily responsible for secondary damage to surrounding uninjured tissue that potentiates the initial injury[3]. Antisense oligonucleotides (ASOs are designed to hybridize to specific regions of specific mRNAs. Hybridization of the oligonucleotide to the mRNA then interferes with the normal processing of that mRNA at the ribosome or targets the RNA duplex for cleavage by the RNA digestive enzyme, ribonuclease H, resulting in greatly reduced expression of the coded protein. This effectively reduces the amount of corresponding translated protein product and experiments can be designed to examine the requirement of particular inflammatory agents in eliciting specific deleterious responses after injury, e.g., cell death.

  15. Sense and antisense transcription are associated with distinct chromatin architectures across genes.

    Science.gov (United States)

    Murray, Struan C; Haenni, Simon; Howe, Françoise S; Fischl, Harry; Chocian, Karolina; Nair, Anitha; Mellor, Jane

    2015-09-18

    Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

  16. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis

    Science.gov (United States)

    Bao, Chenchen; Conde, João; Curtin, James; Artzi, Natalie; Tian, Furong; Cui, Daxiang

    2015-07-01

    Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases.

  17. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    Science.gov (United States)

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  18. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  19. Tuning molecular interactions in lipid-oligonucleotides assemblies via locked nucleic acid (LNA)-based lipids.

    Science.gov (United States)

    Patwa, Amit; Salgado, Gilmar; Dole, François; Navailles, Laurence; Barthélémy, Philippe

    2013-11-07

    Hybrid nucleotide-lipids containing locked nucleic acid (LNA) show enhanced hybridization properties with complementary single strand RNAs compared to DNA lipid analogues. The LNA adenosine lipid features unique binding properties with a high binding affinity for poly-uridine and the entropically driven formation of a stable complex (K(d) ≈ 43 nM). Enhanced hybridization properties of LNA-based lipids should be applicable for the development of oligonucleotide (ON) delivery systems or as small molecule binders to RNA for novel therapeutic strategies.

  20. Optical Characterization of Oligonucleotide DNA Influenced by Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Seyedeh Maryam Banihashemian

    2013-09-01

    Full Text Available UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA and cytosine-guanine 100 mer (CG-100 DNA indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.

  1. Antineoplastic Effect of Decoy Oligonucleotide Derived from MGMT Enhancer

    OpenAIRE

    Canello, Tamar; Ovadia, Haim; Refael, Miri; Zrihan, Daniel; Siegal, Tali; Lavon, Iris

    2014-01-01

    Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) wi...

  2. Synergistic effect of chemical penetration enhancer and iontophoresis on transappendageal transport of oligodeoxynucleotides.

    Science.gov (United States)

    Liu, Keng-Chih; Green, Colin R; Alany, Raid G; Rupenthal, Ilva D

    2013-01-30

    Gap junction protein connexin43 (Cx43) specific antisense oligodeoxynucleotides (AsODN) have been shown to improve a number of inflammatory conditions and may therefore offer a novel strategy for persistent pain management. However, for such molecules to be clinically effective, delivery challenges owing to the molecules' high molecular weight, negative charge and hydrophilicity have to be overcome. In this study, the effect of various chemical penetration enhancers and cathodal iontophoresis on transdermal delivery was evaluated. Initial skin permeation studies revealed only a slight increase in the passive flux of the model anionic drug sodium fluorescein using limonene/ethanol. Applying cathodal iontophoresis, the amount of the model drug permeated through untreated skin was tripled, while a combination of chemical and physical penetration enhancement resulted in a fourfold increase in the fluorescein amount permeated. However, even the synergistic effect of limonene/ethanol and iontophoresis was insufficient to achieve complete permeation of Cy3-labeled Cx43 AsODN across the entire skin thickness. Instead, molecules were trapped in the epidermis or permeated deeply into the hair follicles. These results suggest that the synergistic effect of chemical and physical penetration enhancement increases intradermal delivery of oligonucleotides but is insufficient to deliver such large molecules across intact skin.

  3. m iR-21反义寡核苷酸增强地西他滨体外抗白血病效应%Enhanced anti-leukemic activity of decitabine to leukemia HL-60 cells by anti-miR-21 oligonucleotide

    Institute of Scientific and Technical Information of China (English)

    王晔恺; 于倩; 林奇龙; 姚燕珍; 梅佩玉; 李翊卫

    2015-01-01

    目的:研究 miR-21反义寡核苷酸(anti-miR-21 oligonucleotide, AMO)对地西他滨(decitabine, DCA)抗白血病效应的影响及可能机制。方法:将AMO和无义寡核苷酸( scramble oligonucleotide , SCR)通过脂质体转染导入HL-60细胞,实时荧光定量PCR( real-time PCR)验证转染效率,再分别与DCA 0.5、2.0和4.0μmol/L作用48 h。 Real-time PCR分别检测人周期节律蛋白3(hPer3) mRNA表达,Annexin V/PI法检测凋亡,流式细胞术检测CD117和CD11b平均荧光强度(MFI)。结果: AMO转染组miR-21表达(0.35±0.07)低于空白组(0.71±0.07)和SCR转染组(0.66±0.05),差异有统计学意义(P<0.05)。 AMO转染组的HL-60细胞DCA的IC50低于空白组和SCR转染组(P<0.01)。同一浓度下,AMO组的早期凋亡率、CD11b的MFI和hPer3 mRNA均高于同一浓度药物作用的空白组和SCR组,CD117 MFI均低于同一浓度药物作用的空白组和SCR组,差异均具有统计学意义(P<0.01)。结论:AMO能显著促进DCA体外抗白血病效应,其机制可能与其协助激活hPer3的表达有关。%AIM:To investigate the role of anti-miR-21 oligonucleotide ( AMO) in the anti-leukemic activity of decitabine (DCA) in vitro.METHODS:AMO and scramble oligonucleotide (SCR) were constructed and transfected into HL-60 cells.The miR-21 expression was analyzed by real-time PCR to identify the transfection efficiency .The cells were treated with DCA at gradient concentrations (0.5, 2.0 and 4.0 μmol/L) for 48 h.The mRNA expression of human period circadian protein 3 (hPer3) was detected by real-time PCR.The early apoptotic rates were determined by flow cy-tometry with Annexin V/PI staining.Mean fluorescence intensities ( MFI) of CD117 and CD11b were also measured by flow cytometry.RESULTS:The miR-21 relative expression level in AMO group was significantly lower than that in blank group and SCR group (P<0.01).IC50 of DCA in AMO group was

  4. A riboswitch-regulated antisense RNA in Listeria monocytogenes.

    Science.gov (United States)

    Mellin, J R; Tiensuu, Teresa; Bécavin, Christophe; Gouin, Edith; Johansson, Jörgen; Cossart, Pascale

    2013-08-06

    Riboswitches are ligand-binding elements located in 5' untranslated regions of messenger RNAs, which regulate expression of downstream genes. In Listeria monocytogenes, a vitamin B12-binding (B12) riboswitch was identified, not upstream of a gene but downstream, and antisense to the adjacent gene, pocR, suggesting it might regulate pocR in a nonclassical manner. In Salmonella enterica, PocR is a transcription factor that is activated by 1,2-propanediol, and subsequently activates expression of the pdu genes. The pdu genes mediate propanediol catabolism and are implicated in pathogenesis. As enzymes involved in propanediol catabolism require B12 as a cofactor, we hypothesized that the Listeria B12 riboswitch might be involved in pocR regulation. Here we demonstrate that the B12 riboswitch is transcribed as part of a noncoding antisense RNA, herein named AspocR. In the presence of B12, the riboswitch induces transcriptional termination, causing aspocR to be transcribed as a short transcript. In contrast, in the absence of B12, aspocR is transcribed as a long antisense RNA, which inhibits pocR expression. Regulation by AspocR ensures that pocR, and consequently the pdu genes, are maximally expressed only when both propanediol and B12 are present. Strikingly, AspocR can inhibit pocR expression in trans, suggesting it acts through a direct interaction with pocR mRNA. Together, this study demonstrates how pocR and the pdu genes can be regulated by B12 in bacteria and extends the classical definition of riboswitches from elements governing solely the expression of mRNAs to a wider role in controlling transcription of noncoding RNAs.

  5. ANTISENSE TECHNIQUE TO TREAT BREAST CANCER – A REVIEW

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi S

    2011-09-01

    Full Text Available There are many genes which are responsible for developing breast cancer especially, BRCA2 (Breast Cancer 2 and HER2 are extensively involved in developing breast cancer and hence it is the centre of attractions for all the researchers. Nano-particles conjugated with the anti-HER2 monoclonal antibodies are called as “Trastazumab” which directly target the HER2 gene. The major advantage of this technology is that the cells can be prevented before they evolve in to mature stages i.e. metastases production. The BRCA2 gene belongs to the family of tumor suppressor genes and its protein product is responsible for the error free repair mechanisms of DNA. This BRCA2 gene interacts with RAD51 gene to fix the DNA breaks. Mutation in BRCA2 gene such as insertion and deletion leads to breast cancer. More than 800 mutations are found in this gene that lead to increased risk of the breast cancer. Furthermore, BRCA2 gene is also associated with various cancers like prostate, ovarian, fallopian, male breast cancer. Researchers believe that altered products produced due to defects in this gene are unable to interact with the gene RAD51 and cannot repair the DNA. Antisense RNA is the tool which can used to block any RNA or DNA to synthesize its product. In this review we focus in using Antisense RNA against the sense RNA of an altered BRCA2 gene to block the altered affectivity of that gene on the DNA repair mechanism. However, Antisense RNA technique may not help in treating breast cancer, it can better manage the breast cancer to occur.

  6. Reduction of polygalacturonase activity in tomato fruit by antisense RNA

    OpenAIRE

    Sheehy, Raymond E.; Kramer, Matthew; Hiatt, William R

    1988-01-01

    Polygalacturonase [PG; poly(1,4-α-D-galacturonide) glycanhydrolase; EC 3.2.1.15] is expressed in tomato only during the ripening stage of fruit development. PG becomes abundant during ripening and has a major role in cell wall degradation and fruit softening. Tomato plants were transformed to produce antisense RNA from a gene construct containing the cauliflower mosaic virus 35S promoter and a full-length PG cDNA in reverse orientation. The construct was integrated into the tomato genome by A...

  7. Oligonucleotide and Long Polymeric DNA Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E; Mariella Jr., R P; Christian, A T; Gardner, S N; Williams, J M

    2003-11-24

    This report summarizes the work done at Lawrence Livermore National Laboratory for the Oligonucleotide and Long Polymeric DNA Encoding project, part of the Microelectronic Bioprocesses Program at DARPA. The goal of the project was to develop a process by which long (circa 10,000 base-pair) synthetic DNA molecules could be synthesized in a timely and economic manner. During construction of the long molecule, errors in DNA sequence occur during hybridization and/or the subsequent enzymatic process. The work done on this project has resulted in a novel synthesis scheme that we call the parallel pyramid synthesis protocol, the development of a suit of computational tools to minimize and quantify errors in the synthesized DNA sequence, and experimental proof of this technique. The modeling consists of three interrelated modules: the bioinformatics code which determines the specifics of parallel pyramid synthesis for a given chain of long DNA, the thermodynamics code which tracks the products of DNA hybridization and polymerase extension during the later steps in the process, and the kinetics model which examines the temporal and spatial processes during one thermocycle. Most importantly, we conducted the first successful syntheses of a gene using small starting oligomers (tetramers). The synthesized sequence, 813 base pairs long, contained a 725 base pair gene, modified green fluorescent protein (mGFP), which has been shown to be a functional gene by cloning into cells and observing its green fluorescent product.

  8. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  9. Intra-Amygdala Injections of CREB Antisense Impair Inhibitory Avoidance Memory: Role of Norepinephrine and Acetylcholine

    Science.gov (United States)

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed…

  10. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells

    DEFF Research Database (Denmark)

    Schein, Aleks; Zucchelli, Silvia; Kauppinen, Sakari;

    2016-01-01

    , increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate...

  11. Cellular Antisense Activity of PNA-Oligo(bicycloguanidinium) Conjugates forming Self-Assembled Nano-aggregates

    DEFF Research Database (Denmark)

    Valero, Julian; Shiraishi, Takehiko; de Mendoza, Javier;

    2015-01-01

    A series of peptide nucleic acid-oligo(bicycloguanidinium) (PNA-BGn) conjugates have been synthesized and characterized in terms of cellular antisense activity using the pLuc750HeLa cell splice correction assay. PNA-BG4 conjugates exhibit low micromolar antisense activity and the cellular activit...

  12. Extensive polycistronism and antisense transcription in the mammalian Hox clusters.

    Directory of Open Access Journals (Sweden)

    Gaëll Mainguy

    Full Text Available The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70% have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb. This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering.

  13. Antisense-mediated exon skipping to reframe transcripts.

    Science.gov (United States)

    Turczynski, Sandrina; Titeux, Matthias; Pironon, Nathalie; Hovnanian, Alain

    2012-01-01

    Numerous genetic disorders are caused by loss-of-function mutations that disrupt the open reading frame of the gene either by nonsense or by frameshift (insertion, deletion, indel, or splicing) mutations. Most of the time, the result is the absence of functional protein synthesis due to mRNA degradation by nonsense-mediated mRNA decay, or rapid degradation of a truncated protein. Antisense-based splicing modulation is a powerful tool that has the potential to treat genetic disorders by restoring the open reading frame through selective removal of the mutated exon, or by restoring correct splicing.We have developed this approach for a severe genetic skin disorder, recessive dystrophic epidermolysis bullosa, caused by mutations in the COL7A1 gene encoding type VII collagen. This gene is particularly suited for exon-skipping approaches due to its unique genomic structure. It is composed of 118 exons, 83 of which are in frame. Moreover, these exons encode a single repetitive collagenous domain.Using this gene as an example, we describe general methods that demonstrate the feasibility and efficacy of the antisense-mediated exon-skipping strategy to reframe transcripts.

  14. Targeting of single stranded oligonucleotides through metal-induced cyclization of short complementary strands : Targeting of single stranded oligonucleotides

    OpenAIRE

    Freville, Fabrice; Richard, Tristan; Bathany, Katell; Moreau, Serge

    2006-01-01

    International audience; A new strategy to cyclize a short synthetic oligonucleotide on a DNA or a RNA target strand is described. This one relies on a metal-mediated cyclization of short synthetic oligonucleotides conjugated with two chelating 2,2':6',2”-terpyridine moieties at their 3' and 5' ends. Cyclization following metal addition (Zn2+, Fe2+) was demonstrated using UV monitored thermal denaturation experiments, mass spectrometry analysis and gel shift assays. NMR experiments were used t...

  15. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach.

    Science.gov (United States)

    Bordoy, Antoni E; Chatterjee, Anushree

    2015-01-01

    Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards

  16. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    )) or tetraphenylporphyrin tetrasulfonic acid (TPPS). Cellular uptake of the PNA conjugates were evaluated by using a sensitive cellular method with HeLa pLuc705 cells based on the splicing correction of luciferase gene by targeting antisense oligonucleotides to a cryptic splice site of the mutated luciferase gene....... The cellular efficacy of CPP conjugates were evaluated by measuring luciferase activity as a result of splicing correction and was also confirmed by RT-PCR analysis of luciferase pre-mRNA....

  17. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function

    DEFF Research Database (Denmark)

    Scheele, Camilla; Petrovic, Natasa; Faghihi, Mohammad A

    2007-01-01

    BACKGROUND: Mutations in the PTEN induced putative kinase 1 (PINK1) are implicated in early-onset Parkinson's disease. PINK1 is expressed abundantly in mitochondria rich tissues, such as skeletal muscle, where it plays a critical role determining mitochondrial structural integrity in Drosophila....... RESULTS: Herein we characterize a novel splice variant of PINK1 (svPINK1) that is homologous to the C-terminus regulatory domain of the protein kinase. Naturally occurring non-coding antisense provides sophisticated mechanisms for diversifying genomes and we describe a human specific non-coding antisense...... expressed at the PINK1 locus (naPINK1). We further demonstrate that PINK1 varies in vivo when human skeletal muscle mitochondrial content is enhanced, supporting the idea that PINK1 has a physiological role in mitochondrion. The observation of concordant regulation of svPINK1 and naPINK1 during in vivo...

  18. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  19. Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology

    Directory of Open Access Journals (Sweden)

    Jutharat Attajarusit

    2007-07-01

    Full Text Available Polyphenol oxidases (PPOs catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum plants with modified PPO expression levels (suppressed PPO and overexpressing PPO. These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F., cotton bollworm (Helicoverpa armigera (Hübner and beet army worm (Spodoptera exigua (Hübner, whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants

  20. An antisense transcript in the human cytomegalovirus UL87 gene region

    Directory of Open Access Journals (Sweden)

    Ma Yanping

    2011-11-01

    Full Text Available Abstract Background Rapid advances in research on antisense transcripts are gradually changing our comprehension of genomic and gene expression aspects of the Herpesviridae. One such herpesvirus is the human cytomegalovirus (HCMV. Although transcription of the HCMV UL87 gene has not been specifically investigated, cDNA clones of UL87 antisense transcripts were found in HCMV cDNA libraries previously. In this study, the transcription of the UL87 antisense strand was investigated in three clinically isolated HCMV strains. Results First, an 800 nucleotides transcript having an antisense orientation to the UL87 gene was found in a late HCMV cDNA library. Then, the UL87 antisense transcript was confirmed by Rapid amplification of cDNA ends (RACE and Northern blot in three HCMV clinical strains. Two ORFs were predicted in the antisense transcript. The putative protein of ORF 1 showed a high degree of conservation among HCMV and other CMV strains. Conclusion An 800nt antisense transcript in the UL87 gene region exists in HCMV clinical strains.

  1. Inhibition of Leukemic Cell Telomerase Activity by Antisense Phosphorothioate Oligodeoxynucleotides

    Institute of Scientific and Technical Information of China (English)

    HEDongmei; ZHANGYuan

    2002-01-01

    Objective To evaluate the effect of human telomerase reverse transcriptase(hTERT) gene antisense oligodeoxynucleotide (ASON) on telomerase activity in K562 cells.Methods Telomerase activity was detemined by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA) in K562 cells treated with ASODN and hTERTmRNA expression was detected by reverse transcriptase polymerase chain reaction (RT-PCR). Results The hTERTmRNA level was decreased,and telomerase activity was significantly inhibited when the K562 cells were treated with ASODN for 48 h. Conclusion It is suggested that hTETR ASODN might specifically inhibit telomrase activity of K562 cells at translation level,and it is further proved that hTERT gene has significant correlation with telopmerase activity.

  2. Survivin反义寡核苷酸对5-FU诱导人红白血病细胞系K562凋亡的影响%Survivin antisense oligodeoxy-nucleotid enhances 5-FU- induced apoptosis of leukemic cell line K562

    Institute of Scientific and Technical Information of China (English)

    靳秋月; 王瑞珉; 谢红; 陈立军

    2006-01-01

    [目的]探讨survivin反义寡核苷酸(Antisense Oligodeoxy-nucleotid,ASODN)对5-FU(5-氟尿嘧啶)诱导人红白血病细胞系K562细胞凋亡的影响.[方法]体外培养K562细胞,合成survivin ASODN并经脂质体转染至K562细胞内,MTT法观察survivin ASODN组、5-FU组及5-FU联合survivin ASODN的细胞毒作用,Hoechst33342/PI双荧光染色观察各组细胞核形态,镜下计算各组细胞凋亡率.[结果]400、600、800、1000nmol/L survivin ASODN处理K562细胞44h后,IC50为800 nmol/L;与单独使用survivin ASODN或5-FU相比,5-FU联合800 nmol/L survivin ASODN后细胞生长明显受到抑制(P<0.01);Hoechest33342/PI双荧光染色可观察到survivin ASODN组、5-FU组及5-FU联合survivin ASODN组均出现明显核固缩、凝集等细胞凋亡表现.镜下细胞计数,survivin ASODN组、5-FU组及5-FU联合survivin ASODN组细胞凋亡率分别为54.55%、53.85%、86.70%.[结论]Survivin ASODN可增强K562细胞对5-FU的敏感性.

  3. Molecular identity of the late sodium current in adult dog cardiomyocytes identified by Nav1.5 antisense inhibition.

    Science.gov (United States)

    Maltsev, Victor A; Kyle, John W; Mishra, Sudhish; Undrovinas, Abertas

    2008-08-01

    Late Na(+) current (I(NaL)) is a major component of the action potential plateau in human and canine myocardium. Since I(NaL) is increased in heart failure and ischemia, it represents a novel potential target for cardioprotection. However, the molecular identity of I(NaL) remains unclear. We tested the hypothesis that the cardiac Na(+) channel isoform (Na(v)1.5) is a major contributor to I(NaL) in adult dog ventricular cardiomyocytes (VCs). Cultured VCs were exposed to an antisense morpholino-based oligonucleotide (Na(v)1.5 asOligo) targeting the region around the start codon of Na(v)1.5 mRNA or a control nonsense oligonucleotide (nsOligo). Densities of both transient Na(+) current (I(NaT)) and I(NaL) (both in pA/pF) were monitored by whole cell patch clamp. In HEK293 cells expressing Na(v)1.5 or Na(v)1.2, Na(v)1.5 asOligo specifically silenced functional expression of Na(v)1.5 (up to 60% of the initial I(NaT)) but not Na(v)1.2. In both nsOligo-treated controls and untreated VCs, I(NaT) and I(NaL) remained unchanged for up to 5 days. However, both I(NaT) and I(NaL) decreased exponentially with similar time courses (tau = 46 and 56 h, respectively) after VCs were treated with Na(v)1.5 asOligo without changes in 1) decay kinetics, 2) steady-state activation and inactivation, and 3) the ratio of I(NaL) to I(NaT). Four days after exposure to Na(v)1.5 asOligo, I(NaT) and I(NaL) amounted to 68 +/- 6% (mean +/- SE; n = 20, P < 0.01) and 60 +/- 7% (n = 11, P < 0.018) of those in VCs treated by nsOligo, respectively. We conclude that in adult dog heart Na(v)1.5 sodium channels have a "functional half-life" of approximately 35 h (0.69tau) and make a major contribution to I(NaL).

  4. Gene suppression via U1 small nuclear RNA interference (U1i) machinery using oligonucleotides containing 2'-modified-4'-thionucleosides.

    Science.gov (United States)

    Kikuchi, Yusaku; Yamazaki, Naoshi; Tarashima, Noriko; Furukawa, Kazuhiro; Takiguchi, Yoshiharu; Itoh, Kohji; Minakawa, Noriaki

    2013-09-01

    Gene suppression via U1 small nuclear RNA interference (U1i) is considered to be one of the most attractive approaches, and takes the place of general antisense, RNA interference (RNAi), and anti-micro RNA machineries. Since the U1i can be induced by short oligonucleotides (ONs), namely U1 adaptors consisting of a 'target domain' and a 'U1 domain', we prepared adaptor ONs using 2'-modified-4'-thionucleosides developed by our group, and evaluated their U1i activity. As a result, the desired gene suppression via U1i was observed in ONs prepared as a combination of 2'-fluoro-4'-thionucleoside and 2'-fluoronucleoside units as well as only 2'-fluoronucleoside units, while those prepared as combination of 2'-OMe nucleoside/2'-OMe-4'-thionucleoside and 2'-fluoronucleoside units did not show significant activity. Measurement of Tm values indicated that a higher hybridization ability of adaptor ONs with complementary RNA is one of the important factors to show potent U1i activity.

  5. Investigations of oligonucleotide usage variance within and between prokaryotes

    DEFF Research Database (Denmark)

    Bohlin, J.; Skjerve, E.; Ussery, David

    2008-01-01

    Oligonucleotide usage in archaeal and bacterial genomes can be linked to a number of properties, including codon usage (trinucleotides), DNA base-stacking energy (dinucleotides), and DNA structural conformation (di-to tetranucleotides). We wanted to assess the statistical information potential...... was that prokaryotic chromosomes can be described by hexanucleotide frequencies, suggesting that prokaryotic DNA is predominantly short range correlated, i. e., information in prokaryotic genomes is encoded in short oligonucleotides. Oligonucleotide usage varied more within AT-rich and host-associated genomes than...... in GC-rich and free-living genomes, and this variation was mainly located in non-coding regions. Bias (selectional pressure) in tetranucleotide usage correlated with GC content, and coding regions were more biased than non-coding regions. Non-coding regions were also found to be approximately 5.5% more...

  6. Delivery of RNAi-Based Oligonucleotides by Electropermeabilization

    Directory of Open Access Journals (Sweden)

    Muriel Golzio

    2013-04-01

    Full Text Available For more than a decade, understanding of RNA interference (RNAi has been a growing field of interest. The potent gene silencing ability that small oligonucleotides have offers new perspectives for cancer therapeutics. One of the present limits is that many biological barriers exist for their efficient delivery into target cells or tissues. Electropermeabilization (EP is one of the physical methods successfully used to transfer small oligonucleotides into cells or tissues. EP consists in the direct application of calibrated electric pulses to cells or tissues that transiently permeabilize the plasma membranes, allowing efficient in vitro and in vivo. cytoplasmic delivery of exogenous molecules. The present review reports on the type of therapeutic RNAi-based oligonucleotides that can be electrotransferred, the mechanism(s of their electrotransfer and the technical settings for pre-clinical purposes.

  7. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    Science.gov (United States)

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  8. A novel catechol-based universal support for oligonucleotide synthesis.

    Science.gov (United States)

    Anderson, Keith M; Jaquinod, Laurent; Jensen, Michael A; Ngo, Nam; Davis, Ronald W

    2007-12-21

    A novel universal support for deoxyribo- and ribonucleic acid synthesis has been developed. The support, constructed from 1,4-dimethoxycatechol, represents an improvement over existing universal supports because of its ability to cleave and deprotect under mild conditions in standard reagents. Because no nonvolatile additives are required for cleavage and deprotection, the synthesized oligonucleotides do not require purification prior to use in biochemical assays. Using reverse phase HPLC and electrospray mass spectroscopy, it was determined that oligonucleotides synthesized on the universal support (UL1) 3'-dephosphorylate quickly (9 h in 28-30% ammonium hydroxide (NH4OH) at 55 degrees C, 2 h in 28-30% NH4OH at 80 degrees C, or <1 h in ammonium hydroxide/methylamine (1:1) (AMA) at 80 degrees C). Oligonucleotides used as primers for the polymerase chain reaction (PCR) assay were found to perform identically to control primers, demonstrating full biological compatibility. In addition, a method was developed for sintering the universal support directly into a filter plug which can be pressure fit into the synthesis column of a commercial synthesizer. The universal support plugs allow the synthesis of high-quality oligonucleotides at least 120 nucleotides in length, with purity comparable to non-universal commercial supports and approximately 50% lower reagent consumption. The universal support plugs are routinely used to synthesize deoxyribo-, ribo-, 3'-modified, 5'-modified, and thioated oligonucleotides. The flexibility of the universal support and the efficiency of 3'-dephosphorylation are expected to increase the use of universal supports in oligonucleotide synthesis.

  9. Synthesis of Peptide-Oligonucleotide Conjugates Using a Heterobifunctional Crosslinker

    Science.gov (United States)

    Williams, Berea A.R.; Chaput, John C.

    2010-01-01

    Peptide-oligonucleotide conjugates (POCs) are molecular chimeras composed of a nucleic acid moiety covalently attached to a polypeptide moiety. POCs have been used in numerous applications from therapeutics to nanotechnology, and most recently as combinatorial agents in the assembly of bivalent protein affinity reagents. This unit describes the synthesis and purification of POC molecules using the heterobifunctional crosslinking reagent succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), which enables amine-modified oligonucleotides to become covalently linked to cysteine-modified polypeptides. This solution-based protocol consists of a two-step synthesis followed by a single purification step. PMID:20827717

  10. Chemical phosphorylation of deoxyribonucleosides and thermolytic DNA oligonucleotides.

    Science.gov (United States)

    Ausín, Cristina; Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L

    2006-10-01

    The phosphorylating reagent bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite is prepared in three steps from commercial methyl thioglycolate and diisopropylphosphoramidous dichloride. The phosphorylating reagent has been used successfully in the solid-phase synthesis of deoxyribonucleoside 5'-/3'-phosphate or -thiophosphate monoesters and oligonucleotide 5'-phosphate/-thiophosphate monoesters. Bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite has also been employed in the construction of a thermolytic dinucleotide prodrug model to evaluate the ability of the reagent to produce thermosentive oligonucleotide prodrugs under mild temperature conditions ( approximately 25 degrees C) for potential therapeutic applications.

  11. Versatile functionalization of nanoelectrodes by oligonucleotides via pyrrole electrochemistry.

    Science.gov (United States)

    Descamps, Emeline; Nguyen, Khoa; Bouchain-Gautier, Christelle; Filoramo, Arianna; Goux-Capes, Laurence; Goffman, Marcello; Bourgoin, Jean-Philippe; Mailley, Pascal; Livache, Thierry

    2010-11-15

    Surface modification at the nanometer scale is a challenge for the future of molecular electronics. In particular, the precise anchoring and electrical addressing of biological scaffolds such as complex DNA nanonetworks is of importance for generating bio-directed assemblies of nano-objects for nanocircuit purposes. Herein, we consider the individual modification of nanoelectrodes with different oligonucleotide sequences by an electrochemically driven co-polymerization process of pyrrole and modified oligonucleotide sequences bearing pyrrole monomers. We demonstrate that this one-step technique presents the advantages of simplicity, localization of surface modification, mechanical, biological and chemical stability of the coatings, and high lateral resolution.

  12. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts.

    Science.gov (United States)

    Kramer, Nicholas J; Carlomagno, Yari; Zhang, Yong-Jie; Almeida, Sandra; Cook, Casey N; Gendron, Tania F; Prudencio, Mercedes; Van Blitterswijk, Marka; Belzil, Veronique; Couthouis, Julien; Paul, Joseph West; Goodman, Lindsey D; Daughrity, Lillian; Chew, Jeannie; Garrett, Aliesha; Pregent, Luc; Jansen-West, Karen; Tabassian, Lilia J; Rademakers, Rosa; Boylan, Kevin; Graff-Radford, Neill R; Josephs, Keith A; Parisi, Joseph E; Knopman, David S; Petersen, Ronald C; Boeve, Bradley F; Deng, Ning; Feng, Yanan; Cheng, Tzu-Hao; Dickson, Dennis W; Cohen, Stanley N; Bonini, Nancy M; Link, Christopher D; Gao, Fen-Biao; Petrucelli, Leonard; Gitler, Aaron D

    2016-08-12

    An expanded hexanucleotide repeat in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). Therapeutics are being developed to target RNAs containing the expanded repeat sequence (GGGGCC); however, this approach is complicated by the presence of antisense strand transcription of expanded GGCCCC repeats. We found that targeting the transcription elongation factor Spt4 selectively decreased production of both sense and antisense expanded transcripts, as well as their translated dipeptide repeat (DPR) products, and also mitigated degeneration in animal models. Knockdown of SUPT4H1, the human Spt4 ortholog, similarly decreased production of sense and antisense RNA foci, as well as DPR proteins, in patient cells. Therapeutic targeting of a single factor to eliminate c9FTD/ALS pathological features offers advantages over approaches that require targeting sense and antisense repeats separately.

  13. STUDY ON THE INHIBITORY EFFECT OF ANTISENSE ETAR OLIGODEOXYNUCLEOTIDES ON THE PROLIFERATION OF VASCULAR SMOOTH CELLS

    Institute of Scientific and Technical Information of China (English)

    张岚; 张柏根; 张纪蔚; 钱济先; 张皓; 黄晓钟

    2002-01-01

    Objective To study the inhibitory effect of antisense endothelin receptor A (ETAR) on the proliferation of the vascular smooth muscle cells. Methods The sense, antisense and mismatched ODNs for ETAR were designed and synthetized. The study was carried out using MTT method and binding assays.Results ETAR-ODNs could move successfully across VSMC membranes. Photo-absorption in the MTT test was reduced significantly (P<0.05) in the antisense group at 5μmol/L; the reduction of CPM also occurred in the 125I-ET-1 specific binding assay; and the sense and mismatched ODNs groups did not show this reduction. Conclusion Our study suggested that the antisense oligomers inhibited the proliferation of VSMCs by hindering the translation of target mRNA and by reducing the production of related protein.

  14. Reduction of tumorigenicity of SMMC-7721 hepatoma cells by vascular endothelial growth factor antisense gene therapy

    Institute of Scientific and Technical Information of China (English)

    Yu Cheng Tang; Yu Li; Guan Xiang Qian

    2001-01-01

    AIM To test the hypothesis to block VEGFexpression of SMMC-7721 hepatoma cells mayinhibit tumor growth using the rat hepatomamodel.METHODS Amplifiy the 200 VEGF cDNAfragment and insert it into human U6 genecassette in the reverse orientation transcribingsmall antisense RNA which could specificallyinteract with VEGF165, and VEGF121 mRNA.Construct the retroviral vector containing thisantisense VEGF U6 cassette and package thereplication-deficient recombinant retrovirus.SMMC-7721 cells were transduced with thesevirus and positive clones were selected withG418. PCR and Southern blot analysis wereperformed to determine if U6 cassette integratedinto the genomic DNA of positive clone.Transfected tumor cells were evaluated for RNAexpression by ribonuclease protection assays.The VEGF protein in the supernatant of parentaltumor cells and genetically modified tumor cellswas determined with ELISA. In vitro and in vivogrowth properties of antisense VEGF cell clonein nude mice were analyzed.RESULTS Restriction enzyme digestion andPCR sequencing verified that the antisense VEGFRNA retroviral vector was successfullyconstructed. After G418 selection, resistantSMMC-7721 cell clone was picked up. PCR andSouthern blot analysis suggested that U6cassette was integrated into the cell genomicDNA. Stable SMMC-7721 cell clone transducedwith U6 antisense RNA cassette could express200bp small antisense VEGF RNA and secretereduced levels of VEGF in culture condition.Production of VEGF by antisense transgeneexpressing cells was 65 ± 10 ng / L per 106 cells,420 ± 45 ng/L per 106 cells in sense group and 485± 30 ng/L per 106 cells in the negative control group, (P<0.05). The antisense-VEGF cell clone appeared phenotypically indistinguishable from SMMC-7721 cells and SMMC-7721 cells transfected sense VEGF. The growth rate of the antisense-VEGF cell clone was the same as the control cells. When S. C. was implanted into nude mice, growth of antisense-VEGF cell lines was greatly inhibited

  15. Cathepsin B antisense oligodeoxynucleotide suppresses invasive potential of MG-63 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To study the biological effects of cathepsin B phosporothioated antisense oligodeoxynucleotide on human osteosarcoma cell line MG-63 after transfection.Methods A 18-mer phosphorothioate antisense oligodeoxynucleotide(ASODN)targeted against the cathepsin B mRNA was transfected into the human osteosarcoma cell line MG-63 by lipofectamine 2000.The sense and nonsense oligodeoxynucleotides to cathepsin B and blank vector were used as controls.The expression of cathepsin B mRNA was examined by RT-PCR an...

  16. Oligonucleotide-directed mutagenesis for precision gene editing.

    Science.gov (United States)

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  17. Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles

    DEFF Research Database (Denmark)

    Cogoi, S; Jakobsen, U; Pedersen, E B

    2016-01-01

    KRAS is mutated in >90% of pancreatic ductal adenocarcinomas. As its inactivation leads to tumour regression, mutant KRAS is considered an attractive target for anticancer drugs. In this study we report a new delivery strategy for a G4-decoy oligonucleotide that sequesters MAZ, a transcription fa...

  18. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels.

    Science.gov (United States)

    Timofeev, E; Kochetkova, S V; Mirzabekov, A D; Florentiev, V L

    1996-01-01

    Four types of polyacrylamide or polydimethyl-acrylamide gels for regioselective (by immobilization at the 3' end) of short oligonucleotides have been designed for use in manufacturing oligonucleotide microchips. Two of these supports contain amino or aldehyde groups in the gel, allowing coupling with oligonucleotides bearing aldehyde or amino groups, respectively, in the presence of a reducing agent. The aldehyde gel support showed a higher immobilization efficiency relative to the amino gel. Of all reducing agents tested, the best results were obtained with a pyridine-borane complex. The other supports are based on an acrylamide gel activated with glutaraldehyde or a hydroxyalkyl-functionalized gel treated with mesyl chloride. The use of dimethylacrylamide instead of acrylamide allows subsequent gel modifications in organic solvents. All the immobilization methods are easy and simple to perform, give high and reproducible yields, allow long durations of storage of the activated support, and provide high stability of attachment and low non-specific binding. Although these gel supports have been developed for preparing oligonucleotide microchips, they may be used for other purposes as well. PMID:8774893

  19. LNA 5'-phosphoramidites for 5'→3'-oligonucleotide synthesis

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Kumar, Santhosh T.; Wengel, Jesper

    2010-01-01

    Hereby we report an efficient synthesis of LNA thymine and LNA 5-methylcytosine 5′-phosphoramidites, allowing incorporation of LNA thymine and LNA 5-methylcytosine into oligonucleotides synthesized in the 5′→3′ direction. Key steps include regioselective enzymatic benzoylation of the 5′-hydroxy g...

  20. Systematic design of mouse Vh gene family-specific oligonucleotides

    NARCIS (Netherlands)

    Seijen, AM; Seijen, HG; Bos, NA

    2001-01-01

    Kabat's database has often been used to design mouse Vh gene-specific 5 ' primers. The emphasis was mostly on constructing a universal (degenerate) 5 ' primer or 5 ' primer set, which would be able to match every mouse Vh gene. We were interested in finding oligonucleotides that could be used as pri

  1. Chromosome-specific painting in Cucumis species using bulked oligonucleotides

    Science.gov (United States)

    Chromosome-specific painting is a powerful technique in molecular cytogenetic and genome research. We developed an oligonucleotide (oligo)-based chromosome painting technique in cucumber (Cucumis sativus) that will be applicable in any plant species with a sequenced genome. Oligos specific to a sing...

  2. Oligonucleotides with 1,4-dioxane-based nucleotide monomers

    DEFF Research Database (Denmark)

    Madsen, Andreas S; Wengel, Jesper

    2012-01-01

    An epimeric mixture of H-phosphonates 5R and 5S has been synthesized in three steps from known secouridine 1. Separation of the epimers has been accomplished by RP-HPLC, allowing full characterization and incorporation of monomers X and Y into 9-mer oligonucleotides using H-phosphonates building ...

  3. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    Science.gov (United States)

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.

  4. Factors that affect the efficiency of antisense oligodeoxyribonucleotide transfection by insonated gas-filled lipid microbubbles

    Science.gov (United States)

    Zhao, Ying-Zheng; Lu, Cui-Tao

    2008-03-01

    Objective: To investigate the factors that affect the efficiency of antisense oligodeoxyribonucleotide(AS-ODNs) transfection by insonated gas-filled lipid microbubbles. Methods: Lipid microbubbles filled with two types of gases-air and C3F8, were prepared respectively. An AS-ODNs sequence HA824 and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of insonated microbubbles. Two mixing methods, three levels of mixing speed, different mixing durations and various ultrasound initiation time after mixing were examined respectively. Transfection efficiency was detected by fluorescence microscopy. Results: C3F8 microbubbles gave higher levels of AS-ODNs transfection efficiency than air microbubbles in all test conditions. Transfection efficiency resulted from mixing method A (incubation of HA824 and microbubbles before mixing cells) did not show significant difference with that of mixing method B (without incubation of HA824 and microbubbles before mixing cells). Mixing speed, duration of mixing and ultrasound initiation time after mixing were central to determining HA824 transfection efficiency in vitro. The optimum parameters for SK-BR-3 cells were found at a mixing speed of 40-50 rpm for 30-60 s with less than 60 s delay before ultrasound. Conclusion: Ultrasound-mediated AS-ODNs transfection enhanced by C3F8-filled lipid microbubbles represents an effective avenue for AS-ODNs transfer.

  5. Factors that affect the efficiency of antisense oligodeoxyribonucleotide transfection by insonated gas-filled lipid microbubbles

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yingzheng [General Hospital of Beijing Military Command of PLA, Department of Clinical Pharmacology (China)], E-mail: lctuua@yahoo.com.cn; Lu Cuitao [Madam Medical Management Group (China)

    2008-03-15

    Objective: To investigate the factors that affect the efficiency of antisense oligodeoxyribonucleotide(AS-ODNs) transfection by insonated gas-filled lipid microbubbles. Methods: Lipid microbubbles filled with two types of gases-air and C{sub 3}F{sub 8}, were prepared respectively. An AS-ODNs sequence HA824 and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of insonated microbubbles. Two mixing methods, three levels of mixing speed, different mixing durations and various ultrasound initiation time after mixing were examined respectively. Transfection efficiency was detected by fluorescence microscopy. Results: C{sub 3}F{sub 8} microbubbles gave higher levels of AS-ODNs transfection efficiency than air microbubbles in all test conditions. Transfection efficiency resulted from mixing method A (incubation of HA824 and microbubbles before mixing cells) did not show significant difference with that of mixing method B (without incubation of HA824 and microbubbles before mixing cells). Mixing speed, duration of mixing and ultrasound initiation time after mixing were central to determining HA824 transfection efficiency in vitro. The optimum parameters for SK-BR-3 cells were found at a mixing speed of 40-50 rpm for 30-60 s with less than 60 s delay before ultrasound. Conclusion: Ultrasound-mediated AS-ODNs transfection enhanced by C{sub 3}F{sub 8}-filled lipid microbubbles represents an effective avenue for AS-ODNs transfer.

  6. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.

    Science.gov (United States)

    Lim, M C G; Zhong, Z W

    2009-10-01

    This paper presents molecular-dynamics (MD) simulations of DNA oligonucleotide and water molecules translocating through carbon nanotube (CNT) channels. An induced pressure difference is applied to the system by pushing a layer of water molecules toward the flow direction to drive the oligonucleotide and other molecules. This MD simulation investigates the changes that occur in the conformation of the oligonucleotide due to water molecules in nanochannels while controlling the temperature and volume of the system in a canonical ensemble. The results show that the oligonucleotide in the (8,8)-(12,12) CNT channel forms a folded state at a lower pressure, whereas the oligonucleotide in the (10,10)-(14,14) CNT channel forms a folded state at a higher pressure instead. The van der Waals forces between the water molecules and the oligonucleotide suggest that the attraction between these two types of molecules results in the linear arrangements of the bases of the oligonucleotide. For a larger nanotube channel, the folding of the oligonucleotide is mainly dependent on the solvent (water molecules), whereas pressure, the size of the nanotube junction, and water molecules are the considering factors of the folding of the oligonucleotide at a smaller nanotube channel. For a folded oligonucleotide, the water distribution around the oligonucleotide is concentrated at a smaller range than that for the distribution around an unfolded oligonucleotide.

  7. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications.

    Science.gov (United States)

    Spinelli, Nicolas; Defrancq, Eric; Morvan, François

    2013-06-07

    Conjugation of oligonucleotides (ONs) to a variety of reporter groups has been the subject of intensive research during the last decade. Conjugation is indeed of great interest because it can be used not only to improve the existing ONs properties but also to impart new ones. In this context tremendous efforts have been made to conjugate carbohydrate moieties to ONs. Indeed carbohydrates play an important role in biological processes such as signal transduction and cell adhesion through the recognition with sugar-binding proteins (i.e. lectins) located on the surface of cells. For this reason, carbohydrate-oligonucleotide conjugates (COCs) have been first developed for improving the poor cellular uptake or tissue specific delivery of ONs through receptor-mediated endocytosis. Besides the targeted ONs delivery, carbohydrate-oligonucleotide conjugates (COCs) are also evaluated in the context of carbohydrate biochips in which surface coating with carbohydrates is achieved by using the DNA-directed immobilization strategy (DDI). Peptide nucleic acids (PNAs) have also been extensively investigated as a surrogate of DNA for diverse applications. Therefore attachment of carbohydrate moieties to this class of molecules has been studied. The aforementioned applications of COCs require mimicking of the natural processes, in which the weak individual protein-carbohydrate binding is overcome by using multivalent interactions. This tutorial review focuses on the recent advances in carbohydrate-oligonucleotide conjugates and describes the major synthetic approaches available. In addition, an overview of applications that have been developed using various scaffolds allowing multivalent interactions is provided. Finally recent results on the use of peptide nucleic acids as oligonucleotides surrogate are described.

  8. Chromosomally encoded small antisense RNA in Corynebacterium glutamicum.

    Science.gov (United States)

    Zemanová, Martina; Kaderábková, Pavla; Pátek, Miroslav; Knoppová, Monika; Silar, Radoslav; Nesvera, Jan

    2008-02-01

    The first observation of chromosomally encoded small antisense RNA in Corynebacterium glutamicum is reported. Transcription oriented in the reverse direction to the transcription of the genes cg1934 and cg1935 was demonstrated within the chromosomal cg1934-cg1935 intergenic region. The transcription was found to be increased after heat shock. The transcriptional start point of this RNA designated ArnA was localized 21 bp upstream of the cg1935 translational start point by primer extension analysis, when the total RNA was isolated from cells grown at 30 degrees C. After heat shock, the transcriptional start point of an additional species of ArnA RNA was detected 19 bp upstream of the cg1935 translational start point. The stress-response sigma factor SigH was found to be involved in the synthesis of ArnA RNAs. The 3' end of the ArnA RNAs was identified using the 3'-rapid amplification of cDNA ends technique. The length of the two ArnA RNA species was thus determined to be 129 and 131 nt, respectively. The ArnA RNAs were found to overlap the 5'-untranslated region of the transcript of the cg1935 gene coding for a transcriptional regulator of the GntR family. These results suggest that the noncoding ArnA RNAs have a regulatory function.

  9. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro.

    Science.gov (United States)

    Bilim, Vladimir; Kasahara, Takashi; Hara, Noboru; Takahashi, Kota; Tomita, Yoshihiko

    2003-01-01

    XIAP directly inhibits executor caspases, making it the most downstream antiapoptotic molecule. Here, we examined the expression and function of XIAP in normal urothelium and TCC. We also examined the therapeutic effect of xiap AS PODN on the cell cycle and apoptosis of multidrug-resistant T24 bladder cancer cells. XIAP was moderately expressed in normal transitional epithelium with prominent expression on the superficial layer cells. Seventy-nine of 108 (73.15%) tumor samples were positive for XIAP protein, but XIAP positivity was not correlated with tumor stage or grade. Moreover, 4 bladder cancer cell lines (SCaBER, HT1376, T24 and RT4) expressed similar levels of XIAP. xiap AS PODN dose-dependently reduced the XIAP protein level and induced apoptosis, leading to decreased cell viability by 87%. Combined administration with doxorubicin resulted in marked cytotoxicity due to escalation of apoptosis. Overexpression of XIAP in T24 cells resulted in a modest but statistically significant (p TCC, and endogenous XIAP levels are sufficient to protect cells from apoptosis. Our results suggest that XIAP may play an important role early in human TCC carcinogenesis. xiap AS may be a candidate for use as a cancer therapy for overcoming drug resistance in highly malignant TCC.

  10. 33. The Study of Mechanism By Which The Telomerase Template Phosphorothioate Antisense Oligonucleotide(TPAO) Inhibites The Growth of Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The length of telomere in cells is related to the regulation of life span. The activation of telomerase is required for the maintain of telemere. In the pass several years the studies revealed that the activation of telomerase was associated with initiation and progression of tumorigenesis. There was evident that telomerase inhibitors had the inhibitory effect on tumor cells. The regulation of telo-merase activation was probably associated with cyclins. There was evident that telomerase

  11. Reversion of Steatosis by SREBP-1c Antisense Oligonucleotide did not Improve Hepatic Insulin Action in Diet-induced Obesity Mice

    OpenAIRE

    Vitto, MF; Luz, G; Luciano, TF; Marques, SO; Souza, DR; Pinho, RA; Lira, FS; Cintra, DE; de Souza, CT

    2012-01-01

    The literature has associated hepatic insulin action with NAFLD. In this sense, treatments to revert steatosis and improve hepatic insulin action become important. Our group has demonstrated that inhibition of Sterol Regulatory Element Binding Proteins-1c (SREBP-1c) reverses hepatic steatosis. However, insulin signals after NAFLD reversion require better investigation. Thus, in this study, we investigated if the reversal of NAFLD by SREBP-1c inhibitor results in improvement in the hepatic ins...

  12. A novel multifunctional oligonucleotide microarray for Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Chen Feng

    2010-10-01

    Full Text Available Abstract Background Microarrays are invaluable tools for genome interrogation, SNP detection, and expression analysis, among other applications. Such broad capabilities would be of value to many pathogen research communities, although the development and use of genome-scale microarrays is often a costly undertaking. Therefore, effective methods for reducing unnecessary probes while maintaining or expanding functionality would be relevant to many investigators. Results Taking advantage of available genome sequences and annotation for Toxoplasma gondii (a pathogenic parasite responsible for illness in immunocompromised individuals and Plasmodium falciparum (a related parasite responsible for severe human malaria, we designed a single oligonucleotide microarray capable of supporting a wide range of applications at relatively low cost, including genome-wide expression profiling for Toxoplasma, and single-nucleotide polymorphism (SNP-based genotyping of both T. gondii and P. falciparum. Expression profiling of the three clonotypic lineages dominating T. gondii populations in North America and Europe provides a first comprehensive view of the parasite transcriptome, revealing that ~49% of all annotated genes are expressed in parasite tachyzoites (the acutely lytic stage responsible for pathogenesis and 26% of genes are differentially expressed among strains. A novel design utilizing few probes provided high confidence genotyping, used here to resolve recombination points in the clonal progeny of sexual crosses. Recent sequencing of additional T. gondii isolates identifies >620 K new SNPs, including ~11 K that intersect with expression profiling probes, yielding additional markers for genotyping studies, and further validating the utility of a combined expression profiling/genotyping array design. Additional applications facilitating SNP and transcript discovery, alternative statistical methods for quantifying gene expression, etc. are also pursued at

  13. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus.

    Science.gov (United States)

    Colliver, S P; Morris, P; Robbins, M P

    1997-11-01

    Three clonal genotypes of Lotus corniculatus L. (bird's foot trefoil) were transformed with an antisense chalcone synthase (CHS) gene construct made using a stress induced CHS17 cDNA from Phaseolus vulgaris under the control of the constitutive CaMV 35S promoter and Nos terminator via Agrobacterium rhizogenes. After initial screening, ten antisense and five control co-transformation events from each recipient clonal genotype were analysed. After elicitation with glutathione, the level of tannin accumulation was found to be increased in a number of antisense root cultures derived from the low (S33) and moderate (S50) tannin recipient genotypes. Six antisense and four control transformed lines from genotype S50 were selected for more detailed study. The antisense CHS construct was found to be integrated into the genome, with a copy number ranging from 1 to 5 and antisense orientation was confirmed by PCR. In transformed root cultures, increased CHS transcript levels were noted in a number of antisense lines. Biochemical analyses of glutathione-elicited-root cultures indicated a significant increase in tannin accumulation in antisense CHS lines and mean vestitol levels were reduced. These results show that the introduction of a heterologous antisense chalcone synthase construct into L. corniculatus resulted in an unpredicted molecular and biochemical phenotype. Such findings are discussed in relation to manipulation of this complex multigene family.

  14. Changes in the end-to-end distance distribution in an oligonucleotide following hybridization

    Science.gov (United States)

    Parkhurst, Lawrence J.; Parkhurst, Kay M.

    1994-08-01

    A 16-mer deoxy oligonucleotide was labeled at the 5' end with x- rhodamine and at the 3' end with fluorescein. The fluorescence lifetime of the donor, fluorescein, under conditions for resonance energy transfer, was studied using the SLM 4850 multiharmonic frequency phase fluorometer in order to obtain information on the end-to-end distance distribution P(R) in the oligomer. When this doubly labeled oligonucleotide was hybridized to its 16-mer complement, the fluorescein fluorescence decay could be very well described by a P(R) that was a symmetric shifted Gaussian with center at 68.4 angstrom and (sigma) equals6.4 angstrom. Simulations suggested that part of the width might be attributable to a distribution in (kappa) 2. In the single- stranded labeled oligomer, there was enhanced energy transfer from the fluorescein to the rhodamine and the best fitting symmetrical shifted Gaussian representation of P(R) was centered at 53.8 angstrom with (kappa) equals6.9 angstrom. There was significant lack of fit with this model, however. A model independent procedure was developed for extracting P(R) as a sum of weighted Hermite polynomials. This procedure gave a P(R) with a large negative region at R<20 angstrom, suggesting that rotational averaging for (kappa) 2 was not quite complete prior to significant decay of the donor excited state.

  15. Biophysical and RNA Interference Inhibitory Properties of Oligonucleotides Carrying Tetrathiafulvalene Groups at Terminal Positions

    Directory of Open Access Journals (Sweden)

    Sónia Pérez-Rentero

    2013-01-01

    Full Text Available Oligonucleotide conjugates carrying a single functionalized tetrathiafulvalene (TTF unit linked through a threoninol molecule to the 3′ or 5′ ends were synthesized together with their complementary oligonucleotides carrying a TTF, pyrene, or pentafluorophenyl group. TTF-oligonucleotide conjugates formed duplexes with higher thermal stability than the corresponding unmodified oligonucleotides and pyrene- and pentafluorophenyl-modified oligonucleotides. TTF-modified oligonucleotides are able to bind to citrate-stabilized gold nanoparticles (AuNPs and produce stable gold AuNPs functionalized with oligonucleotides. Finally, TTF-oligoribonucleotides have been synthesized to produce siRNA duplexes carrying TTF units. The presence of the TTF molecule is compatible with the RNA interference mechanism for gene inhibition.

  16. Synergistic upregulation of erythropoietin receptor (EPO-R) expression by sense and antisense EPO-R transcripts in the canine lung

    OpenAIRE

    Zhang, Quiyang; Zhang, Jianning; Moe, Orson W.; Hsia, Connie C. W.

    2008-01-01

    We previously found increased erythropoietin receptor (EPO-R) protein levels in vigorously growing canine lungs after pneumonectomy (PNX), suggesting a role for paracrine EPO signaling in lung growth and remodeling. Now we find that sense and antisense EPO-R transcripts (sEPO-R and asEPO-R, respectively) are concordantly up-regulated in the post-PNX remaining lung, leading to the hypothesis that sEPO-R and asEPO-R interactions enhance EPO signaling during lung growth. We cloned a canine asEPO...

  17. SINEUPs are modular antisense long-non coding RNAs that increase synthesis of target proteins in cells

    Directory of Open Access Journals (Sweden)

    Silvia eZucchelli

    2015-05-01

    Full Text Available Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinson’s disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1, is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD while the embedded inverted SINEB2 element is the Effector Domain (ED. By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed towards N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinson’s disease-associated DJ-1 and proved to be active in different neuronal cell lines.In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.

  18. Typing of enteroviruses by use of microwell oligonucleotide arrays.

    Science.gov (United States)

    Susi, P; Hattara, L; Waris, M; Luoma-Aho, T; Siitari, H; Hyypiä, T; Saviranta, P

    2009-06-01

    We have developed a straightforward assay for the rapid typing of enteroviruses using oligonucleotide arrays in microtiter wells. The viral nucleic acids are concomitantly amplified and labeled during reverse transcription-PCR, and unpurified PCR products are used for hybridization. DNA strands are separated by alkaline denaturation, and hybridization is started by neutralization. The microarray hybridization reactions and the subsequent washes are performed in standard 96-well microtiter plates, which makes the method easily adaptable to high-throughput analysis. We describe here the assay principle and its potential in clinical laboratory use by correctly identifying 10 different enterovirus reference strains. Furthermore, we explore the detection of unknown sequence variants using serotype consensus oligonucleotide probes. With just two consensus probes for the coxsackievirus A9 (CVA9) serotype, we detected 23 out of 25 highly diverse CVA9 isolates. Overall, the assay involves several features aiming at ease of performance, robustness, and applicability to large-scale studies.

  19. Solid-phase synthesis of siRNA oligonucleotides.

    Science.gov (United States)

    Beaucage, Serge L

    2008-03-01

    Since the discovery of RNA interference (RNAi) as a means to silence the expression of specific genes, small interfering RNA (siRNA) oligonucleotides have been recognized as powerful tools for targeting therapeutically important mRNAs and eliciting their destruction. This discovery has created a high demand for synthetic oligoribonucleotides as potential therapeutics and has spurred a renaissance in the development of rapid, efficient methods for solid-phase RNA synthesis. The design and implementation of 2'-hydroxyl protecting groups that provide ribonucleoside phosphoramidites with coupling kinetics and coupling efficiencies comparable to those of deoxyribonucleoside phosphoramidites are key to the production of RNA oligonucleotides in sufficient quantity and purity for pharmaceutical applications. In this context, various siRNAs were chemically modified to identify the biophysical and biochemical parameters necessary for effective and stable RNAi-mediated gene-silencing activities.

  20. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    Science.gov (United States)

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  1. Palladium-Catalyzed Modification of Unprotected Nucleosides, Nucleotides, and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Kevin H. Shaughnessy

    2015-05-01

    Full Text Available Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  2. One-oligonucleotide method for constructing vectors for RNA interference

    Institute of Scientific and Technical Information of China (English)

    Carlos Fabian FLORES-JASSO; Ines VELAZQUEZ-QUESADA; Carlos LANDA-SOLIS; Andres A GUTIERREZ; Luis VACA

    2005-01-01

    Aim: To develop an easy, fast, automated, and inexpensive method for constructing short-hairpin-RNA cassettes for RNAi studies. Methods: Using single oligonucleotides, a variety of DNA cassettes for RNAi vectors were constructed in only few minutes in an automated manner. The cassettes, targeting the eGFP,were cloned into plasmids driven by RNA polymerase Ⅲ promoter H 1. Then, the plasmids were transfected into HeLa cells that were later infected with a recombinant adenovirus encoding the eGFP gene. The level of eGFP fluorescence was evaluated by confocal imaging and flow cytometry. Results: The plasmids constructed with the DNA cassettes made by the one-oligonucleotide method inhibited eGFP with different potencies, ranging from 55% to 75%. Conclusion: By using the method reported here, it is possible to simultaneously construct hundreds of different DNA cassettes for RNAi experiments in an inexpensive, automated way. This method will facilitate functional genomics studies on mammalian cells.

  3. Fluorescence quenching of TMR by guanosine in oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter-and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of Ks=52.3 M-1. The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.

  4. Antihepatoma effect of alpha-fetoprotein antisense phosphorothioate oligodeoxyribonucleotides in vitro and in mice

    Institute of Scientific and Technical Information of China (English)

    Xing Wang Wang; Jin Hui Yuan; Ru Gang Zhang; Li Xia Guo; Yong Xie; Hong Xie

    2001-01-01

    AIM To evaluate antihepatoma effect ofantisense phosphorothioate oligodeo-xyribonucleotides (S-ODNs) targeted to alpha-fetoprotein (AFP) genes in vitro and in nudemice.METHODS AFP gene expression was examinedby immunocytochemical method or enzyme-linked immunosorbent assay. Effect of S-ODNson SMMC-7721 human hepatoma cell growth invitro was determined using microculturetetrazolium assay. In vivo antitumor activitiesof S-ODNs were monitored by measuring tumorweight differences in treated and control micebearing SMMC-7721 xenografts. Induction of cellapoptosis was evaluated by fluorescence-activated cell sorter (FACS) analysis.RESULTS Antisense S-ODN treatment led toreduced AFP gene expression. Specificantisense S-ODNs, but not control S-ODNs,inhibited the growth of heaptoma cells in vitro.In vivo. only antisense S-ODNs exhibitedobvious antitumor activities. FACS analysisrevealed that the growth inhibition by antisenseS. ODNs was associated with their cell apoptosisinduction.CONCLUSION Antisense S-ODNs targeted toAFP genes inhibit the growth of human hepatomacells and solid hepatoma, which is related totheir cell apoptosis induction.

  5. Expression of XIST sense and antisense in bovine fetal organs and cell cultures.

    Science.gov (United States)

    Farazmand, Ali; Basrur, Parvathi K; Stranzinger, Gerald; Graphodatskaya, Daria; Reyes, Ed R; King, W Allan

    2004-01-01

    Untranslated RNAs transcribed from sense and antisense strands of a gene referred to as X-inactive specific transcript (XIST) play crucial roles in the genetic inactivation and condensation of one of the two X chromosomes in the somatic cells of female mammals. X inactivation is also thought to occur in mammalian male germ cells mainly based on the formation of a condensed structure referred to as a sex body or XY-body, during spermatogenesis. Molecular identity of the sex body, the roles of sense and antisense XIST RNAs in its formation, and the relevance of the sex body to spermatogenesis are not known. Here we report the results of our strand-specific RT-PCR approach to identify the amplicon detected in fetal bovine testes previously referred to as XIST and to test for sense/antisense expression in male and female organs and cell cultures of different sex chromosome constitution. Our results showed that the transcript detected consistently in male gonads and variably in somatic organs represents XIST antisense RNA and that XIST sense and antisense RNAs are co-expressed in female somatic tissues and cultured cells including cells of sex chromosome aneuploids (XXY and XXX). Our results, which differ from those of other investigators in this area, are discussed in the light of the recently reported differences in the expression pattern of murine Xist/Tsix loci and their structural and functional differences in different mammalian species.

  6. Induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA. Methods: Antisense survivin RNA expression vector was constructed and then was transfected to human laryngeal carcinoma cell line Hep-2 by lipofectamine. HpEGFP/survivin cells (transfected with the combinant of antisense survivin RNA) were obstained by using G418. The levels of survivin protein before and after transfection were determined by Western-blot. Proliferation activity was measured by MTT assay. The experiment of colony formation in soft agar was carried out for assessing ability of proliferation of Hep-2 cell. Apoptosis was assessed by flow cytometry and acrdine orange(AO).Results:After antisense survivin RNA plasmids were transfected, the level of survivin protein was inhibited in Hep-2. ComPared with control, proliferation of HpEGFP/survivin cells were suppressed significantly. The experiment of colony formation in soft agar showed the ability of colony formation decreased in HpEGFP/survivin cells compared to control (P<0.05). Apoptosis rate increased about 1.81 folds compared with control. Conclusion: The antisense survivin RNA can partly inhibit the level of survivin protein expression in Hep-2 and can induce apoptosis and inhibit the proliferation of Hep-2 by down-regulating the expression of endogenous survivin in vitro.

  7. Expression of an Antisense BcMF3 Affects Microsporogenesis and Pollen Tube Growth in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LIU Le-cheng; CAO Jia-shu; YU Xiao-lin; XIANG Xun; FEI Yong-jun

    2006-01-01

    In an effort to provide some information relevant to the molecular mechanism of genic male sterility in plants, BcMF3 gene that encodes a pectin methylesterase was isolated from the fertile B line of Chinese cabbage-pak-choi (Brassica rapa ssp.chinensis, syn. B. campestris ssp. chinensis). In the present paper, a 455-bp antisense cDNA fragment of BcMF3 was introduced to binary vector pBI121, and then was mobilized into Agrobacterium tumefaciens strain LBA4404. The A.tumefaciens harboring the BcMF3 antisense fragment was transformed to Arabidopsis thaliana by floral dip. Scanning electronic microscopy examination demonstrated that 47.8% of BcMF3 antisense pollen grains exhibited abnormal shape,which might lead to decreased germination of pollens, suggesting that the product of BcMF3 gene plays an important role during microsporogenesis. The evidence on burst of 45.7% of BcMF3 antisense pollen tubes in vitro and a majority of BcMF3 antisense pollens restricted within the stigmatic tissue revealed that BcMF3 is involved in aiding the growth of pollen tubes. The results suggest that BcMF3 acts at both stages of microsporogensis and pollen tube growth.

  8. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.

    Science.gov (United States)

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B

    2016-09-09

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.

  9. Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Renaud

    2016-03-01

    Full Text Available Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.

  10. Voltammetric behaviour of oligonucleotide lipoplexes adsorbed onto glassy carbon electrodes

    OpenAIRE

    Piedade, J. A. P.; M. Mano; Lima, M. C. Pedroso de; Oretskaya, T S; Oliveira-Brett, A. M.

    2004-01-01

    The voltammetric behaviour of oligonucleotide lipoplexes (ODN-lipoplexes) prepared from short oligodeoxynucleotides (ODN), with different base compositions, and liposomes of the cationic lipid DOTAP, was studied by differential pulse voltammetry with a glassy carbon mini-electrode. It was found that the ODN base composition influences the ODN-lipoplex voltammetric response. Differential pulse voltammograms for ODN-lipoplexes of the ODN adenosine nucleotides present two different features when...

  11. Thermodynamic treatment of oligonucleotide duplex–simplex equilibria

    Science.gov (United States)

    Owczarzy, Richard; Dunietz, Isard; Behlke, Mark A.; Klotz, Irving M.; Walder, Joseph A.

    2003-01-01

    Thermodynamic formulations have been devised to obtain ΔG° values directly from spectroscopic data at a fixed common temperature in nucleic acid duplex–simplex melting curves. In addition, the dependence of melting on salt concentration has been expressed in terms of a stepwise stoichiometric representation, which leads to a specific equation for the partition of the added sodium ions between the different oligonucleotide forms. PMID:14657395

  12. Sex determination of bovine preimplantation embryos by oligonucleotide microarray.

    Science.gov (United States)

    Yang, Hua; Zhong, Fagang; Yang, Yonglin; Wang, Xinhua; Liu, Shouren; Zhu, Bin

    2013-06-01

    The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.

  13. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  14. Particle-Based Microarrays of Oligonucleotides and Oligopeptides.

    Science.gov (United States)

    Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F Ralf; Breitling, Frank; Loeffler, Felix F

    2014-10-28

    In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.

  15. Particle-Based Microarrays of Oligonucleotides and Oligopeptides

    Directory of Open Access Journals (Sweden)

    Alexander Nesterov-Mueller

    2014-10-01

    Full Text Available In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.

  16. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    Science.gov (United States)

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  17. Recursive construction of perfect DNA molecules from imperfect oligonucleotides.

    Science.gov (United States)

    Linshiz, Gregory; Yehezkel, Tuval Ben; Kaplan, Shai; Gronau, Ilan; Ravid, Sivan; Adar, Rivka; Shapiro, Ehud

    2008-01-01

    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.

  18. Differentiation of regions with atypical oligonucleotide composition in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Reva Oleg N

    2005-10-01

    Full Text Available Abstract Background Complete sequencing of bacterial genomes has become a common technique of present day microbiology. Thereafter, data mining in the complete sequence is an essential step. New in silico methods are needed that rapidly identify the major features of genome organization and facilitate the prediction of the functional class of ORFs. We tested the usefulness of local oligonucleotide usage (OU patterns to recognize and differentiate types of atypical oligonucleotide composition in DNA sequences of bacterial genomes. Results A total of 163 bacterial genomes of eubacteria and archaea published in the NCBI database were analyzed. Local OU patterns exhibit substantial intrachromosomal variation in bacteria. Loci with alternative OU patterns were parts of horizontally acquired gene islands or ancient regions such as genes for ribosomal proteins and RNAs. OU statistical parameters, such as local pattern deviation (D, pattern skew (PS and OU variance (OUV enabled the detection and visualization of gene islands of different functional classes. Conclusion A set of approaches has been designed for the statistical analysis of nucleotide sequences of bacterial genomes. These methods are useful for the visualization and differentiation of regions with atypical oligonucleotide composition prior to or accompanying gene annotation.

  19. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems.

    Science.gov (United States)

    Varizhuk, Anna M; Kaluzhny, Dmitry N; Novikov, Roman A; Chizhov, Alexandr O; Smirnov, Igor P; Chuvilin, Andrey N; Tatarinova, Olga N; Fisunov, Gleb Y; Pozmogova, Galina E; Florentiev, Vladimir L

    2013-06-21

    New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.

  20. An antisense RNA in a lytic cyanophage links psbA to a gene encoding a homing endonuclease.

    Science.gov (United States)

    Millard, Andrew D; Gierga, Gregor; Clokie, Martha R J; Evans, David J; Hess, Wolfgang R; Scanlan, David J

    2010-09-01

    Cyanophage genomes frequently possess the psbA gene, encoding the D1 polypeptide of photosystem II. This protein is believed to maintain host photosynthetic capacity during infection and enhance phage fitness under high-light conditions. Although the first documented cyanophage-encoded psbA gene contained a group I intron, this feature has not been widely reported since, despite a plethora of new sequences becoming available. In this study, we show that in cyanophage S-PM2, this intron is spliced during the entire infection cycle. Furthermore, we report the widespread occurrence of psbA introns in marine metagenomic libraries, and with psbA often adjacent to a homing endonuclease (HE). Bioinformatic analysis of the intergenic region between psbA and the adjacent HE gene F-CphI in S-PM2 showed the presence of an antisense RNA (asRNA) connecting these two separate genetic elements. The asRNA is co-regulated with psbA and F-CphI, suggesting its involvement with their expression. Analysis of scaffolds from global ocean survey datasets shows this asRNA to be commonly associated with the 3' end of cyanophage psbA genes, implying that this potential mechanism of regulating marine 'viral' photosynthesis is evolutionarily conserved. Although antisense transcription is commonly found in eukaryotic and increasingly also in prokaryotic organisms, there has been no indication for asRNAs in lytic phages so far. We propose that this asRNA also provides a means of preventing the formation of mobile group I introns within cyanophage psbA genes.

  1. Effects of CIITA antisense RNA on the expression of HLA class Ⅱ molecules

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the effect of the major histocompatibility complex class Ⅱ (MHCⅡ) transactivator (CIITA) antisense RNA on the expression of the human leukemia (HLA) class Ⅱ molecules, 5′ end cDNA sequence of CIITA gene was cloned, and antisense RNA expression vector pcDNA-Ⅱ was constructed. HeLa cells transfected with pcDNA-Ⅱ and pcDNA3 were induced by IFN-g for 3 d. The expression of HLA class Ⅱ molecules on HeLa/pcDNA-Ⅱ cells was significantly decreased, while it has no effect on the expression of HLA class Ⅰ molecules. This result suggests that the CIITA antisense RNA can inhibit the expression of HLA class Ⅱ molecules in HeLa cells. It also implies a promising approach to generate immune tolerance in graft transplantation.

  2. A Simple Three-Step Method for Design and Affinity Testing of New Antisense Peptides: An Example of Erythropoietin

    Directory of Open Access Journals (Sweden)

    Nikola Štambuk

    2014-05-01

    Full Text Available Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide–receptor modulation. It is based on the fact that peptides specified by the complementary (antisense nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense–antisense (epitope–paratope peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.

  3. Screening of effective antisense peptide nucleic acids targeting gyrA from multidrug-resistant Acinetobacter baumannii and their antimicrobial effects in vitro%多重耐药鲍曼不动杆菌gyrA基因高效反义肽核酸序列筛选及其体外抗菌活性观察

    Institute of Scientific and Technical Information of China (English)

    王慧娟; 何云燕; 夏云; 王立朋; 梁树梅

    2013-01-01

    Objective To screen the effective antisense peptide nucleic acids targeting gyrA gene from multidrug-resistant Acinetobacter baumannii,and to evaluate their antimicrobial effects in vitro.Methods Two RNA folding computer programs,Mfold and RNA structure 4.6,were used to predict the secondary structure of gyrA mRNA,and then 10 antisense oligonucleotides were designed based on free energy theory.The full length of gyrA mRNA was transcribed in vitro and labeled by digoxigenin-ll-uridine-5'-triphosphate.Dot blothybridization was used to screen the gyrA mRNA accessible sites which showed strong binding affinity to the antisense oligonucleotides.Peptide nucleic acid (PNA) was synthesized based on the sequence of antisense oligonucleotide showing high affinity.Another PNA oligomer containing 6 mismatched nucleotides was used as a negative control.Both the 2 PNAs were conjugated to cell penetrating peptide (CPPs) (KFF)3 K to form peptide-PNA (PPNA).After the bacterial culture was treated with different concentrations of PPNA,OD600 and viable cell counts were measured to evaluate the growth inhibitory effect of the antisense oligonucleotide.Reverse transcript (RT)-PCR was applied to evaluate the level of gyrA expression.Results Of the 10 antisense oligonucleotides,5 showed binding affinity to gyrA mRNA and one of them showed strong binding affinity.PPNA designed based on the oligonucleotide significantly inhibited the growth of the bacterium and gyrA gene expression at a dose of 5 μmol/L,and exhibited anti-bactericidal effect at a dose of l0 μmol/L.Mismatched PPNA had no effect on the bacterial growth.Conclusion Combination of computer-aided prediction with dot blot hybridization is a high-flux and rapid way to screen effective antisense oligonucleotides in vitro.The screened anti-gyrA PPNA exerts significant inhibitory effect on the growth and gene expression in the bacterium in vitro.%目的 筛选出能与多重耐药鲍曼不动杆菌gyrA基因的mRNA紧密结合的

  4. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense-antisense

  5. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse.

    Science.gov (United States)

    Porensky, Paul N; Mitrpant, Chalermchai; McGovern, Vicki L; Bevan, Adam K; Foust, Kevin D; Kaspar, Brain K; Wilton, Stephen D; Burghes, Arthur H M

    2012-04-01

    Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino (MO) oligomer against ISS-N1 [HSMN2Ex7D(-10,-29)], and delivered this MO to postnatal day 0 (P0) SMA pups (Smn-/-, SMN2+/+, SMNΔ7+/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to >100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of the SMN level results in correction of motor phenotypes. Finally, the early introduction by intrathecal delivery of MO oligomers is a potential treatment for SMA patients.

  6. Antisense silencing of the creA gene in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Bautista, L. F.; Aleksenko, Alexei Y.; Hentzer, Morten

    2000-01-01

    Antisense expression of a portion of the gene encoding the major carbon catabolite repressor CREA in Aspergillus nidulans resulted in a substantial increase in the levels of glucose-repressible enzymes, both endogenous and heterologous, in the presence of glucose. The derepression effect was appr......Antisense expression of a portion of the gene encoding the major carbon catabolite repressor CREA in Aspergillus nidulans resulted in a substantial increase in the levels of glucose-repressible enzymes, both endogenous and heterologous, in the presence of glucose. The derepression effect...

  7. The role of natural antisense transcripts in the pathogenesis of nervous system diseases

    Directory of Open Access Journals (Sweden)

    Lei XIANG

    2015-03-01

    Full Text Available Mammalian genomes encode numerous natural antisense transcripts (NATs. These antisense transcripts are now recognized as an important component of molecular mechanisms involved in the regulation of gene expression. NATs are particularly prevalent in the mammalian nervous system. The importance of NATs in the normal functioning of nervous system is becoming increasingly evident. They are not only involved in neuronal differentiation, myelination and ion channel regulation, but also in advanced cognitive processes, such as synapse plasticity and memory formation. This paper focuses on the potential involvement of NATs in various neurodegenerative disorders. DOI: 10.3969/j.issn.1672-6731.2015.03.014

  8. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting...... splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA...... that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP...

  9. Inhibiting effect of antisense hTRT on telomerase activity of human liver cancer cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    牟娇; 李晓冬; 杨庆; 贾凤岐; 卫立辛; 郭亚军; 吴孟超

    2003-01-01

    Objective: To induce changes in biological character of human liver cancer cell line SMMC-7721 by blocking the expression of telomerase genes hTRT and to explore its value in cancer gene therapy. Methods: The vehicle for eukaryotic expression of antisense hTRT was constructed and then transfected into SMMC-7721 cells. The effects of antisense hTRT gene on telomerase activity, cancer cell growth and malignant phenotypes were analyzed. Results: The obtained transfectants that could express antisense hTRT gene stably showed marked decrease in telomerase activity; the shortening of telomere was obvious; cells presented contact growth inhibition; in nude mice transplantation, the rate of tumor induction dramatically decreased. Conclusion: Antisense hTRT gene expression can significantly inhibit telomerase activity of cancer cells and decrease malignant phenotypes in vitro and in vivo. Therefore, as a telomerase inhibitor, antisense hTRT gene may be a new pathway for cancer therapy.

  10. The zebrafish progranulin gene family and antisense transcripts

    Directory of Open Access Journals (Sweden)

    Baranowski David

    2005-11-01

    Full Text Available Abstract Background Progranulin is an epithelial tissue growth factor (also known as proepithelin, acrogranin and PC-cell-derived growth factor that has been implicated in development, wound healing and in the progression of many cancers. The single mammalian progranulin gene encodes a glycoprotein precursor consisting of seven and one half tandemly repeated non-identical copies of the cystine-rich granulin motif. A genome-wide duplication event hypothesized to have occurred at the base of the teleost radiation predicts that mammalian progranulin may be represented by two co-orthologues in zebrafish. Results The cDNAs encoding two zebrafish granulin precursors, progranulins-A and -B, were characterized and found to contain 10 and 9 copies of the granulin motif respectively. The cDNAs and genes encoding the two forms of granulin, progranulins-1 and -2, were also cloned and sequenced. Both latter peptides were found to be encoded by precursors with a simplified architecture consisting of one and one half copies of the granulin motif. A cDNA encoding a chimeric progranulin which likely arises through the mechanism of trans-splicing between grn1 and grn2 was also characterized. A non-coding RNA gene with antisense complementarity to both grn1 and grn2 was identified which may have functional implications with respect to gene dosage, as well as in restricting the formation of the chimeric form of progranulin. Chromosomal localization of the four progranulin (grn genes reveals syntenic conservation for grna only, suggesting that it is the true orthologue of mammalian grn. RT-PCR and whole-mount in situ hybridization analysis of zebrafish grns during development reveals that combined expression of grna and grnb, but not grn1 and grn2, recapitulate many of the expression patterns observed for the murine counterpart. This includes maternal deposition, widespread central nervous system distribution and specific localization within the epithelial

  11. 22. Proteomic Analysis of Differential Protein Expression in vero Cell with Antisense Blocking of Relevant Gene Involved in inhibition of Nontargeted Mutagenesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: Recent studies have demonstrated that cells exposed to ionizing radiation or alkylating agents can develop prolonged genetic instability. But its mechanism is still unknown. A cDNA fragment (fragment 9) has been isolated in MNNG-exposed vero cell by mRNA differential display in this lab. After antisense blocking the expression of its relevant gene (fragment 9 related gene, FNR gene), we found that nontargeted mutation frequency induced by MNNG was enhanced significantly. which implicated that the product of the blocked gene may be involved in the inhibition of nontargeted mutation. In order to elucidate the functional mechanism of the FNR gene, we try to separate the proteins from the established cell line expressing antisense fragment 9 to find out the FNR gene-coded protein. Method: The total cellular proteins of MNNG-exposed vero cell transfected with antisense RNA expression plasmid (vero-pM-amp--9-) and those with vector DNA (vero-pM-amp-) were separated by two-dimensional gel electrophoresis, and the resulting maps were analyzed with 2-D analysis software packages to find out the differentially expressed protein spots. Then the related 2-D PAGE database (http://biobase.dk/cgi-bin/celis/) was searched according to the protein spots information obtained from 2-DE including the position in the gel, isoelectric point (pl) and molecular weight (Mr). Result: Twelve proteins were specifically expressed only in vero-pM-amp-, and 2 proteins in vero-pM-amp--9-. In addition, there were 24 proteins expressed in higher level in vero-pM-amp--9- as compared with vero-pM-amp- (P<0.05), among them the expression of 7 proteins were enhanced by greater than 5 folds. On the other hand, no sequence similarity was found by homology analysis in GenBank through comparing the fragment 9 with the cDNA sequences of those proteins found in this study. Conclusion: Gene expression alterations bave occurred after antisense blocking of the FNR gene expression as demonstrated by

  12. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    Science.gov (United States)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  13. The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls.

    Science.gov (United States)

    Edwards, Mary E; Choo, Tze-Siang; Dickson, Cathryn A; Scott, Catherine; Gidley, Michael J; Reid, J S Grant

    2004-03-01

    Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1-->6)-alpha-galactose (Gal) substitution of the (1-->4)-beta-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense ("hairpin loop") constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T(1) generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T(1) generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T(2) generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase.

  14. 冬凌草甲素和survivin反义核苷酸对前列腺癌细胞作用的研究%Effects of survivin antisense oligodeoxynecleotides and Oridonin on PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    李进; 杨罗艳; 吴洪涛

    2014-01-01

    Objective To explore the synergistic effects of survivin antisense oligonucleotides combined with Oridonin on growth, apoptosis, and the expression of survivin of PC-3 cells. Methods Human prostate carcinoma cells PC-3 on logarithmic growth phase were used in this study. The cell vitality was determined by MTT assay. The combination index (CI) was calculated using Pharmaconamics CalcuSynsoftware. The apoptotic rate was examined by flow cytometer (FCM). The expression of survivin was detected by Western Blot and Real-time Fluorescent Quantitation-PCR. Results After transfection with antisense Survivin RNAi, the proliferation of PC-3 cells was inhibited markedly. An obvious apoptosis was found in the transfected PC-3 cells. The inhibitory effect of combined administration of survivin antisense and Oridonin on cell proliferation was much stronger than that of the single way (P<0.01). It showed that there was a synergistic effect (Fa<0.80). Western Blot and RT-PCR assays demonstrated that survivin antisense and Oridonin all inhibited the expression of survivin(P <0.01). Conclusion Combined survivin antisense and Oridonin significantly inhibits cell proliferation, induces cell apoptosis and down-regulates survivin expression in PC-3 cells, indicating that survivin antisense and Oridonin have a synergistic effect on PC-3 cells.%目的:探讨冬凌草甲素联合survivin反义核苷酸(反义链)对前列腺癌PC-3细胞株增殖和凋亡以及survivin mRNA和蛋白的影响。方法常规培养PC-3细胞,用四甲基偶氮唑盐法(MTT法)检测survivin反义链联合冬凌草甲素对PC-3细胞增殖的影响;流式细胞仪(FCM)检测PC-3细胞凋亡率;以CalcuSyn药效学软件计算联合指数(CI)评价survivin反义链联合凌草甲素对PC-3细胞的联合效应,并通过荧光定量PCR和Western blot方法检测PC-3细胞survivin基因和蛋白表达变化。结果 survivin反义链转染PC-3细胞后,可以显著抑制PC-3

  15. Connection of Magnetic Antisense Probe with SK-Br-3 Oncocyte mRNA Nucleotide Detected by High Resolution Atomic Force Microscope%高精度原子力显微镜显示磁性反义探针与SK-Br-3肿瘤细胞mRNA核苷酸连接

    Institute of Scientific and Technical Information of China (English)

    谭书德; 欧阳羽; 李信友; 文明; 李少林

    2011-01-01

    为了将高精度原子力显微镜(AFM)用于显示超顺磁性氧化铁标记的c-erbB2癌基因反义寡脱氧核苷酸探针(磁性反义探针)与SK-Br-3肿瘤细胞mRNA核苷酸的连接,我们在磁性反义探针转染SK-Br-3肿瘤细胞基础上,用AFM对转染后的肿瘤细胞进行观察,并同时对转染后的肿瘤细胞进行蛋白表达检测及MRI成像,以进一步证实AFM的观察结果.从AFM显示的磁性反义探针转染SK-Br-3肿瘤细胞后单个细胞的全貌图及局部放大图发现,探针中反义寡脱氧核苷酸中的脱氧胞嘧啶核苷酸闭环与肿瘤细胞mRNA嘌呤核苷酸环相连接;此外,磁性反义探针能特异性抑制SK-Br3细胞c-erbB2的蛋白表达,MRI显示磁性反义探针转染SK-Br-3肿瘤细胞的信号强度最低(P<0.05).实验表明,AFM可以清楚显示磁性反义探针与SK-Br-3肿瘤细胞核mRNA核苷酸的连接.%The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oli-gonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine ( MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of c-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (P<0. 05). These experiments demonstrated that the high resolution AFM could be used to show the binding of magnetic antisense probe and SK-Br-3 mRNA of tumor cell nuclear.

  16. Synthesis of triazole-nucleoside phosphoramidites and their use in solid-phase oligonucleotide synthesis.

    Science.gov (United States)

    Peel, Brandon J; Efthymiou, Tim C; Desaulniers, Jean-Paul

    2014-12-19

    Triazole-backbone oligonucleotides are macromolecules that have one or more triazole units that are acting as a backbone mimic. Triazoles within the backbone have been used within oligonucleotides for a variety of applications. This unit describes the preparation and synthesis of two triazole-nucleoside phosphoramidites [uracil-triazole-uracil (UtU) and cytosine-triazole-uracil (CtU)] based on a PNA-like scaffold, and their incorporation within oligonucleotides.

  17. Hemopoiesis-stimulating activity of immobilized oligonucleotides and hyaluronidase during cytostatic-induced myelosuppression.

    Science.gov (United States)

    Dygai, A M; Skurikhin, E G; Pershina, O V; Zhdanov, V V; Khmelevskaya, A M; Andreeva, T V; Poponina, A M; Zjuzkov, G N; Udut, E V; Khrichkova, T Ju; Simanina, E V; Miroshnichenko, L A; Stavrova, L A; Tchaikovsky, A S; Markova, T S; Gurto, R V; Brjushinina, O S; Slepichev, V A

    2011-03-01

    The hemopoiesis-stimulating effect of combined treatment with immobilized oligonucleotides and hyaluronidase preparations was studied during cytostatic-induced myelosuppression caused by cyclophosphamide administration. Immobilized hyaluronidase was shown to increase the efficiency of correction of changes in the erythroid and granulocytic hemopoietic stems with immobilized oligonucleotides. This potentiation of the effect of immobilized oligonucleotides by immobilized hyaluronidase was related to an increase in functional activity of committed hemopoietic precursors.

  18. A New Achiral Linker Reagent for the Incorporation of Multiple Amino Groups Into Oligonucleotides

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to a new functionalized achiral linker reagent for incorporating multiple primary amino groups or reporter groups into oligonucleotides following the phosphoramidite methodology. It is possible to substitute any ribodeoxynucleotide, deoxynucleotide, or nucleotide wit......, to a method for preparing a labelled oligonucleotide, and to the use of the labelled oligonucleotide as hybridisation probe, in polymerase chain reactions (PCR), in nucleic acid sequencing, in cloning recombinant DNA and $i(in vitro) mutagenesis....

  19. Antisense RNA of Survivin Gene Inhibits the Proliferation of Leukemia Cells and Sensitizes Leukemia Cell Line to Taxol-induced Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wenhan LI; Xiaojuan WANG; Ping LEI; Qing YE; Huifen ZHU; Yue ZHANG; Jinfang SHAO; Jing YANG; Guanxin SHEN

    2008-01-01

    The effectS of survivin antisense RNA on proliferation of leukemia cell line HL-60 and taxol.induced chemotherapy was explorcd.A cDNA fragment of survivin obtained by RT-PCR was inserted into a plamid vector named pcDNA3 in the reverse direction.The vector encoding antisense RNA of survivin was confirmed by restriction enzyme digestion and DNA sequencing.The recombi-nant plasmid was delivered into HL-60 cells by electroporation.Growth curves were plotted based on cell counting.Trypan blue dye exclusion assay and MTT assay were carried out after the cells were incubated with taxol.DNA gel electrophoresis and nuclear staining were performed for cell apoptosis assay.The correct construction of the recombinant plasmid has been identificd bv restriction enzy.me digestion and DNA sequencing.A stable down.regulation has been achieved in HL-60 SVVas cells after G418 selection.Compared tO HL-60 cells.the proliferation of HL-60 SVVaS cells was signifi.cantly inhibited(P<0.05).Cytotoxicity assays indicated that IC50 of HL-60 SVVas for taxol was rela-tively lower than controls(P<0.01).Apoptosis assays revealed that taxol-induced apoptosis was de-tected in HL-60 sVVas cells incubated with 50 ng/ml taxol for 12 h,while in HL-60 cells incubated with 100 ng/ml taxol for 72 h.It was suggested that Survivin antisense RNA could inhibit the prolif-eration of HL-60 cells and enhance taxol-induced apoptosis in HL-60 cells.which may lay an ex-perimental foundation for further research on gene therapy in leukemia.

  20. Label-free detection of hybridization of oligonucleotides by oblique-incidence reflectivity difference method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The microarrays of 20-base oligonucleotide with different concentrations are detected before and after hybridization by the oblique-incidence reflectivity difference (OI-RD) method. The experimental results prove that OI-RD is a label-free method which can not only distinguish the concentration difference of oligonucleotides before and after the hybridization but also detect the hybridization of short oligonucleotides. At present the OI-RD method can detect 0.39 μmol/L 20-base oligonucleotide or less. These results suggest that the OI-RD method is a promising and potential technique for label-free detection of biological microarrays.

  1. Efficient assembly of very short oligonucleotides using T4 DNA Ligase

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2010-11-01

    Full Text Available Abstract Background In principle, a pre-constructed library of all possible short oligonucleotides could be used to construct many distinct gene sequences. In order to assess the feasibility of such an approach, we characterized T4 DNA Ligase activity on short oligonucleotide substrates and defined conditions suitable for assembly of a plurality of oligonucleotides. Findings Ligation by T4 DNA Ligase was found to be dependent on the formation of a double stranded DNA duplex of at least five base pairs surrounding the site of ligation. However, ligations could be performed effectively with overhangs smaller than five base pairs and oligonucleotides as small as octamers, in the presence of a second, complementary oligonucleotide. We demonstrate the feasibility of simultaneous oligonucleotide phosphorylation and ligation and, as a proof of principle for DNA synthesis through the assembly of short oligonucleotides, we performed a hierarchical ligation procedure whereby octamers were combined to construct a target 128-bp segment of the beta-actin gene. Conclusions Oligonucleotides as short as 8 nucleotides can be efficiently assembled using T4 DNA Ligase. Thus, the construction of synthetic genes, without the need for custom oligonucleotide synthesis, appears feasible.

  2. Chemically modified oligonucleotides with efficient RNase H response

    DEFF Research Database (Denmark)

    Vester, Birte; Boel, Anne Marie; Lobedanz, Sune;

    2008-01-01

    Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly...... in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage....

  3. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.;

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...

  4. Expression of antisense small RNAs in response to stress in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Tulstrup, Monica Vera-Lise;

    2014-01-01

    Background: RNA sequencing technologies reveal that bacteria express RNA molecules other than mRNA, rRNA or tRNA. During the last years genome-wide bacterial transcriptomes have been shown to comprise intergenic RNA, antisense RNA, and untranslated regions, all capable of performing diverse...

  5. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent sign

  6. Tumor delivery of antisense oligomer using trastuzumab within a streptavidin nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Yale University, Yale PET Center, Department of Diagnostic Radiology, New Haven, CT (United States); Liu, Xinrong; Chen, Ling; Cheng, Dengfeng; Rusckowski, Mary [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Hnatowich, Donald J. [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Umass Medical School, Department of Radiology, Worcester, MA (United States)

    2009-12-15

    Trastuzumab (Herceptin trademark) is often internalized following binding to Her2+ tumor cells. The objective of this study was to investigate whether trastuzumab can be used as a specific carrier to deliver antisense oligomers into Her2+ tumor cells both in vitro and in vivo. A biotinylated MORF oligomer antisense to RhoC mRNA and its biotinylated sense control were labeled with either lissamine for fluorescence detection or {sup 99m}Tc for radioactivity detection and were linked to biotinylated trastuzumab via streptavidin. The nanoparticles were studied in SUM190 (RhoC+, Her2+) study and SUM149 (RhoC+, Her2-) control cells in culture and as xenografts in mice. As evidence of unimpaired Her2+ binding of trastuzumab within the nanoparticle, accumulations were clearly higher in SUM190 compared to SUM149 cells and, by whole-body imaging, targeting of SUM190 tumor was similar to that expected for a radiolabeled trastuzumab. As evidence of internalization, fluorescence microscopy images of cells grown in culture and obtained from xenografts showed uniform cytoplasm distribution of the lissamine-MORF. An invasion assay showed decreased RhoC expression in SUM190 cells when incubated with the antisense MORF nanoparticles at only 100 nM. Both in cell culture and in animals, the nanoparticle with trastuzumab as specific carrier greatly improved tumor delivery of the antisense oligomer against RhoC mRNA into tumor cells overexpressing Her2 and may be of general utility. (orig.)

  7. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    tang, T. H.; Polacek, N.; Zywicki, M.;

    2005-01-01

    to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion...

  8. Efficient hammerhead ribozyme and antisense RNA targeting in a slow ribosome Escherichia coli mutant.

    Science.gov (United States)

    Chen, H; Ferbeyre, G; Cedergren, R

    1997-05-01

    We have evaluated inhibition of the plasmid-born chloramphenicol acetyl transferase gene (CAT) by the hammerhead ribozyme and antisense RNA in Escherichia coli where the translation and transcription rates have been modified. Whereas neither antisense nor the hammerhead had an inhibitory effect on CAT activity in wild-type E. coli, both reduced the level of the messenger RNA and the activity of the CAT gene by almost 60% in a slow ribosome mutant. Streptomycin, which increases the speed of translation in this mutant strain, restored full CAT activity. The level of CAT activity expressed from a T7 RNA polymerase promoter was not affected by the presence of either antisense RNA or the hammerhead ribozyme. When the target gene was expressed from a chromosomal locus in wild-type E. coli, both antisense RNA and the hammerhead ribozyme showed some inhibitory activity, but the level of inhibition was significantly increased in the slow ribosome strain. This bacterial system offers a unique entry to the study of cellular factors which mediate the activity of ribozymes in vivo.

  9. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  10. An in vivo transcriptome data set of natural antisense transcripts from Plasmodium falciparum clinical isolates

    Directory of Open Access Journals (Sweden)

    Amit Kumar Subudhi

    2014-12-01

    Full Text Available Antisense transcription is pervasive among biological systems and one of the products of antisense transcription is natural antisense transcripts (NATs. Emerging evidences suggest that they are key regulators of gene expression. With the discovery of NATs in Plasmodium falciparum, it has been suggested that these might also be playing regulatory roles in this parasite. However, all the reports describing the diversity of NATs have come from parasites in culture condition except for a recent study published by us. In order to explore the in vivo diversity of NATs in P. falciparum clinical isolates, we performed a whole genome expression profiling using a strand-specific 244 K microarray that contains probes for both sense and antisense transcripts. In this report, we describe the experimental procedure and analysis thereof of the microarray data published recently in Gene Expression Omnibus (GEO under accession number GSE44921. This published data provide a wealth of information about the prevalence of NATs in P. falciparum clinical isolates from patients with diverse malaria related disease conditions. Supplementary information about the description and interpretation of the data can be found in a recent publication by Subudhi et al. in Experimental Parasitology (2014.

  11. Variable coordination of cotranscribed genes in Escherichia coli following antisense repression

    Directory of Open Access Journals (Sweden)

    Kulyté Agne

    2006-11-01

    Full Text Available Abstract Background A majority of bacterial genes belong to tight clusters and operons, which complicates gene functional studies using conventional knock-out methods. Antisense agents can down-regulate the expression of genes without disrupting the genome because they bind mRNA and block its expression. However, it is unclear how antisense inhibition affects expression from genes that are cotranscribed with the target. Results To examine the effects of antisense inhibition on cotranscribed genes, we constructed a plasmid expressing the two reporter genes gfp and DsRed as one transcriptional unit. Incubation with antisense peptide nucleic acid (PNA targeted to the mRNA start codon region of either the upstream gfp or the downstream DsRed gene resulted in a complete expression discoordination from this artificial construct. The same approach was applied to the three cotranscribed genes in the endogenously expressed lac-operon (lacZ, Y and A and partial downstream expression coordination was seen when the lacZ start codon was targeted with antisense PNA. Targeting the lacY mRNA start codon region showed no effect on the upstream lacZ gene expression whereas expression from the downstream lacA gene was affected as strongly as the lacY gene. Determination of lacZ and lacY mRNA levels revealed a pattern of reduction that was similar to the Lac-proteins, indicating a relation between translation inhibition and mRNA degradation as a response to antisense PNA treatment. Conclusion The results show that antisense mediated repression of genes within operons affect cotranscribed genes to a variable degree. Target transcript stability appears to be closely related to inhibition of translation and presumably depends on translating ribosomes protecting the mRNA from intrinsic decay mechanisms. Therefore, for genes within operons and clusters it is likely that the nature of the target transcript will determine the inhibitory effects on cotranscribed genes

  12. Effect of TGF-β1 antisense oligodeoxynucleotide on renal function in chronic renal failure rats

    Institute of Scientific and Technical Information of China (English)

    Law Chung HIONG; Kiew Lik VOON; Nor Azizan ABDULLAH; Munavvar A SATTAR; Nazarina AbduRAHMAN; Abdul Hye KHAN; Edward James JOHNS

    2008-01-01

    Aim:The aim of the present study was to investigate the effectiveness of trans-forming growth factor (TGF)-β1 antisense oligodeoxynucleotides (ODN) in ame-liorating deteriorated kidney function in rats with puromycin-induced chronic renal failure (CRF). Methods:Saline, puromycin, puromycin+TGF-β1 antisense ODN or puromycin+scrambled ODN were administered to unilaterally nephrecto-mized rats. Renal hemodynamic and excretory measurements were taken in the anaesthetized rats that had undergone surgical procedure. Results:It was ob-served that in the CRF rats, there was a marked reduction in the renal blood flow (RBF), glomerular filtration rate (GFR), severe proteinuria, and almost 6-fold in-creased fractional excretion of sodium (FE Na+) as compared to that in the control rats (all P<0.05). It was further observed that in the CRF rats, the treatment with TGF-β1 antisense, but not scrambled ODN, markedly attenuated the reduction of RBF, GFR, and proteinuria and markedly prevented the increase of the FE Na+ (all P<0.05). In addition, the renal hypertrophy in the CRF group (P<0.05 vs non-renal failure control) was markedly attenuated after treatment with TGF-1 antisense ODN (P<0.05). Focal segmental glomerulosclerosis was evident only in the un-treated and scrambled ODN-treated CRF groups. An interesting observation of this study was that in the CRF rats, although there was marked attenuating and preventive effects of the TGF-β1 antisense ODN on the deteriorated renal functions, the antisense treatment did not cause any marked change in the renal expression of TGF-β1 at the protein level. Conclusion:Collectively, the data obtained sug-gests that TGF-β1 antisense ODN possesses beneficial effects in puromycin-induced chronic renal failure and that the deterioration in morphology and im-paired renal function in this pathological state is in part dependent upon the action of TGF-β1 within the kidney.

  13. The use of oligonucleotide probes for meningococcal serotype characterization

    Directory of Open Access Journals (Sweden)

    SACCHI Claudio Tavares

    1998-01-01

    Full Text Available In the present study we examine the potential use of oligonucleotide probes to characterize Neisseria meningitidis serotypes without the use of monoclonal antibodies (MAbs. Antigenic diversity on PorB protein forms the bases of serotyping method. However, the current panel of MAbs underestimated, by at least 50% the PorB variability, presumably because reagents for several PorB variable regions (VRs are lacking, or because a number of VR variants are not recognized by serotype-defining MAbs12. We analyzed the use of oligonucleotide probes to characterize serotype 10 and serotype 19 of N. meningitidis. The porB gene sequence for the prototype strain of serotype 10 was determined, aligned with 7 other porB sequences from different serotypes, and analysis of individual VRs were performed. The results of DNA probes 21U (VR1-A and 615U (VR3-B used against 72 N. meningitidis strains confirm that VR1 type A and VR3 type B encode epitopes for serotype-defined MAbs 19 and 10, respectively. The use of probes for characterizing serotypes possible can type 100% of the PorB VR diversity. It is a simple and rapid method specially useful for analysis of large number of samples.

  14. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  15. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  16. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    Directory of Open Access Journals (Sweden)

    Hsiao Chiu-Bin

    2006-11-01

    Full Text Available Abstract Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1 long terminal repeat (LTR. Results Inspection of published sequences revealed a potential transcription initiator element (INR situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The

  17. Studies on the Syntheses and Properties of 5'-Branched-sugar Isonucleosides and the Related Oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    Tian Xiaobing; Zhang Lihe; Min Jimei

    2001-01-01

    @@ The chemistry of nucleosides and oligonucleotides is an actively investigated field in the search for new drugs. Thesyntheses and the properties of isonucleosides and oligonucleotides have been investigated to improve their stability,antitumor and antiviral activities, and to reduce their toxicity.

  18. The MOX/SUC precursor strategies: robust ways to construct functionalized oligonucleotides.

    Science.gov (United States)

    Polushin, N

    2001-01-01

    The use of phosphoramidites bearing one or more methoxyoxalamido (MOX) or succinimido (SUC) reactive groups for construction of functionalized oligonucleotides is described. The efficiency of the new precursor strategy was demonstrated in the synthesis of oligonucleotide containing up to 16 imidazole residues.

  19. Construction and Evaluation of Desulfovibrio vulgaris Whole-Genome Oligonucleotide Microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Z. He; Q. He; L. Wu; M.E. Clark; J.D. Wall; Jizhong Zhou; Matthew W. Fields

    2004-03-17

    ,4-cyclodiphosphate (MECDP) synthase. Spermidines are polyamines that are typically abundant in rapidly dividing cells and are essential growth factors in eukaryotic organisms. Polyamines are thought to stabilize DNA by the association of the amino groups with the phosphate residues of DNA and can also enhance tRNA and ribosome stability. The MECDP synthase enzyme is essential in Escherichia coli and participates in the nonmevalonate pathway of isoprenoid biosynthesis, a critical pathway present in some bacteria and apicomplexans but distinct from that used by mammals. Several of the highly up-regulated ORFs were annotated as conserved hypothetical proteins. Interestingly, an ORF that was predicted to contain a flocculin repeat domain was almost 9-fold up-regulated in stationary phase cells compared to logarithmically growing cells. The flocculin domain is commonly observed in fungi, and is thought to play a role during flocculation (non-sexual aggregation of single-cell microorganisms). These preliminary results have identified possible responses of D. vulgaris cells to stationary phase growth and suggest that polyamine production as well as cell aggregation and/or extracellular polymer production are responses of D. vulgaris during stationary phase. The initial microarray results indicate that the recently produced oligonucleotide microarrays are functional. We are currently optimizing growth conditions in order to culture D. vulgaris cells in the presence of uranium(VI) and to monitor whole-genome expression levels.

  20. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes.

    Science.gov (United States)

    Hakala, H; Heinonen, P; Iitiä, A; Lönnberg, H

    1997-01-01

    Oligodeoxyribonucleotides were assembled by conventional phosphoramidite chemistry on uniformly sized (50 microns) porous glycidyl methacrylate/ethylene dimethacrylate (SINTEF) and compact polystyrene (Dynosphere) particles, the aminoalkyl side chains of which were further derivatized with DMTrO-acetyl groups. The linker was completely resistant toward ammonolytic deprotection of the base moieties. The quality of oligonucleotides was assessed by repeating the synthesis on the same particles derivatized with a cleavable ester linker. The ability of the oligonucleotide-coated particles to bind complementary sequences via hybridization was examined by following the attachment of oligonucleotides bearing a photoluminescent europium(III) chelate to the particles. The fluorescence emission was measured directly on a single particle. The effects of the following factors on the kinetics and efficiency of hybridization were studied: number of particles in a given volume of the assay solution, loading of oligonucleotide on the particle, concentration of the target oligonucleotide in solution, length of the hybridizing sequence, presence of noncomplementary sequences, and ionic strength. The fluorescence signal measured on a single particle after hybridization was observed to be proportional to the concentration of the target oligonucleotide in solution over a concentration range of 5 orders of magnitude.

  1. 30. Knockdown of IGF-IR by Antisense Oligodeoxynucleotide auguments the sensitivity of bladder cancer cells to MMC

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    play key roles in autocrine mechanisms of bladder cancer cells remain to be definite and their physiological mechanism remain to be fully understood. More are still needed to know about the role of IGF1R signaling in bladder cancers. The following problems remain to be investigated in bladder cancer cells, about which the present studies are concerned: ①Is IGFs/IGF-IR signaling pathway involved in autocrine growth of human bladder cancer cells and how does bladder instillation drugs such as MMC affect the autocrine expression of bladder cancer cells? ②Can targeting against IGF1R gene can significantly enhance drug sensitivity of urinary bladder cancer cells to chemotherapy? ③What potential intracellular signaling mechanisms are involved in IGF1R blockage? ④May IGF1R self-stablized antisense ODN serves as a potential therapeutic approach to bladder cancer? To investigate whether IGF-1R was involved in drug resistance of bladder cancer cells. METHODS: RT-PCR was used to detect the mRNA expression of IGF-I, IGF-Ⅱ, and IGF-IR in T24 cells and normal urothelial cells. Flow cytometry and MTT tests were used to assess the effect of antisense oligodeoxynucleotide (ODN) on drug sensitivities and apoptosis of T24 cells to mitomycin (MMC). Western blot was used to analyze the effect of ODN on expression of IGF-IR protein. RESULTS: mRNA of IGF-I, IGF-Ⅱ, and IGF-IR were strongly expressed in serum-free cultured T24 cell line, whereas normal urothelial cells did not express these factors/receptors or only in trace levels; knockdown of IGF1R by antisense ODN significantly inhibited the growth of bladder cancer cells and enhanced sensitivity and apoptosis of T24 cells to MMC. CONCLUSION: These results suggested that blockage of IGF-IR signaling might potentially contribute to the treatment of bladder cancer cells which are insensitive to chemotherapy.

  2. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides.

    Science.gov (United States)

    Soontornworajit, Boonchoy; Zhou, Jing; Snipes, Matthew P; Battig, Mark R; Wang, Yong

    2011-10-01

    Biomaterials for the precise control of protein release are important to the development of new strategies for treating human diseases. This study aimed to fundamentally understand aptamer--protein dissociation triggered by complementary oligonucleotides, and to apply this understanding to develop affinity hydrogels for controlled protein release. The results showed that the oligonucleotide tails of the aptamers played a critical role in inducing intermolecular hybridization and triggering aptamer--protein dissociation. In addition, the attachment of the oligonucleotide tails to the aptamers and the increase of hybridizing length could produce a synergistic effect on the dissociation of bound proteins from their aptamers. More importantly, pegylated complementary oligonucleotides could successfully trigger protein release from the aptamer-functionalized hydrogels at multiple time points. Based on these results, it is believed that aptamer-functionalized hydrogels and complementary oligonucleotides hold great potential of controlling the release of protein drugs to treat human diseases.

  3. Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Wernersson, Rasmus; Knudsen, Steen

    2003-01-01

    with an overview of these parameters. We present here a flexible tool named OligoWiz for designing oligonucleotides for multiple purposes. OligoWiz presents a set of parameter scores in a graphical interface to facilitate an overview for the user. Additional custom parameter scores can easily be added......Optimal design of oligonucleotides for microarrays involves tedious and laborious work evaluating potential oligonucleotides relative to a series of parameters. The currently available tools for this purpose are limited in their flexibility and do not present the oligonucleotide designer...... to the program to extend the default parameters: homology, DeltaTm, low-complexity, position and GATC-only. Furthermore we present an analysis of the limitations in designing oligonucleotide sets that can detect transcripts from multiple organisms. OligoWiz is available at www.cbs.dtu.dk/services/OligoWiz/....

  4. Recommendations for safety pharmacology evaluations of oligonucleotide-based therapeutics.

    Science.gov (United States)

    Berman, Cindy L; Cannon, Keri; Cui, Yi; Kornbrust, Douglas J; Lagrutta, Armando; Sun, Sunny Z; Tepper, Jeff; Waldron, Gareth; Younis, Husam S

    2014-08-01

    This document was prepared by the Safety Pharmacology Subcommittee of the Oligonucleotide Safety Working Group (OSWG), a group of industry and regulatory scientists involved in the development and regulation of therapeutic oligonucleotides. The mission of the Subcommittee was to develop scientific recommendations for the industry regarding the appropriate scope and strategies for safety pharmacology evaluations of oligonucleotides (ONs). These recommendations are the consensus opinion of the Subcommittee and do not necessarily reflect the current expectations of regulatory authorities. 1) Safety pharmacology testing, as described in the International Conference on Harmonisation (ICH) S7 guidance, is as applicable to ONs as it is to small molecule drugs and biotherapeutics. 2) Study design considerations for ONs are similar to those for other classes of drugs. In general, as with other therapeutics, studies should evaluate the drug product administered via the clinical route. Species selection should ideally consider relevance of the model with regard to the endpoints of interest, pharmacological responsiveness, and continuity with the nonclinical development program. 3) Evaluation of potential effects in the core battery (cardiovascular, central nervous, and respiratory systems) is recommended. In general: a. In vitro human ether-a-go-go-related gene (hERG) testing does not provide any specific value and is not warranted. b. Emphasis should be placed on in vivo evaluation of cardiovascular function, typically in nonhuman primates (NHPs). c. Due to the low level of concern, neurologic and respiratory function can be assessed concurrently with cardiovascular safety pharmacology evaluation in NHPs, within repeat-dose toxicity studies, or as stand-alone studies. In the latter case, rodents are most commonly used. 4) Other dedicated safety pharmacology studies, beyond the core battery, may have limited value for ONs. Although ONs can accumulate in the kidney and liver

  5. Effect of antisense human telomerase RNA on malignant behaviors of gastric carcinoma cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    YANG Jin-liang; FANG Dian-chun; YANG Shi-ming; LUO Yuan-hui; LUO Kun-lun; LU Rong; LIU Wei-wen

    2001-01-01

    Objective: To study the effects of antisense human telomerase RNA (ahTR) transfection on the malignant behaviors of gastric carcinoma cell line SGC-7901 and its potential role in gene therapy for tumor. Methods: An antisense hTR eukaryotic expression vector containing the sequence of template region of telomere repeats was transfected into gastric carcinoma cell line SGC-7901 with liposome DOTAP. The expressions of hTR RNA and antisense hTR RNA were observed with RT-PCR, telomerase activity with PCR-ELISA. Telomere length was measured with Southern blot. Cell morphology and cellular proliferation capacity were studied with MTT assay. Cell cycle distribution and apoptotic state were observed with flow cytometry. Efficiency of clone formation in soft agar and tumorigencity in nude mice were examined and evaluated in ahTR-transfected 7901 cells, and plasmid pCL-neo transfected 7901 cells and parental 7901 cells served as control. Results: An antisense hTR eukaryotic expression vector was transfected into 7901 cells successfully. The telomerase activity in ahTR-transfected 7901 cells was decreased from 100% to about 25%, and telomere length in the cells shortened from 4.08 kb to 3.35 kb at 60 population doublings (PDs). Compared with parental 7901 and pCL-neo transfected 7901 cells, ahTR-transfected 7901 cells displayed some morphological changes, including decreased cell atypia and nucleus/cytoplasm ratio under light microscope. Furthermore, ahTR-transfected 7901 cells displayed growth inhibition, decreased invasive capacity in Borden's chamber invasive model, increased G0/G1 phase rate and apoptotic rate, and restored contact inhibition and density inhibition. Surprisingly, ahTR-transfected 7901 cells lost their capacity of clone formation in soft agar and carcinogensis in nude mice. Conclusion: Antisense hTR transfection can induce 7901 cell differentiation and reverse its malignant phenotype. This study provides an exciting approach for cancer therapy through the

  6. Inhibitory effects of PIN1 antisense gene on the proliferation of human osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To evaluate the inhibitory effects of PIN1 antisense gene on the proliferation of human osteosarcoma cells. Methods: Different doses of antisense PIN1 gene (0,20,50,100,200,250μl) were transfected into osteosarcoma MG-63 cells. The cells and the culture supernatants before and after transfection were collected. The cell growth curve was made using MTT method. The cell growth cycle and apoptosis were detected by FCM. The expression of PIN1 was detected by Western blot. The expression of PIN1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). Results: MTT and FCM assays indicated that the transfection of antisense PIN1 gene could inhibit proliferation of MG-63 cells and lead to cell apoptosis. Western-blot assays revealed the MG-63 cells transfected with antisense PIN1 gene had weaker expression than those without transfection with antisense PIN1 gene, and the band intensity was negatively related with doses. The cells transfected with different doses of gene (0,20,50,100,200,250 μl) had different absorbance rate(0.854 ± 0.136,0. 866 ± 0. 138,0. 732 ± 0. 154, 0. 611 ± 0. 121,0. 547 ± 0. 109,0. 398 ± 0. 113,0. 320 ± 0. 151 ), with significant difference assessed by F and q test ( P < 0.05). The absorbance rate of PINI mRNA was 0. 983 ± 0.125,0.988 ± 0.127, 0.915 ± 0.157,0.786 ± 0.125,0.608 ± 0.124,0.433 ± 0.130,0.410 ± 0. 158 respectively ( P < 0.05). Conclusion: The expression of PINlmRNA in MG-63 cells could be inhibited by antisense PIN1 gene, and then the expression of PIN1 was reduced and depressed, and so the proliferation of human osteosarcoma cells MG-63 was inhibited.

  7. Inhibition of Proliferation of Human Osteosarcoma Cells Transfected with PIN1 Antisense Gene

    Institute of Scientific and Technical Information of China (English)

    XIONG Wenhua; CHEN Anmin; GUO Fengjin

    2006-01-01

    Objective: To evaluate the inhibition of proliferation of human osteosarcoma cells transfected with Pin1 anti-sense gene. Methods: Different doses of antisense Pin1 gene (0, 20, 50, 100, 200, 250μL) were transfected into osteosarcoma MG-63 cells. The cells and culture supernatant before and after transfection were collected. The curve of cell growth was made by MTT method. The cell growth cycle and apoptosis were detected by FCM. The expression of Pin1 was detected by Western-blot and that of Pin1 mRNA by polymerase chain reaction (RT-PCR) respectively. Results: MTT and FCM assays indicated that the transfection by antisense Pin1 gene could inhibit MG-63 proliferation and induce apoptosis. Western-blot assays revealed that the antisense Pin1 gene-transfected MG-63 cells had weaker staining than those without transfected with antisense Pin1 gene, and staining intensity was negatively related with doses. The cells transfected by different doses of gene (0, 20, 50, 100, 200, 250μL) had different absorbance rate: 0.854±0.136, 0.866±0.138, 0.732±0.154, 0.611±0.121, 0.547±0.109, 0.398±0.113,0.320±0.151 respectively, with the difference being significant by F and q test (P<0.05). The expression of Pin1 mRNA had the similar results and its absorbance rate was 0.983±0.125, 0.988±0.127, 0.915±0.157,0.786±0.125, 0.608±0.124, 0.433±0.130, 0.410±0.158 respectively (P<0.05). Conclusion: The expression of Pin1 mRNA in MG-63 cells could be inhibited by antisense Pin1 gene, so to reduce the expression of Pin1 and depress the proliferation of human osteosarcoma cells MG-63.

  8. INTEGRATIVE COMPUTER ANALYSIS OF ANTISENSE TRANSCRIPTS AND miRNA TARGETS IN PLANT GENOMES

    Directory of Open Access Journals (Sweden)

    Orlov Y.L.

    2012-08-01

    Full Text Available Non-coding RNA, including small interfering RNAs (siRNAs, are important components of gene expression in eukaryotes, forming a regulatory network. miRNAs are expressed through nucleolytic maturation of hairpin precursors transcribed by RNA Polymerase II or III. Such transcripts are involved in post-transcriptional gene regulation in plants, fungi and animals. miRNAs bind to target RNA transcripts and guide their cleavage (mostly for plants or act to prevent translation. siRNAs act via a similar mechanism of cleavage of their target genes, but they also can direct genomic DNA methylation and chromatin remodeling. It is estimated that large fraction, up to 30% of all human genes also may be post-transcriptionally regulated by miRNAs. For plant genomes numbers could be higher depending on quality of sequencing and genome annotation. Due to availability of genome and mRNA sequences genome-wide searches for sense-antisense transcripts have been reported, but few plant sense-antisense transcript pairs have been studied. Integration of these data in specialized databases is challenging problem of computer genomics. We have developed set of computer programs to define antisense transcripts and miRNA genes based on available sequencing data. We have analyzed data from PlantNATsDB (Plant Natural Antisense Transcripts DataBase which is a platform for annotating and discovering Natural Antisense Transcripts (NAT by integrating various data sources [1]. NATs can be grouped into two categories, cis-NATs and trans-NATs. Cis-NAT pairs are transcribed from opposing DNA strands at the same genomic locus and have a variety of orientations and differing lengths of overlap between the perfect sequence complementary regions, whereas trans-NAT pairs are transcribed from different loci and form partial complementarily. The database contains at the moment 69 plant species. The database provides an integrative, interactive and information-rich web graphical interface to

  9. Lipolysis and apoptosis of adipocytes induced by neuropeptide Y—Y5 receptor antisense oligodeoxynucleotides in obese rats

    Institute of Scientific and Technical Information of China (English)

    GONGHai-Xia; GUOXi-Rong; FEILi; GUOMei; LIUQian-Qi; CHENRong-Hua

    2003-01-01

    AIM:To investigate the influence of central administration of neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides(ODN) on the body weight and fat pads of high-energy diet-induced obese rats, and the effects on white adipocyte lipolysis and apoptosis. METHODS: Y5 receptor antisense, sense, mismatched oligodeoxynucleotides (ODN) or vehicle were intracerebroventricularly injected, and average adipocyte area was calculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCR was used to analyze the expression of bcl-2 and bax gene. RESULTS: (1) Central administration of Y5 receptor antisense ODN significantly decreased body weight, fat pads, and average adipocyte area. (2) DNA fragmentation was presented after electrophoresis at both epididymal and retroperitoneal adipose tissue. (3) The expression of bcl-2 gene was downregulated, while the expression of bax was upregulated. CONCLUSION:Lipolysis and adipocyte apoptosis may be important reasons for Y5 receptor antisense therapy.

  10. Effect of c- erbB2 Antisense Oligodeoxynucleotides on Radiosensitivity of Human Ovarian Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    RENQing-Lan

    2003-01-01

    Object To explore tile effect of lipofectin - c - erbB2 antisense oligodeoxynucleotides on radiosensitivity of human ovarian cancer cell llne. Methods The expression of c - erbB2 was detected by means of RT - PCR, cellular response to irradiation was evaluated by tile colony forming assay. Results Lipofectin- c - erbB2 antisense oligodeoxynucleotides(AS- ODN) could suppress the expression of c - erbB2 , and significantly decreased the colony forming rate of human ovarian cancer cells after ionizing irradiation (P 0.05 ). Condusion c - erbB2 antisense oligodeoxynueleotides sensitized the SKOV3 to ionizing irradiation through decreasing the expression of e - erbB2 , which might be the result of the fact that c - erbB2 antisense oligodeoxynueleotides inhibit the eelluar signal transductionpathway relating to the radiation- resistant phenotype.

  11. A review of statistical methods for preprocessing oligonucleotide microarrays.

    Science.gov (United States)

    Wu, Zhijin

    2009-12-01

    Microarrays have become an indispensable tool in biomedical research. This powerful technology not only makes it possible to quantify a large number of nucleic acid molecules simultaneously, but also produces data with many sources of noise. A number of preprocessing steps are therefore necessary to convert the raw data, usually in the form of hybridisation images, to measures of biological meaning that can be used in further statistical analysis. Preprocessing of oligonucleotide arrays includes image processing, background adjustment, data normalisation/transformation and sometimes summarisation when multiple probes are used to target one genomic unit. In this article, we review the issues encountered in each preprocessing step and introduce the statistical models and methods in preprocessing.

  12. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    Directory of Open Access Journals (Sweden)

    Jennifer G Mulle

    Full Text Available DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs, and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  13. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    Science.gov (United States)

    Mulle, Jennifer G; Patel, Viren C; Warren, Stephen T; Hegde, Madhuri R; Cutler, David J; Zwick, Michael E

    2010-03-29

    DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  14. The Cellular Processing Capacity Limits the Amounts of Chimeric U7 snRNA Available for Antisense Delivery

    OpenAIRE

    2012-01-01

    Many genetic diseases are induced by mutations disturbing the maturation of pre-mRNAs, often affecting splicing. Antisense oligoribonucleotides (AONs) have been used to modulate splicing thereby circumventing the deleterious effects of mutations. Stable delivery of antisense sequences is achieved by linking them to small nuclear RNA (snRNAs) delivered by viral vectors, as illustrated by studies where therapeutic exon skipping was obtained in animal models of Duchenne muscular dystrophy (DMD)....

  15. Coexistence of sense and anti-sense mRNAs of variant surface protein in Giardia lamblia trophozoites.

    Science.gov (United States)

    Guo, Junli; Zheng, Wenyu; Wang, Yuehua; Li, Yao; Lu, Siqi; Feng, Xianmin

    2014-02-14

    A strategy of the parasitic protozoan Giardia lamblia to evade attack from the host immune system is periodic changes of its surface antigen, a member of the variant surface protein (VSP) family. A post-transcriptional gene silencing mechanism has been proposed to explain the presence of only one among many possible VSPs at any time. To investigate this phenomenon further, we extracted total RNA from cultured trophozoites of the G. lamblia C2 isolate, and cDNA was reverse-transcribed from the RNA. Sense and anti-sense VSPs were amplified from the total cDNA using nested PCR with primers designed from the 3'-conserved region and the known 5' or 3' end of the cDNA library. Sequence analyses of the amplified products revealed more than 34 full-length antisense VSPs and a smear of sense VSPs. Sequence alignments and comparisons revealed that these VSPs contained variable N-termini and conserved C-termini, and could be classified into 5 clades based on the sizes and variations of the N-terminal sequence. All antisense VSPs existed in the sense forms, but no corresponding antisense VSP existed for sense RNA (snsRNA) 16. The coexistence of sense and antisense VSP mRNAs in cultured G. lamblia supports the post-transcriptional regulation of VSP expression. We propose that VSPs transcribed simultaneously in the sense and antisense forms form double-stranded RNAs (dsRNAs) which are degraded by the Dicer endonuclease, while a VSP without an antisense transcription (e.g., snsRNA16) will be expressed on the surface of Giardia. In addition, in the course of this investigation VSPs were identified that were previously not known. PCR-based amplification of specific sense and antisense VSP cDNAs can be used to identify the specific VSP on G. lamblia trophozoites, which is easier than using specific monoclonal antibody approaches.

  16. Direct microcontact printing of oligonucleotides for biochip applications

    Directory of Open Access Journals (Sweden)

    Trévisiol E

    2005-07-01

    Full Text Available Abstract Background A critical step in the fabrication of biochips is the controlled placement of probes molecules on solid surfaces. This is currently performed by sequential deposition of probes on a target surface with split or solid pins. In this article, we present a cost-effective procedure namely microcontact printing using stamps, for a parallel deposition of probes applicable for manufacturing biochips. Results Contrary to a previous work, we showed that the stamps tailored with an elastomeric poly(dimethylsiloxane material did not require any surface modification to be able to adsorb oligonucleotides or PCR products. The adsorbed DNA molecules are subsequently printed efficiently on a target surface with high sub-micron resolution. Secondly, we showed that successive stamping is characterized by an exponential decay of the amount of transferred DNA molecules to the surface up the 4th print, then followed by a second regime of transfer that was dependent on the contact time and which resulted in reduced quality of the features. Thus, while consecutive stamping was possible, this procedure turned out to be less reproducible and more time consuming than simply re-inking the stamps between each print. Thirdly, we showed that the hybridization signals on arrays made by microcontact printing were 5 to 10-times higher than those made by conventional spotting methods. Finally, we demonstrated the validity of this microcontact printing method in manufacturing oligonucleotides arrays for mutations recognition in a yeast gene. Conclusion The microcontact printing can be considered as a new potential technology platform to pattern DNA microarrays that may have significant advantages over the conventional spotting technologies as it is easy to implement, it uses low cost material to make the stamp, and the arrays made by this technology are 10-times more sensitive in term of hybridization signals than those manufactured by conventional spotting

  17. Design and development of thermolytic DNA oligonucleotide prodrugs.

    Science.gov (United States)

    Grajkowski, Andrzej; Pedras-Vasconcelos, Joao; Ausín, Cristina; Verthelyi, Daniela; Beaucage, Serge L

    2005-11-01

    Deoxyribonucleoside phosphoramidites functionalized with the thermolytic 2-(N-formyl-N-methyl)aminoethyl group for phosphorus protection (1a-d) have been prepared and employed in the solid-phase synthesis of CpG ODN fma1555. Given that this modified oligonucleotide can be converted to the immunomodulatory CpG ODN 1555 under neutral conditions at 37 degrees C, its biologic activity was demonstrated in vivo by studies showing that intraperitoneal administration of CpG ODN fma1555 in mice resulted in the activation of cytokine-secreting splenocytes. Furthermore, administration of CpG ODN fma1555 to mice that were challenged intradermally in the ear with live L. major metacyclic promastigotes, reduced the severity of Leishmania skin lesions over time to an extent similar to that obtained with CpG ODN 1555. In another infectious model experiment, CpG ODN fma1555 protected newborn mice from death (65% survival) when administered 3 days before infection with the aggressive Tacaribe (TCRV) virus. A comparable immunoprotection was obtained by treatment of TCRV-infected mice with CpG ODN 1555 administered on the same day of infection (45% survival). However, when TCRV-infected mice were treated with CpG ODN fma1555 on the day of infection, they died as a consequence of the relatively slow conversion of the oligonucleotide prodrug to the bioactive CpG ODN 1555. Co-administration of both CpG ODN 1555 and CpG ODN fma1555 to mice 3 days prior to TCRV infection or on the day of infection provided protection from death (45-65% survival) and thus widened the immunoprotection window against TCRV-infection.

  18. Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide.

    Science.gov (United States)

    Williams, Jonathan P; Lough, Julie Ann; Campuzano, Iain; Richardson, Keith; Sadler, Peter J

    2009-11-01

    We report the development of an enhanced algorithm for the calculation of collision cross-sections in combination with Travelling-Wave ion mobility mass spectrometry technology and its optimisation and evaluation through the analysis of an organoruthenium anticancer complex [(eta6-biphenyl)Ru(II)(en)Cl]+. Excellent agreement was obtained between the experimentally determined and theoretically determined collision cross-sections of the complex and its major product ion formed via collision-induced dissociation. Collision cross-sections were also experimentally determined for adducts of this ruthenium complex with the single-stranded oligonucleotide hexamer d(CACGTG). Ion mobility tandem mass spectrometry measurements have allowed the binding sites for ruthenium on the oligonucleotide to be determined.

  19. Expression of Vascular Endothelial Growth Factor (VEGF) in Human Osteosarcoma Cells Transfected with Adeno-associated Virus-antisense VEGF

    Institute of Scientific and Technical Information of China (English)

    徐卫国; 陈安民; 张衣北; 易成腊

    2004-01-01

    Summary: The expression of protein vascular endothelial growth factor (VEGF) in osteosarcoma cells transfected with adeno-associated virus (rAAV)-antisense VEGF was studied to provide the foundation of osteosarcoma treatment through antivascularization. The rAAV-antisense VEGF at different doses (0, 20, 50, 100, 200, 240 μl) was transfected into osteosarcoma MG-63 cell. The cells and culture supernatants were collected before and after tansfection. The expression of VEGF protein was detected by using immunohistochemical staining (SP) and Western blot. SP and Western-blot tests revealed that the MG-63 Cells transfected with rAAV-antisense VEGF had less staining than those without transfection with rAAV-antisense VEGF, and the staining intensity was negatively correlated with the doses of genes. The corresponding A values of transfected genes with different doses of rAAV-antisense VEGF (0, 20, 50, 100, 200, 240 μA) were 86 614±13 776, 73 245±15 414, 61 078±12 124, 54 657±10 953, 39 802±11 308, 32 014±15 057 respectively,w ith the difference being significant (P<0.05). It was concluded that the expression of VEGF protein in MG-63 cells could be inhibited by rAAV-antisense VEGF.

  20. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts.

    Science.gov (United States)

    Magistri, Marco; Faghihi, Mohammad Ali; St Laurent, Georges; Wahlestedt, Claes

    2012-08-01

    In the decade following the publication of the Human Genome, noncoding RNAs (ncRNAs) have reshaped our understanding of the broad landscape of genome regulation. During this period, natural antisense transcripts (NATs), which are transcribed from the opposite strand of either protein or non-protein coding genes, have vaulted to prominence. Recent findings have shown that NATs can exert their regulatory functions by acting as epigenetic regulators of gene expression and chromatin remodeling. Here, we review recent work on the mechanisms of epigenetic modifications by NATs and their emerging role as master regulators of chromatin states. Unlike other long ncRNAs, antisense RNAs usually regulate their counterpart sense mRNA in cis by bridging epigenetic effectors and regulatory complexes at specific genomic loci. Understanding the broad range of effects of NATs will shed light on the complex mechanisms that regulate chromatin remodeling and gene expression in development and disease.

  1. Use of versican variant V3 and versican antisense expression to engineer cultured human skin containing increased content of insoluble elastin.

    Science.gov (United States)

    Merrilees, Mervyn J; Falk, Ben A; Zuo, Ning; Dickinson, Michelle E; May, Barnaby C H; Wight, Thomas N

    2014-06-19

    Skin substitutes for repair of dermal wounds are deficient in functional elastic fibres. We report that the content of insoluble elastin in the dermis of cultured human skin can be increased though the use of two approaches that enhance elastogenesis by dermal fibroblasts, forced expression of versican variant V3, which lacks glycosaminoglycan (GAG) chains, and forced expression of versican antisense to decrease levels of versican variant V1 with GAG chains. Human dermal fibroblasts transduced with V3 or anti-versican were cultured under standard conditions over a period of 4 weeks to produce dermal sheets, with growth enhanced though multiple seedings for the first 3 weeks. Human keratinocytes, cultured in supplemented media, were added to the 4-week dermal sheets and the skin layer cultured for a further week. At 5 weeks, keratinocytes were multilayered and differentiated, with desmosome junctions thoughout and keratin deposits in the upper squamous layers. The dermal layer was composed of layered fibroblasts surrounded by extracellular matrix of collagen bundles and, in control cultures, small scattered elastin deposits. Forced expression of V3 and versican antisense slowed growth, decreased versican V1 expression, increased tropoelastin expression and/or the deposition of large aggregates of insoluble elastin in the dermal layer, and increased tissue stiffness, as measured by nano-indentation. Skin sheets were also cultured on Endoform Dermal Template™, the biodegradable wound dressing made from the lamina propria of sheep foregut. Skin structure and the enhanced deposition of elastin by forced expression of V3 and anti-versican were preserved on this supportive substrate. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  3. Effects of multidrug resistance, antisense RNA on the chemosensitivity of hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Bo Li; Jian-Ping Gong; Tian Ye; Lei Zhao; De-Hua Li; Xing-Hua Gou; Lan-Ying Zhao; Lei Han; Lin Chen; Lu-Nan Yan

    2006-01-01

    BACKGROUND: Multidrug resistance is a major obstacle in cancer chemotherapy. We examined whether the antisense RNA of multidrug resistance gene 1 (mdr1) could reverse multidrug resistance in the human hepatocellular carcinoma (HCC) cell line SMMC7721/ADM. METHODS: The recombinant adenoviruses pAdEasy-GFP-ASmdr1 product was produced by the adenoviral vector AdEasy system, which can express antisense RNA against the mdr1 gene. Following that, the recombinant adenovirus was transfected into the P-glycoprotein-producing multidrug resistance cell line, SMMC7721/ADM human HCC cells resistant to adriamycin (ADM) and daunorubicin (DNR). In order to investigate the reversal of multidrug resistance phenotype, we measured the expression of mdr1 mRNA by RT-PCR and the production of P-glycoprotein by lfow cytometry. The sensitivities for ADM and DNR SMMC7721/ADM cells were examined by [3-(4, 5-dimethylthi-azol-2-yl)-2,5 diphenyl-terazolium bromide] (MTT) analysis. RESULTS: The low-level expression of mdr1 mRNA and P-glycoprotein production were observed in parental sensitive cells SMMC/7721 in addition to the overexpression of mdr1 mRNA and P-glycoprotein in SMMC7721/ADM cells. The transfection of antisense-RNA into SMMC7721/ADM cells resulted in decreases of mdr1 mRNA and P-glycoprotein, but increase of drug sensitivities. The sensitivities of transfected SMMC7721/ADM cells to ADM and DNR in IC50 reduced by 31.25% and 62.96%respectively. CONCLUSIONS: Mdr1 antisense RNA can increase the sensitivities of SMMC7721/ADM cells to anticancer drug by decreasing the expression of the mdr1 gene and inhibiting P-glycoprotein expression. This strategy may be applicable to cancer patients with P-glycoportein mediated multidrug resistance.

  4. Release of DNA oligonucleotides and their conjugates from controlled-pore glass under thermolytic conditions.

    Science.gov (United States)

    Grajkowski, Andrzej; Cieślak, Jacek; Norris, Scott; Freedberg, Darón I; Kauffman, Jon S; Duff, Robert J; Beaucage, Serge L

    2008-12-01

    The sequential functionalization of long-chain alkylamine controlled-pore glass (CPG) with a 3-hydroxypropyl-(2-cyanoethyl)thiophosphoryl linker and a dinucleoside phosphorotetrazolide leads to a uniquely engineered support for solid-phase synthesis. Unlike conventional succinylated-CPG supports, this support is designed to allow oligonucleotide deprotection and elimination of deprotection side-products to proceed without release of the oligonucleotide. When needed, the DNA oligonucleotide can be thermolytically released in 2 hr under essentially neutral conditions. The modified CPG support has been successfully employed in the synthesis of both native and fully phosphorothioated DNA 20-mers. On the basis of reversed-phase HPLC and electrophoretic analyses, the purity of the released oligonucleotides is comparable to that of identical oligonucleotides synthesized from succinylated-CPG supports, in terms of both shorter-than-full-length oligonucleotide contaminants and overall yields. The detailed preparation of DNA oligonucleotides conjugated with exemplary reporter or functional groups, either at the 3'-terminus or at both 3'- and 5'-termini, is also described.

  5. A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli.

    Science.gov (United States)

    Nakashima, Nobutaka; Ohno, Satoshi; Yoshikawa, Katsunori; Shimizu, Hiroshi; Tamura, Tomohiro

    2014-01-01

    We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination.

  6. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Yu, Xiyan, E-mail: yuxiyan@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Wang, Xiufeng, E-mail: xfwang@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China)

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  7. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2006-03-01

    Full Text Available Abstract Background Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. Results This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR at several positions and consist of two alternatively spliced variants (SP1 and SP2. Expression of the most abundant HBZ spliced variant (SP1 could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. Conclusion These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis.

  8. Intrathecal PLC(β3) oligodeoxynucleotides antisense potentiates acute morphine efficacy and attenuates chronic morphine tolerance.

    Science.gov (United States)

    Quanhong, Zhou; Ying, Xue; Moxi, Chen; Tao, Xu; Jing, Wang; Xin, Zhang; Li, Wang; Derong, Cui; Xiaoli, Zhang; Wei, Jiang

    2012-09-07

    Morphine is a mainstay for chronic pain treatment, but its efficacy has been hampered by physical tolerance. The underlying mechanism for chronic morphine induced tolerance is complicated and not well understood. PLC(β3) is regarded as an important factor in the morphine tolerance signal pathway. In this study, we determined intrathecal (i.t.) administration of an antisense oligodeoxynucleotide (ODN) of PLC(β3) could quicken the on-set antinociceptive efficacy of acute morphine treatment and prolong the maximum effect up to 4h. The antisense could also attenuate the development of morphine-induced tolerance and left shift the ED50 after 7 day of coadministration with morphine. These results probably were contributed by the PLC(β3) antisense ODN as they successfully knocked down protein expression levels and reduced activity of PLC(β3) in spinal cord in rats. The mismatch group had no such effects. The results confirmed the important involvement of PLC(β3) in both acute morphine efficacy and chronic morphine tolerance at spinal level in rats. This study may provide an idea for producing a novel adjuvant for morphine treatment.

  9. Murine neurofibroma reversion by antisense RNA for HTLV-I tax

    Institute of Scientific and Technical Information of China (English)

    李昌本; Mark; C.Horowitz; Nancy; H.Ruddle

    1999-01-01

    Neurofibroma cell lines derived from mice transgenic for HTLV-I LTR tax express high levels of HTLV-I tax mRNA and protein and exhibit a transformed phenotype. A retrovirus vector carrying HTLV-I tax cDNA in reversed transcriptional orientation was stably transfected into the neurofibroma cells. Antisense RNA inhibited expression of the tax gene with a decrease of more than 40 % in both tax mRNA and protein. Tax antisense RNA reversed the transformed phenotype as exhibited by dramatic changes in cell morphology and growth characteristics. Expression of several cellular genes which are activated by Tax protein including GM-CSF, IL-6, LT/TNF, c-myc and LIF was down-regulated, while M-CSF and c-src proto-oncogene expressions were up-regulated. Accumulation of β-actin mRNA was not affected. The changes that occurred in the tax antisense expressing neurofibroma cells could be the consequence of the decreased concentration of Tax protein. These results also indicate that HTLV-I Tax protein is crucial for main

  10. ASBEL, an ANA/BTG3 antisense transcript required for tumorigenicity of ovarian carcinoma.

    Science.gov (United States)

    Yanagida, Satoshi; Taniue, Kenzui; Sugimasa, Hironobu; Nasu, Emiko; Takeda, Yasuko; Kobayashi, Mana; Yamamoto, Tadashi; Okamoto, Aikou; Akiyama, Tetsu

    2013-01-01

    Mammalian genomes encode numerous antisense non-coding RNAs, which are assumed to be involved in the regulation of the sense gene expression. However, the mechanisms of their action and involvement in the development of diseases have not been well elucidated. The ANA/BTG3 protein is an antiproliferative protein whose expression is downregulated in prostate and lung cancers. Here we show that an antisense transcript of the ANA/BTG3 gene, termed ASBEL, negatively regulates the levels of ANA/BTG3 protein, but not of ANA/BTG3 mRNA and is required for proliferation and tumorigenicity of ovarian clear cell carcinoma. We further show that knockdown of ANA/BTG3 rescues growth inhibition caused by ASBEL knockdown. Moreover, we demonstrate that ASBEL forms duplexes with ANA/BTG3 mRNA in the nucleus and suppresses its cytoplasmic transportation. Our findings illustrate a novel function for an antisense transcript that critically promotes tumorigenesis by suppressing translation of the sense gene by inhibiting its cytoplasmic transportation.

  11. Pseudomonas exotoxin antisense RNA selectively kills hepatitis B virus infected cells

    Institute of Scientific and Technical Information of China (English)

    Peter Hafkemeyer; Ulrich Brinkmann; Elizabeth Brinkmann; Ira Pastan; Hubert E Blum; Thomas F Baumert

    2008-01-01

    AIM: To present an approach for selectively killing retrovirus-infected cells that combines the toxicity of Pseudomonas exotoxin (PE) and the presence of reverse transcriptase (RT) in infected cells. METHODS: PE antisense toxin RNA has palindromic stem loops at its 5' and 3' ends enabling self-primed generation of cDNA in the presence of RT. The RT activity expressed in retrovirus-infected cells converts "antisense-toxin-RNA" into a lethal toxin gene exclusively in these cells. RESULTS: Using cotransfection studies with Peexpressing RNAs and β-gal expressing reporter plasmids, we show that, in HepG2 and HepG2. 2. 15 hepatomacells as well as in duck hepatitis B virus (DHBV) infected cells, HBV or DHBV-polymerase reverse transcribe a lethal cDNA copy of an antisense toxin RNA, which is composed of sequences complementary to a PE gene and eukaryotic transcription and translation signals. CONCLUSION: This finding may have important implications as a novel therapeutic strategy aimed at the elimination of HBV infection.

  12. Regulation of apoptosis by fau revealed by functional expression cloning and antisense expression.

    Science.gov (United States)

    Mourtada-Maarabouni, Mirna; Kirkham, Lucy; Farzaneh, Farzin; Williams, Gwyn T

    2004-12-16

    Functional expression cloning is a powerful strategy for identifying critical steps in biological pathways independently of prior assumptions. It is particularly suitable for the identification of molecules crucial to the control of apoptosis. Our screen for sequences suppressing T-cell apoptosis isolated a sequence antisense to fau (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene). The fox gene in FBR murine osteosarcoma virus is also antisense to fau and several reports have indicated that fau displays tumour suppressor and oncogenic properties in different contexts. Our observations indicate that the fau antisense sequence suppresses expression of endogenous fau mRNA and produces resistance to apoptosis induced both by the glucocorticoid analogue dexamethasone' by ultraviolet radiation, and by the anticancer drug cisplatin. In all cases, colony-forming ability is protected, indicating that fau affects the critical events prior to commitment to cell death. Overexpression of fau in the sense orientation induces cell death, which is inhibited both by Bcl-2 and by inhibition of caspases, in line with its proposed role in apoptosis.

  13. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  14. Chimeric RNA Oligonucleotides with Triazole and Phosphate Linkages: Synthesis and RNA Interference.

    Science.gov (United States)

    Fujino, Tomoko; Kogashi, Kanako; Okada, Koudai; Mattarella, Martin; Suzuki, Takeru; Yasumoto, Kenichi; Sogawa, Kazuhiro; Isobe, Hiroyuki

    2015-12-01

    Chimeric RNA oligonucleotides with an artificial triazole linker were synthesized using solution-phase click chemistry and solid-phase automated synthesis. Scalable synthesis methods for jointing units for the chimeric structure have been developed, and after click-coupling of the jointing units with triazole linkers, a series of chimeric oligonucleotides was prepared by utilizing the well-established phosphoramidite method for the elongation. The series of chimeric 21-mer oligonucleotides that possessed the triazole linker at different strands and positions allowed for a screening study of the RNA interference to clarify the preference of the triazole modifications in small-interfering RNA molecules.

  15. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers.

    Science.gov (United States)

    Kaura, Mamta; Kumar, Pawan; Hrdlicka, Patrick J

    2014-07-03

    Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.

  16. Identification of novel endogenous antisense transcripts by DNA microarray analysis targeting complementary strand of annotated genes

    Directory of Open Access Journals (Sweden)

    Kohama Chihiro

    2009-08-01

    Full Text Available Abstract Background Recent transcriptomic analyses in mammals have uncovered the widespread occurrence of endogenous antisense transcripts, termed natural antisense transcripts (NATs. NATs are transcribed from the opposite strand of the gene locus and are thought to control sense gene expression, but the mechanism of such regulation is as yet unknown. Although several thousand potential sense-antisense pairs have been identified in mammals, examples of functionally characterized NATs remain limited. To identify NAT candidates suitable for further functional analyses, we performed DNA microarray-based NAT screening using mouse adult normal tissues and mammary tumors to target not only the sense orientation but also the complementary strand of the annotated genes. Results First, we designed microarray probes to target the complementary strand of genes for which an antisense counterpart had been identified only in human public cDNA sources, but not in the mouse. We observed a prominent expression signal from 66.1% of 635 target genes, and 58 genes of these showed tissue-specific expression. Expression analyses of selected examples (Acaa1b and Aard confirmed their dynamic transcription in vivo. Although interspecies conservation of NAT expression was previously investigated by the presence of cDNA sources in both species, our results suggest that there are more examples of human-mouse conserved NATs that could not be identified by cDNA sources. We also designed probes to target the complementary strand of well-characterized genes, including oncogenes, and compared the expression of these genes between mammary cancerous tissues and non-pathological tissues. We found that antisense expression of 95 genes of 404 well-annotated genes was markedly altered in tumor tissue compared with that in normal tissue and that 19 of these genes also exhibited changes in sense gene expression. These results highlight the importance of NAT expression in the regulation

  17. Genetic modification of condensed tannin biosynthesis in Lotus corniculatus. 1. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in "hairy root" cultures.

    Science.gov (United States)

    Carron, T R; Robbins, M P; Morris, P

    1994-03-01

    An antisense dihydroflavonol reductase (DFR) gene-construct made using the cDNA for DFR from Antirrhinum majus was introduced into the genome of a series of clonal genotypes of Lotus corniculatus via Agrobacterium rhizogenes. After initial screening, 17 antisense and 11 control transformation events were analysed and tannin levels found to be reduced in antisense root cultures. The effect of this antisense construct, (pMAJ2), which consisted of the 5' half of the DFR cDNA sequence, was compared in three different recipient Lotus genotypes. This construct effectively down-regulated tannin biosynthesis in two of the recepient genotypes (s33 and s50); however, this construct was relatively ineffective in a third genotype (s41) which accumulated high levels of condensed tannins in derived transgenic root cultures. Four pMAJ2 antisense and three control lines derived from clonal genotypes s33 and s50 were selected and studied in greater detail. The antisense DFR construct was found to be integrated into the genome of the antisense "hairy root" cultures, and the antisense RNA was shown to be expressed. Tannin levels were much lower in antisense roots compared to the controls and this reduction in tannin levels was accompanied by a change in condensed tannin subunit composition.

  18. A web-based search engine for triplex-forming oligonucleotide target sequences.

    Science.gov (United States)

    Gaddis, Sara S; Wu, Qi; Thames, Howard D; DiGiovanni, John; Walborg, Earl F; MacLeod, Michael C; Vasquez, Karen M

    2006-01-01

    Triplex technology offers a useful approach for site-specific modification of gene structure and function both in vitro and in vivo. Triplex-forming oligonucleotides (TFOs) bind to their target sites in duplex DNA, thereby forming triple-helical DNA structures via Hoogsteen hydrogen bonding. TFO binding has been demonstrated to site-specifically inhibit gene expression, enhance homologous recombination, induce mutation, inhibit protein binding, and direct DNA damage, thus providing a tool for gene-specific manipulation of DNA. We have developed a flexible web-based search engine to find and annotate TFO target sequences within the human and mouse genomes. Descriptive information about each site, including sequence context and gene region (intron, exon, or promoter), is provided. The engine assists the user in finding highly specific TFO target sequences by eliminating or flagging known repeat sequences and flagging overlapping genes. A convenient way to check for the uniqueness of a potential TFO binding site is provided via NCBI BLAST. The search engine may be accessed at spi.mdanderson.org/tfo.

  19. Development of novel decoy oligonucleotides: advantages of circular dumb-bell decoy.

    Science.gov (United States)

    Tomita, Naruya; Tomita, Tetsuya; Yuyama, Kazuhiko; Tougan, Takahiro; Tajima, Tsuyoshi; Ogihara, Toshio; Morishita, Ryuichi

    2003-04-01

    The inhibition of specific transcription regulatory proteins is a novel approach to regulate gene expression. The transcriptional activities of DNA binding proteins can be inhibited by the use of double-stranded oligonucleotides (ODNs) that compete for binding to their specific target sequences in promoters and enhancers. Transfection of this cis-element double-stranded ODN, referred to as decoy ODN, has been reported to be a powerful tool that provides a new class of anti-gene strategies to gene therapy and permits examination of specific gene regulation. We have demonstrated the usefulness of this decoy ODN strategy in animal models of restenosis, myocardial infarction, glomerulonephritis and rheumatoid arthritis. However, one of the major limitations of decoy ODN technology is the rapid degradation of phosphodiester ODNs by intracellular nucleases. To date, several different types of double-stranded decoy ODNs have been developed to overcome this issue. Circular dumb-bell (CD) double-stranded decoy ODNs that were developed to resolve this issue have attracted a high level of interest. In this review, the applications of decoy ODN strategy and the advantages of modified CD double-stranded decoy ODNs will be discussed.

  20. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    Science.gov (United States)

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  1. Exploiting Protected Maleimides to Modify Oligonucleotides, Peptides and Peptide Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Clément Paris

    2015-04-01

    Full Text Available This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  2. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids.

    Science.gov (United States)

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe

    2008-04-21

    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  3. 2,2,5,5-tetramethylpyrrolidin-3-one-1-sulfinyl group for 5'-hydroxyl protection of deoxyribonucleoside phosphoramidites in the solid-phase preparation of DNA oligonucleotides.

    Science.gov (United States)

    Marchán, Vicente; Cieślak, Jacek; Livengood, Victor; Beaucage, Serge L

    2004-08-11

    Several nitrogen-sulfur reagents have been investigated as potential 5'-hydroxyl protecting groups for deoxyribonucleoside phosphoramidites to improve the synthesis of oligonucleotides on glass microarrays. Out of the nitrogen-sulfur-based protecting groups so far investigated, the 2,2,5,5-tetramethylpyrrolidin-3-one-1-sulfinyl group exhibited near optimal properties for 5'-hydroxyl protection by virtue of the mildness of its deprotection conditions. Specifically, the iterative cleavage of a terminal 5'-sulfamidite group in the synthesis of 5'-d(ATCCGTAGCCAAGGTCATGT) on controlled-pore glass is efficiently accomplished by treatment with iodine in the presence of an acidic salt. Hydrolysis of the oligonucleotide to its 2'-deoxyribonucleosides upon exposure to snake venom phosphodiesterase and bacterial alkaline phosphatase did not reveal the formation of any nucleobase adducts or other modifications. These findings indicate that the 2,2,5,5-tetramethylpyrrolidin-3-one-1-sulfinyl group for 5'-hydroxyl protection of phosphoramidites, such as 10a-d, may lead to the production of oligonucleotide microarrays exhibiting enhanced specificity and sensitivity in the detection of nucleic acid targets.

  4. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.

  5. Kinetic Hairpin Oligonucleotide Blockers for Selective Amplification of Rare Mutations

    Science.gov (United States)

    Jia, Yanwei; Sanchez, J. Aquiles; Wangh, Lawrence J.

    2014-01-01

    Detection of rare mutant alleles in an excess of wild type alleles is increasingly important in cancer diagnosis. Several methods for selective amplification of a mutant allele via the polymerase chain reaction (PCR) have been reported, but each of these methods has its own limitations. A common problem is that Taq DNA polymerase errors early during amplification generate false positive mutations which also accumulate exponentially. In this paper, we described a novel method using hairpin oligonucleotide blockers that can selectively inhibit the amplification of wild type DNA during LATE-PCR amplification. LATE-PCR generates double-stranded DNA exponentially followed by linear amplification of single-stranded DNA. The efficiency of the blocker is optimized by adjusting the LATE-PCR temperature cycling profile. We also demonstrate that it is possible to minimize false positive signals caused by Taq DNA polymerase errors by using a mismatched excess primer plus a modified PCR profile to preferentially enrich for mutant target sequences prior to the start of the exponential phase of LATE-PCR amplification. In combination these procedures permit amplification of specific KRAS mutations in the presence of more than 10,000 fold excess of wild type DNA without false positive signals. PMID:25082368

  6. Advantages of ion-exchange chromatography for oligonucleotide analysis.

    Science.gov (United States)

    Cook, Ken; Thayer, Jim

    2011-05-01

    The rapid development of therapeutic oligonucleotides (ONs) has created a need for in-depth characterization of ONs, beyond previous requirements. The natural migration to LC-MS requires the use of chromatography with MS-compatible eluents to introduce the large, highly charged biopolymers into the mass spectrometer. Most frequently this employs ion-pair reversed-phase liquid chromatography, which may leave gaps in the characterization, but these can be filled with the use of high-resolution ion-exchange chromatography. Several classes of isobaric isomers are among the impurities that will require further separation prior to MS analysis. This review shows how the use of ion exchange as an additional orthogonal analytical method can be used as standalone or interfaced with MS to achieve the highest possible analytical coverage in the characterization and quantification of impurities present in single- and double-stranded ON formulations. Some of these techniques have been in use for some time and the importance of others is just being recognized.

  7. Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation

    Science.gov (United States)

    Kim, Jinho; Olsen, Timothy R.; Zhu, Jing; Hilton, John P.; Yang, Kyung-Ae; Pei, Renjun; Stojanovic, Milan N.; Lin, Qiao

    2016-05-01

    We present a microfluidic approach to integrated isolation of DNA aptamers via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs a microbead-based protocol for the processes of affinity selection and amplification of target-binding oligonucleotides, and an electrophoretic DNA manipulation scheme for the coupling of these processes, which are required to occur in different buffers. This achieves the full microfluidic integration of SELEX, thereby enabling highly efficient isolation of aptamers in drastically reduced times and with minimized consumption of biological material. The approach as such also offers broad target applicability by allowing selection of aptamers with respect to targets that are either surface-immobilized or solution-borne, potentially allowing aptamers to be developed as readily available affinity reagents for a wide range of targets. We demonstrate the utility of this approach on two different procedures, respectively for isolating aptamers against a surface-immobilized protein (immunoglobulin E) and a solution-phase small molecule (bisboronic acid in the presence of glucose). In both cases aptamer candidates were isolated in three rounds of SELEX within a total process time of approximately 10 hours.

  8. The development of bioactive triple helix-forming oligonucleotides.

    Science.gov (United States)

    Seidman, Michael M; Puri, Nitin; Majumdar, Alokes; Cuenoud, Bernard; Miller, Paul S; Alam, Rowshon

    2005-11-01

    We are developing triple helix-forming oligonucleotides (TFOs) as gene targeting reagents in mammalian cells. We have described psoralen-conjugated TFOs containing 2'-O-methyl (2'OMe) and 2'-O-aminoethoxy (AE) ribose substitutions. TFOs with a cluster of 3-4 AE residues, with all other sugars as 2'OMe, were bioactive in a gene knockout assay in mammalian cells. In contrast, TFOs with one or two clustered, or three dispersed, AE residues were inactive. Thermal stability analysis of the triplexes indicated that there were only incremental differences between the active and inactive TFOs. However the active and inactive TFOs could be distinguished by their association kinetics. The bioactive TFOs showed markedly greater on-rates than the inactive TFOs. It appears that the on-rate is a better predictor of TFO bioactivity than thermal stability. Our data are consistent with a model in which a cluster of 3-4 AE residues stabilizes the nucleation event that precedes formation of a complete triplex. It is likely that triplexes in cells are much less stable than triplexes in vitro probably as a result of elution by chromatin-associated translocases and helicases. Consequently the biologic assay will favor TFOs that can bind and rebind genomic targets quickly.

  9. Effect of oligonucleotide primers in determining viral variability within hosts

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2004-12-01

    Full Text Available Abstract Background Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. Results To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient. Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Conclusions Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  10. Nanoexplosive gene therapy using triplex-forming oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eun Jung; Min, Hye Jung; Choe, Jae Gol; Park, Gil Hong; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Triplex forming oligonucleotides (TFO) labeled with Auger emitter could be ideal vehicles for delivering radiation energy to specific DNA sequences, and followed by double-stranded DNA breaks and subsequent inactivation of targeted genes. We designed TFOs targeting the selected DNA fragments (i.e., estrogen receptors and N-myc promoter) and labeled with {sup 125}I and {sup 111}In. Various Cancer cells, e.g., MCF-7 (breast adenocarcinoma), MCF-10A (immortalized breast cells), Jurkat (T-cell leukemia), ARO (thyroid cancer), SNU-449 (Colon Caner), and HL-60 (polymyelocytic leukemia), were prepared and treated with radiolabeled TFO for 24 h. After the incubation, subcellular fractions (i.e., cell nucleus, cytoplasm and cultured medium) were collected and measured radioactivity by a gamma scintillation counter, respectively. The mean value of % injected dose for each fraction was ranged as follows: nucleus, 4.4-20%; cytoplasm, 8.2-29%; and medium, 64-87%. Therefore, we speculated that TFO labeled with Auger emitter could be a next-generation therapeutic tool in nanoexplosive gene therapy.

  11. Sheath liquid effects in capillary high-performance liquid chromatography-electrospray mass spectrometry of oligonucleotides.

    Science.gov (United States)

    Huber, C G; Krajete, A

    2000-02-18

    Fused-silica capillary columns of 200 microm inner diameter were packed with micropellicular, octadecylated, 2.3 microm poly(styrene-divinylbenzene) particles and applied to the separation of oligonucleotides by ion-pair reversed-phase high-performance liquid chromatography. Oligonucleotides were eluted at 50 degrees C with gradients of 3-13% acetonitrile in 50 mM triethylammonium bicarbonate. Addition of sheath liquid to the column effluent allowed the detection of oligonucleotides by electrospray ionization mass spectrometry using full-scan data acquisition with a detectability comparable to that obtained with UV detection. The signal-to-noise ratios with different sheath liquids increased in the order isopropanololigonucleotides longer than 20 nucleotide units whereas no significant effect was observed with shorter oligonucleotides. Organic acids and bases in the sheath liquid generally deteriorated the signal-to-noise ratios in the chromatograms and mass spectra mainly because of increased background noise. Only a few charge states were observed in the mass spectra of oligonucleotides because of charge state reduction due to the presence of carbonic acid in the eluent. With triethylammonium hydrogencarbonate as chromatographic eluent and acetonitrile as sheath liquid, very few cation adducts of oligonucleotides were observed in the mass spectra. However, the presence of small amounts of monopotassium adducts enabled the calculation of the charge state of multiply charged ions. With acetonitrile as sheath liquid, 710 amol of a 16-mer oligonucleotide were detected using selected ion monitoring data acquisition with a signal-to-noise ratio of 3:1. Finally, capillary ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry was

  12. Complexes of carbon nanotubes with oligonucleotides in thin Langmuir-Blodgett films to detect electrochemically hybridization

    Science.gov (United States)

    Egorov, A. S.; Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Orekhovskaya, T. I.; Veligura, A. A.; Govorov, M. I.; Shulitsky, B. G.

    2014-10-01

    Self-assembled complexes consisting of thin multi-walled carbon nanotubes (MWCNTs) and DNA-oligonucleotides which are able to a cooperative binding to complementary oligonucleotides have been investigated. It was establised a high-performance charge transport in nanostructured Langmuir-Blodgett complexes thin MWCNTs/DNA. A method to electrochemically detect DNA hybridization on the self-organized structures has been proposed.

  13. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    Science.gov (United States)

    Rull, Jordi; Nonglaton, Guillaume; Costa, Guillaume; Fontelaye, Caroline; Marchi-Delapierre, Caroline; Ménage, Stéphane; Marchand, Gilles

    2015-11-01

    The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO2) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric contrast optical technique, atomic force microscopy, multiple internal reflection infrared spectroscopy and X-ray photoelectron spectroscopy. The shelf life of the 3,4-epoxybutyltrimethoxysilane coating layer has also been studied. Finally, two different strategies of NH2-oligonucleotide grafting on EBTMOS coating layer have been compared, i.e. reductive amination and nucleophilic substitution, SN2. This EBTMOS based coating layer can be used for a wide range of applications

  14. Conceptual "Heat-Driven" approach to the synthesis of DNA oligonucleotides on microarrays.

    Science.gov (United States)

    Grajkowski, A; Cieślak, J; Chmielewski, M K; Marchán, V; Phillips, L R; Wilk, A; Beaucage, S L

    2003-12-01

    The discovery of deoxyribonucleoside cyclic N-acylphosphoramidites, a novel class of phosphoramidite monomers for solid-phase oligonucleotide synthesis, has led to the development of a number of phosphate protecting groups that can be cleaved from DNA oligonucleotides under thermolytic neutral conditions. These include the 2-(N-formyl-N-methyl)aminoethyl, 4-oxopentyl, 3-(N-tert-butyl)carboxamido-1-propyl, 3-(2-pyridyl)-1-propyl, 2-[N-methyl-N-(2-pyridyl)]aminoethyl, and 4-methythiobutyl groups. When used for 5'-hydroxyl protection of nucleosides, the analogous 1-phenyl-2-[N-methyl-N-(2-pyridyl)]aminoethyloxycarbonyl group exhibited excellent thermolytic properties, which may permit an iterative "heat-driven" synthesis of DNA oligonucleotides on microarrays. In this regard, progress has been made toward the use of deoxyribonucleoside cyclic N-acylphosphoramidites in solid-phase oligonucleotide syntheses without nucleobase protection. Given that deoxyribonucleoside cyclic N-acylphosphoramidites produce oligonucleotides with heat-sensitive phosphate protecting groups, blocking the 5'-hydroxyl of these monomers with, for example, the thermolabile 1-phenyl-2-[N-methyl-N-(2-pyridyl)]aminoethyloxycarbonyl group may provide a convenient thermo-controlled method for the synthesis of oligonucleotides on microarrays.

  15. Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications.

    Science.gov (United States)

    Beaucage, S L

    2001-08-01

    This report emphasizes the interfacial chemistry that is required to ensure proper attachment of oligonucleotides onto the surface of microarrays. For example, strategies for the covalent attachment of pre-synthesized oligonucleotides to glass slides, gold films, polyacrylamide gel pads, polypyrrole films, and optical fibers are surveyed in an attempt to better define the parameters for optimal formation and detection of DNA hybrids. These parameters include among others, the nature and length of the linkers attaching oligonucleotides to the arrays, and the surface density of oligonucleotides required for unhindered hybridization with DNA targets. Sensitive detection methods such as the use of light-scattering techniques, molecular beacons, surface plasmon resonance, attenuated total internal reflection-FTIR, and the evanescent field excitation of fluorescence from surface-bound fluorophores have been developed to study the kinetics and specificity of hybridization events. Finally, the synthesis of oligonucleotides directly on glass surfaces and polypropylene sheets has been investigated to enable DNA sequencing by hybridization and achieve oligonucleotide densities of ca. 10(6) sequences per cm(2) on DNA chips.

  16. Oligonucleotide chip, real-time PCR and sequencing for genotyping of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Yong-Zhong Wang; Guo-Xiang Wu; Li-Bo Luo; Min Chen; Li-Hua Ruan

    2007-01-01

    AIM: To compare the oligonucleotide chip, real-time PCR and sequencing for genotyping of hepatitis B virus in Chinese patients with chronic hepatitis B.METHODS: Mixture of samples with different genotypes and clinical serum samples from 126 chronic hepatitis B patients was tested for hepatitis B virus genotypes by oligonucleotide chip, real-time PCR and sequencing of PCR products, respectively. Clinical performances, time required and costs of the three assays were evaluated.RESULTS: Oligonucleotide chips and real-time PCR detected 1% and 0.1% genotypes, respectively, in mixed samples. Of the 126 clinical samples from patients with chronic hepatitis B, genotype B was detected in 41(33%), 41 (33%) and 45 (36%) samples, and genotype C in 76 (60%), 76 (60%) and 81 (64%) samples, by oligonucleotide chip, real-time PCR and sequencing,respectively. Oligonucleotide chip and real-time PCR detected mixed genotypes B and C in 9 samples. Realtime PCR was the rapidest and cheapest among the three assays.CONCLUSION: Oligonucleotide chip and real-time PCR are able to detect mixed genotypes, while sequencing only detects the dominant genotype in clinical samples.

  17. Improving signal intensities for genes with low-expression on oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Hu Limei

    2004-06-01

    Full Text Available Abstract Background DNA microarrays using long oligonucleotide probes are widely used to evaluate gene expression in biological samples. These oligonucleotides are pre-synthesized and sequence-optimized to represent specific genes with minimal cross-hybridization to homologous genes. Probe length and concentration are critical factors for signal sensitivity, particularly when genes with various expression levels are being tested. We evaluated the effects of oligonucleotide probe length and concentration on signal intensity measurements of the expression levels of genes in a target sample. Results Selected genes of various expression levels in a single cell line were hybridized to oligonucleotide arrays of four lengths and four concentrations of probes to determine how these critical parameters affected the intensity of the signal representing their expression. We found that oligonucleotides of longer length significantly increased the signals of genes with low-expression in the target. High-expressing gene signals were also boosted but to a lesser degree. Increasing the probe concentration, however, did not linearly increase the signal intensity for either low- or high-expressing genes. Conclusions We conclude that the longer the oligonuclotide probe the better the signal intensities of low expressing genes on oligonucleotide arrays.

  18. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides.

    Science.gov (United States)

    Rytkönen, Jussi; Arukuusk, Piret; Xu, Wujun; Kurrikoff, Kaido; Langel, Ulo; Lehto, Vesa-Pekka; Närvänen, Ale

    2014-02-01

    The largest obstacle to the use of oligonucleotides as therapeutic agents is the delivery of these large and negatively charged biomolecules through cell membranes into intracellular space. Mesoporous silicon (PSi) is widely recognized as a potential material for drug delivery purposes due to its several beneficial features like large surface area and pore volume, high loading capacity, biocompatibility, and biodegradability. In the present study, PSi nanoparticles stabilized by thermal oxidation or thermal carbonization and subsequently modified by grafting aminosilanes on the surface are utilized as an oligonucleotide carrier. Splice correcting oligonucleotides (SCOs), a model oligonucleotide drug, were loaded into the positively charged PSi nanoparticles with a loading degree as high as 14.3% (w/w). Rapid loading was achieved by electrostatic interactions, with the loading efficiencies reaching 100% within 5 min. The nanoparticles were shown to deliver and release SCOs, in its biologically active form, inside cells when formulated together with cell penetrating peptides (CPP). The biological effect was monitored with splice correction assay and confocal microscopy utilizing HeLa pLuc 705 cells. Furthermore, the use of PSi carrier platform in oligonucleotide delivery did not reduce the cell viability. Additionally, the SCO-CPP complexes formed in the pores of the carrier were stabilized against proteolytic digestion. The advantageous properties of protecting and releasing the cargo and the possibility to further functionalize the carrier surface make the hybrid nanoparticles a potential system for oligonucleotide delivery.

  19. Antisense RNA: a genetic approach to cell resistance against Parvovirus; RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-12-31

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  20. Antisense RNA: a genetic approach to cell resistance against Parvovirus. RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-01-01

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  1. DNA sequence analysis by hybridization with oligonucleotide microchips : MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides.

    Energy Technology Data Exchange (ETDEWEB)

    Stomakhin, A. A.; Vasiliskov, V. A.; Timofeev, E.; Schulga, D.; Cotter, R. J.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Moscow Inst. of Physics and Technology; Middle Atlantic Mass Spectrometry Lab.; Johns Hopkins Univ. School of Medicine

    2000-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA-8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10-15{sup o}C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA-8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed.

  2. 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.

    Science.gov (United States)

    Hamma, Tomoko; Miller, Paul S

    2003-01-01

    Oligo-2'-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2'-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 degrees C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2'-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ-oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ-oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and

  3. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model

    DEFF Research Database (Denmark)

    Bestas, Burcu; Moreno, Pedro M D; Blomberg, K Emelie M;

    2014-01-01

    X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense...

  4. Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector

    Directory of Open Access Journals (Sweden)

    Ebrahim Azizi

    2010-06-01

    Full Text Available Ebrahim Azizi1,4, Alireza Namazi1, Ismaeil Haririan2,5, Shamileh Fouladdel1, Mohammad R Khoshayand3, Parisa Y Shotorbani6, Alireza Nomani1,7, Taraneh Gazori1,21Molecular Research Lab, Department of Pharmacology and Toxicology, 2Department of Pharmaceutics, 3Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; 5Biomaterials Research Center (BRC Tehran, Iran; 6Pharmaceutical Sciences Branch, Azad University, Tehran, Iran; 7Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, IranAbstract: Chitosan/alginate nanoparticles which had been optimized in our previous study using two different N/P ratios were chosen and their ability to release epidermal growth factor receptor (EGFR antisense was investigated. In addition, the stability of these nanoparticles in aqueous medium and after freeze-drying was investigated. In the case of both N/P ratios (5, 25, nanoparticles started releasing EGFR antisense as soon as they were exposed to the medium and the release lasted for approximately 50 hours. Nanoparticle size, shape, zeta potential, and release profile did not show any significant change after the freeze-drying process (followed by reswelling. The nanoparticles were reswellable again after freeze-drying in phosphate buffer with a pH of 7.4 over a period of six hours. Agarose gel electrophoresis of the nanoparticles with the two different N/P ratios showed that these nanoparticles could protect EGFR antisense molecules for six hours.Keywords: chitosan/alginate nanoparticles, release profile, freeze-drying, agarose gel electrophoresis

  5. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells

    Directory of Open Access Journals (Sweden)

    Gay Bernard

    2011-09-01

    Full Text Available Abstract Background Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. Results We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. Conclusion These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP.

  6. Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.

    Directory of Open Access Journals (Sweden)

    Lise Michel

    Full Text Available Myotonic dystrophy type 1 (DM1 is caused by an unstable expanded CTG repeat located within the DMPK gene 3'UTR. The nature, severity and age at onset of DM1 symptoms are very variable in patients. Different forms of the disease are described, among which the congenital form (CDM is the most severe. Molecular mechanisms of DM1 are well characterized for the adult form and involve accumulation of mutant DMPK RNA forming foci in the nucleus. These RNA foci sequester proteins from the MBNL family and deregulate CELF proteins. These proteins are involved in many cellular mechanisms such as alternative splicing, transcriptional, translational and post-translational regulation miRNA regulation as well as mRNA polyadenylation and localization. All these mechanisms can be impaired in DM1 because of the deregulation of CELF and MBNL functions. The mechanisms involved in CDM are not clearly described. In order to get insight into the mechanisms underlying CDM, we investigated if expanded RNA nuclear foci, one of the molecular hallmarks of DM1, could be detected in human DM1 fetal tissues, as well as in embryonic and neonatal tissues from transgenic mice carrying the human DMPK gene with an expanded CTG repeat. We observed very abundant RNA foci formed by sense DMPK RNA and, to a lesser extent, antisense DMPK RNA foci. Sense DMPK RNA foci clearly co-localized with MBNL1 and MBNL2 proteins. In addition, we studied DMPK sense and antisense expression during development in the transgenic mice. We found that DMPK sense and antisense transcripts are expressed from embryonic and fetal stages in heart, muscle and brain and are regulated during development. These results suggest that mechanisms underlying DM1 and CDM involved common players including toxic expanded RNA forming numerous nuclear foci at early stages during development.

  7. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce...... essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)(4)-Ahx-ßala or the H-(R-Ahx)(6)-ßala peptide exhibited complete growth...

  8. Improving the nutritional quality of the barley and wheat grain storage proteins by antisense technology

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Lange, Mette; Aaslo, Per

    2011-01-01

    Prolamins are the predominant storage proteins in barley and wheat grains, accounting for 50 to 80% of total seed protein. However, the prolamins are not optimal feed for monogastric animals as they have a low content of certain essential amino acids such as lysine, threonine and tryptophan...... gliadins) are also available from Germany and UK. We have grown them under different N regimes (high, medium and low N) in semi-field conditions. Previously five different antisense C-hordein lines of barley have been characterized in our laboratory. The analyses revealed that the lysine, threonine...

  9. Application of heteronuclear couplings to conformational analysis of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G. [Univ. of Maryland, College Park, MD (United States); Live, D. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Bax, A. [NIDDK National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    The value of vicinal coupling constants extracted from NMR spectra in deducing torsion angles for conformational analysis is well recognized. Due to the abundance of protons, their couplings have been mostly widely used. In many instances, couplings between protons and other nuclei may be a valuable complement to proton-proton couplings or, in some instances, may be the only coupling available to characterize the torsion angle about a bond. Recently, heteronuclear couplings have been used to great benefit in studies of isotopically enriched proteins, and this general approach has been extended to peptides at natural abundance. The possibility of using this approach to study oligonucleotides is also attractive but has not as yet been widely exploited. With the development of strategies for labeling such molecules, particularly RNAs, this may become an important component in conformational analysis. For DNA, labeling is less accessible, but sufficient quantities of unlabeled material are readily available for measuring these couplings at natural abundance. We chose several DNA systems to explore the usefulness of heteronuclear couplings in addressing the sugar conformation and the glycosidic torsion angle. Intensities of cross peaks in long-range HMQC experiments can be related to the couplings. Crosspeaks involving H1{prime} and C1{prime} atoms have been emphasized because of the superior shift dispersion at these positions between sugar protons and carbon atoms. Results will be shown for the self-complementary Dickerson duplex dodecamer sequence d(CGCGAATTCGCG) and for d(GGTCGG), which dimerizes to form a G-tetrad structure incorporating both syn and anti base orientations. The couplings provide a clear discrimination between presence of C3{prime}-endo and C2{prime}-endo conformations of the sugars and syn and anti bases arrangements.

  10. Antisense EGFR sequence reverses the growth properties of human liver carcinoma cell line BEL-7404 in vitro

    Institute of Scientific and Technical Information of China (English)

    XUYONGHUA; WANLIJIANG; SUFENGPENG; YINGHUACHEN

    1993-01-01

    A recombinant plasmid containing a full length human epidermal growth factor receptor (EGFR) cDNA sequence in antisense orientation was transferred into cells of a human liver carcinoma cell line BEL-7404. Compared with the control cell clone JX-0 transferred with the vector plasmid and the parent BEL-7404 cells, the antisense EGFR transferred cell clone JX-1 showed a decreased EGFR gene expression and reduced significantly the growth potential either in anchorage-dependent or anchorage-independent growth. Furthermore. JX-1 cells appeared to be distinctly dependent on serum concentration for monolayer growth. The results suggested that antisense EGFR could partly block the EGFR gene ex-pression and reverse the malignant growth properties of human liver carcinoma cells in vitro.

  11. Characteristics of transgenic tomatoes antisensed for the ethylene receptor genes LeERT1 and LeERT2

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-feng; YING Tie-jin; ZHANG Ying; BAO Bi-li; HUANG Xiao-dan

    2006-01-01

    Two stable transformed lines containing antisense LeERT1 or LeERT2 sequences and their hybridized line were investigated to determine the effect of LeERT1 and LeERT2 specificity in the ethylene receptor family in tomato (Lycopersicon esculentum Mill.) on ethylene signaling. The transgenic line alel containing antisense LeERT1 displayed shorter length of seedling grown in the dark and adult plant in the light, severe epinastic petiole, and accelerated abscission of petiole explant and senescence of flower explant, compared with its wild type B1. The transgenic line ale2 containing antisense LeERT2 also exhibited shorter hypocotyls and slightly accelerated abscission. The phenotypes of cross line dale of LeERT1 and LeERT2 were close to alel in many aspects. These results suggested that LeERT1 probably plays a relatively important role in ethylene signaling of tomato growth and development.

  12. Cocaine and amphetamine elicit differential effects in rats with a unilateral injection of dopamine transporter antisense oligodeoxynucleotides.

    Science.gov (United States)

    Silvia, C P; Jaber, M; King, G R; Ellinwood, E H; Caron, M G

    1997-02-01

    We have developed an antisense oligodeoxynucleotide to the dopamine transporter and used it to discriminate the behavioral properties of amphetamine and cocaine. In SK-N-MC cells permanently transfected with the dopamine transporter complementary DNA, treatment with 5 mM antisense oligodeoxynucleotide reduced dopamine uptake by 25% when compared to sense control. Unilateral intranigral administration of dopamine transporter antisense (50 microM) twice daily in freely moving rats for 2.5 days was sufficient to reduce dopamine transporter messenger RNA by 70% as measured by in situ hybridization, but not protein levels as measured by [3H]mazindol binding. However, intranigral treatment via implanted osmotic minipump over a period of seven days produced reductions in both dopamine transporter messenger RNA and protein levels (32%) at a dose of 500 pmol/day. These results indicate a longer half-life for the dopamine transporter than expected. Potassium chloride depolarization of ipsilateral striatal slices showed a greater than 200% increase in dopamine overflow on the antisense-treated side compared to the control side. Since imbalance of dopamine tone is known to induce rotational activity, we tested this behavioral paradigm in rats treated with various oligodeoxynucleotides at different doses and time-points. We have found that antisense-treated animals did not rotate spontaneously under any experimental conditions. Using various psychostimulants that target the dopamine transporter and increase dopamine levels, we found that the antisense-treated animals consistently rotated contralaterally in response to amphetamine (2 mg/kg), but not to cocaine (10 mg/kg) or nomifensine (10 mg/kg). These results bring in vivo evidence for a different mode of action of amphetamine and cocaine on the dopamine transporter and lend direct support to the view that amphetamine acts as a dopamine releaser, whereas cocaine acts by blocking dopamine transport.

  13. Effect of NHE1 antisense gene transfection on the biological behavior of SGC-7901 human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng Liu; Xiao-Chun Teng; Jing-Chen Zheng; Gang Chen; Xing-Wei Wang

    2008-01-01

    AIM: To study the effect of type 1 Na+/H+ exchanger (NHE1) antisense human gene transfection on the biological behavior of gastric carcinoma cell line SGC-7901.METHODS: Antisense NHE1 eukaryotic expression on vector pcDNA3.1 was constructed by recombinant DNA technique and transfected into gastric carcinoma cell line SGC-7901 with DOTAP liposome transfection method.Morphological changes of cells were observed with optic and electron microscopes. Changes in cell proliferative capacity, apoptosis, intracellular pH (pH1), cell cycle,clone formation in two-layer soft agar, and tumorigenicity in nude mice were examined.RESULTS: Antisense eukaryotic expressing vectors were successfully constructed and transfected into 5GC-7901.The transfectant obtained named 7901-antisense (7901-,45) stablely produced antisense NHE1. There was a significant difference between the pH1 of 7901-AS cells (6.77 ± 0.05) and that of 7901-zeo cells and SGC-7901 cells (7.24 ± 0.03 and 7.26 ± 0.03, P < 0.01). Compared with SGC-7901 and 7901-zeo cells, 7901-AS cells mostly showed cell proliferation inhibition, G1/Go phase arrest, increased cell apoptotic rate, recovery of contact inhibition, and density contact. The tumorigenicity in nude mice and cloning efficiency in the two-layer soft agar were dearly inhibited.CONCLUSION: NHE1 antisense gene significantly restrains the malignant behavior of human gastric carcinoma cells, suppresses cell growth and induces cell apoptosis, and partially reverses the malignant phenotypes of SGC-7901. These results suggest a potential role for human tumor gene therapy.

  14. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    Science.gov (United States)

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  15. 'Specific' oligonucleotides often recognize more than one gene: the limits of in situ hybridization applied to GABA receptors.

    Science.gov (United States)

    Mladinic, M; Didelon, F; Cherubini, E; Bradbury, A

    2000-05-15

    As exquisite probes for gene sequences, oligonucleotides are one of the most powerful tools of recombinant molecular biology. In studying the GABA receptor subunits in the neonatal hippocampus we have used oligonucleotide probes in in situ hybridization and cloning techniques. The oligonucleotides used and assumed to be specific for the target gene, actually recognized more than one gene, leading to surprising and contradictory results. In particular, we found that a GABA(A)-rho specific oligonucleotide recognized an abundant, previously unknown, transcription factor in both in situ and library screening, while oligos 'specific' for GABA(A) subunits were able to recognize 30 additional unrelated genes in library screening. This suggests that positive results obtained with oligonucleotides should be interpreted with caution unless confirmed by identical results with oligonucleotides from different parts of the same gene, or cDNA library screening excludes the presence of other hybridizing species.

  16. Diffusion of Oligonucleotides from within Iron-Crosslinked Polyelectrolyte-Modified Alginate Beads: A Model System for Drug Release

    CERN Document Server

    Privman, Vladimir; Luz, Roberto A S; Guz, Nataliia; Glasser, M Lawrence; Katz, Evgeny

    2016-01-01

    We developed and experimentally verified an analytical model to describe diffusion of oligonucleotides from stable hydrogel beads. The synthesized alginate beads are Fe3+-cross-linked as well as polyelectrolyte-doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross-linking, i.e., the absence of the surface-layer barrier in this case. Furthermore, our results suggest a new simple approach to measuring the diffusion coefficient of the mobile oligonucleotide molecules inside hydrogel. The considered alginate beads provide a model for a well-defined component in drug release systems and for the oligonucleotide-release transduction steps in drug-delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate that induces full oligonucleotide release with non-diffusional kinetics.

  17. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles

    Science.gov (United States)

    A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide pr...

  18. Inhibitory effect of human telomerase antisense oligodeoxyribonucleotides on the growth of gastric cancer cell lines in variant tumor pathological